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ABSTRACT OF THE DISSERTATION 

Developing New Methodologies for Crosslinked Polymeric Nanostructure Syntheses, 

Chemoselective Modifications, and Applications as Imaging and Delivery Agents 

 

By 

Guorong Sun 

Doctor of Philosophy in Chemistry 

Washington University in Saint Louis, 2009 

Professor Karen L. Wooley, Chairperson 

 

The overall emphasis of this dissertation research includes the syntheses of 

amphiphilic block copolymers bearing functional groups through controlled radical 

polymerization techniques, followed by the aqueous assembly of these block copolymer 

precursors to construct polymeric nanostructures with different sizes and morphologies.  

Further chemical modification of the nanostructures afforded functional crosslinked 

nano-objects with reporting probes for imaging and biocompatible “stealth” materials for 

tuning the in vivo fate of nanostructures. 

Amphiphilic block copolymers poly(acrylic acid)-block-polystyrene (PAA-b-PS) 

with well-defined structures were prepared through nitroxide-mediated radical 

polymerization (NMP).  Using novel pre-functionalization strategies, these block 

copolymer precursors were functionalized with DOTA for chelating 64Cu and were then 

assembled into micelles and crosslinked throughout the micelle shell domain to afford the 

shell crosslinked nanoparticles (SCKs), containing large numbers of effective DOTAs per 
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particle for 64Cu radiolabeling  These 64Cu–complexed nanoparticles showed impressive 

specific activities (ca. 400 μCi μg-1), which suggest that they will serve as highly 

sensitive in vivo positron emission tomography (PET) tracers at low administering doses. 

The “pre-grafting” strategy was further extended to accomplish SCKs with 

variable biodistributions.  PAA-b-PS amphiphilic block copolymers were modified with 

varying numbers of poly(ethylene oxide) (PEO) chains, together with DOTA, before 

assembling into block copolymer micelles and crosslinking throughout the micellar shell 

regions.  After chelation of 64Cu tracers, the in vivo fate of PEGylated SCKs was 

evaluated by means of biodistribution experiments and PET imaging.  The blood 

retention of PEGylated-SCKs exhibited tunabilities, depending on the mPEG grafting 

density and the nanoparticle surface properties. 

Various bi-functional pyrazine-based chromophores were used as crosslinkers to 

probe directly their incorporation efficiencies into the shells of block copolymer micelles, 

which further determined the actual crosslinking extents ─ a critical factor for developing 

SCKs as PET imaging agents.  The micelles were made to carry poly(N-

acryloxysuccinimide) (PNAS) as pre-installed amine-reactive functionalities along 

amphiphilic triblock copolymer precursors (PEO-b-PNAS-b-PS) prepared through 

reversible addition-fragmentation chain transfer (RAFT) radical polymerizations.  The 

incorporation/crosslinking efficiencies were dependent upon the type of crosslinker and 

the applied stoichiometries. 

The intrinsic reactivity of aldehyde motivated the developments of well-defined 

polymers having reactive carbonyl side chain substituents.  Amphiphilic block 

copolymers bearing poly(4-vinyl benzaldehyde) (PVBA) block segments with controlled 
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iv 
 

molecular weights and low polydispersities were obtained through RAFT 

polymerizations and assembled into polymeric vesicles and micelles.  The vesicles were 

crosslinked and functionalized with fluorescent molecules through chemoselectively-

reductive amination and were shown to display interesting in vitro cell association 

behaviors.  The micelles were modified with near-infrared fluorescent dyes and 

crosslinked with diamino crosslinkers, each via reductive amination, to prepare robust 

nanoparticles with optimized luminescent characteristics for in vivo optical imaging. 
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Chapter 1 

 

Introduction 

 

The groundbreaking lecture by Richard Feynman in 1959,1 “There’s Plenty of 

Room at the Bottom”, triggered the campaign to study and manipulate matters over 

atomic and/or molecular scale and opened the “Nano-window” to natural scientists.  

Different from conventional science and technology, in which the size of objects usually 

are below 0.1 nm, the targets of nanoscience and technology are focused onto the 

“things” from molecular-based assemblies and/or objects with size scales between 0.1 nm 

to 100 nm, as well as single atoms and molecules.  During the past 50 years, through the 

efforts and devotions from several generations of scientific researchers, nanoscience and 

technology have achieved significant innovations in academic and industrial laboratories, 

across disciplines, and become a robust and well-accepted scientific field.2, 3  Meanwhile, 

profound impacts of nanoscience and technology have been growing explosively 

worldwide in the manufacturing and R&D areas such as miniaturization of electronic and 

memory devices, design and synthesis of more robust and efficient catalysts, 

development of more accurate and effective diagnostic procedures, and exploration of 

more potent drugs with “smart” abilities to recognize and attack only the diseased sites. 

In modern nanotechnology, there are two basic approaches to realize the 

syntheses of nanostructures, the Top-down and Bottom-up approaches.  The Top-down 

approach is based on physics and lithography techniques,4-10 while the Bottom-up is 

mainly influenced by chemical principles.11-18  Both approaches provide specific 
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capacities that can be implemented by the other.19-23  However, the relatively broader 

substrate scope and more precise tuning of chemical binding strength and orientations 

offer extra driving forces for the Bottom-up approach to evolve and advance 

nanotechnology. 

The self assembly of amphiphilic polypeptides into proteins with intricate 

supramolecular structures and variety of functionalities represents one of the elegant 

manners in constructing complex assembles by Nature.  This phenomenon inspired 

scientists to exploit nano-scale material mimics having unique optical, electric, catalytic, 

and biological properties.24, 25  Utilizing synthetic amphiphiles as assembly components, 

many nanostructures ranging from atomic to supramolecular dimensions have been 

assembled through weak non-covalent interactions, which included van der Waals, 

electrostatic, hydrophobic interactions, hydrogen and coordination bonds,26-30 via a 

balanced reversible process.31-33  These nano-assembles exhibited diverse non-spherical 

morphologies, such as belt,34 cylinder,35 fiber,36-39 helix40-42, lamella43, and vesicle,44-46 

depending upon the intrinsic compositions and physical properties of the amphiphiles and 

the assembly conditions. 

Among the synthetic amphiphiles, amphiphilic block copolymers have gained 

significant attentions recently by both academic and industry investigators.47-49  In 

contrast to small surfactants, the amphiphilic block copolymer systems exhibit the 

following advantages: the facile tuning of dimensions, compositions, and components; 

the easier introduction of functionalities; the much larger phase segregation tendency;50, 51 

the significantly slower assembly kinetics;52 and the enhanced robustness and 

morphological variation of resulting structures.  Amphiphilic block copolymers can 
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construct a wide range of supramacromolecular assemblies including conventional 

morphologies like spheres (the most common morphology), cylinders/worms53-59 and 

vesicles,60-70 and many other novel morphologies such as bamboos,71 bowls,72 discs,73 

helices,74 and toroids.75  Moreover, the spherical micelles can undergo higher-order 

segregation in inter- and/or intra-micellar fashion to create Janus,76-78 

multicompartment,79-81 and onion82, 83 micelles.  The versatility in composition and 

assembly behaviors offer a rich selection of building blocks for the construction of 

nanostructured materials as well as their use in biomedical and catalytic applications. 

Advances in living polymerization techniques, especially in the development of 

controlled radical polymerizations (CRP)84 have dramatically improved the availability of 

well-defined block polymers, thereby facilitating the numbers and types of 

nanoassemblies that can be prepared and studied.  Using different CRP techniques, atom 

transfer radical polymerization (ATRP),85, 86 nitroxide-mediated radical polymerization 

(NMP),87, 88 and reversible addition-fragmentation chain transfer (RAFT) 

polymerization,89-91 various kinds of polymers having narrow molecular weight 

distributions, controlled architectures, and low polydispersities can be produced.  

Moreover, CRP realizes better tolerance of functionalities during the polymerization 

process, which enables the facile preparation of functional polymers allowing for post-

modifications.92 

The heightened impact of nanotechnology in healthcare generates a specific filed 

─ Nanomedicine,93-100 the medical applications of nanotechnology to improve the 

properties of existing therapeutic and diagnostic modalities and to establish novel 

modalities for diagnostics, treatment, and therapy of diseases.  Block copolymer 
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micelles101-105 and vesicles104, 106-109 have already been widely applied in nanomedicine 

and found promising applications in both therapeutic agent delivery and diagnostics.  

However, both self-assembled entities are equilibrium products formed in solution and 

under diluted conditions (concentrations below the critical micelle/vesicle concentrations, 

which usually at the order of 10-7 M), their ordered structures will collapse and re-

organization of the unimer (amphiphilic block copolymer precursor) will occur.  

Covalent110-115 and non-covalent116 crosslinkings have been introduced to micellar 

assemblies to enforce the structural stability of and obviate the self correction.  Several 

new classes of materials termed shell crosslinked (SCK) nanoparticles and core 

crosslinked (CCK) nanoparticles have been constructed, depending upon the location 

inside the micellar structure where the crosslinking reaction is conducted.  The same 

strategy has also been applied to vesicular structures where the crosslinking was confined 

into the wall domains.70, 117-119 

The advantage of crosslinking is not limited only for providing robust 

nanostructures.  Recent reports highlighted that core crosslinking could enhance the cargo 

“holding” ability of nanostructures120 and the increasing of shell crosslinking extents 

prolonged the blood retention time of nanoparticles.121  Moreover, functionalized 

nanostructures can be directly derived by using crosslinkers bearing diverse 

functionalities,122, 123 in addition to their structural roles.  This dissertation is focused on 

the design, synthesis, and characterization of functionalizable crosslinked nanostructures 

(micelles and vesicles) bearing characteristics allowed for chemoselective modification 

and their utilizations as nanoplatforms for molecular imagings. 
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Previous studies on shell crosslinked knedel-like nanoparticle (SCKs) suggest that 

these materials can serve as good templates for biomedical applications.124  To render the 

SCKs functional, post-modification of pre-established SCKs with functionalities stands a 

versatile and straightforward method that allows for multiple numbers and types of 

ligands to be attached onto a well-defined scaffold.125-127  However, the reaction 

efficiency usually suffers a variety of factors, especially the steric and electrostatic 

factors, due to the fact that most of the SCK modification reactions are conducted in 

aqueous media.  As found during the study of post-functionalization of SCKs with DOTA 

(1,4,7,10-tetraazocyclododecane-N,N′,N′′,N′′′-tetraacetic acid) derivatives having 

different features, even a “tiny” structural difference (one carboxylate and 4 atoms) 

caused ca. 7- to 10-fold of reaction efficiency variations.128  Chapter 2 of this 

dissertation is focus on the development of new synthetic strategy for preparation of SCK 

nanoparticles having “high-dense” functionalities as potential positron emission 

tomography (PET) imaging129-132 contrast agents through Bottom-up pathway.  The 

DOTA-functionalized SCKs in chapter 2 were constructed through a “pre-grafting” 

approach, which involved coupling the functionalities to amphiphilic block copolymer 

precursor before assembly into nanostructures, in order to reduce the complexity of 

nanostructure functionalization.  This strategy provided easier quantification of 

functionalities per nanostructure, but also was demonstrated as a facile and effective 

methodology for incorporation of highly sensitive in vivo PET tracers into nanoscale 

frameworks to allow for administration of low doses in vivo. 

The determination of the in vivo distribution of nanoparticulate carriers following 

systemic administration and the development of imaging modalities for visualizing the 

5 
 



biodistribution over time take top priority in nanomedicine.133  In chapter 3, 

monomethoxy-terminated poly(ethylene glycol) (mPEG) and radionuclide 64Cu chelator 

were sequentially installed onto the block copolymer precursor prior to assembly and 

crosslinking to afford SCK nanoparticles with different surface characteristics.  The in 

vivo fates of these SCKs were then evaluated through the combination of biodistribution 

and PET imaging techniques.  This study represented extension of applying the “pre-

grafting” strategy for construction of multifarious nanostructures having quantifiable 

functionalities, but also demonstrated the biodistributions of nanovectors can be 

manipulated in tunable fashion.  A semi-quantitative model of the density of mPEG 

surface coverage as a function of in vivo behavior was applied to enhance the 

understanding of this system.  The distance between exposed mPEG molecules on 

nanoparticle surface was found to determine the blood retention time of the 

corresponding SCK nanoparticles through opposing blood protein absorption mechanism 

and the calculated results were consistent with the theoretical predictions proposed by de 

Gennes and co-workers.134, 135 

Because the general methodology for the preparation of SCKs involves 

crosslinking reactions between polymer chain segments that constitute the corona of 

block copolymer micelles, the nature of the crosslinking agent and the degree to which 

crosslinking is conducted allows for tuning of the SCK surface characteristics and the 

shell permeability.  In fact, the phenomena that higher crosslinking extent caused a 

reduction of the radiolabeling efficiency (chapter 2), but benefited the in vivo fate 

(chapter 3) have already been noticed.  Therefore, a precise balance between the above 

issues needs to be managed for developing SCK nanoparticles as potential imaging 
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agents.  Research presented in chapter 4 describes the fundamental investigations for 

exploring the incorporation efficiencies of crosslinkers into the shells of block copolymer 

micelles, which further determines the actual crosslinking extents, by utilizing pyrazine-

based crosslinkers as reporting probes.  In order to minimize other factors related with the 

carbodiimide-mediated amidation, the block copolymer micelles were made to carry pre-

installed reactive functionalities (N-acryloxysuccinimide, NAS) along the central block of 

amphiphilic triblock copolymer as amidation sites.  It was revealed that the 

incorporation/crosslinking efficiencies were dependent upon the intrinsic properties of 

crosslinker, the conditions used for crosslinking, and the applied stoichiometries.  In the 

meantime, unique photo-physical properties of the optical-active SCKs at lower 

crosslinking extents (13% to 20%) were observed.  Compared with the crosslinkers as 

small molecules, the maximum absorption peaks of SCKs exhibited blue-shifts of ca. 35 

to 40 nm.  More interestingly, SCKs showed dual emissions of the fluorescence (498 nm 

and 555 nm, respectively) while the fluorogenic probes only afforded single emissions at 

555 nm without the internal nanostructure environment. 

Chapter 5 depicts the development of well-defined homopolymer and block 

copolymer systems bearing pendant benzaldehyde functionalities through RAFT 

polymerizations.  The motivation of this work comes from the intrinsic reactivity of 

benzaldehyde, one of the most reactive and diverse electrophiles that undergoes reaction 

under mild conditions.  By taking advantage of the higher functional group tolerance in 

RAFT polymerization, poly(4-vinyl benzaldehyde)s (PVBA) with controlled number-

average molecular weight (Mn) and low polydispersity (PDI < 1.17) were obtained.  The 

controlled characteristic of the RAFT polymerization process was confirmed by the 
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linearity between the Mn values of PVBA and monomer conversions.  Well-defined 

PVBA was further used as a macromolecular chain transfer agent (macro-CTA) in RAFT 

polymerization of styrene (St), and a block copolymer PVBA-b-PSt with relatively low 

polydispersity (PDI = 1.20) was successfully synthesized. 

Work towards biological applications of nanoscale objects with PVBA as reactive 

hydrophobic block segments continues in chapter 6 and chapter 7.  Chapter 6 

illustrates the aqueous describe assembly of block copolymer poly(ethylene oxide)-block-

poly(4-vinyl benzaldehyde) precursors into polymeric vesicles with tunable sizes and the 

following chemoselctive post-modifications through the reductive amination chemistry.  

Different from most literature reported60-70 AB diblock copolymer precursors (A 

represents for the hydrophilic block segment while B for the hydrophobic segment) for 

preparing vesicular nanostructures, in which a longer hydrophobic B block segment was 

required, the unimer used in this study, PEO45-b-PVBA26, had a relative shorter B block.  

The morphology transformation during vesiculation process was investigated and 

variations from traditional trend (sphere-rod-vesicle), including the forming of vesicles at 

lower water contents and the “absence” of rods, were noticed from the transmission 

electron microscopy (TEM) measurements.  It was also found that small vesicles could be 

obtained from the same block copolymer precursor through a “kinetic trapping” protocol, 

as characterized through a combination of TEM and dynamic light scattering (DLS).  The 

reactivity of the benzaldehyde functionalities was verified by crosslinking the vesicles, 

and also by a one-pot sequential functionalization and crosslinking approach to further 

render the vesicles fluorescent, each via reductive amination.  In vitro studies found these 

labelled vesicles underwent cell membrane associations, as indicated by the confocal 
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microscopy, which might be related with the interactions between the membrane proteins 

and the leftover aldehydes. 

The last research part of this dissertation (chapter 7) introduces the model-

predictable optimizations of luminescence efficiency (quantum yield, QY) of fluorescent 

nanomaterials for the core crosslinked micelles, prepared from PEO-b-PVBA through the 

established one-pot sequential functionalization and crosslinking protocol.  Both the 

experimental and model-predicted data revealed that the nanoparticle QY was related 

with the dye “loading” stoichiometry and the size of core domain.  These two factors 

determined the distance between adjacent fluorophores, which further decided the extent 

of non-radiatively transferred energy. 

This introduction has encompassed the successes and complications in attempting 

to develop functionalized crosslinked nanostructures which exhibit selective biological 

activities, interesting optical properties and other physicochemical properties that are 

being exploited for tissue selective imaging applications in vivo.  Moreover, the 

fundamental strategy behind this dissertation, i.e., synthesizing well-defined amphiphilic 

block copolymers bearing diverse functionalities; following by assembly the resulting 

precursors into polymeric nanoscopic objects with various morphologies; and 

subsequently exerting internal and/or external functionalization/crosslinking through 

varying methodologies to achieve discrete functional nanomaterials with improved 

robustness and stability, will remain on the forefront of nanotechnology field. 
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Chapter 2 

 

Strategies for Optimized Radiolabelling of Nanoparticles for in vivo 

PET Imaging 

[Portions of this work have been published previously as Guorong Sun, Jinqi Xu, Aviv 

Hagooly, Raffaella Rossin, Zicheng Li, Dennis A. Moore, Craig J. Hawker, Michael J. 

Welch and Karen L. Wooley Adv. Mater. 2007, 19(20), 3157-3162.] 

 

Abstract 

Driven by the motivation for optimizing 64Cu radiolabelling efficiency of 

nanoparticles for in vivo PET imaging, a new strategy has been developed.  This strategy 

involved a complete redesign of the nanoparticle system, utilizing macromolecular 

precursors that were pre-loaded with labelling sites and programmed for supramolecular 

assembly into discrete, functional nanoscale objects.  A series of shell crosslinked 

nanoparticles (SCKs) have been constructed by grafting a copper chelating agent 

(DOTAlysine) onto amphiphilic block copolymers (PAA-b-PS), self assembling the 

functionalized block copolymer precursors into micelles, and crosslinking the micellar 

corona to afford the expected nanoobjects.  These pre-DOTAlysine-SCKs showed 

impressive results on 64Cu radiolabelling (~ 400 copper atoms per spherical nanoparticle). 
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Introduction 

Among the molecular imaging modalities, positron emission tomography (PET) is 

widely used as a powerful diagnostic tool by clinicians and scientists.1-3  Compared with 

other imaging methods, it bears the advantages of high sensitivity (the level of detection 

approaches 10-11 M of tracer) and isotropism (i.e., ability to detect expression accurately, 

regardless of tissue depth), which provide reliability for quantitative imaging analyses of 

in vivo abnormalities.  As the pharmaceutical industry began applying PET imaging for 

assisting drug discovery,4-10 small animal PET scanners with spatial resolution up to 1 

mm were developed and have been considered to be one of the major achievements for 

PET technology during the past two decades.11  64Cu is an attractive radionuclide for PET 

imaging because of its suitable half-life (t1/2 = 12.7 h) and positron emission energy (0.65 

MeV), as well as the relatively convenient radiolabelling via coordination with specially 

designed ligands (chelators).12-15  The formation of thermodynamically-stable metal 

complexes reduces the copper binding with plasma proteins which minimizes its non-

specific background activity and its accumulation and resultant toxicity in the liver and 

kidney.16  Under the present instrumental conditions, optimizations and improvements of 

the specific activity of radiopharmaceuticals are of special interest to 64Cu-based PET 

systems for achieving high quality images even at low doses, especially when the targets 

can be readily saturated in vivo.  One practical resolution is to encapsulate or conjugate 

the chelating agents with nanocarriers, which have already been utilized by many 
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research groups17-21 including ourselves22, 23 and have been found to exhibit exciting 

potential in both high loading capacities and re-direction of the bio-distributions of small 

molecule ligands (e.g. for tissue targeting) or guests (e.g. for pharmaceutical effect).24 

Our research has focused upon shell crosslinked knedel-like nanoparticles 

(SCKs)25 as the nanoscale framework for the attachment of macrocyclic chelators and 

labelling by 64Cu radionuclides.  SCKs have been established from the self assembly of 

amphiphilic block copolymers to afford micelles with core-shell morphology that are 

then covalently crosslinked throughout the shell domain.  Recently, it was confirmed that 

by tuning the nanoparticle properties, especially the size and rigidity, increased in vivo 

circulation times and improved bio-distributions could be reached for 64Cu-TETA SCK 

conjugates.23  Although these preliminary results are promising, several challenges 

require further investigations.  Among them, efficient radiolabelling takes the highest 

priority.  Previously, the direct conjugation of macrocyclic chelators onto pre-established 

SCKs afforded limited coupling and radiolabelling yields, due to steric and electrostatic 

factors.23, 26  As part of our ongoing efforts, we now report an alternative strategy to 

construct chelator-SCK conjugates with high radiolabelling efficiencies, which is 

expected to lead to nanoscale objects that can be administered in small quantities for 

ultra-sensitive PET imaging. 
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Results and Discussion 

SCKs used in this study were comprised of polystyrene (PS) and poly(acrylic 

acid) (PAA), a particle composition previously demonstrated to have long blood 

circulation times23 and characteristic low cytotoxicity and low immunogenicity when 

crosslinked with 2,2’-(ethylenedioxy)-bis(ethylamine).27  The particle sizes were 

controlled by the relative balance of hydrophobic PS block length vs. the hydrophilic 

PAA segment.28, 29  The amphiphilic block copolymer precursors (PAA-b-PS) were 

acquired via sequential living radical polymerization of tert-butyl acrylate and styrene, 

followed by acidolysis of the tert-butyl ester protecting groups.  In all cases, the block 

copolymers had well-defined structures and narrow polydispersities (PDI < 1.20). 

As shown in Scheme 2.1, a lysine derivative of 1,4,7,10-tetraazocyclododecane-

N,N′,N″,N′″-tetraacetic acid (DOTA), DOTAlysine, was grafted onto the amphiphilic 

PAA-b-PS block polymer precursors, with a fixed hydrophilic PAA segment length (DPn 

= 60) and varied hydrophobic PS segment lengths (DPn = 30, 60, 140).  Conventional 

amidation chemistry was employed in organic solvent to afford ca. 65 to 75% isolated 

yield, for which the coupling yields were > 85%.  After purification by dialysis against 

water and lyophilization, the numbers of DOTAlysines per polymer chain were 

determined by 1H NMR spectroscopy analyses.  For PAA60-b-PS30 and PAA60-b-PS60 

block copolymers, the grafting numbers were 2, 4, and 7, for three different samples.  

Grafting more DOTAlysines (> 10 DOTAlysines/chain) was also attempted, but the 
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resulting DOTAlysine-g-copolymers suffered from poor solubility in organic solvents 

and generated nanoparticles with broad size distributions.  The same problem was 

encountered for the PAA60-b-PS140 after coupling 7 DOTAlysines, so only 2 and 4 

DOTAlysines/chain were studied. 

 
Scheme 2.1.  A two-step synthetic route was developed for the preparation of pre-
DOTAlysine-SCKs:  (1) labelling of three different amphiphilic block copolymers, 
PAA60-b-PSp, with three different levels of DOTAlysine;  (2) their self assembly into 
micelles in water and shell crosslinking to two different extents.  Overall, eight micelles 
and sixteen SCKs resulted from this scheme (see also Table 2.1). 
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Each amphiphilic block copolymer was assembled into micelles in aqueous 

solution by a standard micellization protocol30, 31 and crosslinked throughout the shell 

layer to differing degrees (20% and 50%, according to the chemical stoichiometry).  A 

series of micelles and SCKs having different dimensions and shell properties 

(electrostatic character, permeability, and residual carboxylic acid concentrations) was 

obtained and characterized by dynamic light scattering (DLS) and transmission electron 

microscopy (TEM) (Table 2.1 and Figure 2.1). 
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Table 2.1.  Characterization data for pre-DOTAlysine-SCKs and control SCK samples 
(lacking DOTA functionalities). 

Samplea 
(Extents of 

Crosslinking) 

(Dh)n
b 

(nm) 
Dav

c 
(nm) 

(DOTAlysinem-g-PAAn)-b-PSp 
Nagg

e 
m n p 

SCK1 (20%) 21 ± 3 11 ± 1 2 58 30 125 

SCK2 (20%) 21 ± 3 16 ± 2 2 58 60 240 

SCK3 (20%) 21 ± 6 11 ± 2 2 58 140 40 

SCK4 (20%) 21 ± 3 12 ± 2d 4 56 30 160d 

SCK5 (20%) 47 ± 7 19 ± 2d 4 56 60 340d 

SCK6 (20%) 17 ± 2 11 ± 2 4 56 140 40 

SCK7 (20%) 26 ± 6 11 ± 2 7 53 30 125 

SCK8 (20%) 25 ± 6 19 ± 2 7 53 60 400 

SCK9 (50%) 21 ± 3 11 ± 1 2 58 30 125 

SCK10 (50%) 24 ± 3 16 ± 2 2 58 60 240 

SCK11 (50%) 13 ± 4 12 ± 2 2 58 140 40 

SCK12 (50%) 22 ± 4 15 ± 2d 4 56 30 160d 

SCK13 (50%) 43 ± 5 18 ± 3d 4 56 60 340d 

SCK14 (50%) 17 ± 4 13 ± 2 4 56 140 40 

SCK15 (50%) 24 ± 5 11 ± 2 7 53 30 125 

SCK16 (50%) 28 ± 4 19 ± 2 7 53 60 400 

Control1 (50%) 18 ± 2 11 ± 1 0 60 30 125 

Control2 (50%) 22 ± 1 17 ± 1 0 60 60 240 

Control3 (50%) 34 ± 4 25 ± 1 0 60 140 330 
a All samples were dispersed in 5.0 mM pH 7.3 PBS (with 5.0 mM NaCl) buffer 
solutions.  b The number-averaged hydrodynamic diameters ((Dh)n) were determined by 
DLS.  Samples were passed through PVDF filters with 220 nm average pore size before 
conducting DLS measurements.  c The TEM average diameter (Dav) values were 
measured for the nanoparticle cores.  d Only spherical nanoparticles were counted.  e The 
aggregation numbers (Nagg) were calculated based upon TEM micrographs. 
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Figure 2.1.  TEM micrographs of 50% crosslinked SCKs prepared from DOTAlysinem-
g-PAAn-b-PSp block copolymer precursors:  (a), (b), (c), and (i) are images of SCK9, 
SCK12, SCK15, and Control1, prepared from PAA60-b-PS30 with 2, 4, 7, and 0 
DOTAlysine grafts, respectively;  (d), (e), (f), and (j) are images of SCK10, SCK13, 
SCK16, and Control2, prepared from PAA60-b-PA60 with 2, 4, 7, and 0 DOTAlysine 
grafts, respectively;  (g), (h), and (k) are images of SCK11, SCK14, and Control3, 
prepared from PAA60-b-PA140 with 2, 4, and 0 DOTAlysine grafts, respectively.  Scale 
bars in (i), (j), and (k): 100 nm. 
 

Based upon the TEM image analysis, the number of grafting DOTAlysines 

greatly influenced the morphologies of the nanoparticles.  All pre-DOTAlysine-SCKs 
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constructed from the three different amphiphilic block copolymers, each having 2 

DOTAlysines/polymer chain (SCK1-3 having undergone 20% crosslinking, and SCK9-

11, with 50% crosslinking) exhibited spherical morphologies with relatively narrow 

particle size distributions.  This similarity could be attributed to the fact that the small 

percentage of modification (< 4%) across the PAA backbone did not generate significant 

variation over the entire block copolymer properties, i.e. the balance between the 

hydrophilic and hydrophobic blocks remained little affected.  When p = 30 or 60, the pre-

DOTAlysine2-g-PAA58-b-PSp polymers gave uniform assembly (SCK1, SCK2, SCK9, 

and SCK10) to afford SCK dimensions that were in agreement with control SCKs 

(Figure 2.1i and 2.1j), prepared from PAA60-b-PS30 and PAA60-b-PS60, respectively.  In 

these cases, the loss of hydrophilicity (i.e., transformation of carboxylic acid to amide 

linkage) and the increased steric repulsion caused by the rigid macrocyclic moiety of 

DOTAlysine could be partially compensated by the ca. 10% increase of carboxylic acid 

residues (from DOTAlysine) over the length of the PAA60 segments.  In contrast, the 

DOTAlysine-functionalized amphiphilic block copolymers with the longest PS chain 

segment, DOTAlysine2-g-PAA58-b-PS140 underwent assembly into unusually small 

micelles to afford SCK3 and SCK11 that were significantly smaller in size and 

aggregation number than was the control assembly from PAA60-b-PS140 (Figure 2.1k)  

We are still investigating the reasons for the atypical assembly for these block 

copolymers. 
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For pre-DOTAlysine-SCKs with ca. 4 DOTAlysines/chain (20% crosslinking for 

SCK4-6 and 50% crosslinking for SCK12-14), their morphologies became much more 

complex.  As the DOTAlysine4-g-PAA56-b-PS30 was assembled, in addition to the major 

spherical morphology (> 80%), small rod-like structures appeared with ca. 60 nm length 

(Figure 2.1b).  Such unusual observation became extreme for SCKs prepared from 

DOTAlysine4-g-PAA56-b-PS60, in which half of the nanoobjects were rods with average 

lengths of ca. 100 nm (Figure 2.1e).  It is unclear whether the sphere-to-rod 

morphological transition results from interruptions on the local Coulombic interactions 

within the nanostructures, a hydrophilicity change in the shell domain, or a combination 

of these factors.  Detailed studies to better understand the “driving force” of this 

uncommon morphological transition are currently underway.  In the case of SCKs from 

DOTAlysine4-g-PAA56-b-PS140 (SCK6 and SCK14), spheres still remained dominant, 

but their particle size distributions were broad (Figure 2.1h). 

