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Abstract

A useful way to design simple and robust protocols is to make them self-stabilizing.
We describe a simple technique for self-stabilization called counter flushing which is appli-
cable to a number of distributed algorithms. A randomized version of counter flushing is
shown to have extremely small expected stabiization time. We show how our technique
helps to crisply understand and improve some previous distributed algorithms. Then we
apply it to a variety of fotal algorithms for deadlock detection, propagation of information
with feedback, resets and snapshots. Our stabilizing snapshot protocol has much better
complexity than the previcus stabilizing non-blocking snapshot protocol. Hence it can be
used to improve the complexity of general compilers that convert arbirary asynchronous

protocols into stabilizing equivalents.

1 Introduction

Informally, a protocol is self-stabilizing if when started from an arbitrary global state it ex-
hibits “correct” behavior after finite time. While typical protocols are designed to cope with
a specified set of failure modes (e.g., message loss, link failures), a self-stabilizing protocol es-
sentially copes with a set of failures that subsumes most previous categories and is also robust
against transient errors (such as memory corruption and malfunctioning devices that send out
incorrect messages). There is evidence from real networks that such transient errors do occur
(e.g., the ARPANET [Ros81, Per83]) and cause systems to fail unpredictably. Thus stabilizing
protocols are attractive because they offer increased robusiness (especially to transient faults)
as well as potential simplicity (because a stabilizing protocol can avoid the need for a slew of
independent mechanisms to deal with a catalog of anticipated faults.)



Self-stabilizing protocols were introduced by Dijkstra [Dij74]. Since then, they have been
studied by various researchers (e.g., [BP89, GM90, KP90, DIM90, 1J90a], [1J90b, AGI0,
AKY90]). However, only recently has there been a study of general techniques for self-
stabilization. A landmark paper is that due to Katz and Perry [KP90], which showed how
to compile an arbitary asynchronous protocol into a stabilizing equivalent. The basic idea is
to add a leader node periodically do a snapshot of the network and reset the network if a
global inconsistency is detected. We call this idea global checking and correction, However,
the general transformation is expensive and so the search has continued for techniques that
are less general and more efficient than those of Katz and Perry but still apply to a number of

useful protocols.

A paper by [AKY90] suggests how to make a spanning tree protocol stabilizing by having
nodes detect inconsistent global states by checking the states of neighbors. In [APV91, Var92]
this notion is formalized using the notion of local checkability — protocols that are locally check-
able can be checked for global inconsistency by using more efficient local checking. [APV91,
Var92] goes further and defines the class of locally correctable protocols that can be corrected
into good global states by local correction actions.! In [APV91, Var92] local checking and
correction is used to design stabilizing protocols for mutual exclusion, the end-to-end problem,

and network reset,

However, not every protocol is locally correctable. Another general method, suggested in
[Var92], is called local checking and global correction by which any locally checkable protocol
can be stabilized using a stabilizing network reset protocol. Using the optimal reset protocol
described in [AKM*93], this leads to protocols that stabilize in time proportional to the

network diameter.

This paper describes another general technique, called counter flushing that is applicable
to some protocols that are neither locally checkable or correctable. The setting is that of a
leader which wishes to periodically deliver a message to every network node (and sometimes
to every link) in the network. By attaching a simple counter to the state of every node and
to every message, and by using a few simple checks, we can ensure that the protocol will
begin to work correctly regardless of the initial messages and node states. In particular we
advocate a randomized version of counter flushing (in which each new message is numbered
with a random counter value chosen from a sufficiently large space) that has extremely fast

expected stabiization time.

The method appears to be applicable to several fotal algorithms, ([Tel89]} which are es-
sentially algorithms that involve the cooperation of all nodes in the network. Some protocols

that affect the state of a pair of neighbors.



to which this technique is applicable include token passing [Dij74], propagation of information
with feedback [Seg83], deadlock detection [Mis83], network resets [AG90], and non-blocking
network snapshots [CL85]. Our stabilizing version of the Chandy-Lamport snapshot protocol
improves the complexity of the Katz-Perry version and hence can be used as an improved
component of the general transformation described in [KP90].

In some cases, the solutions provided by counter flushing can also be provided by local
checking and correction. However, the method of local checking requires a fairly tedious enu-
meration of the protocol invariants which need to be checked; the addition of local checking
also has a fair amount of complexity [Var92]. Also, taking correct snapshots of local state re-
quires some careful synchronization which makes actual implementations ([CSV89]) somewhat
tricky. By contrast, the modifications required by counter flushing are extremely simple. Thus
we believe that counter flushing is to be preferred in practice even when both methods are

applicable.

Besides providing new results, a useful paradigm should be able to unify and help under-
stand previous work in the field. For example, we show that Dijkstra’s N-state example [Dij74]
can be understood very simply using counter flushing; in fact the requirement for O(N) states
follows almost immediately from the general paradigm.? We even show that this protocol can
be easily extended to a message passing version which appears to be simpler than the token
passing protocols used in today’s Local Area Networks. The counter flushing paradigm also
exposes a basic unity behind Dijkstra’s token passing protocol, results on stabilizing Data
Links [AB89, GM9(], and results on stabilizing request-response protocols [Var92).

The rest of the paper is organized as follows.

First in Section 2 we describe our mode] of computation and then describe our assump-
tions about links and network topologies. Next, in Section 3, we introduce the counter flushing
paradigm by describing a message-passing version of Dijkstra’s token ring protocol. In this
section, we also introduce the simple idea of randomized counter flushing and compare our
solution with existing work in stabilizing Data Links, especially the elegant solution of [AB89].
In Section 5.1, we extend the use of counter flushing on a ring to provide stabilizing deadlock
detection by transforming a protocol due to [Mis83]. In Section 6, we extend counter flushing
to trees as exemplified by the well-known Propagation of Information with Feedback (PIF)
protocol due to Segall. In Section 7, we describe how to use counter flushing to produce a
stabilizing reset for a general network. This reset protocol in turn can be used to stabilize
certain diffusing computations, as exemplified by a stabilizing version of the Chandy-Lamport

?We have previously shown that Dijkstra’s second example can be formaily derived using the ideas of local
checking and correction [AGV92].
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Figure 1: A Unit Capacity Data Link

protocol that stabilizes in time proportional to the network diameter. Then we briefly conjec-
ture that counter flushing techniques are applicable to virtual circuit problems as well. Finally,
in Section 10 we present our conclusions.

2 Models

2.1 Modelling Tool — I/O Automata

In the IOA model, transitions by which the environment affects the automaton (e.g., SEND)
are called Input actions while transitions by which the automaton affects the environment (e.g.,
RECEIVE) are called Quiput actions. Input actions are under the control of the environment
while output actions are under the control of the automaton. Finally, there are internal actions
which only change the state of the automaton without affecting the environment.

Formally, an I/O Automaton (henceforth IOA) is characterized by its state set S, a action
set A, an action signature G (that classifies the action set into input, output, and internal
actions), a transition relation R C S x A x S, a set of initial states 7 C S. The set of output
and internal actions are called the locally controlled actions of the automaton. Fairness is
specified by dividing the set of locally controlled actions into a finite number of equivalence
classes. For stabilization, we will often limit ourselves to a special type of IOA that we call a
UIOA (for uninitialized IOA) in which the state set is finite and T = S. In other words, any
state is a possible start state for a UIOQA.

An action a is said to be enabled in state s if there exist s’ € S such that (s,q,s") € R. By
definition, input actions are always enabled. (This is quite natural for many message passing
systems, where messages can arrive at any time). When the automaton “runs” it produces an
execution. An execution fragment of the automaton is modeled by an alternating sequence of
states and actions (so, a1, 81,...), such that (s;, ¢;,8i41) € R for all Z > 0. An execution is an
execution fragment that begins with a start state and is fair. An execution fragment E is fair
if every locally controlled class C' is given a “fair turn”; more formally, if some action of C' is
enabled in some state s of F, then either some action in F occurs after s or there is some later



state in which no action of C is enabled.?

There is a notion of composition of automata that allows automata to be “plugged together”
using simultaneous performance of shared actions. For example, consider a node automaton
that had an action to send a packet SEND(p) as an output action. Since this is the same name
as the input action for the channel automaton shown in Figure 1, when the two automata are
composed, whenever the node performs a SEND(p) output action, the channel simultaneously
performs a SEND(p) input action. The formal details can be found in [LT89]; intuitively
the composition of automata is a new automaton whose state set is the cross-product of the
component state sets, whose transition relation is obtained from the component automata in
the natural way, and whose locally controlled ciasses are the union of the locally controlled
classes of the component automata.

Finally, a behavior is the subsequence of an execution consisting of external (i.e., input and
output) actions. Thus each automaton generates a set of behaviors. We specify the correctness
of a protocol using a set of behaviors P; an automaton A is said to solve P if the behaviors
of A are a subset of P. This definition reflects a belief that the correctness of an automaton
should be specified in terms of its externally observable behavior. For example, to specify a
FIFO Data Link we might require that the sequence of received packets be identical to the
sequence of sent packets.

2.2 Modelling Bounded Links using Initially Bounded Asynchronous Mod-
els

Traditional models of a FIFO Data Link have used what we call Unbounded Capacity Data
Links that can store an unbounded number of packets. Now, real physical links do have
bounds on the number of stored packets. However, the unbounded capacity model is a useful

abstraction in a non-stabilizing context.

Unfortunately, this is no longer true in a stabilizing setting. If the link can store an
unbounded number of packets, it can have an unbounded number of “bad” packets in the initial
state. It has been shown [DIM91] that almost any non-trivial task is impossible * in such a
setting. Thus the original simplification of considering only unbounded links is no longer valid.
Since real links are bounded and (as we show below) bounded links can be modeled elegantly,

we restrict ourselves to bounded link models.

3One can thiok of the automaton running under the control of a scheduler that samples each class to see if
it is enabled and if so, giving some enabled action in the class a turn. Of course, if no action in the class is
enabled whenever the scheduler samples the class, the scheduler is under no obligation to give this class a turn.
*More precisely it is impossible to provide bounded stabilization time



In previous work, we have modelled bounded links as a unit capacity Data Link or UDL for
short. Intuitively, a UDL can store at most one packet at any instant. We can show [Var92]
that a UDL can be implemented over real physical channels and can easily be generalized
to bounded capacity data links. Roughly, [Var92] a UDL can be thought of as a model of a
reliable Data Link protocol that only delivers one message at a time (i.e., it uses a window size
of 1), A UDL can be implemented (see [Var92]) by an underlying stabilizing Data Link that

sends and receives acknowledgements.

However, many real protocols, especially those that work over very reliable {(e.g., fibre)
links do not use an underlying Data Link protocol. Consider a single link of a token passing
ring like the FDDI or IBM token ring. It is a single piece of fibre of bounded length (say up
to 1 mile) that connects two nodes. There is no data link protocol between the two nodes;
messages are simply relayed between the two nodes on the assumption that the links are mostly
reliable. However, the number of messages stored on a link is always bounded. For a mile long
link, assuming speed of light limitations, we have a 5 usec propagation delay. Suppose the
nodes transmit 20 byte messages (i.e., tokens) at 100 Mbit/sec. Then roughly 3 tokens can
be stored at any instant in the ring. Of course, the reason why the “queue” that models the
stored messages on a link is always bounded is that the sender and receiver are transmitting
synchronously. The receiver is taking token messages out as fast as the sender can input these

messages.

