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Abstract

One view of computational learning theory is that of a learner acquiring the
knowledge of a teacher. We introduce a formal model of learning capturing the
idea that teachers may have gaps in their knowledge. The goal of the learner
is still to acquire the knowledge of the teacher, but now the learner must also
identify the gaps. This is the notion of learning from a consistently ignorant
teacher. We consider the impact of knowledge gaps on learning, for example,
monotone DNF and d-dimensional boxes, and show that learning is still possible.
Negatively, we show that knowledge gaps make learning conjunctions of Horn
clauses as hard as learning DNF. We also present general results describing when
known learning algorithms can be used to obtain learning algorithms using a
consistently ignorant teacher.

“Consistency requires you to be as ignorant today as you were a year ago.”
~ Bernard Berenson (1865-1959)

*Supported in part by NSF Grant IRI-9014840, and by NASA grant NAG 1-613.
TSupported in part by NSF Grant CCR-9110108 and an NSF NYI Grant CCR-9357707.
Supported in part by NSF Grant IRI-9014840.
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1 Introduction

Most of the theoretical work in concept learning models the interaction between the
learner and the environment by an omniscient oracle (or teacher) that classifies all ob-
jects as positive or negative instances of the concept to be learned. Thus, it is assumed
that there is a well-defined border separating positive instances from negative ones. In
practice, though, classification is often unclear. For example, an algorithm designed
to read handwritten cheques will likely encounter many handwritten characters that
look somewhat like a “4”, and somewhat like a “9”. In such cases, where even an
expert does not have the knowledge to classify all objects, determining which objects
are unclassifiable seems at least as important as determining the classifications of ob-
jects which are classifiable. From the learner’s perspective, the regions of the instance
space that defy classification create a blurry border between the positive and negative
examples that the learner must determine.

The main contributions of this paper involve (1) development of a new learning
model for learning such “blurry” concepts, and alternate characterizations of this
model; (2) general techniques for obtaining positive results in the new model and
applications to specific problems; (3) a specific negative result for the model.

The Model of a Consistently Ignorant Teacher: We introduce a formal
learning model in which a learner interacts with a teacher who has incomplete infor-
mation about the target function due to intrinsic uncertainty or due to gaps in the
teacher’s knowledge. The key requirement we place on the teacher is that all examples
labeled with “?” (indicating unknown classification) are consistent with the teacher’s
background knowledge about the class to which the unknown function belongs. In par-
ticular, the classification of any instance labeled with “?” should not be determinable
from the positive and negative instances, and knowledge of the concept class. {(Thus
the teacher is “consistently ignorant”.) The goal of the learner will be to learn a good
approximation to the knowledge of the teacher. Namely, the learner must construct a
ternary function (i.e. with values {0,1,7}) that, with high probability, classifies most
randomly drawn instances exactly as the teacher does.

Let C be a concept class with each concept ¢ € C defined over example space X'. A

blurry ternary concept f; is created by taking any f from the base class C and changing



a set of instances ¢ C & from their current value to “?” indicating that the teacher
does not know their classifications. Further, we require that this be consistent with the
knowledge that f was chosen from C: If every concept f € C consistent with the labels
of examples from X — @, labels ¢ as positive (respectively, negative), then f; cannot

label ¢ as “?”. More formally:
Definition 1 Let fo : X — {0,1,7}, and let
P={z| fi(z)=1}L N = {z | f2(z) = 0},

and Q = {z | f2(z) = 7).
Then f- is a blurry concept for C if for every q € @), there exist functions fo and f1 in
C such that:

1. forallz € P, fo(z) = fi(z) =1,
2. for all x € N, fo(z) = fi(z) = 0, and

3. folg) =0+#1= fi(g).
We define the blurry concept class

C: = {f2 | f» is a blurry concept for C}

Thus for any concept class C, the class C; contains exactly those blurry concepts
that can be generated from some f € C. We assume that random examples are chosen
(by nature) from an unknown, arbitrary, distribution D, and are then given a label
from {0,1, 7} by the teacher, and presented to the learner. We say that the learner has
successfully learned f; € C; if with probability at least 1 — §, the (ternary) hypothesis
output by the learner has probability at most € of disagreeing with f» on a randomly
drawn example from D each labeled +, —, or 7. If such a polynomial-time algorithm
exists for learning any f7 in C», we say that the blurry class C; is PAC or PAC-MEMB!

1We assume familiarity with the basic definitions of PAC learning, exact learning with equivalence
queries, and each of these models enhanced with membership queries. By PAC-MEMB, we mean the
PAC learning model with membership queries. While our results hold in this modified PAC model
(examples now labeled “+”,“—”, and “?”), with the exception of the material on learning unions
of boxes, our results extend easily to a suitably modified exact model. When we say “learnable”
we assume mermbership queries are allowed; it is easily shown that the problems we attack are hard
without membership queries (where “hard” means at least as hard as standard open problems (e.g.,
DNF) in learning theory).



learnable, or equivalently, that the class C is learnable from a consistently ignorant
teacher. Finally, note that one way a hypothesis A might err is if f:(z) = ? and
h(z) # 7. Thus, “?” does not mean “don’t care”.

An Alternate Formulation of Our Model: To understand some complexity
issues involved in learning from consistently ignorant teachers, we consider when C is
the class of pure conjunctive concepts (monomials)—each concept is a simple conjunc-
tion of variables or their negations. Let P, @, and N be the set of examples labeled
“7 %77, and “—”, respectively, for some blurry monomial. In this case, it is straight-
forward to show thal P must be represenlable as a (nonblurry) monomial rn. Further,
it is not difficult to show that P U@ can be represented by a unate? DNF that contains
only those literals appearing in m (provided P is not empty). These observations are
sufficient to construct a PAC-MEMB algorithm to learn the class of blurry monomials
(for which P is nonempty): run a known algorithm for learning (nonblurry) monomi-
als [41] to learn the set P of positive examples, and at the same time run a known
learning algorithm for (nonblurry) unate DNF [8] to learn the set P UQ of nonnegative
examples. Then @ and N can be easily determined from knowledge of P and P U Q.
(See Corollary 5 for more details.)

