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Abstract

In asynchronous systems, average function delays
principally govern overall throughput. This paper com-
pares the performance of six adder designs with respect
to their average delays. Owur resulls show that asyn-
chronous adders (82 or 64-bits) with a hybrid struc-
ture (e.g., corry-select adders) run 20-40% faster than
simple ripple-carry adders. Hybrid adders also outper-
Jorm high-cost, strictly synchronous conditional-sum
adders.

1 Introduction

In clocked digital systems, speed and throughput
is typically limited by the worst case delays associ-
ated with the slowest module in the system. For
asynchronous systems, however, system speed may
be governed by actual executing delays of modules,
rather than their calculated worst case delays, and
improving predicted average delays of modules {even
those which are not the slowest) may often improve
performance. In general, more frequently used mod-
ules have greater influences on overall performance.
Statistics presented in [7] show that in a prototyp-
ical RISC machine (DLX), 72% of the inmstructions
perform additions (or subtractions) in the data path.
In addition to ADD/SUB instructions (24%), branch
(17%) and memory-access (31%) instructions which
require calculations of target addresses or effective ad-
dresses also use adders. Thus, performance of asyn-
chronous RISC processors is significantly influenced
by the adder speed.

Addition can be implemented using iterative net-
works [9] with breakable carry chains. That is, in any
digit position ¢, if the two operand bits a; # b;, the
carry output of this digit is propagated from its carry
input. However, if a; = b;, the carry output is inde-

1This research has been sponsored in part by funding from
NSF under Grant CCR-9021041.

pendent from the carry input. The worst case situ-
ation with an n-bit addition occurs when every digit
requires carry propagation due to the “a # b” condi-

~ tion and in this case the delay of a ripple-carry addi-

tion is n. However, since each digit with the “a = b”
condition terminates the carry chain, the worst case
is unlikely to happen. Burks, Goldstine, and von
Neumann [3] have showed that for a ripple-carry ad-
dition of two n-bit operands chosen at random, the
mean of the longest carry sequence is bounded from
above by logyn. Briley [2] further tightened this
bound to logon — 0.5. In this work only nonzero
carry propagation is considered, however, when deal-
ing with asynchronous self-timing addition, propaga-
tions of both zero and nonzero carries must be consid-
ered. Reitwiesner [14} and Hendrickson [6] deal with
both zero and nonzero carries and develop a more ac-
curate model for the asynchronous ripple-carry addi-
tion. Hendrickson also shows (experimentally) that
the average lenpgth of the longest carry sequence can
be approximated by loge(5n/4).

The O(n) maximum delay for ripple-carry addi-
tion makes this design impractical in high performance
clocked systems, and consequently much of the work
on adders used in this environment have focused on
techniques to reduce this maximum delay. Sklan-
sky [15] developed a strictly synchronous technique
(conditional sum) which has O(logn) maximum delay,
and Winograd [19] showed that with this technique
the lower bound (on maximum delay) on addition is
achievable. Other adder designs also have O(logn)
maximum delays (18, 1, 10}. Ling also proposed a
high-performance adder that employs wired-OR. cir- .
cuits [17].

Compared with the studies of maximum delays
which have been motivated by the requirements of
clocked system design, research on average delays
which affect the performance of asynchronous sys-
tems has been less extensive. This paper studies sev-
eral design alternatives for adders operating in an
asynchronous environment. Alternative designs are



simulated and their speeds are compared. The sys-
tem implications of these speed differences are ex-
plored in the context of a simple asynchronous RISC
processor model. Our results show that a variety
of hybrid adders are faster than ripple-carry adders
(with respect to average speed) by 20-40%, and also
faster than strictly synchronous adders (which may
also be larger). Although hybrid adders are roughly
1.5 to 3 times larger than ripple-carry adders, the
cost/performance tradeoff may well be worthwhile in
the context of RISC processor performance.

