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Strategies for the Parallel Training of Simple
Recurrent Neural Networks

Peter J. McCann and Barry L. Kalman*®

Abstract

Two concurrent implementations of the method of conjugate gradients
for training Ehman networks are discussed. The parallelism is obtained in
the computation of the error gradient and the method is therefore appli-
cable to any gradient descent training technique for this form of network.
The experimental results were obtained on a Sun Sparc Center 2000 mul-
tiprocessor. The Sparc 2000 is a shared memory machine well suited to
coarse-grained distributed computations, but the concurrency could be
extended to other architectures as well,

1 Imtroduction

There has been some work done in the area of parallel neural network training
algorithms [7], [10], but very little of it has focused on the training of recurrent
networks. It takes an exceptionally large amount of computer time to train
these types of networks becanse of the added complexity of the derivative cal-
culations. In this work, we focus on one type of recurrent network, Elman’s
Simple Recurrent Network [3], and we present two ways to distribute the gra-
dient computation.

Qur first parallel algorithm distributes the network aver processing elements.
It distributes the most computationally intense part of the gradient calculation
during each pattern presentation. As such, it requires a synchronization step
for every term of a summation over the training patterns.

Our second parallel algorithm duplicates the network over processing ele-
ments, and distributes the gradient computation at a higher level. Fewer syn-
chronization steps are required and more speedup can be obtained. This method
requires more duplication of variables, however. It is also not universally appli-
cable in that it depends on the number of independent sequences in the training
data.

*The authors are with the Department of Computer Science, Washington University, Cam-

pus Box 1045, St. Louis, Missouri 63130-4899. Peter J. McCann is pjm3@cs.wustl.edu .
Barry L. Kalman is barry@cs.wustl.edu.




Figure 1: An Elman stmple recurrent neural network. Some of the hidden unit
activations are copied back to the context layer after each pattern presentation.
The dashed lines represent the skip connections from the input and context
layers to the output layer.

Figure 1 shows an Elman SRN. This is a partially recurrent neural network
capable of learning sequence information. The context units hold copies of the
hidden unit activations from the previous pattern presentation, and therefore
the output of the network can depend not only on the current input but also
on the entire input history. This type of network has found many applications
in language processing, time series prediction, and other problems that require
a network to maintain an internal state over some period of time.

Our network architecture includes “skip connections” that bypass the hidden
layer. These weights fully and directly connect the input and context units to
the output units. It has been determined experimentally that these connections
allow for faster network convergence. They provide an alternate set of param-
eters for the linearly separable, or perceptron, portion of the problem. See [4]
for a more complete discussion of the rationale for these connections.

Some notational conventions:

tyo The target of output unit o when the
network is presented with pattern p.

po The activation of unit ¢ when the
network is presented with pattern p.

bo The bias value of unit o.

wij The weight from unit ¢ to unit j.



hid(f) The hidden unit from which feedback
unit f was copied.

The set of all input units.

The set of all feedback (context) units.
The set of all hidden units.

The set of all output units.

The number of inpuf patterns.

RS

For our error function, we choose a scaled, squared difference of the targets
from the actual activations, defined as:

2= 5 ezl

p=0 0O

which is tailored to a hyperbolic tangent squashing function. While the results
presented here are applicable to any choice of error function, we should point
out that the typical squared error function is not very well suited to variables
on a finite domain such as those produced by the ouiput of a neural network.
See [6] for a complete treatment of the choice of error function.

For calculating the gradient, we need to take a derivative of our error function
with respect to each of the parameters of the network., Taking ¥ to be some
weight or bias in the network, we have

Z Z (tpo Gpo)

p=0 aeo

((tpo = apo)apo ~ (1= a2, 2.

(1)

All of the above terms except for 2aze aY are easy to calculate.

