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 Protein quantification tools are valuable in biological and biomedical research and 

in clinical applications because they enable measurements that elucidate physiological 

states, including disease states. Protein biomarker detection is likely to play a major role 

in patient health and aid in the personalization of medicine. However, protein detection 

has lagged behind other bio-analytical methods due to intrinsic properties of proteins as 

well as the complexity of biological fluids, such as blood. This thesis describes the 

design, development, and testing of several technologies for the advancement of protein 

detection in clinical and research settings. A common thread through these technologies 

is the isolation of millions of protein molecules on a solid surface, the interrogation of 

those molecules by fluorescently-labeled antibodies, and the identification and 

quantification of those molecules by single molecule resolution imaging. By 

systematically investigating the parameters that have prevented single-molecule 

quantification of surface-immobilized proteins, we achieved technologies that can 
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digitally quantify biomarkers in single-plex and multi-plex formats and be used to detect 

protein-protein interactions. Additionally we characterized a surface coating method that 

will be of benefit to a wide array of biophysical studies. Finally, we conducted proof-of-

principle experiments and computer simulations for the development of a high-

throughput proteomics technology that relies on only a small set of probes (8 to 50) to 

analyze each of the approximately 23,000 human proteins.  
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CHAPTER ONE: INTRODUCTION 
 

Diagnostics – the identification and characterization of disease in individuals – is 

of critical importance to patient health. Despite the diverse ways that diseases form, be it 

by microbial infection, congenital mal-development, environmental exposure, 

autoimmunity, genetic background, or combinations of the above factors, all treatment 

structures are inextricably linked with diagnosis[1].  

Evidence suggests that improving diagnostics in terms of accuracy and early 

detection can be sufficient to reduce patient mortality and morbidity. For example, 

cervical cancer deaths have been diminished by 74% since the introduction of the Pap 

Test which can detect the cancer at an early stage[2]. Notably, the Pap Test was a 

tremendous success against cervical cancer despite the fact that it was introduced in 1928 

when scientists had little understanding of the molecular basis of the cancer. Disease 

detection can save lives even from diseases we know little about[3]. Early detection has 

also proven valuable in the fights against heart disease[4], diabetes[5], and other types of 

cancer[6-10], so it is likely to be valuable in many diseases.  

Not only can early diagnosis greatly improve patient outcomes, but the lack of 

early diagnosis can be severely detrimental. Adenocarcinomas are cancers of glandular 

tissue epithelia and include colon, breast, and pancreatic cancers. Adenocarcinomas are 

curable; with early detection, the five-year survival rates of colon and breast cancers is 

over 90% and 95%, respectively (Figure 1)[11]. By contrast, with late detection, those 

survival rates are decreased to 8% and 16% respectively. Interestingly, pancreatic cancer, 
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which is an adenocarcinoma for which no early stage test exists and which does not cause 

symptoms until late stages, is one of the most fatal cancers with a less than 5% five-year 

survival rate[12]. Taken together, high patient fatality rates from adenocarcinomas are 

less due to our inability to treat the disease than to the inability to detect the disease until 

late stages. 

The reason that early diagnosis may be so helpful is the nature of disease 

progression. For example, cancer evolves from a small group of cells, becomes more 

mature over time, and eventually invades different parts of the body. Detecting a tumor at 

an early stage implies that the tumor is likely to be relatively small and localized making 

surgical interventions more effective. Early detection also allows more time for various 

treatment strategies to be attempted. Thus, the ability to make a diagnosis at an early 

stage increases the effectiveness of interventions and increases the number of possible 

interventions[13]. 

How then, can biomedical science accelerate the development of new and better 

diagnostic tests?  Histological, microbiological and immunohistochemical tests are used 

to analyze the characteristics of cells and tissues for disease detection. Molecular and 

biochemical tests allow for measurements of nucleic acids, proteins, or metabolites that 

are circulating in biological fluids like blood. When these measurements statistically 

correlate with disease-state across a wide body of individuals, they are called biomarkers. 

Molecular and biochemical biomarkers are especially promising because they are 

inherently quantitative and, as opposed to histological methods, enable a view of 

biological samples at the resolution at which underlying biochemical mechanisms occur.  
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The collection of human proteins is the proteome, and the analysis of the 

proteome holds great promise for the discovery of diagnostic biomarkers for several 

reasons. Firstly, proteins are the major effectors of the physiology of an organism. The 

Central Dogma of Molecular Biology generally holds true in that DNA and RNA act to 

produce the appropriate collection of proteins which then carry out cellular functions. 

The presence of certain proteins indicates cells in the body are carrying out or are poised 

to carry out a particular physiological function. Secondly, protein expression can change 

based on environmental and temporal stimulae, so there is a reasonable likelihood that 

disease progression may be able to be monitored through routine screenings. Finally, the 

proteome is diverse: vastly more diverse than the mRNA which codes it. The abundance 

and activation state of each protein depends not only on transcriptional regulation but 

splice-form regulation, translational regulation, and post-translational modification[14]. 

So, protein biomarkers have a greater chance of correlating with physiological states than 

genomic or transcriptome biomarkers[13]. 

 With the potential so high for the discovery and application of protein 

biomarkers, what has prevented their realization? The main challenge lies in the 

measurement of protein abundance, and that is mostly due to the enormous concentration 

ranges at which proteins exist in biological samples[15]. After removing cells and 

clotting factors from blood, the remaining serum provides enormous potential for finding 

biomarkers since it contains blood-specific proteins as well as leakage products from all 

of the body’s tissues (Figure 2)[16]. However, proteins in serum exist over a range of ten 

orders of magnitude (Figure 3)[17], so when analyzing a serum sample, a protein of 

interest may be present at one copy out of ten-billion. This “copy number problem” 
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dominates the proteomic technology landscape to such an extent that, whereas, during the 

Human Genome Project, the yardstick of technological advancement was “base pairs 

sequenced per unit of time,” the yardstick in proteomics is “protein copies per unit 

volume.”[18] 

Nucleic acid quantification technologies have been able to get around the copy 

number problem (e.g. qPCR can detect single DNA molecules via amplification), so why 

have similar methods for quantifying proteins lagged behind? For one, there is no protein 

analog to PCR, and that prevents low abundance proteins from being amplified to bulk 

quantities. Additionally, there is no efficient way to create a molecule that partners to, or 

binds to, a protein with high affinity, as there are for nucleic acids (i.e base pair 

complementarity). Finally, nucleic acid methods benefit from the fact that all DNAs and 

RNAs have similar biochemistry: they are all negatively charged, due to a phosphodiester 

backbone.  By contrast, proteins have diverse biochemistry in several ways. Amino acids 

have vastly different chemical properties, ranging from acidic to basic and from 

hydrophobic to hydrophilic. Stretches of similar amino acids can create proteins with 

very different bulk properties. Also, proteins are often decorated by post-translational 

modifications such as phosphotyrosines, lysines, and polysachharides, which can greatly 

affect their charge and hydrophobicity. Thus proteins have proven more difficult to 

analyze than nucleic acids, and better molecular tools for detecting proteins are necessary 

for advancing disease detection capabilities.  

Proteomics and protein diagnostics are currently carried out by two major classes 

of technologies, the immunoassay and mass spectrometry[19]. Each of these classes has 

their classical applications, which can be found in research laboratories and in clinical 
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diagnostic facilities. Additionally, both the immunoassay and mass spectrometry fields 

are rife with novel technological variations that enable increased performance in areas 

like sensitivity, reproducibility, and multiplexing.  

Mass spectrometry operates by the ionization of proteins, the fragmentation of 

proteins into peptides, the determination of the mass of the peptides to a high degree of 

accuracy, and the comparison of that mass to a database of known peptide masses[20]. 

This method is often preceded by separating proteins by chromatography to resolve 

different proteins within a sample. A notable benefit of mass spectrometry is the ability to 

analyze many proteins with three to four orders of magnitude dynamic range. 

Additionally, novel mass spectrometric methods have appeared over the last decade that 

improve sensitivity and extend dynamic range even further. One promising development 

is Selective Reaction Monitoring (SRM) mass spectrometry which operates by training 

the instrument on peptides that the experimenter expects to observe in the sample and 

extends the dynamic range to five orders of magnitude[21].  Despite the promise of SRM, 

the general utility of mass spectrometry is hampered by several issues[22]. Its main 

drawback is its inadequately high limit of detection (LOD) which lies at 10
-9

 M. 

Clinically-relevant biomarkers are present in the 10
-12

 - 10
-10

 M range in serum. Also, 

despite the fifty year legacy of peptide mass spectrometry, it continues to be highly 

specialized, needing expert oversight in experimental planning, implementation, 

optimization, and data analysis. These are some of the shortcomings that have prevented 

mass spectrometry from becoming widely used to screen populations in clinical settings, 

where automatability and reproducibility are highly valued.  
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The immunoassay, or antibody-based detection, is the most widespread way for 

research and diagnostic laboratories to detect proteins. It relies on the biological 

phenomena that antibodies – the molecules that confer immunity for organisms – behave 

by binding non-covalently to their target via physical contact points[23]. Antibodies 

produced by organisms like rabbits can be isolated from the blood of the rabbits within a 

laboratory setting, purified, and used for in vitro studies. The most common research 

methods involving the use of antibodies are the Western blot and the enzyme-linked 

immunosorbent assay (ELISA). The principle behind both of these is that the antibody is 

labeled by a reporter molecule (such as an enzyme that produces a change in the optical 

absorbance of a liquid, a fluorophore, or a magnetic particle) and then the labeled 

antibody binds to its target if the target is present. After a wash step to remove un-bound 

antibody, the amount of the remaining antibody, which is bound to its target, is read by 

an appropriate detector such as an absorbance spectrometer, fluorometer, or 

electromagnetic sensor. The signal produced by the remaining antibody, (substracted 

from a target-less control to account for non-specific binding of the antibody) defines an 

analytical measurement of the abundance of the target. 

The Immunoassay, and ELISA in particular, is widely use in diagnostics due to its 

high sensitivity (LOD down to 10
-15 

M), practical dynamic range (three to four orders of 

magnitude), and automatability. They have been developed into a variety of platforms 

that have been shown to improve performance in terms of multiplexing and sensitivity. 

One solution to multiplexing the immunoassay has been the development of antibody 

microarrays[24]. The main advantage of this technology is that is increases the number of 

targets that can be analyzed given a volume of sample. Other technological innovations 
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have included proximity ligation assays[25, 26], bead-based arrays[27, 28], and hybrid 

antibody-DNA detection methods[29]. Interestingly however, no immunoassay had been 

shown that employed single-molecule detection, prior to the initiation of this thesis. 

Single-molecule detection describes analytical techniques that are able to identify 

the presence of an individual molecule, and most typically, fluorescent molecules. Single-

molecule techniques can be achieved by a variety of optical configurations, and all of 

these require efficient elimination of background fluorescence [30]. These optical 

techniques include narrow-field epifluorescence[31], fluorescence correlation and cross-

correlation spectroscopy[32] via laser confocal microscopy[33],  and various other 

methods that restrict the fluorescence excitation volume[34, 35]. By one method, total 

internal reflection fluorescence (TIRF) microscopy, the excitation volume is confined to a 

one-hundred nanometer section of the specimen, enabling high signal-to-noise for 

molecules located on the imaging surface (Figure 4) [36, 37].  

Single-molecule  detection holds great potential for biomarker analysis since with 

it comes the ability quantify molecules with digital resolution, i.e. by counting each 

molecule. Single-molecule detection and quantification has proven to be a boon in the 

DNA sequencing world. Since the development of Polony (polymerase colony) 

technology[38], which isolates individual molecules and performs separate sequencing 

reactions in parallel, next-generation sequencing technologies have exploded[39]. (Until 

2009, the number of sequenced human genomes was less than ten. By the end of 2010 

that number was approximately 3,000. By the end of 2011, that number is estimated to be 

approximately 30,000[40].) The single-molecule nature of these technologies has been 

proven to be more quantitative, accurate, and precise than previous analog methods like 
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the microarray[41, 42]. One of the reasons for this is that dynamic range becomes 

trivialized to the task of sampling more molecules (e.g. by expanding the imaging area). 

Theoretically speaking, to sample an event present at a one-in-a-million, one needs only 

to image around one million molecules at single molecule resolution – a task attainable 

on 1 cm
2
 of surface. Despite this potential, a deep survey of the literature at the outset of 

this thesis and until 2009 shows that no single-molecule method had been published that 

examines immunoassay protein detection on a solid surface (Figure 5).  

With a strong impetus that single-molecule detection could greatly benefit the 

world of protein detection, I embarked on this thesis to develop single-molecule tools for 

protein diagnostics and proteomics. The aim of Chapter Two of this thesis is to develop a 

single-molecule immunoassay on a solid surface, and in the process, uncover the 

technological barriers that exist to single-molecule diagnostics. Throughout the course of 

that aim I discovered that low-background surface chemistry was one of the major 

barriers to the adoption of single-molecule methods into protein detection. This paved the 

way for Chapter Three, in which I examine a recently published biomaterial called 

poly(ethylene glycol)-bovine serum albumin (PEG-BSA) nanogels[43] and study its use 

in single-molecule detection applications. Initially directed as a study to characterize the 

nanogels for protein diagnostic applications, I was satisfied to find the nanogel 

biomaterial to have benefits to general biophysical studies involving single-molecule 

imaging. Having established the principle techniques in single-molecule imaging, surface 

chemistry, and surface architecture, I sought to fully integrate single-molecule detection 

into the immunoassay toolkit. I chose the antibody microarray as the technology that can 

most readily benefit from single-molecule detection, and in Chapter Four, I provide a 
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proof-of-principle for the use of single-molecule imaging and nanogel surface chemistry 

in the antibody microarray arena. Finally, in Chapter Five, I introduce a novel proteomics 

technology that relies neither on mass spectrometry nor on a large collection of 

antibodies. With this technology, a small number of antibodies (8 to 50) could be used to 

obtain sequence information from denatured proteins or peptides in a massively parallel 

fashion. These antibodies, which detect peptide sequence information, may be bound and 

washed away in sequence with one another and detected by single-molecule imaging to 

identify and quantify the collection of over 23,000 human proteins in a single experiment. 

In addition to introducing the method and its two variations, I provide computational and 

experimental data that support the development of the technology.  
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Figure 1 

 

 

Cancer survival rates from adenocarcinomas with early and late detection[11] 
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Figure 2 

 

 

The relative contribution of proteins within plasma[16] 
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Figure 3 

 

Dynamic range of plasma proteins spans ten orders of magnitude.[17]
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Figure 4 

  

Total internal reflection fluorescence (TIRF) microscopy[44]
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Figure 5 
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CHAPTER TWO: PROTEIN QUANTIFICATION IN 

COMPLEX MIXTURES BY SOLID PHASE SINGLE-

MOLECULE COUNTING 
 

 This chapter embodies a manuscript that was published in the journal Analytical 

Chemistry on July 14, 2009. This chapter describes a novel method that Robi D. Mitra 

and I developed for quantifying proteins on a solid surface using an immunoassay that 

has single-molecule sensitivity. In this chapter, I overcome the obstacles that prevented 

the use of single-molecule imaging in an immunoassay and demonstrate the utility of the 

method in research and clinical applications. This study was conducted under a sponsored 

research agreement with Helicos Biosciences, Inc. Jeffrey Reifenberger trained me in 

Cambridge, MA to use and set up a total internal reflection fluorescence (TIRF) 

microscope. The experiments in this study were designed by Robi D. Mitra and me, and 

the experiments, software development, and TIRF setup were performed by me.  
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ABSTRACT 

Here we present a procedure for quantifying single protein molecules affixed to a 

surface by counting bound antibodies. We systematically investigate many of the 

parameters that have prevented the robust single-molecule detection of surface-

immobilized proteins. We find that a chemically adsorbed bovine serum albumin surface 

facilitates the efficient detection of single target molecules with fluorescent antibodies, 

and we show that these antibodies bind for lengths of time sufficient for imaging billions 

of individual protein molecules. This surface displays a low level of nonspecific protein 

adsorption, so that bound antibodies can be directly counted without employing two-color 

coincidence detection. We accurately quantify protein abundance by counting bound 

antibody molecules and perform this robustly in real-world serum samples. The number 

of antibody molecules we quantify relates linearly to the number of immobilized protein 

molecules (R
2
 = 0.98), and our precision (1-5% CV) facilitates the reliable detection of 

small changes in abundance (7%). Thus, our procedure allows for single, surface-

immobilized protein molecules to be detected with high sensitivity and accurately 

quantified by counting bound antibody molecules. Promisingly, we can probe flow cells 

multiple times with antibodies, suggesting that in the future it should be possible to 

perform multiplexed single-molecule immunoassays. 

 

INTRODUCTION 

 Our ability to detect and quantify proteins has lagged behind our ability to analyze 

nucleic acids. Closing this gap by developing more sensitive and quantitative protein 

analysis methods would greatly aid efforts to understand cellular processes[45, 46] and to 
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search for protein biomarkers that reveal disease state.[15, 47] The application of single-

molecule detection (SMD) methods to proteins holds great promise in this regard for five 

reasons: 1) Recent advances have made SMD methods inexpensive, robust, and 

reliable.[48, 49] 2) SMD methods can enable the detection of low-abundance 

proteins[50-52], which is especially important because the poor sensitivities of current 

proteomic methods are limiting progress in the area of biomarker discovery.[53, 54] 3) 

SMD methods can enable protein quantification by employing single-molecule counting, 

which can be significantly more accurate than bulk methods.[41, 42] 4) SMD methods 

can enable analysis of protein-protein interactions by detecting single-molecule co-

localization.[55] 5) SMD methods for proteins affixed to a surface could enable highly 

multiplexed immunoassays. For example, by creating ~ 20 overlapping pools of labeled 

antibodies using a logarithmic pooling strategy like the one used to decode bead-based 

random microarrays[56], a single assay could detect the protein targets of all 6,000 non-

redundant human proteome antibodies[57]
 
with only ~ 20 binding rounds. 