In Section 2, the pros and cons of asynchronous
designs are reviewed, a model that compares the per-
formance of clocked and asynchronous systems is for-
mulated, and the origins of the potential speed ad-
vantage associated with asynchronous design are dis-
cussed. Six adder design alternatives are deseribed
in Section 3. These designs represent different struc-
tures (serial, tree, or hybrid) and techniques {carry
Inokahead or carry select). Section 4 presents material
relating to simulation of the different adders. Simu-
lation results are shown and interpreted, and some
design recommendations are made. In Section 5 the
effect of the different adders on RISC processor per-
formance is analyzed. Section 6 presents conclusions
and suggestions for further research in this area.

2 Clocked versus Asynchronous Delay
Models

The general argument in favor of using asyn-
chronous design methiodologies rests on four ideas.
First, as clocked systems increase in size, clock skew
increases and inevitably limits clock rate. The equiva-
lent delay is not present in asynchronous systems (al-
though other delays are present} [16]. Second, hier-
archical, modular design techniques are generally ill
suited to handling global design constraints such as
clock distribution. Asynchronous techniques permit
one to focus on the functional and logical sequenc-
ing aspects of design and not on such global issues
thus making the design task more manageable. Third,
asynchronous systems require less power than clocked
systems since unused modules in asynchronous sys-
tems do not require charging/discharging [5]. Fi-
nally, the clock period in a clocked system is gen-
erally based on the worst case time for component
functional units. In asynchronous systems, however,
average function delays may govern overall through-
put rates thus potentially resulting in higher perfor-
mance. Naturally, the potential advantages associated

with asynchronous design are subject to a host of qual-
ifications, and are the subject of research and debate.

The principal drawbacks associated with asyn-
chronous designs are three fold. First, if duael-rasl
encoding is employed to generate completion sig-
nals [12, 13], increased chip area is needed to im-
plement the complementary logic, completion detec-
tors, and the routing of differential input and output
lines. Second, completion detection and handshaking
requirements add extra overhead to asynchronous sys-
tems computation delays. These are analogous to the
clocking overheads associated with synchronous sys-
tems. Third, to most of the digital design community,
clocked systems appear to be easier to design, in part
due to the availability of CAD tools oriented towards
the clocked methodology.

QOur research focuses on issues of speed. An ana-
lytical model that compares the speeds of clocked and
asynchronous systems based on a pipelined architec-
ture has been proposed by the authors [4]. This model
can be simplified and described as follows:

Cycle time = fcomp + tsyne (1)

For both clocked and asynchronous systems, a pro-
cessing cycle Cycle time, consists of the computation
time, fcomp. and the synchronization time, toyn.. A
module executes during its computation time, and the
results are sent to next pipeline stage during the syn-
chronization time. For clocked designs, the computa-
tion time is fixed to the worst case computation delay,
and the synchronization time corresponds to the clock-
ing delay (i.e. clock skew and latching delay). For this
case the equation can be rewritten as:

Cycle timear = Lworst—case—comp T belocking (2)

Compared with the clocked counterparts, asyn-
chronous designs usually have larger synchronization
time since, with current technologies, the time con-
sumed by the completion detection and handshaking
protocols is typically greater than the clock skew. This
can be simply modeled by introducing a multiplica-
tive factor A (h > 1} to modify fciecking. Further-
more, since the Cycle time for asynchronous pipelines
is based on average computation delays rather than
worst-case delays, the Cycle time in this case is:

Cyde tiﬂ?’easyn = tuuerage—comp +h- tc!ockin_q (3)

The average computation time, fayerage—comp, €20 be
simply modeled in terms of {yorsi—case—comp DY intro-
ducing two moedifying parameters, i and d {(i,d < 1).
i is an instruction-dependent perameter which reflects
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the fact that different types of instructions require dif-
ferent computation times, and d is a date-dependent
parameter which reflects the variation in computa-
tion times due to different operand values. Thus,
taveragc-ucomp =i-d. twarst—case—comp-