Modelling the synchrony between transmitter and receiver is possible but is somewhat
involved and also tends to imply that our basic idea is confined to such synchronous systems.
Instead, we propose the following model of a bounded link. We model a bounded link (as
usual) as a queue such that packet send events add elements asynchronously to the head of the
queue and packet receive events remove elements asynchronously from the tail of the queue.
The only twist is that:

¢ [or self-stabilization we assume that in the initial state all all links queues are bounded.
For example, in the token passing example, the bound was 3. However, we do allow the

queue to grow unboundedly after that.

e Tor time complexity purposes, we assume that any message stored in a link queue will
be delivered 1 unit of time later, regardless of the size of the queue. For example, the
token passing example, 1 unit of time would correspond to 5 usec.

At first glance, this seems like “cheating”. The second assumption seems absurd because
we are guaranteeing a fixed delay for every message regardless of whether there is 1 or a mil-
lion messages ahead of it. However, we have seen that in the real system the queue is always

6



A packet p is drawn from some packet alphabet P
The state of each link C; ; is a queune of packets Q; ;.
In the initial state the queue size is no greater than Ly,

SEND; ;(p) (* a packet is sent by node i to the link *)
Effects:
Add p to the end of @ ;

RECGEIVE; ;(p) (¥ Link delivers a packet to node j *)
Preconditions:
p is the head of Q; ;
Effects:
Remove p from Q; ;

All RECEIVE actions are in a separate class. For time complexity
purposes we assume that any packet p placed in @y ; is delivered
within 1 unit of time.

Figure 2: Formal Model of an Initially Bounded Data Link

bounded and so the time delay assumption holds. In fact, the only reason we are allowing the
queue to grow unboundedly in our model is to take advantage of the simple modelling ma-
chinery that exists for asychronous protocols (i.e. I/O Automata) without explicitly modelling
time except for time complexity. However, we claim the following fact informally: if a given
protocol P can be shown to be stabilizing in our initial bounded but asynchronous model,
then P is stabilizing is in the bounded, synchronous model (which we claim is the “real-life”
model}. Intuitively, this is because the initially bounded, asynchronous model has a richer set

of behaviors than the bounded synchronous model.®

A formal specification of an initially bounded Data Link is shown in Figure 2

“Like all seemingly “obvious” statements a precise statement and proof would be worthwhile. Thus it is

more accurate to say that we take this as our article of faith.



2.3 Network Topologies

In what follows we consider various topologies consisting of nodes connected by initially
bounded Data Links. Except for the case when we consider a ring topology (Section 3), we
assume that links are symmetric — i.e., between any pair of neighbors ¢ and j there is exactly

cne link in either direction.

To apply the counter flushing paradigm, we also need the assumption that there is a leader
node in the network, There are many stabilizing protocols to construct a leader, especially
the protocol of [AKM™*93] that calculates this leader in O{D) time ignoring polylog factors.
We assume therefore that a fixed node is designated as the leader. For the case of a general
network, we also assume that there is also a pre-computed spanning tree of the network rooted
at the leader. Once again this is not a restrictive assumption: given a unique leader a spanning
tree rooted at the leader can easily be calculated in O(D) time as shown in [DIM89].

3 Counter Flushing on a Token Ring

The protocol described in Figure 3 is a simple token passing ring and is a message passing
version of the first example in [Dij74]. Dijkstra’s version was described in a simple shared
memory model. We have chosen to use a message passing model uniformly for describing the
counter flushing paradigm. The message passing model also introduces some subtleties not
present in Dijkstra’s original protocol — for instance, the size of the counter now has to be
increased to take into account messages that can be stored on the channel.

We will use our initially bounded Data Link model. The nodes in the ring are numbered
from 0 to n — 1. All arithmetic on node indices is assumed to be mode n, Thus between any
nodes 7 and ¢+ 1 we assume there is a link C; ;41 which was specified in Figure 2. Assume that
the nodes are laid out in a ring with node 0 at the top and the indices increasing in clockwise

order.

The protocol is very simple. A token messages carries a counter and the state of each node
also consists of a counter; a counter is simply an integer in the range 0 to Maz. Each node
periodically retransmits its counter value in a token message. Node 0 is a special process®
whose local protocol is different from the other nodes. When Node 0 receives a token from its
clockwise neighbor, if the counter in the token is equal to Node 0°s local counter, then Node 0
changes its counter value using a function CHOOSE which returns an arbitrary counter value

5Equivalent to the Ring Monitor in the IBM Token Ring



A token message is encoded as a tuple {Token, ¢) where ¢ is an integer in the range 0..Maz
The state of each node # consists of an integer count; in the range 0..Max

Assume there are n nodes numbered from 0 to n — 1.

All additionr and subtraction of process indices is mod n.

CHo0sE(Maz, c)
Function which non-deterministically returns any integer not equal to
¢ in the range from 0..Maz. Later we will discuss specific implementations of this function.

RECEIVE,_1 o( Token, ¢) (* Node 0 receives token from Node n — 1 *)

Effects:
If ¢ = county then (* token counter matches node counter *)
county = CHOOSE{Maz,c) (*pick any value other than ¢ *)

RECEIVE;_1 ;(Token, c), i # 0 (* Node i receives token from clockwise neighbor Node i-1*)
Effects:
If ¢ # count; then (* token counter differs from node counter *)
count; = ¢ (*set value to counter in token message®*)

SEND; ;4.1 (Token, c), (* Node i sends token to clockwise neighbor Node i + 1¥)

Preconditions:
If ¢ = count; (* counter of token matches node counter *)

For any node, a SEND; ;41 action will occur in 1 unit of time

starting from any state.

Figure 3: Code for node processes in a token ring



that iz different from Node 0’s stored value. Later we will describe three specific realizations

of the CHOOSE function that guarantee self-stabilization.

When any node 7 other than 0 receives a token from its clockwise neighbor ¢ — 1, Node
does the following. If the counter value in the token (say ¢) is different from the counter stored

at node ¢, then node ¢ changes its stored counter value to c.

Its important to understand the behaviors of this protocol when it is in a good state. So
consider the state in which all token messages on links have a counter value ¢, and the counter
values at all nodes except 0 is also ¢. The counter value at node 0 is ¢’ # ¢. In that case we
say that node 0 has the token. Eventually node 0 will transmit a token message containing ¢'.
In that case we say that the token has left Node 0 and is in the link from Node 0 to Node 1.
When this message reaches Node 1, Node 1 sets its counter value to ¢/. Now we say that Node
1 has the token. This process continues with the token moving clockwise until Node n — 1
receives has the token and transmits it to Node 0; Node 0 then chooses a new value and the

cycle continues.

Thus in good states the ring can be partitioned into two bands. The first band starts with
the leader and continues up to (but not including) the first counter value (either in a token
message or at a node) whose counter value is different from that of Node 0. The remainder
of the ring (including links and nodes) is a second band containing counter values that are
different from Node (. As the token rotates round the ring, the first band gets larger until it
spans the entire ring; then Node 0 chooses a new counter value and the first band shrinks to
only containing Node 0; and so the cycle continues.

3.1 Stabilization for Token Ring

Consider the token passing protocol defined by the composition of the node automata of
Figure 3 and the link automata defined in Figure 2. Define a counter change step as a
RECEIVE,_; g(token, ¢} event with ¢ = county. We define a ring rotation time equal to 2N
time units (i.e., the time it takes for a message to travel around the ring with a unit delay at

each node and link.)

We have the following lemma:

Lemma 3.1 A counter change step will occur in 1 ring rotation time starting from any state.

10



Proof: (Sketch) A counter change step occurs when the leader receives a counter equal to its
own stored value. If this does not happen in 1 ring rotation time, then Node 0’s value remains
fixed in this interval. Thus Node 0’s value will travel all the way around the ring in tis interval,

causing a counter change step. [

Define a fresh counter change step as a counter change step which results in a state in which
i) county # count;,¢ # 0 and ii) for any (foken,c) message present in any link, couniy # c.
(Intuitively, this is an event which causes Node 0 to pick a counter value that is not equal to
any counter values stored in other nodes or links.) We will sometimes also say that after a
fresh counter change step the leader (i.e., Node 0) has picked a fresh counter value. We have

the following lemma:

Lemma 3.2 In 1 ring rotation time after a fresh counter change step, the token passing pro-
tocol will reach a good state.

Proof: (Sketch) After a fresh counter change event, Node 0 has a value ¢ that is not present
anywhere else on the ring, Now Node 0 will not do another counter change step until it receives
a token message with counter value ¢; it is easy to see that this will occur only after the value
¢ travels all the way around the ring’. Thus immediately before the next counter change step,
all nodes have stored counter value ¢ and any token messages on links have counter ¢, which
is a good state. [J

Thus to prove that the token passing protocol stabilizes, all we have to do is to prove
that it does a fresh counter change step in bounded time. In order to show this we consider
3 implementations of the CHOICE function, the Increment, Random, and Random-Increment

functions.

e The Increment function INCREMENT (Maz, ¢) = ¢+ 1 mod c.

¢ The Random function RaNDOM(Maz, ¢} chooses a random value other than c¢in the range
0...Maz.

e The Random-Increment is a composite of these two schemes: it assumes the counter ¢
contains 2m bits, and so we can regard ¢ as the concatenation of two m bit strings d and
e. Then we apply the Increment function to d and the Random function to e and return
the concatenation of the two resulting strings.

"More precisely, the fresh counter change step causally precedes the next counter change step.

11



We can now prove results about the stabilization time using these three implementations
of the CHOICE function. The easiest is to show that the Random function provides fast
stabilization time with high probability.

The stabilization time depends heavily on the maximum number of distinct counter values
that can be present in the initial state. We denote this quantity by ¢peq. It is easy to see that
€maz = T(1 + Lmaz), since each link can store L, values in the initial state and each node

can store 1 value.

Theorem 3.3 If the token passing protocol uses the Random function as its CHOICE function
and Maz > Cmog, then with probability (Maz — cma.)/Maz, the stabilization time is 2 token

rotation times.

Proof: We know from Lemma 3.1 than a counter step event occurs in 1 ring rotation time.
Since the leader is picking a random value, the leader picks a fresh counter value with proba-
bility (Maz — epar)/Meaz. But by Lemma 3.2 in 1 more ring rotation time, the protocol is in
a good state. O

In practice, it is not hard to make the stabilization time of this protocol 2 ring rotation times
with very high probability. For example, with a 1000 node ring transmitting at 100 Mbp/s and
assuming links that are at most ten miles long between nodes, we have ¢;q0 = 31,000. (it is
unlikely that a real token ring exists with such pessimistic parameters). If ¢ is a 32 bit counter,
then the stabilization time is 2 ring rotation times with probability (1—2717/1). With a 16-bit
counter the value is the probability is 0.5.

It is tempting to conclude that the expected stabilization time of the protocol is simply
(Maz/(Maz— ¢) ring rotation times. Unfortunately, this is not true in our model in which links
can have unbounded storage. This is because after each application of the choice function we
potentially increase the number of counters stored in the network by 1. Thus after Maz— cpnaz
iterations the number of distinct counters stored in the network can be equal to Maz and so the
probability of obtaining a fresh value can drop to zero (which results in an infinite expectation)!