Is this an efficient learning algorithm? It depends on our choice of complexity
parameters. As we observed, the learning problem is not that of determining some
underlying boolean concept, but that of determining the ternary blurry concept, which
requires learning both P and P U Q. A particularly nasty choice of “?” instances can
result in a unate DNF describing the set PU Q) that has a number of terms exponential
in n (hence, exponential in the size of any monomial from C). So an appropriate
measure, in the case of blurry monomials, might be the number of boolean monomials
needed to describe PUQ disjunctively. In fact, for any blurry concept, we can represent
the set PUQ, as well as the set P alone, by reformulating the notion of a blurry concept
as that of an agreement of base concepts. Below, we define the complexity of a blurry
concept in terms of the complexity of the boolean concepts forming the corresponding

agreement.

Definition 2 Let F be a finite set of boolean functions. The function Agreep is a

2A unate formula is one in which no variable appears both negated and unnegated.
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ternary function whose classification on instance z € X is given by
1 i f(z)=1 foreach f € F,
Agreep(z) = { 0 if f(z) =0 for each f € F,

?  otherwise.

The following lemma states that the problem of learning agreements of concepts
from C is equivalent to learning C from a consistently ignorant teacher, or equiva-
lently, learning the blurry class C;. The notion of an agreement of base concepts has

independent interest, as it models a type of unanimous vote of independent agents.
Lemma 1 For a class C of boolean concepts, the blurry class C; = {Agreer. | F C C}.

Proof Sketch: It can be shown that if f» € C; then fr = Agreer where for each z for
which f(z) = 7, F contains the pair of functions fy and f; as described in Definition 1.
Containment in the other direction can also be shown. a

Hence, the problem of learning blurry concepts C» generated from a base class C is
equivalent to the problem of learning the agreements of sets of concepts from the base
class C, (and equivalently, learning C from a consistently ignorant teacher). Using this
correspondence, we obtain a complexity measure for the size of f;. First, define the
representation size of a finite subset of concepts F to be 3;cr|f|. Now define the size
of f» € C; (denoted by |f2|) to be the minimum, over all F' C C for which Agreep = f,
of the representation size of F.

General techniques: We show how known efficient PAC-learning algorithms for
a concept class C can be used to build an efficient algorithm for learning the agreement
of nested concepts from C. For the problem of learning the agreement of concepts
from C that are not necessarily nested, we show that if the intersection and union of
arbitrarily many concepts from C is learnable, then C is learnable from a consistently
ignorant teacher (that is, the blurry class C; is learnable).

Positive results: We apply the above techniques to show that blurry monomials
(hence, agreements of polynomially many monomials) are learnable if there is at least
one positive example. As seen above, this is closer in spirit to learning (nonblurry)
unate DNF than that of learning (nonblurry) monomials. The techniques are also
applied to show that for each class C € {monotone DNF (CNF) formulas, k-term DNF
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(k-clause CNF) formulas, decision trees, DFAs}, those blurry concepts representable
by an agreement of at most a constant number of elements of C, are learnable.

We also give an algorithm for learning blurry boxes in d-dimensional Euclidean
space. By our characterization, learning blurry boxes is the same as learning agree-
ments of (standard) boxes, which can be expressed as one of learning unions and
intersections of standard boxes. Thus, the problem of learning the agreement of blurry
boxes is a specialization of the widely studied problem of learning the s-fold union of
boxes in £¢. Within the PAC model, Long and Warmuth [35] have given an algorithm
to learn this class that runs in time polynomial in d for s constant, and Blumer et
al. [15] have given an algorithm for this class that runs in time polynomial in s for
d constant. Recently, Goldberg, Goldman and Mathias [24] have given an efficient
algorithm to exactly learn the union of discretized boxes over the domain {1,...,n}¢
with membership and equivalence queries when either d or s are constant. In addition,
there has been work on learning unions of boxes in the discretized plane (i.e. when
d =2) [21, 19, 20]. (See Section 3.3 for a brief discussion of such work.)

Our algorithm to PAC-MEMB learn the agreement of s boxes in E* runs in time
polynomial in 1/¢, 1/6, s, and 9¢. Consequently, the algorithm runs in polynomial time
without demanding that one of s and d be constant: s can be arbitrary, and d can be
as large as O(log s). (There is an additional assumption required to prove the result:
that the set of positive examples is samplable.)

Negative results: To illustrate the limits of our approaches we show that learning
the agreement of an arbitrary number of Horn sentences is as hard as learning DNF.
Thus learning propositional Horn sentences, while learnable from omniscient teachers,

is as hard as learning DNF from consistently ignorant teachers.

2 Related Work

Most previous research in concept learning assumes examples are labeled either positive
or negative. In these situations the border between the positive and negative examples
is well defined. There has been work addressing the issue of mislabeled training exam-

ples [11, 33, 40, 30] and some addressing the issue of noise in the attributes [39, 26, 34].



In these situations, the border between the positive and negative examples may ap-
pear blurry to the learner, but this is just the result of the noise process that has been
applied to the properly labeled example. There has also been some work considering
learning from noisy membership queries [25, 38].