Finally, to ensure correct operation, clocked de-
signs must be based on worst case assumptions con-
cerning fabrication tolerances and environmental op-
erating conditions. This introduces additional delays
which must be built into the synchronous design. For
example, the clock period must be set for worst case
temperature conditions even though, in general, oper-
ating temperatures are not worst case. Asynchronous
systems can take advantage of the increased speed as-
sociated with nominal operating environments. To re-
flect this in the model an environmental parameter e
(e < 1) is introduced. The complete asynchronous
cycle time is thus:

Cycle timegsyn =

e€- (7' -d- tworst—-cuse—camy + b - tc.focking) (4)

Examples of delay distributions of these parameters
are shown in Figure 1. In a clocked system, the clock
cycle has to match the maximum value of each pa-
rameter (i.e., the points denoted by *x’) while asyn-
chronous system performance is dependent more on
average delays (i.e., the dotted lines). The envi-
ronmental paremeter is decided by operating con-
ditions, and the insiruction-dependent parameter is
determined by applications and programming styles.
Both parameters give asynchronous designs an advan-
tage over their clocked counterparts, however, only the
date-dependent parameter relies directly on adder cir-
cuit design and designers can alter designs to attempt
to obtain smaller average delays. This paper considers
several design alternatives for asynchronous adders,
where the focus is on the data-dependent parameter.

3 Design Alternatives

Many adder designs, mainly used in clocked sys-
tems, have been proposed. Some of these adders have
the merit of small size, some have short {maximum)
delays, and some have a good balance of the two. Af-
ter a review of the major design options, six candidate
designs will be selected and reviewed from the view
point of inclusion in an asynchronous RISC processor
pipeline.

3.1 Classification of Adders

Adder designs can be classified into serial, tree, and
hybrid according to their high-level structures. The se-
rial structure is present in ripple-carry adders whose
worst case delay is O(n) and whose size (in terms of
number of gates) is also O(n). The tree structure
greatly reduces the worst case delay. For a worst
case addition (ie., a; # b; for all i), computation
of the most-significant bhit requires information from
all n bits. The fastest way to collect this informa-
tion is by utilizing a tree structure which yields an
O(log n) delay. Most high-speed adders, such as carry-
lookahead [18], conditional-sum [15], carry-skip [10],
and carry-select (11, are forms of tree structures. The
main drawback associated with such structures is the
O(nlogn) size required.

Hybrid structures are midway between serial and
tree structures both in ferms of worst case delay
and size. Hybrid structures partition the n-bits into
blocks, which compute block-carry conditions (i.e.,
propagate, generate, or clear) in parallel. The carry
sequence then can be passed between blocks (as op-
posed to between each bit) in a serial fashion. The
basic model of a hybrid adder is shown in Figure 2
where each of the input symbols, A; and B; , represent
a group of input bits. 'P’ and G’ indicate block-carry
propagation and generation respectively. If (P,G) =
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Figure 2: Block diagram of hybrid adders

(0,0), a zero carry is sent to next block, and if (P,G)
= (1,1), a one carry is sent. Block-carry propagation
occurs when (P,G) = (1,0). In this case the block carry
output is equal to the block carry input. Finally, the
(P,G) = (0,1) state is not allowed. When the number
of bits for each block are properly adjusted, the maxi-
mum delays of hybrid adders are O(+/n) [7] while their
sizes remain O{n): Although many adder designs have
been originally proposed with tree structures, they are
often implemented as hybrid structures since for prac-
tical values of n, the O(y/n) delay is comparable to
O(logn). The O{n) size, however, can be several times
smaller than O(nlogn).

Asindicated, the average delay for a serial structure
is O(logn). The average delay for a tree structure
is equal to the worst case delay, since computation
of the most-significant bit requires a constant time.
The average delay for a hybrid structure, however, is
more difficult to determine. Delays associated with
this structure have three origins:

e ¢y: time to find P and G for each block.
s i3 time for block carries to propagate.
s {3: time to compute the sums, Z’s.

