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ABSTRACT OF THE DISSERTATION

Examination of Molecular Recognition in Protein-Ligand Interactions: Prospective

Study and Methods Development

by

Yat T. Tang

Doctor of Philosophy in Computational Biology

Washington University in St. Louis, 2010

Research Advisor: Professor Garland R. Marshall

This dissertation is a compilation of two main projects that were investigated during

my thesis research. The first project was a prospective study which identified and

characterized drug-like inhibitors of a prototype of bacterial two-component signal

transduction response regulator using computational and experimental methods. The

second project was the development and validation of a scoring function, PHOENIX,

derived using high-resolution structures and calorimetry measurements to predict

binding affinities of protein-ligand interactions.

Collectively, my thesis research aimed to better understand the underlying driving

forces and principles which govern molecular recognition and molecular design. A

prospective study coupled computational predictions with experimental validation re-

sulted in the discovery of first-in-class inhibitors targeting a signal transduction mod-

ule important for bacterial virulence. Development and validation of the PHOENIX

scoring function for binding affinity prediction derived using high-resolution structures
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and calorimetry measurements should guide future molecular recognition studies and

endeavors in computer-aided molecular design.

To request for an electronic copy of this dissertation, please email the author (yattang

at gmail dot com).
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Chapter 1

Introduction

Protein-ligand interactions form the molecular basis of many ubiquitous and essential

biological functions. Molecular recognition of protein-ligand interactions governs the

affinity and specificity of complex formation and determines their biological functions.

Gaining a better qualitative and quantitative understanding of the physical forces

underlying protein-ligand interactions provides a rational guide to therapeutic design.

Understanding molecular recognition in protein-ligand interactions is, therefore, of

enormous scientific and practical importance.

Computer-aided molecular design (CAMD) utilizes the principles of molecular recog-

nition by taking advantage of increasing computational power to develop and apply

various theoretical models for molecular discovery and design. Through the years,

CAMD have demonstrated to be effective and instrumental in guiding drug discovery

and molecular recognition. Due to the resources, time, and other practical limitations

required for performing experimental methods, computational tools that are fast and

sacrifice some accuracy are valuable for molecular discovery and design.

Overview

This introductory chapter is organized as follows: the first section is an introduction

to molecular recognition in protein-ligand interactions, the second section introduces

computer-aided molecular design, the third section introduces molecular docking and

virtual screening, the fourth section introduces methods for binding affinity predic-

tion, the fifth section presents the resources available for the development and testing

of computational tools, the sixth section provides a synopsis of this thesis.

1



This thesis focuses on the examination of molecular recognition in protein-ligand

interactions through the development, validation, and application of molecular mod-

eling tools for lead discovery. A prospective study which resulted in the discovery of

first-in-class drug-like compounds inhibiting a prototype of bacterial two-component

signal transduction response regulators provided insight into the current limitations

of computational methods for design studies targeting protein-protein interactions.

Development and validation of the PHOENIX scoring function demonstrated that

models derived using high-resolution structures and calorimetry measurements may

be a key advance towards more accurate binding affinity predictions. These investiga-

tions provide a deeper understanding into the underlying principles governing molec-

ular recognition in protein-ligand interactions. A better understanding of molecular

recognition will guide the development of more accurate and applicable computational

methods for molecular design.

1.1 Molecular Recognition

Molecular recognition is a critical phenomenon observed in a variety of biological sys-

tems (e.g., protein-ligand, protein-protein, protein-DNA interactions) that generates

both specificity and duration of action. Molecular recognition is defined as the spe-

cific interaction between two or more molecules through non-covalent bonding, such

as electrostatics, hydrogen-bonding, and van der Waals forces (see Fig: 1.1).

Molecular recognition determines and regulates essential cellular interactions such as

the binding of hormones to receptors for signaling, protein-protein interactions to

detect and respond to various external stimuli as part of a signaling cascade, and

small-molecules reversibly binding and inhibiting the function of an enzyme or recep-

tor for therapeutic purposes. Understanding the principles of molecular recognition,

specifically the underlying physical forces which govern affinity and specificity, is

therefore of great fundamental significance in biomedical research.

This section will primarily discuss methods for estimating entropic changes in protein-

ligand interactions, since current molecular design methods implement a limited, at

best, representation of the entropic changes associated with complex formation. Lack

of accurate entropic descriptions may be the main culprit for inaccuracies in current

2



(a) (b) (c)

Figure 1.1: (a) Molecular electrostatic potential surfaces plotted on the van der
Waals’ surface of the molecule calculated by using AM1 of N-methyl acetamide.

Positive regions are shown in blue, negative regions are shown in red, and green is
neutral. Figure taken from Hunter. (Hunter, 2004) (b) Hydrogen-bonding between 2
molecules (shown in stick representation, oxygen in red, nitrogen in blue hydrogen

in white, carbon in gray, respectively). Hydrogen-bonds are formed when the
geometries (distance and angle) are ideal. (c) van der Waals interactions between

ligand (blue surface) and protein binding site (gray surface).

computer-aided, molecular design methodology. Methods to better capture entropic

changes should lead to more accurate methods for molecular design.

1.1.1 Driving Forces: Enthalpy and Entropy

Affinity and specificity of protein-ligand interactions is determined by the change in

binding free energy of the complex compared with other potential targets. Change in

binding free energy (∆G◦) is composed of two independent thermodynamics forces:

change in enthalpy (∆H◦) and change in entropy (∆S◦) written as,

∆G◦ = ∆H◦ − T∆S◦ (1.1)

In protein-ligand interactions, the change in enthalpy is primarily composed of van

der Waals interactions, electrostatics, and hydrogen bonding. Binding entropy is a

result of the changes in the disorder, or the degrees of freedom of the system. Change
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in entropy of the system (protein, ligand, and solvent) can be largely attributed to

the solvation and desolvation energies, hydrophobic features, and conformational and

configurational changes of both ligand and receptor.

Change in enthalpy (∆H) of protein-ligand interactions is derived primarily from

steric complementarity, electrostatics, and hydrogen-bonding. Forces contributing

to steric complementarity include van der Waals interactions, and hydrophobic and

hydrophilic surface complementarity. Electrostatic interactions arise from the dis-

tance pairing of complementary positively- and negatively-charged groups. Hydrogen-

bonding arise from the geometric constraints of hydrogen-bond donors and acceptors.

Change in entropy (∆S) in protein-ligand interactions is derived mostly from sol-

vation and desolvation, and the degrees of freedom of both the ligand and protein

during complex formation. Energy is expended (Fig: 1.2) during the process in which

the ligand is transferred from the hydrophilic environment of the solvent to the pre-

dominantly hydrophobic environment of the binding site.

Water molecules solvating the binding site cavity are typically entropically unfavor-

able due to the conformational constraints of the binding site surface, which hinders

its ability to form hydrogen bonds. Displacement of bound waters from the binding

site to the external environment leads to favorable entropic changes, a primary reason

why ligands are designed to be hydrophobic to complement a hydrophobic binding

site (and also favorable energetics for getting out of solvent). Ligands designed in

this manner generate favorable entropy upon complex formation, and thus enhances

its binding affinity.

Change in entropy of the ligand (∆Sligand) consists of conformational entropy (from

accessible rotamers), configurational entropy (translational and rotational), and vi-

brational entropy (minimal contributions and computationally expensive to model)

Chang (2007) as follows,

∆Sligand = ∆Sconformation + ∆Sconfigurational + ∆Svibrational. (1.2)
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Figure 1.2: Thermodynaic cycle of protein-ligand interactions. Solvation energy
changes for 4 states are estimated to derive the change in solvation energy in
protein-ligand interactions. (A) Change in solvation energy of the unbound

conformation ligand (yellow diamond) and bound protein-ligand complex (protein in
green circle). (B) Change in solvation energy of the bound conformation ligand (red
hexagon) and bound protein-ligand complex. (C) Change in solvation energy of the

unbound conformation ligand-protein complex and bound conformation
ligand-protein complex. (D) Change in solvation energy of the unbound

conformation ligand and bound conformation ligand.
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Change in entropy of the protein (∆Sprotein) is also composed of the same components

as the ones for the ligand. However, due to necessary simplification for model devel-

opment, change in entropy of the protein (∆Sprotein) is typically not considered, based

on the assumption that the change in entropy of the protein remains constant when

bound to different ligands (which may not necessarily be true due to entropy-entropy

compensation, see Section 1.1.4).

Change in enthalpy (∆H) and change in entropy (∆S) are intimately related in

their contributions to change in binding free energy. Based on experimental and

theoretical studies, enhancing entropy may lead to less favorable enthalpy, and vice

versa, therefore canceling out the improved thermodynamic force and resulting in a

minimal change in binding free energy. This observation, known as enthalpy-entropy

compensation, will be discussed in a greater detail in Section 1.1.3.

To improve ligand binding affinity, a common and effective molecular design strategy

to enhance the change in entropy, known as preorganization, is used to result in more

favorable overall change in entropy. Preorganization will be discussed in the following

section.

1.1.2 Entropic Enhancements Through Ligand Preorganiza-

tion

In molecular design, a common strategy to optimize ligand affinity is by preorga-

nization to lessen the entropic penalty for protein-ligand complex formation. Pre-

organization aims to prestabilize the bound conformation (e.g., reduce the number

of rotamers of the ligand) in order to decrease the entropic penalty upon complex

formation, resulting in an enhanced binding affinity.

A number of studies have demonstrated that rigidifying (decreasing the number of

rotamers to minimize flexibility) a ligand or peptide enhances its binding affinity (0.7-

1.6 kcal/mol for each restricted rotor) (Gerhard et al., 1993; Searle and Williams,

1992), at times by several orders of magnitude (Sawyer, presumably by decreasing

the entropic penalty upon ligand binding. (Fig: 1.3) (DeLorbe et al., 2009)
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Figure 1.3: Diagram of the energetic effects associated with ligand preorganization.
Cyclization of a flexible ligand limits the degrees of freedom and reduces the number

of conformational isomers in solution. The likelihood that of the to be in the
biologically active conformation in enhanced, resulting in a more favorable entropy

of binding, assuming that the flexible and rigid ligands are interacting with the
solvent and protein in the same manner. Figure taken from DeLorbe et al. (2009).
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Examples of preorganization strategies to enhance affinity include replacing rotat-

able bonds with ring structures to decrease flexibility, ’cyclizing’ of peptides, 1.3 and

’hydrocarbon-stapling’ of peptides 1.4. (Walensky et al., 2004)

Figure 1.4: Enhanced helicity, protease resistance, and serum stability of
hydrocarbon-stapled peptide representing the BH3 helix. Figure taken from

Walensky et al. (2004).

Recent calorimetric studies have suggested a paradox to this accepted notion. (Mar-

tin, 2007) What presumably was entropy optimization by ligand preorganization have

actually resulted in enthalpy optimization. DeLorbe et al. (2009) have shown that

cyclizing a series of pseudopeptides to enhance entropy upon binding to Grb2 SH2

domain resulted in enhancement of enthalpy instead. (DeLorbe et al., 2009) This may

be due to the fact that more direct polar contacts resulted from the ligand preorgani-

zation, which explains the enhanced relative enthalpy. Further calorimetric studies on

different series of ligands and targets will need to be performed to assess if this study

is an exception, or if the observed binding energetics (favorable binding enthalpy and

unfavorable binding entropy) occurs more commonly than expected.

Preorganization does not necessarily enhance changes in relative configurational en-

tropy (translational and rotational entropy) which has recently been demonstrated to

contribute a significant portion to relative binding entropy in theoretical studies on

HIV-1 protease inhibitors. (Chang, 2007)
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1.1.3 Enthalpy-Entropy Compensation

A phenomenon known as enthalpy-entropy compensation (EEC) hinders the effects of

optimizing each individual thermodynamic force for enhancing binding free energies.

EEC was first observed as a linear relationship between enthalpy and entropy changes

in biomolecular interactions. (Lumry and Rajender, 1970; Pimentel and McClennan,

1971; Linert and Jameson, 1989; Weber, 1995; Crunwald and Steel, 1995) (see Fig.

1.5)

Figure 1.5: Enthalpy-entropy compensation in protein-ligand interactions. The
dotted and dashed lines correspond the upper and lower limit of the dissociation

constant. The solid line corresponds to a linear fit of the data. Figure taken from Li
et al. (2008)

Searle and Williams discussed EEC in agonists versus antagonists; binding of agonists

are mostly enthalpic driven, binding of antagonists are mostly entropic driven. (Searle

and Williams, 1992)

With the increasing use of ITC in molecular design studies, relative binding enthalpy

and entropy can now be directly measured to elucidate the thermodynamic con-

tributions to binding free energies. (Ladbury et al., 2010) Using ITC to elucidate

thermodynamic contributions of HIV-1 protease and HMG-CoA reductase inhibitors,

the Freire group observed that first-in-class inhibitors were entropy optimized. En-

thalpy optimization was observed in enhancing binding affinity from first-in-class to

9



best-in-class. (See Fig: 1.6) These calorimetric studies illustrate the importance of

understanding independent entropic and enthalpic contributions for optimizing bind-

ing affinity in molecular design.

Figure 1.6: (A) Thermodynamic profile of the binding of a series of statins to
3-hydroxy-3-methylglutaryl coenzyme A (HMG-coA) reductase. the sum of the

change in enthalpy (∆H; green) and the change in entropy (∆S) multiplied by the
absolute temperature (T; red) gives the change in free energy (∆G; blue). Figure

taken from Ladbury et al. (2010).

1.1.4 Challenges in Entropy Estimation

To rigorously and accurately estimate the change in entropy, the partition function

from statistical mechanics needs to be calculated in order to obtain the statistical

properties of the system in thermodynamic equilibrium. Due to the computational

expense needed to calculate the partition function, which includes the incorporation of

multiple parameters (e.g., temperature, volume of the system, number of constituent

particles) and the sampling of various microstates of the system to derive a canonical

ensemble (statistical ensemble representing probability distribution of microstates),

heuristic methods that are less physically accurate but much faster are instead used

to estimate entropic changes.

Physical phenomena contributing to entropic changes that are challenging, and ener-

getically critical, to accurately model by heuristic methods are solvation/desolvation,

multiple binding states, entropy-entropy compensation, and configurational entropy.
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Solvation and desolvation have long been known to play a critical role in entropic

contributions to binding free energy. (Chandler, 2005) A number of theoretical meth-

ods utilizing molecular dynamics simulations and implicit solvent representation (e.g.,

MM-GBSA, MM-PBSA, etc.) (Massova and Kollman, 2000) have been developed and

applied in molecular studies to estimate solvation energies involved in protein-ligand

interactions. Recent theoretical studies using an explicit solvent representation have

also suggested the importance of binding-site water molecules in entropic contribu-

tions. These more rigorous studies employed the inhomogeneous solvation theory

(Lazaridis, 1998) to estimate the hydration thermodynamics with relatively short (10

ns) molecular dynamics simulations. Abel et al. used explicit solvent simulations to

more accurately describe the physical interactions of binding site waters, and sub-

sequently developed descriptors to qualitatively predict affinities of ligands binding

to factor Xa with higher accuracy. (Abel et al., 2008) Other studies using coupling

inhomogeneous solvation theory and molecular dynamics simulations provided atomic

insight into the roles of water molecules and their contributions to entropy and bind-

ing free energy. (Young et al., 2007; Huang et al., 2009; Young et al., 2010)

Accurate estimation of the change in entropy upon complex formation requires the in-

corporation of multiple binding states. In docking, multiple potential ligand binding

poses are generated in order to predict the native binding pose. Ruvinsky demon-

strated the use of the multiple ligand binding poses from docking experiments to

heuristically estimate the partition function. (Ruvinksy and Kozintsev, 2005) This

method to estimate the ensemble of complex microstates demonstrated enrichment

in binding free energy estimation compared with using a single binding mode, in

AutoDock as well as other docking programs. (Ruvinksy, 2007) However, the caveat

in this simplified method is that the multiple potential conformations of the binding

site is not accounted for, which certainly will lead to inaccuracies in change of entropy

(T∆S) estimates.

Binding site flexibility of either protein or receptor is largely ignored in docking, due

to the added computational expense to accurately model the dynamics of a larger

molecule. However, this oversimplification used in docking ignores the phenomenon

known as entropy-entropy compensation. In entropy-entropy compensation, the bind-

ing of the ligand results in unfavorable entropy, leading to entropy compensation of the

protein or receptor, typically by increasing its flexibility (conformational dynamics) as

11



a means to balance the change of entropy of the system. Experimental studies using

NMR relaxation have demonstrated this entropy-entropy compensation in calmod-

ulin upon protein domain binding. (Marlow et al., 2010) Due to the use of a rigid

receptor in docking, entropic changes arising from entropy-entropy compensation is

not described, and therefore contributes to the inaccuracies in entropy estimates.

Configuration entropy has long been known to contribute significantly to change in

entropy, but have not been evaluated quantitatively. The Gilson group used molecular

dynamics simulations and Mining Minima calculations to estimate the magnitude of

configurational entropys contribution to the overall change of entropy in the system for

HIV-1 protease inhibitors. (Chang, 2007) Their results suggested that configuration

entropy (translational and rotational entropy) was actually a larger component than

conformation entropy (ligand and protein rotamers). These studies illustrate the need

to design conformationally restricted ligands to enhance affinity, and also the need to

better capture changes in configuration entropy in CAMD methods.

1.2 Computational Methods for Molecular Design

Numerous computational and theoretical methods have been developed for molecular

design. Methods have focused on the pragmatic issue of balancing computational

speed versus accuracy and applicability. As scientific knowledge and computational

power have progressed significantly over the last few decades, the computational meth-

ods developed have been increasingly fast, applicable, and accurate. Computational

methods for molecular design are now commonly employed in both industry and aca-

demic settings, and have been recognized to be a valuable, sometimes essential, tool

for molecular recognition and ligand design.

1.2.1 Computational Methods for Molecular Design

Computer-aided molecular design (CAMD) is used to describe the application of com-

putational chemistry and molecular modeling methods to molecular design, mainly to

expedite and rationalize each of the different stages of the process. As computational
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power continues to increase, CAMD continues to progress in terms of the develop-

ment and application of more physically accurate models to examine more complex

biomolecular systems in a greater detail.

One of the most encountered challenges in drug discovery is the identification of

potential lead compounds for a novel therapeutic target. For a novel target where

there are no known putative ligands or inhibitors that can be used for searching

similar chemical analogs, a standard experimental method for lead discovery is to

perform a high-throughput screening (HTS). (Bleicher et al., 2003) While obtaining

biological activity data for millions of compounds may seem promising in theory,

HTS studies are often not practical or as fruitful in practice as one might conceive.

Not only are the screens costly and require significant resources (e.g., robotics setup,

compounds, solutions, biological target of interest), it also requires a robust biological

assay, which may not be readily available for a novel system in the early stages of

the study. Moreover, HTS are also prone to identifying false positives, which may

lead to significant time and resources spent on characterizing and optimizing these

false leads. (McGovern et al., 2002) Due to these requirements and limitations, the

use of computational methods for lead discovery is a much more practical early-stage

strategy, and is now widely employed to expedite and complement the lead discovery

process.

1.2.2 Structure-Based Drug Design

In the case where an X-ray crystal structure of the molecular design target has been

solved, structure-based virtual screening can be used to screen large libraries (e.g.,

ZINC: over 8,000,000 commercially available compounds) (Irwin and Shoichet, 2005)

and prioritize compounds for experimental testing. The workflow of virtual screening

can be categorized as a two-step process: docking and scoring. In docking, a conforma-

tional search is performed on the ligand to identify a set of low-energy conformations

that complement the protein binding site (in the case of rigid protein docking). With

the predicted binding poses, scoring is used to assess the relative binding free energy

of the complexes as a post-processing step to filter out energetically-unfavorable poses

based on physical and chemical properties (e.g., steric complementarity, electrostat-

ics, potential for hydrogen bonding). Molecular docking will be presented in a greater
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detail in Section 1.3, and binding affinity predictions will be presented in a greater

detail in Section 1.4 of this introduction.

1.3 Molecular Docking and Virtual Screening

Molecular docking, known simply as docking, is a computational method which aims

to predict the conformation of a ligand bound to a binding site, given the structure of

the protein (typically in the form of an X-ray crystal structure). Conformation of the

protein is typically kept rigid, although recent docking programs have incorporated

binding site dynamics using flexible side chains and protein backbones (e.g., AutoDock

(Morris et al., 1998), RosettaLigand (Davis and Baker, 2009), etc.). Conformational

search is performed on the ligand to identify a set of low-energy conformations which

complement (in terms of shape and electrostatics) the binding site. Virtual screening

is the application of molecular docking to predict the binding modes of compounds

in a library, and prioritize these compounds based on an estimated binding affinity

to identify potential leads. (Walters et al., 1998) Virtual screening has proven to be

useful in the early stages of lead discovery. (Shoichet, 2004)

1.3.1 Motivation

Molecular docking serves to rapidly and accurately identify potential low-energy con-

formations of protein-ligand complexes. Experimental methods to resolve bound com-

plexes at an atomic scale, such as X-ray crystallography or nuclear magnetic resonance

techniques (e.g., SAR by NMR (Shuker et al., 1996)) are both labor- and time- inten-

sive, sometimes limiting their applicability in molecular design. Under circumstances

where time and resources are limited, virtual docking is a valuable method for pro-

viding rapid and relatively accurate structural information for rationalization and

visualization.
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1.3.2 Methodology

In recent years, significant progress has been made on the development of docking

programs. (Ewing and Kuntz, 1997) A typical docking program is composed of three

key components: representation of the binding site, the conformation search algorithm

for generation of binding poses, and a scoring function used for affinity predictions.

The docking programs developed vary in each of these components to some degree,

which leads to different performances depending on the protein target and compound

library of interest (e.g., AutoDock (Morris et al., 1998), DOCK (Ewing et al., 2001),

GOLD (Jones et al., 1997), etc.). Because of this, there is no single best-performing

docking method for CAMD; the best-performing method depends heavily on the

system of interest and individual parameters set by the user.