Angluin and Slonim [12] introduced a model of incomplete membership queries in
which each membership query is answered “don’t know” with a given probability. Fur-
thermore, this information is persistent—repeatedly making a query that was answered
“don’t know” always results in a “don’t know” answer. As in their work, one of our
goals is to model the situation in which the teacher responding to the learner’s queries
is not omniscient. Observe, that in Angluin and Slonim’s model since the teacher
is randomly fallible, there is no guarantee that all of the teacher’s knowledge about
the target concept is used in answering queries. For example, it is possible that their
teacher knows that a french poodle is a poodle and that poodles are mammals, but
responds with “don’t know” when asked if a french poodle is a mammal.3

In the context of monotone DNF, our consistency requirement manifests itself as
follows: The teacher should know that adding positive attributes to an already positive
example yields a positive example. (Dually for negative examples.) Thus, in the
standard boolean lattice defined over variable assignments, all positive instances are
above all unknown instances, which, in turn, are above all negative instances. In
Angluin and Slonim’s algorithm for learning monotone DNF, if the teacher replies
“don’t know” to a membership query then the learner samples below z in the boolean
lattice for some (known) positive example y, implying that z is a positive example.
If none are found, the learner concludes with high probability that z is a negative
example. Thus, the teacher’s ignorance is not consistent with the knowledge that the
target function is monotone; the learner can determine the underlying boolean function
by deducing what the teacher does not (but should) know.

More recent investigations have considered learning concept classes when mem-

bership query responses are incorrect (as opposed to “don’t know™): Angluin and

3In our view, the notion of an incomplete membership oracle seems to better model noise than
it models incomplete knowledge. Indeed, they note that their algorithm for learning monotone DNF
with an incomplete membership oracle can be used to learn monotone DNF with random 1 — 0
one-sided errors.



Krikis [10], and Angluin [6] consider learning with a bounded number of such erroneous
responses, and Frazier and Pitt [23] consider learning when such incorrect responses
occur randomly with probability at most .

In other related work, Kearns and Schapire [32] generalized the PAC setting to
non-binary values using Haussler’s framework [28]. They define a p-concept in which
each instance 2 € X’ has some probability p{z) of being classified as positive. In their
model, the goal of the learner is to make optimal predictions, or more commonly,
to accurately predict p(z) for all x € A'. One way to compare our model to theirs
is to consider blurry concepts as p-concepts, but the learner’s goal is only that of
determining whether p(z) = 0, p(z) = 1, or 0 < p(z) < 1. (If a written numeral
is sometimes identified as “4” and sometimes as “9”, the learner just wants to know
this—it does not need to determine what percentage of the population calls the numeral

each value.)

3 Positive Results for Learning Agreements

We show that efficient PAC and PAC-MEMB learning algorithms can be designed to
learn from consistently ignorant teachers. We first consider the problem of learning the
agreement of a pair of nested concepts. We show that if both concepts are chosen from
classes for which efficient learning algorithms exist, then we can use these algorithms
to obtain an efficient algorithm for learning the agreement of the functions. We then
present a general result addressing how known algorithms for learning from omniscient
teachers can be applied to learn from consistently ignorant teachers even when the base

functions are not nested.

3.1 Learning Agreements of Nested Concepts

Recall that a concept f € C is simply the subset of instances from X that f classifies
as positive. Thus for two concepts f; and f;, we write fi C fo if the set of positive
examples of f; is a subset of the positive examples of fo. Given a set of concepts F' =
{f1,---, fr} we say that these concepts are nested if f; C fo C --- C fi. Observe that

Agreery, 4= Agreer; 5, and thus, without loss of generality, we consider learning



the agreement, Agreegy, (1, of two nested functions f, and f; (s and ¢ for “specific”
and “general”). Suppose these are chosen, respectively, from known polynomial-time
learnable concept classes Cs and Cg. Then the learning algorithms for Cs and Cg can
be used to learn the following blurry concept class :

Nested:{Cs,Cq) =

{Agreey, 5,3 | fs €Cs, fy € Cgq,and f, € f,}.
(See Figure 1 for the algorithm.)

Theorem 2 IfCs and Cq are polynomially PAC-MEMB (respectively PAC) learnable
concept classes, then the class Nested:(Cs,Cq) is polynomially PAC-MEMB (respec-
tively PAC) learnable.

Proof Sketch: If the target is Agreey, ; 1 for f, in Cs and f; in Cg, note that a positive
(resp., negative) example of Agree(;, ;1 is classified as positive (resp., negative) by both
fs and f; and a “?” example is classified as negative by f, and positive by f,. Thus,
algorithm A (Figure 1) learns Agree;, .1 by running the learning algorithm for Cg
treating “?” as “—” to obtain hg, and running the algorithm for Cg treating “?” as
“+” to obtain kg, and outputs h = Agreey,_, 3 as the final hypothesis.

Since kg and hg both have error at most ¢/2 with probability at least 1 —§/2, it is
easily shown that A has error at most € with probability at least 1 — §. Finally, since
Ag and Ag run in polynomial time, it follows that .4 runs in polynomial time. Note

that A only makes a membership query when either Ag or 4g does. |

3.2 A General Technique for Learning Agreements

We now show how an arbitrary agreement of concepts from a class C (and hence, an
arbitrary blurry concept f» from C»), can be represented, without significant increase
in size, as the agreement of two nested concepts, one of which is an intersection of
concepts from C, and the other a union of concepts from C.# Thus when unions

and intersections of concepts from C are learnable, the blurry class C7 is learnable.

4There is an interesting relationship between the definition of agreements and Mitchell’s definition
of a version space [36] that is discussed in a more complete version of this paper.



B N

Learn-Agreement-Nested-Concepts(F, €, §)

Let F := {fs, f;} such that f, C f,.