Our sigmoidal function is the hyperbolic tangent with a 5 3 coefficient on the
sum of inputs. See [5] for a detailed derivation of this coefficient. With the
knowledge that ap, = tanh(2X), where X is the weighted sum of all the inputs
to unit o at time p, we can calculate this derivative:
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Sirnilarly, we can calculate %“};.ﬂ, for r € H to be:
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Note that the terms such as a—;}'”;f- for f € F in the above sums cannot be
1gnored If p is not the first pattern in some sequence, these are correctly given
by _(5;_1&, where h =hid{f) is the hidden unit that was copied back into unit
f. This is because unit f’s value is copied directly from unit & from the previous
pattern presentation, and changing parameter Y will change this value. For this
reason, we need to keep all of these partials in memory from pattern to pattern.
If we are to evaluate derivatives due to pattern p, we need information from
pattern p — 1. In other words, we are copying back not only the activations
of some hidden units from patiern p — 1, but also the derivatives of the error
function with respect to the weights connected to those hidden units.

At the beginning of every input sequence, we zero the activations of the
context units. This choice seems logical in that we would like the network to
be in a “quiescent state” before any input is presented to it, but it is in no way
dictated by the above equamons Similarly, the equations tell us nothing about
how to initialize the 2%2L ay values for the first patiern in a sequence. Again, zero
seems a good choice for these terms, and experiment has shown that this choice
works as well as any other.

Note that these zeroing events partition our sequence of P input paiterns
into subsequences sq, $1,..., $p, where the terms corresponding to each subse-
quence can potentially be evaluated independently. This will be the source of
the concurrency for the second parallel algorithm discussed below, but for now
we return our attention to the derivative terms due to weights connected to the

hidden layer.



If Y is a weight wg,, where o is any output unit and x is any other unit,
then the activations of hidden and feedback units do not depend on this weight.
Equations 2 and 3 are then vastly simplified, and are easy to calenlate. We have
found, however, that over eighty percent of the total computation time, not just
of the gradient calculation time, is spent calculating derivatives with respect
to parameters such as wgp, which are the weights from input or pseudo-input
layers to the hidden layer, and by, the biases of the hidden layer units. Taking
oc O, rcH,and i € (TUF) we can define

foo — po)?
o = 3] (tpo_a,,a)—(?f—;")—a,,o]
3
51_-,,- - 5(1—&?,,)
api fr=h Ai<||(TUF)
Fr‘pihi‘ = i. if?’zh A 3-: ”(qu)“

0. otherwise.

The definition of yp;z- abuses our notation somewhat, but it lends some clarity
to the structure of equation 4. We can think of the last weight connected to
each hidden unit as a bias for that unit. That is, w;;, is defined as b; when
i = |[(ZU F)|| if our indices start from 0. This lets us write for i € (Z U F) and
heH:
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2 Concurrency

2.1 Network Partition

The following pseudo-code implements the inner sums from equation 4. It is
placed inside a loop over all the patierns, in which each pattern is presented
in order and all of the §,; values are calculated. Another portion of the loop
should handle the calculations of terms like %. The following code is the
interesting part, because we are looking for concurrency that we can easily take

advantage of:

forheH
forie (ZUF)
{If i=|[(TUF)|| then wiy is bp }
if (wih = bh) Qeze + 1.

else Jexe +— Qpi
forre™
if(r="h) &+ gepe
else z 0.
forferF
re—ux+ wfr%:ﬁf
rof {f}
dbuflr] — - 8pr
rof {r}
{ At this point, dbuf[r] contains %ﬁ
foroc @
z — 0.
for fc F
T e X Wyo - g_i}:'-{:
rof {f}
forrecH
L= Wy dbuf{r]
rof {r}
B?th - %4"3'6‘1}0
rof {o}
forrc X
%ﬁ — dbuf[r]
rof {r}
rof {7}
rof {h}

Here dbu f[-} represents an array that holds one floating point number for each of
the hidden units in the network. It is used to store the values of the derivatives



of the hidden activations with respect to weight w;; during the presentation of
pattern p. This buffer is copied back by the 1ast for loop into the storage area
for these derivatives, which will be used as —é—}fuj'—l during the calculations for
the next input pattern. Actually, we only need to buffer those derivatives which
will be copied back, but for the sake of simplicity we keep all of them separate
until the end of the outer loop, as shown above.

Note that we can run each iteration of the loop completely independently.
We need only duplicate the local variables g.zc, z, and dbuf[-] for each thread
of execution. All of the data required by each process can be read from shared
memory, and the results of the calculation, the a’fﬁ’h values, are all written to
separate locations, so there will be no memory contention.