 There are several obstacles that have hampered the development of single-

molecule immunoassays. One is the lack of a good surface for the SMD of surface-

immobilized proteins. An ideal surface would be resistant to nonspecific antibody 

adsorption, while still allowing for the specific binding of antibodies to their target 

molecules. Efforts have been made to develop better surfaces[43, 58-68], however, the 

nonspecific adsorption on these surfaces has not been characterized with single-molecule 

resolution, with a few exceptions.[59, 60] To work around high background surfaces, 

researchers have introduced innovative detection schemes, often relying on two-color 

coincidence detection.[69, 70] This helps to reduce detection noise but is suboptimal for a 
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proteomic method, since 1) pairs of protein-specific capture reagents with non-

overlapping epitopes may not be obtainable for all proteins, 2) generating pairs of 

reagents increases cost, and 3) determining the optimal binding conditions for dual 

antibody sandwich immunoassays can require more optimization than for single-capture 

antibody immunoassays.[71] A second obstacle to single-molecule immunoassays is the 

dissociation of antibodies from their individual targets during imaging. Many antibodies 

rapidly dissociate from their ligands in solution, but surface dissociation is often slower. 

It is not known whether the surface dissociation rates of antibodies will enable the 

sensitive detection of single ligand molecules. Finally, a single-molecule immunoassay 

must be able to sample large number of molecules in each experiment to ensure accurate 

protein quantification and to maximize the dynamic range. 

 Here we demonstrate a method for quantifying protein molecules on a surface by 

counting bound antibodies. To achieve this, we first optimized an image acquisition and 

processing method for SMD of fluorescently labeled antibodies on the surface of a flow 

cell. Then we systematically evaluated 12 surface chemistries for single-protein 

detection. For each surface, we quantified the nonspecific adsorption of single antibody 

molecules and characterized the efficiency of target protein immobilization. We found 

that a chemically adsorbed bovine serum albumin (BSA) surface had the lowest 

nonspecific binding and still allowed for efficient protein sample attachment. Using this 

surface incorporated into a flow cell, we measured the fraction of immobilized proteins 

that could be detected by direct antibody binding, and found that a high fraction of targets 

(at least 70%) were bound specifically. We directly measured the surface dissociation of 

antibodies from their ligands and found it to be highly suited for large scale single-
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molecule quantification. We further showed that proteins were accessible to antibody 

binding over multiple binding rounds. Finally, we were able to quantify immobilized 

proteins by directly counting bound antibody molecules. A sufficiently low level of 

background binding was observed such that single target molecules could be detected 

without employing two-color coincidence detection. We found this method was both 

accurate and sensitive – the number of antibody molecules counted was linearly related to 

the number of proteins (R
2
 = 0.98), and as few as 55 ligand molecules per 1,000 µm

2
 

image (1.4 pg cm
-2

) could be detected over background. Our detection method showed 

robustness in the background of a complex biological fluid, and we demonstrated the 

accurate quantification of an endogenous protein within blood serum samples. Thus, we 

have resolved many of the issues that have limited the feasibility of solid phase single-

molecule protein analysis and have demonstrated reliable protein quantification in 

biological samples by single molecule counting on a solid surface.  

 

 RESULTS AND DISCUSSION  

 There are a number of formats and methods by which the SMD of biomolecules 

can be achieved.[30] We chose total internal reflection fluorescence (TIRF) microscopy 

as the basis for our single-molecule immunoassays. We attach a small amount of protein 

sample to the surface of a flow cell, probe with fluorescent antibodies, remove unbound 

antibodies and directly image the bound antibodies (Figure 6A). 
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Iterative Thresholding Improves Detection of Labeled Antibody Molecules 

 We first sought to verify that our detection system could achieve single-molecule 

resolution of fluorescent antibody molecules affixed to glass. We mixed Cy3-labeled 

antibodies with identical antibodies labeled with Cy5, diluted the mixture, and reacted it 

to an epoxide-coated glass slide. We performed TIRF imaging with Cy3 and Cy5 

channels, determined the positions of the Cy3 and Cy5 antibodies using software, and 

overlaid the positions (Figure S1). The Cy3-labeled molecules did not co-localize with 

Cy5-labeled molecules more than would be expected by chance (p = 0.78, Fisher’s Exact 

Test), demonstrating that the fluorescence objects detected were not clusters of antibodies 

(which would have been detected as co-localized molecules) but single antibody 

molecules.  

 In these initial experiments, we observed considerably fewer fluorescent 

antibodies at the edges of our field of view relative to the center of the image. This is due 

to the non-uniform laser illumination intrinsic to our Nikon optical design (Figure 6B). 

Since this non-uniform illumination greatly reduces the number of antibody molecules 

that can be analyzed in a single field of view using standard, single value thresholding, 

we developed an automated and unbiased image processing technique, “iterative 

thresholding” (see Supporting Methods). The algorithm uses local thresholds to 

compensate for the lower intensities at the edges and is able to accurately identify the 

locations of fluorescent antibodies independent of their position within the field of view. 

We tested the performance of this technique by comparing images processed with our 

iterative thresholding algorithm with the same images analyzed by single value 

thresholding. Our iterative thresholding algorithm (Figure 6D) identified the positions of 
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14-fold more antibodies per field of view (1,408% ± 420%), on average, than the 

standard method (Figure 6C) while introducing few false positives with respect to the raw 

data (sensitivity = 99.96% ± 0.07%, specificity = 98.47% ± 0.76%). Thus iterative 

thresholding substantially increased the efficiency of fluorescent antibody analysis using 

objective TIRF and provided a foundation for our protein quantification method. 

 

Study of Surface Nonspecific Adsorption 

 Minimizing the nonspecific adsorption of antibodies to surfaces is critical for the 

development of single-molecule immunoassays because it causes false positive events, 

decreasing the accuracy and sensitivity of the assays. To find the best surface for single-

molecule immunoassays, we systematically searched the literature to identify surfaces 

that were shown to have minimal interactions with antibodies. We chose surface 

chemistries previously used for SMD[60] and for biosensors[58, 62, 63, 66], as well as 

several that we speculated would exhibit low levels of non-specific protein adsorption. 

Some protocols were followed directly from the literature while others, such as the 

chemically adsorbed BSA protocols, were modified (see Materials and Methods). 

 We quantified the nonspecific adsorption of antibodies for 12 different surface 

chemistries. We loaded a glass slide into a flow cell, treated it according to a particular 

surface protocol, exposed it to Cy5-labeled antibody, washed away unbound antibodies, 

and quantified the number of adsorbed antibody molecules by single-molecule counting 

(Figure 6E). Since no ligand was present on the surface of the slide, each surface-bound 

antibody represented a nonspecific adsorption event. We observed 122 to 2,600 

antibodies per 1,000 µm2, (3 to 68 pg cm-2). We found that a chemically adsorbed BSA 
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surface (first developed by Heyes et al[60] and modified here to allow adsorption to the 

glass via epoxide crosslinking and capping) showed the least amount of nonspecific 

binding. Dextran, aminodextran, and the smaller molecular weight linear polyacrylamide 

(LPA) surfaces showed moderate adsorption. Among these three protocols, polymers of 

lower molecular weight (1,500 and 5,000 g/mol) performed better than those of higher 

molecular weight (10,000 and 500,000g/mol). Large LPA, CM-dextran, glucose, IgG, 

amino-PEG and PEG performed the worst.  

 These finding were consistent with those reported by Heyes et al[60], who found 

that chemical immobilization of BSA onto a glass surface provided great reduction in 

nonspecific adsorption of streptavidin molecules. By atomic force microscopy, they 

showed that this surface was highly homogeneous, supporting the hypothesis that the 75 

kDa BSA protein creates a neutral, hydrophilic layer that sterically hinders proteins from 

nonspecifically adsorbing to the sticky silicon dioxide below. Based on the performance 

of our adapted BSA surface, we selected the chemically adsorbed BSA surface for further 

characterization. 

 

Robust Immobilization of Protein Ligands on BSA-Coated Glass 

 It is important that a single-molecule immunoassay surface allows for the robust 

anchoring of ligand molecules. However, it was not clear whether the low background 

BSA surface discussed above could provide enough functional groups for the attachment 

of a protein sample. Therefore, we tested how efficiently proteins would anchor to the 

BSA surface using the heterobifunctional crosslinking system 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide 
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(NHS). We prepared a BSA surface in a flow cell and activated the free carboxyl groups 

on the BSA molecules with EDC and NHS. We washed the flow cell to remove unbound 

crosslinker and then exposed the flow cell to Cy3-labeled protein to immobilize the 

proteins via their primary amines. The flow cell was washed again to remove unbound 

protein molecules, un-reacted crosslinking sites were quenched, and the flow cell was 

imaged.  

 Crosslinking proteins to the BSA surface allowed for a ten-fold increase in the 

number of protein molecules affixed to the surface compared to the surface without 

EDC/NHS activation (950% ± 52%). Also, the proteins were able to be attached at over 

1,000 molecules per field of view – a density that allows for high-throughput single-

molecule sampling (Figure S2). Thus, we concluded that the EDC/NHS system was able 

to effectively activate the BSA surface and attach a protein sample. The chemically 

adsorbed BSA surface with EDC/NHS sample immobilization provided the surface 

chemistry for all subsequent experiments (Figure 6A). 

 We enable protein sample attachment by generating peptide bonds between the 

solvent-accessible carboxyl groups of the BSA and the primary amine groups of the 

target proteins. This contrasts the approach of some single-molecule studies which have 

relied on biotin streptavidin linkage.[60, 72] Our method does not rely on pre-labeling 

samples by biotinylation, instead taking advantage of endogenous lysine residues present 

on most proteins. Therefore our approach may provide a more universal way of attaching 

heterogeneous biological samples. 
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Efficient Detection of Single Protein Molecules by Antibody Binding 

 The accuracy of a single-molecule immunoassay depends on the accessibility of 

target molecules to antibodies; inaccessible ligands will not be detected or counted. There 

are several mechanisms that can prevent an antibody from binding a ligand immobilized 

on a solid substrate. Steric, electrodynamic, and thermodynamic variables can hinder 

binding when repulsive forces of the surface overcome the attractive forces of the 

antibody-protein complex. Kinetics can also hinder binding if a free energy barrier is 

sufficiently high to prevent docking on relevant time scales.[73] We sought to determine 

to what degree these variables affect the accessibility of target molecules to antibodies in 

our system. 

 To analyze the binding of target molecules by antibodies, we performed a dual-

color, single-molecule protein accessibility assay (Figure 7). Here, the target proteins 

were labeled with Cy3 and the antibodies were labeled with Cy5. We prepared a BSA 

surface within a flow cell, immobilized the target proteins, capped the reactive 

crosslinking sites, and acquired a pre-antibody image. Then, we probed with antibodies, 

washed away unbound antibodies, and imaged. We compared the positions of the 

antibodies with the positions of the proteins imaged beforehand by overlaying their 

locations. To verify that the co-localization of proteins and antibodies was a result of 

specific binding, we measured the correlation between protein and antibody positions and 

tested that correlation for randomness (see Supporting Methods). The correlogram in 

Figure 7 indicates that antibody binding was specific and not due to chance correlation. 

(To confirm the specificity of binding we also performed the protein accessibility assay 
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using a nonspecific target protein with which the antibodies should have had no affinity 

and observed a correlogram showing no significant correlations (Figure S3).) 

 To quantify ligand accessibility, we measured the fraction of proteins that were 

co-localized with antibodies. We then performed this protein accessibility assay for 

different antibody concentrations. The total fraction of proteins bound by antibodies is 

shown by the dashed line in Figure 8. To better determine the amount of specific binding, 

we estimated nonspecific binding based on the observed antibody density and subtracted 

that from the total binding (see Supporting Methods). The dotted line shows the estimated 

fraction of proteins that overlapped with antibodies as a result of nonspecific binding, 

while the solid line shows the fraction of specifically bound ligand molecules. 

 The accessibility curve follows the behavior of fractional occupancy that is 

expected from binding theory. When 1 µg/ml antibody is used, ~ 70% of the target 

molecules were specifically bound by antibodies. From these results, we conclude that 

single protein molecules can be efficiently detected by counting bound antibody 

molecules.  

 

Surface Dissociation of Antibodies 

 We sought next to determine if the ligand molecules that we failed to detect in the 

protein accessibility experiments described above were not detected because they were 

never bound by antibodies, or if they were initially bound by antibodies but the 

complexes dissociated before imaging. Antibody-ligand interactions are known to have 

dissociation half-lives in solution ranging from minutes to several hours. However, the 

surface dissociation rate may be slower due to surface-antibody interactions that stabilize 
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the complex. Therefore, we designed an experiment to measure the surface dissociation 

rate of antibodies bound to single ligand molecules. 

 To measure the surface dissociation rate of the antibodies, we allowed antibodies 

to bind to target proteins that were immobilized on the surface of the flow cell, as 

previously described. We imaged the surface to determine the starting number of 

antibody:ligand complexes and then began a continual wash to remove unbound 

antibodies from the flow cell. We imaged the surface every 8 hours over a 48 hour 

period. At each time-point we quantified the number of antibody:ligand complexes that 

were lost relative to the starting time point, and from this we measured the surface 

dissociation of the antibodies. 

 Nearly all (> 90%) of the co-localized pairs of proteins and antibodies remained 

intact for 48 hours at room temperature (Figure S4). Furthermore, antibody dissociation 

did not follow exponential decay over this time period. Together, these results suggest a 

strong antibody-surface interaction. The high stability of bound antibodies also explains 

how we were able to detect single ligand molecules with high efficiency (i.e. Figure 8) 

even though we thoroughly washed the flow cell.  

 The half life of a typical antibody:ligand complex can be as short as several 

minutes in solution. Such rapid dissociation would pose a serious barrier to the 

development of a solid phase, single-molecule immunoassay because antibodies would 

be washed off of the surface of the flow cell before they could be detected. Fortunately, 

surface interactions appear to stabilize antibody:ligand interactions.  Using the 

observed surface dissociation rate we calculated the dynamic range that can theoretically 

be achieved. If ligand molecules are immobilized at a density of 1,000 target molecules 
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per image and 10 images are acquired per second (a rate possible with the current 

generation of charge-coupled device cameras), then one can acquire images of 

1,000*0.9*10*60*60*48 = 1.5 billion target molecules while retaining 90% of the 

antibodies on the surface. Thus, the observed surface dissociation rate will support a 

dynamic range of 9 orders of magnitude. This suggests that it should be possible to 

develop single-molecule immunoassays with a high dynamic range. 

 

Dual-round protein binding 

 Ligand rebinding in successive binding rounds could be used to increase detection 

specificity or to enable efficient sample multiplexing.[56] However, as our surface 

dissociation experiments illustrated, it was difficult to remove bound antibodies from the 

surface. This was true even after washing with various antibody eluting reagents (data not 

shown). Therefore, we wanted to explore rebinding ligands by “erasing” antibodies from 

the surface via photobleaching. We believed rebinding after photobleaching might be 

possible because the antibodies we used was polyclonal and could theoretically bind 

multiple epitopes on a single ligand.  

 One hurdle to performing multiple binding rounds with an intermediate 

photobleaching step is that the antibodies that bind in the first round could competitively 

inhibit the binding of antibodies in subsequent rounds. To test whether competitive 

binding would be a major phenomenon, we probed Cy3-labeled ligand molecules with 

Cy5-labeled antibodies as described above and acquired the positions of the bound 

antibodies. We then photobleached the antibodies with 640nm light before performing a 

second round of binding with the same antibody. (Target molecules were not bleached.) 
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If antibodies competitively inhibited the second round of binding, then we should not 

have observed any ligand molecules that were bound in both rounds.  

 We observed 2,829 Cy3-labeled ligand molecules. Of these, 1,497 proteins were 

bound in round 1, 1,146 were bound in round 2, and 526 (18.6%) were bound twice. 

Assuming independent binding in round 1 and round 2, we would expect 21% of the 

ligands to be bound bind twice. Thus, approximately 87% of the proteins bound in round 

1 were available for binding in round 2 (Figure 9). This result supports the feasibility of 

performing multiple rounds of single-molecule protein detection.  

 

Quantification of Single Molecules by Antibody Binding 

 We next set out to perform a quantitative immunoassay, counting single, 

immobilized protein molecules by detecting bound antibodies. We affixed varying 

amounts of Cy3-labeled protein onto the surface and quantified the number of 

immobilized target molecules by imaging. Then we probed the surface with Cy5-labeled 

antibodies and counted the total number of bound antibodies after washing.  

 The solid line in Figure 10 illustrates the relationship between number of antibody 

molecules and number of protein molecules affixed to the surface. In the range of 55 to 

1,676 target molecules per 1,000 µm
2
 image, we observed a linear relationship between 

the number target molecules and antibodies. The lower limit of detection (LOD) of 55 

molecules per 1,000 µm
2
 image (1.4 pg cm

-2
), was achieved by acquiring only 5 images. 

It should be possible to detect lower quantities of surface-bound proteins by acquiring 

greater numbers of images.[51] Given our sample immobilization efficiency and this 

LOD, we were able to detect proteins in solution down to 100 pM. In this proof-of-



29 

 

principle study, we did not attempt to maximize the attachment efficiency, but doing so 

should increase the detection sensitivity.[51]  

 The standard curve displays high correlation (R
2
 = 0.98), and we obtain precision 

between 1% and 5% CV. By acquiring only 5 images we can robustly detect abundance 

changes down to 7% – we generated 99% confidence intervals around each data point, 

and the widest interval was a 7% deviation. This result demonstrates the utility of digital 

quantification.  