Let Ag be the PAC-MEMB learning algorithm for Cs.
Let Ag be the PAC-MEMB learning algorithm for Cg.
Simulate Ag (with parameters ¢/2 and §/2) as follows:

(a) If As requests an example, then draw a random labeled example (z, f(z))
from D.

(b) If As performs a membership query on z, then perform a membership
query on z to obtain f(z).

(c) If f(z) =1 then give (z,1) to Ag,
(d) Else give (z,0) to As.
Let kg be the hypothesis output by As.
Simulate Ag (with parameters €/2 and §/2) as follows:
(a) If Ag requests an example, then draw a random labeled example (z, f(z))

from D.

(b) If A performs a membership query on z, then perform a membership
query on z to obtain f(z).

(¢) If f(z) =1or f(z) = “?" then give (z,1) to Ag,
(d) Else give (z,0) to Ag.

Let kg be the hypothesis output by Ag.

Return the hypothesis Agreeg, .-

Figure 1: A method for learning the agreement of nested concepts
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We then apply these techniques to show that the agreement of monomials (with some
restrictions) is learnable and for each class C € {monotone DNF (CNF) formulas,
k-term DNF (k-clause CNF) formulas, decision trees, DFAs}, those blurry concepts

representable by an agreement of at most a constant number of elements of C, are

learnable.

We begin with the following definition.

Definition 3 Let F' be a finite set of boolean functions. The function Uniong is a

boolean function whose classification of instance z is given by

1 if f(z)=1 for some f € F

0 otherwise

Unionp(z) = {

Likewise, the function Intersectr is a boolean function whose classification of instance

z is given by
1 if f(x)=1 for each f € F

Intersectp(z) =
0 otherwise

To discuss the efficiency of algorithms to learn unions or intersections of concepts
from a given class, we must provide a size measure for each concept in the class. As
we defined |Agreep|, we define |[Unionp| to be the minimum, taken over all ¥ C C for
which Uniongs = Uniong, of the representation size of F'. (Similarly for |Intersectp|.)
Each concept Agreep in the class C; is equivalent to the agreement of two concepts —
Unionp and Intersecty, and the size of this representation is at most twice the size of

the original representation.

Lemma 3 Let F be a finite subset of concept class C. Then IAgree{Intersectp,Um’onF}l
< 2. |Agreeg], and

Agreep = Agme{fntersectp, Uniong}-

Proof: The assertion about size holds by definition since a function f in F appears

once in Agreeg and twice in Agree{Intersectp,UnionF}‘
To see that the functions are equivalent, note that for any example z, Agree (Intersect 7, Unionz}

labels x positive if and only if Intersecty labels = positive since Intersecty is more spe-

cific than Uniong(z). So the function Agfee{lntersectp,UnionF} labels z positive iff

11



every f in F labels = positive. But, by definition, this is when Agreey labels z pos-
itive. An analogous argument shows that the two functions are identical when z is
a negative example. Finally, since Agreep and Agree{Intersectp,UnionF} are equal on
positive and negative examples, they are also equal on “?” examples. O

We now use this alternate characterization to obtain an efficient algorithm for learn-
ing from a consistently ignorant teacher when finite sets of unions and intersections
from the given class are known to be learnable. To aid the exposition, we introduce

the notation Cn and C:
Cn = {Intersectr : F' a finite subset of C} and

Cu = {Unionr : F' a finite subset of C}.

Theorem 4 Let C be a concept class for which Cn and Cy are PAC-MEMB (respec-
tively PAC) learnable in polynomial time. Then Cy is PAC-MEMB (respectively PAC)

learnable in polynomial time.

Proof Sketch: For any collection F' of concepts, note that Intersecty C Uniong, and
thus by Theorem 2, if Cq and Cy are polynomially PAC-MEMB learnable then so is
{Agree (Intersecty,Union,} | £ & C}. Combining this with Lemma 3 we get the desired
result. O

Theorems 2 and 4 can be strengthened to hold in a suitably modified exact learning
model (with membership queries).. The following corollary shows that blurry mono-

mials with nonempty intersection is learnable.

Corollary 5 Let C be the class of monomials, and let C} = {c: c € Cr, 3z ¢(z) = 1}.
Then CF is polynomially PAC-MEMB learnable.

Proof: The class Cn is learnable since C is closed under intersection and known fo
be learnable {41]. If F' C C is a subset for which there is some example z such that
Intersectp(x) = 1, then « satisfies every monomial in F' and so it cannot be the case
that some variable appears both negated and unnegated in F'. Thus Unionp is a unate
DNF formula, that is efficiently PAC-MEMB learnable [8]. It is also easily verified that

for any finite F C C, the size of the representation of Intersectz as a monomial and

12



the size of the representation of Uniony as a unate DNF formula are each O(3;er |f]).
Thus by Theorem 4, C is learnable. O

In the above corollary, had we not discarded those blurry concepts of C» with no
positive examples, our proof would fail because Uniong is not necessarily unate. Thus,
Uniong would be arbitrary DNF formulas (and the learnability of this class in the PAC-
MEMB model is open). Also observe the corollary applies to the dual of monomials
(i.e. 1-DNF) when we discard blurry concepts with no negative examples.

We now consider learning agreements of at most a constant number k of concepts
from a class C. Let Ca(k) = {Agreep | F C C,|F| < k}. Applying the known
learning results for monotone DNF [41] and DNF formulas with a constant number
of terms [4, 14] and the known learning results for decision trees [16] and DFAs [4],
we obtain the following corollary. (The corollary follows because the intersection and
union of a constant number of concepts from each of the preceding classes can be
represented by a single concept in the corresponding class that is at most polynomially

larger.)