There are two ways to deal with this. The first is to settle for the high probability result
in the unbounded model; note that in the real world setting the number of counters in each
state is always bounded and the expected value is indeed (Maz/(Maz — ¢). The other way to
deal with the problem is to use slightly more sophisticated implementations of the CHOICE

function.

Theorem 3.4 If the token passing protocol uses the Increment function as its CHOICE function
and Maz > cpqe, then the protocol stabilizes in ¢y ring rotation times.
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Proof: (Sketch) Suppose the initial value of countp is ¢. Since Maz > ¢mgz, there is some
value ¢ such that ¢/ — ¢ < ¢4, 2nd such that in the initial state no node or token message has
counter value ¢. But we know from Lemma 3.1 that node (’s counter will increment within 1
ring rotation time. Thus within ¢,,4, — 1 ring rotation times, Node 0 will do a counter change
step that results in county = ¢’. We claim that this is a fresh counter change step. This is
because the value ¢/ was not present in the initial state; in the interval till this counter change
step, the value ¢ cannot be added to any node and any link. This is because only Node 0
produces new counter values (see Figure 3), and Node 0 during this interval has only produced

values in the range [¢,¢/—1]. [

It is easy to see that the Random-Increment choice function can provide the best features
of both schemes: it can have fast expected stabilization time (of close to 2 ring rotation times)
and also a larger deterministic bound {¢;,, ring rotation times). Note that the expectation
of this function is well-behaved (unlike the RANDOM function) because when we calculate the
expectation by summing a series, there are only ¢4, + 1 terms. The analysis is a composite
of the two analyses shown above.

In the sequel we will assume that the CHOICE function is the Random-Increment scheme,
where the value of Maz is chosen so that the expected time is O(R) where R is the worst case
delay from the leader to any other node.®

4 Counter Flushing Paradigm

Suppose in a network a leader node wishes to periodically send a Request packet to a set of
network nodes. The responders must each send back a Response packet before the sender sends
its next request. In [Var92], for example, we implement local snapshots and resets between
a pair of nodes using such a request-response protocol initiated by the leader of each link
subsystem. In order to properly match responses to requests, the sender numbers each request
with a counter. Let m be the number of packets that can be in transit between the sender and
responder and let n be the number of responders. Then the sender uses a counter that has
Maz > m + n + 1 distinct values. For example, in [Var92] we used a counter in the range 0...3
because there can be at most two packets in transit in a link subsystem and there is only one

responder.

Responders only accept Request packets with a number different from the last Request

8Rather surpisingly, in some cases, the simple INCREMENT function also has O(R) deterministic stabilization
time! However, the proofs of these results are somewhat harder and are deferred to the final paper. Thus we
prefer the Random-Increment scheme because of its generality and simplicity.
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accepted. After accepting a Reguest the responder sends back a Response with the same number
as the Request. The sender retransmits the current Request till it receives each matching
Response with the same number. After all matching Response packets arrive, the sender
chooses a new counter value {using one of the three CHOICE function implementations we just
described) and starts a new phase of sending Regquest.

The size of Maz and the CHOICE function ensure that within bounded time®, the sender
will reach what we call a “fresh” counter value — i.e. a counter value that is not currently
stored in either the links or the responders. We call the method counter flushing because
the request-response protocol must guarantee the following “flushing” property. Suppose the
sender sends a request numbered ¢, where ¢ is a fresh value. Then after all matching responses
to this request arrive, there must no counter values other than c that are stored in the links or
at the responders. In other words, the sending of a freshly numbered request and the receipt
of all matching responses, should “fush” the links and responders of “old” counter values.

Thus the token passing protocol described here and the one due to [Dij74] can be simply
understood as counter flushing in a unidirectional ring. The flushing is guaranteed because in
a ring, the leader is connected to itself by a sequence of unidirectional links. This is also true
for a pair of neighbors connected by a pair of unidirectional links (essentially this a two node
ring) and thus applies to request-response protocols [Var92], Data Link protocols [AB89] and
token passing between a pair of nodes [DIM91}) as long as links are initially bounded.

It is interesting to compare our paradigm with the elegant result of Afek and Brown [AB89]
to build a stabilizing Data Link protocol. Their major result applies to initially unbounded
links where they suggest using bounded length counters of size greater than 2 but such that
the sequence of counter values used is aperiodic. A trivial corollary of their results is that for
a pair of nodes connected by a pair of unidirectional links, it suffices to use a counter whose
size is larger than 1 plus the maximum number of outstanding messages. They even suggest
the use of randomization (i.e., use of a random sequence instead of an aperiodic sequence).

However, Afek and Brown’s result is confined to Data Link protocols between a pair of
nodes. With a little effort, it is possible to see that Dijkstra’s token ring protocol can be
considered to be a Data Link protocol in the Afek-Brown sense between the ring leader and
any arbitrary node on the ring. However, the paradigm does not extend to general networks
as ours does below. Also the randomized equivalent of Afek-Brown’s protocol uses randomized
sequences instead of the Random-Increment function; the expected stabilization time of their
protocol is shown to be O(cmq.) round trip delays for large values of Maz while our stabilization

time is only approximately 2 round trip delays.

%n case of the Random-Increment choice function the expected time is bounded
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Figure 4: Creating a Virtual Ring that Spans all node

For the rest of this paper, we discuss the application of the Counter Flushing paradigm to
other distributed algorithms and to networks other than rings.

5 Embedding Rings in General Networks

We have already seen that a link subsystem, consisting of two nodes connected by two unidirec-
tional links, is a special case of a ring and many of the stabilization results for link subsystems
follow from the stabilization results for a ring. We now consider embeddings of a ring in a
general network, especially as applied to the problem of distributed deadlock detection.

First, note that once we have a leader and a spanning tree it is easy to have a stabilizing
distributed algorithm that constructs “virtual rings” that span all nodes and even all links.
A virtual ring that spans all nodes is an Euler tour that starts and ends at the leader and in
which each node is visited at least once. A virtual ring that spans all links is a cyclic path that
starts and ends at the leader and in which each link is visited at least once. Since we have
assumed that our network consists of symmetrical links (i.e., for every pair of neighbors 7 and
7, there is a link from ¢ to j and one from j to 7}, the network has an Euler Tour.

For instance, to create a virtual ring that spans all links, each non-tree link is assigned to
one of its two end-points arbitrarily. Each node is then broken up into k nodes where k is the
degree of the node; then the resulting set of nodes is connected by a virtual ring essentially
formed by an in-order traversal of the tree; non tree-links are, however, visited for the first
time from the assigned node. Figure 4 shows how to construct an Euler tour for the graph
shown in the left in which there is only 1 non-tree edge between ! and m. The figure on the
right shows the resulting virtual ring. It is easy to see that we visit every link exactly once in
each direction, and so the length of the tour is twice the number of links in the original graph.

It is easy to see that we can do token passing on an arbitary network using the counter
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flushing paradigm of the previous section. However, a more interesting example is deadlock
detection. We adapt an algorithm due to Misra and make it stabilizing.

5.1 Misra’s deadlock detection algorithm

Suppose we have some message driven distributed algorithm that is executing in a network.
When a node gets a message it does some local computation and possibly sends out more
messages. We say that the algorithm is deadlocked if there is no protocol message in transit
between nodes.'® We assume that deadlock is a stable property — i.e., once it is true it re-
mains true unless corrected for. An important application is that of Pessimistic Distributed
Simulation [CM81] in which deadlock, if it occurs, must be detected and corrected for.

In Misra’s scheme to detect deadlock [Mis83], a special message called a marker periodically
circulates through the network. Assume that each tour of the marker starts from a designated
leader node!! and visits every link once!? before returning to the leader. Each node i keeps
a flag busy; which is set to true whenever a message of the underlying protocol arrives at the
node. A marker message carries a flag b which is set to false at the start of the tour by the
leader. When a node i receives a marker (note that node ¢ may receive the marker several
times), node ¢ sets the marker flag to true if busy; = true and sets busy; = false. Finally, the
leader declares deadlock if at the end of the tour the marker flag is true.

This algorithm works correctly if all links are assumed to be FIFO. Suppose there is a
message in transit between nodes u and v at the start of a marker tour. Then since the marker
must visit link (7, ) and the link is FIFO, the message must be delivered to j before the marker
visits j for the last time in this tour. Consider the first time that the marker visits § after the
message is delivered; then the marker will find that busy; = true which will result in setting
the marker flag. Thus at the end of the tour, the leader will not detect deadlock. Conversely
suppose the system is deadlocked at the start of a marker tour. Then by end of the tour, all
nodes will have set busy; = false since no messages will will be delivered to nodes during the
tour. Then on the next tour it is easy to see that the marker flag will never be set and the
leader will declare deadlock. Thus deadlock detection occurs at most 3 tours after deadlock

actually occurs.

1%In Misra’s presentation, the system is deadlocked when no message is in transit and no node is doing local
computation. For ease of presentation, we assume local computation is instantaneous. It is easy to modify the

stabilizing algorithms to take into account local computation.
U'Misra’s scheme does not use a leader; since we need a leader anyway to implement counter flushing we

prefer to describe it using a leader
12if links are bidirectional, every link is visited once in each direction
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A stabilizing deadlock detection algorithm may incorrectly declare deadlock for some initial
period. However, after some bounded period of time, we wish the algorithm to declare deadlock
if and only if the network is really deadlocked. Despite the possibility of initial errors such an
algorithm may still be useful because of its robustness and if the initial “false alarms” only

cause harmless diagnostic procedures to be run.

To make Misra’s scheme fault-tolerant in this sense, we assume that there is a virtual ring
embedded in the network that spans all network links {see Section 5). Recall however, that the
virtual ring (see Figure 4) consists of virtual nodes and that each physical node may simulate
multiple virtual nodes. As usual we number any one of the virtual nodes belonging to the
leader as node 0 and number virtual nodes in the ring with consecutive indices. The code
for each virtual node is shown in Figure 5. We augment Misra’s scheme by making having a
marker be a special kind of token message which carries a flag b as well the usual counter c.

To preserve the counter flushing paradigm each virtual node has to periodically retransmit
its counter value to its successor. (This is necessary to ensure that the leader periodically
changes its counter value as in Lemma 3.1). However, in Misra’s scheme when a virtual node
transmits a marker it updates the marker flag and clears its own flag. Thus to simulate
Misra’s algorithm we wish a node to clear its own flag only on its first transmission after it
receives a new marker and not on subsequent retransmissions. Thus each virtual node 7 has
an additional flag foken; which is set to true on receipt of a new marker (i.e., a marker with a
different counter value than the counter value stored at ). While virtual node 7 periodically
retransmits its counter value to its successor, virtual node ¢ will only clear busy; when token;
is true, after which it sets foken; to false,

We briefly sketch the proof of stabilization of this modified version of Misra’s deadlock
detection algorithm. We use the same terminology as in Section 3 except that we use virtual
nodes in place of physical nodes. Refer to Section 3 for the definitions of counter change and
fresh counter change events.

Recall, too that we said that the token ring was in a good state if the sequence of counters
values around the ring (including counters at nodes and counters in token messages in transit)
has at most one change of value. If the change of value first occurs at node ¢, we said that
node ¢ has the token. We define the deadlock detection scheme to be in a good state iff i)
the sequence of counter values around the virtual ring has at most one change of value and ii)
token; = true at a virtual node ¢ iff the first change in counter values occurs at node 1.