Interestingly, as the grafting DOTAlysine number continued to increase, the four 

SCKs (SCK7, SCK8, SCK16, and SCK17) from DOTAlysine7-g-PAA53-b-PS30(60) 

returned to the more thermodynamically favourable spherical morphology.  It is 

surprising that, even at this high proportion of modification (i.e., the introduction of ca. 

21 additional carboxylic acid groups per hydrophilic chain segment and the concomitant 

increased hydrophilic ratio and increased steric effects) along the polymer backbones, 

their assembly sizes and shapes remained similar to the control SCKs.  Again, the block 
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copolymer having the longest PS block length and coupling of ca. 7 DOTAlysines per 

polymer was unusual, in that it experienced poor solubility and could not be assembled 

into uniform micelles. 

Radiolabelling of these micelles and their corresponding SCKs with 64Cu were 

investigated thoroughly.  All the pre-DOTAlysine-SCKs/micelles exhibited high specific 

activity (Figure 2.2) compared with the SCKs prepared by coupling the DOTA onto pre-

established nanoparticles (post-DOTA-SCKs, Control4 in Figure 2.2).26  The specific 

activities of the pre-DOTAlysine-SCKs increased by 10 to 40 fold.  This high 

radiolabelling on a per particle basis creates an opportunity for reliable use with 

administration of a minimum amount of polymeric nanoparticles for in vivo PET 

imaging. 
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Figure 2.2.  Radiolabelling results for pre-DOTAlysine-SCKs:  (a) SCKs from 
functionalized PAA60-b-PS30;  (b) SCKs from functionalized PAA60-b-PS60;  (c) SCKs 
from functionalized PAA60-b-PS140.  The numbers of effective DOTAlysines/particle 
(with ± 5% standard deviation) were obtained from the numbers of effective 
DOTAlysines/polymer chain (determined from isotopic dilution experiments, see 
Experimental Section) and the calculated particle aggregation number (Table 2.1).  
Control4 were post-DOTA-SCKs.26 
 

The specific activity and the number of effective DOTAlysines per SCK did not 

follow the expected tendency, which would be an increase in labelling with an increase in 

DOTAlysine grafting density.  Rather, it appeared that the proportion of DOTAs 

available for 64Cu chelation reached a “saturation point” after 4 DOTAlysine grafts per 

polymer chain.  Since not all grafting DOTAlysines were located on the particle surface, 

the membrane-like structures within the shell regions of SCKs29 might hinder the 

formation of 64Cu-DOTAlysine complexes due to steric crowding and prevention of the 
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DOTAlysine macrocyclic from assuming a configuration amenable to stable 64Cu 

coordination.32  It is uncertain whether morphological differences (sphere vs. rod) also 

play a role. 

Moreover, for SCKs prepared from a fixed DOTAlysine graft number per 

polymer chain (Figure 2.2), it was found that: (i) as the extents of crosslinking increased 

(from 0% to 50%), less DOTAlysines were available for coordinating with copper; (ii) as 

the proportion of the hydrophilic PAA comprising the entire nanostructure decreased, so 

did the number of effective DOTAlysines and the overall specific activity.  The lower 

permeability within the shell domains of the SCKs having higher extents of crosslinking29 

could hinder the diffusion of 64Cu to approach the DOTAlysine chelators located 

throughout the sub-surface and deep-shell areas.  For instance, the number of effective 

DOTAlysines per DOTAlysine7-g-PAA53-b-PS30 chain determined by isotopic dilution 

experiments (see Experimental Section) was ca. 2.8, much lower than 7.0, which was 

determined by 1H NMR analysis.  The second trend observed further suggests the 

complexities on the self-assembly behaviour of DOTAlysine-g-PAA-b-PS block 

copolymers.  The lower radiolabelling efficiency on micelles and SCKs established from 

the longer hydrophobic PS block (while the DOTAlysine-g-PAA segment was invariable) 

could be related with their atypical morphological characteristics (vide supra).  

Nevertheless, all micelles and SCKs prepared from DOTAlysine-g-PAA-b-PS exhibited 

high radiolabelling results, providing a library of nanoparticles with varying 
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characteristic parameters to be employed for PET imaging when a minimum amount of 

imaging agent is needed. 

It is noteworthy that this grafting strategy affords nanoobjects with remarkably 

improved radiolabelling efficiencies, relative to the post-functionalization of pre-

established SCKs,26 but also introduces complications with the assembling process, 

presenting unusual morphologies in some cases.  More efforts are being devoted to 

investigate these morphological variations.  Although micelles give the highest 

radiolabelling, their stability concerns, i.e., stable architectures exist only above their 

critical micelle concentrations, remain challenging for in vivo applications.23  Considering 

both the radiolabelling results and the SCK morphological properties, we conclude, 

tentatively, that the current optimum sample for in vivo PET imaging are SCKs having 

20% shell crosslinking and prepared from PAAn-b-PSp containing ca. 2 DOTAlysine per 

polymer chain. 

 

Conclusions 

In summary, we have developed a new strategy to construct shell crosslinked 

nanoparticles, containing large numbers of DOTAlysines per particle (> 400) that were 

accessible for 64Cu radiolabeling.  These nanoparticles originated from conveniently 

prepared DOTAlysine-g-PAA-b-PS block copolymer precursors.  The morphology of 

these pre-DOTAlysine-SCKs was, however, complicated by the number of DOTAlysine 
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grafts per polymer chain.  Nonetheless, the 64Cu–complexed pre-DOTAlysine-SCK 

nanoparticles showed impressive specific activities (ca. 400 μCi μg-1), which suggest that 

these nanoparticles might be used to develop highly sensitive in vivo PET tracers at low 

administering doses.  This “pre-grafting” strategy may also be employed to couple other 

molecules for targeting interested epitopes and/or for improving the in vivo bio-

distribution of nanoobjects. 

 

Experimental Section 

PAA-b-PS Block Copolymer Synthesis.  All block copolymers were synthesized by 

acidolysis of PtBA-b-PS precursors, which were prepared by sequential polymerization 

of tert-butyl acrylate and styrene via nitroxide mediated radical polymerization (NMP), 

with trifluoroacetic acid (TFA) as reported in the literature.33 

General Procedure for DOTAlysine-g-PAA-b-PS Synthesis.  Grafting 

DOTAlysines onto PAA-b-PS by amidation involved the following: To a round-bottom 

flask equipped with a magnetic stir bar, was added a sample of PAA-b-PS block 

copolymer and anhydrous N,N-dimethylformamide (DMF).  The mixture was stirred for 

1 h at room temperature to ensure that a clear and homogeneous solution was obtained.  

To this solution, was added 1-[3’-(dimethylamino)propyl]-3-ethylcarbodiimide 

methiodide (EDCI) and 1-hydroxybenzotriazole (HOBt) and the reaction mixture was 

allowed to stir for 1 h at rt.  Finally, a pre-mixed solution of DOTAlysine·TFA and N,N-
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diisopropylethylamine (DIPEA) in anhydrous DMF was added and the reaction mixture 

was further stirred for 20 h at rt.  The reaction mixture was then transferred to pre-soaked 

dialysis tubing (MWCO ca. 6,000 to 8,000 Da) and dialyzed against nano-pure H2O (18.0 

MΩ cm, pre-treated with Chelex100®) for 4 d to remove the organic solvent and small 

molecule by-products.  The aqueous solution was then lyophilized to afford the product 

as white solid. 

General Procedure for the Micellization of DOTAlysine-g-PAA-b-PS.  To a 

round-bottom flask equipped with a magnetic stir bar, was added DOTAlysine-g-PAA-b-

PS, followed by anhydrous DMF.  The mixture was sonicated for 10 min and stirred for 2 

h at rt to ensure that a clear and homogeneous solution (final concentration, ca. 1.0 

mg/mL) had formed.  To this solution, was added dropwise via a syringe pump at a rate 

of 15.0 mL/h, an equal volume of nano-pure H2O (18.0 MΩ cm) and the mixture was 

further stirred for 16 h at rt.  Finally, the solution was transferred to pre-soaked dialysis 

tubing (MWCO ca. 6,000 to 8,000 Da) and dialyzed against nano-pure H2O (18.0 MΩ 

cm, pre-treated with Chelex100®) for 4 d to afford a clear solution of micelles. 

General Procedure for the Preparation of Pre-DOTAlysine-SCKs.  To a 250 mL 

round-bottom flask equipped with a magnetic stir bar, was added a solution of 

DOTAlysine-g-PAA-b-PS micelles in nano-pure H2O (18.0 MΩ cm) (50.0 mL, 0.054 

mmol of carboxylic acid residues).  To this solution was added dropwise over 10 min, a 

solution of 2,2'-(ethylenedioxy)-bis(ethylamine) (0.9 mg, 0.006 mmol for 20% 
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crosslinking extent; or 2.2 mg, 0.015 mmol for 50% crosslinking extent) in nano-pure 

H2O (18.0 MΩ cm) (2.0 mL).  The reaction mixture was allowed to stir for 2 h at rt.  To 

this solution was added, dropwise via a syringe pump over 1 h, a solution of EDCI (4.0 

mg, 0.014 mmol for 20% crosslinking extent; or 10.0 mg, 0.034 mmol for 50% 

crosslinking extent) in nano-pure H2O (18.0 MΩ cm) (2.0 mL) and the reaction mixture 

was further stirred for 16 h at rt.  Finally, the reaction mixture was transferred to pre-

soaked dialysis tubing (MWCO ca. 6,000 to 8,000 Da) and dialyzed against 5.0 mM PBS 

(pH 7.3, with 5.0 mM NaCl, pre-treated with Chelex100®) for 5 d to remove the small 

molecule by-products and afford aqueous solutions of pre-DOTAlysine-SCKs. 

64Cu labelling and isotopic dilution experiments of the pre-DOTAlysine-SCKs.  

A 100 μL pre-DOTAlysine-SCK solution in 5.0 mM PBS (pH 7.3, with 5.0 mM NaCl, 

0.2-0.3 mg/mL) was diluted with 100 μL of 0.1 M ammonium acetate buffer (pH 5.5) and 

to this solution, 64Cu(OAc)2 was added (ca. 1.0 mCi).  The resulting solution was 

incubated at 43 °C for 2 h, and then subjected to DTPA challenge.  The labelling yield 

was determined by radio-TLC on ITLC-SG plates using methanol/CH3CO2NH4 (aq) as 

eluent.  The number of effective DOTAlysines/polymer chain was determined by isotopic 

dilution experiments.  A series of known amounts of “hot plus cold” copper (Cu2+ 

solution spiked with 64Cu) were added to several 100 μL SCK solutions respectively.  

After a 2 h incubation at 43 °C and DTPA challenge, each solution aliquot was analyzed 
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by radio-ITLC to determine the number of effective DOTAlysine per polymer chain, as 

previously reported.23 
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Facile, Efficient Approach to Accomplish Tunable Chemistries and 

Variable Biodistributions for Shell Crosslinked Nanoparticles (SCKs) 

[Portions of this work have been published previously as Guorong Sun, Aviv Hagooly, 

Jinqi Xu, Andreas M. Nyström, Zicheng Li, Raffaella Rossin, Dennis A. Moore, Karen L. 

Wooley and Michael J. Welch Biomacromolecules 2008, 9(7), 1997-2006.] 

 

Abstract 

The in vivo behavior of shell crosslinked knedel-like (SCK) nanoparticles is 

shown to be tunable, via a straightforward and versatile process that advances SCKs as 

attractive nanoscale carriers in the field of nanomedicine.  Tuning of the 

pharmacokinetics was accomplished by grafting varied numbers of methoxy-terminated 

poly(ethylene glycol) (mPEG) chains to the amphiphilic block copolymer precursors, 

together with chelators for the radioactive tracer and/or therapeutic agent 64Cu, followed 

by self assembly into block copolymer micelles and chemical crosslinking throughout the 

shell regions.  64Cu-radiolabeling was then performed in order to evaluate the SCKs in 

vivo by means of biodistribution experiments and positron emission tomography (PET).  

It was found that the blood retention of PEGylated SCKs could be tuned, depending on 

the mPEG grafting density and the nanoparticle surface properties.  A semi-quantitative 

model of the density of mPEG surface coverage as a function of in vivo behavior was 

applied to enhance the understanding of this system. 
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Introduction 

There are many types of nanoparticle platforms that are undergoing investigation 

as multi-functional agents for packaging, transport and delivery of imaging and 

therapeutic agents in the broad field of nanomedicine.1-6  Many such nanostructures 

derive from the supramolecular assembly of small molecule or polymer components.  For 

any new agent, it is critical that the composition, structure and properties be well-defined 

and controlled.  The multimolecular association of amphiphilic block copolymers into 

core-shell micellar nanoassemblies has received particular attention.7-10  Covalent 

crosslinking throughout the shell domains of spherical micelles, which are established 

from the self assembly of amphiphilic block copolymers, can afford shell crosslinked 

knedel-like (SCK) nanoparticles as discrete nanoscale objects.11, 12  With the benefits of 

robust character, offered via the crosslinking, and the amphiphilic core-shell morphology, 

imposed by the self assembly process, SCKs, and also internally-crosslinked block 

copolymer micelles, have received significant attention as sophisticated hosts for 

purposes of diagnosis and therapy toward acute vascular injury, acute lung injury and 

cancer.13, 14  In each case, it is important that the nanostructures be able to circulate for a 

sufficient period in the bloodstream to increase their probability to target specific tissues. 

It is well known that systemically-administered nanoparticles tend to be 

sequestrated by the mononuclear phagocyte system (MPS), and accumulate mainly in the 

liver and spleen.  Clearance from the bloodstream begins with the adsorption of plasma 

proteins onto the nanoparticle surface (opsonization), which triggers complement 

activation and macrophage recognition, and depends on particle size, surface chemistry 

and other factors.15, 16  Surface modification with polyethylene glycol (PEG) based units 
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is one of the most successful techniques to avoid nanoparticle opsonization and, 

therefore, to slow down macrophage recognition.15-17  PEG is water-soluble, non-toxic, 

and gives low immunogenic response.18, 19  It can be adsorbed onto or chemically 

conjugated with bioactive agents, leading to improvement of their in vivo stability and 

enhancement of their pharmacokinetic profiles.20, 21  Also, surface PEGylation of 

polymeric nanoparticles was shown to decrease aggregation and to prolong blood 

circulation times.1, 7, 8, 10, 15-17  Although the mechanism is still controversial, many studies 

have suggested that the presence of PEG on the surface of a nanoparticle can exert 

entropic and steric repulsions to resist and minimize the adsorption of plasma proteins 

and the subsequent macrophage recognition.7, 8, 15-17  For each new nanostructured 

material under development, the chemical composition, together with size,22 shape,23, 24 

and flexibility,25 are believed to require tuning in order to determine their interactions 

with biomacromolecules and, therefore, their fate in vivo.  In general, entire “coverage” 

of the nanoparticle surface with PEG is considered to be vital to achieve “stealth” 

characteristics.26-36  Therefore, it is critical that chemical methodologies are available to 

control and confirm the number of PEG chains and density of PEGylation.  It is also 

important that the chemistry allows for the incorporation of probes that can track the 

nanoparticles and be used for imaging purposes.  In this work, we employ 64Cu-

radiolabeling for biodistribution evaluation and positron emission tomography (PET), as 

a highly sensitive and non-invasive imaging technique,37, 38 to assess the effect of 

PEGylation on blood retention and MPS uptake.39-41 
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Experimental Section 

Materials.  All reagents and solvents were obtained from commercial sources 

(Sigma-Aldrich, Acrose, and Fluka) and used without further purification unless 

otherwise noted.  64Cu was prepared on the Washington University Medical School CS-

15 Cyclotron by the 64Ni(p,n)64Cu nuclear reaction at a specific activity of 50–200 

mCi/μg at the end of bombardment.  The buffers used for dialysis after SCK preparation 

and during 64Cu-labeling were treated overnight with Chelex-100® resin (Bio-Rad 

Laboratories, Hercules, CA) before use. 

Measurements.  1H NMR spectra were recorded in solutions on a Varian Mogli 500 

spectrometer with the residual solvent signal as an internal standard.  Gel permeation 

chromatography (GPC) was conducted on a Waters 1515 HPLC (Waters 

Chromatography, Inc.) equipped with a Waters 2414 differential refractometer, a PD2020 

dual-angle (15° and 90°) light scattering detector (Precision Detectors, Inc.), and a 

three-column series PL gel 5μm Mixed C, 500 Å, and 104 Å, 300 × 7.5 mm columns 

(Polymer Laboratories Inc.).  The system was equilibrated at 35 °C in anhydrous 

tetrahydrofuran (THF), which served as the polymer solvent and eluent with a flow rate 

of 1.0 mL/min.  Polymer solutions were prepared at a known concentration (ca. 3 

mg/mL) and an injection volume of 200 μL was used.  Data collection and analysis were 

performed, respectively, with Precision Acquire software and Discovery 32 software 

(Precision Detectors, Inc.).  Interdetector delay volume and the light scattering detector 

calibration constant were determined by calibration using a nearly monodispersed 

polystyrene standard (Pressure Chemical Co., Mp = 90 kDa, Mw/Mn < 1.04).  The 

differential refractometer was calibrated with standard polystyrene reference material 
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(SRM 706 NIST), of known specific refractive index increment dn/dc (0.184 mL/g).  The 

dn/dc values of the analyzed polymers were then determined from the differential 

refractometer response. 

Samples for transmission electron microscopy (TEM) measurements were diluted 

with 1 wt% of phosphotungstic acid (PTA) stain solution (v/v, 1:1).  Carbon grids were 

exposed to oxygen plasma treatment to increase the surface hydrophilicity.  Micrographs 

were collected at 100,000× magnification and calibrated using a 41 nm polyacrylamide 

bead from NIST.  The number average particle diameters (Dav) and standard deviations 

were generated from the analysis of a minimum of 150 particles from at least three 

different micrographs. 

Hydrodynamic diameters (Dh) and size distributions for the SCKs in aqueous 

solutions were determined by dynamic light scattering (DLS).  The DLS instrumentation 

consisted of a Brookhaven Instruments Limited (Worcestershire, U.K.) system, including 

a model BI-200SM goniometer, a model BI-9000AT digital correlator, a model EMI-

9865 photomultiplier, and a model 95-2 Ar ion laser (Lexel, Corp.; Farmindale, NY) 

operated at 514.5 nm. Measurements were made at 20 ± 1 °C.  Prior to analysis, solutions 

were filtered through a 0.22 μm Millex®-GV PVDF membrane filter (Millipore Corp., 

Medford, MA) and then centrifuged in a model 5414 microfuge (Brinkman Instruments, 

Inc.; Westbury, NY) for 10 minutes to remove dust particles.  Scattered light was 

collected at a fixed angle of 90°.  The digital correlator was operated with 522 ratio 

spaced channels, and initial delay of 5 μs, a final delay of 100 ms, and a duration of 10 

minutes.  A photomulitplier aperture of 400 μm was used, and the incident laser intensity 

was adjusted to obtain a photon counting of between 200 and 300 kcps.  Only 

52 
 



measurements in which the measured and calculated baselines of the intensity 

autocorrelation function agreed to within 0.1 % were used to calculate particle size.  The 

calculations of the particle size distributions and distribution averages were performed 

with the ISDA software package (Brookhaven Instruments Company), which employed 

single-exponential fitting, cumulants analysis, non-negatively constrained least-squares 

(NNLS) and CONTIN particle size distribution analysis routines.  All determinations 

were made in triplicate and the data were presented as mean values ± standard deviations 

between runs. 

Zeta potential (ζ) values for the nanoparticle solution samples in 5 mM phosphate 

buffered saline (PBS) were determined with a Brookhaven Instrument Co. (Holtsville, 

NY) model Zeta Plus zeta potential analyzer.  Data were acquired in the phase analysis 

light scattering (PALS) mode following solution equilibration at 25 °C.  Calculation of ζ 

from the measured nanoparticle electrophoretic mobility (μ) employed the Smoluchowski 

equation: μ = εζ/η, where ε and η are the dielectric constant and the absolute viscosity of 

the medium, respectively.  Measurements of ζ were reproducible to within ± 2 mV of the 

mean value given by 16 determinations of 10 data accumulations. 

The aggregation number was calculated based upon the diameter measured from 

TEM by using the following equation: 

Naggr = A
n

N
M

r
×

ρπ 3

3
4

 

where r is the radius of the SCK, ρ is the density of polystyrene, Mn is the number-

average molecular weight of polystyrene block segment, and NA is the Avogadro 

constant. 
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A Bioscan 200 scanner (Bioscan, Washington, DC) was used to read the instant thin 

layer chromatography (ITLC) plates (Pall ITLC-SG plates, VWR International, Batavia, 

IL).  Fast protein liquid chromatography (FPLC) and radio-FPLC were performed using 

an ÄKTA FPLC system (GE Healthcare Biosciences) equipped with a Beckman 170 

Radioisotope Detector (Beckman Instruments, Fullerton, CA).  The radioactivity was 

measured in a Beckman gamma-counter 8000 (Beckman instrument, Irvine, CA) 

The imaging studies were carried out using the MicroPET® Focus (Siemens Medical 

Solutions Inc., Knoxville, TN) and the MicroCAT II (CTI-Imtek, Knoxville, TN) 

scanners. 

Preparation of mPEG2000-g-PAA-b-PS Block Copolymers.  The poly(acrylic 

acid)-b-polystyrene (PAA-b-PS, PAA60-b-PS60 for this work) block copolymer was 

prepared as previously published (for the PAA60-b-PS60 block copolymer precursor, 

poly(tert-butyl acrylate)-b-polysteyrene, PtBA60-b-PS60, Mn,GPC = 13,500 Da, Mw/Mn = 

1.2).42  Grafting mPEG2000 onto PAA-b-PS involved the following: to a solution of 

PAA60-b-PS60 block copolymer in anhydrous N,N-dimethylformamide (DMF), 1-[3’-

(dimethylamino)propyl]-3-ethylcarbodiimide methiodide (EDCI) and 1-

hydroxybenzotriazole (HOBt) were added and the reaction mixture was allowed to stir 

for 1 h at room temperature (rt).  Then, a solution of mono-amine terminated mPEG2000 

in anhydrous DMF was added and the reaction mixture was further stirred for 30 h at rt.  

The relative ratios of PAA60-b-PS60 block copolymer:EDCI:HOBt:mPEG-NH2 were 

varied to alter the grafting densities, whereby to achieve grafting densities of 1, 2.5 and 

5.5 mPEGs per macromolecule, the stoichiometries were 1.0:1.3:1.3:1.3, 1.0:3.5:3.5:3.5, 

and 1.0:7.0:7.0:7.0, respectively.  The final grafted block copolymers were isolated by 
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transferring the reaction mixtures to pre-soaked dialysis tubing (MWCO 6,000 to 8,000 

Da) and dialyzing against nano-pure H2O (18.0 MΩ cm) for 4 d to remove the organic 

solvent and the small molecule by-products.  The aqueous solutions were then 

lyophilized to afford the products as a white solid.  1H-NMR (500 MHz, CD2Cl2, ppm): δ 

1.20-2.40 (br, -CH2- and -CH- of the polymer backbone), 3.34 (s, mPEG terminal CH3O- 

Hs), 3.42-3.80 (br,  mPEG backbone -OCH2CH2O- Hs), 6.16-7.11 (br, aromatic Hs). 

mPEG20001-g-PAA59-b-PS60  PAA60-b-PS60 (110.0 mg, 10.4 μmol), EDCI (4.0 mg, 

13.5 μmol), HOBt (1.8 mg, 13.5 μmol), and mono-amine terminated mPEG2000 (27.0 

mg, 13.5 μmol) in anhydrous DMF (15.0 mL).  Yield: 72%. 

mPEG20002.5-g-PAA57.5-b-PS60  PAA60-b-PS60 (120.0 mg, 11.3 μmol), EDCI (11.8 

mg, 39.6 μmol), HOBt (5.4 mg, 40.0 μmol), and mono-amine terminated mPEG2000 

(79.2 mg, 39.6 μmol) in anhydrous DMF (15.0 mL).  Yield: 75%. 

mPEG20005.5-g-PAA54.5-b-PS60  PAA60-b-PS60 (110.0 mg, 10.4 μmol), EDCI (21.6 

mg, 72.8 μmol), HOBt (9.9 mg, 73.3 μmol), and mono-amine terminated mPEG2000 

(145.6 mg, 72.8 μmol) in anhydrous DMF (15.0 mL).  Yield: 75%. 

Preparation of mPEG2000-g-DOTAlysine-g-PAA-b-PS Block Copolymers.  The 

DOTAlysine (a lysine derivative for 1,4,7,10-tetraazocyclododecane-N,N′,N″,N′″-

tetraacetic acid, DOTA) was grafted onto mPEG2000-g-PAA-b-PS by following a 

procedure similar to that used to graft mPEG2000 (described above).  To a solution of 

mPEG2000-g-PAA-b-PS block copolymer (10.3 μmol) in anhydrous DMF (10.0 mL), 

EDCI (11.6 mg, 39.1 μmol) and HOBt (5.3 mg, 39.3 μmol) were added and the reaction 

mixture was allowed to stir for 1 h at rt.  Then, a solution of DOTAlysine (trifluoroacetic 

acid (TFA) salt, 23.1 mg, 39.2 μmol) and N,N-diisopropylethylamine (DIPEA, 25.4 mg, 
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19.6 mmol) in anhydrous DMF (2.0 mL) was added and the reaction mixture was further 

stirred for 30 h at rt.  The final grafted block copolymers were isolated by transferring the 

reaction mixtures to pre-soaked dialysis tubing (MWCO 6,000 to 8,000 Da) and dialyzing 

against nano-pure H2O (18.0 MΩ cm) for 5 d to remove the organic solvent and the small 

molecule by-products.  The aqueous solutions were then lyophilized to afford the 

products as a white solid. Yield: 65%.  1H-NMR (500 MHz, CD2Cl2 with 2 drops of 

CF3CO2D, ppm): δ 1.20-2.40 (br, -CH2- and -CH- of the polymer backbone, overlap with 

DOTAlysine Hs), 2.40-2.70 (br, DOTAlysine macrocyclic Hs), 3.34 (s, mPEG terminal 

CH3O- Hs), 3.42-3.80 (br, mPEG backbone -OCH2CH2O- Hs), 6.16-7.11 (br, aromatic 

Hs). 

Micellization of mPEG2000-g-DOTAlysine-g-PAA-b-PS.  To a solution of 

mPEG2000-g-DOTAlysine-g-PAA-b-PS in anhydrous DMF (ca. 1.0 mg/mL), was added 

dropwise an equal volume of nano-pure H2O via a syringe pump at a rate of 15.0 mL/h, 

and the mixture was further stirred for 16 h at rt.  The solution was then transferred to 

pre-soaked dialysis tubing (MWCO ca. 6,000 to 8,000 Da) and dialyzed against nano-

pure H2O for 4 d to afford a clear solution of micelles. 

Construction of mPEGylated DOTA-SCKs.  To a solution of mPEG2000-g-

DOTAlysine-g-PAA-b-PS micelles in nano-pure H2O was added a solution of 2,2'-

(ethylenedioxy)-bis(ethylamine) in nano-pure H2O dropwise over 10 min.  The reaction 

mixture was allowed to stir for 2 h at rt.  EDCI in nano-pure H2O was then added to the 

resulting solution, dropwise via a syringe pump over 1 h.  The general stoichiometry 

employed to achieve 20% nominal crosslinking was 9:2.2:1 for carboxylic acid 

units:EDCI:crosslinker, and to achieve 50% nominal crosslinking, the stoichiometry was 
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3.6:2.2:1.  The reaction mixture was further stirred for 16 h at rt.  Finally, the mixture was 

transferred to pre-soaked dialysis tubing (MWCO ca. 6,000 to 8,000 Da) and dialyzed 

against 5.0 mM PBS (pH 7.3, with 5.0 mM NaCl) for 5 d to remove the small molecule 

by-products and afford aqueous solutions of mPEGylated DOTA-SCKs. 

Preparation of SCK6. 

Synthesis of mPEG50003-g-PAA57-b-PS60 Block Copolymer  A similar procedure 

as grafting mPEG2000 described above was followed with a relative ratio of PAA60-b-

PS60 block copolymer:EDCI:HOBt:mPEG5000-NH2 = 1.0:4.0:4.0:4.0. 