One of the more widely used docking programs, and also available for free to academia,

is AutoDock (Morris et al., 1998). In AutoDock, the binding site targeted by the

user is represented based on a grid method. The binding site is defined by a cubic

grid, with varying degrees of resolution (from 0.200 to 0.375 Å). AutoDock encodes

the structural information of the ligand as genes, and applies a Lamarckian genetic

algorithm to perform the conformational searches. The AutoDock scoring function

is based on a semi-empirical method using force field-based terms as descriptors and

experimental binding data to derive an equation to estimate the binding free energy

of the complex. (Huey et al., 2007) AutoDock has proven to be useful in the hands

of a large number of investigators for a variety of structural targets and compound

libraries. In addition, a number of preparation and analysis tools have been developed

for use with AutoDock, making the use of this docking program more user-friendly

than other academically-available ones. (Morris et al., 2009) Because of its proven

applicability and robustness in our own as well as in other research groups, AutoDock

was selected as the docking method for virtual screening studies in this thesis.

1.3.3 Applications

Molecular docking has been applied to a variety of CAMD applications, most notably

for binding pose prediction and lead compound identification. AutoDock has been

shown to be useful in retrospective binding pose prediction based on the criteria of
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enrichment factor and receiver operator curve (ROC). As discussed in the previous

section, AutoDock has been a valuable virtual screening tool for lead discovery as

demonstrated in a number of studies. (Goodsell et al., 1996; Osterberg et al., 2002;

Park et al., 2006)

1.3.4 Limitations and Practical Considerations

A number of limiting assumptions and oversimplifications are used in most application

of docking methods (e.g., rigid binding site, lack of accurate solvent representation,

stochastic methods used in conformational searches, limitations in affinity predictions,

etc.). Due to these often necessary simplifications, inherent inaccuracies in their

implementations have led to a high percentage of false positives in many retrospective

and prospective virtual screening studies.

Rigid representation of the protein binding site (no backbone or side-chain flexibility)

limits the utility of docking programs to identify novel ligands (ones that are not

structural similar to the ligand in the complex used for docking) which may actually

bind to the protein by an induced fit mechanism. Cozzini et al. have recently reviewed

the different methods to incorporate protein flexibility to achieve better accuracy in

SDDD. (Cozzini et al., 2008) The rigid protein assumption is also a crude oversimplifi-

cation, since the potential structural changes which may lead to significant energetic

changes important in protein-ligand binding are completely ignored. In addition,

entropy-entropy compensation (discussed in Section 1.1.4) cannot be accounted for

using a rigid binding site.

In docking, solvation and desolvation are typically represented implicitly. In protein-

ligand interactions where waters play an important role in complex formation (e.g.,

aldose reductase), docking methods may fail to predict the correct pose simply due

to the lack of a correct explicit representation of bound water. To achieve more

accurate docking predictions in these cases, explicit waters in the binding site need to

be included. Solvation and desolvation effects will need to be represented in a more

physically accurate manner to achieve accurate binding affinity estimations. (See

Figure 1.7)
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Figure 1.7: (A) Two similar ligands shown differ significantly in their enthlapic and
entropic contributions in binding to aldose reductase. The figure on the left contains

a water molecule, while the figure on the right does not. (B) Inclusion of a water
molecule in the complex on the left results in less favorable entropy (red) by more
favorable enthalpy (green), due to additional hydrogen bonds. Binding free energy

is shown in blue. Figure taken from Ladbury et al. (2010).
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Another limitation in docking, in particular with AutoDock (Morris et al., 1998)

and most other programs available to academia, is in the stochastic algorithms used

to perform conformations searches. Due to the random nature of these methods,

results may not necessarily be replicated even when using the same structures and

parameters. To circumvent this limitation, docking tools based on systematic searches

(e.g., SKATE (Feng and Marshall, 2010)) can be used to correctly identify the native

binding pose among those sterically allowed, given that the scoring method used can

be invoked to correctly prioritize the affinities of different poses.

It is generally appreciated that affinity prediction is one of the most difficult yet

critical parts to CAMD. Current scoring methods used with docking methods are of

limited accuracy and applicability. Binding affinity predictions will be discussed in

Section 1.4.

1.4 Binding Affinity Predictions

Predicting binding affinity is one of the most critical and challenging components

to computer-aided structure-based drug design. (Ajay and Murcko, 1995; Gohlke

and Klebe, 2002) Methods for predicting binding affinity are essential in multiple

applications, including molecular docking to identify a native binding mode, virtual

screening of compound libraries to identify lead compounds, and lead optimization

for enhancing binding affinity and target specificity. (Kitchen et al., 2004; Lyne, 2002;

Shoichet, 2004) Despite significant advances in first-principle methods for predicting

binding affinity (Beveridge and Dicapua, 1989; Massova and Kollman, 2000; Hansson

et al., 1998; Wang et al., 2001; Jiao et al., 2008), empirical scoring functions that are

fast and relatively accurate are still widely used in drug discovery. (Bohm and Stahl,

2002) For virtual screening studies where libraries up to millions of compounds are

screened against a target of interest, a scoring function is needed to rapidly assess

multiple binding modes of each of the multiple conformers generated for each potential

ligand. This is also the case for in silico lead optimization where a large number

of structural analogs are computationally constructed and assessed. In addition to

advantages in speed, empirical scoring functions should not require careful validation
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for each individual therapeutic target, but be portable once validated, making them

more suitable for general use in high-throughput applications.

1.4.1 Computational Methods for Affinity Predictions

This section provides an overview of methods for estimating and experimentally mea-

suring binding affinity of protein-ligand interactions. First-principles methods such

as free energy perturbation (FEP) (Kollman, 1993), linear interaction energy (LIE)

(Hansson et al., 1998), and MM-PBSA/GBSA (Massova and Kollman, 2000) have

all been demonstrated to accurately estimate and rank binding affinities for series of

analogs in a number of different systems. Despite the successes achieved by these

more rigorous physics-based methods, their speed (requires molecular dynamics sim-

ulations) and need for calibration on novel systems limit their applicability in high-

throughput screening. In addition, only modest structural perturbations to the ligand

are tolerated to achieve accurate relative affinities. Scoring functions derived in a more

simplified (less physically accurate) manner are still widely used in drug discovery due

to advantages in speed and overall applicability.

Scoring functions can be broadly categorized into the following groups: force field-

based, knowledge-based (heuristic), and empirical. Force field-based methods uses

terms derived from molecular mechanics calculations as a means to capture the physic-

ochemical forces governing protein-ligand interactions. (Kuntz, 1992) Knowledge-

based methods uses experimentally determined structures and derives a statistical

potential based on observed data for predictions. (Gohlke et al., 2000) Empirical

scoring functions will be discussed in a greater detail in the Section 1.4.2.

1.4.2 Empirical Scoring Functions

Empirical scoring functions aim to represent the atomic interactions of protein-ligand

complexes by the use of simple descriptors to adequately capture the physicochem-

ical forces governing protein-ligand complex formation. The underlying assumption

in scoring functions is that the physical and chemical interactions of protein-ligand

interactions can be quantitatively captured using a set of descriptors. Each descriptor
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is weighted by a coefficient, derived by a linear regression method through training

on experimental data from binding assays, resulting in an equation for calculating

binding affinities,

∆Gcomplex = a1X1 + a2X2 + · · ·+ k (1.3)

where ai = ith coefficient of ith descriptor,

Xi = value of ith descriptor,

k = constant derived from linear regression.

Over the last 20 years, a number of scoring functions have been developed, with

some notable ones being SCORE1 (Bohm, 1994), SCORE2 (Bohm, 1998), ChemScore

(Eldridge et al., 1997), X-Score (Wang et al., 2002), Lig-Score (Krammer et al., 2005),

PLP (Gehlhaar et al., 1995; Verkhivker et al., 2000), DrugScore (Gohlke et al., 2000),

and SFCscore (Sotriffer et al., 2008). These scoring functions differ by their choice

and implementation of descriptors to capture the physicochemical interactions, the

size and diversity of the training set, and the regression method used to derive the

predictive equations. A number of reviews on scoring functions and assessments of

their performance and applicability have been published. (Halperin et al., 2002; Wang

et al., 2003; Stahl and Rarey, 2001; Wang et al., 2004; Ferrara et al., 2004; Warren

et al., 2006; Cheng et al., 2009)

1.4.3 Applications

Empirical scoring functions are widely used in molecular design studies such as virtual

screening for lead identification and lead optimization. A number of recent scoring

functions, notably SFCscore and X-Score, have provided accurate and robust affinity

estimates on complexes in PDBbind, a database compiled of high-quality protein-

ligand complexes.

Any particular scoring function will inevitably provide limited accuracy for certain

classes of targets or compounds, depending on the implementation and training data

used. To circumvent this problem, the consensus scoring strategy is used to take
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advantage of the strengths of each scoring function in order to correctly prioritize

binding affinities. Consensus scoring, a strategy in which multiple scoring functions

are used to derive an average affinity estimate, have been demonstrated to provide

enrichment compared to the use of a single scoring function (Wang et al., 2003; Cheng

et al., 2009).

1.4.4 Limitations and Practical Considerations

Despite the proven utility of empirical scoring functions in CAMD, there remains

significant room for improvement in both accuracy and applicability. Accurate affinity

predictions remain elusive for novel targets that are not represented in the scoring

function training set. Correct ranking of binding poses according to relative affinities

is still a challenge. False positives and false negatives are common in most, if not all,

virtual screening studies.

Although accuracy and applicability are the primary objectives in scoring function

development, computing power is also a concern. Scoring function will still need to be

fast enough to assess over tens of millions of poses (considering a library of 1,000,000

compounds with 30-50 poses per compound) that is typical in a lead discovery study.

However, with the continuing availability of computational power, speed has become

less of a concern in the development of scoring functions.

1.5 Experimental Data for Methods Development

and Validation

Development of computer-aided molecular design methods requires the use of exper-

imental data to validate and assess their predictability and robustness. With the

increasing amount of biomolecular structures and experimental data in the form of

X-ray crystal structures and affinity measurements from biological assays, a wealth

of information exists for the development and validation of CAMD methods.
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The Protein Data Bank (PDB) serves as the central depository of biomolecular struc-

tures. The SCORPIO (Olsson et al., 2008) and PDBcal (Li et al., 2008) databases

have recently been compiled with protein-ligand complexes with X-ray crystal struc-

tures and thermodynamics parameters measured directly by isothermal titration

calorimetry (ITC). (Freire, 2004) PDBbind is the premier resource for high-quality

protein-ligand complexes available from the PDB. With the increasing availability of

structural and biological/biophysical data, CAMD methods may now be rigorously

tested for accuracy and overall target applicability.

1.5.1 Biomolecular Structures Derived by X-ray Crystallog-

raphy

Protein Data Bank (PDB) is the most comprehensive depository of biomolecular

structures (containing over 66,000 structures as of August 2010) solved by experimen-

tal methods such as X-ray crystallography and nuclear magnetic resonance (NMR) .

PDB serves are a valuable resource of protein-ligand complexes for the development

and validation of computational methodologies. With the increasing number of com-

plex structures, a sufficient number of structures with high nominal resolution (2 Å)

are available for model development. In addition, diversity of protein families and

ligand structures are now available for the compiling more diverse training sets for

methods development.

Recent studies have highlighted the need to use high-quality protein-ligand complexes

for CAMD methods development and validation. In addition to nomimal resolution,

2 other metrics to better describe the quality of X-ray crystal structures are the free

R value (Rfree) (Brunger and Rice, 1997) and diffraction-component precision index

(DPI) (Cruickshank, 1999). Rfree is a measure of the degree to which an atomic

model predicts a subset of the observed diffraction data that has been omitted from

the refinement. Rfree is defined by the equation:

Rfree =

∑
| Fobs − Fcalc |∑
| Fobs |

(1.4)
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where Fobs = the observed reflection amplitudes,

Fcalc = the reflection amplitudes calculated from the model.

DPI is measure of the quality of the structural model derived from the diffraction

data. DPI is defined by the equation:

σ(x,Bavg) = 1.28N
1/2
atomsV

1/3
a N

−5/6
obs Rfree, (1.5)

where Natoms = number of atoms in the unit cell,

Va = volume of unit cell,

Nobs = number of crystallographic observations.

Collectively, these 3 metrics should provide a better quantitative measure of structural

quality, and can be used as criteria to exclude low-quality structures to minimize

structural noise which may contribute to inaccuracies when used for training and

testing CAMD methods.

1.5.2 Thermodynamic Measurements by Isothermal Titra-

tion Calorimetry

Isothermal titration calorimetry (ITC) is a biophysical technique used in molecular

design studies to determine the thermodynamic parameters contributing to the change

in binding free energy of the system. (Freire, 2004) ITC directly measures the heat

energy associated with a molecular interaction between 2 or more molecules to provide

quantitative measurements of binding affinity (Ka), enthalpy changes (∆H), and

binding stoichiometry (n), from which the binding free energy and change in entropy

can be derived by the equation,

∆G = −RTlnKa = ∆H − T∆S (1.6)
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where R = gas constant,

T = temperature.

ITC is a valuable tool because the experiments do not require chemical modifications,

labeling, immobilization, or constraints on system size, providing measurements in a

more realistic environment. However, ITC is limited to studying mostly high-affinity

ligands, since ligands that are weak binders will require an intractable concentration

of protein for conducting these experiments. ITC also requires significant time and

labor to perform the experiments, and is a low-throughput method compared to other

biophysical techniques for affinity measurements (e.g., surface plasmon resonance).

Even with these drawbacks, ITC remains the gold standard experimental technique

to determine thermodynamic parameters.

With the increasing use of isothermal titration calorimetry in molecular recognition

studies, databases such as SCORPIO (Olsson et al., 2008) and PDBcal (Li et al., 2008)

have been compiled for use in the development of methods for affinity predictions.

SCORPIO contains 254 protein-ligand complexes with X-ray crystal structures and

thermodynamic parameters from ITC, while PDBcal contains over 400 protein-ligand

complexes. Taken together, these 2 databases provide both valuable structural and

thermodynamic information for the development and validation of more accurate and

applicable CAMD methods.

1.5.3 Protein-Ligand Complexes for Scoring Function Devel-

opment

PDBbind is one of the most comprehensive databases of bound protein-ligand com-

plexes with X-ray crystallographic structure and experimentally measured binding

affinity data (Kd, Ki, IC50). The 2002 (n = 800) and 2004 (n = 1091) versions of

the refined set has been used in a number of comparison studies. The recent 2009

version contains over 1600 complexes for scoring function evaluation purposes. PDB-

bind has become the gold-standard benchmark set for evaluation of binding affinity

predictions.
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PDBbind has been used to assess the accuracy and reliability of the top-performing

empirical scoring functions (e.g., X-Score, SFCscore, ChemScore, etc.). In addition, a

core set of 195 complexes in the 2007 version has been used to assess the performance

of scoring functions on non-redundant structures based on docking power, scoring

power, and ranking power. (Cheng et al., 2009)

1.5.4 Inherent Inaccuracies in Experimental Data

Structures of protein-ligand complexes solved by X-ray crystallography and experi-

mentally measured binding affinity data are typically used to develop and validate

CAMD methods. In crystallography, the conditions used to induce crystallization

(e.g., temperature, salt concentrations, buffer conditions) do not necessarily reflect

physiological conditions. In addition, current scoring functions have used lower nom-

inal resolution (>2 Å) structures for model training and testing, which may lead to

atomic-level structural inaccuracies for CAMD methods development.

Experimentally measured binding affinity data used for CAMD methods development

comes from assays performed by different groups, and are not necessarily performed

under the same conditions (e.g., temperature, salt concentrations, buffer conditions),

leading to inaccuracies in measurements. A combination of Kd, Ki, and IC50 are used

to derive the binding affinity, which may lead to discrepancies when used for direct

affinity comparisons.

In CAMD methods development, the use of high-resolutions structures (≤2 Å) and

thermodynamics parameters determined by ITC may alleviate the potential sources

of experimental inconsistencies.

1.6 Synopsis of Thesis

The thesis is a compilation of 2 main projects. The first project aimed to identify

drug-like inhibitors targeting bacterial two-component signal transduction response

regulators as a strategy to inhibit virulence. The second project involves the devel-

opment of an empirical scoring function derived using high-resolution structures and
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thermodynamic parameters measured by ITC to predict binding affinities of protein-

ligand interactions.

1.6.1 Summary of Challenges

The first project includes 2 significant challenges: identification of potential antibi-

otics with novel modes of action, and targeting protein-protein interactions using

drug-like compounds. Due to the increasing resistance of bacteria to current clinical

antibiotics, there is an urgent need to develop therapeutics with novel modes of ac-

tion. Inhibiting virulence should lead to less resistance generation since less selective

pressure is presented to bacteria. To date, antibiotics development has proven to

be a significant challenge (Payne et al., 2006), especially ones with novel modes of

action. Targeting protein-protein interactions is the next frontier in therapeutics de-

velopment. Because protein-protein interactions are ubiquitous in signal transduction

and essential for cellular function, targeting this class of interactions provide a new

avenue for drug discovery. However, the relatively flat and solvent-exposed surfaces

typically present in protein-protein interfaces are challenging binding sites to target.

Only few examples of successful cases have been demonstrated.

In the second project, an empirical function is developed to accurate predict bind-

ing affinity and thermodynamic parameters of protein-ligand interactions. Scoring

functions for affinity predictions have been relatively accurate, at best. Current scor-

ing functions lack an accurate representation of entropic changes, which should lead

to inaccuracy in binding affinity predictions. In addition, scoring functions also use

lower-resolution crystal structures for model training and testing, which may lead

in inaccuracies in estimating affinities. To my knowledge, no empirical scoring func-

tions are available that can predict the enthalpic and entropic changes contributing to

binding free energy changes. Estimating the thermodynamic parameters to binding

free energy will provide further insight into lead discovery and optimization.
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1.6.2 Discoveries and Insights Presented

This thesis consists of a prospective study on using CAMD methods for lead discovery,

and also the development of a scoring function for binding affinity predictions.

1. Discovery of First-In-Class Response Regulator Inhibitors

Eight compounds have been identified to disrupt formation of the PhoP-DNA complex

necessary for regulating gene expression. These compounds do not effect dimerization,

as initially targeted, but may potentially be binding at the N-terminal domain to act

in an allosteric manner, or at the C-terminal DNA-binding domain, both of which

represent novel modes of action.

2. Accurate Affinity Predictions Using High-Resolution Structures and

ITC Measurements

In the development of the PHOENIX empirical scoring function, a set of 112 com-

plexes (X-ray crystal structures with resolution ≤ 2Å and thermodynamic parameters

from ITC) was used to derive a scoring function for affinity prediction. PHOENIX

was rigorously tested using a variety of complex sets, and has proven to perform

comparably to other top-performing scoring functions, and better in a few cases.

Taken together, these advances in molecular design will provide addition insights and

a deeper understanding to guide the development of CAMD methods.
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Chapter 2

Background

This chapter aims to provide background information on several key concepts studied

in this dissertation: empirical scoring functions for affinity predictions, descriptors

to estimate entropy changes, drug design targeting protein-protein interactions, and

bacterial two-component signal transduction. Empirical scoring functions and de-

scriptors to estimate entropy changes are the fundamental concepts for the second

project of this thesis: the development of the PHOENIX scoring function for affinity

predictions derived using high-resolution structures and calorimetry measurements.

Drug design to target protein-protein interactions and bacterial two-component signal

transduction are important background information for understanding the motivation

and significance of the first project of this thesis: discovery of drug-like compounds

targeting the PhoP response regulator to inhibit bacterial virulence.

The first section will present the objectives of an empirical scoring function and its

main components. The second section will present heuristic descriptors to capture

entropic contributions to binding free energy in protein-ligand interactions. The third

section will present the background and significance of targeting protein-protein inter-

actions for drug design. The fourth section will provide the background on bacterial

two-component signal transduction and its significance as a therapeutic target.
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2.1 Empirical Scoring Functions

Empirical scoring functions aim to represent the atomic interactions of protein-ligand

complexes by the use of simple quantitative descriptors to capture the physicochem-

ical forces governing protein-ligand complex formation. The underlying assumption

in scoring functions is that the physical and chemical interactions of protein-ligand

interactions can be quantified using a set of such descriptors. Each descriptor is

weighted by a coefficient, derived by a linear regression method through training on

experimental data from binding assays, resulting in an equation to estimate binding

affinities. Within the last 20 years, a number of scoring functions have been devel-

oped, with some notable ones being SCORE1 (Bohm, 1994), SCORE2 (Bohm, 1998),

ChemScore (Eldridge et al., 1997), X-Score (Wang et al., 2002), Lig-Score (Krammer

et al., 2005), GOLD (Jones et al., 1997), PLP (Gohlke et al., 2000), and SFCscore

(Sotriffer et al., 2008). These scoring functions differ by their choice and implementa-

tion of descriptors to capture the physicochemical interactions, the size and diversity

of the training set, and the regression method used to derive the predictive equations.

2.1.1 Training Set

To develop empirical scoring functions, a large and diverse training set of protein-

ligand complexes, typically from X-ray crystallographic structures, are used. Compi-

lation of the training set aims to adequately represent the diversity of protein-ligand

interactions by including complexes from various protein families (e.g., proteases, met-

alloenzymes, etc.) and ligands with different structural and chemical properties (e.g.,

drug-like compounds, sugars, peptides, peptidomimetics, etc.) in order to capture

the different types of physical interactions involved in molecular recognition.

Protein-ligand complexes used are of high structural quality with binding affinities

measured from biological assays. For example, in the training set used to develop

X-Score, a set of 200 protein-ligand complexes with a nominal resolution of 2.5 Å or

less with experimentally measured Kd or Ki values were used. In the development of

SFCscore (Sotriffer et al., 2008), a larger training set of 290 complexes (some obtained

from corporate databases) were used to achieve accurate affinity predictions. As the
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availability of high-quality crystal structures with binding affinity data continues to

increase, larger sets of protein-ligand complexes may be included in training sets to

develop more accurate and versatile empirical scoring functions.

2.1.2 Descriptors

Empirical scoring functions use simple descriptors to quantitatively capture the physic-

ochemical forces of molecular recognition important in protein-ligand interactions.