It is easy to prove a version of Lemma 3.1 for the stabilizing deadlock detection scheme
which shows that the leader will change its counter value within 1 rotation time around the
virtual ring. Once again this follows because each node periodically retransmits its counter
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A token message is encoded as a tuple { Token, c, b) where ¢ is an
integer in the range 0..Maz and b is a Boolean Flag

The state of each virtual node i consists of an integer count; in the
range 0..Max and two boolean flags token; and busy;.

We assume that each virtual node is numbered from 0 to n — 1.
All addition and subtraction of process indices is mod n.

RECEIVE,_.1,0{ Token, ¢, b) (* Virtual Node 0 receives token from Virtual Node n — 1 ¥)
Effects:
If ¢ = county then (* token counter matches node counter *)
If busy, = false and b = false then {* marker flag set or node busy?¥)
DECLARE.DEADLOCK
busy, = false (* reset marker for next tour *)
tokeng = frue (¥ give node an opportunity to transmit and clear busy flag *)
counly = CHOOSE(Maz, ¢) (* choose a new counter value *)

REGEIVE;_; ;( Token, ¢, b),i # 0 (* Virtual Node 7 receives token from Virtual Node i — 1 *)
Effects:
If ¢ # county then (* token counter differs from node counter ¥)
count; = ¢ (*set value to counter in token message*)
token; = true (* give node an opportunity to transmit and clear busy flag *)
If b = true then busy; = true

SEND; ;+1(Token, ¢, b), (* Virtual Node i sends token to Virtual Node Node i+ 1 *)
Preconditions:
¢ = count; (* counter of token matches node counter *)
b = busy,
Effects:
If token; = true then (* clear busy flag on transmission only if indicated by token flag *)
busy; = token; = false,

RECEIVE, , (Data), (* Physical Node v receives a Data Message ¥)
Effects:
For all virtual nodes i that belong to node v
busy; = true

For any virtual node, a SEND; ;1 action will occur in 1 unit of time
starting from any state.

Figure 5: Code for Deadlock Detection using a Virtual Ring of Processes
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value to its successor, A version of Lemma 3.2 also holds — i.e., in 1 virtual ring rotation time
after a fresh counter change step, the deadlock detection protocol will reach a good state.

As before, after a fresh counter change event, Node 0 has a value ¢ that is not present
anywhere else on the ring. Now Node 0 will not do another counter change step until it
receives a token message with counter value ¢; it is easy to see that this will occur only after
the value ¢ travels all the way around the ring. As before, this ensures that before the next
counter change step, all nodes have stored counter value ¢ and any token messages on links
have counter ¢. But is also ensures that every node ¢ has tokern; = false which ensures the

protocol is in a good state.

Thus by the counter flushing pardigm, using any of the three CHOOSE functions we guar-
antee that starting from an arbitrary state, within bounded time (in either an expected or
worst case sense), the deadlock detection protocol is in a good state. For instance, the random
function guarantees that the protocol will stabilize to a good state after expected time 4m,
where m is the number of network links.

Any complete tours after this point will detect deadlock correctly. The proof of correctness
is in fact identical to Misra’s proof except that we also need to argue that a virtual node does

not clear its busy flag prematurely.

One problem with Misra’s protocol is that takes O(m) where m is the number of network
links while other deadlock detection protocols take O(n), where n is the number of nodes. An
easy way to make Misra’s protocol faster is to use multiple markers; each marker is responsible
for traversing some subset of the links, but each marker tour takes O(D) where D is the
network diameter. The leader assumes a phase of the algorithm is completed when all markers
have completed their tours.

Other deadiock detection protocols, (for example one due to Chandy) avoid traversing ev-
ery link by having the sending and receiving ends of each link keep a counter of messages sent
and received respectively. After visiting each node, discrepancies in the two counters associ-
ated with a link can be used to infer the presence of transit messages without the “fushing”
mechanism used in Misra’s scheme.

Unfortunately, there are two problems with this scheme in a practical stabilizing setting
— first the relation between the send and receive counters of a link can be arbitrary in the
initial state, and second the counters must be finite and have to allow wrap-around. The first
problem can be stabilized {assuming FIFO links) by having each node ¢ periodically send its
send counter for the link to each neighbor j; when j receives the message, j sets its receive
counter for the link to ¢ equal to the counter sent by 7. For the second problem, we note that
often all that is needed by the deadlock detection protocol is two conditions: i) if at any instant
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there is a message in transit from 7 to j, then the send counter at ¢ should not be equal to the
receive counter at j ii) If at some instant ¢;, the send counter of 7 is not equal to the receive
counter at §, then the send counter of i at some later instant ¢, should not be equal to the

receive counter of j at ¢;.

Both conditions are trivially met if the send and receive counters of all links are synchronized
initially and the counters are integers (since in this case the send counter is always non-
decreasing.) However, to make these conditions work with finite sized counters, we need to
assume that the counters are large enough such that i) that the counter size is larger than
the maximum number of messages in transit on a link and ii) the counter size is larger than
the maximum number of messages that can be sent (by the underlying protocol) during one
execution of the deadlock detection protocol. The second assumption is one that theoreticians
are often reluctant to make because it involves giving up a purely asynchronous model. But
in practice, even in the largest and fastest of networks, a 64 bit counter should meet both
conditions. The upshot is that we believe that deadlock algorithms that rely on counters can
be made stabilizing, at least for all practical purposes.

6 Counter Flushing on Trees: Propagation of Information
with Feedback

In Propagation of Information with Feedback (PIF), let us assume a single leader wishes to
broadcast some information value to all nodes in the network and wishes to know when the
information has reached all the nodes. In the stabilizing setting, we assume that the leader has
astream of values it wishes to broadcast to all neighbors; only after the ¢-th value is broadcasted
to all nodes is the ¢ + I-st value broadcasted. We model this by having the leader have access
to a function f that computes the next value to be sent as a function of the previous value
sent. In a more general setting, the values could be supplied by some external appplication.
However, we prefer not to model this and concentrate on the application of counter flushing
to PIF.

We will assume as usual that we have a leader node (say r) and a spanning tree rooted at
node r, such that each node i has a parent variable pareni(z) that points to its parent in the
tree. Without stabilization, it is easy to solve this problem using the protocols due to Segall
and Chang [Seg83])[Cha82]. When the root finishes broadcasting a previous value, it chooses
a a new value using the function f. It then sends a token message containing the new value
to all its children; other nodes accept new values only from their parents, upon which they
send the value to their children. When a leaf of the tree gets a new value, it simply sends an
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ack up to its parent. Nodes other than the root send an ack up to their parents, when they
have received acks from all children. When the root (i.e., the leader) receives an ack from all

children, the root starts a new cycle by choosing a new value.

To make the protocol stabilizing, we will tag each message sent and each value stored with
a counter. When sending a new value, the root chooses a new counter value. Nodes accept a
new value only when it is tagged with a different counter value from the counter stored at the
node. Nodes accept acks only when the counter in the ack matches their current ack value.
The correctness follows from the usual counter flushing argument. The code for the protocol

is given in Figure 6.

Another fairly general method for constructing stabilizing protocols is the method of local
checking as described in [APV91] and [Var92]. In fact in [Var92] there is a theorem that states
that any locally checkable protocol on a tree can be stabilized using local checking. Thus it is
natural to ask whether we can solve the stabilizing PIF problem with local checking instead
of counter flushing. However it is easy to show that the PIF protocol of Figure 6 is not locally
checkable. A protocol is locally checkable only if whenever every pair of neighbors is in a good
state, then the system is in a good state. Suppose we find a bad global state of a protocol such
that every pair of neighbors is in a state that appears in some other good global state. Then
every pair of neighbors appears to be in a good state locally but the system is in a bad state,
and hence the protocol is not locally checkable.

In a good state of the PIF protocol there can be at most two values present in the tree,
the value currently being propagated and the old value that is still present in the lower limbs
of the tree. Thus in a good local state it is possible to have a parent have counter ¢ and the
child have counter ¢’ # ¢. But in that case we can construct a bad global state in which each
child of the root has a different counter value but each pair of neighbors appears to be in a
good state locally. Thus the protocol of Figure 6 is not locally checkable.

Propagation of Information with feedback is a specific example of a centralized total algo-
rithm [Tel89). A centralized total algorithm is an algorithm where each process in the network
must take some decision before the initiator takes a decision event. Tel [Tel89] shows that many
protocols such as PIF, Finn’s Resynch Protocol[Fin79], distributed infimum!? are all examples
of Total algorithms. Tel also shows that PIF can be used to solve any total algorithm. Thus
the stabilizing PIF protocol described in Figure 6 appears to be important because it appears
to offer a stabilizing solution to many problems that require total solutions.*4

3¢his can be described roughly as calculating a bound on the minimum of a set of values stored at network

nodes and links
14Te] also distinguishes between centralized solutions with a single initiator and decentralized solutions with

multiple initiators. However, in a stabilizing setting with multiple phases of the total algorithm, decentralized
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We assume all counters are integers in the range 0..Maz and all values are drawn from some domain V.
A token message is encoded as a tuple (Token, ¢, v) where ¢ is a counter and v is a value.
The state of each node { consists of:
a counter count;, a boolean flag token_ezpected;[;] for each neighbor j of 7 and a value field v;.
We assume that each node i has a function pareni(i} that points to i’s parent in the tree.
We assume the root is node r.

Finished(i) (* boolean function used by action routines below *}
(*set to true when not expecting tokens from any children *)
Return true if for all children k of #: token_ezpected;[k] = false

RooOT_START, (* Leader starts a new cycle of broadcasting values *)
Preconditions:
Finished(r)
Effects:
vr = f(v;) (* compute new value to be broadcast*)
count, = CHOOSE(Maz, c) (*choose new counter value*)
For all children & of
token_ezpected, [k] = true (* set to true when expecting a token*)

SEND; j{ Token, ¢, v}, (* Node i sends token to Node j *)
Preconditions:
¢ = counl; {* counter of token matches node counter ¥)
v =v; (¥ value equal to store value *)
i # parent(i) or (j = parent(i) and Finished(i))

RECEIVE;,;( Token, ¢, v) (* Node i receives token from Node j *)
Effects:
If j = parent; and c # count; then (* new counter from parent *)
vi = v (* set stored value equal to value in token messge*)
count; = ¢ {*set local counter to counter in token message*)
For all children % of ¢
token..ezpected;[k] = true (* set to true when expecting a token *)
Else if ¢ = count;
token_ezpected;[j] = false

Any action that is continuously enabled for 1 unit of time occurs in 1 unit of time.

Figure 6: Code for Stabilizing Propagation of Information with Feedback

22



The reader may feel that the because the PIF protocol works on a tree that it is possible
to avoid the use of counters completely; however, it is easy to construct counter example
executions where if the counter is not used or its size is less than Maz, then the system stays
in an incorrect state forever. Note that Mez must once again be larger than the maximum
number of outstanding counters in the initial state which is nLlqr where n is the number of

tree nodes.

We note that another interesting application of the stabilizing PIF protocol is for topology
update. For example in the Autonet [MAM™90], topology distribution is done over a tree.

7 Counter Flushing in General Graphs: A Simple Reset Pro-

tocol

We now broaden the scope of counter flushing to consider general graphs. We continue to
assume that we have a leader r that is the root of a BFS spanning tree. However, besides links
from parents to children we now also have cross links that are not part of the tree. So far we
only seen how to use counter flushing to flush tree links. We now extend the paradigm so that
the use of a fresh counter value at the root will flush all links, both tree and cross links.