In order to obtain the most performance from a concurrent implementation,
the loop with the widest possible scope is the one that should be run in parallel.
This is because the overhead introduced by the concurrency will be distributed
over a larger and more complex computation, and therefore performance will
hopefully not degrade as much as it would in an extremely fine-grained paral-
lelism. One may ask, then, why this particular loop was chosen for concurrent
execution, when it appears at least two nesting levels down from the high level
computation of a gradient descent method. Our reasoning is three-fold: first,
this was a fairly easy code transformation to make. We had only to allocate hid-
den units to each thread of execufion and thereby change the bounds on some
loops. Alsa, this method of obtaining concurrent execution is more feasible than
many others. We had only to duplicate a few scalars and one (very small) vec-
tor. Finally, a complexity analysis reveals that this portion of code is especially
time consuming. Experimentally it was found that over eighty percent of the
total computation time was spent in this loop. This allows us to achieve high
overall speedups from the concurrency obtained in this small, isolated portion
of code.

Note that the complexity of the calculation above is Q(]|F[|*) because there
are ab least as many hidden units as feedback units. This means that the
time bottleneck this loop already presents for typically sized networks will get
even worse as work proceeds towards larger and larger architectures. Taking
advantage of the natural opportunities for concurrency will hopefully alleviate
this problern.

2.2 Training Sequence Partition

Qur second algorithm is usually the more efficient. Its parallelism has a larger
scope than the first algorithm, and it therefore includes more of the sequential
computation and provides more work for each processor.

We can define len() to be the number of patterns in sequence s;. We want
to schedule the sequences on different processors so that the computation is as
load balanced as possible. This means, if we have R processors, we need to



produce an assignment 0 < a; < R for each of the sequences s; such that

max ( Z len(7)) (5)

0<r< R
ai=r

is as small as possible. The problem of finding an assignment of jobs to pro-
cessors so that 5 is minimized is known to be NP-complete [2], and so we use
a variant of the I'irst-Fit Decreasing-Height (FFDH) heuristic analyzed in {1].
We statically allocate the sequences to processors according to the following
algorithm: First, sort the sequences in order of non-increasing length. Then,
assign each sequence s; in turn to the least loaded processor, starting with the
longest sequence, and adjust the load of that processor upwards by len(?).

It is straightforward to show that this algorithm performs at least as well as
the FFDH algorithm. It is proven in [1] that the length of a schedule resulting
from FFDH will have length at most

MOPT + max(len(i))
R i
where QOPT represents the length of the optimal schedule.

After sequences have been assigned to processors, we need to make some
additional modifications to the sequential code. Since each processor will be
doing independent forward propagation, we will need a separate copy of the
network activations for each job. Since each processor will be computing a local
sum of the gradient components, we will need a separate copy of all the %
variables for each job. However, the results are to be computed using only one
set of weights, and so all of the w;; and b; values can be shared.

Note that certain implementations of second order methods may require a
line search along the descent direction indicated by the gradient in order to find
a minimum in that direction. Our conjugate gradient trainer uses such a search,
and we have found that a derivative-free line search involving only evaluations
of @ is the most efficient. The above partitioning of input patterns can be used
to perform this forward propagation as well.

3 Resulis

Our conjugate-gradient trainer is implemented using the available C libraries for
multi-threaded execution on the Sun Sparc Center 2000 multiprocessor. There
are currently eighteen 40 megahertz Sparc 10 processors on the system. The
Sparc 2000 has a shared memory architecture with two high bandwidth packet
buses. Each processor maintains ifs own local cache of main memory, and each
processor meonitors bus transactions and invalidates portions of its cache when
appropriate.
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Figure 2: Speedup as a function of processors used to train a (240+10)-10-3
network.

3.1 Network Partition

The speedup values in figures 2 and 3 represent ratios of total real time elapsed
during the execution of the loop from section 2.1. The value reported for each
processor configuration is the time taken by the sequential version divided by
the time taken by the parallel version. These values do not include the part of
the code that is still performed sequentially, only the loop from section 2.1 was
timed.

The network being trained in figure 2 is a (2404-10)-10-3 network, meaning
240 inputs, 10 feedback or pseudo-input units, 10 hidden units, and 3 output
units. The problem was to identify the type (classical, talk, or rock-and-roll)
of a radio station from digital audio recordings. The sequential version of our
conjugate gradient trainer took 22 hours to train on this problem. The five
processor version took eight.