Synthesis of mPEG50003-g-DOTAlysine2-g-PAA55-b-PS60 Block Copolymer  A 

similar protocol as the preparation of mPEG2000-g-DOTAlysine-g-PAA-b-PS block 

copolymers described above was followed. 

Micellization and crosslinking throughout the shell domain of the micelle to afford 

SCK6 were carried out following the same protocol as described above. 

Preparation of SCK7.  Monomethoxy poly(ethylene glycol) hydroxyl terminated 

(mPEG5000-OH), nominal molecular weight 5000 Da, was purified by flash column 

chromatography on silica gel eluted with methanol/DCM 5:95 (v/v).  Styrene and tert-

butyl acrylate (t-BA) were distilled over calcium hydride prior to use. 

Synthesis of Poly(ethylene glycol) Macroinitiator (mPEG5000Ini)  A dry 250 mL 

round bottom flask equipped with a stir bar was charged with mPEG5000-OH (16.5 g, 

3.30 mmol), triethylamine (TEA, 0.70 g, 6.93 mmol), 4-dimethylaminopyridine (DMAP, 

0.20 g, 1.64 mmol), and 200 mL of dichloromethane (DCM).  The solution was stirred at 

0 °C for 30 min after which 2-bromoisobutyryl bromide (1.52 g, 6.60 mmol) was added 

drop-wise to the reaction mixture with the aid of a dropping funnel.  The reaction was left 
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to proceed for 24 h after which the solution was filtered and the filtrate concentrated 

under vacuum.  The crude reaction mixture was redissolved in 300 mL of DCM and 

washed with a 10 w/w % sodium hydrogen sulfate solution (3 x 150 mL), followed by a 

10 w/w % sodium bisulfate solution (3 x 150 mL).  The organic phase was dried over 

magnesium sulfate (MgSO4), filtered, and concentrated in vacuum.  The crude product 

was purified by repeated precipitation in diethyl ether from DCM.  The product was 

collected by filtration and dried under vacuum to give mPEG5000Ini as a white solid 

(12.1 g, 71%).  1H NMR (CDCl3, ppm): δ 1.93 (s, 6H, -CO(CH3)2-Br), 3.38 (s, 3H, 

mPEG terminal CH3O- Hs), 3.42-3.80 (br, mPEG backbone-OCH2CH2O- Hs). 

Synthesis of mPEG5000-b-PtBA100 Block Copolymer  A dry 25 mL Schlenk flask 

equipped with a stir bar was charged with t-BA (8.36 g, 65.2 mmol), mPEG5000Ini (1.0 

g, 0.22 mmol), Cu(I)Br (62.0 mg, 0.43 mmol), anisole (5.0 g, 46.2 mmol), and THF (1.0 

g, 13.9 mmol).  After the reaction mixture was frozen in liquid nitrogen N,N,N′,N″,N″-

pentamethyldiethylenetriamine (PMDETA, 7.0 mg, 0.43 mmol) was added via a gas-tight 

syringe.  Three freeze-pump-thaw cycles were performed, and the mixture was back-

filled with nitrogen and brought to rt.  The flask was heated to 50 °C, and the reaction 

was let to proceed for 28 h (28 % conversion), and after which it was quenched by 

immersion of the reaction flask in liquid nitrogen.  The reaction mixture was then 

dissolved in THF, passed through a neutral aluminium oxide column, and concentrated 

under vacuum.  The reaction mixture was then dissolved in THF and transferred to pre-

soaked dialysis tubing (MWCO 6,000–8,000 Da) and dialyzed against a methanol/H2O 

mixture (30:70 by volume) for 4 d to remove the residual monomer.  The aqueous 

solution was then lyophilized to afford the product mPEG5000-b-PtBA100 as white solid 
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(2.0 g, 60 %).  Mn = 20.0 kDa, Mw/Mn = 1.20.  1H-NMR (CDCl3, ppm): δ 1.20-1.70 (br, 

meso and racemo -CH2- of the polymer backbone), 1.30-1.60 (br, (CH3)3C- of the tert-

butyl ester), 2.11-2.40 (br, -CH- of the polymer backbone), 3.38 (s, 3H, mPEG terminal 

CH3O- Hs), 3.42-3.80 (br, mPEG backbone -OCH2CH2O- Hs). 

Synthesis of mPEG5000-b-PtBA100-b-PS50 Block Copolymer  A dry 25 mL 

Schlenk flask equipped with a stir bar was charged with styrene (1.52 g, 14.6 mmol), 

mPEG5000-b-PtBA100 (1.0 g, 0.049 mmol), Cu(I)Br (20.9 mg, 0.15 mmol), and anisole 

(1.8 g, 16.7 mmol).  After the reaction mixture was frozen in liquid nitrogen PMDETA 

(25.0 mg, 0.15 mmol) was added via a gas-tight syringe.  Three freeze-pump-thaw cycles 

were performed, and the mixture was back-filled with nitrogen and brought to rt.  The 

flask was heated to 60 °C, and the reaction was allowed to proceed for 31 h (16.5 % 

conversion), and after which it was quenched by immersion of the reaction flask in liquid 

nitrogen.  The reaction mixture was then dissolved in THF, passed through a neutral 

aluminium oxide column, and concentrated under vacuum.  The reaction mixture was 

then dissolved in THF and transferred to pre-soaked dialysis tubing (MWCO 6,000–

8,000 Da) and dialyzed against a methanol/H2O mixture (30:70 by volume) for 4 d to 

remove the residual monomers.  The aqueous solution was then lyophilized to afford the 

product mPEG5000-b-PtBA100-b-PS50 as white solid (0.88 g, 71 %).  Mn = 24.0 kDa, 

Mw/Mn = 1.20.  1H-NMR (CDCl3, ppm): δ 1.15-1.65 (br, meso and racemo -CH2- of the 

polymer backbone), 1.30-1.60 (br,  (CH3)3C- of the tert-butyl ester), 2.11-2.40 (br, -CH- 

of the polymer backbone), 3.39 (s, 3H, mPEG terminal CH3O- Hs), 3.40-3.80 (br, mPEG 

backbone -OCH2CH2O- Hs), 6.15-6.83 (br, o-Ar), 6.85-7.11 (br, m,p-Ar). 

59 
 



Synthesis of mPEG5000-b-PAA100-b-PS50 Block Copolymer A 25 mL round 

bottom flask equipped with a stir bar was charged with mPEG5000-b-PtBA100-b-PS50 

(250 mg, 0.010 mmol), 5 mL of DCM and 5 mL of TFA.  The reaction was left to 

proceed at rt for 24 h after which it was concentrated under vacuum.  The crude product 

was then dissolved in THF and transferred to pre-soaked dialysis tubing (MWCO 6,000–

8,000 Da) and dialyzed against nano-pure H2O (18.0 MΩ cm) for 4 d to remove small 

molecule impurities.  The aqueous solution was then lyophilized to afford the product 

mPEG5000-b-PAA100-b-PS50 as white solid (0.18 g, 95 %).  1H-NMR (DMSO-d6, ppm): 

δ 1.10-2.05 (br, meso and racemo -CH2- of the polymer backbone), 2.11-2.21 (br, -CH- 

of the polymer backbone), 3.30 (s, 3H, mPEG terminal CH3O- Hs), 3.42-3.90 (br, mPEG 

backbone -OCH2CH2O- Hs), 6.12-6.80 (br, o-Ar), 6.90-7.20 (br, m,p-Ar), 11.0-14.0 (br, -

COOH). 

Synthesis of mPEG-b-(DOTAlysine7-g-PAA93)-b-PS50 Block Copolymer  Grafting 

of the DOTAlysines onto mPEG5000-b-PAA100-b-PS50 by amidation was achieved by 

the same procedure as described above. 

Micellization and crosslinking throughout the shell domain of the micelle to afford 

SCK7 were carried out following the same protocol as described above. 

General Method for 64Cu Labeling.  A solution of mPEGylated DOTA-SCK (ca. 

0.2–0.3 mg/mL) in 5.0 mM PBS (pH 7.3, with 5.0 mM NaCl) was diluted with an equal 

volume of 0.1 M ammonium acetate buffer (pH 5.5) and 64Cu-acetate (ca.30–500 μCi) 

was added.  A Tween-20 solution in PBS was added to prevent non specific adsorption of 

the labeled nanoparticles on the labeling vials and other laboratory glassware (0.1% 

Tween-20, v/v, in the final solution).  The labeling mixtures were incubated at 43 °C for 
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1 h, and then 5 μL of a 10 mM aqueous diethylenetriaminepentaacetic acid (DTPA) 

solution was added.  The sample was allowed to incubate for 10 min at rt.  The purity of 

the labeled samples was monitored by radio-ITLC using a 1:1 mixture (v/v) of 10 wt% 

ammonium acetate and methanol as developing solvent.  The samples were filtered 

through 0.45 μm PVDF filters (Millipore Corp., Medford, MA).  Samples with < 95 % 

radiochemical purity (RCP) were purified by using size exclusion cartridges (Zeba spin 

desalting column 2 mL, Pierce).  Using 10 mM PBS (pH 7.4) as elute (up to 500 μL total 

volume of sample and PBS).  The Zeba column has > 95% retention of salts and other 

small molecules (MW < 1000 Da) and tends to retain excess of DTPA.  Tween-20 with 

MW around 1,200 Da may also retain under this conditions.  Since the eluted sample was 

diluted for at least five times the reaction volume no more than 0.02% of Tween-20 was 

injected.  FPLC analysis was used to determinate the purity of the injected samples.  The 

purified samples were diluted with 10 mM PBS (pH 7.4) to prepare appropriate doses for 

bidistribution and imaging studies. 

General Method for FPLC Analysis.  A 50–100 μL of the labeled SCK was 

injected into a Superose 12 gel filtration column (GE Healthcare Biosciences) and eluted 

with 20 mM 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) with 150 mM 

NaCl (pH 7.3) at 0.8 mL/min.  The UV wavelength was preset to 280 nm and the 

radioactivity was monitored by an in-line radio-detector.  Under these conditions, the 

retention times of the native and radiolabeled SCKs were 10 min while the retention 

times of free 64Cu and 64Cu-DTPA were 20–22 min.  Samples with RCP > 95% were 

used for animal studies. 
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General Method for Specific Activity Measurement.  A 100 μL of mPEGylated 

DOTA-SCK solution (ca. 0.2–0.3 mg/mL) in 5.0 mM PBS (pH 7.3, with 5.0 mM NaCl) 

was diluted with 100 μL of 0.1 M ammonium acetate buffer (pH 5.5) and to this solution, 

64Cu-acetate was added (ca. 1 mCi).  The resulting solution was incubated at 43 °C for 2 

h, and then subjected to DTPA challenge.  The labeling yield was determined by radio-

TLC on ITLC-SG plates using methanol/CH3CO2NH4 (aq) as eluent.  The number of 

effective DOTAlysines/polymer chain was determined by isotopic dilution experiments.  

A series of known amounts of “hot plus cold” copper (Cu2+ solution spiked with 64Cu) 

were added to 100 μL SCK solution aliquots.  After 2 h incubation at 43 °C and DTPA 

challenge, each solution was analyzed by radio-ITLC to determine the number of 

effective DOTAlysine per polymer chain, as previously reported.39 

Biodistribution and small animal PET imaging studies of PEGylated SCKs.  All 

animal studies were performed in compliance with guidelines set by the Washington 

University Animal Studies Committee.  Normal female Sprague-Dawley rats (180–200 g, 

n = 4 per time point) were anesthetized with 1–2% vaporized isoflurane and injected with 

ca. 30 μCi of activity in 200 μL via the tail vein (ca. 20–25 μg/kg rat body weight).  At 

specific time points post injection, organs and tissues of interest were harvested, blotted 

dry, and the radioactivity was measured in a Beckman gamma-counter 8000 (Beckman 

instrument, Irvine, CA).  For blood and muscle, total activity was calculated assuming 

that these tissues constitute 6 and 41% of the total body weight, respectively.  Diluted 

standard doses (1:100) were prepared and counted along with the samples.  All the data 

were corrected for 64Cu decay.  The percent injected dose per gram tissue (%ID/g) values 

were calculated using the following equation:  
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One-way analysis of variance (ANOVA) and post-hoc multiple comparison 

(Bonferroni’s t-test) on the biodistribution data were performed by using Prism v. 4.00 

(Graphpad, San Diego, CA).  Groups with P < 0.05 were considered significantly 

different. 

Normal female Balb/c mice (n = 2) weighing 20–30 g were injected with ca. 100–200 

μCi of 64Cu-labeled SCK (0.15–0.3 mg/kg mouse body weight) in 150 μL via tail vein 

and anesthetized with 1–2% vaporized isoflurane for data collection at specific time 

points.  MicroPET and microCT image co-registration was accomplished using a 

landmark registration technique (by using fiducial markers directly attached to the animal 

bed) and AMIRA image display software (TGS Inc., Richmond, TX).  Data analysis of 

microPET images was performed using the manufacturer software (ASIPRO, Siemens 

Medical Solutions).  Data were calculated in terms of standardized uptake values (SUVs) 

in 3D regions of interests (ROIs) using the following equation: 

] Weight [gCi]/Animalose [Injected D
Ci/cc] ROI [tration inity ConcenRadioactivSUV

μ
μ

=
 

 

Results and Discussion  

Previous in vivo evaluation of SCKs led to the hypothesis that both size and core 

composition played a synergistic role in influencing the blood circulation times, while 

surface chemistry (i.e., PEGylation) was shown to have little effect on particle 

biodistribution.39  However, the synthetic route for the introduction of PEG onto pre-

established particles allowed for neither reliable reproducibility, because of the 
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complexity of aqueous amidation chemistry,43 nor accurate quantification of the degree of 

PEGylation, unless chromophore-functionalized PEG was used.44  In more recent studies, 

we have developed a new “pre-grafting” strategy, which couples the desired 

functionalities (metal chelators) onto block copolymer precursors from which SCKs are 

assembled.42  This methodology was shown to provide functionalized SCKs with 

enhanced labeling for potential application in molecular imaging.  Herein, the “pre-

grafting” strategy is applied to attach an accurate number of PEG chains onto the SCKs.  

The stealth properties of these nanoparticles were evaluated in vivo by means of 

biodistribution experiments and small animal PET imaging, focusing our attention on 

blood retention and accumulation in the main MPS organs (liver and spleen).  The results 

indicate that “pre-grafting” is a facile and practical method to obtain various degrees of 

PEGylated SCKs, making it feasible to retain the SCKs in blood up to 48 h after 

intravenous administration.  At the same time, pre-conjugation of chelators for 64Cu (t1/2 

= 12.7 h; β+ = 17.8%, Emax = 0.653 MeV), such as DOTA, followed by radiolabeling 

affords SCKs with high specific activity (greater than 100 μCi/µg polymer), which can be 

useful for PET imaging when signal intensity is of concern (i.e., when targeting low 

abundance molecular targets). 

Construction of mPEGylated DOTA-SCKs with High 64Cu Specific Activity.  

Mono-amine terminated methoxyPEG (mPEG-NH2, Mn = 2,000 Da, PDI = 1.06) and 

DOTAlysine (a lysine derivative of DOTA for 64Cu chelation),42, 43, 45 were grafted 

sequentially onto PAA60-b-PS60 block copolymer through conventional amidation 

chemistry in organic solvent (Figure 3.1, and see Experimental Section) with ca. 75% and 

65% isolated yield, respectively.  The numbers of mPEG grafts per block copolymer 
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chain were varied by the stoichiometry of mPEG-NH2 vs. PAA60-b-PS60, and were 

determined by 1H NMR spectroscopy for three samples as 1.0 (16 wt %), 2.5 (32 wt %), 

and 5.5 (51 wt %), respectively, using the proton resonances at 3.6-3.8 ppm (mPEG 

ethylene oxide backbone Hs) and 3.34 ppm (terminal methoxy Hs).  The number of 

DOTAlysines (ca. 2 per polymer chain, determined by comparison of the integration area 

of the aliphatic proton resonances at δ 1.20 – 2.70 ppm vs. the polystyrene aromatic 

protons resonating at 6.16-7.11 ppm, before and after DOTAlysine grafting) was held 

constant for all samples, as confirmed by 1H NMR spectroscopy.  Such extents of 

DOTAlysine grafting was shown to be sufficiently high for effective 64Cu complexation, 

while also being sufficiently low to allow polymer assembly into a globular morphology 

during the block copolymer micellization process.42 

 

Figure 3.1.  Schematic drawing of the synthetic route for the construction of 
mPEGylated SCKs. 
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The preparation of mPEGylated SCKs from these mPEG2000-g-DOTAlysine-g-

PAA-b-PS block copolymers was conducted by following an established standard 

protocol (Figure 1, and see Experimental Section).42, 43  These SCKs were characterized 

by DLS, TEM, and zeta potential measurements (Figure 3.2 and Table 3.1).  Compared 

with the non-mPEGylated SCK1, mPEGylated SCK2-5 showed similar particle sizes and 

nearly spherical morphology with relatively narrow polydispersity, which allowed for 

estimation of nanoparticle surface PEG density (vide infra).  64Cu-labeled SCK1-5 were 

obtained with high specific activities (> 100 μCi/μg polymer), which enabled the 

administration of low doses to normal rodents (ca. 5 μg per animal) for the in vivo 

studies. 

 

Figure 3.2.  TEM characterization of PEGylated SCKs.  a) TEM micrograph of SCK1 
(after negative stain with PTA).  b) TEM micrograph of SCK2 (after negative stain with 
PTA).  c) TEM micrograph of SCK3 (after negative stain with PTA).  d) TEM 
micrograph of SCK4 (after negative stain with PTA). 
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Table 3.1.  Physical properties of mPEGylated DOTA-SCKs.  SCK1-6 originated from 
mPEGx-g-DOTAlysine2-g-PAA58-x-b-PS60 block copolymer precursors, according to 
Scheme 1.  SCK7 originated from a triblock copolymer of mPEG-b-(DOTAlysine7-g-
PAA93)-b-PS50. 

Samplea mPEG2000 
/Chain, x 

DOTA 
/Chain 

Crosslinking 
Extentsb 

(Dh)n
c 

(DLS, nm) 
Dav

d 
(TEM, nm) 

Zeta Potential 
(mV) Polydispersity 

SCK1 0 2.0 20% 21 ± 3 16 ± 2 -38.5 ± 0.8 0.14 

SCK2 1.0 2.0 20% 20 ± 4 16 ± 2 -40.9 ± 0.6 0.20 

SCK3 2.5 2.0 20% 19 ± 4 14 ± 3 -31.9 ± 1.3 0.21 

SCK4 5.5 2.0 20% 20 ± 4 14 ± 2 -30.2 ± 0.5 0.20 

SCK5 5.5 2.0 50% 20 ± 4 15 ± 2 -20.8 ± 0.5 0.20 

SCK6 3.0f 2.0 20% 21 ± 4 16 ± 2 -14.6 ± 0.6 0.19 

SCK7 1.0 7.0 20% 22 ± 2 18 ± 2 -14.1 ± 1.3 0.09 

a Sample concentrations were 0.20-0.30 mg/mL in 5 mM PBS buffer (pH 7.2 with 5 mM 
NaCl).  b These values are based on the stoichiometry used during the crosslinking 
reaction.  c Number-average hydrodynamic diameters.  e Dav were measured for the SCK 
core domains, for at least 150 particles.  f mPEG5000 was used instead of mPEG2000. 
 

Semi-Quantitative Model for Estimation of mPEGylated SCK Surface 

Coverage.  Although quantitative values can be obtained for self-assembled monolayers 

from grafted polymers on flat substrates,46-56 the actual density of coverage for a 

nanostructure with a high degree of surface curvature is an unknown parameter.  Given 

the radius of gyration (Rg) of mPEG2000 (about 1.8 nm57), and the shell thickness of the 

nanoparticles (ca. 2.0 to 3.0 nm, based upon the DLS and TEM measurements), a 

hypothesis could be made that almost all of the terminal portions of the mPEG chains 

were exposed around the periphery of the mPEGylated SCKs, due to the fact that the 

thickness of the shell domain is less than 2×Rg.  The glassy PS block, which forms the 

hydrophobic core domain during the micellization process, was selected based upon the 

results from previous investigations39, 43, 58 that found the nanostructures to exist as rigid 

spheres that underwent little structural deformation, even upon adsorption onto a solid 
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substrate.58  Therefore, the PS-core SCKs should experience low degrees of structural 

deformation in rapidly flowing capillaries in vivo, so that they can be modeled as spheres.  

The surface coverage could be expressed via the average distance (D, see Figure 3.1 

insertion for illustration) between the exposed mPEG molecules,47 which was calculated 

through the following equation: 

D = 
N
D 2)( hπ  nm 

where N denotes the number of mPEGs per SCK nanoparticle (obtained from the number 

of mPEGs per polymer chain and the aggregation number of polymer chains estimated to 

be within each SCK nanoparticle), and Dh is the hydrodynamic diameter of the 

corresponding SCK. 

The results calculated based upon this hypothesis, summarized in Table 3.2, were 

consistent with zeta potential measurement data (Table 3.1).  As expected, a decrease in ζ 

value (SCK3 vs. SCK2) was observed as the mPEG surface coverage increased 

(decreased D values), indicating that both the surface negative charges and the mobility 

decreased.59  The similar ζ values for SCK4 and SCK3, in spite of a two-fold increase in 

mPEG grafts for SCK4 with respect to SCK3, might be associated with near complete 

surface coverage and/or reduced mPEG conformational degrees of freedom after a certain 

number of mPEG2000 grafts per polymer chain.  As expected, the consumption of a 

higher number of carboxylic acid groups during the crosslinking process resulted in a 

dramatic decrease of surface charge for SCK5 compared to SCK4. 
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Table 3.2.  Calculation of mPEG2000 surface coverage of mPEGylated SCK1-4, which 
originated from mPEG2000x-g-DOTAlysine2-g-PAA58-x-b-PS60 block copolymer 
precursors, according to Figure 3.1. 

Sample mPEGa 
/Chain 

Dav 
(nm) Nagg 

mPEGa 
/SCK 

Dh 
(nm) 

St
b 

(nm2) 
(St/mPEG)c 

(nm2) 
Dd 

(nm) 
SCK1 0 16 ± 2 240 0 21 ± 3 1390 ± 130 0 0 
SCK2 1.0 16 ± 2 240 240 20 ± 4 1260 ± 160 5.3 ± 0.7 2.3 ± 0.2 
SCK3 2.5 14 ± 3 200 500 19 ± 4 1140 ± 140 2.3 ± 0.3 1.5 ± 0.1 
SCK4 5.5 14 ± 2 200 1100 20 ± 4 1260 ± 160 1.2 ± 0.2 1.1 ± 0.1 

a mPEG2000.  b Surface area of mPEGylated SCKs.  c Surface area per mPEG chain at 
the periphery of the SCK.  d Average distance between mPEG chains at the periphery of 
the SCK. 
 

Stealth Property of mPEGylated SCKs.  Although the influence of 

mPEGylation on SCK biodistribution cannot be predicted by simply evaluating the SCK 

surface PEG coverage, these calculations provided the rationale to explain the dramatic 

differences observed in vivo.  From the calculations performed by de Gennes and co-

workers,47, 48 the value of D should be ca. 1 nm to oppose the adsorption of small proteins 

(diameter ca. 2 nm) and ca. 1.5 nm for larger proteins (diameter ca. 6-8 nm).  Therefore, 

no or low PEG surface coverage would result in no resistance to opsonization, which can 

explain the rapid disappearance of SCK1 (no PEG) and SCK2 (D = 2.3 ± 0.2 nm) from 

the blood circulation (< 0.5 percent injected dose per gram (%ID/gram) at 10 min post 

injection) and their rapid uptake in the liver and spleen (Figure 3.3A).  The mPEG 

surface coverage of SCK3 (D = 1.5 ± 0.1 nm) is, theoretically, effective in limiting the 

adsorption of large proteins but not that of small ones.  In fact, SCK3 exhibited a slightly 

longer blood retention (1.2 ± 0.2 %ID/gram at 10 min post injection) compared to SCK1 

and SCK2 but was eliminated within one hour from the administration, and accumulated 

in the liver and spleen.  To maintain the SCKs in circulation, an exceptionally high 

amount of PEG is required, as confirmed by the in vivo behavior of SCK4 (D = 1.1 ± 0.1 

nm). 
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Figure 3.3.  Biodistribution data for 64Cu-labeled mPEGylated SCKs (which originated 
from mPEG2000x-g-DOTAlysine2-g-PAA58-x-b-PS60 block copolymer precursors, 
according to Scheme 1) in Sprague-Dawley rats (ca. 25 μg/kg rat body weight).  Data are 
expressed as percent injected dose per gram (%ID/gram) ± one standard deviation (n = 4; 
ANOVA, p < 0.0001; *: p < 0.05, compared to SCK5).  (A) Biodistribution of SCK1-4 
at 10 min and 1 h post injection.  (B) Biodistribution of SCK4 up to 48 h post injection.  
(C) Biodistribution of SCK5 up to 48 h post injection. 
 

In fact, the presence of approximately 1100 mPEG2000 grafts per nanoparticle 

led to a nearly full surface coverage for SCK4, and gave a high retention in blood over 

the first few hours after administration (2.3 ± 0.1 %ID/gram at 4 h) and an effective 
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clearance thereafter (0.2 ± 0.1 %ID/gram at 48 h post injection, Figure 3.3B).  The 

prolonged circulation is the result of a low MPS uptake, reasonably due to slow 

opsonization and recognition by the macrophages of liver and spleen (up to 75% less 

dose in liver and spleen with respect to SCK1 at 48 h post injection).  As a note, the 

nonspecific binding of nanoscale objects with large vascular carrier proteins and red 

blood cells60 might also play important roles for the in vivo fate of the SCKs.  However, 

the latter issue could also be reduced because of the sufficient surface PEG coverage, 

which also directly related with their charge characteristics.  No significant uptake in 

lung, muscle and kidney was detected. 

mPEG Length Effect on Biodistribution.  Besides surface graft density, the 

length of the mPEG grafts has been reported to be of paramount importance in order to 

maintain nanoparticles in the blood stream.28, 30, 35, 41, 47, 61  Therefore, to assess whether 

PEG length effects also apply to SCKs, mPEGylated SCKs (SCK6) from mPEG50003-g-

DOTAlysine2-g-PAA55-b-PS60 block copolymer precursors were prepared, 64Cu-labeled 

and tested in normal rodents (Figure 3.4).  The use of mPEG5000 grafts produced a 

longer nanoparticle blood circulation time and a lower liver uptake compared to the 

mPEG2000-containing analog with similar grafting density (SCK3).  However, relative 

to SCK3, higher splenic accumulation was observed for SCK6 at both considered time 

points.  Noticeably, at 1 h, a nearly two-fold increase in spleen uptake was observed.  

Furthermore, clearance of SCK6 from the bloodstream was faster than that observed for 

the SCKs with higher surface density of mPEG2000 grafts (SCK4 and SCK5).  The 

observation that PEG grafting density is more important than PEG length is supported by 

a recently report from Li and coworkers62 on long circulating core crosslinked 
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nanoparticles (t1/2,β = 46.2 h) with hydrophilic shell domains constructed from very short 

PEG chains (nine ethylene oxide repeating units)  

 

Figure 3.4.  Biodistribution data of 64Cu-labeled SCK3, 4, (from mPEG2000-g-
DOTAlysine-g-PAA-b-PS block copolymer precursors) and 6 (from mPEG5000-g-
DOTAlysine-g-PAA-b-PS block copolymer precursors) in Sprague-Dawley rats (ca. 25 
μg/kg rat body weight) at 10 min and 1 h post injection.  Data are expressed as percent 
injected dose per gram (%ID/gram) ± one standard deviation (n = 4). 
 

mPEG Location: Block Copolymer Structural Backbone vs. Pendent Grafts.  

A different approach for constructing PEGylated nanoparticles from triblock copolymers 

containing one PEG chain as the terminal unit (SCK7, Figure 3.5) could not achieve the 

prolonged blood circulation time obtained for SCK4-6 (Figure 3.5C).  From the intrinsic 

properties of PEG and the SCK PS core domain, as reported by Caldwell et al.,63 a 

portion of the PEG chains may adsorb onto the PS core and not extend to the nanoparticle 

surface.  The multiple PEG grafts in SCK4-6 provides an excess for PEG coverage of the 

surface.  Moreover, a combination of short and long PEG segments can be expected to 

extend from the surface of SCK4-6, based upon the chemical methodology used for the 

preparation of these particles which involved the introduction of mPEG along the block 

copolymer hydrophilic chain segment prior to nanoparticle assembly.  In fact, a mixture 

of mPEG lengths have been found to provide a more effective steric barrier against 
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protein adsorption compared to a homogeneous population of longer chains.64, 65  Further 

studies are needed in order to correlate the improved biodistribution for the SCKs, with 

the combination of effects such as the variation in mPEG chain length, decreased 

negative charge, increased nanoparticle rigidity, decreased mobility, and conformational 

degrees of freedom66 for the mPEG grafts. 

 

Figure 3.5.  Preparation, TEM characterization, and in vivo evaluation of SCK7.  (A) 
Schematic drawing of the preparation of SCK7 from DOTA7-g-PEG5000-b-PAA93-b-
PS50.  (B) TEM micrograph of SCK7 (after negative stain with PTA).  (C) 
Biodistribution of 64Cu-labeled SCK7 in Sprague-Dawley rats (ca. 25 μg/kg rat body 
weight; data are expressed as percent injected dose per gram (%ID/gram) ± one standard 
deviation, n = 4). 
 