The basic idea is very simple. As before a nodes i only accepts a new counter value ¢ from
its parents and waits till it gets tokens from its children (numbered with ¢) before it sends a
token up to its parent. However, in addition, 7 sends a token message on any cross links it is
part of, and waits to get a token (numbered with ¢) before it sends an token to its parent.

The only tricky part of the protocol is to decide how to reply to token messages received
on cross links. Before we see what the problems are, let us introduce an application for this
general counter flushing paradigm. Suppose we have an underlying protocol P and suppose
that the leader may perioidically get a request to reset protocol P. We stipulate that at the
point the reset procedure terminates, the state of the underlying protocol P is reset to some
successor of a legal initial state of P. To do so, at some point during the reset procedure i)
each node 7 must locally reset its Protocol P state ii) Define the reset intervel of a node to be
the interval from the time a node is locally reset until the reset procedure terminates. Then
for any pair of neighbors £, 7 the sequence of messages received by node j in j’s reset interval
must be a proper prefix of the sequence of messages sent by node i during ¢’s reset interval.

In Figure 7, node ¢ has received the counter value (5) corresponding to the current reset
and has sent a token message containing 5 to j. Node 7 has not received information on the

solutions appear to be infeasible without some sort of coordination among the initiators between phases.
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Figure T: Reason for delaying responses to token messages received on cross links.

current reset and has an “old” protocol message in transit from its parent. Suppose node i’s
token message reaches node j first and node j sends back a token immediately (but without
changing its counter value or initializing protocol P). Then node j can subsequently receive
the “old” protocol message and send another “old” protocol message to node 1. Thus we could
have a message sent before Node j was reset being received by Node ¢ after Node ¢ has reset,

an error.

It may appear that a simple solution is for Node j to reset itself locally (and acccept the
new counter value) when it receives the token message on the cross link from Node ¢. But that
causes the entire counter flushing paradigm to break down. This is because if a node accepts
counters on cross links to its neighbors then in the initial configuration we could have a cycle
of nodes each having different values which results in a form of livelock, where the counters
move around in the cycle. This problem can occur for instance in the protocol proposed by
Katz and Perry [KP90]. Katz and Perry resolve this livelock problem by having each token
message carry a counter and a list of visifed nodes; a token message is dropped when it visits
a node that is in its list of visited nodes. While this solution works, it greatly increases both

the message and time complexities of the solution.

The livelock problem disappears if nodes only accept counter values from their parents as
we have done in the last subsection. To solve the problem we referred to in Figure 7, we do
two things. First, we can tag all protocol P messages with the counter at the sending node;
we discard a protocol P message with counter that does not match the receivers counter.
While this solution eliminates the problem in Figure 7 because the “old” message will have
a different counter value from that of node 1, it introduces another problem. Suppose node 7
sends a protocol P message to 7 after node i resets, but the message is received before j resets.
Then if we simply check the message tag, the message will be dropped at 7. One might consider
buffering the message at j if the counter tag in the message is “greater” than the counter at j;
however, defining one counter to be greater than another is fraught with complications if the

counters are of bounded size.
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Instead we have each node j delay responding until the local counter at node j is equal
to the counter of the token message received . Thus in Figure 7 when j receives the token
message from ¢ numbered 5, node j does not send a token numbered 5 back to node i, until
node j has also received a token message numbered 5 from its parent. We also do not allow
protocol P to send messages at node ¢ if node ¢ is waiting for a token messages on one of its
links. This implies that (in good executions) any message sent by ¢ after ¢ has locally reset is
sent after 7 is at the same counter value as i; thus this message will be accepted by j.

7.1 Proof of Reset Protocol

Intuitively, a good “home state” for the reset protocol of Figure 8 is one in which the reset has
terminated and all nodes have the same value of the counter (say ¢), no node is expecting a
token, and all token messages in transit have value c.

Thus define a home state with value ¢ of the reset protocol to be a global state in which i)
For all nodes 1, Finished(i) = true and count; = c ii) If there is a (Token, ¢’) message stored in

any link, then ¢/ = ¢.

Define the round trip delay R through the tree to be equal to 4(A+ 1) time units, where A
is the height of the tree. For a BFS tree, the height is O{D) where D is the network diameter.
(Roughly, R is the maximum time to send a message from the leader to a leaf node and have
it acknowledged at the leader. Note that it takes 2 units of time to send a message on a link
to a receiver: one unit of time for the SEND event to occur at the node, and 1 unit of time for
the link to deliver the stored message.)

The following lemmas and theorems are of the form: if property X remains true for ¢ time,
then Property Y will hold after ¢’ time. In a purely asynchronous environment where locally
controlled actions are only assumed to eventually occur, the results easily translate to the
form: if property X holds true indefinitely, then property ¥ will eventually occur. We prefer
the timed version of our results since they typically provide more information and because we
believe that stabilization time is a crucial measure.

Our first lemma, states that if the leader’s counter remains fixed for R time units, then the

protocol enters a home state.

Lemma 7.1 If starting from any state, count,. remains at ¢ for R time units, then at the end
of this interval the reset protocol will enter a home state with value c.
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A token message is encoded as a tuple (Token, c} where ¢ is an integer in the range 0..Maz
The state of each node 7 consists of:
an integer count; in the range 0..Maz, and a flag token_expected;{;] for each neighbor j of ¢:
token_expected;[] is always false if j = parent;
We assume that parent(i) points to i’s parent in the tree and the root is node r

Finished(i) (* boolean function used by action routines below *)
(*set to true when not expecting tokens from any non-parent links *)
Return true if for all neighbors token_ezpected;[k] — false

RequesT_RESET, (* root receives request to reset Protocol P *)

Effects:
if Finished(r) then (* ignore request if finishing current reset *)

count; = CHOOSE(Maz, c)
LocAL_RESET(r} (¥ locally reset Protocol P *)
For all neighbors k, token.expected,.[k] = true

SEND; j(Token, ¢), (* Node i sends token to Node j *)
Preconditions: (* retransmit periodically regardless of ack bit *}
¢ = counl; (¥ counter of token matches node counter *)
J # pareni(i) or (j = parent(i) and Finished(i})

RECEIVE; ; ( Token, ¢} (* Node 1 receives token from Node j ¥)

Effects:
If j = parent; and ¢ # count; then (* counter matches node counter *)

count; = ¢ (* set value to counter in token message*)
LocAL_RESET(3) (* locally reset Protocol P *)
For all neighbors k # j of i
token_expected;[k] = true (* set to true when expecting a token message *)
Else if count; = ¢ then
token_ezpected;[j] = false

RESET_FINISHED, (* root reports finishing of reset *)

Preconditions:
Finished(r)

Protocol P messages are only sent at node ¢ when Finished(i) is true and are tagged with count;.
A Protocol P message M received at node i is relayed to the application i the tag of M is equal to count;.
Any action that is continuously enabled for 1 unit of time occurs in 1 unit of time.

Figure 8: Simple Reset Protocol using Counter Flushing
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Proof: (Sketch) It is easy to show by induction that within time 2h; each node with height
h; will set count; = ¢ and the value of count; will remain unchanged till the end of the interval.
(Intuitively this is because each node accepts any value sent to it by its parent in the tree and
each node will retransmit a new counter value to its children in 1 unit of time.) Thus in time
2h, all nodes will have their counter values equal to ¢ and will remain with this value to the
end of the interval. In fime 2A + 2, each node will receive a token message numbered ¢ on all
its “cross” links and thus will set the token.ezpected flag to false for such links. Thus by time
2h+ 2, all leaves ! will have Finished(l) = true, all nodes and token messages will have counter
value ¢, and token_ezpected;[7] = false for all “cross” links (i, 7). It is easy to see that within
2h time units after such a state tokens flow up the tree and result in a home state. ]

We define a valid request to be a REQUEST_RESET action that occurs in a state in which
Finished, = true. (Intuitively, this is a reset request that is accepted as a new request; invalid

requests are ignored.)

Lemma 7.2 Within R time of starting from any state, either a valid request event occurs or

the reset protocol enters a home state.

Proof: We know from the code that the only event that can change count, is a valid request
event. If a valid request event occurs in R time, we are done; but if not, count. remains fixed
for R time and so we are done by Lemma 7.1. O

We assume that we use the Random-Increment choice function, where the random com-
ponent of the counter has size > 8{Lpqz + 1)m, where m is the number of links and Lgy
is the maximum number of values that can be stored on a link; as usual the determinsitic
component is assumed to have size > (L4 + 1)m. It is easy to see that within a constant
expected number of iterations of the CHOICE function, a fresh value is chosen. It is quite easy
to believe that the choice of a fresh value will result in the protocol entering a home state (see
Theorem 7.5 ahead which is the basic stabilization theorem). However, to prove this simple
fact we need a number of simple definitions and lemmas.

7.1.1 Fresh Counters and Fresh Counter Intervals

We say that a global state s is fresh with value ¢ if:

e count.=c¢

o count; #Fcforall i+#r

27



e for any (Token,c') message on any link, ¢ # ¢'.

Define a fresh counter interval to be an exccution fragment!® E such that:

¢ The first action in F is a valid reset request.
¢ The second state (i.e., the state following the reset event) is fresh.

o The last state in £ is the first state in E (other than than the first state) in which
Finished(r) = true.

The value of interval F is the value of the second fresh state in F. For any execution
80, a1, 51,... we can denote an execution fragment by its first and last state indices [/, F]
where g7 is the initial state and sz is the final state.

For a fresh counter interval [I, F] with value ¢ we make the following definitions:

e Let I(j) be the index of the first state in [7, ] such that count; = c. (intuitively I(j) is
the index of the first state in which node j is initiated into the current reset computation.)

e Let F(j, k) be the index of the first state such that count; = ¢ and token_ezpected;[k] =
false (intuitively F(4, k) is the index of the first state in which node j has been initiated
into the current reset computation and also knows that node k& has been initiated into

the current reset computation.)

e Let F(j) be the index of the first state such that count; = ¢ and token_expected;[k] = false
for all neighbors %k of 7. (intuitively F'(5) is the index of the first state in which node 7
has finished the current reset computation)

We now state a cluster of simple facts relating these definitions:

Lemma 7.3 For any fresh counter interval [I, F] the following facts hold:

o For every pair of neighbors j and k, the states I(j), F(j) and F(j, k) exist.

o If k = parent; then the interval [I(]}, F(§)] is contained in [I(k), F(k)]. (i.e., a child is
initiated after its parent and finishes before its parent)

15an execution fragment is a portion of an execution that begins and ends with a state
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o Inthe interval [I(7), F|: count; = c (i.e., the value of a node’s counter remains unchanged
from the time it is initiated till the end of the interval).

o For every pair of neighbors j and k, I{(k) < F(j,k) < F(j) (i.e., a node cannot finish
until each of its neighbors is initiated. )

e Forany j, in the interval [F(f), F: count; = c and for all neighbors k of j: token_expected;[k] =
false. (i.e., node j does not change its stale from the time it finishes till the end of the

interval.)

e For every pair of neighbors j and k, in the interval [F(j, k), F], any (token,c’) message
stored in link (k,j) has ¢ = ¢ (i.e., after j knows that k is initiated, all token messages

sent from k to j carry counter value ¢)

e F = F(R) (i.e., when the root finishes the fresh counter interval finishes).