The delays, t; and t3, depend on the techniques used
in generating P, G, and Z. These techniques (i.e., carry

loolcahead or conditional sum) are discussed later. The
ty delay is determined by the probahility of a block
carry being propagated. Carry propagation occurs,
however, only when every bit in the block has the “a s
b* condition (i.e., P,G=1,0 case). The probability of
this case is 1/2" where r is the number of digits in
the block or the block length. Therefore, the longest
block-carry sequence is usually short, and thus the
mean of ¢y is small. Qur experiments indicate thag if
ty or t5 is also kept small, hybrid adders can yield high
asynchronous performance.

Two common techniques used in tree and hybrid
structures are cerry lookahead and conditionel sum.
With the carry lookahead techniques, carries are pre-
dicted from a Boolean function of the inputs. Thus the
delay due to full carry rippling is avoided. With the
conditional sum technique both possible carry inputs
(0 and 1) for each digit or block are used, and two
sets of sum and carry outputs are produced. When
the actual carry input is known, the correct result is
simply selected.

3.2 Selected Adder Designs

In this section Six candidate adder designs repre-

- senting the main structures and high speed addition

techniques are reviewed. The asynchronous perfor-
mance of these adders is presented in later sections.

1. Ripple carry adder (RCA): This adder has the
traditional serial structure with small size, and
large worst case delay.

2. Conditional sum adder (CSA): With this
adder, both possible carry inputs are assumed for
each bit. Sum and carry bits are calculated under
the assumption that carry input is 0, and (in par-
allel) another set of sum and carry bits are calcu-
lated under the assumption of carry bits equal to
1. Pairs of conditional sums and carries are then
combined according to actual value of the carry
which enters each pair of bits and aggregated val-
ues are then presented to the next level. The
overall sum is obtained by continuing this pro-
cess through a full log, n levels. CSA has a tree
structure and takes a constant amount of time
to complete (O(log,n)). Since conditional-sum
adders are considered one of the fastest adders
{for clocked design) {8, 17], it is chosen in this
paper to roughly represent the performance of
clocked adders.

3. Completion detection conditional sum
adder (CDA) is a modified form of CSA [11].



The modification gives the adder more of an asyn-
chronous flaver by providing detection logic indi-
cating the availability of true sum at each level.
When the true sum is available, it is latched and
the computation is completed. Thus, the full
tree delay is often avoided. A CDA has a vari-
able computation time whose mean is as small as
O(log, log, n). However, this design requires ex-
tra time and circuits to detect the true sum in
each level and, if present, to route the completed
sum from any arbitrary level to the output latch.

4. Carry-lookahead adder (CLA) can be de-
signed in a tree structure with roughly constant
delay. For asynchronous designs (in the discus-
sion presented here} a CLA is considered in a hy-
brid structure. In such a CLA, both P and G
(Figure 2) of each block are calculated from basic
Boolean functions of the inputs. When the carry
input arrives at a block, the sum bits of this block
are calculated by an rbit ripple-carry adder.

5. Carry-skip adder (SKP) is also considered in
a hybrid structure here. It has been noticed that
the function of P is simpler than the function of G.
Thus, SKP generates P by the Boolean function
and G by carry-rippling. For generating G, the
carry input of the block is assumed 0.

6. Carry-select adder {SEL) is also considered in
a hybrid structure. In this design, both P and G
are obtained by carry-rippling. P is obtained by
assuming carry input equal to 1, and G by as-
suming 0. Conditional sums are also calculated
during the the generation of P and G. Once the
true carry input is known, the correct sum is sim-
ply selected.

The last three candidates have hybrid structures.
The delay of a hybrid addition, as mentioned in Sec-
tion 3.1, includes the time for generating P and G (2, ),
time for bypassing carries (f2}, and time for generat-
ing the sum (t3). All three hybrid candidates have the
same t;. CLA has a short #; because of the carry-
lookahead technique, but its 3 is decided by an r-bit
ripple-carry addition which has variable delays. For
certain operand values i3 could be long. SKP has
both ¢; and t3 decided by r-bit carry-rippling. This
does not hurt the maximum delay of SKP {i.e., the
use of SKP in clocked systems) since in the worst case
tz usually dominates the overall delay. However, our
results show that SKP has the worst average delay
among the hybrid candidates. SEL has #; decided by
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Figure 3: Carry bypass cell implemented in DCVSL

carry-rippling, but £3 is only the delay of a multiplexor
which selects the correct sum.