  We also quantified the Cy3-labeled target protein in the presence of serum. Here, 

we spiked Cy3-labeled target protein at varying concentrations into neat rabbit serum. 

The complex mixture, including target and non-target proteins, was immobilized to the 

BSA surface. We probed with fluorescently-labeled antibody and quantified the number 

of target proteins versus the number of antibodies on the surface.  

 Similar results to the purified protein detection curve were obtained, 

demonstrating the robustness of the method in the presence of a complex biological fluid 

(Figure 10, dashed line). The LOD in serum was 390 molecules per 1,000 µm
2
 (10 pg cm

-

2
) corresponding to a target starting concentration of 1 µg/ml. By comparison, the total 

concentration of the serum was 74 mg/ml (by dry weight). Therefore, despite the 

overabundance of serum proteins, the serum introduced almost no background. This 

indicates that single-antibody, direct binding can be used to make specific detection 

measurements in a highly complex biological fluid. 
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Accurate Quantification of an Endogenous Serum Protein  

 We next applied our method to quantify endogenous protein in a biological 

sample. We quantified the amount of total IgG in blood of a rabbit at various time points 

after immunization. Serum samples were diluted in PBS, immobilized to flow cell 

surfaces, and probed with anti-rabbit IgG Cy5-antibody. Then we quantified the 

antibodies remaining on the flow cell surface after washing.  

 We detected a 70.0% increase (± 8.1%) in total IgG between pre-immunization 

and week 4, as well as a subtle 11.7% increase (± 4.4%) between weeks 4 and 5 (Figure 

11). Our single-molecule quantitation measurements matched bulk measurements 

obtained by ELISA, deviating from the gold-standard by at most 4.2% (see Supporting 

Methods). This demonstrates the accuracy of single-molecule quantitation in complex, 

real-world samples. 

  

CONCLUSION  

 Recent advances in SMD have the potential to usher in a new generation of 

proteomics tools. Toward the goal of uniting the field of protein detection with single-

molecule counting, we present a proof-of-principle in which we quantify the abundance 

of individual proteins on a solid surface by counting bound antibodies. Further, we 

demonstrate quantitation of an endogenous protein in real-world serum samples while 

eliminating the need for two-color coincidence detection. We optimized key parameters – 

image acquisition and processing, nonspecific antibody adsorption, sample 

immobilization, sample accessibility, and surface dissociation – in a systematic way to 

enable a quantitative immunoassay. Because these parameters are interconnected, we 
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found that it was important to optimize them simultaneously, which allowed us to 

quantify small changes (7%) in abundance of target proteins by single-molecule counting. 

 An important future goal is to perform multiple rounds of antibody binding on a 

solid surface to allow for efficient multiplexing.[56] This would be achieved by encoding 

each binding pool with a predetermined mixture of antibodies, so that n protein targets 

could be quantified in ~ log2n binding rounds (Figure S5). The ability to perform multiple 

rounds of binding would also enable error-checking, since antibodies would get a second 

pass at detecting a particular target. Additionally, analysis of protein-protein interactions 

would follow easily from such an approach, since interacting proteins will be present at 

the same positions on the flow cell. 

 Towards this goal, we have demonstrated the serial detection of proteins by two 

rounds of antibody binding. We used a photobleaching step after the first round of 

binding to erase surface-associated fluorescence prior to the second hybridization.  We 

used photobleaching because the rate at which specifically bound antibodies dissociated 

from the surface was low enough that we found it difficult to completely remove them 

from the flow cell in a reasonable amount of time. Using this approach, we found that the 

majority (87%), of proteins that we expected to be bound in two binding rounds were in 

fact bound twice, indicating that competitive binding by the bleached, surface-bound 

antibodies was minimal. This lends support to the feasibility of multiple rounds of 

antibody binding and detection, with each round separated by a photobleaching step. 

(Alternatively, one could use a cleavable linker between the antibody and fluorophore, 

which would enable dye removal by exposure to a reducing agent or to light.[74])  
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 Washing with surfactants and denaturants may allow us to better remove bound 

antibodies from their targets. For example, recent work demonstrated the efficient 

stripping of antibodies from western blots without disrupting protein attachment.[75] To 

develop such a protocol in a single-molecule setting will require a low-background 

surface that is also surfactant-compatible (the surfaces described here are not). We are 

now investigating low-background surfactant-compatible surfaces that utilize multi-arm 

PEG microgels.[76]  

 Some obstacles still must be overcome before it is feasible to develop a 

multiplexed single-molecule immunoassay. For example, since each antibody-ligand pair 

has variable affinities, they each may need to be characterized beforehand in order to 

ensure that the concentration of antibody used in the immunoassay is high enough to 

ensure maximal binding to its immobilized ligand. However, as antibody production and 

characterization becomes more standardized, it will become possible to obtain large 

numbers of well-characterized antibodies. For example, the Human Antibody Initiative 

has already generated and curated antibodies against over 6,000 human proteins, and they 

aim to expand the collection to the entire human proteome within the decade.[57] Solid 

phase single-molecule immunoassays could provide a way to leverage such antibody 

collections toward high-throughput proteomic applications. 

 

MATERIALS AND METHODS 

Imaging  

 All experiments were performed on a Nikon TE-2000 inverted microscope fitted 

with a total internal reflection fluorescence (TIRF) illuminator (Nikon, Melville, NY). 
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Two lasers, 532 nm/75 mW and 640 nm/40 mW were used for fluorescence excitation 

(Compass 215M, Cube-40C, Coherent, Santa Clara, CA). Illumination of the sample was 

controlled through a computer animated shutter (Prior Scientific, Rockland, MA). The 

532 nm laser beam was attenuated by a ND 2 neutral density filter (Nikon, Melville, NY). 

The two beams were coupled into one end of an optical fiber cable using a dichroic 

mirror (Z532BCM, Chroma, Brattleboro, VT), with the other end of the cable attached to 

the TIRF illuminator. Before reaching the objective, each laser beam passed through a 

band pass filter: HQ545/30 for the green laser and D635/30 for the red laser (Chroma, 

Brattleboro, VT). Objective type total internal reflection was achieved through a 60x 

TIRF oil objective with index of refraction 1.49 (Nikon, Melville, NY). The chemistry of 

the assay was performed in a flow cell (see Fluidics) mounted onto the microscope stage. 

When the lasers are experiencing TIR, an evanescent wave decays exponentially at the 

glass-water interface into the flow cell to a distance of about 300 nm. TIRF allows for the 

excitation of only surface-bound fluorophore-labeled antibodies and therefore reduces the 

overall fluorescence background. The emitted photons from the labeled antibodies were 

collected by the objective and passed through a dichroic mirror (custom Cy3/Cy5, 

Semrock, Rochester, NY) and an emission filter for either the green channel (HQ610/75, 

Chroma, Brattleboro, VT) or the red channel (LP02-647RU-25, Semrock, Rochester, 

NY). Light was then detected by a charge coupled device (CoolSnap ED, Roper 

Scientific, Tucson, AZ) which imaged a 140 µm by 100 µm (1,400 px x 1,000 px) region 

of the surface. 

 Immediately prior to image acquisition, the flow cell was washed with 600 µl 

PBS and loaded with 600 µl oxygen scavenger and blink-reduction system[77] to prevent 
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dyes from photobleaching and blinking. Then images were acquired in the red and green 

fluorescence channels at five different positions across length of the flow cell, with 0.5 

second exposure. Custom software written in Metamorph (Molecular Devices, 

Sunnyvale, CA) and Matlab (Mathworks, Natick, MA) was used to analyze the locations 

and intensities of the fluorescent molecules (see Supporting Methods). 

 

Fluidics 

 The analysis substrate was a 40mm diameter, #1.5 glass slide (Erie Scientific, 

Waltham, MA). The substrate was epoxide-derivatized by the vendor unless otherwise 

specified in Surface Preparations. The slide was loaded into a flow cell (FSC2, Bioptechs, 

Butler, PA) fitted with perfusion ports to allow for reagents to be passed over the surface. 

Reagents were flowed through by a custom-made negative pressure vacuum pump. 

 

Target Proteins  

 The target proteins were polyclonal goat IgG molecules labeled with an average 

of 8 Cy3 dyes per molecule. The nonspecific target proteins used as a negative control in 

the target binding accessibility assay were polyclonal rabbit IgG molecules labeled with 

Cy3. Proteins were obtained from Abcam (Cambridge, MA). 

 

Serum Samples  

 The serum sample used for the spike-in quantification experiment was obtained 

from rabbit. The serum samples used for the endogenous protein quantification 

experiment were from pre-immunized, week 4, and week 5 rabbits in an antibody 
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production protocol (for an unrelated study) during which rabbits were immunized with 

antigen and adjuvant. All serum samples were obtained from 21
st
 Century Biochemicals 

(Marlboro, MA).  

 

Antibodies  

 The antibodies used in all experiments with the exception of the endogenous 

protein quantification experiment were polyclonal anti-goat, labeled with Cy5. The 

antibodies used to detect endogenous rabbit IgG were polyclonal anti-rabbit, labeled with 

Cy5. All antibodies were obtained from Abcam (Cambridge, MA).  

 

Preparation of Surfaces  

 Twelve surfaces were generated by protocols taken directly from or adapted from 

surface blocking protocols in the literature.[43, 59-68] Nine of the surface chemistries 

were generated by the chemical attachment of primary amine groups of a polymer or 

small molecule to epoxide-derivatized glass. The epoxide-coated glass was loaded into 

the flow cell and washed in 600 µL phosphate buffered saline pH 7.3 (PBS). The glass 

was reacted with one of the following solutions in PBS, for 1 hr at room temperature: 1% 

bovine serum albumin (BSA) (Fisher Scientific, Pittsburg, PA), 1% BSA / 0.1% cold 

water fish skin gelatin (Aurion, Netherlands), 1M glucose, 10% linear polyacrylamide 

(LPA) MW 1500 Da, 10% LPA MW 10 kDa, 10% LPA MW 1 MDa, 100 mg/ml amino-

PEG (Sigma-Aldrich, St. Louis, MO), 200 µg/ml rabbit IgG (Abcam, Cambridge, MA), 

and 100 mg/ml aminodextran MW 500 kDa (CarboMer, San Diego, CA). These surfaces 

were then capped with 1 M Tris pH 8.0 for 20 minutes. Two of the surfaces were 
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generated by the noncovalent adsorption of a polymer to the glass. Here the epoxide-

coated glass was first capped with ethanolamine-HCl pH 8.0 for 20 minutes and then 

treated with one of the following solutions in PBS for 1 hr at room temperature: 100 

mg/ml dextran and 1% PEG MW 5 kDa (Sigma-Aldrich, St. Louis, MO). The 

carboxymethyl (CM) dextran surface was generated as previously described.[62] 

 

Measuring Nonspecific Adsorption 

 A flow cell containing the surface to be tested was loaded with 600 µl, 100 ng/ml 

Cy5 antibody. The surface was exposed to the antibody in the dark for 25 minutes at 

room temperature. Then, unbound antibodies were removed with a 600 µl PBS wash, and 

the flow cell was imaged as described above. 

 

Immobilizing Protein Samples 

 A chemically adsorbed BSA surface was formed as described above, and the 

surface was activated with 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (EDC) and 0.05 M N-hydroxysuccinimide (NHS) (Pierce, Rockford, IL) in 

sodium phosphate buffer pH 5.8 (SPB) for 10 minutes. Free EDC and NHS was washed 

away with 600 µl SPB.  

  The attachment of the protein sample of interest to the activated surface was as 

follows. For immobilization of purified target protein, 100 ng/ml (unless otherwise 

specified) of target protein in PBS was loaded into the flow cell. To generate a standard 

curve of detection, dilutions of target protein in PBS were loaded into the flow cell. To 

generate a standard curve of detection for target protein in the presence of serum, 
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dilutions of target protein were spiked-in to whole rabbit serum, and the spiked-in serum 

was loaded into the flow cell. To detect endogenous IgG in serum, whole rabbit serum 

was diluted 1:105 in PBS and loaded into the flow cell. 

 Proteins samples that were loaded into the flow cell were allowed to react with the 

surface for 10 minutes at room temperature, in the dark. Then, unbound proteins were 

removed with a 600 µl PBS wash, and unreacted EDC-NHS sites on the BSA surface 

were quenched with 1M Tris pH 8.0 for 20 minutes. 

 

Antibody Binding and Oxygen Scavenging 

 After a protein sample was immobilized onto the flow cell surface (as described 

above), the Cy5-labeled antibody was loaded into the flow cell at 100 ng/ml (unless 

otherwise noted) in PBS and incubated for 2 hrs in the dark at room temperature. 

Unbound antibodies were washed away, and the flow cell was imaged. 
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FIGURES 

Figure 6 

 

 

 (A) Illustration of the single-molecule immunoassay. A chemically adsorbed BSA 

surface was prepared by reacting BSA with an epoxide-coated glass slide within a flow 

cell. Unreacted epoxides were quenched and the BSA was activated for sample 

immobilization by EDC/NHS. The protein sample (circles) was immobilized to the BSA 

surface, and unreacted sites were passivated. The flow cell was probed with fluorescently 

labeled antibody and imaged. (B) The raw TIRF image of Cy5-labeled antibodies (scale 

bar = 50 µm) illustrates the nonuniform TIRF illumination. (C) Image processing by 

standard, single value thresholding allowed only a small portion of the raw image (the 

brightest spots) to be used for molecule identification. (D) Image processing by iterative 

thresholding allowed for most of the raw image (regardless of intensity) to be used to 

molecule identification. (E) Nonspecific adsorption of antibodies onto twelve surface 

protocols. Molecules were counted in 5 x 1,000 µm
2 

images, and units were converted to 

picograms per cm
2
 assuming a 155kDa molecular weight. The chemically adsorbed BSA 

surfaces suppressed nonspecific adsorption the most.  
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Figure 7 

 

 

Determination of protein accessibility (detection efficiency). The image series illustrates 

target immobilization, antibody binding, and correlation detection. Each frame is an 

image of the same position in the flow cell (scale bar = 2 µm) and shows ~ 21 of the ~ 

10
3
 targets analyzed in each binding experiment. (i) After target protein immobilization, 

images of the Cy3-labeled proteins were acquired (top), and the positions of the proteins 

were determined by software (bottom). (ii) The surface was probed with antibody, images 

of bound Cy5-labeled antibodies were acquired (top), and positions of the antibodies 

were determined by software (bottom). (iii) Positions of the targets (green) and antibodies 

(red) were overlayed. Yellow pixels represent the co-localized molecules, indicating 

antibody-bound proteins. (iv) The correlogram analysis of this flow cell indicated that 

protein and antibody co-localization was nonrandom (i.e. antibodies were specifically 

binding to targets).  
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Figure 8 

 

 

Protein accessibility (detection efficiency) as a function of antibody concentration. 

Specific binding (solid) was calculated by subtracting the nonspecific binding (dotted) 

from total binding (dashed). We could specifically bind as much as ~ 70% of the target 

molecules, enabling efficient protein detection. 
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Figure 9 

 

Protein rebinding. The image series illustrates two binding rounds separated by a 

photobleaching step (scale bar = 2 µm). Top: Raw images of Cy3 (green) and Cy5 (red) 

channels. Yellow represents merged channels. Bottom: Analyzed positions of protein 

molecules (green), antibody molecules (red) and co-localized antibody:protein molecules 

(yellow). Circles indicate proteins that were bound in both rounds. (i) First round of 

antibody binding detects immobilized proteins. (ii) Antibodies are photobleached. (iii) 

Second round of antibody binding detects many of the same proteins. We found that our 

surface allows for two successful rounds of binding. 
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Figure 10 

  

Single-molecule protein quantification. Solid line: We demonstrate a linear relationship 

between the number of antibody molecules and the number of protein molecules on the 

surface when detecting a purified protein sample. Linear fit R
2 

= 0.988; coefficient of 

variation = 1 - 7%; lower limit of detection 55 molecules per 1,000 µm
2
 image (1.4 pg 

cm
-2

). Dashed line: We achieve accurate quantification in a complex protein sample. 