Crosslinking Extents (Surface Property) Effects.  The influence of shell 

crosslinking extents on SCK bioavailability was also investigated.  In general, increasing 

the crosslinking extent provides a more robust nanostructure with fewer negative charges 

(carboxylates) remaining on the surface.  A slightly anionic surface was found to exert 

beneficial effects on nanoparticle blood circulation and MPS sequestration due to a 

reduction of non-specific binding of plasma opsonins.67  However, high surface charge 

was found to have negative impact on the biodistribution, and several studies have 
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concluded that neutral particles exhibit lower rates of opsonization.15, 16, 68  SCK5 having 

ca. 50% surface charge reduction relative to SCK4, exhibited significantly higher 

retention in blood and lower accumulation in liver and spleen compared to SCK4 at each 

time point evaluated (Figure 3.3C). 

Small Animal PET Imaging Evaluation.  Except for the spleen uptake, the 

results of small animal PET imaging (Figure 3.6A-3.6F and Table 3.3) showed a general 

concordance with the biodistribution findings.  Little activity was detected in the heart of 

normal mice injected with 64Cu-labeled SCK1 at 4 and 24 h post injection (Figure 3.6A-

3.6B), suggesting that no significant amounts of particles were circulating in blood at 

these time points.  On the contrary, when imaging mice injected with 64Cu-labeled SCK4 

(Figure 3.6C-3.6D) and SCK5 (Figure 3.6E-3.6F), the heart of the mice was clearly 

visible up to 4 and 24 h post injection, respectively, as a consequence of the long blood 

retention.  No significant activity was detected in kidneys and bladder of all the mice 

used for the imaging study, due to the lack of urinary excretion, while the presence of 

diffuse signal in the abdominal area suggested slow elimination through the intestine.  

Interestingly, SCK5 exhibited the highest splene standardized uptake value (SUV) 

among the evaluated particles, suggesting high splenic uptake.  This contradictory result 

between biodistribution and PET data is possibly due to a different interaction between 

nanoparticles and macrophage receptor populations in different animal species (rat vs. 

mouse).16 
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Figure 3.6.  Co-registered small animal PET/CT images (coronal slices) of Balb/C mice 
(n = 2) injected with 64Cu-labeled, mPEGylated SCKs (ca. 100 – 200 μCi of 64Cu-labeled 
SCKs (0.15 – 0.3 mg/kg mouse body weight in 150 μL via tail vein).  (A-B) SCK1 at 4 
and 24 h post injection, respectively.  (C-D) SCK4 at 4 and 24 h post injection, 
respectively.  (E-F) SCK5 at 4 and 24 h post injection, respectively.  The image intensity 
is decay corrected and scaled by max/min frame.  White arrows indicate heart, liver and 
spleen. 
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Table 3.3.  Comparative organ-by-organ standardized uptake values (SUVs) for the 64Cu-
radiolabeled SCKs from the quantitation of small animal PET images in normal Balb/c 
mice. 

 
Sample 

SUVa

Heart Liver Spleen 
4 h p.ib 24 h p.i 4 h p.i 24 h p.i 4 h p.i 24 h p.i 

SCK1 0.3 ± 0.1 0.5 ± 0.1 8.3 ± 1.5 5.4 ± 0.8 1.9 ± 0.4 1.8 ± 0.4 
SCK4 4.2 ± 0.9 1.7 ± 0.3 4.9 ± 0.3 5.1 ± 0.1 2.6 ± 0.1 2.3 ± 0.2 
SCK5 4.6 ± 0.1 2.5 ± 0.5 5.3 ± 0.2 4.7 ± 0.1 4.0± 0.4 4.5 ± 0.5 

a Data were obtained from 3D regions of interest in the selected organs, and are presented 
as mean SUV ± standard deviation.  b Post injection. 
 

Conclusions 

In summary, we have employed a facile “pre-grafting” strategy to attach mPEG 

chains and DOTA chelators onto SCKs and their in vivo behaviors have been studied 

after 64Cu radiolabeling.  It is clear that mPEGylated SCKs exhibited longer blood 

circulation, in comparison to non-mPEGylated analogs.  More importantly, the blood 

retention of these nanoparticles correlated well with the densities of mPEG grafts on the 

particle surfaces, which were controlled by the stoichiometry during the chemical 

modifications of the diblock copolymer precursors used for the construction of these 

nanoparticles.  The study of in vitro interaction of plasma protein with mPEGylated 

SCKs and the development of mPEGylated SCKs bearing radionuclides and further 

labeled with high affinity targeting ligands and filled with therapeutic agents, as multi-

functional devices for PET imaging-based diagnosis and monitoring of various disease 

states and their regression, are in progress. 
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Chapter 4 

 

A Fundamental Investigation of Cross-linking Ffficiencies within 

Discrete Nanostructures: Using the Cross-linker as a Reporting 

Molecule 

[Portions of this work have been previously published as Guorong Sun, Nam S. Lee, 

William L. Neumann, John N. Freskos, Jeng J. Shieh, Richard B. Dorshow and Karen L. 

Wooley Soft Matter 2009, accepted.] 

 

Abstract 

Various bi-functional pyrazine-based chromophores were used as cross-linkers to 

probe directly the efficiencies of their incorporation into the shell of block copolymer 

micelles.  In addition, the block copolymer micelles were made to carry pre-installed 

reactive functionalities along the central block of an amphiphilic triblock copolymer.  

Unique photo-physical characteristics were observed, depending upon the type of 

pyrazine cross-linker, the conditions used for cross-linking and the stoichiometries 

applied. 
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Introduction 

During the past decade, nano-scale micelles assembled from amphiphilic block 

copolymer precursors have attracted much attention due to their promising applications in 

the field of nanomedicine,1-12 ranging from controlled delivery of diagnostic and 

therapeutic agents, to targeting of specific diseases and reporting of biological 

mechanisms via introduction of various functionalities.6, 13  However, the thermodynamic 

stability of such nano-assemblies is only achieved above the critical micelle 

concentration and their stability in vivo is, therefore, of concern.  To overcome this 

potential limitation, covalent cross-linking throughout the shell/core domain of micelles14, 

15 has been developed and demonstrated as an effective methodology for creating robust 

nanoscale objects that are capable of sustaining dilution. 

The advantage of cross-linking is highlighted also through recent reports that core 

cross-linking could enhance the cargo “holding” ability of nanostructures16 and the 

observation that increasing shell cross-linking extents prolonged the blood retention time 

of nanoparticles.17  Moreover, the cross-linker can bring diverse functionality to the 

nanostructure, in addition to its structural role.18, 19  While utilization of cross-linking 

technology grows rapidly in nano science,20-26 the factors associated with their 

incorporation require detailed studies to provide fundamental insights for quantification 

and optimization.  Herein, we report our investigations of the reaction efficiency during 

the shell cross-linking process by varying the cross-linker structures and properties. 
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Results and Discussion 

In this current work, we were interested in building on previous studies, which 

have revealed that the surface chemistry, cross-linking extent and internal composition of 

nanoparticles are important parameters for their ultimate properties and potential 

biological utility.  We also intended to advance the chemical methodologies and improve 

the efficiencies involved in the self assembly and cross-linking of amphiphilic block 

copolymers that lead to the preparation of well-defined nanoscale objects.  Among the 

cross-linked nanostructures, shell cross-linked knedel-like (SCK) nanoparticles 

constructed from shell cross-linking with diamino cross-linkers throughout the 

poly(acrylic acid)-block-polystyrene (PAA-b-PS) micellar PAA shell domain (corona), 

via carbodiimide-mediated amidation, is one of the earliest and most highly-studied 

examples.17, 27-31  While this strategy has been highly successful under controlled 

conditions, we felt that the activation efficiency of AA residues with the carbodiimide 

reagents under aqueous conditions could be a point for refinement.  Therefore, the acrylic 

acid residues were replaced with pre-activated N-acryloxysuccinimide (NAS) groups.  

Because the NAS units are of lower hydrophilicity than are AA groups, the addition of a 

terminal hydrophilic block segment was required to create an amphiphilic block 

copolymer structure and allow for facile aqueous-phase assembly.  This design led to a 

triblock copolymer structure, poly(ethylene oxide)-block-poly(N-acryloxysuccinimide)-

block-polystyrene (PEO-b-PNAS-b-PS), containing terminal PEO and PS blocks as 
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hydrophilic and hydrophobic segments, respectively, to drive the assembly, and a central 

block segment having building blocks from AA active ester monomers (NAS) as pre-

installed and pre-activated amidation sites.  This triblock copolymer was established and 

exploited for the construction of functionalizable cross-linked nanoparticles (Figure 4.1).  

Three pyrazine-based cross-linkers with pendant functionalized amines (Figure 4.1 

insertion) were designed as unique UV-vis active probes to report the extent of their 

incorporation during the cross-linking reactions. 

 
Figure 4.1.  Schematic drawing of the synthetic route for the construction of SCK 
nanoparticles, having a PEO corona, an internal shell cross-linked via the UV-active 
pyrazine cross-linkers, and a hydrophobic PS core.  
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The triblock copolymer was synthesized by two sequential reversible addition-

fragmentation chain transfer (RAFT) polymerizations6, 7, 32 from a PEO-based 

macromolecular chain transfer agent (macro-CTA).  Beginning from a mono-methoxy-

terminated PEO45-macro-CTA, chain extension with the NAS monomer was conducted 

using azobisisobutyronitrile (AIBN) as initiator in 1,4-dioxane ([NAS]0 = 1 M, 

[macro-CTA]0:[AIBN]0:[NAS]0 = 1:0.05:100) at 60 ˚C.  This procedure was a slightly 

modified protocol from the reported RAFT polymerization of NAS.33-35  The rate of NAS 

polymerization was still found to be rapid (ca. 90% conversion after 1.5 h).  Gel 

permeation chromatography (GPC) analysis (Figure 4.2a, upper chromatogram) of the 

isolated diblock copolymer (after precipitation in diethyl ether) exhibited a mono-modal 

molecular weight distribution with a polydispersity index (PDI) of 1.3.  Successful chain 

extension of the PNAS block (resonances at 1.78 to 2.20, 2.78, and 3.17 ppm) and 

maintenance of the RAFT agent chain-end group (resonances at 0.80, 1.10, 1.20, and 1.30 

ppm) were confirmed by 1H NMR spectroscopy (Figure 4.2b).  The controlled 

polymerization was supported further by the experimental molecular weight, as measured 

by NMR spectroscopy (Mn,NMR = 18,400 Da), being consistent with the theoretical 

molecular weight (Mn,theo = 17,600 Da).  Chain extension by styrene polymerization to 

afford the triblock copolymer also proceeded with control, indicating the retention of the 

chain end activity.  The fact that no residual diblock PEO-b-PNAS macro-CTA was 

observed along the GPC profile of the triblock copolymer with PS as the third block 
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(Figure 4.2a, lower chromatogram, and Figure 4.2c, Mn,NMR = 24,700 Da and PDI = 1.2) 

demonstrated its well-defined structure. 

 
Figure 4.2.  Characterizations of PEO45-b-PNAS95 and PEO45-b-PNAS95-b-PS60 block 
copolymer precursors.  a): DMF-GPC profiles of PEO45-b-PNAS95 (top) and PEO45-b-
PNAS95-b-PS60 (bottom) block copolymers.  b): 1H NMR spectrum of PEO45-b-PNAS95.  
c): 1H NMR spectrum of PEO45-b-PNAS95-b-PS60. 

 

Micellization of the PEO45-b-PNAS95-b-PS60 triblock copolymer was conducted 

by adding water (selective solvent for PEO) to the block copolymer precursor solution in 

N,N-dimethylformamide (DMF, common solvent for all three blocks, ca. 1.0 mg/mL).  

Water was added to initialize micellization until 50 wt% of water content was achieved 
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within 2 h.  The micelles were then directly characterized through dynamic light 

scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy 

(AFM).  The results from DLS measurements showed that these micelles had narrow size 

distributions (Figure 4.3a-c) with a number-averaged hydrodynamic diameter of 74 ± 12 

nm.  By TEM (Figure 4.3d), the micelles were observed to have uniform diameters (Dav = 

25 ± 1 nm), and they also had uniform heights (Hav = 20 ± 2 nm), as observed by AFM 

imaging (Figure 4.3e). 

 

Figure 4.3.  DLS, TEM and AFM data for the PEO45-b-PNAS95-b-PS60 micelles in 
DMF/H2O (v/v = 1:1).  DLS (a-c): histograms of micelle intensity-averaged, volume-
averaged, and number-averaged hydrodynamic diameter size distributions, respectively.  
TEM (d): stained negatively with phosphotungstic acid.  AFM (e): cast onto mica by 
spin-coating.  
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Pseudo in situ cross-linking experiments were performed after the micelle 

formation (see Experimental Section for details), although some amount of hydrolysis of 

NAS had already been occurring during the micellization process.  Three nominal cross-

linking extents (20%, 50%, and 100%, based upon the stoichiometric ratios of cross-

linker vs. initial theoretical NAS residues, i.e., 0.1 eq, 0.25 eq, and 0.5 eq, respectively) 

were studied.  After incubating the micelle with the cross-linker at room temperature for 

48 h, the un-reacted cross-linker, DMF, and small molecule by-products were removed 

through extensive dialysis against pH 7.2 PBS buffer (5 mM with 5 mM NaCl).  As a 

note, a different work-up protocol was applied for the SCK nanoparticles prepared from 

cross-linker 3, which involved multiple steps of dialysis due to its cationic character and 

electrostatic attraction to the nanostructures (see Experimental Section for details and 

vide infra). 

Unusual photophysical effects were observed upon coupling of the UV-active 

cross-linkers into the micellar nanostructure framework.  As depicted in Figure 4.4, for 

all three systems, the UV-vis maximum absorbance peaks of the pyrazine units within the 

SCKs at nominal 20% cross-linking extents clearly showed blue shifts of ~ 30 nm (from 

433 nm to 400 nm) for SCKs derived from 1 and 2 vs. the small molecule cross-linkers or 

the small molecule cross-linkers mixed with PEO-b-PAA-b-PS micelles.  For 3, the blue 

shift was increased to ~ 45 nm (from 441 nm to 395 nm).  These phenomena were 

observed also for the SCKs prepared from 1 and 2 with nominally 50% cross-linking, in 
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which the blue shifts were reduced to ~ 10 nm.  For SCK3 and SCK7 at nominally 100% 

cross-linking and SCK8 (prepared from 3 at nominally 50% cross-linking), no obvious 

peak shifts were noticed.  
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Figure 4.4.  UV-vis absorbance and fluorescence emission profiles of SCKs constructed 
from cross-linking of PEO45-b-PNAS95-b-PS60 micelles with cross-linkers 1-3 at nominal 
20%, 50%, and 100% cross-linking extents.  a): UV-vis (left) and fluorescence (right) 
spectra of SCKs prepared from cross-linking with 1 at nominal 20% (solid), 50% 
(dashed), and 100% (dotted) cross-linking extents, respectively.  b): UV-vis (left) and 
fluorescence (right) spectra of SCKs prepared from cross-linking with 2 at nominal 20% 
(solid), 50% (dashed), and 100% (dotted) cross-linking extents, respectively.  c): UV-vis 
(left) and fluorescence (right) spectra of SCKs prepared from cross-linking with 3 at 
nominal 20% (solid), 50% (dashed), and 100% (dotted) cross-linking extents, 
respectively.  
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We hypothesized that the blue shift might be related to functional group 

transformations of the aromatic amines on the pyrazine moiety, if they were to participate 

in reactions with the NAS units.  While heteroaryl amines are very weakly basic and 

correspondingly weak nucleophiles, they may participate in coupling reactions due to 

effects of the nanoenvironment (e.g. proximity and potential desolvation of partially 

coupled linker arms within the shell structure).  Once the amides form with the aryl 

amines, the energy gap between the ground and excited states would be increased due to 

the excess stabilization effect applied to the ground state, caused by the decrease in 

electron density on the pyrazine ring with the appearance of electron-withdrawing 

amides.  This hypothesis was partially supported by the cross-linker incorporation 

efficiency results (vide infra) since the blue shift was only observed for SCKs in which 

less than 30% of the total NAS residues were consumed by the aliphatic amino groups 

(over 50% of NAS groups remaining) during the cross-linking process.  By contrast, the 

control SCK nanoparticle (SCK10), cross-linked at 20% with 3 through our 

“conventional” synthetic approach,17, 19, 27-30 did not exhibit the blue shift of the 

maximum absorbance peak (Figure 4.5a).  This result serves as additional evidence for 

our hypothesis, since the carbodiimide-mediated amidation was carried out under 

conditions in which the coupling reagent (1-[3’-(dimethylamino)propyl]-3-

ethylcarbodiimide methiodide, EDCI) was limited to 20 mol% of the AA residues.  

Therefore, the formed intermediates would be dominantly consumed by the cross-linker 

97 
 



terminal aliphatic amines while the aromatic amines remained intact.  For SCK9, a minor 

red shift of ~ 5 nm was observed; the origin of which was not clear. 

 

Figure 4.5.  UV-vis profiles of control experiment I.  a): UV-vis spectra of SCK10 
(solid, nominal 20% of cross-linking) and SCK11 (dashed, nominal 50% of cross-
linking), prepared through conventional carbodiimide-mediated amidation with cross-
linker 3.  UV-vis profiles of control experiment II.  b): UV-vis spectra of physical 
mixtures of PEO45-b-PAA95-b-PS60 micelles and 3 before dialysis and at stoichiometries 
of 0.1 eq. (solid) and 0.5 eq. (dashed) of 3, relative to the AA residues, respectively.  
After dialysis against high salt buffers (pH 7.2 5 mM PBS buffer with 150 mM of NaCl) 
both physical mixture samples gave no signal from 3, with their UV-vis traces 
overlapping (dotted). 

 

From a structural viewpoint, cross-linkers 1 and 2 were distinguishable only 

through the spacer lengths and hydrophilicities, which further was revealed by their 

similar extinction coefficients (ε = 5,150 M-1cm-1 and 5,750 M-1cm-1 at pH 7.2, 

respectively).  In contrast to earlier studies with coupling of large negatively-charged 

macrocycles into the nanoparticle shells,30 the spacer length was unimportant in this 

study.  No obvious incorporation efficiency differences were observed between 1 and 2 at 

each of the experimental cross-linking extents (Table 4.1).  While the total amount of 
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cross-linkers increased from 0.1 eq to 0.25 eq (relative to NAS residues), the actual 

incorporation efficiency decreased from 60% to 40%.  A plateau of the incorporation 

efficiency occurred with further increase of the cross-linker feeding ratio.  These results 

might be associated with the unique core-shell structure of the PEO-b-PNAS-b-PS 

micelles.  As soon as the micellization was initialized after water addition, the hydrolysis 

of NAS residues started simultaneously.  However, the rate of hydrolysis was much 

slower compared with the rate of phase segregation-based micellar assembly.  Therefore, 

it is expected that most of the NAS residues were “trapped” into the hydrophobic core 

domain while a “sub-shell” domain consisted of NAS and AA residues formed at the 

interface of PEO shell and PNAS/PS core domains.  It was speculated that the cross-

linking reaction dominantly occurred within this sub-shell region first because of the 

intrinsic hydrophilicity of the cross-linker, although the hydrophilicity increased from 1 

to 3, and also because of the mode of administration/transport of the cross-linker from the 

exterior inward  As the reaction proceeded and more sub-shell NAS residues were 

converted into amides and hydrolyzed to AA carboxylates, the sub-shell domain would 

become increasingly hydrophilic and gradually merge into the “final” shell domain of the 

nanoparticle.28  The framework structure would then reduce the permeability of the shell 

domain31 and restrict further access of cross-linker to the “refurbished” sub-shell domain.  

And finally, the “deep onion” PNAS/PAA sub-shell would become un-reachable for the 

cross-linkers after incorporating over ca. 40% of 1 or 2. 
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Improvement of incorporation efficiency (Table 4.1) at each nominal extent was 

achieved while using 3 (ε = 3,470 M-1cm-1 at pH 7.2), a cross-linker bearing positive 

charge.  This improvement could be attributed to strong electrostatic interactions between 

the guanidine moieties of the bifunctional bis-arginyl-pyrazine 3, and copolymer NAS-

derived carboxylates, generated by partial hydrolysis of active esters during the 

micellization process.  The electrostatic interactions could act as “driving force” for 

“pulling” 3 through the formed shell frameworks.  Thus, pre-coordination of 3 with each 

“onion-like” sub-shell of the micelles via guanidine-carboxylate complexes resulted in a 

vast enhancement of inter-strand amide cross-linking reaction efficiency. 

 
Table 4.1.  Incorporation efficiency and maximum cross-linking extents upon varying the 
cross-linker structures and stoichiometries. 

SCKsa Cross-linker Cross-linking
extentsb

Incorporation
efficiencyc

Maximum
cross-linking extentse

SCK1 1 20 % 62 % 13 %
SCK2 1 50 % 45 % 23 %
SCK3 1 100 % 44 %d 44 %
SCK4 2 20 % 60 % 12 %
SCK5 2 50 % 40 % 20 %
SCK6 2 100 % 40 %d 40 %
SCK7 3 20 % 98 % 20 %
SCK8 3 50 % 69 % 35 %
SCK9 3 100 % 56 % 56 %

SCK10f 3 20 % 58 % 12 %
SCK11f 3 50 % 57 % 29 %

a Sample concentrations were 0.20-0.30 mg/mL in 5 mM PBS buffer (pH 7.2 with 5 mM 
NaCl).  b Nominal cross-linking extents, based upon stoichiometry.  c Calculated by the 
UV-vis absorption values at 433 nm (for cross-linker 1 and 2) and 441 nm (for cross-
linker 3).  d The number was not accurate as the Abs value was over 1.0.  e See reference 
29.  f Prepared from “conventional” carbodiimide-mediated amidation by using PEO45-b-
PAA95-b-PS60 micelles. 
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To confirm the existence of the electrostatic interactions between 3 and AA 

carboxylates, the PEO45-b-PAA95-b-PS60 micelles (prepared from micellization of the 

block copolymer precursor, which was synthesized from hydrolysis of PEO45-b-PNAS95-

b-PS60, see Experimental Section for details) were simply mixed physically with 3 under 

the identical reaction conditions as had been used for the cross-linking reactions (but, 

without covalent cross-linking being possible).  After 5 days of dialysis against pH 7.2 

PBS buffer (5 mM with 5 mM of NaCl), the UV-vis spectra of the mixtures (Figure 4.5b, 

solid and dashed) surprisingly indicated that 78% and 73% of the coordination 

efficiencies were achieved for 20% and 100% non-covalent cross-linking, respectively.  

After further dialyzing against 5 mM PBS buffer with much higher salt concentration 

(150 mM NaCl), which is a common protocol for breaking electrostatic interactions, the 

UV-vis spectra showed that there was no 3 remaining (Fig 4.5b, overlapping dotted 

lines).  In fact, when SCK7-9 were exposed to the same work-up process, the difference 

of SCK7-9 (especially SCK9) UV-vis profiles before and after the high salt dialysis 

process (Figure 4.6) also supported that 3 could be incorporated into the SCKs through 

electrostatic interactions.  The physical mixing of 3 with the PEO45-b-PAA95-b-PS60 

micelles at the special stoichiometry (0.1 eq. of 3, relative to the NAS/AA residues) did 

not affect the photo-physical properties of 3.  No maximum absorbance peak shift was 

found, which serves as additional evidence for our hypothesis that the blue shift was 

caused by the covalent modifications onto the pyrazine aryl amines. 
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Another control experiment with 3 was then followed, which involved 

construction of SCKs from the PEO45-b-PAA95-b-PS60 micelles with 3 through our 

“conventional” carbodiimide-mediated amidation strategy.  Compared with the pre-

installed active ester-mediated approach, relatively lower incorporation efficiencies (ca. 

60%) were achieved at both 20% and 50% nominal cross-linking extents (SCK10 and 

SCK11 in Table 1, respectively).  Moreover, attempts at 100% cross-linking failed from 

this approach, due to the fact that significant visual precipitation was observed.  It is 

uncertain why the traditional methodology experienced this problem, while it did not 

occur with the new polymer system. 

 
Figure 4.6.  UV-vis profiles of SCK7 (green), SCK8 (blue), and SCK9 (red) before 
(solid line) and after (dashed line) dialysis against pH 7.2 5 mM PBS (with 150 mM of 
NaCl).  
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To identify if the nanoparticle morphology changed after the cross-linking, 

SCK1-12 were characterized by DLS and TEM; the results are summarized in Table 4.2, 

Figure 4.7 (the DLS histogram of particle size distribution by number-averaged Dh), and 

Figure 4.8 (TEM micrographs).  From the DLS and TEM characterizations, SCKs 

prepared from 1 and 2 at lower cross-linking extents (< 30%) showed no morphological 

variations (Figure 4.8a-b and Fig4.8d-e), compared with the micelle (Figure 4.2d).  A 

clear trend of hydrodynamic diameter decrease was observed with the increase of actual 

cross-linking extents from 0% to ca. 20%, suggesting that the nanostructures underwent 

“shrinking” after the cross-linking.  Further increase of cross-linking extents caused 

nanostructure morphological changes, as verified by TEM imaging (Figure 4.8c and 

4.8f), although the final nanostructures still displayed relatively narrow size distributions 

(Figure 4.7c and 4.7f, respectively).  

103 
 



Table 4.2.  DLS and TEM characterization results for SCK1-12. 

SCKsa Cross-linker Cross-linking extentsb Dh,number (nm)c Dav (nm)d

SCK1 1 13 % 62 ± 7 22 ± 2
SCK2 1 23 % 39 ± 2 27 ± 1
SCK3 1 44 % 56 ± 5 NAe
SCK4 2 12 % 64 ± 4 22 ± 2
SCK5 2 20 % 50 ± 2 30 ± 1
SCK6 2 40 % 56 ± 8 NAe

SCK7 3 20 % 104 ± 8 20 ± 1
SCK8 3 37 % 69 ± 5 28 ± 2
SCK9 3 69 % 91 ± 9 NAe

SCK10 3 12 % 85 ± 6 20 ± 1
SCK11 3 29 % 53 ± 4 28 ± 2
SCK12 4 100 %f 61 ± 3 28 ± 1

a Sample concentrations were 0.20-0.30 mg/mL in 5 mM PBS buffer (pH 7.2 with 5 mM 
NaCl).  b Maximum cross-linking extents, based upon incorporation efficiency.  c 
Number-averaged hydrodynamic diameter with standard deviation between 5 runs.  d Dav 
were measured by TEM for the SCK nanoparticle core domains, for at least 150 particles.  
e Not available due to the irregular shape of the nanostructures.  f Nominal 100% of cross-
linking; maximum cross-linking extent could not be determined due to the lack of a 
chromophore on 4. 

 

For cross-linker 3, the situation became more complicated:  1) For SCK8 and 

SCK11 at nominally 50% cross-linking, spherical morphologies were maintained (Figure 

4.8h and 4.8k) and their particle sizes were consistent with the hydrodynamic sizes;  2) 

For SCK7 and SCK10 at lower cross-linking extents, the obviously increased Dh (ca. 

100 nm) and the observed inter-particle association behaviour reflected by the TEM 

micrograph indicated the existence of strong inter-particle interactions;  3) For SCK9 

with the highest cross-linking extent (ca. 70%), “island-like” irregular morphology was 

noticed.  As a note, this kind of morphological alteration caused by high extents of cross-

linking was not limited to complicated cross-linkers.  For example, SCK12, prepared 
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from a simple molecule 2,2´-(ethylene-dioxy)bis(ethylamine) as cross-linker under 

similar stoichiometry (0.5 eq, relative to the NAS residues), still displayed atypical 

morphology (Figure 4.8l). 

 
Figure 4.7.  Histograms of number-averaged hydrodynamic diameter distributions for 
SCK1-12 (a-l, respectively). 
  

105 
 



 
Figure 4.8.  TEM micrographs of SCK nanoparticles at nominal 20%, 50%, and 100% 
cross-linking extents (stained negatively with PTA).  a-c): TEM micrographs of SCK1-3 
prepared from cross-linker 1 at nominal 20%, 50%, and 100% cross-linking extents, 
respectively.  d-f): TEM micrographs of SCK4-6 prepared from cross-linker 2 at nominal 
20%, 50%, and 100% cross-linking extents, respectively.  g-i): TEM micrographs of 
SCK7-9 prepared from cross-linker 3 at nominal 20%, 50%, and 100% cross-linking 
extents, respectively.  j-k): TEM micrographs of SCK10-11 prepared from cross-linker 3 
at nominal 20% and 50% cross-linking extents, respectively.  l): TEM micrograph of 
SCK12 prepared from cross-linker 4 at nominal 100% cross-linking extent. 
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Finally, the fluorescence emission properties of SCK1-9 were studied (Figure 

4.4).  The fluorescence emission intensities of these SCKs decreased as more pyrazine 

units were incorporated, which could be attributed to an amplified self-quenching effect 

between fluorophores.  Interestingly, compared with SCK1, SCK4 displayed enhanced 

fluorescence (ca. 50% of intensity increase) although they shared almost identical 

characteristic parameters (size, concentration, the amount of chromophore per 

nanoparticle, and the closely intrinsic photophysical-property of the cross-linkers 1 and 

2).  This enhancement might be related to the fact that the longer spacer of 2 enabled the 

pyrazine moiety to adapt suitable conformations within the relatively loose shell domain 

and avoid self-quenching. 