Degree of descriptor complexity may range from relatively simple ones such as the

number of ligand heavy atoms as a simple estimate of van der Waals contacts with

the binding site, to more complex ones such as molecular dynamics simulations us-

ing a polarizable potential to estimate the electrostatics contributions to binding free

energy. (Jiao et al., 2008)

Typical terms used in empirical scoring functions include descriptors to quantify the

size and potential conformations of the ligand (e.g., molecular weight, number of

rotatable bonds), surface complementarity, and hydrophobic and hydrophilic proper-

ties. Implementation of descriptors can sometimes vary amongst scoring functions,

resulting in different estimations of physicochemical properties. Descriptors sets also

vary in size and diversity depending on the implementation and training set used. A

descriptor set should contain a minimal number of descriptors to explain the vari-

ance of the training set in order to develop the simplest models, which allow for a

more direct interpretation of the rationale and physical forces captured by the scoring

function.

Due to the relatively large number of descriptors and a relatively small number of

protein-ligand complexes for used in developing empirical scoring functions, the issues

with collinearity amongst descriptors often occur and may limit prediction accuracy.

(Wold et al., 1984) Methods such as removing descriptors with greater than 90-95%

correlation, or removing ones that have low correlation to binding affinity may help

to identify a more informative set of descriptors by removal of ones contributing to

noise. Feature selection methods are sometimes used to identify a subset of descriptors

explaining to the most variance in the model.
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2.1.3 Linear Regression Method

A linear regression method is typically used to assign coefficients to each descriptor

and derive equations to fit the experimentally measured binding affinities. Partial

least squares of latent variables (PLS) regression is a statistical method commonly

used in empirical scoring function development. (Geladi and Kowalski, 1986) PLS

finds a linear regression model by projecting the predicted variables (X) and the ob-

servable variables (Y) to a new space. A PLS model will try to find the multidimen-

sional direction in the X space that explains the maximum multidimensional variance

direction in the Y space. PLS is suited for use in instances where the number of vari-

ables is more than the number of observations, and when there is multicollinearity

among X values, often the case with physicochemical descriptors.

Leave-one-out cross validation (LOO-CV) is performed to identify the appropriate

number of PLS components (to explain variance while avoiding overfitting) to use for

equation modeling. LOO-CV statistics such as q2 in the following equation,

q2 = 1−
∑

i(Xi,pred −Xi,exp)
2∑

i(Xi,exp −Xi,mean)2
(2.1)

and cross-validation standard errors (SPRESS) in the following equation,

SPRESS =

√∑
i(Xi,pred −Xi,exp)2

(N − k − 1)
(2.2)

where N = number of complexes,

k = number of PLS components,

are used to assess the predictive ability of the equation. Internal cross-validation,

in which a training set is separated into a smaller training set and a test set, is

performed to better assess overfitting and model robustness (e.g., not hyper-sensitive

to a particular complex or set of complexes used in the training set). Statistics such

as r2pred
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r2pred = 1−
∑

i(Xi,pred −Xi,exp)
2∑

i(Xi,exp −Xi,mean)2
(2.3)

and standard error (SEpred) in the following equation,

SEpred =

√∑
i(Xi,pred −Xi,exp)2

(N − 1)
(2.4)

where N = number of complexes,

are used assess the predictive ability of the equation.

2.2 Descriptors to Estimate Entropy Changes

Entropy changes in protein-ligand interactions have a limited representation in ex-

isting scoring functions. Most of the commonly used scoring functions include de-

scriptors such as number of ligand rotamers and partition coefficient to estimate the

conformational entropy and desolvation effects of ligand binding. Recent theoretical

studies have illustrated that certain components of entropic changes in protein-ligand

interactions are not adequately captured by scoring functions: desolvation entropy

and configurational entropy.

The first section will present descriptors traditionally used to capture entropy changes,

primarily the change in conformational entropy upon ligand binding. The second sec-

tion will introduce shape- and volume-based descriptors to better capture desolvation

effects and configurational entropy.

2.2.1 Rotamers and Hydrophobicity

One common descriptor used to simply capture the change conformational entropy in

protein-ligand interactions is the number of rotatable bonds. Searle and Williams have

estimated that each rotatable bond contributes 1.2-1.6 kcal/mol to change of binding

free energy, assuming complete loss of rotational freedom. (Searle and Williams, 1992)

In most of the commonly used scoring functions, the number of rotatable bonds on
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the ligand is used to estimate change of entropy upon ligand binding. To estimate

motions from binding site residues to the change of entropy, number of rotatable

bonds of binding-site residues has been included in scoring functions. However, such

descriptors did correlate with the change in binding free energy as used in previous

studies (e.g., X-Score) (Wang et al., 2002).

Descriptors to quantify hydrophobicity of the ligand and binding site are also com-

monly used to capture entropy changes in solvation and desolvation effects. The oc-

tanol/water partition coefficient (logP) is commonly used to estimate the lipophilicity

of the ligand based on the properties of its atoms. (Wang et al., 1997) This simple

descriptor has demonstrated to be an effective indicator of ligand lipophilicity to

adequately capture entropic changes, in addition to being an important solubility

predictor and pharmacological property.

Descriptors to quantify the complementary hydrophobic surface area of protein-ligand

complexes are also commonly used to capture solvation and desolvation entropy

changes from the transfer of the ligand in solvent to the binding site, and also the

displacement of water molecules in the binding site.

2.2.2 Shape- and Volume-Based Descriptors

As discussed earlier, current scoring functions have used a limited representation of

thermodynamically important phenomena such as solvation effects and configuration

entropy, which may explain their inaccuracies in affinity predictions. As a heuris-

tic method to quantify solvation and desolvation effects, shape- and volume-based

descriptors can be used to capture these effects. Volume descriptors capture config-

urational entropy (translational and rotational entropy) by characterizing the steric

complementarity of the ligand bound to its binding site.

Recent advances in algorithms to quantify molecular shape and volume have provided

new tools for calculating descriptors for scoring function development. A number

of programs are now available for the identification and characterization of protein

binding sites and cavities (e.g., VOIDOO, LIGSITE, POCKET, POCKET-FINDER,

CAST, PASS, APROPOS, SURFNET, Q-SITEFINDER, POCKETPICKER, etc.).
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(Kleywegt and Jones, 1994; Hendlich et al., 1997; Levitt, 1992; An et al., 2005; Liang

et al., 1998; Brady and Stouten, 2000; Peters et al., 1996; Laskowski, 1995; Laurie and

Jackson, 2005; Weisel et al., 2007) Nicholls et al. (2010) has reviewed the application

and performance of current methods to estimate molecular shape in computer-aided

design.

For practical reasons, programs that are accurate, freely available, and user-friendly

are utilized to calculate descriptors for scoring function development. A couple of

programs recently developed, FPOCKET and VICE, fit these criteria. FPOCKET

used an algorithm based on Voronoi tessellation and alpha spheres to characterize

the shape and volume of the ligand and binding site. (Guillox et al., 2009) VICE

(Vectorial Identification of Cavity Extents) used an algorithm based on vector repre-

sentations to characterize the shape and depth of protein binding sites. (Tripathi and

Kellogg, 2009) FPOCKET was used to calculate shape and volume descriptors in-

cluded in the development of the PHOENIX scoring function. Descriptors calculated

by VICE will be evaluated in later versions of PHOENIX.

2.3 Protein-Protein Interactions

Protein-protein interactions (PPI) are ubiquitous and essential in establishing the

affinity and selectivity of biomolecular interactions for biological function. The abil-

ity of a protein to bind specifically to its intended partner and form stable complexes

to carry out a certain function is fundamental to biology. PPI plays an important

role in the function of metabolic networks and signal transduction. In signal trans-

duction, proteins are typically activated (e.g., phosphorylation) and interact to form

homodimers, or complexes with other partners to process a signal. These common

interactions serve as attractive targets for signal modulation and inhibition. With

the discovery of PPI hot spots responsible for the interactions at the interfaces, much

effort have been devoted to targeting these critical regions with small molecules and

peptidomimetics as a novel strategy to modulate biological function.

The first section will provide background on hot spots of PPI, the second section will

illustrate the challenges of targeting PPI, and the third section will present recent

successes of PPI inhibition using small molecules.
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2.3.1 Hot Spots

Protein-protein interaction interfaces were traditionally accepted as having free en-

ergy of binding evenly distributed amongst residues across interfaces. However, re-

cent experimental studies and data analyses have led to a paradigm shift of this

concept. Pioneering studies by Clackson and Wells (Clackson and Wells, 1995) on

a hormone-receptor interface by alanine-scanning mutagenesis and X-ray crystallog-

raphy demonstrated that only a subset of residues were contributing significantly

to the binding free energy of protein-protein complexes. Jones and Thornton ex-

amined the structures available in the Protein Data Bank (PDB) to gain a better

general understanding of the structural characteristics of various classes (e.g., ho-

modimer, heterodimer, enzyme-inhibitor, antibody-protein) of PPI, and observed a

similar trend in addition to other properties. (Jones and Thornton, 1996) This small

subset of residues, known as hot spots, contribute to a significant amount to bind-

ing free energy for PPI, and determines a proteins affinity and specificity to various

partners as well as its biological function.

Fundamental properties which govern PPI are the following: size and shape, surface

complementarity, (Fernandez and Scheraga, 2003) residue interface propensities, hy-

drophobicity and hydrogen-bonding. Contact surfaces of PPI interfaces are generally

large (1500-3000 Å2, compared to 300-1000 Å2 for protein-ligand interfaces) and hy-

drophobic with a high percentage of buried nonpolar residues. These interactions

occur through van der Waals contacts and are energetically favorable due to the pref-

erence of the interfaces to transfer from a polar to a nonpolar environment. PPI

interactions consist of close packing of residues, with some in patches that protrude

to serve as recognition motifs. The number of patches range from 1 to 15 residues

within a distance of 200-400 Å to result in displacement of water molecules at the

interface and a gain in change in entropy. The enthalpic contributions from van der

Waals contacts in addition to the entropic contributions from desolvation make PPI

energetically favorable. Electrostatics forces from the charged residues at the inter-

face contribute to complex formation and are important in determining the duration

of interactions. (Sheinerman et al., 2000)

Hot spots are functionally characterized as residues where alanine mutations cause a

significant increase (≥2.0 kcal/mol) in the binding free energy. (Thorn and Bogan,
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2001) Thorn and Bogan have compiled a database to classify PPI hot spots using

experimental data from alanine-scanning mutagenesis studies. Analyses performed

by Moreira et al. (2007) determined that on average 9.5% of the interfacial residues

are hot spots. PPI hot spots are functionally and structurally adaptive, and play

important roles in binding to its cognate partner, as well as to other proteins. Hot

spots are typically located near the center of PPI interfaces and are critical for complex

formation. They have also been observed to overlap with structurally conserved

residues. Identification and characterization of PPI hot spots should provide a better

understanding of its potential binding partners and its biological functions. This

knowledge can be used to target hot spots for molecular design of PPI inhibitors in

therapeutics development.

2.3.2 Challenges in Targeting PPI

PPI interfaces have long been recognized as challenging structural targets for molec-

ular design. In general, PPI interfaces are hydrophobic, flat surfaces decorated

with critical charge groups to determine binding specificity. While hydrophobic and

charged binding sites are typically encountered in molecular design for enzymes and

receptors, the flatness of the binding site makes it challenging for small molecules to

bind with sufficient affinity and selectivity. Enzymes and receptors typically possess

grooves and pockets at protein surfaces to serve as binding sites. Also, PPI inter-

faces do not have a starting natural ligand or substrate to serve as a lead molecule

for ligand-based searches and affinity and property optimization often known when

targeting proteases and receptors.

X-ray crystal structures available of PPI interfaces are typically solved with its cog-

nate protein partner, rather than with a bound ligand or substrate that is common

with enzymes. For structure-based design, crystal structure bound to another pro-

tein, typically as a homodimer or heterodimer, may not necessarily reveal the poten-

tial regions for small molecules to bind. Ligands may bind at PPI interfaces by an

induced-fit mechanism, which can be challenging to accomodate when using a crystal

structure with a bound protein partner. A number of PPI studies have demonstrated

that the interfaces are adaptable, and binding sites may not necessarily be observed

from the free protein or the PPI complex. Plasticity of PPI interfaces comes from the
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dynamics of the side chains and loops in the region. Molecular dynamics simulations

have suggested the occurrence of transient pockets suitable as small molecule binding

sites. (Brown and Hajduk, 2006; Eyrisch and Helms, 2007) The use of static crystal

structures for molecular design may neglect potential small molecule binding sites.

(See Fig: 2.1.)

Solvation effects upon ligand binding, as well as electrostatics contributions to binding

free energy are not well understood in PPI. Computational tools designed to capture

solvation and electrostatics effects for traditional medicinal chemistry targets may

not necessarily be suitable for use in PPI interfaces since the binding sites are located

in different environments (e.g., deep hydrophobic cavities for enzymes; shallow and

solvent-exposed regions for PPI surfaces). More detailed experimental and theoretical

studies will be necessary to achieve a better understanding the roles of solvation and

electrostatics to binding free energy in PPI.

The increasing availability of experimental data from PPI studies (e.g., alanine-

scanning mutagenesis to identify hot spots; free, protein-protein, and protein-ligand

crystal structures; binding affinity and thermodynamic parameters; biophysical stud-

ies to assess dynamics for transient binding pockets and potential for induced-fit

binding) will further improve understanding of the underlying physical principles of

molecular recognition in PPI. To summarize, a better understanding of PPI interface

dynamics and energetics is necessary to achieve accurate molecular design. Addi-

tional complexity in computational analyses of ligand binding may be essential for

accurate predictions.

2.3.3 Examples of Inhibitors

Despite the challenges faced when targeting PPI interfaces with small molecules, a

number of successes have been reported in the past decade. These notable successes

in the discovery and design of PPI inhibitors have been reviewed by Wells and Mc-

Clendon, in particular, examples of discontinuous PPI for which small molecules that

compete directly with one of the protein partners have been discovered. (See Fig:

2.2) (Wells and McClendon, 2007)
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Figure 2.1: The structures of protein-protein or protein-peptide complexes are
shown on the left. The target protein (gray), the binding protein or peptide

(yellow), and selected side chains (shown in sticks: carbon in yellow, oxygen in red,
nitrogen in blue). The contact surface of the target protein (green) is within 4.5 Å
from the binding molecule. The structures of the protein-small-molecule complexes
are shown on the right, with the contact surface shown in orange. Examples are (a)

IL-2, (b) Bcl-XL, (c) HDM2, (d) HPV-18 E2. Figure taken from Wells and
McClendon (2007).
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Figure 2.2: Six examples of small-molecule inhibitors of protein-protein interactions
that have been discovered and reviewed in Wells and McClendon (2007). These

compounds represent different areas of chemical spaces compared with each other.
SP4206 binds to IL-2. ABT-737 binds to Bcl-XL. Nutlin-3 and the

benzodiazepinedione shown above bind to HDM2. Compound 23 binds to HPV E2.
Compound 1 binds to ZipA. And SP304 binds to TNF. Figure taken from Wells and

McClendon (2007).

39



These examples have available crystal structures of both the PPI complex as well as

the protein-ligand complex, and serve as model systems for future structure-based

design of PPI inhibitors.

Six recent examples of targets for PPI inhibitors with crystal structure information

are as follows: the cytokine interleukin-2 (IL-2), members of B-cell lymphoma 2 (Bcl-

XL), human protein double minute 2 (HDM2), human papilloma virus transcription

factor E2 (HPV E2), bacterial membrane protein ZipA, and cytokine tumor-necrosis

factor (TNF). Initial hits were identified by high-throughput screening were in the

micromolar range, and optimized into nanomolar inhibitors by medicinal chemistry

efforts. One thing to note from the screening studies was the high percentage of false

positives. This may be due to the chemical space representation of the compound

libraries, which typically contain compounds targeting traditional drug discovery tar-

gets (e.g., proteases, G-protein-coupled receptors). As the number of PPI inhibitors

increase, retrospective studies can be performed to identify the appropriate chemical

space in which to search.

In addition to discovery through screening efforts, rational, structure-based design

studies have also been demonstrated to be effective in targeting PPI interfaces. In

particular, the use of alpha-helical mimetic scaffolds has proven to be effective in a

number of targets. Walensky et al. used a hydrocarbon stapling strategy to design

stabilized alpha-helix of BCL-2 domains which was shown to be helical, protease-

resistant, and cell-permeable to bind to BCL-2 pockets with enhanced affinity. (?)

Subsequent theoretical studies have provided insight into the underlying forces re-

sponsible for its α-helical propensity. In another notable series of molecular design

studies, the Hamilton group used various non-peptidic, small-molecule scaffolds as

α-helix mimetics and demonstrated their effectiveness with a variety of PPI targets.

Recent examples of successes from both screening studies and rational design demon-

strated the feasibility of targeting PPI interfaces for modulation and inhibition of

biological functions. Due to its prevalence and importance in biology, PPI serves as

the next frontier of structural targets for the development of therapeutics with novel

modes of action.
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2.4 Bacterial Two-Component Signal Transduction

Systems

Two-component signal transduction (TCST) is the predominant signaling scheme

used in bacteria to sense and respond to environmental changes in order to survive

and thrive. Bacteria typically contain over a dozen TCST systems that are involved

in regulating physiological functions such as metabolism and motility, as well as more

specialized functions such as virulence and development. Since their discovery approx-

imately 20 years ago, TCST systems have been extensively studied across a number

of different bacterial species. Due to the prevalence and importance of TCST in

bacteria, gaining a better understanding of these signaling systems may be useful

for the development of antibiotics to target these conserved and ubiquitous modular

signaling schemes.

This section provides background on the mechanism of TCST, characteristics of the

largest structural family of TCST response regulators (OmpR/PhoB), the PhoP re-

sponse regulator in Salmonella enterica, and the attractiveness of targeting response

regulators for therapeutics development.

2.4.1 Mechanism

Two-component signal transduction (TCST) is the predominant signaling scheme in

bacteria to sense and respond to environmental changes for survival and proliferation.

(Stock et al., 2000; Gao et al., 2007; Gao and Stock, 2009; Stock and Guhaniyogi,

2006; Gao and Stock, 2010) TCST regulatory systems are modular in terms of their

arrangement of domains within their proteins within various pathways. In general,

TCST regulatory systems are comprised of a transmembrane sensor histidine kinase

(HK) and an intracellular receiver response regulator (RR) with conserved sequence,

structural, and biochemical properties, allowing them to readily adapt to various

modes of intracellular signaling. These signaling systems typically couple environ-

mental stimuli to an adaptive response, participating in fundamental processes such

as regulating metabolism, as well as more specialized functions such as controlling

virulence for the pathogens host.
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A TCST system in its simplest form consists of 2 conserved components: a histidine

kinase (HK) and a response regulator (RR). The HK is the input component to detect

external stimuli to generate a response through the signaling pathway. The RR is the

output component regulated by the HK to produce a response to external changes.

In the signaling scheme, the HK autophosphorylates at a histidine residue, resulting

in a high-energy phosphoryl group that is subsequently transferred to an aspartic

acid residue of the RR. Phosphorylation induces a conformational change of the RR

to activate its function as a transcription factor to respond to the external stimuli

transduced by the HK by gene regulation. (See Fig: 2.3.)

Figure 2.3: Schematic diagram of a typical two-component signal transduction
(TCST) system. The conserved histidine-containing kinase domain (HisK) of the

histidine kinase is shown in yellow and the conserved aspartic-acid-containing
receiver domain (REC) of the response regulator is in green. The variable domains

that confer specificity of input (the sensing domain) and output (effector domain) to
each TCST system are shown in gray. Figure taken from Gao et al. (2007).

2.4.2 OmpR/PhoB Structural Subfamily

PhoP is a member of the OmpR/PhoB structural family, the largest structural fam-

ily making up approximately 30% of all TCST response regulators. OmpR/PhoB

family members are typically composed of 2 domains connected by a flexible linker:

an N-terminal receiver domain and a C-terminal DNA-binding domain. Response

regulators of the OmpR/PhoB family are characterized by a conserved α4-β5-α5

structural motif of the receiver domain, a plastic surface important for dimerization.

OmpR/PhoB subfamily members are characterized with a conserved and functionally

important α4-β5-α5 structural motif at the dimer interface. (See Fig: 2.4 and Fig:

2.5.)
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Figure 2.4: Dimer structure of the PhoB receiver domain (PDB ID: 1ZES). The
receiver domain has a conserved α4-β5-α5 (teal blue) and OmpR/PhoB subfamily

RRs appear to share a conserved dimeric structure once phosphorylated. The
non-covalent phosphoryl analogue beryllofluoride (BeF3−) coordinates to the

conserved aspartate residue (red), allosterically perturbing the α4-β5-α5 surface
(green) and promoting dimerization. Figure taken from Gao et al. (2008).

The N-terminal α4-β5-α5 interface share a common set of hydrophobic and charged

residues involved in van der Waals contact and salt-bridges important for homod-

imerization and function, and are conserved amongst other response regulators across

different bacteria species. (Gao et al., 2007)

2.4.3 Salmonella enterica PhoP Response Regulator

The PhoQ/PhoP two-component regulator system is a major regulator of virulence

in Salmonella enterica serovar Typhimurium, and also in a number of other gram-

negative bacterial pathogens (e.g., Shigella flexneri, Yersinia pestis, Neisseria menin-

gitidis). (Groisman, 2001; Vescovi et al., 1996; Moss et al., 2000; Oyston et al., 2000;

Jamet et al., 2009; Johnson et al., 2001) PhoQ/PhoP in S. enterica is activated by low

extracellular Mg2+ levels, acidic pH, and antimicrobial peptides (typical of human gut

conditions during infection) to control various physiological and virulence functions.

(Vescovi et al., 1996; Choi et al., 2009; Kato and Groisman, 2008; Shi et al., 2004)
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Figure 2.5: Sequence alignment of the α4-β5-α5 region of E. coli response
regulators. Response regulators include all E. coli OmpR/PhoB subfamily members

and some representatives from other subfamilies. Among the highly conserved
residues within the OmpR/PhoB subfamily are the highlighted residues that are

involved in intermolecular interactions: hydrophobic contacts (blue); charged
residues for salt bridge formation (orange). The pairing of charged residues is

labelled by four pairs of letters a, b, c and d. A red highlight represents a pair of
residues that are not conserved but could still complement each other with reversed
charges. All these highlighted residues are not well conserved in response regulators

from other families. Figure taken from Gao et al. (2008).
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In the signaling cascade (Figure 1), the PhoQ histidine kinase is activated by low ex-

tracellular magnesium levels and is autophosphorylated at a histidine residue. PhoQ

subsequently transfers the phosphate group from the conserved histidine of PhoQ to

the conserved aspartate on the PhoP response regulator. Phosphorylation of PhoP

presumably induces a conformational change to mediate homodimerization for DNA

binding. The PhoP homodimer functions as a transcription factor by recognizing and

binding to phoP boxes in promoters of PhoP-regulated genes. Through this mech-

anism, PhoP regulates expression of approximately 3% of the Salmonella genes in

response to low magnesium levels to control physiological and virulence functions.