Detection of target protein spiked into undiluted rabbit serum produces a quantification 

curve that deviates only slightly from quantification of the purified sample. We did not 

observe any increase in background when detecting in serum. 
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Figure 11 

 

 
Quantification of endogenous IgG in serum. Using single-molecule protein 

quantification, we accurately measured the total IgG levels of a rabbit at various time 

points after immunization. Top: Single molecule counting at three time points (scale bar 

= 5 µm). We detected a 70.0% increase (± 8.1%) in IgG levels between pre-immunization 

and week 4, and a 11.7% increase (± 4.4%) between weeks 4 and 5. Bottom: Bar graph 

representations of the above single-molecule counting data and of ELISA validation data 

(black = pre-immunization; gray = week 4; white = week 5). Deviation of single-protein 

counting measurements from ELISAs were at most 4.2%. The single-molecule counting 

data and ELISA data were normalized to the pre-immunization time point. 
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CHAPTER THREE: NANOGEL COATINGS FOR 

IMPROVED SINGLE-MOLECULE DETECTION 

SUBSTRATES 
 

This chapter embodies a manuscript published in Journal of the Royal Society, 

Interface on Feb 12, 2011. This chapter demonstrates that nanogel surface coatings can 

improve the performance of single-molecule immunoassays as well as provide the best 

surface coating for single-molecule detection studies, such as those that involve in vitro 

binding and single-molecule biophysics. This work was a collaboration with the Elbert 

Lab and the Jun Lab and is a testament to the atmosphere of collaboration that our 

university harbors. The experiments were designed by Donald L. Elbert, Robi D. Mitra, 

and me. Casey D. Donahoe synthesized the nanogel solutions and performed cell 

adhesion time course assay. Young-Shin Jun and Daniel L. Garcia conducted the atomic 

force microscopy studies. I created the nanogel-coated surfaces and carried out the single 

molecule adsorption assays. I also performed the antibody binding assay, imaging and 

analysis.  
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ABSTRACT 

Surfaces that resist protein adsorption are important for many bioanalytical 

applications.  Bovine serum albumin (BSA) coatings and multi-arm poly(ethylene glycol) 

(PEG) coatings display low levels of non-specific protein adsorption and have enabled 

highly quantitative single-molecule protein studies.  Recently, a method was developed 

for coating glass with PEG-BSA nanogels, a promising hybrid of these two low-

background coatings.  We characterized the nanogel coating to determine its suitability 

for single-molecule protein experiments. Single-molecule adsorption counting revealed 

that nanogel-coated surfaces exhibit lower protein adsorption than covalently-coupled 

BSA surfaces and monolayers of multi-arm PEG, so this surface displays one of the 

lowest degrees of protein adsorption yet observed. Additionally, the nanogel coating was 

resistant to DNA adsorption, underscoring the utility of the coating across a variety of 

single-molecule experiments. The nanogel coating was found to be compatible with 

surfactants, whereas the BSA coating was not. Finally, applying the coating to a real-

world study, we found that single ligand molecules could be tethered to this surface and 

detected with high sensitivity and specificity by a digital immunoassay.  These results 

suggest that PEG-BSA nanogel coatings will be highly useful for the single-molecule 

analysis of proteins. 

 

INTRODUCTION 

 Single-molecule (SM) fluorescence microscopy studies hold great promise for 

elucidating biological systems[78], but the non-specific surface adsorption of fluorescently 

labeled proteins [60, 68],  antibodies [76], and bioconjugated nanoparticles[69]  is often a 

significant source of experimental noise.  Recently, low-background surface coatings have been 
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developed that reduce protein adsorption to SM levels – levels at which a digital signal from 

individual target molecules can be reliably quantified above the background of non-specifically 

adsorbed molecules.  For example, Tessler et al surveyed 12 different surface coatings and found 

that the best performing of these, a covalently-coupled bovine serum albumin (BSA) coating, 

allowed accurate protein quantification of as few as 55 molecules per 1,000 µm
2
 by SM antibody 

binding. The low-background surface enabled target protein molecules to be tethered to the 

surface and digitally detected with total internal reflection fluorescence (TIRF) microscopy and 

without the need for fluorescence resonance energy transfer or two-color coincidence 

detection.[76] Poly(ethylene glycol) (PEG) coatings that are highly resistant to protein adsorption 

have also been developed.[49]  Groll et al demonstrated that a monolayer of multi-arm PEG 

covalently-coupled to a surface reduced protein adsorption to single-molecule levels, allowing 

quantitative monitoring of protein folding by TIRF.[79]   

 Recently, Scott et al developed a method for coating surfaces with nano-scale hydrogels 

(nanogels) formed by crosslinking multi-arm PEG to albumin.[43]  Surfaces treated with these 

nanogels displayed very low levels of protein adsorption, as measured by optical waveguide 

lightmode spectroscopy (OWLS) and cell adhesion. The nanogel coating holds great potential for 

SM applications because it is a hybrid of two good SM surface coatings and is thin enough (  75 

nm) to perform total internal reflection imaging. 

 Here we characterized nanogel-coated surfaces for use in SM protein studies. We 

measured protein adsorption onto PEG-BSA nanogel coatings using a variety of proteins, 

fluorophores, and labeling methods, as well as with DNA. We examined the resilience of the 

nanogel coating to sodium dodecyl sulfate (SDS), a reagent commonly used in binding studies. 

To assess the utility of nanogel coatings in the context of a real-world SM experiment, we 

adapted the surface to perform digital measurements of antibody binding. Finally, we examined 

the roles of capping steps, cross-linker molecules, and substrate coupling methods via adsorption 

studies and atomic force microscopy (AFM). Our studies reveal that PEG-BSA nanogel surface 
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coatings show substantially higher performance than previously characterized SM coatings and 

should be of benefit to SM protein studies. 

 

RESULTS 

Nanogel coatings display lower protein adsorption than BSA or PEG coatings 

 We first sought to quantify antibody adsorption onto PEG-BSA nanogel-coated surfaces.  

We generated covalently coated BSA surfaces, multi-arm PEG monolayer-coated surfaces, and 

nanogel-coated surfaces within flow cells (Figure 12A), exposed them to fluorescently labelled 

antibody, and quantified the adsorbed molecules by TIRF imaging. For adequate sampling, 

images were acquired at five positions per surface, with independent surfaces analyzed in 

triplicate. So, thousands of molecules were sampled to obtain each reported data point. (For 

details see Supporting Information.) 

 We found that antibody adsorption onto uncoated control surfaces was too high to allow 

single antibodies to be reliably resolved. In contrast, the BSA-, multi-arm PEG-, and nanogel-

coated surfaces were highly resistant to antibody adsorption (Figure 12B).  The BSA-coated, 

multi-arm PEG-coated, and nanogel-coated surfaces adsorbed antibody at densities of 217, 117, 

and 50 molecules per 1,000 μm
2
 image, respectively (Figure 12C).  Thus, the nanogel-coated 

surfaces adsorbed over four-fold less antibody than did the BSA-coated surfaces (p = 5.5 x 10
-5

, t-

test) and two-fold less antibody than did the multi-arm PEG surfaces (p = 7.6 x 10
-4

, t-test). Cell 

adhesion studies agreed with this finding and additionally showed that nanogel-coated surfaces 

can perform well for 7-9 days compared to 1-3 days for covalently coupled BSA surfaces (Figure 

S6).  

 By converting the observed molecular density on the surface to absolute mass density, we 

determined that the nanogel-coated surfaces adsorbed 1.28 pg cm
-2

 of antibody.  Thus, the PEG-

BSA nanogel coating is highly resistant to antibody adsorption, outperforming both the BSA-only 

coating and the PEG-only coating (p = 4.0 x 10
-6

, ANOVA).  Notably, the adsorption we 
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measured was ~1000-fold lower than the limit of detection of standard protein adsorption 

measurement methods (e.g. OWLS and surface plasmon resonance).   

 

Nanogel coatings resist adsorption of a variety of biomolecules 

 SM protein studies often involve labeled biomolecules other than antibodies, such as 

enzymes and DNA molecules. Also, studies employ proteins that are labeled by a variety of 

methodologies including single-dye labeling, multi-dye labeling, and fusion to fluorescent 

proteins. We wanted to investigate the utility of the nanogel surface in a variety of contexts. To 

this end, we interrogated nanogel coatings with Cy5-streptavidin (multi-labeled protein), 

mCherry-E. coli methionine aminopeptidase (singly-labeled enzyme), and Cy5-thrombin binding 

aptamer (singly-labeled DNA).  

The protein, enzyme, and DNA were adsorbed at levels of 33, 573 and 225 molecules per 

1,000 μm
2
onto the BSA-coated surface and 11, 75 and 19 molecules per 1,000 μm

2
onto the 

nanogel-coated surface, respectively (Figure 13A-13F). For these three biomolecules, adsorption 

onto nanogel coatings was significantly improved over a covalently-coupled BSA coating 

(respectively: p = 0.025, p = 0.0002, p = 0.0001, t-test) (Figure 13G). Remarkably, the 

improvement by the nanogel surface ranged from 3-fold to 12-fold, depending on the 

biomolecule. So, the relative improvement by the nanogel coating is dependent on the size and/or 

the biochemistry of the fluorescent biomolecule. The fact that the nanogel coating showed 

improved performance across a variety of biomolecules underscores the potential utility of the 

nanogel coating in a broad variety of SM studies. 

 

Nanogel-coated surfaces are resilient to detergent 

 In solid phase in vitro binding studies, surfactants such as Triton X-100, Tween 20, and 

SDS are commonly used for performing wash steps or to regenerate ligands after protein binding. 

[75, 76] Therefore, we measured the resilience of PEG-BSA nanogel coatings to surfactant 
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exposure. This was done by quantifying protein adsorption onto coated surfaces before and after 

an SDS wash. 

 Surfaces were prepared, exposed to fluorescently labelled antibody, washed with 0.1 per 

cent SDS, exposed to antibody a second time, and washed with SDS a second time. Imaging was 

performed before and after each step to quantify the amount of attached antibody.   

 We found that the BSA coating was strongly affected by the SDS wash (Figure 14A, row 

1) while the nanogel coating was mostly resilient (Figure 14A, row 2).  The BSA coating 

displayed a 4.1-fold increase in antibody adsorption after SDS exposure as compared to before 

SDS exposure, whereas the nanogel coating displayed only a 1.7-fold increase in antibody 

adsorption (Figure 14B). Thus, thin, PEG-BSA nanogel coatings should be superior to BSA 

coatings for experiments that utilize surfactants. 

 

Nanogel coatings are compatible with digital antibody binding experiments 

 Protein adsorption is an important parameter to consider when evaluating a surface for 

SM protein experiments, but it is not the only one. If target molecules cannot be tethered to the 

surface, or if the tethered molecules are not accessible for in vitro binding, then the method will 

lack sensitivity of detection. Conveniently, nanogel coatings and BSA coatings contain surface-

exposed carboxyl groups (provided by the albumins), which allow for the near-universal tethering 

of protein analytes via the use of a crosslinker (see Materials and Methods).[76] Making use of 

this tethering method, we evaluated the compatibility of PEG-BSA nanogel coated surfaces with 

digital antibody binding experiments.  

We generated nanogel-coated surfaces and tethered target protein molecules labeled with 

Cy3 to the surfaces. Then we bound the targets with Cy5-labeled antibody, washed away 

unbound antibody, and used single-molecule TIRF to detect antibody-target binding (Figure 

15A). We merged and processed the Cy3 and Cy5 channels (Figure 15B-15C), and correlation 
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analysis showed significant levels of specific antibody binding (Figure 15D, see Supporting 

Information for details).  

By analyzing single molecules in the two channels, we observed that the antibodies 

bound to their targets with high specificity: 68  1% of antibodies were bound specifically to 

tethered, target proteins. We also found that the antibodies were able to bind to target molecules 

sensitively: a substantial fraction of targets were bound by antibody (50.3  5.9%) and this 

fractional binding is high compared to values we obtained previously using the covalently 

coupled BSA surface (31  6%).[76] Notably, this is not the maximum fractional binding since 

more will bind with higher antibody concentrations. Also, this level of fractional binding is a 

lower-bound estimate, since some target molecules may be invalid (e.g. denatured proteins).  

These results indicate that the nanogel coating allows targets to be immobilized and 

bound with high antibody occupancy and low background. Thus, nanogel coatings are highly 

suited for performing digital antibody binding experiments and should be generally applicable to 

SM in vitro binding studies. 

 

Investigation into the role of albumin in nanogel capping and cross-linking 

 Since the final steps of both the nanogel and the multi-arm PEG coatings involve capping 

with BSA, we wanted to investigate to what extent the performance of the coatings depends on 

capping. We performed SM adsorption measurements on nanogel and multi-arm PEG coatings 

with and without capping steps. We found the nanogel coating behaved the same with and 

without the capping step, whereas the protein resistance of the multi-arm PEG coating was reliant 

on capping (Figure 16A). This is presumably because the uncapped nanogel, which is formed 

from a partially polymerized solution containing a wide size-range of PEG-BSA complexes, 

creates a surface that is more densely packed than that of the uncapped multi-arm PEG. 
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 Next, since the BSA molecules in the nanogel act as a multi-functional amine crosslinker, 

we wanted to investigate whether a multi-arm amine-terminated PEG could be substituted for and 

provide the same performance as BSA. We synthesized PEG-PEGOA nanogels by substituting 

BSA with PEG-octoamine as has been described in previous work.[80] We applied this coating 

and the PEG-BSA nanogel coating to glass and found that adsorption using the alternative 

crosslinker detracted from the performance of the coating (Figure 16B). This result points to the 

possibility that the PEG-BSA nanogel performance is contingent on a high molecular weight 

crosslinking molecule – in this case, BSA. 

 

Investigation into alternative coupling chemistries  

 We next explored the use of an alternative method for coupling nanogel solutions to glass 

substrates with the hope of further reducing protein adsorption.  In our previously described 

experiments, we prepared surfaces by reacting the nanogel-containing solutions with 

mercaptosilanated glass.[43]  Coupling was achieved because the vinylsulfone groups in the PEG 

portion of the nanogels react with the mercaptosilanated surfaces.  An alternative coupling 

strategy is to react the amine groups in the BSA portion of the nanogel with an epoxysilanted 

surface.   

 We prepared surfaces using this alternative coupling chemistry and measured protein 

adsorption.  The epoxide-reacted nanogel coating adsorbed antibodies at a density of 103 

molecules per 1,000 μm
2
 image (Figure 16B), so this surface adsorbed approximately two times 

more protein than did the thiol-reacted nanogel surfaces (p = 5.6 x 10
-4

, t-test).   We concluded 

that thiol-coupled nanogels are more resistant to protein adsorption than epoxide-coupled 

nanogels.   

 We were surprised to observe this difference in performance simply due to coupling 

chemistry.  To try to understand this, we used AFM to characterize their morphologies (see 

Supporting Information). The standard, thiol-reacted nanogel surface displayed a homogeneous 
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background (roughness value Rq = 0.480 nm), suggesting that the nanogels form a continuous 

matrix on the surface (Figure 16C).  The nanogels on the epoxide-reacted surface appeared to be 

generally smaller and less homogeneous (roughness value Rq = 0.673; Figure 16D).  By contrast 

the multi-arm PEG coated surface formed a less-connected and non-homogeneous surface 

(roughness value Rq = 0.823; Figure 16E). (Force curve analysis performed on the thiol-reacted 

nanogel coating, the epoxy-reacted nanogel coating, and the multi-arm PEG coating showed 

detachment forces of 19.087, 41.584, and 34.225 nN respectively.) We believe the high 

connectivity of the thiol-reacted nanogels, reflected by roughness measurements, contributes to 

the lower protein adsorption we observed. 

 

DISCUSSION 

 Under the SM detection regime, nanogel coatings provided significantly lower protein 

adsorption than BSA-coated or multi-arm PEG monolayer-coated substrates. Moreover, there was 

a consistent gain in performance across three protein types and DNA, labeled by dyes and 

fluorescent proteins. The nanogel surface was resilient to surfactant and was compatible with a 

SM antibody binding experiment. We did not seek to optimize the fractional binding in these 

immunoassays (which depends on antibody concentration), but for the concentration of antibody 

used here, the fraction of ligands bound was at least as high as that obtained previously in digital 

antibody binding experiments using BSA-coated surfaces.[76] Since the nanogel surface 

outperformed the covalently-coupled BSA and the multi-arm PEG SM surfaces in adsorption and 

resilience[76, 79], we conclude that the nanogel surface should be a useful coating for an array of 

SM studies. 

 Surfactants can be useful in in vitro binding experiments, such as immunoassays, for 

performing stringent washes and for un-binding antibodies from their epitopes in repeated-

binding experiments. A caveat is that surfactants can be detrimental to SM surface coatings. We 

studied the effect of SDS surfactant on the nanogel coating and the BSA coating and found that 
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the nanogel-coated surfaces were unaffected by treatment with surfactant while the BSA-coated 

surfaces were substantially affected. This is surprising because the nanogels are partially 

composed of albumin. It can be inferred that the BSA-only coatings undergo some level of 

denaturation by the surfactant conditions. If this is the case, then the PEG macromolecules in the 

nanogels may stabilize the albumin molecules within them and enable them to withstand the 

denaturing conditions of the surfactant.  This highlights another improved behavior that the 

combination of albumin and PEG in a nanogel can confer over BSA-only surfaces. It is 

promising, since it may enable lower-background and repeated-binding digital antibody binding 

studies. 

 SM methods play a prominent role in the understanding of many biological systems.[81-

86] Looking forward, SM antibody-detection may provide strategies for parallel detection of 

proteins. The recent development of massively parallel SM DNA analysis technologies by 

Helicos Biosciences and Pacific Biosciences was facilitated by surfaces resistant to nucleic acid 

adsorption.[87, 88] Promisingly, the nanogel coating characterized here shows similar levels of 

background adsorption to that of such DNA technologies and also benefits from resilience to 

wash steps. Therefore, PEG-BSA nanogels provide a thin, resilient coating technique that should 

benefit SM protein analysis, and we hope that this coating methodology will spark an increase in 

SM antibody binding studies. 

 

MATERIALS AND METHODS 

Synthesizing solutions of nanogels  

 PEG-BSA nanogel coatings were prepared using partially crosslinked solutions of eight 

arm PEG and BSA.  First, eight arm PEG-OH (PEG8-OH; MW 10,000; Creative PEGWorks, 

Winston Salem, NC) was used to synthesize PEG-octovinylsulfone (PEGOVS) in a four-step 

reaction, as described previously.[80, 89]  PEGOVS and fatty acid-free BSA (Sigma-Aldrich, St.  