 

Conclusions 

In summary, the amphiphilic and reactive triblock copolymer, PEO-b-PNAS-b-

PS, having a well-defined structure was synthesized through RAFT polymerization and 

was then utilized for the construction of shell cross-linked nanoparticles using unique 

photo-active cross-linkers.  Three pyrazine-derived bisamino cross-linkers with different 

spacer lengths and charges were incorporated into the nanostructures to study the factors 

associated with the reaction efficiency, employing the pyrazine to act as the reporting 

probe.  It was found that the introduction of positive charges onto the cross-linker 

improved significantly the incorporation efficiency, while the length of the spacer had 
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little effect.  The photo-physical properties of these cross-linked nanostructures were also 

investigated and a blue shift of over 30 nm was observed for the maximum absorbance 

peak, for all cross-linkers at lower incorporation levels (< 20%) within the nanoscale 

frameworks.  Further studies on their pH-responsive photo-physical properties and their 

potential applications for optical imaging and monitoring, are currently underway. 

 

Experimental Section 

Materials.  The mono-methoxy terminated mono-hydroxy poly(ethylene glycol) 

(mPEG2k, MW = 2,000 Da, PDI = 1.06) was purchased from Intezyne Technologies 

(Tampa, FL) and was used for the synthesis of macro-CTA36 without further purification.  

The cross-linker 1-3 were synthesized according to the previous report.37  Other 

chemicals were purchased from Aldrich and Acrose were used without further 

purification unless otherwise noted.  Prior to use, styrene (99%), purchased from Aldrich, 

were distilled over calcium hydride and stored under N2.  The Supor 25 mm 0.1 μm 

Spectra/Por Membrane tubes (molecular weight cut-off (MWCO) 6-8 kDa), used for 

dialysis, were purchased from Spectrum Medical Industries Inc..  Nanopure water (18 

mΩ•cm) was acquired by means of a Milli-Q water filtration system (Millipore Corp.; 

Bedford, MA). 

Measurements.  1H and 13C NMR spectra were recorded on a Varian 600 MHz 

spectrometer interfaced to a UNIX computer using Mercury software.  Chemical shifts 
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are referred to the solvent proton resonance.  Infrared spectra were obtained on a Perkin-

Elmer Spectrum BX FT-IR system using diffuse reflectance sampling accessories with 

FT-IR Spectrum v2.00 software. 

The molecular weight distribution was determined by Gel Permeation 

Chromatography (GPC).  The N,N-dimethylformamide (DMF) GPC was conducted on a 

Waters Chromatography, Inc. (Milford, MA) system equipped with an isocratic pump 

model 1515, a differential refractometer model 2414, and a two-column set of Styragel 

HR 4 and HR 4E 5 µm DMF 7.8 × 300 mm columns.  The system was equilibrated at 70 

°C in pre-filtered DMF containing 0.05 M LiBr, which served as polymer solvent and 

eluent (flow rate set to 1.00 mL/min).  Polymer solutions were prepared at a 

concentration of ca. 3 mg/mL and an injection volume of 200 µL was used.  Data 

collection and analysis was performed with Empower Pro software (Waters, Inc.).  The 

system was calibrated with poly(ethylene glycol) standards (Polymer Laboratories, 

Amherst, MA) ranging from 615 to 442,800 Da. 

The atomic force microscopy (AFM) characterization of micelles was performed by 

tapping-mode AFM under ambient conditions in air.  The AFM instrumentation consisted 

of a Nanoscope III BioScope system (Digital Instruments, Veeco Metrology Group; 

Santa Barbara, CA) and standard silicon tips (type, OTESPA-70; L, 160 μm; normal 

spring constant, 50 N/m; resonance frequency, 246-282 kHz).  Samples for AFM imaging 

analysis were prepared through spin-coating ca. 1.0 μL of the micelle solution (0.5 
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mg/mL) onto freshly cleaved mica plates (Ruby clear mica, New York Mica Co.) and 

allowed to dry freely in air. 

Samples for Transmission Electron Microscopy (TEM) measurements were diluted 

with a 1 % phosphotungstic acid (PTA) stain (v/v, 1:1).  Carbon grids were exposed to 

oxygen plasma treatment to increase the surface hydrophilicity.  Micrographs were 

collected at 100,000× magnification and calibrated using a 41 nm polyacrylamide bead 

from NIST.  The number average particle diameters (Dav) and standard deviations were 

generated from the analysis of a minimum of 150 particles from at least three different 

micrographs. 

Hydrodynamic diameters (Dh) and size distributions for the vesicles in aqueous 

solutions were determined by dynamic light scattering (DLS).  The DLS instrumentation 

consisted of a Brookhaven Instruments Limited (Worcestershire, U.K.) system, including 

a model BI-200SM goniometer, a model BI-9000AT digital correlator, a model EMI-

9865 photomultiplier, and a model 95-2 Ar ion laser (Lexel Corp.) operated at 514.5 nm.  

Measurements were made at 25 ± 1 °C.  Scattered light was collected at a fixed angle of 

90°.  The digital correlator was operated with 522 ratio spaced channels, and initial delay 

of 5 μs, a final delay of 100 ms, and a duration of 6 minutes.  A photomulitplier aperture 

of 100 μm was used, and the incident laser intensity was adjusted to obtain a photon 

counting of between, 200 and 300 kcps.  Only measurements in which the measured and 

calculated baselines of the intensity autocorrelation function agreed to within 0.1 % were 
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used to calculate particle size.  The calculations of the particle size distributions and 

distribution averages were performed with the ISDA software package (Brookhaven 

Instruments Company), which employed single-exponential fitting, cumulants analysis, 

and CONTIN particle size distribution analysis routines.  All determinations were 

repeated 5 times. 

The UV-vis absorption spectra of SCKs were collected at room temperature using a 

Varian Cary 100 Bio UV-visible spectrophotometer and plastic cuvettes with 10 mm of 

light path.  For each SCK absorption spectroscopy measurement, the pH 7.2 PBS (5 mM 

with 5 mM of NaCl) buffer solution outside the dialysis tubing was used as control. 

The fluorescence spectra of SCKs were obtained at room temperature using a Varian 

Cary Eclipse fluorescence spectrophotometer.  All fluorescence spectra from SCK 

solutions were measured at optical densities at the excitation wavelength.  If not specially 

mentioned otherwise, an excitation wavelength of the observed maximum absorption 

peak was used.  Each fluorescence spectrum was normalized with respect to the absorbed 

light intensity at the excitation wavelength. 

Synthesis of PEO45-b-PNAS95.  To a 25 mL Schlenk flask equipped with a magnetic 

stir bar dried with flame under N2 atmosphere, was added the mPEG2k macro-CTA (0.24 

g, 0.10 mmol) and 1,4-dioxane (10 mL).  The reaction mixture was stirred 0.5 h at rt to 

obtain a homogeneous solution.  To this solution was added NAS (1.7 g, 10 mmol) and 

AIBN (0.8 mg, 5 μmol).  The reaction flask was sealed and stirred 10 min at rt.  The 
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reaction mixture was degassed through several cycles of freeze-pump-thaw.  After the 

last cycle, the reaction mixture was stirred for 10 min at rt before being immersed into a 

pre-heated oil bath at 60 °C to start the polymerization.  After 1.5 h, the monomer 

conversion reached ca. 90% by analyzing aliquots collected through 1H-NMR 

spectroscopy.  The polymerization was quenched by cooling the reaction flask with liquid 

N2.  The solution was diluted with 20 mL of DMSO and precipitated into 600 mL of cold 

diethyl ether at 0 °C twice.  The precipitants were collected, washed with 100 mL of cold 

ether, and dried under vacuum overnight to afford the PEO45-b-PNAS95 block copolymer 

precursor as a yellow solid (1.2 g, 65% yield based upon monomer conversion).  1H 

NMR (600 MHz, DMSO-d6, ppm): δ 0.81 (t, J = 6 Hz, 3H, dodecyl CH3), 1.09 (br, 5H, 

CH3 and dodecyl CH2), 1.20 (br, 19H, CH3 and dodecyl CH2s), 1.30 (br, 2H, dodecyl 

CH2), 1.60 (t, J = 6 Hz, 2H, dodecyl CH2), 2.01 (br, PNAS backbone protons), 2.75 (NAS 

CH2CH2s), 3.09 (br, PNAS backbone protons), 3.20 (s, mPEG terminal OCH3), 3.47 (m, 

OCH2CH2O from the PEG backbone), 4.07 (br, 2H from the PEO backbone terminus 

connected to the ester linkage); 13C NMR (150 MHz, DMSO-d6, ppm): δ 172.8, 69.8, 

41.2, 25.2; IR (NaCl, cm-1): 2925, 1811, 1780, 1735, 1361, 1206, 1070, 649. 

Synthesis of PEO45-b-PNAS95-b-PS60.  To a 10 mL Schlenk flask equipped with a 

magnetic stir bar dried with flame under N2 atmosphere, was added the PEO45-b-PNAS95 

macro-CTA (0.55 g, 30 μmol), 1,4-dioxane (2.2 mL), and DMF (2.2 mL).  The reaction 

mixture was stirred 0.5 h at rt to obtain a homogeneous solution.  To this solution was 
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added styrene (0.94 g, 9.0 mmol) and AIBN (0.24 mg, 1.5 μmol).  The reaction flask was 

sealed and stirred 10 min at rt.  The reaction mixture was degassed through several cycles 

of freeze-pump-thaw.  After the last cycle, the reaction mixture was stirred for 10 min at 

rt before being immersed into a pre-heated oil bath at 60 °C to start the polymerization.  

After 16.5 h, the monomer conversion reached ca. 19% by analyzing aliquots collected 

through 1H-NMR spectroscopy.  The polymerization was quenched by cooling the 

reaction flask with liquid N2.  The polymer was purified by precipitation into 250 mL of 

cold diethyl ether at 0 °C twice.  The precipitants were collected and dried under vacuum 

overnight to afford the block copolymer precursor as a yellow solid (0.58 g, 77% yield 

based upon monomer conversion).  1H NMR (600 MHz, CD2Cl2, ppm): δ 0.81 (br, 

dodecyl CH3), 1.10-2.40 (br, dodecyl Hs, PNAS, and PS backbone protons), 2.75 (NAS 

CH2CH2s), 3.15 (br, PNAS backbone protons), 3.28 (s, mPEG terminal OCH3), 3.60 (m, 

OCH2CH2O from the PEG backbone), 6.20-7.30 (br, Ar Hs); 13C NMR (150 MHz, 

DMSO-d6, ppm): δ 172.8, 145.2, 128.0, 125.7, 69.8, 41.6, 25.2; IR (NaCl, cm-1): 2925, 

1810, 1779, 1732, 1452, 1362, 1208, 1070, 813, 699, 648. 

General Procedure for Micellization of PEO45-b-PNAS95-b-PS60.  To a solution of 

PEO45-b-PNAS95-b-PS60 block copolymer in DMF (ca. 1.0 mg/mL), was added dropwise 

an equal volume of nano-pure H2O via a syringe pump at a rate of 15.0 mL/h, and the 

mixture was further stirred for 1 h at rt before using for characterizations and cross-

linking reactions. 
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General Procedure for Cross-linking of PEO45-b-PNAS95-b-PS60 Micelles.  To a 

solution of PEO45-b-PNAS95-b-PS60 micelles (15.0 mg of block copolymer precursor, 

57.7 μmol of NAS residues) in 30.0 mL of DMF/H2O (v:v = 1:1) at rt, was added 

dropwise over 10 min, a solution of cross-linker (5.8 μmol for nominal 20% of cross-

linking, 14.5 μmol for nominal 50% of cross-linking, and 29.0 μmol for nominal 100% of 

cross-linking, respectively) in nano-pure H2O.  The reaction mixture was allowed to stir 

for 48 h at rt.  For reactions involving cross-linker 1, 2, and 4, the mixture was transferred 

to pre-soaked dialysis tubing (MWCO 6,000-8,000 Da) and dialyzed against 5.0 mM 

PBS (pH 7.2, with 5.0 mM NaCl) for 7 days to remove DMF, un-reacted cross-linker, 

and the small molecule by-products and afford an aqueous solution of cross-linked 

nanoparticles.  For reactions involving cross-linker 3, the mixture was transferred to pre-

soaked dialysis tubing (MWCO 6,000-8,000 Da) and sequentially dialyzed against 5.0 

mM PBS (pH 7.2, with 5.0 mM NaCl) for 3 days, 5.0 mM PBS (pH 7.2, with 150 mM 

NaCl) for 2 days, and 5.0 mM PBS (pH 7.2, with 5.0 mM NaCl) for 2 days to remove 

DMF, un-reacted cross-linker, and the small molecule by-products and afford an aqueous 

solution of cross-linked nanoparticles. 

Synthesis of PEO45-b-PAA95-b-PS60.  A 25 mL round bottom flask equipped with a 

stir bar was charged with PEO45-b-PNAS95-b-PS60 (100 mg, 4.05 μmol), 10 mL of 

CH2Cl2 and 1 mL of trifluoroacetic acid (TFA).  After adding 0.1 mL of water, the 

reaction mixture was stirred vigorously for 24 h at rt and then, was concentrated under 
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vacuum.  The crude product was dissolved into 10 mL of DMF, transferred into pre-

soaked dialysis tubing (MWCO 6,000–8,000 Da) and dialyzed against nano-pure H2O 

(18.0 MΩ cm) for 4 days to remove small molecule impurities.  The aqueous solution 

was lyophilized to afford the product as slightly yellow solid (60 mg, 95 % yield).  1H-

NMR (600 MHz, DMSO-d6, ppm): δ 0.81-2.40 (br, docecyl Hs and polymer backbone 

Hs), 3.37 (s, 3H, mPEG terminal OCH3), 3.42-3.82 (br, mPEG backbone -OCH2CH2O- 

Hs), 6.22-7.30 (br, Ar Hs), 12.25 (br, -COOH); 13C NMR (150 MHz, DMSO-d6, ppm): δ 

175.8, 145.2, 128.0, 125.7, 69.8, 41.6; IR (NaCl, cm-1): 3450-2900, 2925, 1718, 1458, 

1258, 1183, 1103, 954, 794, 699. 

Micellization of PEO45-b-PAA95-b-PS60.  To a solution of PEO45-b-PAA95-b-PS60 

(30 mg) in 30 mL of DMF, was added dropwise 30 mL of nano-pure H2O via a syringe 

pump at a rate of 15.0 mL/h, and the mixture was further stirred for 16 h at rt.  Finally, 

the mixture was transferred into pre-soaked dialysis tubing (MWCO 6,000-8,000 Da) and 

dialyzed against nano-pure water for 5 days to afford the micelle solution. 

Cross-linking of PEO45-b-PAA95-b-PS60 Micelle with 3 through “Conventional” 

Amidation.  To a solution of PEO45-b-PAA95-b-PS60 micelle (10 mg of PEO45-b-PAA95-

b-PS60 block copolymer precursor, 62 μmol of AA residues) in 40 mL of nano-pure 

water, was added dropwise over 30 min, a solution of 3 (3.7 mg, 6.2 μmol for SCK10 

and 9.2 mg, 15 μmol for SCK11, respectively) in nano-pure water.  The mixture was 

stirred 2 h at rt and a freshly prepared EDCI solution (3.8 mg, 13 μmol for SCK10 and 
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9.2 mg, 31 μmol for SCK11, respectively) in nano-pure water was then added over 1 h.  

The reaction mixture was further stirred 48 h at rt before transferring into a pre-soaked 

dialysis tubing (MWCO 6,000-8,000 Da) and sequentially dialyzing against 5 mM pH 7.2 

PBS (with 5 mM NaCl) for 3 days, 5 mM pH 7.2 PBS (with 150 mM NaCl) for 2 days, 

and 5 mM pH 7.2 PBS (with 5 mM NaCl) for 2 days to afford an aqueous solution of the 

cross-linked nanoparticles. 
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Chapter 5 

 

Reversible Addition Fragmentation Chain Transfer (RAFT) 

Polymerization of 4-Vinylbenzaldehyde 

[Portions of this work have been published previously as Guorong Sun, Chong Cheng 

and Karen L. Wooley Macromolecules 2007, 40(4), 793-795.] 

 

Abstract 

The direct reversible addition-fragmentation chain transfer (RAFT) 

polymerization of 4-vinylbenzaldehyde (VBA) was established as a new synthetic 

method for the preparation of well-defined poly(vinylbenzaldehyde) (PVBA), a polymer 

having reactive aldehyde side chain substiuents.  RAFT polymerization of VBA was 

investigated using S-1-dodecyl-S΄-(α,α´-dimethyl-α´´-acetic acid)trithiocarbonate as chain 

transfer agent and 2,2'-azobis(isobutyronitrile) as initiator in 1,4-dioxane or 2-butanone at 

70-75 °C for 7.5-22.5 h.  With 45-76% of monomer conversion, the resulting PVBA had 

well controlled number-average molecular weight (Mn) and low polydispersity (PDI < 

1.17).  The living characteristic of the RAFT polymerization process was confirmed by 

the linearity between the Mn values of PVBA and monomer conversions.  Well-defined 

PVBA was further used as a macromolecular chain transfer agent in RAFT 
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polymerization of styrene (St), and a block copolymer PVBA-b-PSt with relatively low 

polydispersity (PDI = 1.20) was successfully synthesized. 

  

123 
 



Introduction 

Construction of polymers with highly reactive functionalities that allow for 

further diverse functional group transformation (FGT) is an emerging research area in 

modern polymer chemistry.1  Among these polymers, polymers bearing aldehyde 

functionalities are attractive because aldehydes are among the most reactive substrates for 

FGT under mild reaction conditions.2  Conventional radical polymerization  of aldehyde-

functionalized monomers has been studied since 1950s,3 however, the resulting polymers 

lacked well-defined structures, due to the non-living nature of the polymerization 

technique.4-7  Anionic polymerization provided an alternative synthetic pathway for the 

preparation of aldehyde-functionalized polymers,8-13 but the stringent polymerization 

conditions and tedious preparation procedures (protection of monomer, polymerization, 

and deprotection of the resulting polymers were required) significantly restrict the 

applicability of this synthetic route. 

To efficiently prepare well-defined aldehyde-functionalized polymers, we 

investigated living radical polymerization of aldehyde-functionalized monomers.  In the 

past decade, reversible addition fragmentation chain transfer (RAFT) polymerization has 

been developed and demonstrated as a powerful tool in living radical polymerization.14,15  

Relative to other living radical polymerization techniques, one important advantage of 

RAFT is that it provides facile and homogenous living polymerization systems applicable 

for a wide variety of monomers under relatively mild reaction conditions.  In this 
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communication, we report our recent work of RAFT polymerization of 4-

vinylbenzaldahyde (VBA), as a new methodology for the construction of well-defined 

aldehyde-functionalized polymers 

 

Results and Discussion 

Several synthetic pathways for the synthesis of VBA have been reported in the 

literature, including transition metal-catalyzed cross-coupling of 4-bromobenzaldehyde 

with ethylene or vinyl reagents, Grignard addition to N,N-dimethyl formamide (DMF) 

followed by acid hydrolysis, and Wittig olefination.5-7  We prepared VBA by Wittig 

olefination of 4-(diethoxymethyl)benzaldehyde, a commercially available mono-

protected benzene-1,4-dicarboxaldehyde, followed by deprotection (Scheme 5.1, a slight 

modification from Dhal’s method6), because this reliable synthetic pathway had 

satisfactory yield (82% over 2-steps) with feasible scale-up and simple work-up 

protocols.  As demonstrated by Dhal et al.,6 radical polymerization of the intermediate 

monomer (diethyl acetal-protected styrene) followed by deprotection can also yield 

PVBA.  However, we prefer to directly introduce aldehyde functionalities by using VBA 

as a (co)monomer because of our intention to avoid deprotection of polymers and also the 

key concern that the post-polymerization deprotection step may result in deconstruction 

of useful functionalities presented on the polymers, including the terminal RAFT 

functionalities. 
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Scheme 5.1.  RAFT polymerization of VBA. 

 

RAFT polymerization of VBA was then conducted, and as a result, well-defined 

PVBA was synthesized (Table 5.1).  Relative to other chain transfer agents (CTAs) for 

RAFT polymerization systems, S-1-dodecyl-S΄-(α,α´-dimethyl-α´´-acetic 

acid)trithiocarbonate (DDMAT)16 can be prepared readily and has less unfavorable odor 

and therefore, it was used as the CTA in our study ([VBA]0/[CTA]0 = 100/1.0).  A typical 

thermal initiator 2,2'-azobis(isobutyronitrile) (AIBN) was used as initiator 

([CTA]0/[AIBN]0 = 1.0/0.1-0.2), and the polymerization temperature was chosen at 70-75 

°C to maintain a suitable decomposition rate of AIBN to provide initiating radicals.  

Because of the poor solubility of PVBA in its monomer, either 1,4-dioxane or 2-butanone 

was used as the polymerization solvent, and 2-butanone was further found as a better 

solvent than 1,4-dioxane for PVBA.17  For each trial, the monomer conversion was 

determined by 1H-NMR analysis of the final polymerization solution based on 

comparison of the integration area of resonances of aldehyde protons of PVBA at 9.8 
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ppm and the integration area of resonances of aldehyde protons of VBA at 10.0 ppm 

corresponding to the aldehyde proton signals from both polymer and monomer, 

respectively.  PVBA was obtained by precipitation of the final polymerization solution 

twice into cold pentane and drying under vacuum.18 

 

Table 5.1.  Reversible addition fragmentation chain transfer polymerization of 4-
vinylbenzaldehyde (VBA). 

Entry [VBA]0:[DDMAT]0:[AIBN]0 Solvent  T 
(°C) 

t 
(h) Conversiona Mn, calcd 

(Da) 
Mn, GPC 
(Da) PDIb 

1 100:1.0:0.1 1,4-dioxane 
(71 vol %) 70 11 56% 7,800 8,800 1.14 

2 100:1.0:0.1 1,4-dioxane 
(71 vol %) 70 22.5 76% 10,400 10,300 1.17 

3 100:1.0:0.2 1,4-dioxane 
(50 vol %) 70 7.5 45% 6,300 7,900 1.09 

4 100:1.0:0.1 2-butanone 
(50 vol %) 75 10 62% 8,500 9,100 1.07 

5 100:1.0:0.1 2-butanone 
(50 vol %) 75 17.5 73% 10,000 10,500 1.06 

Mn, calcd: Calculated number-average molecular weight based upon monomer conversion.  
Mn, GPC: Number-average molecular weight measured by Gel Permeation 
Chromatography (GPC).  PDI: Polydispersity index.  a By 1H-NMR.  b By GPC. 

 

The well-defined structure of PVBA was verified by 1H NMR and Gel 

Permeation Chromatography (GPC) analyses (Figure 5.1).  As shown in Figure 5.1(a), 

the integration area ratio of aldehyde protons vs. aromatic protons in PVBA was 

1.00:2.12:2.03, illustrating the essential absence of side reactions on the aldehyde 

functionality of VBA during the RAFT process and the quantitative presence of aldehyde 

functionalities in PVBA.  The presence of the ω-trithiocarbonate RAFT functionality in 

PVBA was indicated by its 1H NMR resonances at 0.88 and 3.22 ppm (for CH3 and 

SCH2, respectively), and the 1H NMR resonances of the benzylic proton of the terminal 
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VBA unit at 4.84 ppm with an integration area ratio of 1.00:1.93 with the SCH2 at 3.22 

ppm.  The number-average degree of polymerization was obtained by 1H NMR 

spectroscopy (DPNMR), by comparing the intensity of the benzylic proton of the terminal 

VBA unit at 4.84 ppm with that of the aldehydic proton signal at 9.8 ppm, and was found 

to agree with the number-average degree of polymerization obtained by GPC (DPGPC) 

within the error range (for example for sample entry 5 (Table 5.1), the DPNMR and DPGPC 

values were 78 and 75, respectively).  Molecular weight and molecular weight 

distribution data for the PVBA samples were determined by GPC using THF as eluent 

(Figure 5.1(b)).  All PVBA samples have not only excellent agreements between the GPC 

and calculated (based on monomer conversion) molecular weights but also monomodal 

molecular weight distributions with low polydispersties (PDI = 1.06-1.17), indicating 

well-controlled chain growth and very high chain transfer efficiency of the 

trithiocarbonate RAFT functionality in the polymerization process. 

 

Figure 5.1.  RAFT polymerization of 4-vinylbenaldehyde: (a) 1H-NMR spectrum of 
PVBA (500 MHz, CD2Cl2; Table 5.1 entry 5).  (b) GPC curve for PVBA (Table 5.1 entry 
5).  (c) GPC curve for PVBA (Table 5.1 entry 2) and PVBA-b-PSt (polymerization 
conditions: [Styrene]0/[macro-CTA]0/[Initiator]0 = 150/1.0/0.1, 70 vol % of 2-butanone, 
60 °C, 12 h). 
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To confirm the living characteristic of this RAFT polymerization system, the 

relationships between polymer molecular weights and monomer conversions were 

studied and the polymerization kinetics was also investigated (Figure 5.2).  During 

polymerization, aliquots were withdrawn from the reaction vessel at predetermined times 

and analyzed by 1H-NMR spectroscopy for determination of the monomer conversions 

and by GPC for determination of the polymer molecular weights and polydispersities. 

 
Figure 5.2.  Kinetic plots for RAFT polymerization of 4-vinylbenzaldehyde: (a) 
relationship of number-average molecular weight (Mn, ■) and polydispersity index (PDI, 
□) versus monomer conversion; (b) time dependence of monomer conversion [M] and 
ln([M]0/[M]t). (polymerization conditions: [VBA]0/[Chain Transfer Agent]0/[Initiator]0 = 
100/1.0/0.1, 50 vol % of 2-butanone, 75 °C). 
 

As shown in Figure 5.2(a), excellent linear agreement (R2 = 0.9976) between 

polymer molecular weight and monomer conversion was obtained, and the resulting 

polymers also maintained narrow molecular weight distributions (PDI = 1.07 to 1.11).  

Such results verified the living characteristics of the RAFT polymerization process.  As 

shown in Table 5.1, similar to conventional radical polymerization of VBA,4,5,7a RAFT 

polymerization of VBA proceeded relatively slowly.  Figure 5.2(b) depicts the kinetic 

plot of the polymerization.  Pseudo first-order kinetics were maintained at the initial 
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polymerization stage (~4 h), and then the kinetics deviated from linearity.  Because 

AIBN has a short half-life of ca. 3 h at 75 °C, such retardation in polymerization might 

essentially be the result of the decreased radical concentration due to the depletion of 

AIBN. 

The living characteristics of RAFT polymerization has allowed ready preparation 

of a broad variety of block copolymers.19  We also investigated the chain extension of the 

well-defined PVBA having terminal RAFT functionality by RAFT polymerization as a 

synthetic method for the preparation of aldehyde-functionalized block copolymers.  

Although copolymerizations of vinylbenzaldehydes with styrene have already been 

extensively studied,5,7 so far there is no literature report on the synthesis of block 

copolymers bearing pendant aldehyde functionalities by radical polymerization.  Using 

PVBA (Mn, GPC = 10,300 Da, PDI = 1.17) as macro-CTA and AIBN as initiator, RAFT 

polymerization of styrene ([St]0/[macro-CTA]0/[AIBN]0 = 150/1.0/0.1) was conducted at 

60 °C in 2-butanone (70 vol%).  The polymerization was allowed to proceed for 12 h, 

and 17% conversion of styrene was obtained, as measured by 1H NMR spectroscopy.  As 

shown in Figure 5.1(c), the formation of diblock copolymer PVBA-b-PSt (Mn,GPC = 

12,500 Da, PDI = 1.19) by chain extension from the PVBA-based macro-CTA was 

verified by GPC analysis.  Moreover, the good agreement between the experimental and 

calculated molecular weights (Mn,calcd = 12,900 Da) and the mono-modal molecular 
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weight distribution of the PVBA-b-PSt illustrates the quantitative chain transfer 

efficiency of the PVBA-based macro-CTA. 

 

Conclusions 

In summary, we have established RAFT homopolymerization of 4-

vinylbenzaldehyde as a new and facile synthetic method for the preparation of PVBAs 

with predictable molecular weights and low polydispersities.  The chain extension from 

PVBA for the preparation of block copolymers also has been explored and PVBA-b-PSt 

has been constructed.  To our knowledge, this is the first example of block copolymer 

bearing multiple aldehydes by direct polymerization without protected monomer, which 

was possible by applying radical polymerization.  We believe that these homo- and block 

(co)polymers can serve as templates for feasible access of polymers with more complex 

architectures or conjugates with bio-active substrates for biological and medicinal 

applications via well-developed carbonyl chemistry. 

 

Experimental Section 

All chemicals were purchased from Aldrich or Acros and were used as received 

without further purifications unless noted.  THF was distilled over sodium and stored 

under N2.  Styrene was distilled over CaH2 and stored under N2.  AIBN was recrystallized 
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from methanol and stored at 0 °C before use.  The chain-transfer agent DDMAT was 

synthesized as reported in the literature16 and stored at room temperature. 