Corollary 6 Let C be the class of monotone DNF (f-term DNF, decision trees, DFAs)
formulas. Then for each constant k, C:(k) is polynomially PAC-MEMB learnable. The
dual results for monotone CNF formulas and £-clause CNF formulas also hold. For

decision trees, the hypothesis space is conjunctions of unate DNF.

3.3 Learning Unions of Boxes in Euclidean Space

In this section we give an algorithm to learn the agreement of a set of s axis-parallel
boxes (henceforth referred to as boxes) in d-dimensional Euclidean space (E%) when
the set of boxes have a samplable intersection. It is easy to show that this class is a
generalization of unate DNF formulas, and a specialization of the class of unions of
boxes in E¢.

Blumer et al. [15] present an algorithm to PAC-learn an s-fold union of boxes
in B° by drawing a sufficiently large sample of size m = poly (%,log 3,8, d), and then
performing a greedy covering over the at most ("2—’3) % rectangles defined by the sample.

Thus for d constant this algorithm runs in polynomial time. Long and Warmuth [35]
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present an algorithm to PAC-learn this same class by again drawing a sufficiently large
sample and constructing a hypothesis consistent with the sample that consists of at
most $(2d)* boxes. Thus both the time and sample complexity of their algorithm
depend polynomially on (24)*,1, and log ;. So for s constant this yields an efficient
PAC algorithm.

There has also been work on learning unions of s boxes in the discretized space
{1,...,n}%. Most of this work has focused on the special case in which d = 2. Chen
and Maass [21] gave an algorithm to learn the union of two axis-parallel rectangles in
the discretized space {1,...,n} x {1,...,m} in time polynomial in logn and logm,
where one rectangle has a corner in the top left corner and the other has a corner
in the bottom right corner. While learning the union of these two rectangles within
these time bounds was difficult, learning the agreement of the rectangles is quite simple
since the learner needs only learn the intersection of the two rectangles which is easily
achieved.

Chen [19] gave an algorithm that uses O(log®n) equivalence queries to learn the
union of two rectangles in the discretized plane (i.e. {1,...,n}%). Also, Chen and
Homer [20] gave an algorithm to learn the union of s rectangles in the discretized plane
using O(s®log n) membership and equivalence queries and O(s°logn) time.

More recently, Goldberg, Goldman and Mathias [24] have presented two algorithms
to learn the union of s discretized boxes in {1,...,n}%. The first makes at most sd 4 1
equivalence queries and uses O((4s)? + sdlogn) time and membership queries. Their
second algorithm uses time and queries (both equivalence and membership) that are
both polynomial in logn and s for d constant and polynomial in logn and d for s
constant. Thus their algorithm uses polynomial computation time and queries when
either s or d are constant.

The algorithm we present here PAC-MEMB learns the agreement of s boxes in E¢
runs in time polynomial in 1/¢, 1/6, s, and 9¢. Thus, the algorithm runs in polynomial
time without demanding that one of s and d be constant (e.g. d can be Ologs)).
A key algorithm we use in learning the agreement of boxes is an algorithm to PAC-
MEMB learn the union of a set of boxes that all lie in the same quadrant of E?, and

for which the intersection region contains the origin. We call each box in such a set an
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origin-incident box. Our algorithm to learn the union of s origin-incident boxes runs
in time polynomial in both d and s.

To aid in learning the agreement of boxes, we also use the known algorithm for
computing the intersection of boxes [15]. Namely, we first learn an approximation
for the intersection region by applying the standard algorithm with all “?” examples
treated as negative. Since the boxes have a non-empty intersection, we can subdivide
E? into at most 3% sub-regions based on this common intersection. Each sub-region
can be translated and relabeled so that we can apply our algorithm for learning the
union of origin-incident boxes. In the worst case, some piece of each of the s boxes
will lie in each of the 3¢ regions of the sub-divided problem forcing us to learn O(s3%)
boxes.

It is important to note that in obtaining our algorithm to learn the agreement of
boxes we take advantage of our ability to efficiently compute the intersection region
and then use this information to aid in more efficiently learning the union of the boxes.
It is uncommon for both intersections and unions of concepts to be learnable, and thus,
the possibility that information from one could be used to help learn the other is of

particular interest.

3.3.1 Learning the Union of Origin-incident Boxes

We present an algorithm to learn the union of s origin-incident (nonblurry) boxes in
E? where all of the boxes are in the same quadrant (for simplicity we only present the
algorithm, Figure 2, for the positive quadrant). We refer to the class of origin-incident
boxes in the positive quadrant as BPQ).

We define the upper corner of a box b € BPQ to be the corner of the box diametri-
cally opposed to the origin. Since any box in BPQ is uniquely identified by its upper
corner, we denote an origin-incident box by box(p) where p is its upper corner. We
define mazCorner to be a function that takes a set of points in the positive quadrant
of E? and returns the upper corner of the smallest box in BPQ that contains every

point in the set.

Theorem 7 Let BPQ(s) be the union of at most s origin incident bozes in the pos-
itive quadrant. The class BPQ,(s) is PAC-MEMB learnable with time and sample
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LearnBPQ(S)

/¥ S is a labeled sample. */
/* This algorithm will, with probability at least 1 — §, output a hypothesis with

error at most €
given that |S| > max{2log 2, 18dslozds 1o¢ 2} %/

1. h:= /* The set of boxes in the hypothesis; represented as upper corners */
2. P:={z:z € S,z is a positive example}
3. while there exists an example z € P

(a) P:=P— {z}

(b) for each y € P if member{maxCorner{z,y}) = “yes” then
i. z := maxCorner{z,y}
ii. P:=P—{y}

(c) add box(z) to A

4. return A /* That is, output the union of boxes in A*/

Figure 2: Algorithm to learn a union of origin-incident boxes.
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complezity polynomial in s, d, 1/¢, 1/6.
Proof: To prove the theorem, we show that

1. Algorithm LearnBPQ (Figure 2), takes as input a sample S, runs in time poly-
nomial in §, and outputs a union of at most s origin-incident boxes (that is, an

element of BPQ,(s)) that is consistent with the sample.