Louis, MO) solutions were prepared at 20% (w/v) in phosphate buffered saline pH 7.4 (PBS) and 
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sterile filtered with 0.22 µm syringe filters (Millipore, Billerica, MA).  Assuming 36 reactive 

amines per BSA (obtained from crystal structures), PEGOVS and BSA solutions were combined at 

a 1:1 ratio of vinylsulfone to amine groups and reacted by incubation at 37°C, with rotation.  The 

progress of the reactions was followed by dynamic light scattering (DLS) until a mean effect 

diameter (dPCS) of about 100 nm was achieved – generally ~6 hours. (At this step, the DLS 

polydispersity index for the nanogel solution was 6.2, and the complexes in the nanogel solutions 

had a standard deviation of ~20 nm.) The nanogel-containing solution was then diluted 1:1 with 

PBS to 10% (w/v) and stored until use at -80 C. For long-term storage, nanogel solutions were 

stored at -140 C. To generate PEG-PEGOA nanogels, the same protocol as above was used with 

the exception that BSA was substituted by PEG-octoamine (PEGOA, MW 10,000). (For details, 

see Supporting Information.) 

  

Coating substrates with nanogels 

 Nanogel solutions were either thiol-reacted or epoxy-reacted to the glass substrates.  The 

glass substrates (40 mm diameter circles, #1.5) were obtained from Erie Scientific (Waltham, 

MA).  For the epoxide-reacted coatings, the substrates were epoxysilanated by the vendor.  For 

the thiol-reacted coatings, the coverslips were mercaptosilanated as follows.  The coverslips were 

washed 3x in diH2O and 3x in ethanol.  Then they were etched with oxygen plasma at 100 W for 

10 minutes  (Femto, Diener Electronic, Royal Oak, MI).  Coverslips were then washed 3x in 

acetone.  Mercaptosilanation was achieved by treating the glass for 1 hr at 25°C with a 5% (v/v) 

solution of mercaptopropyltrimethoxysilane (MPTS, Sigma-Aldrich, St.  Louis, MO) in acetone.  

Surfaces were washed 3x in acetone and cured at 100°C for 25 min.   

 Substrates were coated with PEG-BSA nanogel-containing solutions in either a flow cell 

(FSC2, Bioptechs, Butler, PA) or in a 60 mm diameter Petri dish (for cell seeding experiments).  

Substrates were incubated in 10% nanogel-containing solutions for 1 h at 37° C.  Substrates were 
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washed with 600 µL PBS and capped for 1 h with BSA 50 mg/mL in PBS, 37° C.  Unreacted 

vinylsulfone or epoxide groups were then quenched with 1 M Tris pH 8.0, for 15 minutes at room 

temperature. (A time course showed that quenching went to completion.) Coverslips were then 

washed with 600 µL PBS. 

 

Covalently coupled BSA-coated surfaces 

 The epoxide-reacted bovine serum albumin (BSA-coated) surfaces were generated by 

reacting 50 mg/mL BSA, in PBS, to epoxysilanated glass coverslips within a flow cell for 1 h, at 

37° C.  Unbound BSA was washed away with PBS, and unreacted epoxides were quenched with 

1M Tris pH 8.0 for 15 minutes at room temperature. Coverslips were then washed with 600 µL 

PBS. 

 

Multi-arm PEG monolayer-coated surfaces 

The multi-arm PEG monolayers were generated by reacting 200 mg/mL PEGOVS ,in PBS, 

to mercaptosilanated glass coverslips within a flow cell for 1 h, at 37° C.  Coverslips were 

washed with 600 µL PBS and incubated 1 h with 50 mg/mL BSA in PBS at  37° C.  

Unreacted vinylsulfone groups were quenched with 1M Tris pH 8.0 for 15 minutes at room 

temperature. Coverslips were then washed with 600 µL PBS. 

 

SM adsorption measurements 

 Three different proteins and one DNA were used in the SM adsorption 

experiments. These include polyclonal goat IgG labeled with multiple Cy5 fluorophores 

(Abcam, Cambridge, MA), streptavidin labeled with multiple AlexaFluor 647 

fluorophores (Invitrogen, Carlsbad, VA), E. coli methionine aminopeptidase fused to 

mCherry fluorescent protein, and DNA thrombin binding aptamer labeled with a single 



56 

 

Cy3 fluorophore (Integrated DNA Technologies, Coralville, IA). Each of the surfaces 

under investigation was prepared within a flow cell (FSC2, Bioptechs, Butler, PA).  An 

uncoated control surface was generated by quenching an epoxysilanated glass coverslip 

with 1M ethanolamine-HCl pH 8.0 for 30 minutes.  Flow cells were fitted with perfusion 

ports to allow for reagents to be passed over the surface by a custom vacuum pump. The 

flow cells were washed with 600 µL PBS and loaded with 200 µL of 1 nM fluorescent 

protein or DNA.  The fluorescent molecules were incubated for 25 minutes in the dark at 

room temperature, and unbound protein or DNA was washed off with 600 µL PBS.  

Images were acquired and processed as described above.  Standard deviations were 

obtained from triplicate (for antibody) or duplicate (for all other molecules) surfaces. 

 

Measuring detergent resistance  

 Each of the surfaces under investigation was prepared within a flow cell. Surfaces were 

exposed to 100 ng/mL Cy5-labeled antibody for 25 minutes in the dark at room temperature to 

assess initial levels of non-specific protein adsorption.  Unbound antibody was washed out of the 

flow cells with 600 µL PBS, and the flow cells were imaged.  The flow cells were then exposed 

to 0.1% sodium dodecyl sulfate (SDS) in PBS for 5 minutes at room temperature, washed with 

600 µL PBS, and imaged.  The flow cells were exposed for the second time to antibody for 25 

minutes, to measure adsorption after SDS treatment. Surfaces were washed with 600 µL PBS, and 

imaged.  Finally, the flow cells were washed in 600 µL 0.1% SDS in PBS for the second time, 

washed in 600 µL PBS, and imaged.  Images were processed as described above. Standard 

deviations were obtained by replicates on two separate surfaces. 
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Digital immunoassays 

 Nanogel-coated surfaces were generated in a flow cell as described above. The antibody 

binding experiment was performed as previously described.[76] First, the surface was activated 

by 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and 0.05 M N-

hydroxysuccinimide (NHS) (Pierce, Rockford, IL) in sodium phosphate buffer pH 5.8 (SPB) for 

10 minutes. The flow cell was washed with 600 µL SPB, and Cy3-labeled target protein (IgG 

obtained from goat, Abcam, Cambridge, MA) was tethered to the activated surface for 10 minutes 

at 100 ng/mL in PBS, in the dark. Unreacted crosslinking groups were quenched with 1 M Tris 

pH 8.0 for 5 minutes. Then the surface was probed with Cy5-labeled antibody (anti-Goat IgG, 

Abcam, Cambridge, MA) for 2 h at 100 ng/mL in PBS in the dark. The flow cell was washed 

with 600 µL PBS and imaged at 540 nm and 635 nm. Images of Cy3 and Cy5 channels were 

merged to determine the fraction of targets that were bound by antibody and the specificity of the 

antibody for the targets compared to random binding. (See Supporting Information for details.) 
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FIGURES 

Figure 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Schematic of three coating methodologies: bovine serum albumin (BSA) covalently 

coupled to epoxysilanated glass, multi-arm PEG (PEG8) coupled to mercaptosilanated 

glass, and PEG-BSA nanogels coupled to mercaptosilanated glass. (B) Antibody 

adsorption onto uncoated, BSA-coated, multi-arm PEG-coated, and PEG-BSA nanogel-

coated surfaces was quantified by TIRF imaging, and representative raw TIRF images are 

shown. (C) Molecule counts of antibody adsorption per unit area. On the uncoated 

surface, molecular density was so high that single-molecule counting was not possible.  

BSA-coated, multi-arm PEG-coated, and nanogel-coated surfaces show decreased 

antibody adsorption compared to the uncoated surfaces, with the nanogel-coated surface 

performing the best. Error bars represent standard deviation of triplicate substrates.
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Figure 13 

 

TIRF adsorption measurements for three types of biomolecules show improved 

performance by nanogel coatings compared to covalently-coupled BSA coatings. The 

nanogel coating reduces adsorption of (A-B) the multi-labeled protein, Cy5-labeled 

streptavidin, (C-D) the singly-labeled enzyme, mCherry-E. coli methionine 

aminopeptidase, and (E-F) the singly-labeled DNA, Cy5-labeled thrombin binding 

aptamer. (G) Molecule counts of biomolecule adsorption per unit area onto (black bars) 

covalently-coupled BSA coatings and (gray bars) nanogel coatings. Error bars represent 

standard deviation of duplicate substrates. 
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Figure 14 

 

Nanogel-coated surfaces show resilience to a harsh surfactant environment compared to 

BSA-coated surfaces.  Coated surfaces were exposed to antibody, washed with sodium 

dodecyl sulfate (SDS), re-exposed to antibody, and re-washed with SDS.  Adsorption 

measurements were obtained in between each step.  (A) Raw TIRF images of (top row) a 

covalently-coupled BSA-coated surface and (bottom row) a nanogel-coated surface over 

the course of a 5-step antibody adsorption experiment. (1.) Surfaces prior to antibody 

exposure.  (2.) Surfaces after exposure to antibody.  (3.) Surfaces after SDS wash.  (4.) 

Surfaces after second exposure to antibody.  (5.) Surfaces after second SDS wash. (B) 

The bar chart depicts the ratio of adsorption change after SDS exposure to adsorption 

change before SDS exposure, i.e. (Step 4 – Step 3):(Step 2 – Step 1). Error bars represent 

standard deviation of duplicate substrates. 
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Figure 15 

 

Nanogel coatings can be utilized for sensitive and specific, digital antibody binding. (A) 

Cy3-target proteins were immobilized to a nanogel-coated surface and then bound by 

Cy5-antibody. (B) Merged raw image of red and green TIRF channels (15 μm x 15 μm). 

(C) Merged red and green TIRF channels after image processing. TIRF imaging was able 

to detect a high number of binding events (yellow) in which target proteins (green) were 

accessible to binding by antibodies (red). (D) The correlation between detection 

antibodies and individual analyte proteins tethered to nanogel coated-surfaces indicates 

high target protein accessibility and compatibility with TIRF detection. 
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Figure 16 

 

(A) Adsorption onto nanogel-coated and multi-arm PEG coated (PEG8) surfaces was 

measured with and without the use of a final BSA capping step. The nanogel-coated 

surfaces provided low antibody adsorption even without the capping step.  (B) We 

measured adsorption onto the standard nanogel-coated surface (PEG-BSA). We also 

measured adsorption onto a surface coated with a nanogel solution formed with an 

alternative crosslinker to BSA (PEG-PEGOA). Finally, we measured adsorption onto a 

surface that was coated by coupling PEG-BSA nanogels to epoxysilanated glass (as 

opposed to the standard, mercaptosilanated glass). We conclude that nanogel crosslinkers 

and coupling chemistries can have a significant effect on adsorption performance. (C-E) 

We assessed the topology of (C) the standard, thiol-reacted nanogel surface, (D) the 

epoxy-coupled nanogel surface, and (E) the multi-arm PEG-coated surface. Cross 

sectional height analysis is depicted in charts below. The thiol-reacted nanogel coating 

created the most connected surfaces while multi-arm PEG monolayer coatings generated 

the least connected surfaces. 
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CHAPTER FOUR: SENSITIVE SINGLE-MOLECULE 

PROTEIN QUANTIFICATION AND PROTEIN COMPLEX 

DETECTION IN A MICROARRAY FORMAT 
 

 

This chapter embodies a manuscript that is being peer reviewed for the journal 

Proteomics. This chapter describes the development of a single-molecule antibody 

microarray. The experiments were designed by Robi D. Mitra and me, and the 

experiments and analysis were conducted by me. 
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ABSTRACT 

Single-molecule protein analysis provides sensitive protein quantitation with a 

digital read-out and is promising for studying biological systems and detecting 

biomarkers clinically. However, current single-molecule platforms rely on the 

quantification of one protein at a time. Conventional antibody microarrays are scalable to 

detect many proteins simultaneously, but they rely on less-sensitive and less quantitative 

quantification by the ensemble averaging of fluorescent molecules. Here we demonstrate 

a single-molecule protein assay in a microarray format enabled by an ultra-low 

background surface and single-molecule imaging. The digital read-out provides a highly 

sensitive, low femtomolar limit of detection and 4 orders of magnitude of dynamic range 

through the use of hybrid digital-analog quantification. From crude cell lysate, we 

measured levels of p53 and MDM2 in parallel, proving the concept of a digital antibody 

microarray for use in proteomic profiling. We also applied the single-molecule 

microarray to detect the p53-MDM2 protein complex in cell lysate. Our study is 

promising for development and application of single-molecule protein methods because it 

represents a technological bridge between single-plex and highly multiplex studies.  

 

TECHNICAL BRIEF 

 Single-molecule protein detection has the potential to improve systems biology 

and biomarker studies by providing highly sensitive quantification and a digital read-out. 

Single-molecule protein techniques are achieved by several methodologies, but common 

among them is the coupling of a single-molecule-sensitive detection modality with a 

method for eliminating background fluorescence. In one approach, single-molecule 
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protein quantitation is achieved through the dilution of antibody-target complexes in low 

cross-section capillaries followed by detection by a sensitive photon detector[90]. In 

another instance, femtoliter-volume wells are used to harbor single-molecule enzyme-

linked immunoassays[91]. Additionally, total internal reflection fluorescence (TIRF) 

imaging has provided a platform for single-molecule quantification on planar surfaces. 

TIRF analysis is especially promising because of the reliability and affordability of TIRF 

optics and has been recently demonstrated for the digital quantification of proteins[76, 

92-94] and lipopolysacharrides[95]. Despite the quantitative advantages of all of these 

single-molecule methods, they are currently low throughput in that they can analyze only 

one target at a time. 

Microarrays are advantageous for proteome and interactome profiling because 

they scale reliably for dozens of protein targets while relying on minimal reagent 

volumes [57, 96] and so have proven valuable for quantifying the abundance of many 

proteins simultaneously[97-100] and for detecting pairs of interacting proteins[101-105]. 

However, microarrays have neither the sensitivity of detection nor the precise digital 

read-out provided by single-molecule methods. For these reasons, a single-molecule 

assay for proteins that has the scalability of a microarray has been a major goal[92, 93].  

Here we perform a proof-of-principle demonstration of a single molecule 

antibody microarray. Our procedure begins by treating a glass substrate with a nanogel 

coating that forms a protein resistant, hydrogel barrier of around 75 nm thickness[43]. 

The coating is activated with a cross-linker, making it reactive with the exposed lysines 

of printed antibodies. Then, monoclonal capture antibodies are printed in specified 

locations (fields) onto the substrates. Substrates are sealed to a flow chamber, the surface 
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is passivated, and cell lysate is passed over the chip, binding target molecules to the 

antibody fields. Then, the chip is exposed to detection antibodies and finally to 

fluorescently-labeled streptavidin (Figure 17).  

To obtain a single-molecule resolution read-out, total internal reflection 

fluorescence (TIRF) imaging is performed. The microscope is directed to the locations of 

the printed fields, and images are acquired within the center of each field. Non-

overlapping viewing areas are acquired within each printed field to obtain intra-field 

replicates (multiple fields and multiple slides are imaged as well). Then, digital 

measurements are obtained by counting fluorescence objects within the printed fields and 

subtracting away background levels, which are measured outside of the fields. 

We first sought to assess the performance difference between a digital and an 

analog microarray in terms of limit of detection (sensitivity) and dynamic range. To do 

this, we used the model assay that detects fluorescently labeled streptavidin by binding to 

a biotinylated protein printed on the surface (to emulate a protein target captured by a 

printed capture antibody). This model is a suitable estimate of performance since it 

incorporates (1) the printing/attachment efficiency of the capture molecule, (2) the pull-

down of a protein target from solution, and (3) the non-specific binding of the protein 

target on the surface.  

We obtained TIRF images for different concentrations of captured protein (Figure 

18A). Then we analyzed the same raw data by two different methods to obtain two 

standard curves – one by single-molecule counting (digital) and one by conventional, 

ensemble intensity averaging (analog). The standard curve obtained from analog image 

processing provided a dynamic range from 10 pM to 100 pM (Figure 18B), and the curve 
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obtained from digital processing of the same data provided a dynamic range from 14 fM 

(0.74 pg mL
-1

) to 33 pM (Figure 18C). So, given the same raw data, analysis by digital 

counting provided greater sensitivity than ensemble averaging by around 3 orders of 

magnitude. By combining the two standard curves (using the digital curve for the 14 fM 

to 33 pM range and the analog curve for the 33 pM to 100 pM range), the hybrid digital-

analog curve provided around 4 orders of magnitude dynamic range. These results show 

that single-molecule microarrays, by providing a high resolution view of the printed 

antibody fields, can provide more sensitive detection than analog microarrays. Also, 

single-molecule microarrays can allow for extension of dynamic range by combining 

digital and analog standard curves. The dynamic range we observed here is well suited 

for the analysis of biological systems and serum biomarkers. 

We applied the single-molecule antibody microarray to analyze the regulatory 

proteins p53 and MDM2. We generated p53/MDM2 microarrays as described above 

using capture antibodies for p53 and MDM2. We benchmarked the microarrays using 

dilutions of protein standards to validate each antibody pair individually and then tested 

for cross-reactivity of the antibodies in a parallelized (dual-plex) assay (Supporting 

Figure 1). To validate the single-molecule antibody microarray in a real world 

application, we quantified p53 and MDM2 protein levels in a well-characterized cell 

culture line, HCT116. This colorectal cancer line is known to respond to the DNA 

damage agent 5-fluorouracil by up-regulating p53 and its downstream targets[106, 107]. 