Proof: A rough operational argument can be made using the following observation. In the
initial state 7, for any link (7, k) the value ¢ is not stored in the link because ¢ is fresh. Similarly
the value ¢ is not in any node other than the root. Thus the value ¢ can only be stored on the
link and delivered to k after j changes its value to ¢ (i.e. in state I(j)). Since children only
accept new counter values from their parents, a child can only be initiated after its parent is
initiated. Also all further tokens received from the parent must carry the value ¢ (by induction
on height of tree). Similarly, the state F'(j, k) must occur after the state I{k) because any
token numbered ¢ sent on this link must must have been sent after & was initiated. O

Corollary 7.4 The last state of a fresh counter interval is a home state.

Proof: Follows immediately from the facts in Lemma 7.3. We know that F = F(r) and
that F(i) < F(r), for ¢ # r. Thus all nodes i have count; = ¢ and token_ezpected,[j] = true
for all neighbors j (from the fifth fact). Also for all pairs of neighbors k,j, we know that
F(j, k) £ F(j) < F; hence by the sixth fact all token messages on link (7, %) have counter
value equal to ¢, O

7.1.2 Tying Up Loose Ends: Stabilization and Correctness

In what follows, we assume that the spanning tree used is a BFS (Breadth First Search) tree
and so the round trip delay £ = O(D), where D is the network diameter. We first show that

the reset protocol stabilizes quickly.
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Theorem 7.5 Within O(D) expected time of starting from an arbilrary state, the reset protocol

enters a home state.

Proof: From Lemma 7.2, if the protocol does not enter a home state every O(R) units of
time a valid request occurs which causes the Random-Increment function to be invoked. But
in constant expected number of such invokations, the leader will choose a “fresh” counter value
that is not present in the network. Once this happens, we begin a fresh counter interval. From
Lemma 7.2, within O(R) time of the start of the interval, we must either enter a home state or
have a valid reset request. But in the latter case, we know that within O(R) time of the start
of the fresh counter interval there is a state in which Finished. = true. But this implies that
the fresh counter interval has ended in O(R) time, and we know from Corollary 7.4 that the
last state of a fresh counter interval is a home state. The theorem follows as O(R) = O(D).

O

The next theorem shows that once the reset protocol is in a home state, it behaves correctly

till the next reset request.

Lemma 7.6 Once the protocol is in a home state, it remains in ¢ home state until the next
reset request, and no node will perform a local reset in this interval.

Proof: Easy to see from the code and the definitions of a home state and a fresh counter
interval. Notice also that when the reset protocol is in a home state, it is impossible for a node
7 to receive a (Token, ¢} message with ¢ # count;; thus (from the code) j will never perform a

local reset. [

This leads us to our last theorem: this states that any reset request that occurs after the
reset protocol reaches a home state will result in successfully resetting the underlying protocol
P.

Lemma 7.7 Consider any reset request that occurs when the reset protocol is in a home state.

Then the reset protocol will enter a home state in O(D) time after this reset request and in
this home state, the underlying protocol P is in a legal state.
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Proof: We know that any reset request that begins in a home state will result in the leader
picking a fresh counter value, say ¢, which begins a fresh counter interval. We know from
Theorem 7.5 that within O(R} = O(D) time, this fresh counter interval will end. Thus from
Lemma 7.3 if this interval is denoted by [I, F] then there is a state I(j) for each node j at
which the node is initiated into the current reset computation. From the code it is easy to see
that in this state, protocol P is locally reset and since counf; remains at ¢ this means that

there are no further local resets of Protccol P at node j.

To show that Protocol P is properly reset at the end of the fresh counter interval, we have
to show that for any two neighbors 7, k: the sequence of messages received by & from j during
the interval [I(k), F] is the a prefix of the sequence of messages sent by j during [I(j), F].
Recall that the interval [I)), F] is what we have previously called the reset interval at node j.

So consider any message m sent by § during the interval [7(j}, F]. From the protocol code,
we know that j does not send any message during the interval {/(7), F'(§}] so we can assume
that m is sent after F'(5). Thus m will be tagged with ¢, the value of this fresh counter interval.
Now by state F, we know from the properties of link automata, that either m will be delivered
or stored on the link. If m is delivered, m must have been delivered after F(j) (since it was
sent after F'(7)) and hence by Lemma 7.3 it is delivered in the interval [7(k), F]; but in this
interval, counf; = ¢ and so m is accepted. On the other hand, if (in state F') m is stored on
the link, we know (because the link is FIFQ) that all messages sent after n are not delivered.
Thus, applying this argument to all messages sent by j during [I(7), F], we see that: if m is
received and accepted, then all messages sent before m in [I(7), F|] are received and accepted;
but if m is not received then all messages sent after m in [I(j), F] are not received.

All that remains is to show that any Protocol P message m received and accepted by £ in
[7(k), F] was sent by j in [I(j), F]. But if m was accepted it must have tag ¢. Thus m must
have been sent in [I(7), F); this is because, by definition, any protocol P messages sent by j in
[7,I() — 1] must have a counter value ¢/ # c. (Recall that I(5) is the first state in [/, F] that
has count; =¢.) O

In summary, Theorem 7.5 shows that the reset protocol enters a home state in O(R) time.
Finally, Theorem 7.6 and Theorem 7.7 show that once the reset protocol enters a home state,

the reset protocol behaves correctly.

In the next section, we will consider a diffusing computation P which is initiated by the
root; nodes other than the root begin to participate in the current computation only after
receiving a message from some other node, and the first set of messages is sent by the root.
For this special case, the reset protocol is simpler. For instance, we do not need to tag Protocol
P messages with the current counter value since no such message is sent during a fresh counter

31



interval. Define an initial state of P to be a state in which each the local state of protocol P
at each node (including the root) is locally reset and there is no Protocol P message on any
link. Then we have the following corollary of Theorem 7.7.

Corollary 7.8 Consider any diffusing computation P and any reset request that occurs when
the reset protocol is in a home state. Then the reset protocol will enter a home state in O{D)
time after this reset request and in this home state, the underlying protocol P is in an initial

state.

Proof: Follows directly from Theorem 7.7, the definition of a diffusing computation, and
from Lemma 7.3 which states that F(r) >= F(i) for all nodes %, (i.e., the root finishes its reset
interval after every other node has finished its reset interval). [

7.2 Comparison with Other Reset Protocols

To make our reset protocol a full-fledged reset protocol, we also need to augment it to allow any
node to make a reset request. This is easily done by having each node having a reset request
bit that is set when the node gets a reset request or when it has received a Regquest message
from its children; when a node’s request bit is on, it periodically sends a Request message to
its parent. When the root gets a Request message, the root treats it like a REQUEST_RESET
action. On doing a local reset a node clears its request bit; each node 7 also ignores reset
requests and Request messages while Finished(i) = false.

Once this is done, the resulting reset protocol looks remarkably like a message passing
version of the Arora-Gouda [AG90] reset protocol. However, there are some interesting dif-
ferences. First, the current versions of [AG90] are based on a shared memory model; in the
high-atomicity shared memory model the size of the node counters is only required to be 2;in a
shared memory model with read-write atomicity, the size of the node counters is only required
to be 4. We believe that this is because the paradign underlying the stabilization of [AG90] is
local checking and correction. In fact, we have shown how to derive the high-atomicity version
using local correction in [AGV92], and we believe the arguments will extend to the read-write

version.
In a message passing model, where each link can store L., counter values, we believe that

the Arora-Gouda protocol will need larger values of the counter size; however, we conjecture
that using local checking the counter size can be reduced to O(Lq.)'® as opposed to O(Lmazm)

®Intuitively, this is the size required to do counter flushing on a single link, which is required for local checking
to work correctly on a link
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which is what is required by counter flushing. However, we believe that implementations using
counter flushing are simpler to implement and understand than those using local checking; the
cost of this simplicity is very slight: an increase in the counter size, which in practice is hardly

an issue.

Another subtle difference between our protocol and the one in Arora-Gouda is the use of
“delayed acks” and flushing of cross links. This is unnecessary in [AG90], because protocol
P is modified so that a node does not read the state of its neighbors unless they have the
same counter value. This is possible in a shared memory model because the memory model is
intuitively a “pull” model (nodes read the states of their neighbors) as opposed to a message
passing model which is a “push” model (nodes send their states to their neighbors). Thus we
conjecture that some modification like ours is required to deal with this problem.

Finally, there is the stabilizing reset protocol of [APV91] which is in turn based on the
non-stabilizing (and classic} AAG reset protocol of [AAG87]. However, this protocol takes
O(n) time to stabilize which is slower than our reset protocol or the Arora-Gouda protocol.
[AKM*93] suggests making this protocol faster by running it over a spanning tree but in that
case much of the complexity of that protocol is not needed!” and there is no advantage to
using the AAG protocol over the protocol described in this paper.

8 Periodically Restarting a Terminating Diffusing Computa-

tion

Consider a computation P that is initiated by the root. We say that P is terminating if when
P is started in a good state (i.e. all nodes are initialized and the links are free of protocol
P messages) then there is some later action at the leader (say D,) which signifies that the
computation is complete. We also require that P has what we call the stabilizing termination
property — i.e., regardless of what state P starts in, in a bounded amount of time, the event
D, will occur. P need not be stabilizing — the event D, is allowed to occur even when P is in
a bad state; we only require that it does occur.

Given that P has the stabilizing termination property, we use the simple reset protocol
to periodically “restart” protocol P. Thus even if the initial executions of P are incorrect,
after the reset protocol correctly resets protocol P, future executions of P will be correct.
We demonstrate the applicability of this paradigm by applying it to the Chandy-Lamport
snapshot protocol; we first augment the Chandy-Lamport protocol slightly to make it have

7the list of local predicates to be checked for the protocol is quite large [Var92)
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the stabilizing termination property. We then apply our method to it to produce an efficient
stabilizing snapshot protocol.

Compared to the stabilizing snapshot protocol of [IKP90] our snapshot protocol is much
faster (O(D) expected time versus O(Nt) time to stabilize). While other fast snapshot pro-
tocols do exist (for example [AKM*93, AG90]) they are blocking snapshots that block the
underlying application protocol. In any practical setting, blocking the application protocol for
up to O(D) time is infeasible; thus non-blocking snapshot protocols are important for practical
applications. Note our snapshot protocol has three levels of hierarchy: at the bottom we have
an application protocol A; next we have a snapshot protocol P that attempts to periodically
take a snapshot of the application A; finally, on the highest level we have a simple reset pro-
tocol that periodically resets the snapshot protocol P. Note that the reset does not reset the
application protocol A but only the snapshot protocol P.