3.1

Figure 2.6: Schematic diagram of the Salmonella enterica PhoQ/PhoP
two-component signal transduction system. PhoQ is the sensor histidine kinase, and

PhoP is the response regulator. PhoQ senses low extracellular magnesium levels,
leading to autophosphorylation at a conserved histidine residue. PhoQ transfers to

phosphate group to a conserved aspartate residue on PhoP. Phosphorylation of
PhoP mediates activation by causing a conformational change, allowing PhoP to
homodimerize. PhoP recognizes phoP boxes at its DNA promoters (e.g., phoP,
phoQ, mgtA) and function as a transcription factor to regulate virulence gene

expression (including positive feedback loop).

It was hypothesized that bacterial virulence could be inhibited by disruption of the

PhoQ/PhoP signaling pathway, specifically by targeting the α4-β5-α5 interface of the

PhoP response regulator. Preventing this essential protein-protein interaction (PPI)
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would inhibit formation of the PhoP-DNA complex and its function as a transcription

factor to regulate gene expression. 3.2 PhoP was chosen in this study as a prototype

of the OmpR/PhoB family of response regulators to probe for PPI hot spots at the

α4-β5-α5 interface (Figure 2), in efforts to identify and characterize potential binding

sites.

Figure 2.7: Critical salt-bridges at the PhoP α4-β5-α5 interface important for PhoP
homodimerization and function. Residues important for dimerization (site-directed

mutagenesis studies, Stock et al., unpublished) are shown in capped sticks and
labeled by their residue name and number. Mutation of one of these residues

decreases its ability to homodimerize. The PhoP homodimer (PDB ID: 2PKX)
(Bachhawat and Stock, 2007) (cartoon) binds to phoP boxes in promoters of

PhoP-regulated genes to modulate virulence gene expression.

The S. enterica PhoQ/PhoP signaling pathway is one of the better characterized bac-

terial TCST systems demonstrated to be important for virulence regulation. High-

resolution X-ray crystal structures of both inactivated (PDB ID: 2PKX) and activated

(PDB ID: 2PL1) E. coli PhoP were available with an interface highly similar in se-

quence to the one in S. enterica (differing only by 1 residue at the α4-β5-α5 interface).

(Bachhawat and Stock, 2007) For these reasons, S. enterica PhoP was an attractive

target for investigation via structure-based drug design to test the effects of response

regulator inhibition and its potential for virulence regulation.
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2.4.4 Drug Discovery

A promising strategy towards antibacterial development is to target TCST regula-

tory systems to disrupt the expression of genes important for virulence. Targeting

bacterial signal-transduction systems has only recently been demonstrated to be an

effective potential strategy for antibiotics development. Rasko et al. (2008) targeted

the sensor TCST component, the QseC histidine kinase, by the prevention of au-

tophosphorylation, which led to disruption of the signaling cascade important for

virulence regulation. Hung et al. (2005); Shakhnovich et al. (2007) demonstrated

the feasibility of a small-molecule for homodimer inhibition and virulence gene reg-

ulation when they discovered virstatin to target the Vibrio cholerae ToxT. These

studies demonstrated the feasibility of drug-like molecules targeting TCST-regulated

gene expression important for virulence as a potential strategy for antibiotics devel-

opment.
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Chapter 3

Discovery of PhoP Response

Regulator Inhibitors

3.1 Introduction

Infectious diseases have evolved resistance to most clinical antibiotics. Antibiotic re-

sistance occurs at low levels in natural populations, but can become prevalent within

a few years of the clinical adoption of an antibiotic. Antimicrobial therapeutics cur-

rently in clinical use either inhibit bacterial growth or induce death. One promising

strategy is to combat virulence per se without inhibiting growth or inducing death, so

less selective pressure will cause the bacteria to generate resistance. With the emer-

gence of bacterial strains resistant to multiple antibiotics, there is an urgent need

for the development of antibiotics with different modes of action less subjective to

development of resistance.

Two-component signal transduction (TCST) is the predominant signaling scheme in

bacteria to sense and respond to environmental changes for survival and proliferation.

(Stock et al., 2000; Gao et al., 2007; Gao and Stock, 2009; Stock and Guhaniyogi,

2006; Gao and Stock, 2010) TCST regulatory systems are modular in terms of their

arrangement of domains within their proteins within various pathways. In general,

TCST regulatory systems are comprised of a transmembrane sensor histidine kinase

(HK) and an intracellular receiver response regulator (RR) with conserved sequence,

structural, and biochemical properties, allowing them to readily adapt to various

modes of intracellular signaling. These signaling systems typically couple environ-

mental stimuli to an adaptive response, participating in fundamental processes such
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as regulating metabolism, as well as more specialized functions such as controlling

virulence for the pathogens host.

The PhoQ/PhoP two-component regulator system is a major regulator of virulence

in Salmonella enterica serovar Typhimurium, and also in a number of other gram-

negative bacterial pathogens (e.g., Shigella flexneri, Yersinia pestis, Neisseria menin-

gitidis). (Groisman, 2001; Vescovi et al., 1996; Moss et al., 2000; Oyston et al., 2000;

Jamet et al., 2009; Johnson et al., 2001) PhoQ/PhoP in S. enterica is activated by low

extracellular Mg2+ levels, acidic pH, and antimicrobial peptides (typical of human gut

conditions during infection) to control various physiological and virulence functions.

(Vescovi et al., 1996; Choi et al., 2009; Kato and Groisman, 2008; Shi et al., 2004)

In the signaling cascade (Fig: 3.1), the PhoQ histidine kinase is activated by low ex-

tracellular magnesium levels and is autophosphorylated at a histidine residue. PhoQ

subsequently transfers the phosphate group from the conserved histidine of PhoQ to

the conserved aspartate on the PhoP response regulator. Phosphorylation of PhoP

presumably induces a conformational change to mediate homodimerization for DNA

binding. The PhoP homodimer functions as a transcription factor by recognizing and

binding to phoP boxes in promoters of PhoP-regulated genes. Through this mech-

anism, PhoP regulates expression of approximately 3% of the Salmonella genes in

response to low magnesium levels to control physiological and virulence functions.

The S. enterica PhoQ/PhoP signaling pathway is one of the better characterized

bacterial TCST systems demonstrated to be important for virulence regulation.

PhoP is a member of the OmpR/PhoB structural family, the largest structural family

making up approximately 30% of all TCST response regulators. OmpR/PhoB fam-

ily members are typically composed of 2 domains connected by a flexible linker: an

N-terminal receiver domain and a C-terminal DNA-binding domain. Response regula-

tors of the OmpR/PhoB family are characterized by a conserved α4-β5-α5 structural

motif of the receiver domain, a plastic surface important for dimerization. Due to the

conservation and importance of the α4-β5-α5 structural motif for function amongst

OmpR/PhoB family members, it was hypothesized that bacterial virulence could be

inhibited by disruption of the PhoQ/PhoP signaling pathway, specifically by target-

ing the α4-β5-α5 interface of the PhoP response regulator. Preventing this essential

protein-protein interaction (PPI) would inhibit formation of the PhoP-DNA complex

49



Figure 3.1: Schematic diagram of the Salmonella enterica PhoQ/PhoP
two-component signal transduction system. PhoQ is the sensor histidine kinase, and

PhoP is the response regulator. PhoQ senses low extracellular magnesium levels,
leading to autophosphorylation at a conserved histidine residue. PhoQ transfers to

phosphate group to a conserved aspartate residue on PhoP. Phosphorylation of
PhoP mediates activation by causing a conformational change, allowing PhoP to
homodimerize. PhoP recognizes phoP boxes at its DNA promoters (e.g., phoP,
phoQ, mgtA) and function as a transcription factor to regulate virulence gene

expression (including positive feedback loop).
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and its function as a transcription factor to regulate gene expression. PhoP was cho-

sen in this study as a prototype of the OmpR/PhoB family of response regulators to

probe for PPI hot spots at the α4-β5-α5 interface (Fig: 3.2), in efforts to identify

and characterize potential binding sites. The response regulator N-terminal α4-β5-α5

interface share a common set of hydrophobic and charged residues involved in van der

Waals contact and salt-bridges important for homodimerization and function, and are

conserved amongst other response regulators across different bacteria species. (Gao

et al., 2007) High-resolution X-ray crystal structures of both inactivated (PDB ID:

2PKX) and activated (PDB ID: 2PL1) E. coli PhoP were available with an interface

highly similar in sequence to the one in S. enterica (differing only by 1 residue at the

α4-β5-α5 interface).(Bachhawat and Stock, 2007) For these reasons, S. enterica PhoP

was an attractive target for investigation via structure-based drug design to test the

effects of response regulator inhibition and its potential for virulence regulation.

Figure 3.2: Critical salt-bridges at the PhoP α4-β5-α5 interface important for PhoP
homodimerization and function. Residues important for dimerization (site-directed

mutagenesis studies, Stock et al., unpublished) are shown in capped sticks and
labeled by their residue name and number. Mutation of one of these residues

decreases its ability to homodimerize. The PhoP homodimer (PDB ID: 2PKX)
(Bachhawat and Stock, 2007) (cartoon) binds to phoP boxes in promoters of

PhoP-regulated genes to modulate virulence gene expression.

Targeting bacterial signal-transduction systems has only recently been demonstrated

to be an effective potential strategy for antibiotics development. Rasko et al. (2008)
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targeted the sensor TCST component, the QseC histidine kinase, by the prevention of

autophosphorylation, which led to disruption of the signaling cascade important for

virulence regulation. Hung et al. (2005); Shakhnovich et al. (2007) demonstrated the

feasibility of a small-molecule for homodimer inhibition and virulence gene regulation

when they discovered virstatin to target the Vibrio cholerae ToxT. These studies

demonstrated the feasibility of drug-like molecules targeting TCST-regulated gene

expression important for virulence as a potential strategy for antibiotics development.

A prototype of the predominant class of bacterial signal transduction important for

bacterial virulence is investigated as a proof-of-concept study towards this new strat-

egy for antibiotics development. TCST systems predominate in control of bacterial

expression and are completely absent in humans, making them an attractive class

of targets for the development of new antibiotics with novel modes of action. To

our knowledge, there are currently no known inhibitors of TCST response regula-

tors. Drug-like compounds targeting PhoP, specifically the functionally important

α4-β5-α5 interface, should selectively disrupt its function as a transcription factor

and inhibit the expression of critical virulence genes. In this study, a hybrid ap-

proach coupling computational (Fig: 3.3) and experimental (Fig: 3.4) methods was

used to predict, validate, and characterize drug-like inhibitors of the S. enterica PhoP

response regulator.

3.2 Methods and Materials

3.2.1 Overview of Computational Strategy

3.3 illustrates an overview of the computational strategy to prioritize compounds tar-

geting the α4-β5-α5 interface of PhoP. Structure-based virtual screening was used to

screen a drug-like version of the National Cancer Institute (NCI) Diversity library

(n = 1420) with the crystal structure of the activated PhoP (PDB ID: 2PL1) (?).

The docking procedure (labeled Docking) was performed using AutoDock to predict

binding poses. A consensus scoring method (labeled Scoring) consisting of the pre-

dicted binding affinities from AutoDock (Morris et al., 1998), X-Score (Wang et al.,

2002), and CScore (SYBYL) was used to better assess the binding affinities of the
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Figure 3.3: Schematic diagram of the computational workflow to predict for PhoP
response regulator inhibitors. In the computational method, a drug-like version of
the NCI Diversity library (n = 1420) was screened for inhibitors of activated PhoP

(PDB ID: 2PL1). Docking was performed using AutoDock 4.0.1 and FRED
(OpenEye). The predicted binding poses were rescored using X-Score and CScore.

A consensus scoring scheme composed of the predict affinities from AutoDock,
X-Score, and CScore was used to rank the compounds. The top-ranked compounds
were tested experimentally. Similarity search (Tanimoto Index) was performed on 8

compounds with inhibition activity to search for structural analogs.

Figure 3.4: Schematic diagram of the experimental workflow to test for PhoP
response regulator inhibitors. In the experimental strategy, the set of prioritized
compounds were initially tested using EMSA. Compounds displaying inhibition

activity by EMSA were further characterized for effects on dimerization using native
PAGE, SEC, and FRET. Eight compounds inhibited formation of the protein-DNA

complex necessary for virulence gene regulation.
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resulting poses. The top-ranked compounds were tested experimentally to assess bio-

logical activity and characterize the mode of action. As an alternative computational

method to identify potential PhoP inhibitors, FRED (OpenEye) was used for both

docking and scoring (consensus method using PLP, ChemScore, OEChemScore). The

top-ranked compounds from FRED (n = 40) were also tested experimentally.

From the experimental results, a similarity search based on the Tanimoto index (la-

beled Similarity Search) was performed to identify structural analogs (n = 36). These

analogs were also experimentally tested. A total of 255 compounds were tested ex-

perimentally, and verified 8 compounds that inhibited formation of the PhoP-DNA

complex necessary for gene regulation.

3.2.2 Compound Library and Crystal Structure

A drug-like version of the National Cancer Institute (NCI) Diversity I library com-

posed of 1420 compounds (derived from a larger version of the NCI library of 140,000

compounds filtered based on criteria characteristic of drug-like compounds derived

from Lipinskis Rule of 5), was screened. Compounds in the NCI Diversity library

have purity 90% or better as characterized by liquid chromatography-mass spectrom-

etry (LC-MS). The compound library was downloaded in SD format and converted

to mol2 format using OpenBabel. Inactivated and activated E. coli PhoP (PDB

ID: 2PKX and 2PL1, respectively) were downloaded from the Protein Data Bank.

(Bachhawat and Stock, 2007)

3.2.3 Structure-Based Virtual Screening

AutoDock

AutoDock 4.0.1 was used to predict binding poses for compounds in the NCI Diversity

library for experimental testing. (Morris et al., 1998; Huey et al., 2007) AutoDock was

used to convert the ligand structures from the mol2 format to the AutoDock pdbqt

format, with explicit hydrogen atoms and calculated Gasteiger charges. AutoDock-

Tools (ADT) was used to prepare the protein structures. (Morris et al., 2009) Polar
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hydrogens were added to the protein target, and Gasteiger charges were assigned.

The structure files were saved in the pdbqt format.

Docking was performed to identify low-energy conformations (binding poses) of the

compounds to sterically and chemically complement the binding site. The protein

search area (grid spacing of 0.375 Å with dimensions of 40 × 40 × 40 Å) was centered

at the α4-β5-α5 motif where residues critical for dimerization in PhoP (e.g., Arg 111

and Arg 118 of activated PhoP) and other OmpR/PhoB family members are located,

as shown in 3.5. (30) Lamarckian genetic algorithm was used to perform the ligand

conformational searches to result in 30 binding poses for each ligand. The default

parameters were used; to increase the sampling and accuracy, the following parameters

were modified: ga pop size = 200; ga num evals = 5,000,000; ga run = 30.

A drug-like version of the NCI Diversity library (1420 compounds) (?) filtered based

on drug-like and lead-like features was screened using AutoDock 4.0.1. Virtual screen-

ing was performed on the E. coli activated PhoP (PDB ID: 2PL1), since the sequence

at the dimer interface was highly similar to the S. enterica PhoP (S. enterica PhoP

contains SER 93, while E. coli PhoP has ALA 93). AutoDock was used to generate

docked poses of the NCI Diversity compounds at the PhoP dimer interface.

Fast Rigid Exhaustive Docking (FRED)

FRED (OpenEye) was used as an alternative computational tool for both docking and

scoring. OMEGA2 (OpenEye) was used to generate bioactive ligand conformations

according to the parameters from the study by Bostrom et al. Default parameters

were used for FRED docking searches. Binding site was marked by using a docked

ligand from the NCI Diversity library, and specifying the regions within 5 Å of it. The

default FRED scoring function was used to predict binding affinities to rank ligands

for experimental testing.

Rescoring of Predicted Poses

Due to the known limitations of scoring functions to accurately predict binding affini-

ties, (Stahl and Rarey, 2001; Kitchen et al., 2004; Ferrara et al., 2004) especially in
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Figure 3.5: To prioritize compounds in NCI Diversity (n = 1420) to identify PhoP
dimerization inhibitors, docking searches were constrained at the interface regions
where salt-bridges critical for dimerization are located (AutoDock grid boxes used

illustrated by hashed lines). Residues critical for dimerization (R111 and R118) are
labeled and shown in CPK, in addition to PhoP (PDB ID: 2PKX) chain A (ribbon)

and chain B (surface).
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the case where the compounds are docked to a novel target with a relatively flat bind-

ing site typical of protein dimer interfaces, a consensus scoring scheme was used to

prioritize and identify tight-binding ligands. (Halperin et al., 2002; Stahl and Rarey,

2001; Wang et al., 2004; Ferrara et al., 2004; Warren et al., 2006) Consensus scoring

has proven to be effective in increasing the enrichment rate in a number of studies.

(Wang et al., 2003; Cheng et al., 2009) Ligand binding poses predicted by AutoDock

were rescored using CScore in SYBYL 7.3, which is composed of 4 separate scoring

functions (D-score, ChemScore, PMF-score, G-score), and X-Score. (Wang et al.,

2002; Eldridge et al., 1997) The consensus score for CScore resulted in integer scores

between 1 and 4, with 4 being the highest. Docked poses were then sorted based on

the consensus CScore value, and subsequently by the ChemScore binding affinities.

The consensus score estimated by X-Score with default parameters, composed of 3

different scoring functions (HPScore, HMScore, HSScore), was used. The top 15% of

the docked poses ranked by each of the scoring functions (the AutoDock binding free

energy, the CScore consensus method, and the X-Score consensus method) were se-

lected, and the docked poses found in all 3 scoring methods (6390 poses representing

179 compounds) were selected for experimental testing.

This computational protocol of docking and consensus scoring has been demonstrated

to be effective in our research group for identifying lead compounds from the NCI Di-

versity library for various PPI studies. (Taylor et al., 2008) Since there are no known

inhibitors of PhoP or any TCST response regulators with which to validate a com-

putational protocol (there are only a small number of structural examples of protein-

protein interaction inhibitors available as reviewed by Wells (Wells and McClendon,

2007), and no examples to our knowledge with a binding site that is structurally

related to PhoP), this protocol was initially used for virtual screening.

3.2.4 Overview of Experimental Strategy

Figure 3.4 illustrates an overview of the experimental strategy to assess biological ac-

tivity and characterize the mode of action. of the predicted compounds. As a primary

assay, electrophoretic mobility-shift assays (EMSA) were used to assess whether the

compounds (n = 255) can inhibit the formation of the S. enterica PhoP-DNA complex

necessary for gene regulation. To test whether the compounds active in EMSA (n = 8)

57



affected PhoP dimerization, secondary assays used included native polyacrylamide gel

electrophoresis (PAGE), size exclusion chromatography, and Förster resonance energy

transfer (FRET)-based assay. Native PAGE was used to detect qualitative effects on

S. enterica PhoP dimerization. SEC was used to better characterize the compounds

ability to inhibit S. enterica PhoP dimerization by measuring the monomer-dimer

profile. FRET was used as a higher-throughput method to quantify the effects of

dimerization on E. coli OmpR/PhoB members to assess compound selectivity at the

α4-β5-α5 interface. Experimental results from the primary and secondary assays

suggest the compounds inhibit formation of the PhoP-DNA complex, not by dimer

inhibition, but in an allosteric manner to prevent DNA binding or by blocking the

C-terminal DNA-binding domain. Potential mode of actions will be presented in a

greater detail in Section 3.4.2.

3.2.5 Electrophoretic Mobility-Shift Assays (EMSA)

As a primary assay, an electrophoretic mobility-shift assay, also known as a gel-shift

assay, was used to test the ability of the compounds to inhibit formation of the PhoP

dimer-DNA complex necessary for gene expression. In the gel-shift assays, the pro-

tein is first activated by phosphorylation to induce the monomer-dimer equilibrium.

Radiolabeled DNA is incubated with the protein, and the compound of interest is

subsequently added to the mixture. After an incubation period, the sample is loaded

and electrophesed on a gel to observe formation of the protein-DNA complex. Com-

pounds which inhibit protein-DNA complex formation will lead to a darker band

further down in the gel representing unbound DNA, while compounds which do not

effect complex formation will result in a single band higher up on the gel (bound com-

plex). Band intensities can be quantified and fitted to a sigmoidal curve to estimate

IC50 values in dose-response experiments.

PhoP was activated by in vitro phosphorylation with acetyl phosphate to induce

formation of monomer-dimer equilibrium. Compounds dissolved in DMSO (99.9%)

were then incubated with the monomer-dimer mix, which did not exceed 1% volume of

DMSO in the final solution concentration. Radioactive-labeled DNA containing phoP

boxes (GGTTTAxxxxTGTTTA) were subsequently incubated with the mix to allow
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formation of the PhoP-DNA complex. Samples were loaded on 4-20% TBE gels (In-

vitrogen) and electrophoresed. Gels were dried and analyzed using a phosphorimager

(FujiFilm BAS-5000). Compounds that did not effect DNA-binding displayed a single

band upstream which represented the bound PhoP-DNA complex. Compounds that

inhibited formation of the PhoP-DNA complex displayed a shift, resulting in a band

of the PhoP-DNA complex and/or a downstream band which represented unbound

DNA.

ImageJ was used to quantitate the EMSA band intensities (for both bands represent-

ing bound and unbound DNA). KaleidaGraph was used to perform the curve fitting

using a sigmoidal function to derive the IC50 values from dose response experiments.