The p53/MDM2 single-molecule microarray was exposed to cell lysate, protein levels 

were detected in a single detection antibody step, and the slide was imaged and 

analyzed.Both p53 and MDM2 protein levels fell within the digital range of the assay 
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(Figure 19A). We found p53 protein expression to increase by 1.8-fold under DNA 

damage conditions and MDM2 protein expression to increase by 6.6-fold under DNA 

damage conditions (Figure 19B). These changes are in agreement with a recent study 

using similar induction conditions of cancer cells (2.3-fold and 5.5-fold, respectively) 

[108]. The results from this indicate the single molecule microarray is well suited for 

cellular profiling. Promisingly, the microarray format should make the assay readily 

adoptable to more highly multiplexed studies. 

 Antibody microarrays have been widely used for the discovery of proteome-wide 

interactions[101-105], and we hypothesized that a single-molecule antibody microarray 

could be used to detect a protein complex. To achieve this, we altered the detection step 

of the p53/MDM2 microarray protocol by incubating only one detection antibody at a 

time. In this way, we could quantify molecules located in the alternate field with respect 

to the detection antibody. To establish the specificity of this protocol, we analyzed 

solutions that contained one protein (e.g. p53) but lacked the other (e.g. MDM2). In these 

controls, we observed low signal from two distinct immunosandwich assays: anti-p53 

detection antibody binding to anti-MDM2 capture fields and anti-MDM2 detection 

antibody binding to anti-p53 capture fields.  

After establishing the levels of cross reactivity of the assay, we analyzed cell 

lysate from HCT116 cells. By the two independent immunosandwiches, we observed 

p53-MDM2 complex levels significantly above the controls (Figure 19C). The difference 

in magnitude between the two lysate measurements is indicative of the difference in 

affinity of the pairs of antibodies in the two different immunosandwiches. The mass of 

signal in both of the interaction assays indicates the presence of a protein complex, which 



69 

 

is consistent with the known protein-protein interaction between p53 and MDM2 in vivo 

and in vitro [109, 110]. Thus, we present a model of how a single-molecule antibody 

microarray may be used in protein-protein interaction studies. 

Single molecule quantification of proteins should become of greater benefit to 

disease diagnostics and systems biology by providing quantitation of rare proteins in 

biological specimens. We used standard antibody microarray reagents, a nanogel-coated 

surface, and TIRF imaging to provide duplex digital molecule counting in a planar format 

that is suitable for higher degrees of multiplexing. As with all antibody microarrays, 

scaling up to greater numbers of targets requires optimization to minimize cross-

reactivity. In this study, we focused on the platform itself – surface architecture, antibody 

immobilization, and detection – which dictates assay performance to a large degree[111-

113]. Using a representative set of antibodies from a popular vendor, we were able to 

detect with a digital read-out regulatory proteins p53 protein and MDM2 from crude cell 

lysate and quantify small expression changes (1.8-fold). We also modified the assay to 

demonstrate its utility in a protein-protein interaction study. The low femtomolar 

sensitivity and 4-orders of magnitude dynamic range we observed provide a proof of 

principle for the use of single-molecule antibody microarrays in larger-scale protein 

quantification and protein-protein interaction studies.  
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FIGURES 

Figure 17 

 

Scheme of the single-molecule antibody microarray method.  
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Figure 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Representative TIRF images of fluoro-streptavidin captured onto the single-molecule 

microarray printed with biotin capture fields. (B) Standard curve generated by analyzing 

the data by conventional, fluorescence intensity averaging (analog processing). (C) 

Standard curve generated by analyzing the data by discrete molecule counting (digital 

processing). The single-molecule microarray enables higher sensitivity and higher 

dynamic range than a microarray analyzed by analog processing.



73 

 

Figure 19 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Single-molecule protein expression of p53 and MDM2 in cancer cells, with and 

without DNA damage induction. (B) Expression changes of 1.8-fold for p53 and 6.6-fold 

for MDM2 are detected by three biological replicates. (C) Two different digital sandwich 

immunoassays specifically detect the p53-MDM2 protein complex. Cell lysate and 

control samples were analyzed by distinct immunosandwich assays: one using printed 

p53 capture antibody, αp53C, with MDM2 detection antibody, αMDM2D, and the other 

using printed MDM2 capture antibody, αMDM2C, with p53 detection antibody, αp53D. 

The analysis of cell lysate provided a mass of signal above the levels of cross-reactivity 

determined from controls, indicating the presence of the p53-MDM2 complex. 
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CHAPTER FIVE: PROTEOMICS BY LINEAR MOTIF 

ANALYSIS AND PARALLEL PEPTIDE SEQUENCING 
 

This chapter embodies methods and results that can be found in two patents 

(“Single Molecule Protein Screening,” PCT/US2009/066236, Mitra, RD, Tessler, LA, 

and “Methods of Polypeptide Identification and Compositions Thereof,” US11/674,642, 

Mitra, RD) as well as yet unpublished results. The in silico simulations for Dipeptide 

Motif Analysis were performed by Robi D. Mitra. The dipeptide antibody ELISAs, 

dipeptide correlation analysis, and the simulations for Parallel Peptide Sequencing were 

performed by me. 
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INTRODUCTION 

 Mass spectrometry and the immunoassay have been the workhorses of modern 

proteomics, but each technology has a clear profile of strengths as well as weaknesses, 

described in Chapter One. In short, mass spectrometry allows for the analysis of many 

proteins but lacks the sensitivity for needed for most biomarkers. Immunoassays benefit 

from high sensitivity, but their multiplexing ability is limited even in microarray formats. 

Antibody microarrays have been mostly limited to analyzing dozens to hundreds of 

targets because they rely on an antibody (or pair of antibodies) for every target of interest. 

This “one-antibody/one-target problem” is a difficult issue for those interested in 

proteome-wide analysis, since it implies the need to make approximately 23,000 

individual antibodies, validate them, and eliminate their cross reactivity. A technology 

with the sensitivity of an immunoassay but the multiplexed nature of mass spectrometry 

would be beneficial. 

The concept of obtaining sequence information from individual molecules has 

spawned a revolution for DNA sequencing technologies, which perform DNA 

polymerase or DNA ligase reactions on individual molecules to obtain base pair 

information. We propose an analogous method that employs single-molecule detection to 

obtain sequence information from proteins. This method is based on the idea that 

individual amino acids or two amino acid (dipeptide) motifs may be detectable by 

binding a probe such as an antibody (or aptamer, or engineered protein). We also 

envision that such probes may be bound to targets, detected by TIRF imaging, and then 

removed by stringent washing to allow for subsequent rounds of binding. In this manner, 
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a small, “universal” set of antibodies (between 8 and 50) could be used to identify all 

human proteins.  

We propose two major ways in which this technology may be implemented. In 

one embodiment of the technology, Dipeptide Motif Analysis, denatured protein 

molecules are analyzed for the presence or absence of dipeptides within their polypeptide 

sequence (Figure 20). In a second embodiment of the technology, Parallel Peptide 

Sequencing, sequential amino acid information is obtained from peptide digests of 

proteins (Figure 21). In both manifestations, polypeptides are analyzed by antibodies 

during multiple rounds of binding and washing, and the digital binding signatures for 

each molecule (enabled by single-molecule detection) reveal the unique identity of each 

molecule.  

Here we present proof of concept data to support and inform the further 

development of Dipeptide Motif Analysis and Parallel Peptide Sequencing. The 

computational analyses, immunization protocols, and antibody validations shown here 

present hope for the development of high-throughput single-molecule protein detection.  

 

DIPEPTIDE MOTIF ANALYSIS 

Overview of the method 

In Dipeptide Motif Analysis, denatured proteins are immobilized onto a surface 

and probed by antibodies in multiple rounds of binding (Figure 20). The antibodies are 

specific to common sequence motifs such as dipeptides. By analyzing the presence or 

absence of dipeptides within proteins and doing so at single-molecule resolution, the 

unique identity of the proteins as well as their abundances may be obtained. 
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Theoretical Performance 

Dipeptide Motif Analysis relies on bioinformatic fact that short, linear amino acid 

sequences are moderately common throughout the proteome. For example, for many 

dipeptides, the chance of that dipeptide being present in any given protein is 

approximately 50% (Figure 22). For example, assuming that a complex mixture of 

proteins is denatured and immobilized on a surface with single-molecule separation, an 

antibody against a dipeptide motif (e.g. “proline-alanine”) should bind to ~50% of the 

proteins (assuming 100% binding occupancy). After the removal of that antibody by a 

stringent wash, a second antibody against a different motif (e.g. “serine-glutamate”) 

should bind to a different 50% of the proteins. After around 40 successive rounds of 

binding with different motif-recognizing antibodies, every molecule will have been 

probed and will reveal a binding signature that is unique to that protein.  

 This is demonstrated by an in silico experiment that shows the number of 

dipeptide antibody binding rounds that would be needed to uniquely identify all the 

proteins in the human genome (Figure 23). With 40 dipeptide antibody binding rounds, 

over 95% of the proteome can be uniquely identified. This in silico experiment also 

simulates the performance using an optimal set of antibodies compared to a randomized 

set. Those two sets behave similarly, probably due to the fact that the presence of 

dipeptide motifs throughout the genome is relatively random (Figure 24). Therefore, 

although 400 dipeptide motifs exist, with a set of only 40, one could, from an informatics 

perspective, perform a full proteome analysis. 
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 After determining that the number of necessary dipeptide binding rounds is 

feasible, we wanted to investigate whether Dipeptide Motif Analysis would be robust to 

the type of errors expected in single-molecule experiments. For instance, 100% 

occupancy may not be possible (we reliably obtained 70-80% occupancy in our single 

molecule studies in Chapter Two). Additionally, non-specific binding could contribute to 

errors in the binding signatures. By simulation, we showed with a 2.5% false positive 

rate, the method can tolerate up to a 20% false negative rate. So, this method should be 

robust to noise, including false positive and false negative binding events (Figure 25).  

 

Generation of dipeptide motif antibodies 

 With the theoretical framework established for Dipeptide Motif Analysis, we 

sought to investigate methods to generate and validate antibodies that could be used as 

dipeptide probes. Antibodies cannot be generated with a priori knowledge of their 

binding specificity. Instead, antibody recognition regions are generated by a biological 

process that is inherently stochastic. To complicate this phenomenon, polyclonal 

antibodies are comprised of a multitude of reactive species. Because of these 

confounding elements, polycloncal antibody specificity can only be determined 

empirically, by screening the antibody against a library of target molecules. As a result, 

no test for specificity is universal because specificity, as defined by such experiments, is 

only generalizable within the space of the test library.  

Prior to deciding on dipeptide antibodies to generate, we sought to define the test 

library, which comprises of exemplar true and false targets for each antibody. We 

hypothesized that electrostatic forces would provide the strongest type of molecular 
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interaction that forms antibody specificity, therefore we limited the exemplar targets to 

those with specific electrostatic signatures. In this fashion we defined sixteen targets, 

comprised of the exhaustive combinations of lysine (K), arginine (R), glutamate (E), and 

aspartate (D) in dipeptide epitopes. These epitopes were synthesized to be internal to 9-

mer peptides and flanked by randomized amino acids. In order to ensure that “accidental” 

exemplar dipeptides would not be formed, the amino acids flanking the dipeptide epitope 

did not contain amino acids that were used within the epitope. For example, this 

prevented the exemplar mixture X-X-K-R-X-X-G-G-C from being be contaminated with 

X-R-K-R-X-X-G-G-C, which may have lead to a false positive recognition by the RK 

antibody. These peptide mixtures were conjugated to carrier proteins and used in a rabbit 

immunization procedure (see Methods). 

 

Purification of dipeptide motif antibodies 

 After obtaining polyclonal antisera to the sixteen dipeptides, we began assessing 

their specificity. We performed serum ELISAs for the KK, RR, EE, and DD antibodies 

against the KK, RR, EE and DD target peptides. We took this as a test case because we 

felt that if specificity was not possible between these cases, it would not be possible at all. 

At this stage, the cross-reactivity ELISAs demonstrated very little specificity, with only 

some specificity being produced from the KK antisera (Figure 26A). 

 We hypothesized that there may exist a high number of off-target antibodies 

within the antisera that was masking the specificity of the antibodies. We presumed this 

due to the complexity of the antigen (a highly randomized mixture containing only a 

small consensus epitope). We tested this by purifying the antibodies from the antisera and 
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subjecting them to multiple rounds of negative immuno-selection (see Methods). We 

performed this immunodepletion by running the antibodies through multiple columns 

containing peptide mixtures of the exemplar off-target dipeptide epitopes. Each antibody 

was passed through columns removed antibody species that reacted with all fifteen other 

dipeptide epitopes. Thus, after serial immunodepletion, the wash through from the 

columns should have been enriched for those antibodies that react only with the true 

exemplar dipeptide epitope. 

 After immunodepletion, the test set of KK, RR, EE, and DD antibodies showed 

improved specificity (Figure 26B). To test whether the entire set of antibodies would 

have any reactivity or specificity after purification and immunodepletion, I subjected 

them to ELISA tests against all sixteen dipeptide mixtures, each with a dilution series of 

antibody. All sixteen antibodies displayed reactivity in a concentration dependent manner 

and all showed at least some degree of specificity (examplar curves in Figure 27). This 

demonstrated the success of the immunization approach and that specific antibody 

species remained within the polyclonal milieu after immunodepletion.  

 

Analysis of antibody cross-reactivity 

To analyze the global cross-reactivity all sixteen antibodies against the sixteen-

dipeptide library, we used the highest concentration ELISA data points to create an 

antibody specificity heatmap (Figure 28). This heatmap demonstrates that the antibodies 

were highly specific in the epitope space of only two amino acids. Notably, most of the 

antibodies showed specificity with fewer than three side reactions. 
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The dipeptide antibodies achieved specificity to a startling degree. In one case 

particular, the antibodies were able to identify glutamate-aspartate (ED) as distinct from 

glutamate-glutamate (EE). This is impressive because these two dipeptides differ by only 

a single carbon bond. Additionally, the anti-ED antibody was able to identify ED as 

distinct from DE. This orientation specificity demonstrates the ability of the antibodies to 

recognize the side chains in the context of the amine bonds that form the peptide. 

 Some dipeptides displayed more cross-reactivity than others. For instance, those 

with lysine in the C-terminus tended to be more promiscuous in the second amino acid. 

To investigate the ability to improve specificity after the initial immunodepletion, we 

used the cross reactivity data to inform an additional immunodepletion step for an 

antibody. An ELISA after this second, targeted immunodepletion shows that, although 

affinity was reduced compared to the pre-depletion antibody, the cross reacitvities were 

reduced (Figure 29). This is promising because it demonstrates our ability to tune the 

polyclonal antibody mixtures. 

 

PARALLEL PEPTIDE SEQUENCING 

Overview of the method 

In Parallel Peptide Sequencing a protein sample is trysin-digested, the resulting 

peptides are immobilized by cysteines, a small number of antibodies (or other similar 

probe) interrogates the N-termini the peptides, and then a chemical or enzymatic step 

removes the terminal residues (Figure 21). After cycling between antibody binding and 

cleavage, unique, identifying protein sequence information can be extracted. Then, by 
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counting the number of sequence reads mapping to each protein, each protein in a sample 

can be quantified.  

 

Theoretical Performance 

 Parallel Peptide Sequencing relies on mapping sequence reads to a database of 

polypeptides in the genome. One practical question is, what read-lengths are needed to 

map back proteins reliably? This will dictate how many cycles of binding and cleavage 

will need to be carried out. I performed an in silico experiment by sampling terminal 

peptides from all of the proteins in the proteome (~23,000) given a particular read length 

n. Then, I asked how many of those reads were unique within the human proteome 

(Figure 30, blue).  

By simulation, I found that with read lengths of eight amino acids and greater, one 

could map over 90% of the proteome uniquely. Moreover, for a unique 10-mer, the 

nearest peptide in the proteome is an average of 3.06 mismatches away. This means that a 

10-mer can tolerate 1.5 mismatches within the read (15% error rate) and still be perfectly 

mappable. For a 15-mer and 20-mer, the error tolerance is 21% and 24% respectively. 

Taken together, this means that short reads can be highly mappable and robust to 

sequencing errors.  

 To test the dependence on the types of peptide digestion, I performed simulations 

of peptide digestion within the middle of proteins (30 residues and 60 residues internal) 

as well as with trypsin digestion. With random protein digestion, the mapping ability was 

slightly reduced. Here, a read length of eight could map 85% of the proteome (Figure 30, 

red and green), down from 90%. When using a trypsin digestion however, the mapping 



83 

 

ability was improved (Figure 30, blue). 8-mer reads from a trypsin digest could map 92% 

of the proteome, and 6-mers are sufficient to map 89%. The performance improvement 

by trypsin digestion is due to the fact that trypsin cuts at the C-terminal end of lysines and 

arginines. Because every sequence read must be terminal or preceded by a K or R, the 

information contained in each read is increased. 

 These simulations provide a feasible estimate for the number of cleavage rounds 

that would be needed. However, the simulations assumed all twenty amino acids were 

distinguishable from one another. Even though the data for dipeptide antibodies was 

promising, it may be difficult to produce probes to detect and distinguish all twenty 

amino acids since some amino acids are small and similar, such as glycine and alanine. 

So next, I performed a more conservative simulation that assumed that only four types of 

amino acids would be able to be distinguished: neutral hydrophobic, neutral hydrophilic, 

acidic, and basic. To conduct this simulation, all proteins in the proteome were converted 

into this four-letter sequence space.  

The results of the in silico experiment using a quaternary alphabet show that 

twenty residues would need to be sequenced in order to map 90% proteins uniquely 

(Figure 30, orange). This is very promising for the possibility of Parallel Peptide 

Sequencing, since it greatly reduces the challenge of finding a sufficient number of 

terminal amino acid antibodies. 