2. The VC-dimension® of BPQ,,(s) grows polynomially with s and d (namely, it is
at most 2dslog 3s).

It then follows from Theorem 2.1 of Blumer et al. [15] that if LearnBPQ is given a
sample of cardinality at least m = max {% log 2, m‘-‘fl—:&@ﬂ log l—f}, then with probability
at least 1 — ¢, it will output a hypothesis k with error at most .

To see that (2) is true, note that the VC-dimension of BPQ is at most d (this is easily
shown), and by Lemma 3.2.3 of Blumer et al. [15], the VC-dimension of BPQ,(s) is at
most 2dslog(3s). To complete the proof, it remains to be shown that (1) holds. We first
show that LearnBP(Q produces a hypothesis that is consistent with the sample S. The
hypothesis produced is consistent with the positive examples of S since the algorithm
does not terminate until all positive examples of S have been removed from P and no
point is removed unless the box about to be placed in A contains it. Furthermore, if
box(x) was placed in &, then z was a positive example (either it was in P or verified to
be positive with the membership query member(z)). Since z is a positive example,
box(z) is contained within some box of the target. Thus no negative points (even those
not in S) can be contained in any of the boxes placed in A.

We now prove the hypothesis A output by LearnBP(Q) contains at most s boxes.
Suppose h contained more than s boxes. Since each box of % is contained within a
box of the target, it follows that there must be at least two boxes (say b; and b;) in
h that are contained within the same box (say b}) of the target. Assume, without
loss of generality, that b; was placed in A first. Let p; be the point from P selected
in step 3 during the iteration of the while loop in which b; was added to A. Thus

p; must be contained within b;. Likewise, let p; be the point from P selected during

3The VC-dimension is a combinatorial parameter of a concept class that directly relates to the
number of examples necessary (and sufficient) for sufficient generalization [15].
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the iteration of the while loop in which b; was added to h. (So p; is in b;.) Since
p; € P after b; was placed in h, a membership query must have been performed on
maxCorner{p}, p;}, where box(p}) contains p;. Furthermore, since p; was not removed
during the construction of b, it follows that maxCorner{p}, p;} is a negative example.
Since p; is contained within box(p}) it must be that maxCorner{p;, p; } is also a negative
example. Recall that the box b} of the target contains b; and b; and thus b} contains
p; and p;. However, this contradicts the fact that maxCorner{p;,p;} is a negative
example. Thus & contains at most s boxes.

Finally, Learn BP(} runs in polynomial time, since there are at most s iterations of
the while loop, each taking O(|S[) time. This completes the proof of (1) above, and

hence of the theorem. O

3.3.2 Learning the Agreement of Boxes with Samplable Intersection

We now give an algorithm to learn the agreement of s boxes in E? (hence, an algorithm
to learn boxes from a consistently ignorant teacher) when the intersection region is
samplable. Our algorithm, Figure 7, has polynomial time and sample complexity in
both d and s when d = O(log s). The intuition behind our algorithm lies in the way
in which the non-empty intersection of a set of boxes can be used to partition E¢ into
3¢ sub-regions. Let B be the set of boxes for which we are computing the agreement.
Figure 3 illustrates the effect of this partitioning on a typical box b € B. The large,
transparent box is b, and the solidly shaded box by in the center is the intersection
of all boxes in B (and thus contained in ). By infinitely extending the faces of by
we decompose b into a set of sub-boxes that are also axis-parallel. In general, there
are 3¢ sub-regions in E?¢ as seen informally by first observing that the bounds of the
intersection region are d pairs of parallel hyperplanes, one pair of parallel hyperplanes
for each dimension. Thus, in each dimension the sub-region lies either above both of
the hyperplanes, lies between the pair, or lies beneath both of the hyperplanes.

Sub-regions and Sub-boxes: A useful way to categorize these 3% sub-regions is
by the dimension of the boundaries they share with the intersection region.

Since, by definition, the intersection region is contained in every box in B, the man-

ner in which these boxes can overlap in a sub-region is restricted based on the dimension
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Figure 3: Decomposition of an axis-parallel box with respect to the intersection box
br. (Note that only some of the 27 sub-regions induced by b; are shaded.)

of the boundary the sub-region shares with the intersection region. Figure 4 illustrates
the constraints imposed by the dimension of the shared boundary—the higher the di-
mension of the shared boundary, the greater the number of dimensions constrained by
the intersection.

To eliminate the dimensions of a sub-region that are already constrained by the
intersection we introduce the following notation. Let p = (z1,z,,...,24) be a point
in E?, and let I be a set of indices {i1,13,...,ix} such that 1 <7; <43 < ... < iy <
d. The point m;(p) = {(zi,,%i,,...,%i,) in EF is the projection of p with respect to
I. In general, if a sub-region shares a k-dimensional boundary with a d-dimensional
intersection region, then for any sub-box in that sub-region we need only determine the
sub-box’s extent in the remaining d -k dimensions. Then boxes in the same sub-region
can be translated to all be origin-incident boxes in a d — k dimensional space for which
we can apply LearnBPQ.