The phop DNA fragments for electrophorectic mobility-shift assays were amplified

by PCR using primers 312 and 369, and genomic DNA of wild-type S. enterica as

template. The DNA fragments were isolated by running an electrophoretic gel and

purified using QIAquick columns (Qiagen). To radiolabel the DNA fragments, 100 ng

of phop DNA was used with T4 polynucleotide kinase and γ−32P ATP and incubated

at 37 C◦ for 1.5 h. Unincorporated DNA was removed using G-50 microcolumns

(Amersham). 20,000 CPM of labeled probe ( 12 fmol), 200 ng poly(dI-dC)-poly(dI-

dC) (Amersham), and phosphorylated PhoP-His6 were mixed with binding buffer (50

mM Tris-HCl pH 8.0, 50 mM KCl, 50 µg/ml BSA) in a total volume of 20 µl and

incubated for 20 min at room temperature.

For electrophoretic mobility-shift assays, S. enterica PhoP-His6 was phosphorylated

with acetyl phosphate. PhoP (0.6-1.2 nmol) was incubated in 50 µl of phosphory-

lation buffer (50 mM Tris-HCl pH 7.5, 50 mM KCl, 10 mM MgCl2) containing 10

mM acetyl phosphate (Sigma-Aldrich) for 2.5 h at room temperature. Excess acetyl

phosphate was removed from phosphorylated PhoP-His6 using a Micro Bio-Spin 6

Chromatography Column (Bio-Rad) equilibrated with Tris buffer. Phosphorylated

PhoP-His6 were kept at 4 C◦ and used with 24 h.
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3.2.6 Similarity Search

To identify similar compounds of the experimentally confirmed inhibitors, a similarity

search (Tanimoto index) using the NCI website (http://129.43.27.140/ncidb2/) was

performed to search the larger NCI library of 140,000 compounds. Using the experi-

mentally confirmed compounds as the query, 36 compounds from the full NCI library

were found, ordered, and experimentally tested by EMSA for inhibition activity.

3.2.7 Native Polyacrylamide Gel Electrophoresis (PAGE)

To test the effect of compounds on PhoP dimerization, a native polyacrylamide gel

electrophoresis (PAGE) assay was used. The protein is first activated by phospho-

rylation to induce formation of the monomer-dimer equilibrium (same method as

described in EMSA). The compound of interest is incubated with the equilibrium

mixture. Samples are loaded and electrophoresed on a native PAGE gel to separate

the monomer and dimer states. Proteins can be visualized by gel staining. Com-

pounds with no effects on dimerization should display 2 bands: one less intense and

more downstream band representing the monomer, and a darker and more upstream

band representing the dimer. Compounds with inhibition effects on dimerization

will display a more intense band representing the monomer, and a less intense band

representing the dimer.

S. enterica PhoP-His6 was phosphorylated in the same manner as by EMSA. Com-

pounds were incubated with the active protein for 30 min, and loading buffer was

added after. Samples were loaded and ran on a native gel (6% Tris-Glycine; Invit-

rogen) at 4 C◦. Gels were then stained with coomassie blue to visualize the bands

representing the protein.

3.2.8 Size-Exclusion Chromatography (SEC)

Size-exclusion chromatography was used to better characterize the monomer-dimer

distribution. Protein is activated by phosphorylation (similar manner to EMSA and

native PAGE) to induce the monomer-dimer equilibrium. Compound of interest
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is incubated with the equilibrium mix, and injected to and separated by the size-

exclusion column. Relative absorbance (A280) is detected from the elutions to quantify

the amount of protein present. Compounds which inhibit dimerization will display

a larger peak in the earlier elution representing the monomer, and a smaller peak in

a later elution representing the dimer. Compounds which do not effect dimerization

will not display any changes in the monomer-dimer absorbance profile. (Data not

shown)

Purified PhoP-His6 was phosphorylated using 50 mM ammonium phosphoramidate

(synthesized by the method of Sheridan et al.(48)) and 20 mM MgCl2 for 30 min

at room temperature. Compounds were subsequently incubated with PhoP for 30

min. Samples of inactivated and activated PhoP (100 µl) were individually applied

to a Superdex 75 column (GE Healthcare) equilibrated with elution buffer (50 mM

Tris/HCl, pH 8.0, 150 mM KCl). Proteins were eluted in the same buffer at a flow rate

of 0.5 ml/min. Protein concentration was assessed by measuring the OD280. Fractions

were collected and analyzed using native PAGE. A molecular weight standards kit

(Sigma-Aldrich) was applied to the column for calibration.

3.2.9 Förster resonance energy transfer (FRET) analyses

FRET analyses were used to detect and quantify effects on dimerization on E. coli

PhoP. In FRET, a cyan fluorescent protein-fused PhoP (CFP-PhoP) and a yellow

fluorescent protein-fused PhoP (YFP-PhoP) are activated by phosphorylation. Phos-

phorylation induces dimerization between CFP-PhoP and YFP-PhoP, and brings the

CFP and YFP in proximity where an energy exchange occurs. PhoP dimerization is

characterized by a decrease of cyan emission and an increase of yellow emission. The

rate of FRET increase depends on the rates of phosphorylation and dimerization.

Compounds which inhibit dimerization will lead to a decrease in the FRET signal,

while compounds which do not effect dimerization will not change the FRET signal.

FRET analyses of fluorescent protein (FP) fused PhoP proteins, CFP-PhoP and

YFP-PhoP, were performed as described in (Gao et al., 2008) Phosphorylation of

FP-PhoP was initiated by addition of MgSO4 and phosphoramidate to the mixture

of CFP-PhoP, YFP-PhoP and indicated compounds. The final concentrations were
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0.6 µM CFP-PhoP, 2.5 µM YFP-PhoP, 20 mM phosphoramidate, 5 mM MgSO4, 100

µM compounds and 1% (v/v) DMSO. Fluorescence was followed at 475 nm and 530

nm with excitation at 430 nm. The ratio of 475 nm and 530 nm emissions was defined

as the FRET ratio to monitor the interaction between CFP-PhoP and YFP-PhoP.

3.2.10 S. enterica PhoP Expression and Purification

S. enterica PhoP response regulator with a C-terminal His6-tag were overexpressed

in E. coli strain BL21(DE3) transformed with the pT-7-7 plasmid. Cells were grown

in Luria-Bertani medium with ampicillin (100 mg/liter) and incubated until mid-

logarithmic phase at 37 C◦. Overexpression was induced with 1 mM isopropyl-β-D-

thiogalactopyranoside (IPTG) and incubated overnight at 25 C◦.

For purification, cells were harvested by centrifugation and then washed and resus-

pended in PBS, and stored overnight in -80 C◦. Cells were then thawed at 4 C◦,

suspended in lysis buffer (50 mM NaH2PO4, pH 8.0, 300 mM NaCl, 10 mM imida-

zole) and lysed by sonication. Cells were then centrifuged and the cell lysate was

collected as the supernatant. Cell lysate was applied to a Ni2+ column (GE Health-

care). Unbound proteins were removed with elution with Buffer A (50 mM Tris-HCl

pH 8.0, 500 mM NaCl, 10 mM imidazole). Bound proteins were eluted with a 0 to

100% gradient of Buffer A to Buffer B (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 500

mM imidazole). Fractions were collected and analyzed by SDS/PAGE. Proteins were

concentrated using Amicon Ultra-15 filters (Millipore) and stored in storage buffer

(20 mM Tris pH 7.8, 100 mM KCl, 20% glycerol) at -80 C◦. Protein concentrations

were determined by measuring the OD280 (NanoDrop spectrophotometer). Purity

was assessed by SDS/PAGE.
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3.3 Results

3.3.1 Computational Predictions

Computational strategy identified inhibitors which potentially bind at the

PhoP α4-β5-α5 interface. A total of 259 compounds were tested experimentally.

From the results obtained by AutoDock and the consensus scoring scheme, the follow-

ing number of compounds include: 119 compounds that used a search grid centered

at Arg 111, 60 compounds that used a search grid centered at Arg 118. (Fig: 3.5)

From the results obtained by docking using FRED (search area centered at Arg 111),

40 compounds were tested.

3.3.2 Experimental Validation and Characterization

Eight compounds inhibited formation of the PhoP-DNA complex. A total

of 255 compounds were tested by EMSA: 119 compounds from the Arg 111 binding

site screen using AutoDock, 40 compounds from the Arg 111 binding site screen

using FRED, 60 compounds from the Arg 118 binding site screen, and 40 compounds

identified from a Tanimoto similiarity search for analogs of the initial hits within the

entire NCI library. Eight compounds (NSC9608, NSC35489, NSC45576, NSC48630,

NSC65238, NSC88915, NSC118806, NSC168197) (See Fig: 3.6) displayed inhibition

activity via disruption of the PhoP-DNA complex. The 8 compounds inhibited PhoP-

DNA complex formation in a dose-dependent manner (See Fig: 3.7), with 6 of the 8

compounds displaying an IC50 in the micromolar range (3.6 µM to 285 µM).

Analogs (36 in total) of the 8 inhibitors based on Tanimoto similarity (90% similar)

from the NCI library (140,000 compounds) did not display inhibition activity by

EMSA. Inactivity of these analogs may be due to the sensitive preference of the

PhoP binding site at the α4-β5-α5 interface.

Compounds did not effect PhoP dimerization. The 8 compounds did not

display any effects on band intensity for the band representing the PhoP monomer

and dimer in the native PAGE assay (See Fig: 3.8). These results suggested that the
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Figure 3.6: Chemical structures of the 8 compounds (1-8) that inhibited formation
of the PhoP-DNA complex by electrophoretic mobility-shift assays (EMSA) with

their NSC number and their estimated IC50 values

compounds do not act as dimerization inhibitors. However, band intensity changes

may not have been observed due to the inability of the gel to distinctly separate the

phosphorylated monomer and dimer species.

The 8 compounds also did not display any changes on the monomer-dimer profile

of PhoP as compared with a control (DMSO) using size-exclusion chromatography,

which performs a better separation and characterization of the oligomeric states than

native PAGE. (data not shown) One caveat of using SEC as a binding assay is that

a compound exhibiting a rapid off-rate cannot be detected with SEC due to time (30

min.) needed to perform the separations.

Results from the FRET assays using E. coli PhoP also did not suggest any degree

of dimer inhibition (See Fig:3.9). However, with the use of CFP-PhoP and YFP-

PhoP, one possibility is that the compounds may bind to CFP or YFP instead of

PhoP, resulting in undetected inhibition effects. Some compounds (e.g., 1, 2) were

inherently colored and affected the detection of FRET signal, and therefore could not

be properly tested for dimer inhibition. Compounds 1, 3 and 8 displayed a smaller

FRET ratio changes as compared with the positive control sample (e.g., CY +DMSO,

CY PhoP). However, compounds 1 and 3 interfere with the FP fluorescence while

compound 8 alters the fluorescence ratio of FP-PhoP pairs. Therefore the FRET
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(a) (b)

Figure 3.7: Dose response curves (fitted by sigmoidal function, KaleidaGraph (?))
from electrophoretic mobility-shift assays in presence of compounds 1-4 (a) and 5-8

(b). The points plotted represent the relative amount of PhoP-DNA complex
formed in EMSA experiments.

Figure 3.8: Native PAGE results of S. enterica PhoP in presence of 8 inhibitor
compounds (1-8). PhoP dimerization was induced by phosphorylation via acetyl
phosphate. An unphosphorylated sample without compound (first lane from left)

was used as a negative control. Samples with buffer only (second lane from left) and
with 1% (v/v) DMSO (third lane from left) were used as positive controls.

method is not sufficient to assess the inhibition of compounds 1, 3 and 8. FRET

also cannot detect compounds which bind to the α4-β5-α5 interface to inhibit DNA

binding in an allosteric manner, since only the N-terminal of the PhoP response

regulator bound to CFP or YFP was used.
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Figure 3.9: Time-dependent FRET of E. coli FP-PhoP pairs in the presence of
inhibitor compounds (1-8). Inactive PhoP (no PA) was used as a negative control,
while activated PhoP (no DMSO) and sample with DMSO (DMSO) were used as

positive controls.
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3.4 Discussion

3.4.1 Selective Inhibition of S. enterica PhoP

The 8 compounds did not display any effects on the signal in the FRET assays with

E. coli PhoP, which suggested no inhibition of dimerization (See Figure 3.9). The

compounds may bind the to the E. coli PhoP α4-β5-α5 interface, but have no effects

on dimerization. However, since the E. coli PhoP linker and C-terminal was not

included in the FRET analyses, there remains a possibility that the compounds may

bind to E. coli PhoP to inhibit DNA binding. These results obtained so far suggested

that the compounds might selectively bind to the S. enterica PhoP α4-β5-α5 dimer

interface to inhibit formation of the protein-DNA complex, perhaps by an allosteric

mechanism.

3.4.2 Potential Modes of Action

Experimental results from a series of in vitro and biophysical assays (EMSA, Native

PAGE, SEC, FRET) suggested that the compounds tested disrupt PhoP-DNA com-

plex formation, but not via direct homodimer inhibition. Instead, one potential mode

of action is to bind to the C-terminal DNA-binding domain, a more direct mechanism

to disrupt formation of the PhoP-DNA complex. Another possible mode of action

is by binding to the N-terminal regulatory receiver domain or the linker region to

act in an allosteric manner and prevent conformational changes necessary for DNA

binding. The former may prove to be a more effective strategy for selective inhibition

of response regulators, due to the conserved α4-β5-α5 structural motif of the dimer

interface.

Virtual screening may have helped to identify compounds binding the interface. The

inhibitors did not block dimerization, but did prevent formation of PhoP-DNA com-

plex necessary for gene regulation, perhaps by binding at the α4-β5-α5 interface and

acting by an allosteric mechanism.
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3.4.3 Challenges of Structure-Based Design

In the pursuit of discovering PPI inhibitors, the original objective was to use small-

molecules as probes to identify and characterize potential binding sites at the α4-β5-

α5 interface of S. enterica PhoP to block homodimerization. Through the discovery

of dimerization inhibitors presumably binding at the sites where the critical residues

are located, it was hoped that the findings would lead to a better understanding of the

physical properties underlying molecular recognition of protein-ligand interactions at

PPI. While the original intent of this study was to target the α4-β5-α5 interface to

block dimerization, the experimental results suggest an unexpected finding: drug-like

compounds may bind at the α4-β5-α5 interface and function in an allosteric manner

and cause a conformational change to prevent DNA-binding. Further experimental

characterization (e.g., X-ray crystallography, NMR) will be necessary to identify po-

tential binding sites and to elucidate the atomic details of the complexes to determine

the mode of action.

Structure-based discovery of protein-protein interaction inhibitors remains a signifi-

cant challenge as seen by the high percentage of false positives from the computational

predictions in this study. Docking and structure-based design methods to incorporate

protein flexibility will need to be used to identify and design potential allosteric in-

hibitors, or ones that bind by an induced-fit mechanism. Another potential limitation

is in the scoring functions used for virtual screening, which cannot accurately predict

binding affinities, especially for systems that are not present in the scoring function

training sets (e.g., binding sites with relatively flat surfaces). Even if the docking

modes may be correctly identified, limitations in scoring accuracy may classify po-

tential tight-binding ligands as weak-binders, resulting in a high percentage of false

positives. Perhaps the use of first-principles methods for estimating binding affinities

may help circumvent this limitation, assuming that the correct ligand conformation

was predicted by the docking procedure.

Also, availability of a high-resolution crystal structure of PhoP bound to its DNA

promoter should better elucidate the conformation of the α4-β5-α5 interface in the

biologically-active form bound to DNA, and provide atomic-level detail of poten-

tial binding sites necessary for docking and structure-based drug design. However,

inherent inaccuracy of using a static structure for molecular design may lead to
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false-negatives using structure-based design methods without incorporation of pro-

tein flexibility. For more accurate computational modeling, in particular to target

PPI, improvements in both docking and scoring methods are necessary. With the

increasing interest in targeting PPI and availability of structural and binding affinity

data, development of more accurate and robust SBDD methods to target PPI will

become possible.

3.4.4 Discovery of First-In-Class PhoP Inhibitors

In this study, 8 first-in-class inhibitors of the S. enterica PhoP TCST response reg-

ulator were discovered using a hybrid approach coupling computational and exper-

imental methods for molecular design. Potential mode of action of the compounds

was characterized by a series of in vitro and biophysical assays. Compounds may

potentially bind at the α4-β5-α5 interface and act as allosteric inhibitors, rather than

dimerization inhibitors, to prevent DNA binding. In addition, it is also possible that

the compounds may act by binding to the C-terminal DNA-binding domain to di-

rectly block DNA binding. Discovery of first-in-class PhoP inhibitors should serve

as a proof-of-concept for targeting TCST response regulators as a novel strategy to

inhibit bacterial virulence.

3.5 Conclusions and Future Directions

Targeting two-component signal transduction response regulators to modulate viru-

lence gene expression is a promising strategy for antibiotics development. With the

increasing resistance of bacterial pathogens to current therapeutics, antibiotics that

can prevent virulence instead of inhibiting growth or inducing death may lead to less

selective pressure for the generation of resistance.
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3.5.1 Summary

In this study, 8 compounds have been discovered by coupling computational and

experimental methods to disrupt formation of the S. enterica PhoP-DNA complex

necessary for gene regulation. Eight compounds inhibited the PhoP-DNA complex

formation in a dose-dependent manner by EMSA. Based on the experimental results,

the PhoP inhibitors may potentially bind to the plastic α4-β5-α5 interface and act by

an allosteric mechanism to prevent DNA binding. Alternative modes of action include

binding to other regions of the N-terminal domain to act in an allosteric manner, or

the C-terminal DNA-binding domain to directly inhibit formation of the PhoP-DNA

complex. Experimental results obtained from a series of biochemical and biophysical

assays suggest a potential of these compounds to inhibit bacterial virulence.

3.5.2 Future Directions

Further elucidation of the mode of action to assess the potential of the 8 compounds

as virulence inhibitors is planned. Structural analogs of the 8 compounds can be

designed to enhance affinity and characterize structure-activity relationships. Struc-

tural studies such as X-ray crystallography and NMR must be performed in order to

validate the mode of action and elucidate the protein-ligand interactions in atomic

detail.
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Chapter 4

PHOENIX: Scoring Function to

Predict Binding Affinities

4.1 Introduction

Predicting binding affinity is one of the most critical and challenging components

to computer-aided structure-based drug design.(Ajay and Murcko, 1995; Gohlke and

Klebe, 2002) Methods for predicting binding affinity are instrumental in a variety of

applications, including molecular docking to identify a native binding mode, virtual

screening of compound libraries to identify lead compounds, and lead optimization

for enhancing binding affinity and target specificity. (Kitchen et al., 2004; Lyne, 2002;

Shoichet, 2004) Despite significant advances in first-principle methods for predicting

binding affinity, (Beveridge and Dicapua, 1989; Massova and Kollman, 2000; Hansson

et al., 1998; Wang et al., 2001; Jiao et al., 2008) empirical scoring functions that are

fast and relatively accurate are still widely used in drug discovery. (Bohm and Stahl,

2002) For virtual screening studies where libraries up to millions of compounds are

screened against a target of interest, a scoring function is needed to rapidly assess

multiple binding modes of each multiple conformers generated for each compound.

This is also the case for in silico lead optimization where a large number of analogs

are computationally constructed and assessed. In addition to speed of evaluation

for virtual screening, other scoring functions can be accurate at an atomic level for

structure-based drug design in characterizing the dominant physical forces in molec-

ular recognition during ligand binding. Moreover, empirical scoring functions should

be transferable and not require careful individual validation for each system under
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study, making them more suitable for use in new problems with limited experimental

data.

Empirical scoring functions aim to represent the atomic interactions of protein-ligand

complexes by the use of relatively simple quantitative descriptors to capture the

physicochemical forces governing protein-ligand complex formation. The underlying

assumption in scoring functions is that the physical and chemical interactions of

protein-ligand interactions can be quantitatively captured using a set of descriptors,

and the sum of these descriptors will accurately predict binding affinities. In practice,

each descriptor is weighted by a coefficient, derived by a linear regression method

through training on experimental data from binding assays, resulting in an equation

for calculating binding affinities.

Over the last 20 years, a number of scoring functions have been developed, with

some notable ones being SCORE1 (Bohm, 1994), SCORE2 (Bohm, 1998), ChemScore

(Eldridge et al., 1997), X-Score (Wang et al., 2002), Lig-Score (Krammer et al., 2005),

PLP (Gehlhaar et al., 1995; Verkhivker et al., 2000), DrugScore (Gohlke et al., 2000),

CScore (?), GOLD (Jones et al., 1997), and SFCscore (Sotriffer et al., 2008). These

scoring functions differ by their choice and implementation of descriptors to capture

the physicochemical interactions, the size and diversity of the training set, and the

regression method used to derive the predictive equations. A number of reviews on

scoring functions and assessments of their performance and applicability have been

published. (Halperin et al., 2002; Wang et al., 2003; Stahl and Rarey, 2001; Wang

et al., 2004; Ferrara et al., 2004; Warren et al., 2006; Cheng et al., 2009)

Empirical scoring functions generally predict either the free energy of binding (∆G)

or the dissociation constant (Kd), both of which can be derived from the other. Re-

cent calorimetric studies have elucidated the compensating enthalpic and entropic

changes associated with binding free energy. (Kawasaki et al., 2010; Freire, 2008,

2009) In a review from Ladbury, Klebe, and Freire, (Ladbury et al., 2010) the bind-

ing free energies of first-in-class HIV-1 protease and HMG-CoA reductase inhibitors

were shown to be due largely from optimizing entropy (∆S), while improving bind-

ing affinity of subsequent analogs was predominantly the result of improving enthalpy

(∆H). Marlow et al. (2010) has experimentally demonstrated that changes in protein
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conformational dynamics can serve as an indication of the changes in protein confor-

mation entropy, which may also play an important role in high-affinity protein-ligand

complexes. Roy and Laughton (2010) have demonstrated using molecular dynam-

ics simulations the importance of phenomena such as entropy-entropy compensation,

dewetting of the protein binding site, and ligand configuration entropy in the form

of rotational freedom in contributing to changes in entropy. Because the binding

free energy is composed of these compensating thermodynamics forces, the ability

to accurately predict enthalpy (∆H) and entropy (T∆S) independently should pro-

vide additional insight during structure-based drug design studies. Results from these

experimental and theoretical studies illustrate the importance of considering both en-

thalpy and entropy contributions separately and in a greater detail for structure-based

drug design studies.