 

CONCLUSIONS 

We have shown by simulation that proteomics by Dipeptide Motif Analysis and 

Parallel Peptide Sequencing are feasible in terms of determination of protein identity, the 
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required number of probe binding cycles, and robustness to sequencing error. For 

Dipeptide Motif Analysis, we have additionally shown the generation of dipeptide-

specific antibodies to be feasible.  

 Hurdles remain for both technologies. For Dipeptide Motif Analysis, it was found 

to be difficult for the dipeptide antibodies to recognize peptides that were longer than the 

peptides used in the immunization and to recognize peptides not attached to carrier 

protein (data not shown). This inability to bind may be due to length dependence of the 

antigen recognition region or context dependence of the carrier molecule. The inability to 

bind may alternatively be due to secondary structure of peptides, but this is unlikely since 

exhaustive combinations of heat, SDS, Triton X-100, and urea could not improve 

binding. A valuable technological milestone would be to show that dipeptide antibodies 

could recognize their respective epitopes in many sequence contexts. New antibody 

generation techniques may be required for this goal[114, 115]. 

 Smaller hurdles lie with Parallel Peptide Sequencing. A collaboration with Jim 

Havranek and Ben Borgo of the Havranek Lab has been fruitful for the development of 

proteins with engineered mutations that can bind to specific N-terminal amino acids (data 

not shown). What remains to be shown is the effective binding to peptides that are on a 

solid substrate. We have achieved success in conducting several types of cleavage 

reactions in bulk experiments including Edman Degradation, Barrett’s Modification, and 

substrate-dependent cleavage by an engineered enzyme. What is left to be shown is the 

adaptation of one of these to a solid surface such as the nanogel surface. 
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MATERIALS AND METHODS 

Producing polyclonal antisera against dipeptide epitopes 

 Semi-random peptide mixtures containing dipeptide sequence epitopes were 

generated by solid-phase peptide synthesis. The sequence of the peptide mixtures (from C 

to N termini) was X-X-epitope-X-X-G-G-C. Each mixture contained one of the sixteen 

following epitopes: KK, KR, KE, KD, RK, RR, RE, RD, DK, DR, DE, DD, and EK, ER, 

EE, ED. Positions labeled X denote positions in which equal amount of all twenty amino 

acids were used in the synthesis step. The G-G sequence was used as a spacer between 

the variable region of the peptides and the carrier protein, and the terminal cysteine acted 

as the linker for carrier conjugation. Each of the sixteen dipeptide mixtures was 

conjugated to carrier protein and used to generate antisera in rabbits. Two rabbits were 

used per dipeptide epitope protocol for assurance of immune response. All peptide 

synthesis and animal protocols were conducted by 21
st
 Century Biochemicals, Inc. 

(Marlborough, MA).  

 

Affinity purification  

 The sixteen antisera were subjected to affinity purification to separate the 

antibodies from serum proteins. Columns were prepared with resin coated in the targeted 

peptide mixture and antisera was bound, washed, then eluted. For example the KK 

antisera was bound, washed and eluted from a column packed with X-X-K-K-X-X-G-G-C 

resin. 
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Immunodepletion 

 We synthesized sixteen negative selection (immunodepletion) peptide mixtures 

with which to remove off-target antibody binding and to maximize the specificity within 

this group of sixteen antibodies against the sixteen epitopes. These peptides were of the 

sequence Z-Z-epitope-Z-Z-G-G-C, where epitope denotes one of the sixteen dipeptide 

epitopes and Z denotes randomized flanking residues that excluded the amino acids K, R, 

E and D. For each affinity purified antibody, we depleted it against beads containing 

fifteen other dipeptide epitope negative selection peptides. These depletions were split up 

over four columns to provide enough exposure of all negative selection peptides.  
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FIGURES 

Figure 20 

 

A schematic of digital proteomics 

by Dipeptide Motif Analysis. (A) 

Millions of denatured proteins are 

covalently attached to a substrate. 

(B) In successive rounds of binding 

and washing, a set of antibodies 

recognize dipeptide motifs internal 

to the proteins. Zeros indicate the 

absence of a motif and ones indicate 

the presence of a motif. (C) Binding 

signatures are mapped to unique 

polypeptide sequences in the 

proteome database. 
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Figure 21 

 

A schematic of digital proteomics by Parallel Peptide Sequencing. A protein sample is 

digested and peptides are covalently attached to the analysis substrate. The N-termini of 

peptides are probed by rounds of probe binding and washing. After the terminal amino 

acid is identified, the terminus is removed by chemical or enzymatic cleavage, and the 

next amino acid is identified. 

Trypsin or  
random digest 
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Figure 22 

 A         B 

 

 

 

 

 

 

 

 

 

Informatics analysis shows that dipeptides are present at between 0% 

and 80% frequency in the proteome. A large number of dipeptides are 

present at frequencies between 45-55%, so they should be highly 

suited for maximum protein discrimination by Dipeptide Motif 

Analysis. 

(A) Histogram of the number of dipeptides (out of 400) which are 

present in polypeptides in the proteome. For example, ~20 

dipeptides are present at a frequency of 0.45 – 0.5 in the proteome. 

(B) Example of dipeptides present between 0.45 and 0.55 in the 

proteome. These would be ideal for Dipeptide Motif Analysis. For example, “GG” is 

present in 50% of the proteins in the proteome and absent in the other 50%. 

0.553243 'PL' 

0.552311 'TL' 

0.547725 'LK' 

0.541096 'LT' 

0.539986 'SP' 

0.539341 'PS' 

0.528986 'AG' 

0.522608 'AV' 

0.522143 'EA' 

0.509566 'VS' 

0.508563 'DL' 

0.507739 'KL' 

0.506879 'PG' 

0.506808 'GA' 

0.506557 'SV' 

0.505016 'PA' 

0.500645 'SR' 

0.500394 'GG' 

0.496811 'SE' 

0.492691 'QL' 

0.491938 'AE' 

0.4866 'RR' 

0.485059 'EK' 

0.484916 'IL' 

0.484844 'PP' 

0.484522 'LD' 

0.483196 'VA' 

0.475385 'KE' 

0.474346 'PE' 

0.471372 'TS' 

0.471336 'RS' 

0.467897 'FL' 

0.462128 'RA' 

0.459154 'ST' 



90 

 

Figure 23 

 

Simulation showing the fraction of proteins in the proteome that would have a unique 

dipeptide motif binding signature using an optimal pool of dipeptide probes (blue line) 

and a random pool of dipeptide probes (green line). (Mitra, unpublished)
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Figure 24 

A     B 

 

The presence of dipeptide motifs is mostly uniform throughout the proteome. A 

clustering of the presence (red) and absence (blue) of the 400 dipeptides across ~23,000 

proteins shows that no two dipeptides co-occur substantially. The only co-occurance is at 

the level of individual amino acids. For example, proteins that contain a tyrosine are more 

likely to contain tyrosine-containing dipeptides than proteins without tyrosine.  (B) 

Hierarchical clustering based on presence/absence Hamming distance shows no 

substantial clustering. 
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Figure 25 

 

Simulation of unique mapping for Dipeptide Motif Analysis including a 2.5% false 

positive error rate and varying false negative error rates (Mitra, unpublished). Up to a 

20% false negative rate is tolerable for a 100 motif binding assay. 
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Figure 26 

 

ELISAs performed on serum and on purified/immunodepleted antibodies for four test 

cases (KK, RR, EE, and DD motifs). Perfect specificity of antibodies for their respective 

antigens would be indicated by a descending diagonal line. Serum from immunized 

rabbits showed little specificity. After antibody purification and immunodepletion, 

specificity was achieved. 
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Figure 27 

 

 

         

Five ELISA that were representative of the sixteen ELISAs to test specificity of the 

dipeptide antibodies against a panel of sixteen dipeptides.  
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Figure 28 

 

Summary of specificity of sixteen antibodies against sixteen dipeptides. Red boxes along 

the descending diagonal indicate perfect specificity, and red boxes off of the diagonal 

indicate cross-reactivity. Most antibodies showed cross reactivity with fewer than three 

peptides. 
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Figure 29 

A      B 

 

Specificity of the polyclonal antibodies is “tunable.” Cross-reactivity profile by ELISA 

for the Anti-KE antibody before and after a second round of immunodepletion. (A) Initial 

purification and immunodepletion yielded some cross-reactivity with KD, KR and KK. 

(B) After a second round of immunodepletion against KD, KR and KK, the cross-

reactivity (as well as the affinity) was reduced.  
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Figure 30 

 

Computer simulations of Parallel Peptide Sequencing show that only 8 residues need to 

be sequenced (with full, twenty amino acid resolution) in order to uniquely map reads to 

90% of the human proteome (blue). With the amino acid sequence reduced to a 

quaternary alphabet, 20 residues need to be sequenced to uniquely map reads to 90% of 

the human proteome (orange). Sequencing within the middle of a protein reduced 

mappability slightly (red and green). Sequencing from trypsin-generated peptides 

improves mappabilitiy (purple). The remaining 10% of the proteome is difficult to map 

due to homology among small sets of proteins. 
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CHAPTER SIX: CONCLUSIONS AND FUTURE 

IMPLICATIONS 

 
The biomedical diagnostics world is moving toward single-molecule detection 

faster than ever before. Before the initiation of this thesis, only one group had examined 

single-molecule detection in an immunoassay, and that was not in a chip-based/solid-

phase format. Since the publication of our study in Analytical Chemistry, at least nine 

other groups have published on the subject with one of them being a venture capital 

funded company.  I believe this trend will continue, that more academic and commercial 

laboratories will focus on single-molecule immunoassay applications, and that existing 

biotechnology companies will begin to adopt these techniques into their platform 

technologies. For instance, one DNA sequencing company, Pacific Biosciences, has 

begun exploring the translation of proteins with single ribosome resolution. 

 Single-molecule immunoassays are increasing in number, but there is still a dearth 

of science and engineering progress in the area of single amino acid and dipeptide 

recognition. Although two groups have written articles on prospective research in 

sequence and motif analysis [114, 115], only one group has published a molecule, an 

aptamer, than can detect short peptide motifs (tripeptides) [116]. Thus, I believe our lab 

and our university collaborators hold the scientific know-how, funding, and intellectual 

property rights to develop the proteomic technologies introduced in Chapter Five into 

research and commercial tools. 

 The findings in this thesis can be applied immediately to the quantification of 

proteins in cell lysate and serum. For experiments in which multiplexing is not necessary, 
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the direct immobilization method presented in Chapter Two provides an easy and 

sensitive way to monitor single-molecule antibody binding and could be used to monitor 

the in vitro binding of other interacting molecules. The nanogel surface coating 

characterized in Chapter Three should provide the biophysics community a way to 

conduct in vitro binding assays with higher occupancy and lower background. The 

single-molecule antibody microarray in Chapter Four will allow multiplexed experiments 

that are at least as sensitive as their analog counterparts, and with optimization, may be 

made more sensitive. Moreover, microarray facilities can easily adapt their printing 

methods to suit the nanogels protocol. 

 Protein analysis has proven to be a challenging and highly rewarding subject. This 

thesis has given me the chance to learn much in the areas of microscopy, surface 

chemistry, antibody development, and biochemistry. My enthusiasm for this line of 

research has only increased over my graduate career, and I hope this thesis inspires others 

to apply and develop protein analysis methods and single-molecule detection methods in 

biology and biomedicine.  
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APPENDIX ONE: SUPPLEMENTAL INFORMATION 
 

 

Supporting Information 

 for 

“Protein quantification in complex mixtures by solid phase  

single-molecule counting” 

 

Analyzing Images by Iterative Thresholding 

 We developed software to determine the positions of single fluorescent molecules 

that overcomes the limitations of the nonuniform illumination region inherent to the 

Nikon TIRF Illumination. We created a Metamorph Journal that reads in a 12-bit TIFF 

and acts as follows. We iterated over intensity thresholds from 0 to 4,050 by increments 

of 50. For each intensity threshold, we defined objects as sets of pixels that 1) have 

intensity values are greater than the threshold, 2) are contiguous with other pixels within 

that object and 3) comprise an area between 2 and 20 pixels. We found the limits of 2 and 

20 to give the best precision. Then for each object found at each intensity threshold, we 

outputted the X-Y locations of the object centroids. We imported this set of 2-D points 

into MATLAB. Then we created a binary output image, of ones and zeros, which 

contained a 3 x 3 pixel square of ones centered on each of the 2-D points. These binary 
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squares were used to represent the locations of fluorescent molecules for analyzing their 

positions and abundance. 

 To measure sensitivity and specificity of iterative thresholding (IT), we obtained 

several raw images of Cy5 antibody molecules, analyzed them by IT and by single value 

thresholding (SVT), and outputted analyzed versions using each method. To obtain 

sensitivity, we measured the fraction of objects present in the SVT image that were also 

present in the IT image. To obtain specificity, we measured the fraction of objects present 

in the IT image that were present in the raw image. False positives with respect to the raw 

image we identifiable by the lack of likeness to a Gaussian point-spread function.  

 

Measuring Protein Detection Efficiency 

 For analyzing the dual-color assays, the acquired Cy5 image (antibody) and the 

corresponding Cy3 image (protein) were processed by the IT algorithm into binary 

images. Then, we chose a 316 pixel x 316 pixel (31.6 µm x 31.6 µm) region from the 

Cy5 and Cy3 images to calculate the antibody-protein correlation. The correlation 

between red and green channels was calculated as follows (Equation 1): 

 

316

1

316

1

,,

i j

jiji GRC

.        (1) 

 

Here, R and G are matrices of ones and zeros, representing the binary image of size 316 x 

316 pixel2. To correct for stage shifting, we allowed the Cy5-Cy3 image pair to be offset 

with respect to each other in order to find the alignment that produced the maximum 

correlation (the true alignment). Once the true alignment was found, our software counted 
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the number of proteins that overlapped antibodies and divided that by the total number of 

proteins. We defined this ratio as the fractional accessibility or binding efficiency. 

 

Testing for Random Correlations and Specificity of Binding 

 To determine whether the Cy5-Cy3 image correlation was a random event, we 

compared the correlation derived from Equation 1 to the background distribution of 

correlations for Cy5-Cy3 image pairs that were offset in the X and Y directions. To do 

this, we chose a 316 x 316 pixel2 region from the Cy3 image as the “base”. We then 

computed the correlation of the base with regions of the Cy5 image that were misaligned 

by a translational offset. We scanned offsets between -100 to +100 pixels (with respect to 

the true alignment) in both the X and Y directions. After these 40,000 correlations were 

computed, they were plotted as a function of the X and Y offsets. To interpret the Z-axis 

of the correlograms, level surfaces correspond to the background distribution of 

correlation values, and peaks correspond to correlations that are significantly nonrandom. 

In binding experiments in which the antibody was specific for its target (Paper Figure 2), 

a high peak was seen around the offset (0, 0). Therefore correlation for the true alignment 

was nonrandom, and binding was specific. By contrast, when a nonmatching protein 

target was used, no peak appeared (Figure S3), indicating randomness between Cy3 and 

Cy5 channels (and no specific binding). 
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Estimating Nonspecific Binding Based on the Observed Antibody Density 

 We used the total number of antibodies remaining on the surface after washing to 

estimate the frequency of antibody-ligand correlations that occurred merely by chance 

overlap of molecules – the false positive (FP) rate. We define the FP rate as the 

probability that a randomly chosen pixel will be within a radius 2.5 pixels from an 

antibody pixel. This probability follows a Poisson process, where the parameter lambda is 

the frequency of antibody pixels out of the total number of pixels. Therefore, for the 

number of antibodies on the surface A, and total pixel area of the image T, 
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          (2) 

 

Quantifying Total IgG in Rabbit Serum by ELISA 

 The three rabbit serum samples (see Methods) were used as coating antigens.  The 

detection antibody was polyclonal anti-rabbit antibody conjugated to alkaline-

phosphatase (Abcam, Cambridge, MA). Polystyrene microtiter plates (Immulon 2HB) 

were obtained from Thermo Fisher Scientific (Waltham, MA). Washes were performed 

using Labsystems Multidrop 384 (Beckman Coulter, Fullerton, CA). Detection of the 

fluorogenic substrate, (4-methylumbelliferyl phosphate, Sigma Aldrich, St. Louis) was 

performed on the microtiter plate flourimeter Synergy HT (Biotek, Winooski, VT).  

  An indirect enzyme-linked immunosorbent assay (ELISA) was performed as 

described.[117]  For each serum sample, two dimensional titrations were performed to 

determine the optimal dilutions of coating antigen and detection antibody. A dynamic 
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range of detection that spanned the signals of all three serum samples was achieved using 

the following dilutions. Coating antigens – 1:64,000. Detection antibody – 625 ng/ml. 

 

SUPPLEMENTAL FIGURES  

Figure S1.  

 

 

Demonstrating single-antibody detection. To test whether fluorescence objects were in 

fact single molecules, we mixed antibodies of two different colors together and quantified 

number of instances in which we observed two overlapping objects on the surface. We 

observe no significant overlap (p = 0.73 Fisher’s Exact Test) between antibodies labeled 

with (A) Cy3 or (B) Cy5 when (C) images are merged (scale bar = 10 µm).  This 

indicates that each fluorescence object represents a single antibody molecule.  
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Figure S2  

 

 

 

Attachment efficiency. The EDC/NHS heterobifunctional crosslinking system can 

effectively activate BSA molecules on the surface to immobilize target proteins. (A) The 

number of protein molecules attached to the surface per 2,000 µm
2 

with and without 

EDC/NHS surface activation. (B) Images of protein molecules attached to the surface 

(top) without EDC/NHS surface activation and (bottom) with EDC/NHS (scale bar = 10 

µm). 
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Figure S3 

 

 

 

Negative control for binding. When we perform protein detection using a nonspecific 

target protein, the correlogram analysis shows a random distribution of correlations, 

indicating no specific binding.  
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Figure S4 

 

 

 

Dissociation of surface-bound antibody:target complexes is insignificant over 48 

hours. We performed antibody binding onto immobilized Cy3-targets and counted the 

number of antibody:target complexes. We washed the flow cell over 48 hours and 

analyzed the number of complexes every 8 hours. Here we plot the number of complexes 

over time. We do not see a decay of the number of antibody:target complexes over time, 

so there is likely an antibody-surface interaction. 
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Figure S5 

Efficient multiplexing. Here we illustrate an efficient strategy for multiplexed protein 

detection in which n proteins may be quantified in 
c

n2log
 binding rounds, where c is 

the number of independent fluorescence channels used for antibody detection. This 

logarithmic encoding is based on the method by Gunderson et al, used to decode bead-

based random microarrays.[56] Here we describe a 7-plex assay, using 1 fluorescence 

channel, as a small-scale example.  