8.1 Periodic Restart Paradigm

The basic idea of the paradigm is very simple. The leader alternates between reset phases
(which resets protocol P) and phases of the protocol P. When protocol P terminates (which
it is guaranteed to because of the stabilizing termination property) at the leader, the leader
initiates a reset phase. When the reset protocol terminates (which is guaranteed because we
use a stabilizing reset), the leader initiates a fresh version of protocol P. The alternation is
accomplished by a variable furn at the root that can take only one of three values: weit (i.e.,
waiting for the reset to complete), reset (i.e., waiting for the snapshot protocol to complete
to initate the next reset) and not_reset (i.e., waiting to initiate the next instance of protocol
P). When the turn variable is reset and Protocol P appears to have terminated, the root
node makes a reset request and changes turn to wait. When the reset protocol terminates (as
signalled by a RESET_FINISHED action), turn is changed to noi.reset. When the turn variable
is not_reset and Protocol P appears to have terminated, the root node makes initiates a fresh

version of Protocol P,

After a successful reset phase, it is easy to see that all nodes are initialized correctly for
protocol P and that there are no protocol P messages outsanding. Thus the next protocol
P phase will work correctly and provide a correct answer. Suppose that protocol P is a
deterministic protocol that always computes the same result (e.g., 2 unique minimum spanning
tree). Then we can keep two sets of output variables for protocol P; one set of variables is
used as a scratchpad and is updated by the current computation of protocol P; the other set
of variables is used as the actual output variable. At the start of the reset phase, the protocol
can copy the results in the scratchpad variables to the output variables. It is easy to see that
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if P is a deterministic, terminating protocol then within bounded time, the output variables
of protocol P will converge to correct values.

This method is also applicable if each computation P is potentially different from other
computations of P, and the outputs on each computation are completely different. A simple
example of this is the Chandy-Lamport snapshot protocol (JCL85]) which we discuss below.

8.2 Example of Periodic Restart: Fast Stabilizing Snapshot

We consider the Chandy-Lamport snapshot protocol ([CL85]} and especially its application by
Katz and Perry ([KP90]) to compile arbitrary distributed programs into stabilizing equivalents.
In the method of Katz and Perry, the leader repeatedly invokes the snapshot procedure to check
whether the application protocol 4 is in a good state. Katz and Perry show how to make the
Chandy-Lamport (CL) protocol stabilizing such that within bounded time, correct snapshots
are produced. As we said before, the stabilization time of their stabilizing snapshot is quite
large (O(n?), where n is the number of nodes). So our stabilizing snapshot provides essentially
a replacement snapshot protocol that is also non-blocking but is faster ((O(D) expected time).
This improves the efficiency of the compiler in [KP90].

In the normal CL protocol, the leader sends a special marker message to all neighbors and
sets a flag called mark_ezpected for each link, to indicate that it expects a marker back on
this link. Nodes other than the leader that receive a marker for the first time do the identical
procedure except that they set the mark_ezpected flag to false for the link they received the
marker flag from. A node receiving a marker on a link for which mark_ezpected is true sets
mark_ezpected to false. The actual snapshot consists of i) for each node i, the state of node
¢ at the instant node ¢ receives the marker for the first time and ii) for each link (¢, 7), the
sequence of messages received by node j while node j had the mark_ezpected flag set for link
(3, 7).

To make the Chandy-Lamport protocol have the stabilizing termination property we do
the following. First, we use the tree to report the results of the snapshot up the tree. When
a leaf has collected its part of the snapshot, the leaf sends this information up to its parent.
When interior nodes have reeived snapshot information from their children, they merge this
information with their own snapshot information and send it up to their parents. Eventually
the root obtains the resulting snapshot and the process terminates.

There are several potential sources of deadlock that must be corrected for. First, in order
to ensure that the mark_ezpected flags at a node are eventually cleared, each node i periodically
retransmits Marker messages on link (7, ) while the snapshot procedure is executing. Second,
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each non-leaf node keeps a flag snap.ezpected for all its children in the tree which is set to
true at the instant a node receives a Marker message for the first time and is set to false when
the node receives snapshot information from its child. To prevent deadlock, a node that has
acquired snapshot information (from all its children and itself) periodically sends this snapshot

information to its parents.

Each node ¢ has a variable s; that holds its current snapshot information and d; which
holds cumulative snapshot info received from children. Each node snapshot record s; is is a
3-tuple containing a node ID, a state for the node itself and a set of link records for each of its
links. Each link record is itself a tuple containing an identifier of the link and a sequence of
messages. The cumulative snapshot information is a set of node snapshot records. We assume
these variables are large enough to hold the largest possible snapshots for each node.18

Finally, besides the normal protocol variables, each node i keeps a flag busy;. When this
variable is cleared, node i is not executing the snapshot protocol. In particular, node ¢ refrains
from sending snapshot messages to its parent when busy; = false. Since busy; is cleared by the
reset procedure, this prevents node ¢’s parent from receiving results of the previous snapshot
while the current snapshot is in progress. Similarly when busy; = false, node i will not transmit
marker messages. The actual CL snapshot protocol begins executing at node i when i receives
a marker while busy; = false. Thus in a correctly working snapshot phase, the first marker
sent on each link corresponds to the markers sent by the original CL protocol.

To control invocations of the reset protocol, the root r also keeps a furn variable. When
the local variables at the root indicate that the snapshot has completed and the turn variable
is equal to reset, the root requests a reset and sets its state to wait indicating that it is waiting
for the reset to complete. When the reset procedure indicates that the reset has terminated,
the root sets the turn variable to not_reset. Finally when the local variables at the root indicate
that the snapshot has completed and the furn variable is equal to noi.reset, the oot initiates

a new snapshot.
The code for the snapshot protocol is described in Figure 9 and Figure 10.
8.3 Proof of Snapshot Protocol

We only quickly sketch the major lemmas and theorems. By O{D) we mean that there is some
natural constant k such that the worst-case time is < kD). where D is the network diameter.

18In practice, it may be difficult to bound the size of the link records without making some assumptions about
time or about the particular application protocol.
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A marker message is encoded as Marker and a snapshot message containing snapshot info as {Snapshot, d)
The state of each node 7 consists of:

a boolean variable busy;, a variable turn; € {reset, wait, not_reset},

boolean flags mark_ezpected;[j] for every neighbor j and snap.ezpected;[k] for every child &.

Variables s; {current snapshot info} and d; (cumulative snapshot info from children).
We assume that parent(?) points to i’s parent in the tree and the root is node r

SNAP_FINISHED(i} (* macro used
Return true if both the following conditions are true
For all children I: snap_expected;[l] = false
For all neighbors k: mark_ezpected;[k] = false

REQUEST.RESET, (* output action, requests a reset of snapshot protocol state *)
Preconditions:
turn, = reset (* reset protocol’s turn to run *}
SNAP_FINISHED(r)

Effects:
turn, = wait (* indicates a waiting for snapshot to complete *)

ResET_FINISHED, (* input action reports that current reset is over ¥)

Effects:
turn, = not_reset (* snapshot protocol’s turn to run *)

START_SNAPSHOT, (* output action, Root initiates snapshot *)
Preconditions:
turn, = not_reset (*snapshot protocol’s turn to run *)
SNar_FINISHED(r)
Effects:
turn, = reset
Initialize d,, s, to be empty. Record current state in s,
busy, = true
For all children !
snap_ezpected, [l] = true
For all neighbors &
SEND, % (Marker)
mark.expected.[f] = true

Figure 9: Variables and Code Used to Initiate Snapshots and Resets
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SEND; ;(Marker) (* Retransmit marker*)

Preconditions:
busy; = trueor ((i = r) and (SNAP_FINISHED(r)))

RECEIVE; ;(Marker) (* Node i receives marker from j*)
Effects:
if busy; = false and 7 # r then
Initialize d;, 5; to be empty. Record current state in s;
busy; = true
For all children I
snap_ezpected, [l] = true
For all neighbors & # j
mark_expected;[7] = true
SEND; 1 (Marker)
if mark_ezxpected;]j] = true then
mark_ezpected;[f] = false (* stop expecting marker from j*)
if for all neighbors k: mark_ezpecied;[k] = false then
d; = d; U {(s;,9)} (* record your own state ¥)

SEND; ;(Snapshot, s) (* Node i sends snapshot information to j*)
Preconditions:
busy; = true
parent; = j
d = d; (*snapped state from node i and all other nodes *)
SNAP_FINISHED(?)

RECEIVE; ;(Snapshot, s) (* Node i receives snapshot from j¥*)

Effects:
if j is a child of ¢ and snap_ezpected,;[j] = true then
di=d; Us

snap_ezpected;[j] = false

LocaL_RESET(Z) {* procedure called to locally reset snapshot *)
For all children !: snap_expected;[l] = false
For all neighbors k: mark_ezpected;[k] = false
busy; = false

While mark_ezpected;[j] = true, node i records the sequence of application messages arriving
from node j in the link record for neighbor 7 contained in s;
All SEND actions are in a separate class that occur in 1 unit of time.
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Our major tool is Theorem 7.5 which states that the reset protocol stabilizes in O{D)
expected time regardless of the behavior of the client (i.e., snapshot} protocol P. This avoids
circularities because the behavior of P clearly depends on the reset protocol. Note that the
snapshot protocol is the combination of the snapshot and reset protocols.

The major termination theorem about the snapshot protocol is that the root will assume
that the snapshot is complete (i.e., snap_expected(r) becomes true} in O{D) expected time
starting from any state.

Theorem 8.1 Within O(D) expected time of any state, there is a state in which SNAP_FINISHED =

true.

Proof: We only sketch the main idea. We know from Theorem 7.5 that within O(D) expected
time, the reset protocol reaches a home state s. If s.SNAP_FINISHED(r) = true we are done, so
assume that 8. SNAP_FINISHED(r) = false. We claim that in kD time starting from s (where k
is a sufficiently large constant), we reach a state in which SNAP_FINISHED(r) = true.

Suppose the last statement is false. Then for D time after s, there can be no REQUEST_RESET
actions as these are only enabled if SNAP_FINISHED(r) = true. But from Theorem 7.6 this
means that the reset protocol remains in a home state for kD time. Thus the snapshot proto-
col at node 7 cannot be locally reset in this interval since such local resets can never occur in

a home state.

But this implies that for some sufficiently large constant kq, k1 < k, within %; D time after
s, we reach a state s’ in which all nodes i # r have busy; = true. This follows by induction
on the height of the tree and three facts: the root keeps sending markers down the tree when
SnaP_FINISHED(r) = false; nodes that are not busy become busy after receiving a marker and
keep transmitting markers down the tree; nodes clear their busy flag only after doing local
resets, which cannot occur.

But this implies that for some sufficiently large constant ke, ky + k2 < k, within & D
time after s’, we reach a state s” in which all nodes ¢ have SNAP_FiNiSHED(i) = true. This
follows by reverse induction on the height of the tree (i.e., starting from the leaves and moving
upwards) and the following facts: in constant time after 5, every node j sends a marker to every
neighbor k causing mark_ezpected,[f] to become false; the root cannot set its mark_ezpected or
snap_ezpected flags to true during this interval because this is only done in a START_SNAPSHOT
action that cannot occur when SNAP_FINISHED(r) = false; nodes other than the root cannot
set their mark_expected or snap_ezpected flags to true during this interval because they cannot
do this until they clear their busy flag which cannot happen; each node (starting from the
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leaves) sends a Snapshot message up to its parent in constant time after its snap_expected
flags for all children and its mark_ezpected flags for all neighors are clear; finally a node clears
snap_ezpected; when it has received Snapshot messages from its children.

In summary, in O(D) expected time after s we reach a state in which SNAP_FINISHED(r) =
true; hence in O(D) time starting from any state we reach a state in which SNAP_FINISHED(r) =

true. O

The next lemma states that the turn variable is guaranted to change its value in O(D)

expected time.

Lemma 8.2 Within O(D) ezpected time of any state, there is a stale in which turn, changes

value.