To minimize the worst case delay, clocked system
designers use hybrid adders with variable block sizes,
such that t; and/or 3 can be hidden by ¢;. However,
our results indicate that to minimize the average de-
lay, the block size should be fixed, with the optimal
block size varying with designs and the value of n. For
the work presented here, several block sizes have been
simulated for each hybrid design, and the one with the
best performance selected.

4 Adder Simulations

For the work presented adder implementations are
assumed to employ differential cascode voltage switch
logic (DCVSL). A DCVSL implementation of the by-
pass logic of Figure 2 (i.e., “out = G + PC”) is shown
in Figure 3. Initially, reguest is low (reset) and the
NMOS circuit is precharged with both out and ouf
going high. If the other inputs (i.e., P,C, and G) are
present, then when reguest goes high, the circuit is
evaluated. However, if after request goes high, all the
inputs are not present (e.g., G is available and equal to
1 but P and C are unavailable), then the correct out-
put may still be generated. In other words, completion
of a function does not require the presence of all in-
put signals. This illustrates early completion feature
of the circuit and the breaking of carry chains that
can be achieved by DCVSL cells. Note that delays
associated with concurrent precharging which are not
data dependent can be included in the synchronization
time (see Equation (1)).

A completion signal may be produced from the two
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complementary outputs. Other logic functions (cells)

required by the adders can be formed in a similar
fashion and all of the cells may be precharged and
requested concurrently. DCVSL details may be found
in [13].

Finding the average delay of an adder requires a
large number of test operands. The most straight-
forward way to do this is to perform a VLSI circuit
layout, and then simulate the circuit a large number
of times with different operand values. However, each
n-bit addition requires 2n + 1 inputs and, with large
n, the number of simulations required to find an accu-
rate mean value combined with the time per simula-
tion makes this impractical. The approach taken here
has been to first perform the circuit layout for a num-
ber of basic DCVSL cells. The delay of each basic cell
is obtained by a timing simulation tool, CAzM, {using
a 1.2p model). As illustrated in Figure 4, this repre-
sents the first level of a simulation hierarchy which is
employed to finally obtain the effect of adder design
on overall asynchronous RISC processor performance.

These delays are used as inputs to a set of gate level
sirnulation programs (the second level of the simula-
tion hierarchy) which have been written for different
adders where each gate consists of a basic DCVSL cell.
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Figure 5: Average delays as a function of number of
bits

Since the individual cell delays are operand dependent,
the gate level simulation accesses a table of delays for
each cell type, the actual delay used being a function
of the operands being tested. For example, the bypass
cell yields 0.98ns delay for (g,p, ¢} = (1,1,1) but 1.33ns
for (0,1,1). This seems to be a good combination of
realism and practicality. Table 1 shows basic cells and
their functions and delays.

'Propagate’ and ’generate’ are the lookahead func-
tions that generate P and G. The number in square
brackets denote the number of digits included in one
lockahead cell. Although only average and maximum
delays are shown in Table 1 the delays are based on the
input combinations and a complete delay distribution
is obtained.

The adder simulation programs are driven by
100,000 pairs of randomly selected operands®. The
value of each operand bit has equal probability of 0
or 1. Figures 5 shows the simulated average delays
of the six adder designs. Ripple-carry adder (RCA)
and conditional-sum adder (CSA) both have O(log, n)
delays. Average RCA delay is larger than log, n ac-
cording to Hendrickson’s result [6], but CSA delay is

2The assumption of random operand selections is for the
simplicity and generality of our models. At least one study (5]
has indicated that carry chain distributions produced by real
code has a somewhat higher mean than that obtained from a
random model.