Current empirical scoring functions contain descriptors that mainly take into account

the changes of enthalpy (∆H) in binding, and have used rudimentary methods such

as the number of rotamers on a ligand, calculated partition coefficient (XlogP), and

complementary hydrophobic surface area estimation to describe changes in entropic

forces (T∆S). The lack of an accurate entropic description of protein-ligand inter-

actions is surely the major reason why scoring function accuracy has been limited;

they can predict enthalpic contributions accurately, but fail to predict entropic con-

tributions, resulting in limited accuracy in predicting binding free energy. In the

development of PHOENIX, addition terms to describe the shape and volume of both

the ligand and protein binding site were included. Volume-based descriptors of the

ligand and binding site heuristically capture the rotational and translation entropy

contributing to the configurational entropy of the system. Developing entropy mod-

els using shape and volume-based descriptors should lead to more accurate binding

affinity predictions.

Development of PHOENIX aimed to take advantage of the increasing application of

isothermal titration calorimetry (ITC) in medicinal chemistry and the recent avail-

ability of databases (PDBcal and SCORPIO) (Li et al., 2008; Olsson et al., 2008) con-

taining both X-ray crystallographic structures of protein-ligand complexes and ITC

experimental determination of both enthalpic and entropic contributions to binding

free energy. PHOENIX, derived from the VALIDATE scoring function, includes ad-

ditional shape- and volume-based descriptors to better capture entropic contributions
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typically not accounted for in scoring functions. A diverse set of 112 protein-ligand

complexes with resolution ≤2.0 Å and thermodynamics parameters measured from

ITC was used for training. A set of 42 descriptors, including 7 shape and volume de-

scriptors calculated using FPOCKET (Guillox et al., 2009), were used as a heutistic

method to capture the physicochemical forces underlying protein-ligand interactions.

Partial least squares of latent variables (PLS) was used to assign coefficients for each

descriptor, and to independently derive regression equations to calculate ∆H and

T∆S.

4.2 Materials and Methods

4.2.1 Training Set

Information on protein-ligand complexes with crystallographic structures and thermo-

dynamic parameters from isothermal titration calorimetry were obtained from PDB-

cal and SCORPIO databases. Experimental values of ∆G, ∆H, and T∆S were

obtained from the database websites , while X-ray crystallographic structures were

downloaded from the Protein Data Bank (PDB). Only structures of complexes with a

crystallographic resolution ≤2.5 Å were used in the intial compilation of the training

set. Additional metrics such as free R value (Rfree) (Brunger and Rice, 1997) (See

Equation: 1.4) and diffraction-component precision index (DPI) (Blow, 2002) (See

Equation: 1.5) were used to assess structural quality. Rfree is a measure of the degree

to which an atomic model predicts a subset of the observed diffraction data that has

been omitted from the refinement process. DPI is a measure of the quality of the

structural model derived from the diffraction data. However, due the to scarcity of

complexes with a resolution of ≤2.5 Å, ITC parameters, and Rfree values, the resolu-

tion (≤2.0 Å) was used as the final criteria to obtain the PHOENIX training set of 112

complexes. Nine different subsets of the 162 complexes were evaluated for predictive

ability: Set 68, includes structures with resolutions ≤2.0 Å, Rfree ≤0.3, DPI ≤0.3,

ligand molecular weight <1000 daltons, ∆H, T∆S; Set 82, includes structures with

resolutions ≤2.0 Å, Rfree ≤0.3, DPI ≤0.3, ligand molecular weight <1000 daltons;

Set 91, includes structures with resolutions ≤2.0 Å, Rfree ≤0.3, DPI ≤0.3; Set 105,

includes structures with resolutions ≤2.0 Å, ligand molecular weight <1000 daltons;
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Set 112, includes structures with resolutions ≤2.0 Å; Set 127, includes structures with

resolutions ≤2.0 Å, 15 complexes with resolution between 2.0 and 2.5 Å also present

in PDBbind test set; Set 140, includes structures with resolutions ≤2.25 Å; Set 153,

includes structures with resolutions ≤2.5 Å, ligand molecular weight <1000 daltons;

Set 162, includes structures with resolutions ≤2.5 Å. These subsets were selected to

evaluate whether the quality of the crystal structures and diversity of the training

set impacted the performance of the scoring function. Of the 9 subsets tested, Set

112 ?? (resolutions ≤2.0 Å) resulted in the best performing binding free energy (∆G)

model.

Distribution histograms of the thermodynamic parameters and molecular weight of

the complexes of the final PHOENIX training set are shown in Figures 4.1 4.2 4.3

4.4. Coefficients from PLS regression is shown in Table 4.1.

Figure 4.1: Distribution histogram of the change in binding free energy (∆G)
(mean = -8.73 kcal/mol, std. dev. = 2.73 kcal/mol)

4.2.2 Structure Preparation

Protein-ligand complexes downloaded from the PDB were prepared as follows. Pro-

tein structure was extracted from the complex using SYBYL 7.3 (Tripos). Water

molecules present in the complex were kept as part of the protein structure for an ex-

plicit solvent representation. In cases where multiple chains or subunits were present,

the chain or subunit that was most complete was selected, which was chain A in most
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Figure 4.2: Distribution histogram of the change in enthalpy (∆H)
(mean = -5.40 kcal/mol, std. dev. = 8.96 kcal/mol)

Figure 4.3: Distribution histogram of the change in entropy (T∆S)
(mean = 3.31 kcal/mol, std. dev. = 8.92 kcal/mol)
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Descriptor ∆H T∆S ∆G
INTERCEPT -7.064 -1.619 -5.445
Electrostatic Interaction Energy -0.006 -0.005 -0.001
Steric Interaction Energy 0.008 0.004 0.004
Steric Fit -0.064 -0.085 0.021
Rotatable Bonds 0.002 0.001 0.001
Ligand Strain Energy 0.023 0.008 0.015
Hydrophobic/Hydrophobic Contact Surface Area 1 0.004 0.007 -0.003
Hydrophilic/Hydrophilic Contact Surface Area 1 (Opposite Charge) 0.009 0.011 -0.002
Hydrophobic/Hydrophilic Contact Surface Area 1 0.009 0.012 -0.003
Hydrophilic/Hydrophilic Contact Surface Area 1 (Same Charge) 0.006 0.011 -0.005
Hydrophobic/Hydrophobic Contact Surface Area 2 0.001 0.001 0
Hydrophilic/Hydrophilic Contact Surface Area 2 (Opposite Charge) 0.006 0.006 0
Hydrophobic/Hydrophilic Contact Surface Area 2 0.003 0.004 -0.001
Hydrophilic/Hydrophilic Contact Surface Area 2 (Same Charge) -0.002 0 -0.002
Ligand Total Hydrophobic Surface Area 0 0.001 -0.001
Ligand Total Hydrophilic Surface Area -0.003 -0.004 0.001
Flexibility Index(Rot Bonds/ Non Term Bonds) 3.549 3.424 0.125
Ligand Buried Hydrophobic Surface Area 0 0.001 -0.001
Ligand Buried Hydrophilic Surface Area -0.006 -0.006 0
Ligand Exposed Hydrophobic Surface Area -0.001 -0.001 0
Ligand Exposed Hydrophilic Surface Area -0.003 -0.004 0.001
Receptor Buried Hydrophobic Surface Area -0.001 0.001 -0.002
Receptor Buried Hydrophilic Surface Area -0.002 0.002 -0.004
Receptor Exposed Hydrophobic Surface Area 0 0 0
Receptor Exposed Hydrophilic Surface Area 0 0 0
Normalized Ligand Buried Hydrophobic Surface Area 3.487 3.695 -0.208
Normalized Ligand Buried Hydrophilic Surface Area -2.814 -2.906 0.092
Normalized Ligand Exposed Hydrophobic Surface Area -4.324 -3.101 -1.223
Normalized Ligand Exposed Hydrophilic Surface Area -2.993 -5.661 2.668
Total Ligand/Receptor Hydrogen Bonds 0.044 0.032 0.012
Ligand Total Donor/Acceptor Count -0.059 -0.072 0.013
Ligand Total Hydrogen Bond Atoms 0.007 -0.008 0.015
Ligand Total Buried Donor/Acceptor Count -0.114 -0.129 0.015
Receptor Total Donor/Acceptor Count 0.053 0.045 0.008
Receptor Total Buried Donor/Acceptor Count 0.079 0.082 -0.003
Partition Coefficient 0.024 0.115 -0.091
Ligand Volume -0.001 -0.001 0
Pocket Volume -0.001 -0.001 0
Number of Alpha Spheres 0.004 0.009 -0.005
Proportion of Apolar Alpha Spheres -4.253 -4.039 -0.214
Mean Local Hydrophobic Density -0.159 -0.137 -0.022
Polarity Score 0.124 0.114 0.01
Alpha Sphere Density 0.012 -0.019 0.031

Table 4.1: Coefficients and intercepts derived from partial least squares regression
for the descriptor set (n = 42) used in the final PHOENIX scoring function for

change in enthalpy (∆H) and change in entropy (T∆S) equations.
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Descriptor ∆H T∆S ∆G
Mean Local Hydrophobic Density 0.08 0.063 0.072
Flexibility Index (Rot Bonds/ Non Term Bonds) 0.066 0.059 0.063
Receptor Total Buried Donor/Acceptor Count 0.063 0.061 0.062
Pocket Volume 0.052 0.051 0.052
Electrostatic Interaction Energy 0.054 0.043 0.049
Hydrophobic/Hydrophilic Contact Surface Area 2 0.043 0.049 0.046
Proportion of Apolar Alpha Spheres 0.049 0.043 0.046
Hydrophobic/Hydrophilic Contact Surface Area 1 0.04 0.049 0.045
Polarity Score 0.048 0.04 0.044
Normalized Ligand Buried Hydrophobic Surface Area 0.035 0.034 0.035
Ligand Total Donor/Acceptor Count 0.031 0.035 0.033
Ligand Buried Hydrophilic Surface Area 0.034 0.03 0.032
Ligand Total Buried Donor/Acceptor Count 0.031 0.032 0.032
Ligand Total Hydrophilic Surface Area 0.029 0.028 0.029
Ligand Strain Energy 0.04 0.014 0.027
Steric Interaction Energy 0.035 0.016 0.026
Normalized Ligand Buried Hydrophilic Surface Area 0.026 0.025 0.026
Hydrophilic/Hydrophilic Contact Surface Area 2 (Opposite Charge) 0.024 0.023 0.024
Hydrophilic/Hydrophilic Contact Surface Area 1 (Opposite Charge) 0.02 0.024 0.022
Hydrophobic/Hydrophobic Contact Surface Area 1 0.015 0.025 0.02
Hydrophilic/Hydrophilic Contact Surface Area 1 (Same Charge) 0.014 0.024 0.019
Ligand Volume 0.021 0.015 0.018
Receptor Exposed Hydrophobic Surface Area 0.013 0.02 0.017
Normalized Ligand Exposed Hydrophilic Surface Area 0.012 0.021 0.017
Normalized Ligand Exposed Hydrophobic Surface Area 0.019 0.013 0.016
Receptor Exposed Hydrophilic Surface Area 0.009 0.02 0.015
Ligand Exposed Hydrophilic Surface Area 0.011 0.015 0.013
Receptor Total Donor/Acceptor Count 0.015 0.011 0.013
Partition Coefficient 0.005 0.021 0.013
Hydrophobic/Hydrophobic Contact Surface Area 2 0.007 0.016 0.012
Total Ligand/Receptor Hydrogen Bonds 0.013 0.009 0.011
Receptor Buried Hydrophilic Surface Area 0.008 0.011 0.01
Ligand Buried Hydrophobic Surface Area 0.004 0.013 0.009
Number of Alpha Spheres 0.005 0.012 0.009
Receptor Buried Hydrophobic Surface Area 0.006 0.009 0.008
Steric Fit 0.006 0.007 0.007
Ligand Exposed Hydrophobic Surface Area 0.008 0.004 0.006
Ligand Total Hydrophobic Surface Area 0.001 0.008 0.005
Hydrophilic/Hydrophilic Contact Surface Area 2 (Same Charge) 0.007 0.001 0.004
Ligand Total Hydrogen Bond Atoms 0.002 0.002 0.002
Alpha Sphere Density 0.001 0.002 0.002
Rotatable Bonds 0.001 0.001 0.001

Table 4.2: Descriptor set (n = 42) used in the final PHOENIX scoring function and
its relative contribution to change in enthalpy (∆H), change in entropy (T∆S), and
change in binding free energy (∆G) calculations. Descriptors are sorted by relative

fraction to change in binding free energy (∆G) in descending order.
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Figure 4.4: Distribution histogram of the molecular weight (Da)
(mean = 455.25 Da, std. dev. = 273.11 Da.)

cases. Missing side chains and neutral terminal groups were added by the Biopoly-

mer Structure Preparation function. Hydrogens were added to both the protein and

water using the Biopolymer dictionary. The ligand was extracted from the complex

and atom types were assessed and reassigned, if necessary. Hydrogens were added to

all atoms. The resulting protein and ligand structures were saved in mol2 format.

4.2.3 External Test Sets

External validation sets include three versions of the PDBbind refined set (2002,

2004, and 2009) (Wang et al., 2004) and the 2007 PDBbind core set downloaded

from the PDBbind site. Previous scoring function development studies by Wang,

Lu, Fang, and Wang (Wang et al., 2004) and Sotriffer, Sanschagrin, Matter, and

Klebe (Sotriffer et al., 2008) used both the 2002 and 2004 versions as benchmark

sets, thus were assessed in this study for comparison purposes. The 2002 version

contains 800 complexes, the 2004 version contains 1091 complexes, and the 2009

version contains 1741 protein-ligand complexes with resolution ≤2.5 Å. The 2007

core set, which consists of 195 complexes with non-redundant protein families and

diversity of ligand structures and binding affinities, was also used to assess the general
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applicability of PHOENIX. A number of docking and scoring assessments have used

this core set as a diverse set benchmark. (Cheng et al., 2009) The protein and ligand

structures were downloaded from the PDBbind database. Structures of the proteins

were prepared using the same procedure as the training set. The ligands did not

require any preparation and were used as is. For the 2004 and 2009 sets, 1071 out of

1091 were used in the 2004 set, while 1612 of 1741 were used in the 2009 set.

4.2.4 Descriptors Set

A set of 42 descriptors were used to derive the PHOENIX scoring function, as listed

in Table 1. Of that set, the first 34 of the descriptors listed were calculated using the

VALIDATE scoring function. (Head et al., 1996) The calculated partition coefficient,

XlogP, was computed based on the Wang, Fu, and Lai study (Wang et al., 1997) using

FILTER (OpenEye). FPOCKET (Guillox et al., 2009), a cavity detection program

based on Voronoi tessellation and alpha spheres, was used to obtain 7 volume-based

descriptors to describe the ligand and protein binding site.

VALIDATE parameters were determined by using both molecular mechanics a heuris-

tics approach in combination with parameters derived from molecular mechanics. Pa-

rameters derived from molecular mechanics include electrostatic interaction energy

(EIE), steric interaction energy (SIE), and ligand strain energy (LSE). EIE accounts

for the electrostatic interactions that contribute to the specificity of protein-ligand

interactions, and was calculated using the MacroModel program. Charges for the pro-

tein and ligand were derived from the OPLS-AA force field. Nonbonded electrostatic

interaction energy was calculated using the explicit sum of the Coulombic potentials.

SIE was computed from the explicit sum of the Lennard-Jones potentials, where the

required parameters were derived from the OPLS-AA force field. LSE was calculated

based on the difference between the energy of the ligand in the binding site and the

energy of the ligand by itself.

Descriptors derived from heuristics for both the ligand and protein include steric fit,

number of rotatable bonds, total number of ligand/protein hydrogen bonds, total
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donor/acceptor count, total hydrogen-bond atoms, and number of buried hydrogen-

bond atoms. Steric fit (SF) was used to describe the close packing interactions be-

tween the protein and ligand. In order to quantitate surface complementarity be-

tween protein and ligand, descriptors were used to capture lipophilic complementar-

ity (nonpolar/nonpolar), hydrophilic complementarity (polar/polar, opposite charge),

lipophilic/hydrophilic complementarity (polar/nonpolar), and hydrophilic noncom-

plementarity (polar/polar, like charge). Two separate methods were used. The first

method used an absolute surface area between the protein and ligand similar to the

method used by Bohm. The second method was based on a pairwise sum estimate,

similar to the approach by Kellogg et al. For a detailed description of the implemen-

tation and underlying theory of the 34 VALIDATE descriptors, refer to the original

study by Head et al. (Head et al., 1996)

As a heuristic method to capture entropic contributions, volume descriptors were

used to represent the amount of water molecules displaced from the protein binding

site, as well as the desolvation process of ligand going from unbound to bound state.

FPOCKET (Guillox et al., 2009), a cavity detection program based on Voronoi tessel-

lation and alpha spheres, was used to obtain 7 volume-based descriptors to describe

the ligand and protein binding site (ligand volume, pocket volume, number of alpha

spheres, proportion of apolar alpha spheres, mean local hydrophobic density, polarity

score, alpha sphere density).

Feature selection strategies such as excluding descriptors with a correlation coefficient

≥0.95 of another descriptor, or excluding descriptors that displayed minimal corre-

lation to the thermodynamics parameters (≤0.01, ≤0.05) were assessed to identify a

set of descriptors leading to the best performance. In addition, attempts were made

to separate ∆H and T∆S descriptors by deriving simpler models using subsets (n

= 20-30) of the final descriptors set (n = 42) which contribute qualitatively to each

thermodynamic force, to test if more accurate predictions could be achieved. After

excluding the descriptors with high correlation and descriptors with low correlation

to ∆H and T∆S as well as separating descriptors for each thermodynamic force,

the models resulted in less accurate predictions when assessing the 2002 version of

PDBbind; therefore all 42 descriptors were used in as the PHOENIX scoring function.
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4.2.5 Function Parameterization

The weight coefficients for each descriptor and equation for predicting ∆H and T∆S

were derived by using PLS in SYBYL 7.3. All 42 descriptors were used as input

parameters. To derive the regression equations, leave-one-out cross validation was

initially performed to identify the optimal number of components to use for the PLS

model. The PLS model was subsequently constructed using the number of compo-

nents with the highest q2 and least error to calculate the constant and coefficients

for each descriptor. Regression statistics such as r2, standard error, and F-value were

used to assess the predictive ability of the models. The fraction of relative contribu-

tion of each descriptor to change in enthalpy (∆H), change in entropy (T∆S), and

change in binding free energy (∆G) is listed in Table 2, and the coefficients and in-

tercepts derived from partial least squares regression for the final PHOENIX scoring

function (n = 112) are listed in Table4.1.

4.3 Results

4.3.1 Regression Analysis

Regression and leave-one-out cross validation statistics of the different training sets

used for PHOENIX along with statistics for change of enthalpy (∆H) (Table: 4.3),

change in entropy (T∆S) (Table: 4.4), and change in binding free energy (∆G)

(Table: 4.5) are shown. Although the training set of 68 complexes resulted in the

best regression statistics and standard errors, equations derived using the training

set of 112 complexes were used since its performance on the external test sets were

better than ones using the other test sets. Selecting the training set with the best

regression or cross-validations statistics to use for external predictions can lead to

using a model that may simply be overfitted to the training set. Regression analysis

on the different training sets demonstrated that good fits were obtained using partial

least squares on the set of 42 descriptors. Experimental versus predicted values of

change of enthalpy (∆H) (Fig: 4.5), change of entropy (T∆S) (Fig: 4.6), and change

of binding free energy (∆G) (Fig: 4.7) are shown.
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No. of Complexes No. of Components r2 s (kcal/mol) F-value
68 3 0.645 4.03 38.69
82 4 0.566 6.1 25.09
105 2 0.442 6.79 40.44
112 3 0.497 6.44 35.6
127 3 0.503 6.24 41.44
140 3 0.447 6.37 36.64
153 4 0.48 6.22 34.15
162 4 0.466 6.26 34.3

Table 4.3: Partial least squares (PLS) regression statistics of the change in enthalpy
(∆H). Values presented include the number of complexes used in the training set

(No. of Complexes), the number of components used to derive the PLS model (No.
of Components), the correlation coefficient (r2), the standard error (s), and F-value

(F-value).

No. of Complexes No. of Components r2 s (kcal/mol) F-value
68 3 0.735 3.81 59.2
82 5 0.722 4.92 39.45
105 2 0.55 6.06 62.26
112 3 0.605 5.69 55.17
127 3 0.606 5.63 63.01
140 2 0.478 6.29 62.7
153 3 0.512 6.2 52.1
162 3 0.534 6.03 60.29

Table 4.4: Partial least squares (PLS) regression statistics of the change in entropy
(T∆S). Values presented include the number of complexes used in the training set
(No. of Complexes), the number of components used to derive the PLS model (No.
of Components), the correlation coefficient (r2), the standard error (s), and F-value

(F-value).
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No. of Complexes r2 s (kcal/mol)
68 0.61 1.19
82 -7.00 5.54
105 0.43 1.55
112 0.55 1.34
127 0.44 1.44
140 -0.89 2.62
153 -0.13 2.01
162 0.30 1.56

Table 4.5: Partial least squares (PLS) regression statistics of the change in binding
free energy (∆G). Values presented include the number of complexes used in the
training set (No. of Complexes), the correlation coefficient (r2), and the standard

error (s).

Figure 4.5: Scatter plot from regression analysis of the final PHOENIX training set
(n = 112). Calculated versus experimental values for change in enthalpy (∆H).

Regression and leave-one-out cross validation statistics are as follows: r2 = 0.50, s =
6.44 kcal/mol, q2 = 0.37, SPRESS = 7.24 kcal/mol.
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Figure 4.6: Scatter plot from regression analysis of the final PHOENIX training set
(n = 112). Calculated versus experimental values for change in entropy (T∆S).

Regression and leave-one-out cross validation statistics are as follows: r2 = 0.61, s =
5.69 kcal/mol, q2 = 0.48, SPRESS = 6.50 kcal/mol.