1H NMR and 13C NMR spectra were recorded on solutions in CDCl3 on a Varian 

Mercury 300 spectrometer with the residual solvent signal as an internal standard.  Gel 

permeation chromatography (GPC) was conducted on a Waters 1515 HPLC (Waters 

Chromatography, Inc.) equipped with a Waters 2414 differential refractometer, a PD2020 

dual-angle (15° and 90°) light scattering detector (Precision Detectors, Inc.), and a 

three-column series PL gel 5μm Mixed C, 500 Å, and 104 Å, 300 × 7.5 mm columns 

(Polymer Laboratories Inc.).  The system was equilibrated at 35 °C in anhydrous THF, 

which served as the polymer solvent and eluent with a flow rate of 1.0 mL/min.  Polymer 

solutions were prepared at a known concentration (ca. 3 mg/mL) and an injection volume 

of 200 μL was used.  Data collection and analysis were performed, respectively, with 

Precision Acquire software and Discovery 32 software (Precision Detectors, Inc.).  

Interdetector delay volume and the light scattering detector calibration constant were 

determined by calibration using a nearly monodispersed polystyrene standard (Pressure 

Chemical Co., Mp = 90 kDa, Mw/Mn < 1.04).  The differential refractometer was 

calibrated with standard polystyrene reference material (SRM 706 NIST), of known 

specific refractive index increment dn/dc (0.184 mL/g).  The dn/dc values of the analyzed 

polymers were then determined from the differential refractometer response. 
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Synthesis of 4-Vinylbenzaldehyde.  To a 250 mL RB flask equipped with a 

magnetic stir bar dried with flame under N2 atmosphere at room temperature, was added 

methyltriphenylphosphonium bromide (10.8 g, 30.0 mmol) and 75.0 mL of dried THF.  

The reaction flask was cooled to -78 °C.  To this suspension, was added dropwise a 

solution of n-BuLi (1.6 M in hexane, 18.3 mL, 29.2 mmol) over 20 min.  The reaction 

mixture was stirred 30 min at -78 °C, then slowly was allowed to warm to room 

temperature and stirred for an additional 10 min at room temperature. 

The orange-red solution was cooled to -78 °C.  To this solution, a solution of the 

terephthaldehyde monodiethylacetal (5.0 g, 24 mmol) in 15.0 mL of dry THF was added 

dropwise over 1 h.  The reaction mixture was stirred 30 min at -78 °C, 3 h at 0 °C, and 

allowed to warm to room temperature over 2 h. 

The reaction was quenched by adding 10.0 mL of saturated NaHCO3 solution.  Water 

(100 mL) was added, the organic layer was collected and the aqueous layer was extracted 

with diethyl ether (20.0 mL × 3).  The combined organic layers were washed with brine, 

dried with anhydrous Na2SO4, and concentrated in vacuo.  The residue was used directly 

in the next reaction step without purification. 

To a solution of the residue in 70.0 mL of THF at 0 °C, was added dropwise, 15.0 mL 

of 0.1 N HCl solution over 15 min.  The reaction mixture was stirred for 1 h at 0 °C, 

slowly allowed to warm to room temperature, and then stirred for an additional 3 h at 

room temperature. 
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The THF was removed in vacuo, CH2Cl2 (50 mL) was added, and the aqueous layer 

was extracted three times with 15.0 mL of CH2Cl2.  The combined organic layers were 

washed with brine, dried over anhydrous Na2SO4, and concentrated.  Purification by 

column chromatography afforded the final product as a colorless oil (1:20 Et2O/hexane, 

v/v).  Yield 2.7 g, 82%.  1H-NMR (300 MHz, CDCl3, ppm): δ 5.45 (dd, J = 11.0 Hz, 0.6 

Hz, 1H), 5.92 (dd, J = 17.4 Hz, 0.6 Hz, 1H), 6.78 (dd, J = 11.0 Hz, 17.4 Hz, 1H), 7.56 

(½ABq, J = 6.8 Hz, 1.8 Hz, 2H), 7.85(½ABq, J = 6.8 Hz, 1.8 Hz, 2H), 10.00 (s, 1H); 13C-

NMR (75 MHz, CDCl3, ppm): δ 117.6, 126.9, 130.3, 135.8, 136.1, 143.6, 191.9. 

Polymerization of 4-Vinylbenzaldehyde.  A general procedure of 

homopolymerization of 4-vinylbenzaldehyde under optimized reaction conditions was 

performed as follows. 

To a 25 mL Schlenk flask equipped with a magnetic stir bar dried with flame under 

N2 atmosphere, was added sequentially the DDMAT (45.8 mg, 0.125 mmol), 4-

vinylbenzaldehyde (1.7 g, 13 mmol), 2-butanone (2.5 mL), and AIBN (2.1 mg, 0.013 

mmol).  The reaction flask was sealed and stirred 10 min at room temperature.  The 

reaction mixture was degassed through several cycles of freeze-pump-thaw.  After the 

last cycle, the reaction mixture was recovered back to room temperature and stirred for 

10 min before immersing into a pre-heated oil bath at 75 °C to start the polymerization.  

The polymerization was monitored by analyzing aliquots collected at pre-determined 

times by 1H-NMR spectroscopy.  As the expected monomer conversion was reached, the 
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polymerization was quenched by quick immersion of the reaction flask into liquid N2.  

THF (5.0 mL) was added to the reaction flask and the polymer was purified by 

precipitation into 150 mL of cold pentane at 0 °C twice.  The precipitants were collected, 

washed with another 50 mL of cold pentane, and dried under vacuum overnight to afford 

the PVBA as yellow solid.  1H-NMR (300 MHz, CDCl3, ppm): δ 0.88 – 1.24 (br, dodecyl 

Hs), 1.52 – 2.06 (br, polymer backbone Hs), 3.22 (br, SCH2 of the chain terminus), 4.84 

(br, 1H from the polymer backbone benzylic terminus connected to trithiocarbonate), 

6.58 – 6.85 (br ½ABq, aromatic Hs), 7.33 – 7.62 (br ½ABq, aromatic Hs), 9.88 (br, 

aldehyde Hs); 13C-NMR (75 MHz, CDCl3, ppm): δ 41.1, 128.2, 130.0, 135.1, 151.1, 

191.8. 

Synthesis of PVBA-b-PS.  To a 10 mL Schlenk flask equipped with a magnetic stir 

bar dried with flame under N2 atmosphere, was added the PVBA as macro-CTA (1.02 g, 

0.1 mmol) and 2-butanone (4.0 mL).  The reaction mixture was stirred 1 h at room 

temperature to obtain a homogeneous solution.  To this solution was added styrene (1.56 

g, 15.0 mmol) and AIBN (1.6 mg, 0.01 mmol).  The reaction flask was sealed and stirred 

10 min at room temperature.  The reaction mixture was degassed through several cycles 

of freeze-pump-thaw.  After the last cycle, the reaction mixture was recovered back to 

room temperature and stirred for 10 min before immersing into a pre-heated oil bath at 60 

°C to start the polymerization.  The polymerization was monitored by analyzing aliquots 

collected at pre-determined times by 1H-NMR spectroscopy.  As the expected monomer 
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conversion was reached, the polymerization was quenched by quick immersion of the 

reaction flask into liquid N2.  THF (5.0 mL) was added to the reaction flask and the 

polymer was purified by precipitation into 150 mL of cold pentane at 0 °C twice. The 

precipitants were collected, washed with another 50 mL of cold pentane, and dried under 

vacuum overnight to afford the PVBA-b-PS as yellow solid. 
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Chapter 6 

 

Benzaldehyde-functionalized Polymer Vesicles 

[Portions of this work have been published previously as Guorong Sun, Huafeng Fang, 

Chong Cheng, Peng Lu, Ke Zhang, Amy V. Walker, John-Stephen Taylor and Karen L. 

Wooley ACS Nano 2009, 3(3), 673-681.] 

 

Abstract 

Polymer vesicles with diameters of ca. 100-600 nm and bearing benzaldehyde 

functionalities within the vesicular walls were constructed through self assembly of an 

amphiphilic block copolymer PEO45-b-PVBA26 in water.  The reactivity of the 

benzaldehyde functionalities was verified by crosslinking the polymersomes, and also by 

a one-pot crosslinking and functionalization approach to further render the vesicles 

fluorescent, each via reductive amination.  In vitro studies found these labelled 

nanostructures to undergo cell association. 
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Introduction 

Polymer vesicles, also known as “polymersomes”,1-6 are supramolecular 

assemblies of amphiphilic block copolymers7-14 or complementary random copolymers15 

with sizes ranging from tens of nanometers to several hundreds of microns (“giant 

vesicles”).  Similar to liposomes, polymersomes are composed of closed bilayer 

membranes with hollow cavities and, therefore, have tremendous potential for 

encapsulation and controlled delivery.16-20  Moreover, their structures can be manipulated 

on both polymeric and supramolecular levels to afford tunability of their properties, 

including size control over nanoscale to microscale dimensions,21-24 external stimulus 

responses,25-32 mechanical properties,33-35 membrane permeability,36-39 and in vivo fate.40, 

41 

Starting from the middle of the 1990s, a variety of polymer vesicles have been 

developed and studied as efficient and promising candidates for the delivery of both 

hydrophilic (encapsulated inside the hollow cavity) and hydrophobic (loaded within the 

bilayer membrane wall) molecules.  However, most of them consisted of amphiphilic 

block copolymers with limited functionalities for chemical transformations after vesicle 

construction.  While polymersome surface functionalizations have been reported through 

reactions with the functionalities installed at the chain ends of the hydrophilic 

segments,42, 43 there are limited literature reports associated with modifications of wall 

domains of polymersomes.  Up to date, only radical polymerization,33, 44 photo-induced 
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[2+2] cyclo-addition,15, 45-47 base-catalyzed self condensation of siloxanes,28, 48 and ring-

opening of epoxides49 have been employed to crosslink the walls of polymer vesicles. 

With the increasing interests in potential biomedical applications that utilize the 

membrane of polymersomes as a functional unit,18, 41, 50-53 introduction of highly reactive 

functionalities into polymer vesicles is being explored to expand the scope of chemistries 

that can be incorporated within such nanostructures.  Herein, we report our approach for 

constructing size-tunable polymersomes with benzaldehyde functionalities (a diverse 

electrophile that undergoes reaction under mild conditions), as well as their crosslinking 

and fluorophore-functionalization via reductive amination (Scheme 6.1). 

 
Scheme 6.1.  Construction and functionalization of PEO45-b-PVBA26 vesicles through 
reductive amination. 
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Results and Discussion 

Synthesis of Amphiphilic Block Copolymer Precursor.  Poly(ethylene oxide)-

b-poly(4-vinyl benzaldehyde) (PEO45-b-PVBA26), the amphiphilic diblock copolymer 

precursor for benzaldehyde-functionalized polymersomes, was prepared following our 

previously established method of reversible addition-fragmentation chain transfer 

(RAFT) polymerization of VBA.54  The synthesis was conducted by using a mono-

methoxy terminated PEO-based macro-chain transfer agent (macro-CTA, Mn = 2,360 Da, 

Figure 6.1a) and azobisisobutyronitrile (AIBN) in dry DMF heated at 75 °C for 3 h ( 

[VBA]0:[CTA]0:[AIBN]0 = 55:1:0.25; 55% conversion of VBA).  1H NMR spectroscopic 

analysis of the isolated block copolymer (Figure 6.1b) confirmed successful chain 

extension for the formation of the PVBA block (resonances at 1.5 to 2.5, 4.8, 6.5 to 7.5, 

and 9.8 ppm) and maintenance of the RAFT agent chain-end group (resonances at 0.8 to 

1.0, 1.3, and 3.2 ppm).  The copolymer had a well-defined block structure of PEO45-b-

PVBA26, which was supported by agreement between the number-average molecular 

weights by GPC (6,200 Da) and by 1H NMR spectroscopy (5,800 Da, based upon 

comparison of the intensities of the resonances of the aldehyde proton of the VBA units 

at 9.8 ppm and methylene protons of EO units at 3.6 ppm with the characteristic 

resonances of the methine proton of the terminal monomer unit at 4.8 ppm and the SCH2 

protons from the RAFT functionality at 3.2 ppm).  GPC analysis further showed that the 
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block copolymer has a narrow and mono-modal molecular weight distribution (Figure 

6.1c) with a polydispersity index (PDI) of 1.2. 

 
Figure 6.1.  Synthesis of and characterizations of PEO45-b-PVBA26 block copolymer 
precursor.  a) Schematic drawing of the synthesis of PEO45-b-PVBA26.  b) 1H NMR 
spectrum of PEO45-b-PVBA26.  c) GPC profile of PEO45-b-PVBA26. 

 

Construction and Characterization of PEO-b-PVBA Vesicles.  General 

conditions under which amphiphilic block copolymers with a glassy hydrophobic 

segment (Tg = 86 ºC for PVBA) can be assembled in aqueous solutions were then 

applied.7, 20, 23, 36, 47  The PEO45-b-PVBA26 block copolymer precursor was first dissolved 

into N,N-dimethylformamide (DMF, a good solvent for both PEO and PVBA blocks, ca. 

1.0 mg/mL), followed by addition of nanopure water (a selective solvent for the PEO 

block) until the water content reached 50 wt%.  Finally, the DMF was removed by 

extensive dialysis against water. 
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The vesicles were characterized by transmission electron microscopy (TEM, 

Figure 6.2a-b), scanning electron microscopy (SEM, Figure 6.2c-d), and dynamic light 

scattering (DLS, Figure 6.2e).  The vesicular structure was confirmed by TEM and SEM.  

DLS analyses showed the hydrodynamic diameters of these vesicles were in the range of 

ca. 100 to 600 nm, with an intensity-average hydrodynamic diameter distribution 

centered at 290 nm and number-average hydrodynamic diameter distribution centered at 

250 nm. 

 
Figure 6.2.  Characterization of polymer vesicles prepared from PEO45-b-PVBA26 block 
copolymer.  a-b) TEM images of vesicles (stained negatively with PTA).  c-d) SEM 
images of vesicles.  e) DLS histograms of vesicle size distributions (left: intensity-
average hydrodynamic diameter; right: number-average hydrodynamic diameter). 
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It is well-known that the formation of polymersomes usually passes through a 

morphological transformation of sphere-rod-vesicle.4  To test whether this general trend 

also applied to our system, D2O was added to a solution of PEO45-b-PVBA26 in DMF-d7 

(2.0 mg/mL) and aliquots were taken at predetermined water contents (9, 17, 23, and 33 

wt%, respectively) for 1H NMR and TEM measurements, the results are summarized in 

Figure 6.3. 

 
Figure 6.3.  Morphological transformation during the self assembly process of PEO45-b-
PVBA26.  a) 1H NMR spectra of aliquots in DMF-d7 with different D2O contents.  b-d) 
TEM micrographs of particles and vesicles (stained negative with phosphotungstic acid) 
at 9, 17, and 23 wt% of water content, respectively. 

 

At a low water content of 9 wt%, the 1H NMR spectrum (Figure 6.3a) showed no 

obvious difference with the spectrum of the block copolymer in neat DMF.  However, the 

TEM image (Figure 6.3b) clearly indicated the formation of nano-sized objects with 
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multiple morphologies including spherical particles, semi-closed membranes, and 

vesicles, but no rods were observed.  As the water content was increased to 17 wt%, the 

resonance signals corresponding to PEO backbone at 3.5 ppm became broader and the 

intensities of PVBA resonances (0.8-2.5, 6.7-7.6, and 9.9 ppm) decreased, indicating the 

reduced flexibility of both structural blocks.  TEM imaging (Figure 6.3c) revealed the 

formation of small nanoparticles whose morphology could not be unambiguously 

distinguished, and large aggregates (> 200 nm, Figure 6.3c insertion), which displayed 

large-compound vesicular morphology.  Finally, clear vesicular morphology appeared at 

23 wt% of water content with varied size ranging from 100 to 600 nm (Figure 6.3d).  At 

this point, essentially no proton resonances from PVBA blocks were observed in the 1H 

NMR spectrum, presumably because they were “tightly” packed into the vesicle walls 

without significant mobility.  Meanwhile, the resonances of PEO backbone protons were 

further broadened, likely due to the restricted mobility of the EO units, especially those in 

close proximity to the PVBA-based vesicle walls. 

Interestingly, when the “intermediate” sample with a low water content of 9 wt% 

was directly dialyzed against water, smaller vesicles with number-average hydrodynamic 

diameter of ca. 90 nm were produced (Figure 6.4).  These small vesicles were stable over 

eight months, with no apparent growth in size.  Although such size variation could not be 

interpreted quantitatively at this stage, these findings indicated kinetic control of self-

assembled nanostructures of block copolymers and might provide new insight for 
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adjusting vesicle size without changing the chemical composition of their polymer 

precursors. 

 
Figure 6.4.  Characterization of small PEO45-b-PVBA26 vesicles.  a-b) TEM images of 
vesicles (stained negatively with PTA).  c) DLS histograms of vesicle size distributions 
(number-average hydrodynamic diameter). 

 

Crosslinking of PEO-b-PVBA Vesicles via Reductive Amination.  The 

chemical accessibility of the aldehyde functionality in the vesicular wall was verified by 

reductive amination-based crosslinking with 2,2´-(ethylene-dioxy)bis(ethylamine) (0.3 

eq. relative to the aldehyde residues) and sodium cyanoborohydride (0.6 eq. relative to 

the aldehyde residues).  No significant aggregation of vesicles was observed, based upon 

the DLS analysis (Figure 6.5a) and TEM imaging (Figure 6.5b), suggesting that only 
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intra-vesicular crosslinking reactions occurred.  It is noteworthy that after crosslinking, 

the vesicles required buffer (5 mM pH 7.2 PBS with 5 mM of NaCl was used in our 

experiments) to remain suspended in aqueous solution.  The zeta potential (ζ) 

measurement showed a dramatic decrease of surface negative charge (-65.3 ± 0.7 mV vs. 

-25.7 ± 0.8 mV), which might be associated with protonation of amines that were 

incorporated into the vesicles as a result of the reductive amination chemistry.  The need 

for buffer and the less negative zeta potential value suggested that the structure of vesicle 

was chemically changed after crosslinking, which was confirmed by 1H NMR 

spectroscopy (Figure 6.5e).  New resonances corresponding to the diamino crosslinker 

appeared at 3.3 ppm and the ratio of aldehyde protons vs. aromatic protons was decreased 

from 1.0:4.6 to 1.0:6.2, indicating ca. 26% of aldehyde residues were consumed during 

the reaction (i.e., 43% incorporation efficiency based upon reaction stoichiometry, which 

was close to the results obtained by utilizing chromophores through the same chemistry, 

vide infra).  Typically, crosslinking leads to shorter relaxation times and broadening and 

losses of solution-state NMR signal intensities.  The observation of the new diamino 

crosslinker resonance may indicate covalent mono-attachment within the vesicles, 

providing a relatively low degree of crosslinking.  However, crosslinking indeed 

occurred, as was observed by the changes in the robust physical characteristics for the 

product vesicles.  Of the 26% consumption of aldehydes, only a small fraction would be 

required to effectively crosslink an entire vesicle.  Crosslinking significantly increased 
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the vesicle stability, and no appreciable variations in size or size distribution were found 

after lyophilization and re-suspension of these vesicles (Figure 6.5d). 

 
Figure 6.5.  Characterization of crosslinked PEO45-b-PVBA26 vesicles through reductive 
amination.  a) DLS histograms of non-crosslinked (blue) and crosslinked (red) vesicle 
distributions.  b-c) TEM (b) and SEM (c) images of crosslinked vesicles in 5 mM pH 7.2 
PBS.  d) TEM image of lyophilized crosslinked vesicles after re-suspension in 5 mM pH 
7.2 PBS.  e) 1H NMR spectra (DMSO-d6) of lyophilized crosslinked vesicles (red) and 
polymer precursor (black).  f) IR spectra (KBr) of lyophilized crosslinked vesicles (red) 
and polymer precursor (black). 

 

In Vitro Cellular Studies.  Amine-derived dyes were then incorporated into the 

vesicles either sequentially or coincidentally with the crosslinking reaction via the same 

chemistry, to demonstrate multiple couplings within a single nanostructure and to label 

the vesicles for biological studies.  The vesicles were functionalized with fluorecein and 

crosslinked (0.02 eq. of dye, 0.5 eq. of crosslinker, 1 eq. of NaCNBH3 relative to the 
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aldehydes, respectively), each via reductive amination in a one-pot approach.  UV-vis 

spectroscopy (Figure 6.6a) showed an absorption at 488 nm corresponding to the 

fluorescein, with an incorporation efficiency of ca. 35 %.  And again, no obvious size and 

morphological variations were observed for the fluorescein-functionalized non-

crosslinked and crosslinked vesicles, as confirmed by TEM (Figure 6.6b). 

 
Figure 6.6.  a) UV-vis profile of fluorescein dye-functionalized crosslinked vesicles.  b) 
TEM images of non-crosslinked (top) and crosslinked (bottom) fluorescent vesicles. 

 

In vitro CHO and HeLa cell experiments were then conducted for crosslinked and 

non-crosslinked fluorescein dye-labeled vesicles.  By fluorescence confocal microscopy, 

the vesicles were observed to undergo association with the cells, in a time-dependent 

manner.  No apparent fluorescence signal was detected after 1 and 4 h of incubation at 37 

ºC.  After 24 h, vesicles were visible under confocal microscopy (Figure 6.7e-h) and 

quantified by flow cytometry (Figure 6.7i) for both cell lines.  Interestingly, an increased 

fraction of vesicles was observed to be associated with HeLa cells after the vesicles were 

crosslinked, while the opposite trend was noticed for CHO cells, with a greater fraction of 
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non-crosslinked vesicles undergoing strong cellular interactions.  It is uncertain whether 

the vesicles are internalized within the cells.  Although flow cytometry data confirmed 

that the vesicles remained associated with the cells under demanding conditions, the 

confocal microscopy images suggest that the vesicles are localized preferentially near the 

cell membrane.  We hypothesize that such behavior may be the result of physical 

association or that it could be due to covalent coupling reactions between the aldehyde-

loaded vesicles and amino-groups on (membrane bound) proteins.  Although equimolar 

amounts of aldehyde and reducing agent were employed during the preparation of the 

fluoroescein-labeled, crosslinked vesicles, a portion of aldehydes still remain, as 

indicated by the 1H NMR (Figure 6.5e) and IR data (Figure 6.5f) collected during the 

crosslinking experiments (vide supra). 

The cytotoxicity of the crosslinked vesicles was also tested, using the cationic 

dendrimer polyfect as a positive control.  Compared with polyfect, these vesicles had 

insignificant cytotoxicity for both cell lines (Figure 6.7j-k), indicating their bio-

compatibility and making them promising materials for fundamental studies in 

biotechnology. 
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Figure 6.7.  In vitro evaluations of fluorescein-labeled vesicles.  a-b) Fluorescent 
confocal and bright-field images of CHO cells, respectively, without incubation with 
fluorescent vesicles.  c-d) Fluorescent confocal and bright-field images of HeLa cells, 
respectively, without incubation with fluorescent vesicles.  e-f)  Overlay of bright field 
and fluorescent confocal images of CHO cells incubated with crosslinked and non-
crosslinked vesicles, respectively.  g-h) Overlay of bright field and fluorescent confocal 
images of HeLa cells incubated with crosslinked and non-crosslinked vesicles, 
respectively.  i) Flow cytometry results.  j-k) Cytotoxicity results for CHO and HeLa 
cells, respectively. 

 

Conclusions 

In summary, we have synthesized polymer vesicles bearing benzaldehyde 

functionalities in the vesicular walls from self assembly of the block copolymer PEO45-b-

PVBA26.  The aldehyde functionalities were shown to allow for modifications through 

facile and practical chemistry.  Further investigations of the chemistry of these synthetic 

153 
 



and reactive vesicles, including optimizing the reaction efficiency, exploring its scope, 

and incorporating other labels and ligands, are ongoing now.  These robust 

nanostructures, with their ability to associate with the cell membrane, may find 

application as a nanoscopic device for repair or modification of cellular membrane 

functions. 

 

Experimental Section 

Materials.  Mono-methoxy terminated mono-hydroxy poly(ethylene glycol) 

(mPEG2k, MW = 2,000 Da, PDI = 1.06) was purchased from Intezyne Technologies 

(Tampa, FL) and was used without further purification.  S-1-dodecyl-S΄-(α,α´-dimethyl-

α´´-acetic acid)trithiocarbonate (DDMAT),55 4-(Dimethy1amino)pyridinium 4-

Toluenesulfonate (DTPS),56 and VBA54 were synthesized according to literature reports.  

Other reagents and solvents were purchased from commercial sources (Sigma-Aldrich, 

Acrose, and Fluka) and were used without further purification unless otherwise noted.  

Methylene chloride (CH2Cl2) was distilled from calcium hydride and stored under N2 

before using. 

Cell Culture.  Chinese Hamster Ovary cells (CHO-K1) and human cervix carcinoma 

(HeLa) cells were cultivated in DMEM containing 10% FBS, streptomycin (100 μg/mL), 

and penicillin (100 units/mL) at 37 °C in a humidified atmosphere containing 5% CO2. 
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Measurements.  1H NMR spectra were recorded on a Varian 500 MHz spectrometer 

interfaced to a UNIX computer using Mercury software.  Chemical shifts were referred to 

the solvent proton resonance.  Infrared spectra were obtained on a Perkin-Elmer 

Spectrum BX FT-IR system using diffuse reflectance sampling accessories with FT-IR 

Spectrum v2.00 software. 

Absolute molecular weight and molecular weight distribution were determined by Gel 

Permeation Chromatography (GPC).  GPC was performed on a Waters 1515 HPLC 

system (Water Chromatography Inc.), equipped with a Waters 2414 differential 

refractometer, a PD2020 dual-angle (15 and 90) light scattering detector (Precision 

Detectors Inc.), and a three-column series PL gel 5 μm Mixed columns (Polymer 

Laboratories Inc.).  The eluent was anhydrous tetrahydrofuran (THF) with a flow rate of 

1 mL/min.  All instrumental calibrations were conducted using a series of nearly 

monodispersed polystyrene standards.  Data were collected upon an injection of a 200 μL 

of polymer solution in THF (ca. 5 mg/mL), and then analyzed using Discovery 32 

software (Precision Detectors Inc.). 

Samples for Transmission electron microscopy (TEM) measurements were diluted 

with a 1 % phosphotungstic acid (PTA) stain (v/v, 1:1).  Carbon grids were exposed to 

oxygen plasma treatment to increase the surface hydrophilicity.  Micrographs were 

collected at 10,000, 20,000, 50,000, and 100,000 × magnification and calibrated using a 

41 nm polyacrylamide bead from NIST. 
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Scanning electron microscopy (SEM) measurements were performed on a Field 

Emission Scanning Electron Microscope (Hitachi s-4500), equipped with a NORAN 

Instruments energy dispersive x-ray (EDX) microanalysis system, a back scattering 

detector and a mechanical straining stage.  SEM samples were prepared with the 

following procedure.  Silica native oxide wafers (Addison Engineering Inc.) were cleaned 

with nitric acid and hydrochloride acid (1:3) and then cut into 5 mm × 5 mm square.  For 

each sample, 50 μL of aqueous solution was applied directly on the cleaned Si surface, 

and the solvent was kept in fume hood to evaporate at ambient temperature (21 ± 2 °C).  

The samples were immediately transferred to SEM instrument for measurement after 

completely dried. 

Hydrodynamic diameters (Dh) and size distributions for the vesicles in aqueous 

solutions were determined by dynamic light scattering (DLS).  The DLS instrumentation 

consisted of a Brookhaven Instruments Limited (Worcestershire, U.K.) system, including 

a model BI-200SM goniometer, a model BI-9000AT digital correlator, a model EMI-

9865 photomultiplier, and a model 95-2 Ar ion laser (Lexel Corp.) operated at 514.5 nm.  

Measurements were made at 25 ± 1 °C.  Scattered light was collected at a fixed angle of 

90°.  The digital correlator was operated with 522 ratio spaced channels, and initial delay 

of 5 μs, a final delay of 100 ms, and a duration of 6 minutes.  A photomulitplier aperture 

of 100 μm was used, and the incident laser intensity was adjusted to obtain a photon 

counting of between, 200 and 300 kcps.  Only measurements in which the measured and 
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calculated baselines of the intensity autocorrelation function agreed to within 0.1 % were 

used to calculate particle size.  The calculations of the particle size distributions and 

distribution averages were performed with the ISDA software package (Brookhaven 

Instruments Company), which employed single-exponential fitting, cumulants analysis, 

and CONTIN particle size distribution analysis routines.  All determinations were 

repeated for 5 times. 

Zeta potential (ζ) values for the vesicle solution samples in 5 mM phosphate buffered 

saline (PBS) were determined with a Brookhaven Instrument Co. (Holtsville, NY) model 

Zeta Plus zeta potential analyzer.  Data were acquired in the phase analysis light 

scattering (PALS) mode following solution equilibration at 25 °C.  Calculation of ζ from 

the measured nanoparticle electrophoretic mobility (μ) employed the Smoluchowski 

equation: μ = εζ/η, where ε and η are the dielectric constant and the absolute viscosity of 

the medium, respectively.  Measurements of ζ were reproducible to within ± 2 mV of the 

mean value given by 16 determinations of 10 data accumulations. 