 

First, each protein is assigned a unique 

digital signature. Next, fluorescent 

antibodies for each protein are pooled 

into combinations that are determined by 

the columns of the digital signatures. (In 

the example above, the three columns of 

the signatures dictate the compositions of 

the three “antibody pools”.) Then, 

immobilized proteins are probed by one 

antibody pool per binding round. In each 

binding round, proteins of different 

species are bound and detected. In 

between binding rounds, antibodies are 

stripped. After probing with all of the 
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antibody pools (three in this example), the history of binding at each position on the slide 

is analyzed. In this manner, each position on the flow cell becomes represented by a 

binding signature. Finally, the pre-assigned digital signatures are used to decode the flow 

cell positions into protein identities. Moreover, the number of occurrences of each 

signature is counted to determine protein abundance.  

 To illustrate the decoding procedure, in this example there are two positions on the 

flow cell that have the binding history 1-0-0 (i.e. bound in round 1, unbound in round 2, 

and unbound in round 3). This signature corresponds to Protein 4, so the number of 

instances of that signature on the flow cell (two), indicates the abundance of Protein 4.  
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Supporting Information 

for 

“Nanogel surface coatings for improved single-molecule detection substrates” 

 

Design of SM antibody adsorption experiments  

 To quantify the non-specific adsorption of fluorescent antibody onto coated 

surfaces, we generated coated surfaces in flow cells and then exposed them to dilute 

solutions of labeled antibody.  We visualized the antibody molecules that adsorbed to the 

surfaces by a total internal reflection fluorescence (TIRF) microscope that is capable of 

detecting single fluorescent molecules.  

 Several steps were taken to enable the accuracy and precision of the antibody 

adsorption measurements.  We used antibodies that were labeled with an average of eight 

fluorophores, so that almost all were fluorescently labeled.  This can be seen by 

approximating the dye-labeling reaction as a Poisson process.  Eq. 1 is used to compute 

the fraction of antibody molecules that were labeled in our experiments:   

 

!
)(

k

e
kNP
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         Eq. 1 

 

If λ = 8 (the labeling efficiency reported by the supplier), then only ~0.03% of the 

antibody molecules contained no label (k = 0, in the equation above), and so ~99.97% of 

the antibodies were labeled with at least one dye. 

 To maintain precision, all surfaces in an experiment were exposed to antibody 

pipetted from an identical aliquot.  This eliminated variation otherwise caused by 
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antibody dilution errors. We found that despite using low-protein-binding tubes for 

storing the antibody, there was noticeable loss of antibody within the storage aliquots 

over time due to adsorption to the surfaces of the tubes. To minimize this variation, we 

parallelized experiments whenever possible. Because of the limited number of flow cells 

at our disposal, there were some experiments for which we could not test all surfaces and 

replicates simultaneously. In these cases, common control surfaces were included in the 

experiments to remove (by normalization) the variation caused by antibody loss in 

storage tubes. 

 

SM imaging  

 SM imaging was performed on a Nikon TE-2000 inverted microscope fitted for 

total internal reflection fluorescence (TIRF) (Nikon, Melville, NY).  A 640 nm, 40 mW 

laser was used for fluorescence excitation of Cy5 dyes, and a 532 nm, 75 mW laser was 

used for excitation of Cy3 dyes. (Cube-40C and Compass 215M, Coherent, Santa Clara, 

CA).  Illumination of the surface was controlled through a computer animated shutter 

(Prior Scientific, Rockland, MA).  The laser beams were coupled into one end of an 

optical fiber cable with the other end of the cable attached to the TIRF illuminator.  

Before reaching the objective, the beams were passed through a D635/30 band pass filter 

for the red channel and HQ545/30 band pass filter for the green channel (Chroma, 

Brattleboro, VT).  Objective type total internal reflection was achieved through a 60x 

TIRF oil objective with numerical aperture 1.49 (Nikon, Melville, NY).  The surface 

modifications were performed in a glass flow cell (FSC2, Bioptechs, Butler, PA) which 

was mounted onto the microscope stage.  The incident angle of the laser beam was 
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adjusted to generate total internal reflection, which creates an evanescent wave that 

decays exponentially at the glass-water interface into the flow cell to a distance of about 

300 nm.  To prevent fluorophore photobleaching and blinking, an oxygen scavenger 

system based on glucose oxidase and catalase and a blink-reduction system (Trolox) was 

added to the flow cell prior to image acquisition.[77]   Emitted photons from the labeled 

antibody molecules were collected by the objective and passed through a dichroic mirror 

(custom Cy3/Cy5, Semrock, Rochester, NY) and emission filters (LP02-647RU-25, 

Semrock, Rochester, NY for the red channel, and HQ610/75, Chroma, Brattleboro, VT 

for the green channel).  Light from each of the channels was then detected sequentially by 

a charge coupled device (CoolSnap ED, Roper Scientific, Tucson, AZ) which imaged a 

140 µm by 100 µm (1400 px x 1000 px) region of the surface.  Images of the flow cell 

surface were acquired with 0.5 second exposure. For adequate sampling, images were 

acquired at five positions across the length of the 3 mm x 35 mm flow-cell with 

independent surfaces analyzed in duplicate or triplicate. Therefore, between 500 and 

10,000 molecules were sampled for each reported data point. 

 

Image processing 

We used custom image processing software described previously to determine the 

number of fluorescent molecules present on the surface.[76] Two notable traits of the raw 

data are non-uniform illumination across the field of view (due to our TIRF apparatus) 

and fluorescence objects of different sizes (due to multi-labeling of protein and antibodies 

by fluorophores). The image processing described below has been validated to normalize 
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for both non-uniformities; we normalize for non-uniform illumination, and we filter out 

molecules that are overlapping other molecules. 

 Briefly, we employed a Metamorph Journal (Molecular Devices, Downington, 

PA) that reads in a raw, 12-bit TIFF image and performs iterative intensity thresholding 

to determine fluorescence objects in an image.  We iterated over intensity thresholds by 

increments of 50, with each iteration defining a threshold for local intensities (“local 

threshold”).  (For the Cy5 channel we iterated over the range of 175 to 4025, and for the 

Cy3 channel, we iterated over the range of 200 to 4050. This normalizes for emission 

intensity differences between the two channels.) For each local threshold, we defined 

objects as sets of pixels that: 1) have intensity values that are greater than the local 

threshold, 2) are contiguous with other pixels within that object, and 3) comprise an area 

between 2 and 16 pixel2 (20 and 160 nm2). The contiguity requirement creates a list of 

potential objects while the area requirement filters out those that are likely to be 

combinations of multiple objects. For each object found at each local threshold, we 

outputted the X-Y locations of the object centroids.  This set of 2-D points was imported 

into a custom MATLAB script (MathWorks, Natick, MA), which created binary images 

of the objects.  These objects were counted by the software to generate a measure of 

molecules per unit area.  

 

Correlation analysis  

 To determine whether fluorescence objects in the red and green channels 

(antibodies and target proteins) were overlapping significantly or simply by chance, 

correlogram analysis was performed as previously described.[76] We found that XY 
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translations were perfectly suited to identify proper alignment, and additional channel 

distortion played a negligible role. In brief, the red and green channel images were first 

analyzed (see Image Processing) to produce binary matrices, indicating the positions of 

each fluorescence object. A sub-matrix of the green channel was chosen as the reference 

matrix and compared to a sub-matrix of the red channel, using the correlation function 
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in which R and G are sub-matrices representing 316 x 316 pixel
 
sub-images of the red 

and green images, respectively. This correlation was determined for truly-aligned sub-

matrices of the red and green channels, as well as for red and green sub-matrices that 

were mis-aligned by a translational offset. We sampled offsets between -100 pixels and 

+100 pixels in X and Y dimensions with respect to the true alignment. A correlogram 

was created by plotting the correlation C as a function of X and Y translational offsets. A 

distinguishable peak near the origin indicates that the true alignment produced a 

correlation that would not be expected given a random overlapping of objects.  

 Since no anti-photobleaching system is perfect, some molecules on the surface 

may be missed. Any of these false negative events would reduce the number of observed 

overlaps. Thus, the height of the peak in the correlogram is a lower bound of the true 

level of correlation. 
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Cell adhesion assay and time course 

 Here we analyzed the nanogel-coated surfaces by measuring cell adhesion.  In this 

method, the surface is exposed to fibroblast cells in medium containing physiological 

levels of serum proteins (100 mg/mL). Because fibroblasts require the adhesion of serum 

proteins before they can attach to a surface, cell growth serves as a measure of the 

amount of adsorbed serum protein.   

 We generated BSA-coated and nanogel-coated surfaces, exposed them to 

fibroblasts in serum-containing growth media, and imaged the surfaces by phase contrast 

microscopy the next day. Images of the surfaces after cell seeding is shown in Figure S1, 

column 1. Fields of view were chosen to depict the region of each surface with the most 

cell adhesion. The uncoated control surfaces were covered with a monolayer of cells after 

only one exposure to cells and medium.  In contrast, the BSA-coated surfaces were 

largely free of cells, with cells covering ~1% of the surface while PEG-BSA nanogel-

coated surfaces (both epoxide- and thiol-reacted) displayed virtually no cell adhesion. 

Therefore, although the cell adhesion measurements provide less dynamic range than the 

SM antibody adsorption measurements taken previously, we observed remarkably similar 

results between the methods.  
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Figure S6 

 

 We next wanted to investigate the stability of the surfaces. We performed a time 

course of cell adhesion by continuing to expose the surfaces to serum proteins and 

fibroblasts every 3 days, until we observed cells covering a significant portion of each 

surface. Images of the surfaces over the time course (days 4, 7, and 10) are shown in 

Figure S6, columns 2-4. BSA-coated surfaces maintained low adhesion until after the 

second seeding (day 4), at which point they were completely covered with monolayers of 

fibroblasts.  In contrast, the PEG-BSA nanogel-coated surfaces resisted serum protein 

adsorption through three rounds of seeding.  On day 10, after the 4
th

 cell seeding, the 

thiol-reacted nanogel surfaces lost their resistance to cell adhesion and were found to 

contain large networks of cells.  The epoxide-reacted nanogel surfaces also began to fail 
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after the 4
th

 seeding.  Therefore, the BSA coating was stable for approximately 4 days 

whereas the nanogel coatings resist adsorption of serum protein mixtures for 

approximately 10 days before deteriorating.  We determine that the nanogel surface will 

be more useful than BSA surfaces in solid-phase protein studies that require extended 

durations. 

 Despite the differences between the SM adsorption assay and the cell adhesion 

assay we were happy to find that data at the first time point were similar between the two 

methods. This lends support to the relevance of the SM adsorption measurements to 

higher concentrations. 

 

Atomic force microscopy 

 AFM (Nanoscope V multimode SPM, Veeco Instruments) was utilized in tapping 

mode.  We examined morphologies of the PEG-BSA nanogel-coated samples on both 

epoxysilanated and mercaptosilanated glass surfaces without BSA capping. In situ 

surface imaging was performed using silicon nitride tips (NP-10, Nanoprobe, Veeco) 

with a nominal spring constant of 0.32 N m
-1

, and scan rates of 1-1.2 Hz. Force curve 

analysis was performed with a spring constant of 40 N m
-1

, Poisson’s ratio of 0.5, and 

semi-vertical tip angle of 25°. Roughness analysis and force curve analysis were 

performed on two replicate surfaces for each coating type. 
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Supporting Information 

 For  

“Sensitive single-molecule protein quantification and protein complex detection 

in a microarray format” 

 

MATERIALS AND METHODS 

Coating glass with nanogel 

The microarray chips were formed from a glass coverslip (Fisher Scientific, 

Pittsburg, PA) that was treated with nanogel coating by epoxy coupling[118]. The 

nanogel coating protocol described previously was streamlined by substituting PEG-

octovinylsulfone with PEG-4 maleimide (Creative PEGworks, Winston Salem, NC). This 

modification greatly reduced the nanogel preparation time, since PEG-4 maleimide is 

available commercially. After BSA and Tris capping, the chips were activated with EDC 

and NHS[76] (Sigma Aldrich, St. Louis, MO), washed in water and dried with argon. 

 

Capture and detection 

Capture antibodies for p53 and MDM2 (R&D Systems, Minneapolis, MN ) were 

printed by hand in triplicate onto the nanogel coating using a microarray pin (Arrayit 

Corporation, Sunnyvale, CA) and allowed to dry 15 minutes. To form a flow chamber, 

the chips were affixed, by a silicon gasket interface (Grace Biolabs, Bend, OR), onto a 

standard glass slide (1” x 3”) fitted with two 1 mm holes. The flow chamber was inserted 

onto the microscope stage, and the positions of the antibody fields were saved via 

Metamorph software (Molecular Devices, Sunnyvale, California) using the white light 
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image of the dried fields. The activated surface was quenched with Tris for 10 minutes 

and washed with Tween-20.  

The six-hour, semi-automated workflow went as follows. The flow chambers 

(three technical replicates) were loaded with the protein sample (cell extract or a protein 

standard), exposed for 2 h, washed with PBS, loaded with p53 and MDM2 biotinylated 

detection antibody (only one or the other for protein-protein interaction detection), 

exposed for 2 h, washed with PBS, loaded with Cy5-labeled streptavidin, exposed for 2 h, 

and washed with PBS.  

To measure the intrinsic limit of detection and dynamic range, we fabricated 

microarray chips with biointinylated-BSA printed onto the surface. After washing with 

Tween-20, flow chambers were loaded with different concentrations of Cy5-streptavidin. 

After 2 hr exposure, the chips were washed with PBS, imaged, and analyzed. 

 

Cell culture and protein extraction 

In brief, we grew HCT116 cells under normal and 5-fluorouracil DNA damage 

conditions, with three biological replicates per condition. Cells were harvested and 

equalized for cell number. Cells were then lysed, and lysate was flowed onto microarrays 

we had fabricated with p53 and MDM2 monoclonal capture antibody fields (three 

technical replicates per microarray). 

HCT116 cells were grown in DMEM + FBS medium and passaged into six flasks 

(Sigma Aldrich, St. Louis, MO). Cells were grown to a confluence over 12 hours, then 25 

μM 5-fluorouracil was added to three of the flasks. Cells were grown for an additional 12 

hours and then trypsinized. Cells were rinsed twice in PBS and resuspended in lysis 
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buffer (1 mM EDTA, 0.5% Triton X-100, 1 mM DTT, 150 mM NaCl, one Complete 

protein extraction tablet (Roche, Basel, Switzerland)) and normalized to the same cell 

concentration (10
7
 cells / mL).  Cells remained on ice for 15 minutes and were 

centrifuged at 2000 x g for 5 minutes.  Supernatant was used as input for the single-

molecule microarrays. 

 

Imaging 

Total internal reflection fluorescence (TIRF) imaging was performed at the 

locations of the antibody fields, the images were processed by Metamorph and MATLAB 

(Mathworks, Natick, MA)[76]. Molecule counts of fluorescence objects were obtained as 

well as average fluorescence intensity per unit area. To average using ensemble 

intensities, we used 400 x 400 pixel viewing areas from the center of the TIRF images 

and calculated the average intensity over each pixel. To obtain digital counts we applied 

custom software to identify discrete fluorescence objects, and summed the number of 

objects 
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SUPPORTING FIGURES 

 

Figure S7. Using a set of paired, monoclonal antibodies, we performed single-molecule 

microarray analysis on protein standards. Using digital analysis by fluorescence object 

counting, we detected p53 and MDM2 down to the low picomolar range. This matches 

the limit of detection using these antibodies in an optimized ELISA. 
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APPENDIX TWO: DEEP SEQUENCING DETECTS RARE 

GENETIC POLYMORPHISMS ASSOCIATED WITH 

RESPIRATORY DISTRESS SYNDROME IN NEWBORNS 
 

This appendix will contain a manuscript in preparation by Yue Yun and me. At 

the time of this defense, the manuscript is still in early stages. For this collaborative 

project we performed massively-paralleled Illumina DNA sequencing to find mutations 

correlated with neonatal respiratory distress syndrome (RDS). Additionally this work 

attempts to directly address the Rare Variants Hypothesis regarding heritability of 

common diseases. To summarize the state of the project we: 

 Quantified and normalized DNA samples for 850 individuals using epMotion 

robotics. 

 Prepared and submitted custom DNA libraries for over 50 lanes of pooled-sample 

sequencing on the Illumina Genome Analyzer and HiSeq 2000. 

 Created a streamlined software package, utilizing existing software 

(SPLINTER[119]) and developing custom software for the identification of single 

nucleotide polymorphisms (SNPs) from 54 billion nucleotides of data. 

 Submitted DNA samples to and analyzed results from Taqman and Sequenom 

genotyping platforms for the 850 individuals. 
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