Figure 4.7: Scatter plot from regression analysis of the final PHOENIX training set
(n = 112). Calculated versus experimental values for change in binding free energy
(∆G). Regression and leave-one-out cross validation statistics are as follows: r2 =

0.55, s = 1.34 kcal/mol.
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The training set with 112 complexes resulted in models that did not lead to good

regression statistics compared with results using the training set of 68 complexes. One

possible reason for this is the larger training set contained a wider variety of protein-

ligand complexes, especially ones that were difficult to predict, such as streptavidin

and biotin complexes. Change in enthalpy and change in entropy values did not vary

as much in the set of 68 complexes as the larger training sets, resulting in smaller

errors and a better linear fit. However, when validating the model on external test sets

such as PDBbind, enthalpy, and entropy, and binding free energy regression equations

derived using the set of 112 complexes resulted in better regression statistics, which

indicates that diversity in both structural data and thermodynamics data may be

necessary to achieve robust predictive ability. When tested using the larger training

sets (n = 127, 140, 153, 162) which included structures between 2 and 2.5 Å resolution,

the performance on the external test sets did not improve. While increasing the size

of the training set generally leads to more predictive models, in this case, results from

this study suggest that inclusion of lower-resolution structures may actually introduce

noise, leading to less predictive binding affinity calculations.

4.3.2 Internal Cross-Validation

Cross-validation studies were performed on the PHOENIX scoring function trained

with 112 complexes. The set of 112 complexes was divided into a set of 82 complexes

for training, and a set of 30 complexes for testing. PLS was used to derive regression

equations, which resulted in the following regression and leave-one-out cross valida-

tion statistics: r2 = 0.43, s = 7.27 kcal/mol (2 components), q2 = 0.34, SPRESS =

7.83 kcal/mol for change of enthalpy (∆H); r2 = 0.56, s = 6.37 kcal/mol (2 com-

ponents), q2 = 0.48, SPRESS = 6.89 kcal/mol for change of entropy (T∆S). These

equations were used to calculate the thermodynamics contributions in the test set.

Figures ?? displays the experimental versus predicted values for ∆H, T∆S, and ∆G,

respectively. Predicted statistics for the test set of 30 complexes were as follows: ∆H,

r2 = 0.25, s = 6.32 kcal/mol; T∆S, r2 = 0.31, s = 6.01 kcal/mol; ∆G, r2 = 0.52, s =

1.53 kcal/mol. While the ∆H and T∆S calculations resulted in sizable errors, calcu-

lating their difference to obtain binding free energy led to a standard error within a

reasonable accuracy range.
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Figure 4.8: Scatter plots from leave-one-out cross validation analyses of the final
PHOENIX training set (n = 112), separated into a training set of 82 complexes and

a test set of 30 complexes. Calculated versus experimental values for change in
enthalpy (∆H). Regression statistics are as follows: r2 = 0.25, s = 6.32 kcal/mol.

Figure 4.9: Scatter plots from leave-one-out cross validation analyses of the final
PHOENIX training set (n = 112), separated into a training set of 82 complexes and

a test set of 30 complexes. Calculated versus experimental values for change in
entropy (T∆S). Regression statistics are as follows: r2 = 0.31, s = 6.01 kcal/mol.
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Figure 4.10: Scatter plots from leave-one-out cross validation analyses of the final
PHOENIX training set (n = 112), separated into a training set of 82 complexes and

a test set of 30 complexes. Calculated versus experimental values for change in
binding free energy (∆G). Regression statistics are as follows: r2 = 0.52, s = 1.53

kcal/mol.

4.3.3 Testing on External Data Sets

To better assess the performance of PHOENIX on accuracy and applicability of affin-

ity predictions, the scoring function trained with 112 complexes was tested on 4

different versions (2002, 2004, and 2009 refined sets; 2007 core set) of the PDBbind.

For the sake of comparison, the assessment was performed in a similar fashion to the

scoring function studies of Wang, Lu, Fang, and Wang, (Wang et al., 2004) Sotriffer,

Sanschagrin, Matter, and Klebe, (Sotriffer et al., 2008) and Cheng, Li, Li, Liu, and

Wang (Cheng et al., 2009). Note the use of a different set of statistical metrics (e.g.,

Pearson correlation coefficient, Spearman correlation coefficient, etc.) to assess the

performance on the external data set for comparison purposes with previous scoring

function studies. To assess the performance of PHOENIX in a greater detail, cor-

relation evaluation was performed on protein-ligand complexes categorized based on

resolutions, protein families, and binding affinities in the 2002 version. The 2004 and

2009 refined sets were used to assess the performance of PHOENIX on larger and
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more diverse data sets. The 2007 core set, consisting of 195 complexes with 65 pro-

tein families with 3 ligands of different affinities (low-, medium-, and high-affinity),

was used to assess performance on a non-redundant and diverse set of complexes.

Correlation evaluation results for the 2002 version of PDBbind compared to scoring

functions in the Wang, Lu, Fang, and Wang study (Wang et al., 2004) and SFC-

score (Sotriffer et al., 2008) are summarized in Table 4.7. Based on the correlation

evaluation of PDBbind 2002, the performance of PHOENIX is comparable to the

top-performing scoring functions (e.g., SFCscore and X-Score::HMScore).

Scoring Function Rp Rs SD ME a b
PHOENIX 68 0.499 0.518 2.04 1.62 0.33 4.09
PHOENIX 82 0.41 0.449 6.27 5.94 0.38 8.34
PHOENIX 105 0.473 0.502 2.06 1.6 0.43 3.25
PHOENIX 112 0.524 0.559 1.98 1.56 0.37 4.27
PHOENIX 127 0.517 0.534 2.07 1.65 0.33 4.77
PHOENIX 140 0.424 0.445 2.91 2.41 0.41 2.32
PHOENIX 153 0.333 0.339 2.24 1.81 0.21 4.54
PHOENIX 162 0.492 0.513 2.17 1.72 0.34 3.62

Table 4.6: Correlation evaluation of the PHOENIX scoring function using different
training sets on the PDBbind v2002 (n = 796) database. Correlation statistics

include Pearson correlation coefficient (Rp), Spearman correlation coefficient (Rs),
standard deviation (SD), mean error (ME), slope (a) in the linear regression (y = ax
+ b), and intercept (b). The number after the scoring function indicates the total

number of complexes used for training (e.g., PHOENIX 68, training set of 68
complexes).

Resolution

To assess the performance of PHOENIX on affinity predictions for low- and high-

resolution complexes, the 2002 version of PDBbind was categorized into 2 sets: a

high-resolution (≤2 Å) set of 494 complexes, and a low-resolution (2 ≤ 2.5 Å) set

of 302 complexes. Correlation evaluation results are listed in Table 4.8. PHOENIX

affinity predictions on the high-resolution set were comparable to ones obtained from

the X-Score functions (HPScore, HMScore, HSScore). PHOENIX affinity predictions

on the low-resolution set were inferior to ones obtained from the 3 X-Score functions.
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Scoring Function N Rp SD ME a b
PHOENIX 796 0.524 1.98 1.56 0.37 4.27
SFCscore::met 800 0.585 1.8 1.37 0.82 1.23
X-Score::HPScore 800 0.514 1.89 1.47 0.71 2.03
X-Score::HMScore 800 0.566 1.82 1.42 0.92 1.18
X-Score::HSScore 800 0.506 1.9 1.48 0.93 1.24
DrugScore::Pair 800 0.473 1.94 1.51 4.90E-06 4.1
DrugScore::Surf 800 0.463 1.95 1.53 7.20E-05 4.48
DrugScore::Pair/Surf 800 0.476 1.94 1.5 4.70E-06 4.09
Sybyl::D-Score 800 0.322 2.09 1.67 9.70E-03 5
Sybyl::PMF-Score 785 0.147 2.16 1.74 6.43E-03 5.92
Sybyl::G-Score 800 0.443 1.98 1.56 9.13E-03 4.34
Sybyl::ChemScore 797 0.499 1.91 1.5 9.10E-02 3.9
Sybyl::F-Score 732 0.141 2.19 1.77 2.10E-02 6.06
Cerius2::LigScore 717 0.406 2 1.57 0.79 4.63
Cerius2::PLP1 800 0.458 1.96 1.52 2.30E-02 4.09
Cerius2::PLP2 800 0.455 1.96 1.53 2.60E-02 3.93
Cerius2::PMF 795 0.253 2.13 1.71 1.10E-02 5.37
Cerius2::LUDI1 790 0.334 2.08 1.66 2.60E-03 4.88
Cerius2::LUDI2 799 0.379 2.04 1.62 4.20E-03 4.28
Cerius2::LUDI3 800 0.331 2.08 1.67 3.20E-03 4.68
GOLD::GoldScore 694 0.285 2.16 1.72 2.40E-02 5.33
GOLD::GoldScore opt 772 0.365 2.06 1.63 3.00E-02 4.7
GOLD::ChemScore 741 0.423 2 1.56 8.50E-02 4.65
GOLD::ChemScore opt 762 0.449 1.96 1.52 8.60E-02 4.41
HINT 800 0.33 2.08 1.65 0.2 6.36

Table 4.7: Correlation evaluation of the PHOENIX scoring function compared to
other commonly used scoring functions on the PDBbind v2002 set. Correlation
statistics presented are the number of complexes tested (N), Pearson correlation

coefficient (Rp), standard deviation (SD), mean error (ME), slope (a) in the linear
regression (y = ax + b), and intercept (b). Results from the commonly used scoring

functions taken from Wang et al. (2004) are presented for comparison purposes.
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PHOENIX, as well as the X-Score functions, provided better correlation statistics

for the high-resolution set than the low-resolution set. One point to note is that the

high-resolution set has 192 more complexes compared to the low-resolution set, yet

still achieved better correlation statistics. These results may suggest that scoring

functions in general can achieve more accurate predictions using higher-resolution

and perhaps higher-quality X-ray crystal structures compared to using low-resolution

and low-quality structures.

Scoring Function N Rp SD ME Rs N Rp SD ME Rs

PHOENIX 494 0.558 1.92 1.52 0.586 302 0.468 2.06 1.6 0.511
X-Score::HPScore 494 0.597 1.95 1.55 0.615 302 0.492 2.13 1.68 0.525
X-Score::HMScore 494 0.575 2.03 1.62 0.589 302 0.48 2.19 1.73 0.525
X-Score::HSScore 494 0.614 1.89 1.49 0.64 302 0.493 2.07 1.62 0.536

Table 4.8: Correlation evaluation of the PHOENIX scoring function compared to
X-Score scoring functions on high- (0 ≤ 2 Å) and low-resolution (2 ≤ 2.5 Å)

complexes of the PDBbind 2002 set. Correlation statistics presented are the number
of complexes tested (N), Pearson correlation coefficient (Rp), standard deviation

(SD), mean error (ME), Spearman correlation coefficient (Rs).

Protein Families

Three protein families were selected from the 2002 version of PDBbind set to test the

performance of PHOENIX on these special cases: HIV-1 protease, trypsin, carbonic

anhydrase II. Table 4.9 4.10 4.11 lists the correlation evaluation statistics. The corre-

lation statistics from PHOENIX on the HIV-1 protease set (Rp = 0.563, SD = 1.65,

ME = 1.35, Rs = 0.434) is better than most of the scoring functions in the Wang, Lu,

Fang, and Wang study (Wang et al., 2004) in terms of Rp, and comparable to the top-

performing scoring functions (Cerius2::LigScore, Rp = 0.528; GOLD::GoldScore opt,

Rp = 0.555). This may be due to the inclusion of explicit waters in PHOENIX; water

molecules play a critical role in the binding of HIV-1 protease inhibitors. For the

trypsin complexes, the correlation statistics from PHOENIX were inferior compared

to the other scoring functions tested. Perhaps, the descriptors used in PHOENIX can-

not adequately capture the electrostatics involved in the binding of trypsin inhibitors

due to the use of monopole electrostatics, which led to larger errors in the affinity cal-

culations. Another potential reason for the poorer performance is that only 2 trypsin
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complexes were included in the PHOENIX training set, while other scoring functions

included a larger set of trypsin complexes in their training sets. As the availability of

crystal structure of complexes with ITC data increases, more trypsin complexes can

be included in the training set to improve affinity calculations. For the set of carbonic

anhydrase II complexes, the correlation statistics from PHOENIX were comparable

to the other scoring functions. SFCscore performed the best, which may primarily be

due to the descriptors used to capture interactions with metal atoms present in the

binding pocket; metals are involved in critical interactions with the ligand for this

class of metalloenzymes. Inferior performance in affinity predictions for the carbonic

anydrase set may be due to the fact that PHOENIX does not contain any descriptors

to capture ligand interactions with metal atoms. Again, the use of more sophisticated

representation of electrostatic interactions should improve predictability.

Affinities

The 2002 version of PDBbind was categorized into 3 groups: low-affinity (pKd <5),

medium-affinity (5 ≤ pKd ≤ 8), and high-affinity (pKd <8). PHOENIX was assessed

on its ability to calculate a binding affinity that results in the same group as the exper-

imental binding affinity. Results from this study are listed in Table 4.12. PHOENIX

correctly categorized 27% of the low-affinity complexes, 100% of the medium-affinity

complexes, and 61% of the high-affinity complexes. PHOENIX performed the best

on the medium- and high-affinity complexes compared to the scoring functions from

previous studies. The performance on the low-affinity group was the second best (best

was SFCscore). This assessment demonstrated that PHOENIX can estimate affini-

ties within a reasonable accuracy range to readily distinguish between a tight-binding

ligand from a low-affinity ligand. As minimizing false-positive rates is a significant

challenge in computer-aided molecular design, PHOENIX may prove to be advanta-

geous for affinity estimations and relative rankings as well as binding pose prediction,

especially when applied to high-resolution structures with high-quality experimental

data.
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Scoring Function N Rp SD ME Rs

PHOENIX 82 0.563 1.65 1.35 0.434
SFSscore::met 74 0.361 na na 0.312
X-Score::HPScore 82 0.429 1.25 1.01 0.436
X-Score::HMScore 82 0.379 1.28 1.04 0.334
X-Score::HSScore 82 0.4 1.27 1.05 0.322
DrugScore::Pair 82 0.377 1.28 1.04 0.315
DrugScore::Surf 82 0.401 1.27 1.02 0.317
DrugScore::Pair/Surf 82 0.384 1.28 1.04 0.322
Sybyl::D-Score 82 0.342 1.3 1.03 0.305
Sybyl::PMF-Score 82 0.246 1.34 1.09 0.226
Sybyl::G-Score 82 0.35 1.3 1.05 0.335
Sybyl::ChemScore 82 0.376 1.28 1.05 0.35
Sybyl::F-Score 80 0.361 1.31 1.08 0.375
Cerius2::LigScore 81 0.528 1.18 0.99 0.496
Cerius2::PLP1 82 0.458 1.23 1.02 0.395
Cerius2::PLP2 82 0.438 1.25 1.03 0.414
Cerius2::PMF 82 0.411 1.26 1.03 0.342
Cerius2::LUDI1 82 0.208 1.35 1.11 0.123
Cerius2::LUDI2 82 0.274 1.33 1.11 0.181
Cerius2::LUDI3 82 0.248 1.34 1.1 0.174
GOLD::GoldScore 69 0.386 1.25 1 0.391
GOLD::GoldScore opt 78 0.555 1.13 0.92 0.579
GOLD::ChemScore 78 0.404 1.19 0.98 0.386
GOLD::ChemScore opt 80 0.429 1.24 1.02 0.393
HINT 82 0.313 1.32 1.04 0.264

Table 4.9: Correlation evaluation of the PHOENIX scoring function compared to
other commonly used scoring functions on HIV-1 Protease complexes of the

PDBbind 2002 set. Correlation statistics presented are the number of complexes
tested (N), Pearson correlation coefficient (Rp), standard deviation (SD), mean error

(ME), Spearman correlation coefficient (Rs).
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Scoring Function N Rp SD ME Rs

PHOENIX 40 0.476 1.9 1.38 0.574
SFSscore::met 40 0.853 na na 0.848
X-Score::HPScore 45 0.754 1.15 0.88 0.725
X-Score::HMScore 45 0.823 0.99 0.75 0.824
X-Score::HSScore 45 0.753 1.15 0.91 0.766
DrugScore::Pair 45 0.78 1.09 0.82 0.818
DrugScore::Surf 45 0.674 1.29 0.99 0.753
DrugScore::Pair/Surf 45 0.78 1.09 0.82 0.807
Sybyl::D-Score 45 0.617 1.37 0.98 0.736
Sybyl::PMF-Score 37 0.513 1.02 0.86 0.523
Sybyl::G-Score 45 0.58 1.42 1.06 0.728
Sybyl::ChemScore 45 0.761 1.13 0.91 0.749
Sybyl::F-Score 45 0.663 1.31 1.05 0.61
Cerius2::LigScore 40 0.392 1.59 1.27 0.467
Cerius2::PLP1 45 0.729 1.19 0.88 0.785
Cerius2::PLP2 45 0.754 1.15 0.84 0.802
Cerius2::PMF 43 0.775 1.06 0.85 0.74
Cerius2::LUDI1 45 0.67 1.29 1.01 0.698
Cerius2::LUDI2 45 0.696 1.25 0.95 0.725
Cerius2::LUDI3 45 0.679 1.28 1 0.69
GOLD::GoldScore 36 0.029 1.65 1.32 -0.012
GOLD::GoldScore opt 42 0.59 1.41 1.14 0.673
GOLD::ChemScore 44 0.388 1.61 1.33 0.348
GOLD::ChemScore opt 44 0.52 1.49 1.21 0.565
HINT 45 0.135 1.73 1.37 0.251

Table 4.10: Correlation evaluation of the PHOENIX scoring function compared to
other commonly used scoring functions on trypsin complexes of the PDBbind 2002

set. Correlation statistics presented are the number of complexes tested (N),
Pearson correlation coefficient (Rp), standard deviation (SD), mean error (ME),

Spearman correlation coefficient (Rs).
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Scoring Function N Rp SD ME Rs

PHOENIX 39 0.539 3.26 2.97 0.444
SFSscore::met 37 0.717 na na 0.485
X-Score::HPScore 39 0.544 1.18 0.85 0.547
X-Score::HMScore 39 0.495 1.23 0.95 0.341
X-Score::HSScore 39 0.417 1.28 0.91 0.448
DrugScore::Pair 39 0.622 1.1 0.83 0.501
DrugScore::Surf 39 0.512 1.21 0.97 0.269
DrugScore::Pair/Surf 39 0.623 1.1 0.83 0.495
Sybyl::D-Score 39 0.584 1.14 0.86 0.441
Sybyl::PMF-Score 39 0.655 1.07 0.8 0.652
Sybyl::G-Score 39 0.643 1.08 0.79 0.649
Sybyl::ChemScore 39 0.609 1.12 0.76 0.663
Sybyl::F-Score 35 0.371 1.15 0.87 0.145
Cerius2::LigScore 18 0.154 1.78 1.34 -0.323
Cerius2::PLP1 39 0.718 0.98 0.76 0.606
Cerius2::PLP2 39 0.735 0.96 0.67 0.781
Cerius2::PMF 39 0.604 1.12 0.87 0.603
Cerius2::LUDI1 38 0.065 1.21 0.86 0.335
Cerius2::LUDI2 39 0.47 1.25 0.89 0.519
Cerius2::LUDI3 39 0.433 1.27 0.91 0.554
GOLD::GoldScore 34 0.539 1.25 0.9 0.42
GOLD::GoldScore opt 37 0.585 1.17 0.86 0.532
GOLD::ChemScore 39 0.498 1.22 0.89 0.307
GOLD::ChemScore opt 39 0.639 1.08 0.8 0.454
HINT 39 0.599 1.13 0.78 0.689

Table 4.11: Correlation evaluation of the PHOENIX scoring function compared to
other commonly used scoring functions on carbonic anhydrase II complexes of the
PDBbind 2002 set. Correlation statistics presented are the number of complexes

tested (N), Pearson correlation coefficient (Rp), standard deviation (SD), mean error
(ME), Spearman correlation coefficient (Rs).
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Scoring Function Low Medium High
PHOENIX 52/205=27% 417/417=100% 112/193=61%
SFSscore::met 88/191=46% 309/417=74% 86/192=45%
X-Score::HPScore 33/205=16% 358/402=89% 48/193=25%
X-Score::HMScore 41/205=20% 348/402=87% 65/193=34%
X-Score::HSScore 29/205=14% 350/402=87% 53/193=27%
DrugScore::Pair 24/205=12% 359/402=89% 45/193=23%
DrugScore::Surf 11/205=5% 362/402=90% 45/193=23%
DrugScore::Pair/Surf 24/205=12% 358/402=89% 47/193=24%
Sybyl::D-Score 0/205=0% 384/402=96% 2/193=1%
Sybyl::PMF-Score 0/196=0% 395/396=99% 0/193=0%
Sybyl::G-Score 12/205=6% 359/402=89% 30/193=16%
Sybyl::ChemScore 38/204=19% 349/400=87% 40/193=21%
Sybyl::F-Score 0/182=0% 362/362=100% 0/188=0%
Cerius2::LigScore 11/186=6% 340/366=93% 16/165=10%
Cerius2::PLP1 24/205=12% 364/401=91% 35/193=18%
Cerius2::PLP2 30/205=15% 363/402=90% 32/193=17%
Cerius2::PMF 0/202=0% 390/400=97% 3/193=2%
Cerius2::LUDI1 1/203=0% 379/394=96% 9/193=5%
Cerius2::LUDI2 6/205=3% 378/401=94% 15/193=8%
Cerius2::LUDI3 1/205=0% 387/402=96% 9/193=5%
GOLD::GoldScore 0/178=0% 331/339=98% 4/177=2%
GOLD::GoldScore opt 3/200=1% 366/385=95% 11/187=6%
GOLD::ChemScore 8/177=5% 345/376=92% 37/188=20%
GOLD::ChemScore opt 20/187=11% 346/386=90% 38/189=20%
HINT 2/205=1% 388/402=97% 11/193=6%

Table 4.12: Assessment of the ability of the PHOENIX scoring function to classify
complexes into three binding affinity groups: low-affinity (pKd <5.0),

medium-affinity (5.0 ≤ pKd ≤ 8.0), and high-affinity (pKd >8.0). The number of
correctly categorized complexes and total number of complexes in each category, as

well as the percentage of the correctly categorized complexes are presented for
PHOENIX and the commonly used scoring functions take from the Wang et al.