The confocal microscopy was collected by using a Leica TCS SP2 confocal 

microscopy following excitation with an argon laser (488 nm).  5×105 cells were 

incubated on 35 mm MatTek glass bottom microwell dishes (MatTek Co.) for 24 h.  Then 

the medium was replaced with 2 mL of fresh medium containing with non-crosslinked or 

crosslinked vesicles (10 μg/mL of polymer) and incubated for another 24 h.  Cells were 

washed twice with PBS and the live cells were imaged. 
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Flow cytometric analysis for the strong association of the vesicles to the cells was 

performed using a FACS-calibur (Becton Dickinson) equipped with an argon laser 

exciting at a wavelength of 488 nm.  The cells were treated same as above.  For each 

sample, 20,000 events were collected by list-mode data that consisted of side scatter, 

forward scatter, and fluorescence emission centered at 530 nm.  The fluorescence was 

collected at a logarithmic scale with a 1024 channel resolution.  CellQuest software 

(Becton Dickinson) was applied for the analyses. 

The cytotoxicity of crosslinked vesicles was examined by CellTiter-Glo® Luminescent 

Cell Viability Assay (Promega Co.).  The CHO-K1 cells and HeLa cells were seeded 

respectively in the 96-well plate at a density of 1×104 cells/well and cultured for 24 h in 

100 µL DMEM containing 10% FBS.  Thereafter, the medium was replaced with 100 µL 

of fresh medium containing with different concentration particles.  After 24 h of 

incubation, 100 μL of the CellTiter-Glo® reagent was added.  Mixed contents and 

allowed the plate to incubate at rt for 10 min to stabilize luminescent signal, recorded the 

luminescence at Luminoskan Ascent® luminometer (Thermo Scientific) with integration 

time 1 second per well.  The relative cell viability was calculated as: cell viability (%) = 

(luminescence (sample)/luminescence (control)) × 100, where luminescence (control) was 

obtained in the absence of particles and luminescence (sample) was obtained in the presence 

of particles. 
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Synthesis of mPEG2k Macro-CTA.  To a solution of mPEG2000 (4.0 g, 2.0 mmol) 

in 40 mL of dry CH2Cl2 at room temperature (rt), was added DDMAT (1.2 g, 3.0 mmol) 

and dicyclohexylcarbodiimide (0.60 g, 2.9 mmol), the reaction mixture was stirred 10 

min.  After the additions of 4-di(methylamino)pyridine (36.6 mg, 0.3 mmol) and DPTS 

(375.0 mg, 1.2 mmol), the reaction mixture was further stirred 20 h at rt.  Then the 

reaction mixture was filtered with celite and the filtrate was placed at 4 ºC overnight, 

filtered with celite, and concentrated to ca. 15 mL.  After the solution was precipitated 

into 250 mL of dry ether at 0 ºC twice, the crude product obtained was further purified by 

flash column chromatography (2-3% MeOH/CH2Cl2, v/v) to afford mPEG2k macro-CTA 

as a yellow solid (3.2 g, 68% yield).  1H NMR (500 MHz, CD2Cl2, δ): 0.88 (t, J = 6.5 Hz, 

3H), 1.26 (m, 16H), 1.38 (t, J = 6.5 Hz, 2H), 1.66 (t, J = 7.5 Hz, 2H), 1.68 (s, 6H), 3.27 

(t, J = 7.2 Hz, 2H), 3.33 (s, 3H), 3.40-3.80 (m, 166H), 4.21 (t, J = 5.0 Hz, 2H). 

Synthesis of PEO45-b-PVBA26.  To a 10 mL Schlenk flask equipped with a magnetic 

stir bar dried with flame under N2 atmosphere, was added the mPEG2k macro-CTA (0.48 

g, 0.20 mmol) and dry DMF (2.5 mL).  The reaction mixture was stirred 1 h at rt to 

obtain a homogeneous solution.  To this solution was added VBA (1.46 g, 11.0 mmol) 

and AIBN (8.1 mg, 50 μmol).  The reaction flask was sealed and stirred 10 min at rt.  The 

reaction mixture was degassed through several cycles of freeze-pump-thaw.  After the 

last cycle, the reaction mixture was stirred for 10 min at rt before immersing into a pre-

heated oil bath at 75 °C to start the polymerization.  After 3.5 h, the monomer conversion 
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reached ca. 55% by analyzing aliquots collected through 1H-NMR spectroscopy.  The 

polymerization was quenched by cooling the reaction flask with liquid N2.  CH2Cl2 (5.0 

mL) was added to the reaction flask and the polymer was purified by precipitation into 

300 mL of cold diethyl ether at 0 °C twice. The precipitants were collected, washed with 

100 mL of cold ether, and dried under vacuum overnight to afford the block copolymer 

precursor as a yellow solid (1.18 g, 90% yield based upon monomer conversion).  1H 

NMR (500 MHz, CD2Cl2, δ): 0.88-1.24 (br, dodecyl Hs), 1.52-2.06 (br, PVBA backbone 

protons), 3.22 (br, SCH2 of the chain terminus), 3.33 (s, mPEG terminal OCH3), 3.34-

3.78 (m, OCH2CH2O from the PEG backbone), 4.84 (br, 1H from the PVBA backbone 

benzylic terminus connected to trithiocarbonate), 6.58-6.85 (br, Ar H), 7.33-7.62 (br, Ar 

H), 9.88 (br, CHO);  13C NMR (150 MHz, DMSO-d6, δ): 192.3 , 151.3, 134.4, 129.4, 

128.0, 69.8, 42.3, 40.4, 29.0; IR (KBr): 3433, 2923, 2856, 2732, 1699, 1604, 1575, 1453, 

1425, 1386, 1354, 1306, 1258, 1214, 1171, 1103, 1017, 951, 837, 726, 674, 552. 

General Procedure for Construction of PEO45-b-PVBA26 Vesicles.  To a solution 

of PEO45-b-PVBA26 block copolymer in DMF (ca. 1.0 mg/mL), was added dropwise an 

equal volume of nano-pure H2O via a syringe pump at a rate of 15.0 mL/h, and the 

mixture was further stirred for 16 h at rt.  The solution was then transferred to pre-soaked 

dialysis tubing with Molecular Weight Cut Off (MWCO) of ca. 3,500 Da and dialyzed 

against nano-pure H2O for 4 d to afford a solution of vesicles. 
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Crosslinking of PEO45-b-PVBA26 Vesicles.  To a solution of PEO45-b-PVBA26 

vesicles (7.4 mg of polymer, 33 μmol of aldehyde residues) in 30.0 mL of nano-pure 

H2O, was added a solution of 2,2'-(ethylenedioxy)-bis(ethylamine) (1.5 mg, 10 μmol) in 

1.0 mL of nano-pure H2O dropwise over 10 min.  The reaction mixture was allowed to 

stir for 24 h at rt.  NaBH3CN (1.3 mg, 20 μmol) in 1.3 mL of nano-pure H2O was then 

added to the reaction solution and further stirred for 16 h at rt.  Finally, the mixture was 

transferred to pre-soaked dialysis tubing (MWCO: ca. 3,500 Da) and dialyzed against 5.0 

mM PBS (pH 7.2, with 5.0 mM NaCl) for 5 d to remove the small molecule by-products 

and afford an aqueous solution of crosslinked vesicles. 

One-pot Functionalization and Crosslinking of PEO45-b-PVBA26 Vesicles.  To a 

solution of PEO45-b-PVBA26 vesicles (3.2 mg of polymer, 14 μmol of aldehyde residues) 

in 10.0 mL of nano-pure H2O, was added a solution of fluorescein-5-thiosemicarbazide 

(126.3 μg, 0.30 μmol) in 90.0 μL of DMF.  The reaction mixture was allowed to stir for 2 

h at rt in the absence of light.  To this reaction mixture, was added a solution of 2,2'-

(ethylenedioxy)-bis(ethylamine) (1.1 mg, 7.2 μmol) in 1.6 mL of nano-pure H2O 

dropwise over 10 min.  The reaction mixture was further stirred for 24 h at rt in the 

absence of light.  NaBH3CN (907.2 μg, 14.4 μmol) in 0.4 mL of nano-pure H2O was then 

added to the reaction solution and further stirred for 16 h at rt in the absence of light.  

Finally, the mixture was transferred to pre-soaked dialysis tubing (MWCO ca. 3,500 Da) 

and dialyzed against 5.0 mM PBS (pH 7.2, with 5.0 mM NaCl) for 5 d to remove the 
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small molecule by-products and afford an aqueous solution of functionalized and 

crosslinked vesicles. 
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Chapter 7 

 

Optimizations of Quantum Yield of Fluorescent Nanoparticles for 

Development of Potential Optical Imaging Contrast Agents 

 

Guorong Sun, Mikhail Y. Berezin, Jinda Fan, Ke Zhang, 

Samuel Achilefu, and Karen L. Wooley 

 

Introduction 

During the past decades, in vivo fluorescence imaging has experienced a 

renaissance with the “opening” of near-infrared (NIR) window (wavelength between 650 

and 900 nm) of electromagnetic spectrum.1-7  By utilizing fluorescent probes such as 

quantum dots,8-10 fluorescent proteins,11, 12 and organic NIR dyes,13-20 two main problems 

(i.e. tissue autofluorescense and attenuation) associated with deep tissue imaging have 

been partially overcome, and now, in vivo optical imaging of a few centimeters depth has 

been achieved. 

Among the organic NIR fluorophores (NIRFs), carbocyanine-based dyes are 

particularly of interest due to their high molar extinction coefficients (usually on the 

order of 105 M-1 cm-1) and tunability of photo-physical properties.19  These fluorophores 

are also facile to be functionalized with bioactive ligands to enable targeted imaging.15, 21-
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23  However, the in vivo application of cyanine dyes generally suffers from high 

degradation rate, short blood circulation times, non-specific tissue/organ 

accumulations.24-27  One practical and promising approach for prevailing over the above 

drawbacks is to encapsulate/couple cyanine dyes within/onto nanoscale platforms, which 

can provide protection and “stealth” properties from the blood clearance systems.14, 28-45  

The nanoscale platform can further be decorated with multiple homo- or heterogeneous 

targeting agents to improve targeting efficiency by taking advantage of the multivalent 

interactions with cell-surface receptors.  Furthermore, this approach may allow for the 

“hybridization” of different probes within a single nanoparticle to enable multimodal 

imaging for increased of the diagnostic accuracy.42, 46-50 

Spherical nanoparticles (NPs) represent the most widely applied nanostructures in 

molecular imaging.  To date, cyanine NIRF-functionalized dendrimers,37, 48 silica NPs,30, 

34, 35, 39, 44, 51, 52 and natural/engineered viruses29, 33 have been reported from academic and 

industrial research groups.  It is well-known that fluorescent tags often suffer from the 

fluorescence “self quenching” when placed in close proximity.  In order to obtain 

maximized fluorescence, the distance between fluorophores should be greater than the 

Forster radius to avoid the non-radiative energy transfer of the same fluorophores.  In this 

work, we investigated the stoichiometry dependence of fluorophores (fluorescein and 

cypate, respectively) per nanoparticle by calculating the distance of two adjacent 

fluorophores through both steady-state and dynamic emission spectra, in comparison with 
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the Forster radius.  We also proposed and examined a semi-quantitative model (vide 

infra) for estimating the maximum number of fluorophores per spherical nanoparticle 

while retaining satisfactory QY of the fluorophores. 

 

Experimental Section 

Materials.  Mono-methoxy terminated mono-hydroxy poly(ethylene glycol) 

(mPEG2k and mPEG5k, MW = 2,000 and 5,000 Da, respectively, PDI = 1.06 and 1.07, 

respectively) was purchased from Intezyne Technologies (Tampa, FL) and was used 

without further purification.  Cypate,14 HL-800,17 S-1-dodecyl-S΄-(α,α´-dimethyl-α´´-

acetic acid)trithiocarbonate (DDMAT),53 4-(Dimethy1amino)pyridinium 4-

Toluenesulfonate (DTPS),54 VBA,55 mPEG2k macro-chain transfer agent (macro-

CTA),56 and poly(ethylene oxide)-block-poly(N-acryloxysuccinimide)-block-polystyrene 

(PEO45-b-PNAS95-b-PS60)57 were synthesized according to literature reports.  Other 

reagents and solvents were purchased from commercial sources (Sigma-Aldrich, Acrose, 

and Fluka) and were used without further purification unless otherwise noted.  Methylene 

chloride (CH2Cl2) was distilled from calcium hydride and stored under N2 before using. 

Measurements.  1H NMR spectra were recorded on a Varian 500 MHz spectrometer 

interfaced to a UNIX computer using Mercury software.  Chemical shifts were referred to 

the solvent proton resonance.  Infrared spectra were obtained on a Perkin-Elmer 
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Spectrum BX FT-IR system using diffuse reflectance sampling accessories with FT-IR 

Spectrum v2.00 software. 

Absolute molecular weight and molecular weight distribution were determined by Gel 

Permeation Chromatography (GPC).  GPC was performed on a Waters 1515 HPLC 

system (Water Chromatography Inc.), equipped with a Waters 2414 differential 

refractometer, a PD2020 dual-angle (15 and 90) light scattering detector (Precision 

Detectors Inc.), and a three-column series PL gel 5 μm Mixed columns (Polymer 

Laboratories Inc.).  The eluent was anhydrous tetrahydrofuran (THF) with a flow rate of 

1 mL/min.  All instrumental calibrations were conducted using a series of nearly 

monodispersed polystyrene standards.  Data were collected upon an injection of a 200 μL 

of polymer solution in THF (ca. 5 mg/mL), and then analyzed using Discovery 32 

software (Precision Detectors Inc.). 

The N,N-dimethylformamide (DMF) GPC was conducted on a Waters 

Chromatography, Inc. (Milford, MA) system equipped with an isocratic pump model 

1515, a differential refractometer model 2414, and a two-column set of Styragel HR 4 

and HR 4E 5 µm DMF 7.8 × 300 mm columns.  The system was equilibrated at 70 °C in 

pre-filtered DMF containing 0.05 M LiBr, which served as polymer solvent and eluent 

(flow rate set to 1.00 mL/min).  Polymer solutions were prepared at a concentration of ca. 

3 mg/mL and an injection volume of 200 µL was used.  Data collection and analysis was 

performed with Empower Pro software (Waters, Inc.).  The system was calibrated with 
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poly(ethylene glycol) standards (Polymer Laboratories, Amherst, MA) ranging from 615 

to 442,800 Da. 

Samples for Transmission electron microscopy (TEM) measurements were diluted 

with a 1 % phosphotungstic acid (PTA) stain (v/v, 1:1).  Carbon grids were exposed to 

oxygen plasma treatment to increase the surface hydrophilicity.  Micrographs were 

collected at 100,000 × magnification and calibrated using a 41 nm polyacrylamide bead 

from NIST.  The number average particle diameters (Dav) and standard deviations were 

generated from the analysis of a minimum of 150 particles from at least three different 

micrographs.  The aggregation number (Naggr) was calculated based upon the diameter 

measured from TEM by using the following equation: 

Naggr = A
n

N
M

r
×

ρπ 3

3
4

     (1) 

where r is the radius of the NP core domain, ρ is the density of poly(4-vinyl 

benzaldehyde) (PVBA), Mn is the number-average molecular weight of PVBA block 

segment, and NA is the Avogadro constant. 

Hydrodynamic diameters (Dh) and size distributions for the nanoparticles in aqueous 

solutions were determined by dynamic light scattering (DLS).  The DLS instrument 

consisted of a Brookhaven Instruments Limited (Worcestershire, U.K.) system, including 

a model BI-200SM goniometer, a model BI-9000AT digital correlator, a model EMI-

9865 photomultiplier, and a model 95-2 Ar ion laser (Lexel Corp.) operated at 514.5 nm.  
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Measurements were made at 25 ± 1 °C.  Scattered light was collected at a fixed angle of 

90°.  The digital correlator was operated with 522 ratio spaced channels, and initial delay 

of 5 μs, a final delay of 100 ms, and a duration of 8 minutes.  A photomulitplier aperture 

of 400 μm was used, and the incident laser intensity was adjusted to obtain a photon 

counting of between, 150 and 200 kcps.  Only measurements in which the measured and 

calculated baselines of the intensity autocorrelation function agreed to within 0.1 % were 

used to calculate particle size.  The calculations of the particle size distributions and 

distribution averages were performed with the ISDA software package (Brookhaven 

Instruments Company), which employed single-exponential fitting, cumulants analysis, 

and CONTIN particle size distribution analysis routines.  All determinations were 

repeated for 5 times and the data were represented as mean values ± standard deviations 

between runs. 

For optical measurements, the fluorescein-based NPs were diluted with 0.1 M NaOH 

solution.  Cypate-based nanoparticles were measured in PBS buffer at pH 7.2 (5 mM with 

5 mM of NaCl).  Both samples were diluted to a concentration where the absorbance 

value at maximum absorption peak was less than 0.1 to avoid self-quenching between 

nanoparticles and photon re-absorption. 

The UV-vis absorption spectra of NPs were collected at room temperature using 

Varian Cary 500 Bio UV-visible spectrophotometer and quartz cuvette with 10 mm of 

light path. 

176 
 



The fluorescence spectra of NPs were obtained at room temperature using a Varian 

Cary Eclipse and Fluorolog III fluorescence spectrophotometer.  Fluorescence lifetime 

was measured using TCSPS method as described previously.  For NPs bearing 

fluoresceins, the fluorescence decays were measured in aqueous media using excitation 

source Nanoled® 460 nm, monitored emission at 570 nm with bandpass 20 nm.  For NPs 

bearing cypate, the fluorescence lifetimes were determined in aqueous media using 

excitation source Nanoled® 773 nm, monitored emission 820 nm with bandpass 20 nm.  

In both measurements, a two-exponential decay analysis was applied. 

The Foster radius of a homoFRET pair (R0) was calculated using previously 

developed FRET calculator from steady-state absorption and emission spectra using 

known equations: 

ܴ0 ൌ 0.211 ቀ݇2݊-4ܳDܬሺߣሻቁ
ଵ/଺

  Å   (2) 

where n is the refraction index typically assumed to be 1.4 for biomolecules in aqueous 

solutions; k2 is the orientation factor typically equal to 2/3 for random distributed 

fluorophores; QD is the quantum yield of the donor; ܬሺߣሻ is the spectral overlap integral, 

which is calculated by the following equation: 

ሻߣሺܬ ൌ ׬ ஺ߝሻߣ஽ሺܨ
∞
଴ ሺߣሻߣସ  M-1 cm-1 nm4  (3)  ߣ݀

where λ represents the wavelength in nm; ܨ஽ሺߣሻ represents the normalized fluorescence 

intensity at wavelength λ; ߝ஺ሺߣሻ represents molar absorptivity of the acceptor at given 

wavelength. 
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Synthesis of cypate-diamine.  To a DMF solution of Cypate (12.5 mg, 17.7 μmol) 

and 1-hydroxybenzotriazole (HOBt, 9.6 mg, 70.8 μmol) was added N,N´-

diisopropylcarbodiimide (DIC) (11.0 μL, 70.8 μmol), the resulting mixture was stirred for 

10 min.  Boc-ethylene diamine (6.7 μL, 42.3 μmol) was then added and the mixture was 

stirred overnight at room temperature (rt).  After removing the DMF in vacuo, a solution 

of trifluoroacetic acid (TFA), H2O, phenol, and thioanisole (85:5:5:5, v/v) was added and 

stirred for 1 h at rt.  The volatiles were removed under reduced pressure and the crude 

product was washed with diethyl ether (3 × 5mL) and purified by medium pressure 

chromatography with a C-18 reverse phase column (acetonitrile/water as eluent).  A 

green solid was obtained as pure product (10.9 mg, 60.6% yield).  MS (EI): 709.0 (M + 

1)+. 

Synthesis of HL-800-amine.  To a solution of HL-800 (10.4 mg, 11.2 μmol) and 2-

(1H-7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate 

methanaminium (HATU, 6.4 mg, 16.8 μmol) in DMF, was added diisopropylethyl amine 

(DIEA, 2.9 μL, 16.8 μmol), the resulting mixture was stirred at rt for 10 min.  Boc-

ethylene diamine (2.1 μL, 20.1 μmol) was added and the mixture was stirred overnight at 

rt.  The reaction mixture was then poured into 150 mL of diethyl ether.  Collect the solid 

precipitated out and a solution of TFA, H2O, phenol, and thioanisole (85:5:5:5, v/v) was 

added following by stirring for 1 h at rt.  The crude product was precipitated out by 

diethyl ether, washed with diethyl ether (3×5 mL) and purified by medium pressure 
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chromatography with a C-18 reverse phase column (acetonitrile/water as eluent).  The 

solvents were evaporated to give HL-800-amine (3.18mg, 29.2% yield) as a green solid.  

MS (EI): 955.2 (M + 1)+. 

Synthesis of mPEG5k macro-CTA.  To a solution of mPEG5000 (1.80 g, 0.36 

mmol) in 20 mL of dry CH2Cl2 at rt, was added DDMAT (0.20 g, 0.54 mmol) and 

dicyclohexylcarbodiimide (0.12 g, 0.54 mmol), the reaction mixture was stirred 10 min.  

After the additions of 4-di(methylamino)pyridine (13.2 mg, 0.11 mmol) and DPTS (68.6 

mg, 0.22 mmol), the reaction mixture was further stirred 20 h at rt.  Then the reaction 

mixture was filtered with celite and the filtrate was placed at 4 ºC overnight, filtered with 

celite, and concentrated to ca. 8 mL.  After the solution was precipitated into 150 mL of 

dry ether at 0 ºC twice, the crude product obtained was further purified by flash column 

chromatography (2-3% MeOH/CH2Cl2, v/v) to afford mPEG5k macro-CTA as a yellow 

solid (1.2 g, 60% yield).  1H NMR (500 MHz, CD2Cl2, δ): 0.88 (t, J = 6.5 Hz, 3H), 1.26 

(m, 16H), 1.38 (t, J = 6.5 Hz, 2H), 1.66 (t, J = 7.5 Hz, 2H), 1.68 (s, 6H), 3.27 (t, J = 7.2 

Hz, 2H), 3.33 (s, 3H), 3.40-3.80 (m, 440H), 4.21 (t, J = 5.0 Hz, 2H). 

Synthesis of PEO45-b-PVBA18.  To a 10 mL Schlenk flask equipped with a magnetic 

stir bar dried with flame under N2 atmosphere, was added the mPEG2k macro-CTA (0.24 

g, 0.10 mmol) and dry DMF (2.5 mL).  The reaction mixture was stirred 1 h at rt to 

obtain a homogeneous solution.  To this solution was added VBA (0.66 g, 5.0 mmol) and 

AIBN (3.2 mg, 20 μmol).  The reaction flask was sealed and stirred 10 min at rt.  The 
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reaction mixture was degassed through several cycles of freeze-pump-thaw.  After the 

last cycle, the reaction mixture was stirred for 10 min at rt before immersing into a pre-

heated oil bath at 75 °C to start the polymerization.  After 4 h, the monomer conversion 

reached ca. 30% by analyzing aliquots collected through 1H-NMR spectroscopy.  The 

polymerization was quenched by cooling the reaction flask with liquid N2.  CH2Cl2 (5.0 

mL) was added to the reaction flask and the polymer was purified by precipitation into 

300 mL of cold diethyl ether at 0 °C twice.  The precipitants were collected, washed with 

100 mL of cold ether, and dried under vacuum overnight to afford the block copolymer 

precursor as a yellow solid (0.35 g, 80% yield based upon monomer conversion).  1H 

NMR (500 MHz, CD2Cl2, δ): 0.88-1.24 (br, dodecyl Hs), 1.52-2.06 (br, PVBA backbone 

protons), 3.22 (br, SCH2 of the chain terminus), 3.33 (s, mPEG terminal OCH3), 3.34-

3.78 (m, OCH2CH2O from the PEG backbone), 4.84 (br, 1H from the PVBA backbone 

benzylic terminus connected to trithiocarbonate), 6.58-6.85 (br, Ar H), 7.33-7.62 (br, Ar 

H), 9.88 (br, CHO);  13C NMR (150 MHz, DMSO-d6, δ): 192.3 , 151.3, 134.4, 129.4, 

128.0, 69.8, 42.3, 40.4, 29.0; IR (KBr): 3433, 2923, 2856, 2732, 1699, 1604, 1575, 1453, 

1425, 1386, 1354, 1306, 1258, 1214, 1171, 1103, 1017, 951, 837, 726, 674, 552. 

Synthesis of PEO113-b-PVBA46.  To a 25 mL Schlenk flask equipped with a 

magnetic stir bar dried with flame under N2 atmosphere, was added the mPEG5k macro-

CTA (0.58 g, 0.11 mmol) and dry DMF (7.0 mL).  The reaction mixture was stirred 1 h at 

rt to obtain a homogeneous solution.  To this solution was added VBA (1.5 g, 11.0 mmol) 
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and AIBN (3.4 mg, 21 μmol).  The reaction flask was sealed and stirred 10 min at rt.  The 

reaction mixture was degassed through several cycles of freeze-pump-thaw.  After the 

last cycle, the reaction mixture was stirred for 10 min at rt before immersing into a pre-

heated oil bath at 75 °C to start the polymerization.  After 5.5 h, the monomer conversion 

reached ca. 47% by analyzing aliquots collected through 1H-NMR spectroscopy.  The 

polymerization was quenched by cooling the reaction flask with liquid N2.  CH2Cl2 (5.0 

mL) was added to the reaction flask and the polymer was purified by precipitation into 

300 mL of cold diethyl ether at 0 °C twice. The precipitants were collected, washed with 

100 mL of cold ether, and dried under vacuum overnight to afford the block copolymer 

precursor as a yellow solid (0.92 g, 75% yield based upon monomer conversion).  1H 

NMR (500 MHz, CD2Cl2, δ): 0.88-1.24 (br, dodecyl Hs), 1.52-2.06 (br, PVBA backbone 

protons), 3.22 (br, SCH2 of the chain terminus), 3.33 (s, mPEG terminal OCH3), 3.34-

3.78 (m, OCH2CH2O from the PEG backbone), 4.84 (br, 1H from the PVBA backbone 

benzylic terminus connected to trithiocarbonate), 6.58-6.85 (br, Ar H), 7.33-7.62 (br, Ar 

H), 9.88 (br, CHO);  13C NMR (150 MHz, DMSO-d6, δ): 192.3 , 151.3, 134.4, 129.4, 

128.0, 69.8, 42.3, 40.4, 29.0; IR (KBr): 3433, 2923, 2856, 2732, 1699, 1604, 1575, 1453, 

1425, 1386, 1354, 1306, 1258, 1214, 1171, 1103, 1017, 951, 837, 726, 674, 552. 

General procedure for construction of PEO-b-PVBA micelles.  To a solution of 

PEO-b-PVBA block copolymer in DMF (ca. 1.0 mg/mL), was added dropwise an equal 

volume of nano-pure H2O via a syringe pump at a rate of 15.0 mL/h, and the mixture was 
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further stirred for 16 h at rt.  The solution was then transferred to pre-soaked dialysis 

tubing with Molecular Weight Cut Off (MWCO) of ca. 3,500 Da and dialyzed against 

nano-pure H2O for 4 d to afford a solution of micelles. 

General procedure for one-pot functionalization and crosslinking of PEO-b-

PVBA micelles with fluorescein-5-thiosemicarbazide.  To a solution of PEO-b-PVBA 

micelles in 10.0 mL of nano-pure H2O, was added a solution of fluorescein-5-

thiosemicarbazide (20 mol%, 2 mol%, 1 mol%, and 0.5 mol%, relative to the aldehyde 

residues, respectively) in DMF.  The reaction mixture was allowed to stir for 2 h at rt in 

the absence of light.  To this reaction mixture, was added a solution of 2,2'-

(ethylenedioxy)-bis(ethylamine) (150 mol%, relative to the aldehyde residues) in nano-

pure H2O dropwise over 10 min.  The reaction mixture was further stirred for 48 h at rt in 

the absence of light.  NaBH3CN (200 mol%, relative to the aldehyde residues) in nano-

pure H2O was then added to the reaction solution and further stirred for 16 h at rt in the 

absence of light.  Finally, the mixture was transferred to pre-soaked dialysis tubing 

(MWCO ca. 3,500 Da) and dialyzed against 5.0 mM PBS (pH 7.2, with 5.0 mM NaCl) 

for 7 d to remove the small molecule by-products and afford an aqueous solution of 

fluorescein-functionalized crosslinked nanoparticles. 

General procedure for one-pot functionalization and crosslinking of PEO113-b-

PVBA46 micelles with cypate-diamine.  To a solution of PEO113-b-PVBA46 micelles 

(2.7 mg of polymer, 10.8 μmol of aldehyde residues) in 10.0 mL of nano-pure H2O, was 
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added a solution of cypate-diamine (1 mol%, 0.5 mol%, and 0.2 mol%, relative to the 

aldehyde residues, respectively) in DMF.  The reaction mixture was allowed to stir for 2 

h at rt in the absence of light.  To this reaction mixture, was added a solution of 2,2'-

(ethylenedioxy)-bis(ethylamine) (2.4 mg, 16.2 μmol) in nano-pure H2O dropwise over 10 

min.  The reaction mixture was further stirred for 48 h at rt in the absence of light.  

NaBH3CN (1.4 mg, 21.6 μmol) in nano-pure H2O was then added to the reaction solution 

and further stirred for 16 h at rt in the absence of light.  Finally, the mixture was 

transferred to pre-soaked dialysis tubing (MWCO ca. 6,000-8,000 Da) and dialyzed 

against 5.0 mM PBS (pH 7.2, with 5.0 mM NaCl) for 7 d to remove the small molecule 

by-products and afford an aqueous solution of functionalized and crosslinked 

nanoparticles. 