Proof: We only sketch the main idea. We know from Theorem 8.1 that in O(D) expected
time we reach a state s in which SNAP.FINISHED(r) = irue. So we consider cases:

e s.turn. = wait, In this case, we know from Theorem 7.5 that the reset protocol will enter
a home state 8’ in O(D) expected time. If the value of &'.turn. # wait we are done,
so assume that &'.turn, = wait. Now the REQUEST_RESET action is not enabled while
s.turn, = wait. Thus the reset protocol will remain in a home state while furn, = wait and
so in O(1) time after s/, a RESET-FINISHED event will occur (from the timing conditions
for this event which is enabled in a home state). This will cause turn, = not_reset.

® s.turn, = noi_resel. In this case, we know that SNAP_FINISHED(r) will remain true
until the value of turn. changes (as SNAP_FINISHED(r) can only be set to false by
a START.SNAPSHOT action). But the START_SNAPSHOT action is enabled whenever
turn, = not_reset and SNAP_FINISHED(r) = true and so this action must occur in O(1)
time after s, resulting in a state in which turn, = reset.

e s.iurn, = reset. In this case, we know that SNAP_FINISHED(r) will remain irue till
turn, changes (as SNAP_FINISHED(r) can only be set to false by a START_SNAPSHOT
action and the START_SNAPSHOT action is not enabled when turn, = not_reset). But the
REQUEST_RESET action is enabled whenever turn, = not_reset and SNAP.FINISHED(r)} =
true and so this action must occur in O(1) time after s, resulting in a state in which

turn,. = wait.
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Define a good reset request to be a (s, REQUEST_RESET, 5') transition such that s is a home

state.

We claim that;

Lemma 8.3 A good reset request occurs in O(D) expected time starting from any state; all
subsequent reset requests are also good reset requests.

Proof: We know from Theorem 7.5 that in O(D) expected time we reach a home state s of
the reset protocol. We know that the reset protocol remains in a home state till a reset request
occurs; thus any reset request after s ia a good reset request. We know from Lemma 8.2 that
the value of the turn, variable changes twice in O(D) expected time after s. But we know
from the code that the furn, variable only changes from wait to not_reset, from not_reset to
reset, and from reset to wait. Thus in O(D) expected time after s, we must have a transition
(s',m,s") such that ¢'.turn, # wail and s”.turn, = wait. It is easy to see from the code that

7 = REQUEST_RESET.

It is also easy to see from Theorem 7.6 and Theorem 7.7 that all future reset requests occur
in a home state and hence are good reset requests. O

Define a initial state of the snapshot protocol to be a state in which i) for all nodes %,
SNAP.FINISHED(:) = true and busy; = false and ii) there is no (Marker) message in transit
on the links. Notice that this corresponds to the definition of an initial state for a diffusing
computation that we gave in the last section.

The next lemma follows directly from Corollary 7.8.

Lemma 8.4 In O(D) time after a good reset request, the reset protocol will enter a home state
and in this home state, the snapshol protocol P is in an initial stete and turn, = not_reset.
These three conditions will remain true until @ START_SNAPSHOT event.

Theorem 8.5 Consider any state in which the reset protocol is in a home state, the snapshot
protocol is in an initial state, and turn, = not.resel. Then a good reset request will occur in
O(D) time after this state and in the state before this reset request, the variable d, will hold «
valid snapshot of the application protocol.
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Proof: It is easy to see that within O(1) time, a START_SNAPSHOT action occurs, which sets
SNAP_FINISHED(r) = false. This will begin a phase of the snapshot algorithm starting with a
state in which there are no markers on links and all nodes 7 have SNAP_FINISHED (i) = true. We
can map the first Marker messages and Snapshot messages sent on every link during this phase
to the Marker and Snapshot messages sent by a augmented version of the Chandy-Lamport
snapshot (in which snapshot information is reported up the tree). Subsequent copies of Marker
and Snapshot messages received on a link do not change the state of the receiving node and
can be ignored. Since the Chandy-Lamport protocol produces an accurate snapshot in d, by
the time SNAP_FINISHED(r} = true, so does this phase of our snapshot. Also the value of d,
cannot change until busy, becomes false; but this cannot happen till after the next good reset
request. And we know from Lemma 8.3 that a good reset request occurs in O(D) expected
time. O

9 Virtual Circuit Protocols

We conjecture that another interesting application of counter flushing is to design stabilizing
virtual circuit protocols. In a virtual circuit protocol we assume that there is a sequence of
nodes Node 0 to Node m that are connected and that we wish to send data “reliably” from
Node 0 to Node m. We assume that the links are reliable and FIFO links and thus the only real
difficulty arises if a virtual circuit is cancelled and another virtual circuit is set up immediately
afterwards; we wish to make sure that data from the first virtual circuit is not delivered as

part of the second virtual circuit.

We assume that the sequence of nodes is fixed and there is at most one virtual circuit for
each such fixed path of nodes. In practice, it is easy to extend this to have multiple VC’s per
path. In practice, too, a user at Node 0 will attempt to set up a circuit to a user at Node
m. This is done by first consulting a routing protocol to obtain a unique path from Node 0 to
Node mn; the complete (acyclic) path could be carried in every virtual circuit control message.
Thus once the routing protocol has stabilized, a virtual circuit from Node 0 to Node m will
pass through a fixed sequence of nodes. However, we ignore this detail and simply assume that
the sequence of nodes comprising the virtual circuit is fixed.

Since we wish to “flush” out data from any previously set up virtual circuits, it is natural
for the set up of a virtual circuit to follow the sequence shown in Figure 11. When setting
up a virtual circuit, the source sends a set message S down the path. In a correctly set up
virtual circuit, the set message propagates to the destination node m after which it is reflected
{Figure 11) to the source; only then can data be sent and received correctly because the set

42



Data Traffic
\

/\

Figure 11: Example of virtual circuit setup. The S messages are set up messages and the C messages are cancel

messages.

messages have “flushed” the path of old data messages. Nodes along the path can, however,
cance] the circuit at any time by sending a cancel message backwards and forwards alongthe

path (Figure 11).

In Spinelli’s thesis ([Spi88]), Spinelli shows that if a node simply sends a cancel message
both backwards and forwards, then it is possible to incorrectly set up a virtual circuit. Spinelli
modifies the simple-minded cancellation shown in Figure 11 as follows. A node sending a cancel
message toward the destination does not go into a disconnected state immediately but goes
into a “conditional disconnect” state where it waits to get an ack back from the next node
in the sequence which indicates that the next node has received the cancel. Nodes receiving
a cancel message from a forward neighbor (i.e., one that is closer to the source) also send a
cancel ack back to the forward neighbor.

The main reason for node ¢ to send a cancel message to node i+ 1 is to flush out spurious
set up messages that may be lurking in the channel from ¢ + 1 to ¢. If these are not flushed
out, and if ¢ quickly receives a set up message from node ¢ — 1 (i.e., immediately after the
previous cancellation an attempt is made to restablish the circuit) then i may wrongly set up

the second circuit.

However, suppose we use counter flushing. Thus all set up requests and cancel messages
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carry a counter value and each node includes a counter value as part of its state. Node ¢ accepts
new set up requests from node i — 1 only if the counter value stored at node 7 is different from
the counter value in the message; node ¢ accepts a set up message from node 7 + 1 only if the
the counter value stored at node ¢ is the same as the counter value in the message. Thus it
appears that if node 0 uses a “fresh counter” value to set up a new virtual circuit, then the
new virtual circuit will be set up correctly according to the structure shown in Figure 1119,
Thus it appears that cancellation can follow the simple structure shown in Figure 11 without
the need for a Cancel Ack.

We have constructed a preliminary version of a stabilizing virtual circuit protocol by ap-
plying counter flushing to a somewhat simpler version of [Spi88]. We leave the details and

proof of this protocol for future work.

10 Conclusions
We make the following remarks about the counter flushing paradigm:

¢ Wide Range of Applications and Topologies: We have shown that counter flush-
ing is a powerful paradigm for designing stabilizing protocols by exhibiting stabilizing
protocols for token passing on a ring and in general networks, broadcast with feedback
on trees, deadlock detection and reset in arbitrary networks. For counter flushing to be
applicable we do need to elect a leader and (in general networks) compute a BFS tree
rooted at the leader; however, this can be done efliciently using the protocol of [AKM*93]

¢ Underlying theme to applications: Besides being a paradigm that helps us design
new stabilizing protocols, counter flushing is also a wnifying paradigm. Part of the
unexpected pleasure of writing this paper was realizing the connection between seemingly
disparate protocols such as Dijkstra’s token ring protocol, Afek and Brown’s Data Link
protocol, Misra’s deadlock detection protocol, Arora and Gouda’s reset protocol, and
Spinelli’s virtual circuit protocol. At one level, they can all be regarded as repeated
versions of a centralized total algorithm [Tel89) in which cooperation is needed from
all nodes to reach a decision; at another level, the Data Link, Virtual Circuit, and
Reset problems can be regarded as synchronization problems whose correctness can be
formalized in terms of a mating relation [AE83, Spi88, Var92]

Pagsuming that no nodes cancel while this circuit is being set up; this can be enforced by ensuring that
cancellation is never done during circuit set up
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¢ Easy to Design and Prove: To add counter flushing to an appropriate application,
we: i) first add counters to all nodes and messages ii) add actions to ensure that the
protocol does not deadlock and the leader will change its counter in O(D) time. The
use of the appropriate CHOICE function then ensures that the protocol will pick a fresh
counter value in O(D) expected time iii) By carefully restricting the way new counters
are accepted (e.g., from parents only) we ensure that a fresh counter value succeeds in
“flushing” the network of old counter values and that at the end of such a fresh counter
interval the protocol is in a good state.

¢ Competitive with Local Checking: Local Checking and Correction is another general
paradigm that we have used before ([APV91, Var92, AGV92]) to design and explain
efficient stabilizing protocols. On a theoretical level, there are some problems for which
counter flushing is applicable but local checking is not (e.g., protocols that are not locally
checkable like token passing on a ring) and some problems for which local checking is
applicable but counter flushing is not {e.g., leader election). There are also a number of
problems where they are both applicable (e.g., resets, token passing on a tree). We believe
that while they are both practical methods, counter flushing is simpler to implement. Qur
experience in [CSV89] indicates that it takes some care to implement local checking; when
there is a large amount of local state, one has to either slow down the normal protocol
during local checking or have support to do a fast local snapshot. Local checking also
requires a careful enumeration of the protocol’s local predicates, which can be quite large
even for a moderately complex protocol like a reset. [APV91, Var92].

Finally, regardless of counter flushing, we believe that the paradigm of periodically restart-
ing a diffusing computation P with the stabilizing termination property is of independent
interest. As in the counter flushing paradigm, it is possible to add extra actions to a protocol
P to make it have the stabilizing termination property; this in turn can be used to provide a
version of P that stabilizes in O(D + Tp) expected time where Tp is the time complexity of
protocol P.

We have used this to produce the first stabilizing non-blocking snapshot protocol that
has O(D) expected stabilization time. This in turn considerably improves the efficiency of
the general compiler of [KP90] so that any arbitrary protocol can now be stabilized in O(D)
expected time. Note that while this seems to subsume most previous results, there is another
metric which is roughly the message complexity ([Var92]) of checking, While the improved
Katz and Perry compiler is fast, it still has a rather large message complexity. Thus the search
continues for less general but more efficient stabilization techniques: we believe the counter
flushing paradigm of this paper is one such technique,
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