The concurrent algorithm was also timed on anatural language parsing prob-
lem involving a (34+24)-24-39 network. Figure 3 shows the speedups obtained.
The simplicity of the division of labor shows through in the data point for seven
processors. The twenty-four hidden units were allocated as evenly as possible
over seven processors, and one of the leftovers was given to each of the first
three. This means that some processors had a workload of four hidden units,
which is the same as the workload for each in the six processor version. The
additional overhead of the extra processor is enough to degrade performance. A
more load-balanced computation is possible if partial calculations for the hid-
den units are allowed to proceed on separate processors, i.e., by partitioning the
input units as well, but this was not attempted.

To implement this algorithm on a message passing architecture, one would
need to broadcast the appropriate weights matrices at every step.
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Figure 3: Speedup as a function of processors used to train a (34-424)-24-39
network.

3.2 Training Sequence Partition

The second parallel algorithm was also implemented on the Sparc 2000. This
involved the duplication of all the program variables involved in the sum over
the patterns, as well as an additional portion of code to sum these duplicated
variables into their corresponding global variables. A message-passing imple-
mentation would, in addition, require duplication and update of the w;; and b;
values in the local memory of each node.

The test case used was a recurrent version of the NETtalk experiment per-
formed by Sejnowski and Rosenberg [8]. We used an architecture consisting of
103 input units, 20 hidden layer units, 10 feedback units, 2 units in a second
hidden layer, and 27 outputs. The use of feedback in this network allowed us
to eliminate the “look-behind” portion of the input layer while still achieving
results comparable to [8]. This problem was especially amenable to this form
of parallelism because it involved a large number of short training sequences,
L.e., one sequence for each training word. The training corpus consisted of 4535
patterns organized into 821 sequences.

Figure 4 shows the speedups obtained for a derivative calculation epoch.
Figure 5 shows the speedups obtained for a forward propagation epoch. The
speedup curves, although they follow a general upward trend until peaking out
when synchronization overhead starts to dominate the computation, exhibit
behavior that is not readily explainable. The data points for some test cases
seem to be much slower than the overall trend would predict. These effects
remained constant over several runs, and so are probably not due to background
machine load or measurement error. More likely, they are the effects of the
limited bus bandwidth and cache utilization that are not easily modeled. Also,
the timings of the linesearch calculations seem to be subject to much more of
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Figure 4: Speedup of a derivative, or back-propagation, epoch as function of
processors used.

this deviation, due to the small size of the computation.

A derivative calculation takes about 417 seconds when run on one proces-
sor. A forward propagation epoch takes about 11 seconds. Typically, about
ten forward propagation epochs will be performed along the gradient direction
calculated during each derivative epoch. This is because we do an iterative
line search for the error minimum along this direction. Qur software allows for
scheduling the training patterns onto different numbers of processors for each
of these tasks, so that we can take advantage of the best point on each of these
curves to achieve maximal speedup. Using 17 processors for each derivative
epoch and 6 processors for each line search epoch gives us an overall speedup
of 8.98, which includes all computation, not just the derivative and forward
evaluations discussed here.

Typically, a single training run will require hundreds of epochs. The overall
speedup presented here therefore represents significant savings in time over the
sequential version. By reducing the furnaround time, a greater number of net-
work architectures can be investigated, and connectionist research can be more
effective.

4 Conclusion

Qur first optimization focused on the possibilities for concurrency in one portion
of the derivative calculation. This allowed us to achieve some speedup, but it
was limited by the size of the network architecture used, and did not allow
concurrent computation of the forward propagation step. Our current trainer,
although it was more difficult to implement, allows us to partition the set of
inputs, which is typically large. This lets us use the available hardware more
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Figure 5: Speedup of a line search evaluation, or forward propagation, epoch as
function of processors used.

efficiently.

While the training of recurrent networks, even of simple ones, introduces
myriad new complexities over feed-forward network training, our algorithm con-
tains opportunities for concurrency. These opportunities can be taken advantage
of after a careful and thorough study of the data dependencies involved. Re-
ducing the real time elapsed during a training run is of great benefit to those
undertaking connectionist research projects. It means that more experiments
can be conducted in less time than with sequential methods.
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