Removing Intersection Box Estimation Error:

There remains a subtle point that we must address. So far we have assumed that
we know the intersection region ezactly. However, in reality, we apply a known PAC-
algorithm [15] to obtain a good approximation of the intersection region; the approx-
imation box is contained in the intersection region. To obtain an approximation with

error at most € with probability at least 1 — §, this algorithm draws a sample of size
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Figure 5: An example assigned to the wrong sub-region.
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max (f log 2, 3% ]og 173) and returns the smallest box that is consistent with the sam-
ple. Let IBox(S) be a procedure that takes a sample S and returns the smallest box
consistent with 5. To apply this algorithm to learn the intersection region of the boxes

in our model, we simply modify the sample by changing all “?”

examples to negative
examples.

The difficulty here is that the sub-region in which a point p lies may differ when
subdividing based on the true intersection region versus sub-dividing based on the
underestimate for the intersection region. Figure 5 illustrates how this may happen.
A* is the true intersection region and A is an underestimate of A*; the point p lies
between the vertical boundaries of A*, but lies to the right of the vertical boundaries

of A. We handle this by discretizing E? with an irregular Cartesian grid.
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Expand(A,S)

/* A is a non-empty underestimate of the true intersection region. */
/* S is a set of labeled example points. */

1. Let {ai,a2,...,aq) be any point contained in A.
2. Fori:=1tod

(a) /* Use membership queries to obtain a lower bound for dimension 7. */
Set {; to be the smallest v such that v = m(p) for some p € § and
(a1,as,...,8i_1,9, @iz, ..., aq) is a positive example.

(b) /* Use membership queries to obtain an upper bound for dimension i. */
Set u; to be the largest v such that v = mg(p) for some p € S and
{a1,82,...,8i~1,V, Git1,...,aq) is a positive example.

3. Return the box A’ having opposing corners (£y,£,...,£3) and {uy,us,...,uq).

Figure 6: Algorithm to expand an underestimate A of the the true intersection region
A* to an estimate A’ such that for any point p in S, the sub-region generated by A’ in
which p lies is the same as the sub-region generated by A* in which p lies.

Suppose we have a collection S of points from E9. For each dimension i consider
the set S; = {m;3(p) : p € §}. Notice that S; is a collection of points from E' and
that if we consider labeling the coordinate axis for dimension i of E? using only values
found in S;, then we will have effectively discretized E¢ in such a way that every point
of the sample S lies at some intersection point of the resulting irregular Cartesian grid.
We then expand our estimate A of the true intersection region A* in such a way that
for every point p in S, the sub-region generated by A in which p lies and the sub-region
generated by A* in which p lies are the same. An algorithm to achieve this goal is

given in Figure 6. We state the following lemma without proof.

Lemma 8 Let A be a non-empty underestimate of the true intersection region A*. The
algorithm Expand(A, S) outputs a box A’ so that for all p € S, the sub-region generated
by A’ in which p lies and the sub-region generated by A* in which p lies are the same.

Furthermore, Expand runs in time polynomial in the size of S.

The Full Algorithm: Putting the pieces together we obtain our algorithm. We

first approximate the intersection region, and then refine this estimate using Expand.
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Next we apply a version of LearnBPQ) of suitable dimension to the points in the various
sub-regions generated by the intersection region. Finally, we combine the hypotheses
obtained from the calls to LearnBPQ) along with our estimate of the intersection region

to obtain our final hypothesis. Our algorithm is shown in Figure 7. We now state the

theorem.

Theorem 9 Let p* be the probability of receiving a positive example from the example
oracle. LearnBozresAgreement is a PAC-MEMB algorithm for learning the agreement
of s azis-parallel bozes in E? that has time complezity O(sm), and sample complezity

m— 0 (E;log%d- +§dslogslog§; +51Tlug}).

Proof Sketch: Note that by drawing a sample of size 1/pt1n2/6 with probability
at least 1 — §/2 we will obtain a positive example. It follows directly from Blumer et
al. [15] that our sample suffices to ensure that the hypothesis output by IBox(T') has
error at most €/3? with probability at least 1 — ;537. Applying Chernoff bounds [13] it
can be shown that for each of the 3¢ —1 remaining sub-regions, the sample is sufficiently
large so that with probability at least 1 — 5_%; there are enough points in any sub-region
of weight at least ¢/3¢ so that the hypothesis output by LearnBPQ for that region has
error at most ¢/3%. (Note that sub-regions with weight less than /3% can contribute
at most €/3% to the total error.) It follows from Lemma 8 that the total error of our
final hypothesis is the sum of the errors of the hypotheses we generate for each of the
3¢ regions. Thus the probability that the error of the final hypothesis is more than
3%.¢/3? = ¢is at most 3545 = §/2. Finally, it is easily shown that the time complexity

is polynomial in the sample complexity. O

4 A Negative Result

The class of conjunctions of Horn clauses (Horn sentences) is known to be PAC-MEMB-
learnable [7]. Furthermore, Frazier and Pitt [22] have shown that Horn sentences are
efficiently learnable using membership and equivalence queries from a different model
in which entailed examples are provided.

We provide evidence that this result cannot be strengthened to allow learning blurry
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LearnBoxesAgreement()

. gd 34 32.9%ds] -3¢
Draw a sample S of size m := max {% g2, ? g3s) | 123% L g l}_

If there are no positive examples halt and report failure.

Let T be set of examples obtained by relabeling all “?” examples of S as negative.
Set A := Expand(IBox(T, S)).

Let R be the set of sub-regions generated by A (excluding A itself).