Table 1: Average and Maximum delays of DCVSL cells (1.2x technology)

Function Boolean function Delay (ns)
name Average | maximum
Carry ab+ be + ca 1.44 1.62
Sum a®bdc 1.49 1.58
Bypass g+ pc 1.15 1.33
Multiplexor | sa + b 1.23 1.31
Propagate(2] | (a1 + b1) - (ap + Do) 1.23 1.32
Propagate[3] | (aa + b2) - propagate|2 1.36 1.69
Propagateld] | (az + b3) - propagate3 1.43 208
Generate[2 a1l + (a1 + b1} - aobo 1.52 1.77
Generate[3] | asbs + (a2 + by} - generate[2 1.59 2.22
Generate[4 agbs + (as + b3) - generate[3 1.16 2.27

exactly logy n levels. This is the reason that RCA
and CSA have parallel curves, and the RCA curve is
higher.

Completion detection conditional sum adder
{CDA) has the best performance among the six due
to its O(log, log, n) average delay. However, as men-
tioned in earlier, CDA requires extra time to detect
the availability of true sum in each level and direct
the completed sum, which may happen in any level,
to the latch. If this overhead is greater than 2 ns,
CDA will lose its edge. Since CDA is the only design
that has this overhead, problems of fairness may be
involved in the comparison. Therefore, CDA is not in-
cluded in studies of overall system performance which
are considered in the next section.

The three hybrid adders, carry-lookahead {CLA),
carry-skip (SKP), and carry-select (SEL), have simi-
lar curve slopes. This is because 3 (i.e., the time for
block-carry bypassing) is the only delay that grows
with n, and all three hybrid designs have the same
t3. SKP has the worst performance among the three,
because it requires carry-rippling in both ¢, (i.e., time
to generate P and G) and {3 (i.e., time to generate
sum). SEL and CLA only use carry-rippling in £, or
t3, so their average delays are very close. This re-
sult shows that hybrid structure is more feasible than
serial and tree structures for the design of adders in
asynchronous environments.

Though not shown here, we have found that the
optimal block size of hybrid adders is two when n is
equal to 64 or less and three when it is greater than
64. The reason for small block sizes is because the
probability of block-carry propagation is so small that
tz is usually short. Larger block sizes will not help
much in reducing t» but will increase ¢; and/or #3.

When n is as large as 128, however, two bits per block
makes {2 too long and, for this case, three bits per
block results in better performance.

Average, standard deviation, and the worst case
delays for 32 and 64 bit adders are shown in Tables 2
and 3 respectively. In a pipelined system, a higher
standard deviation will result in an increased proba-
bility of a given stage blocking earlier stages. Thus,
RCA has another disadvantage when used in an asyn-
chronous RISC processor instruction pipeline.

5 Adders in an Asynchronous System

In this section the candidate adder designs are con-
sidered for use in a simple single pipeline asynchronous
DLX machine. The machine is assumed to have five
pipelined stages: instruction fetch (IF), instruction de-
code (ID), execution (EX), memory access (MA), and
write back (WB). For a branch instruction, addition
is performed in calculating the target address in the
ID stage. For memory-access and ADD/SUB instruc-
tions, addition is performed in calculating the effective
address, and in evaluating the ALU result in the EX
stage.

To develop a simple functional level simulation of
the DLX machine, a number of assumptions are made.
It is assumed that the DLX pipeline has no stalls.
That is, there is 100% success on branch predictions,
no floating-point operations are present, there are
no cache misses, and there are no data-dependent
stalls. In addition, it is assumed that an instruction-
prefetching buffer is available and that 75% of the in-
structions are fetched from this buffer. This relieves
the bottleneck found in the IF stage. The delays asso-



Table 2: Performance Comparison of 32-bit adders (in ns)

Adder type

| Average delay | Deviation | Worst Delay |

Ripple carry (RCA) .47 2.55 51.84
Conditional sum (CSA) 7.92 0 7.92
Completion detect (CDA) 5.30 0.57 7.92
Carry loockahead (CLA) 7.25 1.10 24.96
Carry skip (SKP) 7.98 1.08 26.37
Carry select {SEL) 7.04 1.09 24.75