(2004) for comparison purposes.
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Recent Versions of PDBbind

Recent versions of the PDBbind dataset (2004 and 2009) were used as external test

sets for scoring function validation. The correlation statistics for the 2004 version

(n = 1073), also used as a test set in the development of SFCscore, are listed in

Table 4.13, and the ones for the 2009 version (n = 1612) are listed in Table 4.14.

Based on the results from the 2004 and 2009 refined sets, PHOENIX demonstrated

comparable performance compared with the X-Score functions and SFCscore (the

better performing scoring functions). Also, results from the larger and more diverse

2004 and 2009 PDBbind refined sets demonstrated the robustness of PHOENIX in

predicting affinities for various types of protein-ligand interactions. See Figure 4.11

for a scatter plot of the calculated versus experimental affinities for the 2009 refined

set (n = 1612).

Scoring Function Rp Rs SD ME a b
PHOENIX 0.515 0.554 2 1.57 0.35 4.46
X-Score::HPScore 0.557 0.589 2 1.57 0.32 4.24
X-Score::HMScore 0.54 0.572 2.06 1.63 0.29 4.23
X-Score::HSScore 0.561 0.593 1.95 1.53 0.36 4.27

Table 4.13: Correlation evaluation of the PHOENIX scoring function on the
PDBbind 2004 (n = 1073) refined set. Correlation statistics presented are the
number of complexes tested (N), Pearson correlation coefficient (Rp), standard

deviation (SD), mean error (ME), slope (a) in the linear regression (y = ax + b),
and intercept (b). Results from the best-performing scoring functions taken from

Wang et al. (2004) are presented for comparison purposes.

Diverse and Non-Redudant Test Set

To further assess the performance of PHOENIX compared with other scoring func-

tions, the PDBbind 2007 core set was used to represent a diverse, yet non-redundant,

set of protein-ligand complexes. The 2007 core set includes 65 unique protein fam-

ily members, each with a low-, medium-, and high-affinity ligand. Binding affinities

ranged from 1.40 to 13.96 pKd, molecular weight from 103 to 974, and number of

ligand rotatable bonds from 0 to 32. Performance in the scoring power test similar

to the one in Cheng et al. (2009) was used to assess PHOENIX. The statistics from

98



Scoring Function Rp Rs SD ME a b
PHOENIX 0.575 0.591 1.76 1.41 0.44 3.98
X-Score::HPScore 0.571 0.589 1.78 1.43 0.36 4.05
X-Score::HMScore 0.563 0.581 1.84 1.48 0.34 4.03
X-Score::HSScore 0.565 0.584 1.75 1.42 0.40 4.10

Table 4.14: Correlation evaluation of the PHOENIX scoring function on the
PDBbind 2009 (n = 1612) refined set. Correlation statistics presented are the
number of complexes tested (N), Pearson correlation coefficient (Rp), standard

deviation (SD), mean error (ME), slope (a) in the linear regression (y = ax + b),
and intercept (b). Results from the best-performing scoring functions taken from

Wang et al. (2004) are presented for comparison purposes.

Figure 4.11: Scatter plot of calculated versus experimental binding affinities (-log
Kd) of the PDBbind 2009 refined set (n = 1612). Regression statistics are as follows:

Rp = 0.575, ME = 1.41.
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correlation evaluation on affinity predictions are listed in Table 4.15. To test whether

scoring functions provided value over the use of a simple descriptor, the number of

heavy atoms was assessed as a scoring method. PHOENIX resulted in the second

highest Pearson correlation coefficient, however, the mean error was more than twice

as large as the second largest (1.70 compared to 0.71), suggesting that there is still

significant room for improvement in the accuracy of affinity predictions. To assess

the ranking power of PHOENIX as performed in Cheng et al. (2009), each of the 65

families were assessed to check if the low-, medium-, and high-affinity ligand were

ranked in the correct order. Families that were ranked correctly for all 3 complexes

were given a score of 1, while a score of 0 is given if there is any deviation from the

correct ranking (e.g, low, high, medium; medium, high, low). The success rate in the

ranking power study of the 2007 core set is listed in Table 4.16. PHOENIX achieved

a success rate of 46.2%, which ranks amongst the best-performing functions, with

only 4 other scoring functions with a higher success rate (X-Score::HSscore, 58.5%;

DS::PLP2, 53.8%; DrugScoreCSD, 52.3%; SYBYL::ChemScore, 47.7%). The perfor-

mance of PHOENIX in this study demonstated its utility in structure-based design

to correctly rank relative affinities for various types of protein-ligand complexes.

4.3.4 PHOENIX Scoring Function

The final PHOENIX scoring functions (used to predict ∆H, T∆S, and ∆G (∆H-

T∆S)) that resulted in the best performance across multiple versions (2002, 2004,

2009 refined sets; 2007 core set) and subsets (resolutions, protein families, affinities

from v2002) of the PDBbind database used a training set of 112 structurally and en-

ergetically diverse complexes. A set of 42 descriptors were included in the ∆H, T∆S,

and ∆G (∆H-T∆S) models: 34 derived from molecular mechanics calculations, var-

ious surface area terms, hydrogen-bond donors and acceptor count from VALIDATE;

1 to estimate the ligand partition coefficient (XlogP); 7 shape- and volume-based

descriptors from FPOCKET to better capture entropic contributions. Partial least

squares was used to assign coefficients to each of the terms to derive the master

equation to calculate ∆H, T∆S, and ∆G. While change in enthalpy (∆H) and

change in entropy (T∆S) predictions were of limited accuracy (standard errors of

6 kcal/mol) individually, the difference between their individual predictions resulted
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Scoring Function N Rp SD ME
PHOENIX 194 0.616 2.16 0.644
X-Score::HMScore 195 0.644 1.83 0.705
DrugScoreCSD 195 0.569 1.96 0.627
SYBYL::ChemScore 195 0.555 1.98 0.585
DS::PLP1 195 0.545 2 0.588
GOLD::ASP 193 0.534 2.02 0.577
SYBYL::G-Score 195 0.492 2.08 0.536
DS::LUDI3 195 0.487 2.09 0.478
DS::LigScore2 193 0.464 2.12 0.507
GlideScore-XP 178 0.457 2.14 0.435
DS::PMF 193 0.445 2.14 0.448
GOLD::ChemScore 178 0.441 2.15 0.452
Number of Heavy Atoms 195 0.431 2.15 0.517
SYBYL::D-Score 195 0.392 2.19 0.447
DS::Jain 189 0.316 2.24 0.346
GOLD::GoldScore 169 0.295 2.29 0.322
SYBYL::PMF-Score 190 0.268 2.29 0.273
SYBYL::F-Score 185 0.216 2.35 0.243

Table 4.15: Correlation evaluation of the PHOENIX scoring function on the
PDBbind 2007 core set. Correlation statistics presented are the number of

complexes tested (N), Pearson correlation coefficient (Rp), standard deviation (SD),
and mean error (ME). The Number of Heavy Atoms was used as a benchmark to

assess scoring function enrichment. Results from the commonly used scoring
functions taken from Wang et al. (2004) are presented for comparison purposes.
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Scoring Function Success Rate (%)
PHOENIX 46.2
X-Score::HSScore 58.5
DS::PLP2 53.8
DrugScoreCSD 52.3
SYBYL::ChemScore 47.7
SYBYL::D-Score 46.2
SYBYL::G-Score 46.2
GOLD::ASP 43.1
DS::LUDI3 43.1
DS::Jain 41.5
DS::PMF 41.5
SYBYL::PMF-Score 38.5
GOLD::ChemScore 36.9
DS::LigScore2 35.4
GlideScore-XP 33.8
Number of Heavy Atoms 32.3
SYBYL::F-Score 29.2
GOLD::GoldScore 23.1

Table 4.16: Success rates for correctly ranking the low-, medium-, and high-affinity
ligands in the PDBbind 2007 core set for the PHOENIX scoring function and 16

other commonly used scoring functions taken from Cheng et al. (2009).
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in a relatively accurate change in binding free energy (∆G) (standard errors of 1.5

kcal/mol). External validation using the 2009 version of the PDBbind refined set (n

= 1612) (most comprehensive high-quality data set for assessing scoring functions)

resulted in a Pearson correlation coefficient (Rp) of 0.575 and a mean error (ME)

of 1.41 pKd, which demonstrated its relative accuracy and robustness in predicting

binding affinities.

4.4 Discussion

Predicting binding affinity of protein-ligand interactions remains one of the most

critical and challenging problems in computer-aided drug design. The PHOENIX

scoring function, derived using a training set of high-resolution structures (n = 112)

and calorimetry measurements for change of enthalpy (∆H) and change of entropy

(T∆S) from ITC, has demonstrated an ability to achieve accurate binding affinity

predictions across 4 large and diverse sets of protein-ligand complexes (PDBbind

2002, 2004, 2009 refined sets; 2007 core set) using a modest number of descriptors

(n = 42) to capture key physicochemical interactions. Nine descriptors contributing

the most (>4%) to binding free energy (mean local hydrophobic density, flexibility

index, receptor total buried donor/acceptor count, pocket volume, electrostatic inter-

action energy, hydrophobic/hydrophilic contact surface area 2, proportion of apolar

alpha spheres, hydrophobic hydrophilic contact surface area 1, polarity score) aimed

to capture the key physical forces underlying protein-ligand interactions: enthalpic

contributions via van der Waals interactions, hydrogen bonding at the binding site,

electrostatics for specificity; entropic contributions via volume and polarity features

of binding site and ligand conformational entropy. Overall, the relative contributions

from each of the descriptors were fairly distributed (ranging from 0.001 to 0.072),

which suggested that each descriptor contains some degree of information for captur-

ing the physics of protein-ligand interactions. Perhaps the use of a larger and more

physically-accurate set of descriptors in future studies may help in further capturing

the atomic-level details underlying molecular recognition in protein-ligand interac-

tions.
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Despite the promising performance in predicting binding affinities, some limitations

of PHOENIX have been revealed. The enthalpy (∆H) and entropy (T∆S) regres-

sion and internal cross-validation results suggest that there is significant room for

improvement in deriving these equations. The individual thermodynamics parame-

ters (∆H and T∆S) displayed only modest predictive ability with relatively large

errors (6-7 kcal/mol). There are several possible reasons for this. Scoring function

would benefit from training on a larger and more structurally and thermodynami-

cally diverse set of complexes. More physically-accurate descriptors are needed to

more accurately capture and separate enthalpic and entropic contributions due to en-

tropy/enthalpy compensation. Descriptors that can better separate enthalpic (∆H)

and entropic (T∆S) contributions are needed to derive more accurate independent

thermodynamic models. However, developing descriptors to capture primarily en-

thalpy or entropy is a challenging feat in itself, since any physicochemical interactions

that can be experimentally quantitated are correlated and will contain, to some de-

gree, both thermodynamic forces (e.g, flexibility index and total ligand surface area).

Inclusion of descriptors to explicitly capture hydrogen bonding interactions may lead

to more accurate ∆H predictions. Descriptors to better capture electrostatics inter-

actions such as pi-cation interactions may also help with predicting enthalpy changes.

To better quantitate entropic contributions, descriptors to take into account confor-

mational changes of the binding site, such as quantitating the rotatmers of the side

chains involved in the complex, may provide a measure of entropy changes from the

protein upon ligand binding (entropy-entropy compensation). (Trbovic et al., 2009)

Classifying water molecules in the binding site according to their energetic preferences

as a means to model dewetting will be useful for capturing the entropy change upon

ligand binding and displacement of binding-site water molecules. (Abel et al., 2008;

Homans, 2007; Young et al., 2007) Inclusion of multiple binding modes to better rep-

resent conformational and configurational entropy may help to derive more accurate

change in entropy (T∆S) models as been demonstrated in theoretical studies. (Ru-

vinksy and Kozintsev, 2005; Ruvinksy, 2007; Stjernschantz and Oostenbrink, 2010;

Lee and Seok, 2008; Salaniwal et al., 2007) Moreover, larger sets of high-quality and

structurally and thermodynamically diverse protein-ligand complexes will certainly

be necessary to achieve more representative statistics for the different protein families

and ligand structures.
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As presented earlier, the change in enthalpy (∆H) and change in entropy (T∆S) cal-

culations were of limited relative accuracy. However, the change in binding free energy

(∆G) calculations was within relative accuracy compared with other commonly used

scoring functions. The relative accuracy predicted by the ∆G model (difference of

∆H and T∆S model predictions) may have resulted from the cancellation of the

overestimated values from independent ∆H and T∆S calculations, since the regres-

sion coefficient signs are in the same direction for both forces. Overestimates of ∆H

and T∆S may have been due to the high correlation between the physicochemical

descriptors used (e.g., flexibility index to capture conformational entropy is correlated

to terms estimating total ligand surface area to capture van der Waals interactions

to enthalpy), which were originally intended to be used to estimate ∆G. In other

words, a descriptor used to estimate T∆S contributions (e.g., flexibility index) may

also capture, to some degree, the physical forces underlying ∆H contributions (e.g.,

ligand total surface area). As an attempt to separate ∆H and T∆S descriptors,

simpler models using subsets (n = 20-30) of the final descriptors set (n = 42) that

are intuitive to contribute qualitatively to each thermodynamic force were used to

test if more accurate predictions can be achieved. However, resulting predictions by

these feature selection models were not as accurate as the predictions calculated using

models with the full descriptors set. As mentioned before, descriptors that can better

distinguish between ∆H and T∆S contributions should be developed and included

in future development of accurate thermodynamically-based scoring functions.

In developing scoring functions, the inherent inaccuracy of the experimental data,

which has been highlighted by a number of scoring function and structure-based

design studies, remains the culprit to the limited accuracy in binding affinity predic-

tions. In X-ray crystallography, conditions used to induce crystalization are often in

dramatic contrast to physiological conditions under which protein-ligand interactions

occur. Another potential source of error is from the thermodynamics measurements

by ITC. Experiments conducted with ITC have often been performed under varying

temperature and buffer conditions (e.g., salt concentration, pH), that may lead to

marked variations in the thermodynamics measurements. Inclusion of such ITC data

in the training sets may not necessarily represent the magnitude of thermodynam-

ics forces under physiological conditions. As the use of ITC increases to measure
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thermodynamics forces in protein-ligand interactions, diverse structural and thermo-

dynamics data performed under homogenous conditions should become available to

help alleviate these limitations.

4.5 Conclusion

Towards development of an empirical scoring function to achieve more accurate bind-

ing affinity predictions, high-resolutions X-ray crystal structures of protein-ligand

complexes and thermodynamic parameters measured by ITC were used to derive

models to calculate enthalpic and entropic contributions to binding free energies.

Shape- and volume-based descriptors were used as a heuristic method to implicitly

capture changes in desolvation entropy and ligand configurational entropy. PHOENIX

demonstrated accurate binding affinity predictions comparable to the top-performing

scoring functions based on an extensive series of tests on the 4 versions of the PDBbind

database. To our knowledge, this is the first empirical scoring function developed us-

ing thermodynamics parameters from ITC as a strategy to derive regression equations

to calculate binding affinity. Predicting binding affinities is the most critical and also

challenging component of structure-based drug design. Often times, a docking pro-

gram may identify a compound in the native low-energy conformation, but without

an accurate scoring function, will be categorized as a non-binder, rendering the dock-

ing program of minimal value. Because of the high false-positive and false-negative

rates associated with computer-aided drug design methodologies, development of an

accurate and reliable scoring function is absolutely necessary for enhancing the perfor-

mance of these in silico design tools. Development of the PHOENIX scoring function

demonstrated the use of high-resolution structural complexes and thermodynamics

parameters for model training can be the key advances towards achieving more accu-

rate binding affinity predictions.
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Chapter 5

Molecular Recognition and

Structure-Based Drug Design

5.1 Summary of Results and Discussion

The goal of this dissertation was to examine molecular recognition in protein-ligand

interactions. This was achieved in a prospective structure-based drug design study

to identify protein-protein interaction inhibitors targeting a bacterial signal trans-

duction pathway important for virulence, and also in the development of a scoring

function to predict binding affinities derived using high-resolution crystal structures

and thermodynamic parameters determined by isothermal titration calorimetry. The

prospective structure-based drug design study was the first of its kind, targeting the

conserved interface of the response regulator to discover inhibitors with a new mode of

action. The development of the PHOENIX scoring function demonstrated the use of

high-quality data (high-resolution crystal structures with thermodynamic parameters

determined by ITC) and inclusion of descriptors to better capture entropic contri-

butions might be the key advances to achieve accurate and robust binding affinity

predictions.

5.1.1 PhoP Response Regulator Inhibitors

In a prospective structure-based drug design study, 8 drug-like compounds were dis-

covered to inhibit the S. enterica PhoP response regulator. A hybrid strategy coupling
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computational and experimental methods was used to identify these PPI inhibitors.

A computational method consisting of structure-based virtual screening for pose pre-

diction, followed by rescoring using a consensus scoring scheme, prioritized potential

compounds for experimental testing. A series of biochemical and biophysical assays

were used to validate the biological activity and characterize the potential mode of

action. The 8 drug-like compounds discovered represent first-in-class inhibitors of a

conserved bacterial signal transduction module important for virulence in a number

of gram-negative pathogens. Experimental results suggested that these compounds

bind at the functionally important α4-β5-α5 interface and act in an allosteric man-

ner to inhibit the formation of the PhoP-DNA complex necessary for gene expression.

Discovery of these first-in-class inhibitors demonstrated a novel strategy for the de-

velopment of antibiotics with new modes of action. With the increasing resistance of

antibiotics currently in clinical use, this study demonstrated a new approach for com-

bating bacterial virulence. These inhibitors also serve as valuable lead compounds for

optimization by medicinal chemistry to improve affinity and pharmacological proper-

ties. In addition, such drug-like compounds serve as useful molecular probes to iden-

tify and characterize potential small-molecule binding sites at the α4-β5-α5 interface.

These chemical probes can also be used as molecular dials to tune the PhoQ/PhoP

signal transduction pathway in a time- and dose-dependent manner to examine the

impact of PhoP in regulating virulence.

5.1.2 PHOENIX Scoring Function for Binding Affinity Pre-

dictions

The development of the PHOENIX scoring function for binding affinity predictions

demonstrated the use of high-resolution crystal structures with thermodynamic pa-

rameters determined by ITC and inclusion of descriptors to better capture entropic

contributions might be the key advances towards accurate and robust affinity estima-

tions. PHOENIX used a total of 112 complexes and 42 physicochemical descriptors

for model training, and partial least squares to derive the regression equations. While

the estimations for change of enthalpy (∆H) and change of entropy (T∆S) were of

marginal accuracy, the results derived for change of binding free energy (∆G) were
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accurate and comparable with the top-performing scoring functions. Affinity predic-

tions by PHOENIX have been demonstrated to be accurate and robust in external

tests using multiple versions (2002, 2004, 2007, 2009) and subsets (resolutions, protein

families, affinities, diverse and non-redundant complexes) of the PDBbind database.

In particular, PHOENIX performs better than existing scoring functions for esti-

mating affinities of high-resolution (≤ 2 Å) complexes, demonstrating its value for

atomic-level structure-based design studies. PHOENIX is valuable for accurate bind-

ing affinity predictions, and should also be useful for binding pose predictions and

docking method assessments with high-resolution protein-ligand complexes.

5.2 Future Directions

5.2.1 Further Characterization and Design of PhoP Inhibitors

To determine the mode of action and elucidate protein-ligand interactions at an

atomic level, X-ray crystallography and NMR studies must be performed. Cell-based

assays and animal model tests will be needed to assess the therapeutic potential of

these PhoP inhibitors. Structural analogs of the 8 drug-like compounds can be de-

signed to enhance affinity and pharmacological properties, in addition to charactering

the structure-activity relationships.

5.2.2 Advances to Achieve Accurate Binding Affinity Pre-

dictions

More physically accurate descriptors will need to be developed in order to achieve

accurate predictions of change of enthalpy (∆H) and change of entropy (T∆S). De-

scriptors that can separate enthalpic and entropic contributions will be instrumental

to achieve accurate thermodynamic parameter estimations. Better methods to cap-

ture solvation and desolvation contributions (either implicitly and explicitly) and

inclusion of multiple binding modes (ligand and protein) to represent the conforma-

tional statistics will be necessary to achieve more accurate change of entropy (T∆S)
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estimations. Development of more accurate shape and volume descriptors will be

important to estimate the change in configurational (translational and rotational)

entropy, illustrated in theoretical studies to be an important component to the over-

all change of entropy (T∆S). Better electrostatics models (e.g., polarizable force

fields) will need to be used to accurately estimate enthalpic contributions and its in-

dividual components (e.g., electrostatics, hydrogen-bonding, van der Waals contacts)

to binding free energy.

5.3 Conclusion

5.3.1 Targeting Protein-Protein Interactions for Drug Dis-

covery

Protein-protein interactions are involved in a variety of biological functions such as in

metabolism and signal transduction. Due to its prevalence and importance in biology,

PPI serve as an attractive structural motif for therapeutics development. Discovery of

first-in-class PhoP response regulator inhibitors targeting the functionally important

α4-β5-α5 interface demonstrated this strategy for the design and development of

antibiotics with new modes of action. Two-component signal transduction systems

are highly prevalent and important in bacterial physiology and virulence. Modulation

of these conserved systems by targeting the output response regulator should provide

a deeper insight into the biological roles and importance of these gene regulatory

elements.

5.3.2 Binding Affinity Prediction

Binding affinity predictions is the most important and challenging component to

computer-aided structure-based drug design. Methods for accurate affinity predic-

tions are important and widely employed in computational lead discovery and op-

timization studies. Advances implemented and assessed in the PHOENIX scoring
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function will guide the future development of accurate and robust methods for affin-

ity predictions.

5.3.3 Future of Computer-Aided Molecular Design

Scientific contributions accomplished in this dissertation are a testament to the value

of computer-aided molecular design methods to examine molecular recognition and

application to drug discovery. Discovery of PPI inhibitors demonstrated a new frontier

for antibiotics development. Advances implemented in PHOENIX suggested impor-

tant advances to implement in order to achieve accurate binding affinity predictions.

Taken together, these studies should guide the future development and application of

CAMD methods for molecular recognition and structure-based drug design.
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