O A

For each sub-region r € R

(a) Choose any point p, in the boundary shared by A and the sub-region r such
that p, is an extreme point in every dimension of the boundary. Let f. be the
coordinate transformation that translates f, to the origin of E,

(b) /* Identify dimensions for which we already know the extent of any sub-box
lying in r */
Let I, be the dimensions for which r is not bounded between a pair of parallel
hyperplane bounds for A.

(c) /* Project out those dimensions for any point of § that lies in r, relabel “?”

examples */

Let S, :={p' | p € r and p' = m1.(f+(p))}-
If p’ € S, is labeled with “?” then relabel it as positive.

(d) Set B, to be the set of boxes returned by LearnBPQ(S, ).

7. Given any unlabeled example z, predict

? if dr € R,b € B, such that z lies in sub-region r and 7 (f,(z)) lies in b

1 ifxliesin A
0 otherwise

Figure 7: The algorithm LearnBoxesAgreement for learning the agreement of a set of
axis-parallel boxes with samplable intersection region.
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Horn sentences, by showing that such an algorithm could be used to learn the class of
(nonblurry) DNF formulas.
Let DHF represent the class of disjunction of Horn Sentences. We now demonstrate

that the class of DNF formulas is a subset of the class of DHF formulas.

Claim 10 For any DNF formula f there exists a logically equivalent DHF formula f'
for which |f'| is polynomial in |f|.

Proof: Observe that every unnegated literal v is equivalent to the Horn clause (7' — v)
and every negated literal ¥ is equivalent to the Horn clause (v — F'). For example,
abe = (T — a)(b — F)(T — ¢). Thus we can represent each term by a Horn sentence
and take the disjunction of these Horn sentences to build a DHF formula that is logically
equivalent to the given DNF formula. Finally, observe that the size of the DHF formula,
created by this transformation has size polynomial in the DNF formula from which it
was created. |

Using the above observation, it is easily shown that the problem of learning an
agreement of Horn sentences (without any restrictions) is as hard as learning DNF.
However, as demonstrated by our algorithm to learn the agreement of boxes, if the
intersection of the Horn sentences in the agreement were non-empty then it may be
possible to use the intersection information to successfully learn the disjunction. We
claim the stronger negative result that learning the agreement of Horn sentences even

when the intersection region is samplable is as hard as learning the class of DNF

formulas.

Theorem 11 PAC-MEMB learning the agreement of Horn sentences for which the
intersection region is samplable is as hard as PAC-MEMB learning the class of DNF

formulas.

Proof: We prove this through a sequence of prediction preserving reductions [9, 37)].
Let DHF-1pos be the class of DHF formulas with exactly one positive example p that
satisfies every disjunct. Let agree-Horn-1pos be the agreement of Horn sentences that
have exactly one example in their intersection. Finally, let agree-Horn be the agreement

of Horn sentences with a samplable intersection region.
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Applying Claim 10, it follows that the learnability of DHF implies the learnability of
DNF. We now give a reduction showing that the learnability of DHF-1pos (even when
the learner knows the single positive example) implies the learnability of DHF. Let f
be the target of the DHF algorithm and f, be the target of the DHF-1pos algorithm.
Assume without loss of generality the positive example p known to the learner is the
zero vector. We construct f, from f by adding an extra literal v to the antecedent of
every Horn clause in f as well as adding the Horn sentence (v — F)(vy — F)--- (v, ~»
F). Note that the only example satisfying every disjunct of f, is the zero vector p.

The DHF algorithm A simulates the queries for the DHF-1pos algorithm A, as
follows: When A, requests an example, A obtains a random example z (that assigns
values only to vi,...,v,), generates the example 2’ that is like £ with the additional
variable v set to 1, and gives 2’ to Ay. When A, makes a membership query on z, if
v = ( then A returns “1” and if v = 1 then A respond with the result of a membership
query on the instance z’ that is just z with the setting for the variable v eliminated.
Once A, terminates with hypothesis k;, A is able to predict the label of any example,
z, by setting v to 1 and evaluating f on that example. Note that setting v to 1 causes
the added Horn sentence in f, to evaluate to 0 and the antecedents of all the remaining
Horn clauses to not be affected by z.

We now show that the learnability of agree-Horn-1pos implies the learnability of
DHF-1pos. It is at this point that we switch from learning a standard boolean concept
to learning an agreement. Note that the learning problem for the class DHF-1pos
assumes that the learner knows the single positive example that satisfies every disjunct
of the the target. Any algorithm for agree-Horn-1pos can be used to learn DHF-1pos
by simply providing the sole positive example of agree-Horn-1pos to DHF-1pos as p
and changing all “?” examples to positive examples.

Finally, we show that the learnability of agree-Horn implies the learnability of
agree-Horn-1pos. Recall that a PAC-MEMB learning algorithm must learn under any
distribution . When the agree-Horn algorithm requests a random example, the sim-
ulation algorithm flips a fair coin. With probability 1/2, the simulation provides the
agree-Horn algorithm with the single positive point in agree-Horn-1pos (and thus the

positive region is samplable). Otherwise, a random example drawn from the oracle
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is given to the agree-Horn algorithm. Clearly agree-Horn is a generalization of agree-
Horn-1pos and thus at least as hard.

Thus it follows from this sequence of reductions that PAC-MEMB learning the
agreement of Horn sentences with a samplable positive region is as hard as PAC-MEMB
learning the class of DNF formulas. |

Finally, we strengthen this result by using the hardness result of Angluin and
Kharitonov [9] which shows, under the assumption that public key encryption is se-

cure, membership queries do not help in learning DNF formulas (with an unbounded

number of terms).

Corollary 12 PAC-MEMB learning the agreement of Horn sentences for which the
intersection region is samplable is as hard as PAC-learning the class of DNF formulas

assuming that public key encryption is secure.
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