Table 3: Performance Comparison of 64-bit adders (in ns)

| Adder type | Average delay | Deviation | Worst delay |
Ripple carry (RCA) 11.06 2.70 103.68
Conditional sum {CSA) 9.24 0 9.24
Completion detect (CDA) 5.55 0.55 9.24
Carry lookahead (CLA) 7.92 1.15 46.24
Carry skip (SKP) 8.64 1.14 47.65
Carry select (SEL) 7.71 1.14 46.03

Table 4: Computation times at stages of simplified
DLX machine

Table 5: Performance of an Asynchronous DLX Using
Different Adders

Instr. Pr. Computation times (ns)
type (%) [ IF [ 1D | EX | MA ] WB
branch 20 | 3/10 | Add | O 0 0
Add/Sub | 25 | 3/10 3 Add | 3 3
logical 25 |3/10] 3 | 3 | 3 | 3
memory 30 | 3/10| 3 | Add | 10 3

Adder System speed {MIPS) Adder size
type 32-bit adder | 64-bit adder

RCA 1171 107.3 small
CSA 130.9 122.9 large
CLA 135.0 129.7 medium
SKP 129.4 125.2 medium
SEL 137.0 131.9 medium

ciated with each instruction type are found in Table 4
along with their execution probabilities [7]. Delays as-
sociated with all stages are 3 ns, except when a cache
access is involved. In this case the time is 10 ns. Delay
distributions of the adders (ADD} are obtained from
second level adder simulations (Tables 2 and 3). Al-
though the above assumptions over-simplify the RISC
system, the results indicate the impact of adder speed
on overall system performance.

The processor simulation (Figure 4) is driven by
a sequence of 100,000 randomly generated instruc-
tions whose occurrence probabilities are given in Ta-
ble 4. Each time an instruction requires an addition,
the delay distribution associated with the given adder
design is sampled to determine the ADD stage de-
lay. The results of the simulation in terms of pro-

cessor throughput are shown in Table 5. Since the
DLX model is simplified and synchronization delays
are ignored, the throughputs presented here are opti-
mistic. However, the relative performance reflects the
impact of the different adders. The results show that
a 32-bit asynchronous RISC machine which employs
SEL outperforms an identical machine which employs
RCA by 17%. For a 64-bit machine, this advantage
increases to 23%. Although SEL is about 2.5 times
bigger than RCA, the cost of adder is small com-
pared with the overall processor costs. Therefore, from
the cost/performance view point, hybrid adders have
higher performance than serial and tree adders in the
selected asynchronous systetn.

If CSA is used in a clocked version of the DLX



machine which follows the descriptions of Table 4,
the clock cycle would be set to 10 ns and the re-
sulting throughput would be 100 MIPS. This speed
is worse than its asynchronous counterpart. However,
this comparison only includes instruction-dependent
and data-dependent parameters. Environmental pa-
rameters and synchronization times need to be con-
sidered to gain a more accurate comparison of the two
design methodologies [4]. In addition, power issues
may well be an important factor in determining the
suitability of asynchronous versus clocked processor
designs.

6 Conclusions

In this paper, six adder designs are studied, and
their influence on asynchronous system performance
are compared. The results indicate that most hy-
brid adders (in addition to ripple-carry adders} have
variable (data-dependent) delays and this variability
can be exploited through use of an asynchronous de-
sign. Simulation results show that a 64-bit carry-select
adder runs faster than its ripple-carry counterpart by
43%. When a complete system is considered, the sys-
tems that employ carry-select adders are 23% faster
than their ripple-carry counterparts. It is also noted
that an adder design which is well suited to the clocked
environment (CSA) may not be a good option in the
asynchronous environment. This is due to the fact
that its worst-case and average-case delays are about
the same with no gain in size.

Research is currently being pursued to refine the
above models and analysis. Asynchronous adders are
compared by running real code through the simula-
tors. Other functions are being examined where the
worst-case/average ratios are significant and operand-
dependent execution variations exist. In these sit-
uations asynchronous designs may be advantageous.
Furthermore, since most existing functional designs
are based on minimizing the worst-case delays, func-
tion design techniques which attempt to minimize av-
erage delays need to be investigated.
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