Micellization of PEO45-b-PNAS95-b-PS60.  To a solution of PEO45-b-PNAS95-b-PS60 

block copolymer in DMF (ca. 1.0 mg/mL), was added dropwise an equal volume of 

nano-pure H2O via a syringe pump at a rate of 15.0 mL/h, and the mixture was further 

stirred for 1 h at rt before using for the following reactions. 

Functionalization and crosslinking of PEO45-b-PNAS95-b-PS60 micelles with 

cypate-diamine or HL-800 amine.  To a solution of PEO45-b-PNAS95-b-PS60 micelles 

(4.8 mg of block copolymer precursor, 27.0 μmol of NAS residues) in 10 mL of 

DMF/H2O (v:v = 1:1) at rt, was added the solution of cypate-diamine (38.3 μg, 0.054 

μmol) or HL-800 amine (51.6 μg, 0.054 μmol) in 50 μL of DMF.  The reaction mixture 
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was allowed to stir for 2 h at rt in the absence of light.  To this reaction mixture, was 

added a solution of 2,2'-(ethylenedioxy)-bis(ethylamine) (1.0 mg, 6.8 μmol) in nano-pure 

H2O dropwise over 10 min.  The reaction mixture was further stirred for 24 h at rt in the 

absence of light and transferred to pre-soaked dialysis tubing (MWCO 6,000-8,000 Da) 

and dialyzed against 5.0 mM PBS (pH 7.2, with 5.0 mM NaCl) for 7 days to remove 

DMF, un-reacted crosslinker, and the small molecule by-products and afford an aqueous 

solution of crosslinked nanoparticles. 

One-pot functionalization and crosslinking of PEO113-b-PVBA46 micelle with 

HL-800-amine.  To a solution of PEO113-b-PVBA46 micelles (2.7 mg of polymer, 10.8 

μmol of aldehyde residues) in 10.0 mL of nano-pure H2O, was added a solution of HL-

800-amine (20.7 μg, 0.022 μmol) in DMF.  The reaction mixture was allowed to stir for 2 

h at rt in the absence of light.  To this reaction mixture, was added a solution of 2,2'-

(ethylenedioxy)-bis(ethylamine) (2.4 mg, 16.2 μmol) in nano-pure H2O dropwise over 10 

min.  The reaction mixture was further stirred for 48 h at rt in the absence of light.  

NaBH3CN (1.4 mg, 21.6 μmol) in nano-pure H2O was then added to the reaction solution 

and further stirred for 16 h at rt in the absence of light.  Finally, the mixture was 

transferred to pre-soaked dialysis tubing (MWCO ca. 6,000-8,000 Da) and dialyzed 

against 5.0 mM PBS (pH 7.2, with 5.0 mM NaCl) for 7 d to remove the small molecule 

by-products and afford an aqueous solution of functionalized and crosslinked 

nanoparticles. 
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Results and Discussion 

To construct fluorescent NPs, diblock copolymer (poly(ethylene oxide)-block-

poly(4-vinyl benzaldehyde, PEO-b-PVBA) and triblock copolymer (poly(ethylene 

oxide)-block-poly(N-acryloxysuccinimide)-block-polystyrene, PEO-b-PNAS-b-PS) 

micelles were functionalized with fluorescein-5-thiosemicarbazide and amine-terminated 

carbocyanine dyes through either reductive amination or amidation chemistry.  The PEO-

b-PVBA diblock copolymers I (PEO45-b-PVBA18, Mn, NMR = 4,700 Da, Mn, GPC = 3,900 

Da, PDI = 1.2, Figure 7.1A) and II (PEO113-b-PVBA46, Mn, NMR = 12,600 Da, Mn, GPC = 

12,400 Da, PDI = 1.4, Figure 7.1B)58 were used for construction of core functionalizable 

crosslinked nanoparticles while the PEO-b-PNAS-b-PS triblock copolyper III (PEO45-b-

PNAS95-b-PS60, Mn, NMR = 18,400 Da, PDI = 1.2, Figure 7.1C) was utilized as precursor 

for shell crosslinked nanoparticles.  All block copolymers were prepared through 

reversible addition-fragmentation chain transfer (RAFT) polymerization,59-61 based upon 

our previous reports.56, 57  The PEO (MW = 2, 000 and 5,000 Da, respectively) was 

selected as hydrophilic segment because of its good water solubility, well-known 

biocompatibility, and low immunogenic response.62  PVBA was used as the hydrophobic 

and reactive segment due to the broad reaction scope and the mild reaction condition of 

aldehyde functionality, especially under aqueous conditions.  PNAS acted as pre-installed 

active ester for reaction with amine-functionalized fluorophores. 
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Figure 7.1.  Characterizations of PEO45-b-PVBA18 (I), PEO113-b-PVBA46 (II), and 
PEO45-b-PNAS95-b-PS60 (III) block copolymer precursors.  A): 1H NMR spectrum (left, 
500 MHz, CD2Cl2) and THF-GPC profile (right) of PEO45-b-PVBA18 block copolymer.  
B): 1H NMR spectrum (left, 500 MHz, CD2Cl2) and THF-GPC profile (right) of PEO45-b-
PVBA18 block copolymer.  C): A): 1H NMR spectrum (left, 600 MHz, CD2Cl2) and 
DMF-GPC profile (right) of PEO45-b-PNAS95-b-PS60 block copolymer. 
 

Aqueous assembly of block copolymer I and II followed conventional methods 

for micellization of amphiphilic block copolymers with a glassy hydrophobic block 

segment.  PEO selective solvent, i.e. water, was slowly (ca. 15 mL/h) added to the 

solution of PEO-b-PVBA in organic solvent (DMF, ca. 1.0 mg/mL) to induce the 
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micellization and further stabilize the formed aggregates.  Finally, the organic solvent 

was removed through dialysis against water to afford PEO-b-PVBA micelles with PEO 

shell and PVBA core domains.  The uniformity and narrow size distribution of the 

assembled micelles were demonstrated through the combination of DLS and TEM 

(Figure 7.2).  The DLS measurements showed that these micelles had intensity-averaged 

hydrodynamic diameter (Dh, intensity) of 23 ± 2 nm (from PEO45-b-PVBA18) and 26 ± 2 nm 

(from PEO113-b-PVBA46), respectively.  TEM micrograph revealed their globular shape 

with an average core domain diameter (Dav) of 13 ± 1 nm and 19 ± 1 nm, respectively, 

depending upon the length of PVBA block segment. 

 
Figure 7.2.  Characterization of PEO-b-PVBA micelles.  A) Intensity-average weighted 
hydrodynamic diameter distribution histogram by DLS (top) and TEM micrograph 
(bottom, stained with PTA) of PEO45-b-PVBA18 micelle.  B) Intensity-average weighted 
hydrodynamic diameter distribution histogram by DLS (top) and TEM micrograph 
(bottom, stained with PTA) of PEO113-b-PVBA46 micelle. 
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One-pot chemical functionalization with fluorescein-5-thiosemicarbazide and 

crosslinking with diamine crosslinker of the PEO45-b-PVBA18 micelles were achieved, 

following our previously established reductive amination protocol (Scheme 7.1A).56  

Similar to our previous reports,56 buffer solutions with certain ionic strength (pH 7.2 5 

mM PBS with 5 mM of NaCl in this study) were found to be required to prevent the 

precipitation of the crosslinked nanoparticles.  For NP1 (prepared with a feeding ratio of 

fluoresceins/aldehydes = 0.2:1), the DLS (Dh, intensity = 21 ± 1 nm) and TEM (Dav = 13 ± 1 

nm) characterizations of the functionalized crosslinked NPs showed no obvious 

morphology, size, and size distribution variations (Figure 7.3A), compared with the 

micelle precursors (Figure 7.2A).  UV-Vis measurement of the fluorescein-NP solutions 

revealed that a slight red-shift of ca. 8 nm (Figure 7.3E left) occurred for the maximum 

absorption peak (λmax, 496 nm for the fluorescein-functionalized NPs v.s. 488 nm for the 

unconjugated fluorescein), which might be related to the change of fluorescein local 

environment before and after incorporation into the nanostructure.  Although the 

thiosemicarbazide is a strong nucleophile, the coupling efficiency of fluorescein into NP 

was only ca. 12%.  This might be associated with the low accessibility of hydrophilic 

fluoresein to the hydrophobic benzaldehyde functionalities (packed inside the 

hydrophobic core domain of the micelle). 
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Scheme 7.1.  Construction of fluorescent nanoparticles through reductive amination (A) 
and amidation (B). 
 

Steady state fluorescence spectrum of the diluted NP solution was recorded at the 

excitation wavelength of 450 nm over the range of 465-650 nm and shown in Figure 

7.3E.  Compared with small fluorescein molecule, much lower fluorescence emission 

intensity of the NP1 sample (200-fold drop at the same concentration magnitude) was 

observed.  We attributed the decrease in fluorescence of attached fluorescein moieties to 

intra-nanoparticle self-quenching, i.e., the combined effects of homoFRET (non-radiative 

energy transfer of the same fluorophores located in close proximity to each other) caused 
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by incorporating ca. 150 dyes into a confined space with ca. 13 nm of diameter (vide 

infra). 

We also conducted the R0 measurement (see Experimental Section for details) and 

the result was 4.67 nm, similar to the literature value (4.4 nm).  The distance between two 

fluorescein moieties on the NPs (r) were calculated from both steady-state and dynamic 

emission spectra by using the following equations: 

ݎ ൌ ܴ଴ ቀ
ி೏ೌ ஺௕௦೏ೌ⁄
ி೏ ஺௕௦೏⁄ ቁ

ଵ/଺
  nm for steady-state emission  (4) 

where Fda is the fluorescence intensity of the donor in the presence of acceptor, and Fd is 

the fluorescence intensity of the donor in the absence of acceptor, Absda is absorbance of 

the donor in the presence of acceptor, Absd is absorbance of the donor in the absence of 

acceptor. 

and ݎ ൌ ܴ଴ ቀ
ఛ೏ೌ
ఛ೏
ቁ
ଵ/଺

  nm for dynamic emission   (5) 

where τda represents the relative fluorescence lifetime of the donor in the presence of 

acceptor, and τd in the absence of acceptor.  The calculated results, together with the 

experimentally optical characteristics of the samples, were summarized in Table 7.1. 
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Figure 7.3.  Characterizations of NP1-4.  A-D) Intensity-average weighted 
hydrodynamic diameter distribution by DLS (top) and TEM micrograph (bottom, stained 
with PTA) of NP1-4, respectively.  E) UV-Vis (left) and fluorescence emission (middle 
and right) spectra of Control1 (Fluorescein, dashed) and NP1 (solid).  F) UV-Vis (left) 
and fluorescence emission (middle and right) spectra of Control2 (Fluorescein, dashed) 
and NP2 (solid).  G) UV-Vis (left) and fluorescence emission (middle and right) spectra 
of Control3 (Fluorescein, dashed), NP3 (short dashed) and NP4 (solid). 
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Table 7.1.  Calculated distance between two adjacent fluorescein moieties incorporated 
into nanoparticles and the optical characteristics of fluorescent nanoparticles. 

Sample Dh, intensity 
(nm) 

Dav 
(nm) Nagg Dyes/NPa D 

(nm) 
τb 

(ns) 
r(τ)c 
(nm) Φd r(Φ)e 

(nm) 
Control1f ─ ─ ─ ─ ─ 3.95 ─ 0.79 ─ 

NP1 21 ± 1 13 ± 1 350 150 1.88 2.07 4.75 0.005 2.0 
Control2f ─ ─ ─ ─ ─ 3.88 ─ 0.79 ─ 

NP2 22 ± 2 13 ± 1 350 15 5.95 2.97 5.69 0.088 3.3 
Control3f ─ ─ ─ ─ ─ 3.92 ─ 0.79 ─ 

NP3 24 ± 2 19 ± 1 430 15 8.69 3.33 6.23 0.233 4.04 
NP4 24 ± 2 19 ± 1 430 30 6.15 3.11 5.84 0.215 3.97 

a Calculated based upon ε = 66,000 M-1 cm-1.  b Fluorescence average lifetime.  c Distance 
between two fluorophores based upon lifetime measurement.  d Fluorescence quantum 
yield.  e Distance between two fluorophores based upon quantum yield.  f Fluorescein as 
control (Control1 for NP1 measurement, Control 2 for NP2 measurement, and 
Control3 for NP3 and NP4 measurements, respectively). 
 

We have previously established a semi-quantitative model for evaluation of the 

nanoparticle surface coverage density.63  Because only ~ 2.5% of the VBA units were 

actually “decorated” with fluorescein, the fluorescein molecules should be attached to the 

most accessible VBA units, i.e. benzaldehydes around the periphery of the core domain.  

Therefore, the previous model could be easily revised to estimate the distance between 

adjacent fluorecein molecules (depicted as D in Scheme 7.1 insertion) through the 

following equation: 

D = 
N
D 2)( avπ   nm      (6) 

where N denotes the number of fluorophores per NP (obtained from the number of 

fluorophores per polymer chain and the aggregation number of polymer chains estimated 

to be within each NP, see Experimental Section for details), and Dav is the averaged 

diameter of the core domain of NP. 
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Theoretically, no energy would be transferred and therefore no quenching would 

occur if the distance between two fluororeceins exceeds 9 nm.  For NP1, the calculated 

distances between two fluorescein molecules, both from our model prediction using eq. 

(6) (1.88 nm) and from the experimental calculations (2.00 nm from steady state and 4.75 

nm from dynamic state, respectively), were far below 9 nm and substantial self-

quenching (over 45% of the emission energy was transferred to acceptors) were expected.  

The variation of the distance between steady-state and dynamic emission spectra was 

attributed to the more complex decay of NP1.  In fact, the average lifetime results in 

Table 7.1 were the results of deconvolution of decays using two-exponential decay laws 

and the multiexponentiality of decays suggested the presence of many distance between 

fluorescein moieties. 

To reduce the homoFRET effect, the easiest method was to decrease the number 

of fluorophores per nanoparticle.  Therefore, NP2 with ca. 15 fluoreceins per NP was 

prepared from the same block copolymer micelle as NP1, maintaining similar size (Dh, 

intensity = 22 ± 2 nm and Dav = 13 ± 1 nm) and size distribution (Figure 7.3B).64  

Significant improvement of QY was observed by a factor of 18 (Table 7.1), due to the 

increase of the distance between fluorescein moieties, as calculated from experimental 

data and the proposed model (Table 7.1). 

However, the QY for NP2 was still below 0.1.  Also, ca. 25% of the energy was 

non-radiatively transferred to other fluoresceins, based upon the lifetime measurement.  
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Further decrease of fluorescein density is expected to enhance QY, but the overall 

fluorescence intensity per NP still would not reach a desired level due to the lack of 

fluorophores.  Theoretical estimation indicated that, for the PEO45-b-PVBA18 system (13 

nm diameter core), there can be no more than 5 fluoresceins per particle that are 

separated by at least 9 nm.  The prediction made this system less attractive for further 

optimization because at such a small loading capacity, even the QY for each fluorophore 

can be enhanced, the overall fluorescence cannot be indefinitely improved due to the 

fewer number of fluorophores per particle. 

From equation (6), there exists a linear relationship between D and Dav at fixed 

dye loadings, which indicates that the size increase of nanoparticle core domain would 

facilitate the enhancement of luminescence efficiency.  Therefore, it is desired to use 

particles with larger cores for fluorophore functionalization.  NP3 and NP4 with larger 

core sizes (19 vs. 13 nm, Table 7.1 and Figure 7.3C-D) were then prepared from PEO113-

b-PVBA46 block copolymer micelles.65 

With a core size of 19 nm and 15 fluorescein molecule/NP, the calculated D for 

NP3 was 8.69 nm, which was close to the “9 nm requirement”.  In fact, only 15.7% of the 

absorbed energy was non-radiatively transferred between fluorescein moieties (based 

upon lifetime measurement).  As a result, QY of NP3 was increased to 0.233, a 2.5-fold 

enhancement compared with NP2.  For NP4, which bears 30 fluoreceins per particle, a 

slight drop of QY (0.215) was observed, likely due to the relative proximity between 
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fluorophores (D = 6.15 nm).  However, the slightly decreased QY was compensated by 

the much increased number of fluorophores, rendering its overall fluorescence intensity 

190% as large as than that of NP3 (Figure 7.3G right). 

The PEO113-b-PVBA46 micelle system and the optimized stoichiometry of 

fluorescein loading (less than 1 mol%, relative to the aldehydes) were then extend to 

construct NIR fluorescent nanoparticles.  NP5-7 with ca. 70, 45, and 10 cypates per 

particle, respectively, were synthesized and subjected to photo-physical studies.  

Compared with the coupling yields of fluoresceins at ~ 12% to 15%, the cypate exhibited 

~ 36% to 47% incorporation efficiencies.  This improvement could to be attributed to the 

fact that cypate was much more hydrophobic than fluorescein and had more preference 

for the hydrophobic PVBA core. 

As shown in Figure 7.4A-C, NP5-7 displayed well-defined globular shape and 

narrow size distributions.  Interestingly, although the UV-Vis spectra (Figure 7.4D) 

showed that NP5-7 had the identical maximum absorption wavelength at 800 nm, the 

fluorescence emission spectrum of NP7 bearing the least number of cypates exhibited a 

clear blue-shift of ca. 11 nm (813 nm vs. 824 nm for NP5 and 6, Figure 7.4E).  The origin 

of this blue-shift was believed to be associated with the increased molecular asymmetry20 

of cypate-diamine after incorporation into the nanostructures at lower stoichiometry, i.e., 

some of the cypate-diamines had both amine groups reacted while some only had one 

reacted. 
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Figure 7.4.  A-C) Intensity-average weighted hydrodynamic diameter distribution 
histogram by DLS (top) and TEM micrograph (bottom, stained with PTA) of NP5, NP6, 
and NP7, respectively.  D-E) UV-Vis and fluorescence profiles of NP5 (dashed), NP6 
(short dashed), and NP7 (solid), respectively. 
 

Based upon the model prediction equation (eq. (6)), the distance between 

neighboring cypate molecules for NP5-7 was 4.0 nm, 5.0 nm, and 10.7 nm, respectively 

(Table 7.2).  Compared with the general “non-homoFRET criterion” (> 12 nm), it could 

speculate that NP5 and NP6 would exhibit very low QYs, which were further confirmed 

196 
 



through the steady-state (QY = 0.001 and 0.004, respectively) and dynamic (lifetime less 

than 0.3 ns) measurements.  For NP7, increased QY value was expected due to the 

increased D value (over 10 nm).  The actual QY value was measured by steady state 

fluorescence to be 0.019, very close to free cypate in water (0.021). 

 
Table 7.2.  Characterizations and optical characteristics of NIR fluorescent nanoparticles 
from PEO113-b-PVBA46 system. 

Sample Dh, intensity 
(nm) 

Dav 
(nm) Nagg Dyes/NPa D 

(nm) Φb τc 
(ns) 

NP5 23 ± 1 19 ± 1 430 70 4.0 0.001 0.2d 
NP6 23 ± 1 19 ± 1 430 45 5.0 0.004 0.2d 
NP7 22 ± 2 19 ± 1 430 10 10.7 0.019 0.6 

a Calculated based upon ε = 200,000 M-1 cm-1.  b Relative to ICG in methanol (QY=0.09).  c 
Fluorescence average lifetime.  d Due to the limitation of instrument, the lifetime below 0.3 ns 
was not accurate. 
 

The lifetime and quantum yield of carbocyanine dye were also related with the 

property of local environment, i.e., the micropolarity of the media.66  For example, the 

lifetime of cypate was markedly increased from less than 0.2 ns to 1 ns as the solvent was 

switched from water to chloroform.  QY could also be affected but was less predictable.  

For the core crosslinked PEO-b-PVBA system, since the reactive aldehydes were located 

inside the core and the core-shell interfacial domains, the covalently conjugated NIR dyes 

were also confined to core periphery and core-shell interface areas and were theoretically 

exposed to relatively less polar surroundings, compared with the pure water molecules.  

To test whether the QY of cypate-functionalized NPs was affected by fluorophore 

location, shell-crosslinked NIR fluorescent nanoparticles (NIR-SCKs, SCK1-2) were 
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prepared, in which the carbocyanine molecules (Cypate for SCK1 and HL-800 for 

SCK2, respectively) were distributed throughout the shell domain (Scheme 7.1B). 

As mentioned earlier, the NIR-SCKs were synthesized through functionalization 

and crosslinking the PEO45-b-PNAS95-b-PS60 micelle with pendent NAS functionalities 

as pre-installed amidation sites along the polymer backbone for amine-terminated 

cyanine dyes and diamine crosslinkers.  After the work-up process (extensive dialysis 

against PBS buffer), the unreacted NAS residues were hydrolyzed to acrylic acids and 

then became components of shell domain of nanoparticles.  The cypate incorporation 

efficiency (ca. 15%) was lower compared with the PEO-b-PVBA system under similar 

cypate-diamine feeding ratio (0.2 mol%, relative to the reactive functionalities).  The 

particles showed relatively narrow size distributions and globular shape observed through 

DLS and TEM (Figure 7.5A-B).  The physical characteristics of SCK1 and SCK2 were 

summarized in Table 7.3. 
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Figure 7.5.  Characterizations and photo-physical properties of shell crosslinked NIR 
fluorescent nanoparticles.  A-B) Intensity-average weighted hydrodynamic diameter 
distribution histogram by DLS (top) and TEM micrograph (bottom, stained with PTA) of 
SCK1 and SCK2, respectively.  C) UV-Vis (left) and fluorescence (right) profiles of 
SCK1 (dashed) and SCK2 (solid), respectively. 

 

Table 7.3.  Characterizations and optical characteristics of NIR-SCKs from PEO45-b-
PNAS95-b-PS60 micelles. 

Sample Dh, intensity 
(nm) 

Dav 
(nm) Nagg Dyes/NPa Φb 

SCK1 59 ± 3 30 ± 1 1450 40 0.005 
SCK2 56 ± 2 30 ± 1 1450 20 0.036 

a Calculated based upon ε = 200,000 M-1 cm-1.  b Relative to ICG in methanol (QY=0.09). 
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Similar to NP7, the fluorescence emission spectrum of SCK1 showed a 10 nm 

blue-shift for the maximum emission peak (dashed curve in Figure 7.5D).  The blue-shift 

could also be attributed to the raise of cypate molecular asymmetry after conjugation.  

Although the particle size increased in both core and shell domains (59 nm vs. 23 nm for 

hydrodynamic diameter and 30 nm vs. 19 nm for core diameter), and NIR dye loading 

was decreased (40 vs. 45), the QY of SCK1 (0.005, Table 7.3) was still low.  Based upon 

our model prediction, the D value was between the range of 8.41 nm and 15.63 nm, 

where 8.41 nm represented the extreme that all dyes were located to the periphery of core 

domain and 15.63 nm represented the other extreme that all dyes were placed on the 

margin of shell domain.  And therefore, it was speculated that the limited enhancement of 

luminance efficiency might be originated from the increased environmental micropolarity 

after incorporation into the more hydrophilic shell domain. 

NIR-SCKs with improved optical characteristics were achieved while the cypate 

was replaced by HL-800 at a loading capacity of 20 HL-800s/SCK (SCK2, and the D 

value was between the range of 11.89 nm to 22.19 nm).  The QY of SCK2 (0.036, Table 

7.3) was enhanced by a factor of 7 and the overall fluorescence intensity gained a 2-fold 

increase, relative to SCK1.  HL-800 was further introduced into the PEO113-b-PVBA46 

system for synthesis of NP8 bearing 5 dyes/NP while keeping similar size as NP5-7 

(Figure 7.6A, Dh, intensity = 22 ± 1 nm and Dav = 19 ± 1 nm) and comparable D as SCK2 

(D = 15.06 nm).  Dramatic decrease of QY was observed (0.002 vs. 0.019), even though 
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the error of NP8 calculation was high due to the unreliable level of absorption intensity 

(Figure 7.6B).  These results suggested that the HL-800 might exhibit a reversed solvent-

polarity response as cypate and the mechanism was not clear now. 

 
Figure 7.6.  A) Intensity-average weighted hydrodynamic diameter distribution by DLS 
(top) and TEM micrograph (bottom) of NP8.  B-C) UV-Vis and fluorescence spectrum of 
NP8, respectively. 

 

Conclusions 

In summary, we have tested the photo-physical properties of crosslinked 

nanoparticles functionalized with fluoresceins or NIR carbocyanine (Cypate and HL-800) 

dyes at different stoichiometric loadings.  It is clear that the nanoparticle QY and 

fluorescence lifetime was determined by the distance between adjacent fluorophores.  

More importantly, the NP maximum dye loading capacity for retaining sufficient QY 
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could be predicted through a semi-quantitative model, which correlated well with the 

experimental results.  These fundamental results could be applied to the development of 

nanoparticle-based NIR optical devices for fluorescence imaging. 
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Chapter 8 

Conclusions 

 

Design and synthesis of discrete and robust polymeric nanostructures bearing the 

characteristic of serving as chemoselectively functionalizable platform for biomedical 

applications is an area of long-term interest in material science.  This desire becomes 

emergent as the significantly positive impacts of nanotechnology to traditional healthcare 

has been heightened in nearly every medical district, including diagnostics, therapy, and 

clinical applications. 

The efforts to achieve precise and facile manipulations over the functionalization 

of existed shell crosslinked (SCK) nanoparticle platform formed the first portion of this 

dissertation (chapter 2 and 3).  The general strategy exerted in these works was to design 

synthetic pathway of functionalized SCKs from a “more Bottom-up” approach, i.e., 

coupling functionalities to block polymer precursor before assembly into nanostructures.  

The efficiency of this approach was confirmed by the construction of DOTA-SCKs, with 

high loading capacity of radionuclide 64Cu (chapter 2, ca. 400 copper per spherical 

nanoparticle).  Extension of the “pre-grafting” strategy to build PEGylated SCKs (chapter 

3) with tunable biodistributions and the following targeting SCKs under developing now 

demonstrated the supremacy and versatility of this synthetic methodology.  Meanwhile, 

in vivo positron emission tomography (PET) imaging at low-dose administration was 

realized by the characteristic of enhanced labeling efficiency, provided by the SCKs 

prepared through this pathway. 
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Fundamental investigations in chapter 4 addressed the utilization of active ester 

(N-acryloxysuccinimide, NAS) and probing crosslinkers for better understanding the 

chemical and physical factors involved during the shell crosslinking process.  In the 

meantime, interesting photo-physical properties of pyrazine-based chromophores were 

discovered including the blue shift of maximum absorption and dual-emission of 

fluorescence, which strictly relied upon the internal nanostructure environment.  The pre-

installation of NAS as amidation site across the micellar structures not only reduced the 

reaction complexity entailed in carbodiimide mediated amidation, but also enabled 

selectivity for conjugation of functionalities bearing “critical” activity-related carboxylic 

acids, for example, the aspartic acid in RGD peptide motif. 

While amidation dominated half portion of this dissertation, the left-over part of 

this dissertation (chapter 5 to 7) was focus on one of the most reactive electrophiles, 

benzaldehyde, to exploit its controlled polymerization and applications of the form 

polymers as building component in supramolecular assembly and functionalization. 

Reversible addition-fragmentation chain transfer (RAFT) polymerization of 4-

vinyl benzaldehyde (VBA) was described in chapter 5.  The PVBAs were confirmed with 

predictable molecular weight, narrow molecular weight distribution, and well-define 

architectures.  Successful chain extension from PVBA based macro chain transfer agent 

(macro-CTA) afforded well-defined block copolymers with PVBA as reactive block 

segments allowing for post-polymerization modifications.  These studies actually 

initialized the implements of controlled radical polymerization of carbonyl-bearing 

monomers. 
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PVBA-based amphiphilic block copolymer systems (poly(ethylene oxide)-block-

poly(4-vinyl benzaldehyde), PEO-b-PVBA) were then established and their aqueous 

assemblies were studied (chapter 6 and 7).  Dramatic self assembly behavior was noticed 

between two block copolymers (PEO45-b-PVBA18 and PEO45-b-PVBA26) having small 

structural difference.  As characterized through a combination of transmission electron 

microscopy (TEM) and dynamic light scattering (DLS), uniform spherical micelles with 

narrow size distribution were formed from the PEO45-b-PVBA18 block copolymer 

precursor (chapter 7) while polymer vesicles (polymersomes, chapter 6) with tunable 

sizes were obtained from the PEO45-b-PVBA26 block copolymer, although the 

mechanism behind the difference was not clear at this stage. 

The reactivity of the benzaldehyde functionalities was verified by crosslinking the 

polymersomes, and also by a one-pot crosslinking and functionalization approach to 

further render them fluorescent, each via reductive amination.  The mechanic properties 

of croslinked vesicles have been significantly improved and the in vitro studies found 

these labelled vesicles to undergo cell association (chapter 6). 

In chapter 7, the one-pot sequential crosslinking and functionalization protocol 

through reductive amination was utilized for installation of fluorescent probes (regular 

fluorescein and near-infrared cypate) onto micelles from PEO-b-PVBA block 

copolymers.  The luminescence effiency of nanoparticles was evaluated and a clear 

relationship between quantum yield and the stoichiometry of loaded fluorophores was 

established. 

As mentioned earlier in the Introduction section, nanomaterials prepared from the 

Bottom-up approach have grown dramatically during the past decades.  The reason is 

215 
 



216 
 

multifactorial but the ultimate goal is very clear, i.e., continuous providing better 

nanoscale platforms for variety of applications. 
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NMR Spectra of Compounds 
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