Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-93-6

1993-01-01

SYMPHONY: A Hardware, Operating System, and Protocol
Processing Architecture for Distributed Multimedia Applications

Andreas D. Bovopoulos, R. Gopalakrishnan, and Saied Hosseini

This paper explores the architectural requirements for computers to be able to process
multimedia data streams such as video and audio. The I/0 subsystem is shown to be a
bottleneck, and a network backplane approach is suggested to alleviate this. The need to
provide end-to-end performance guarantees requires predictable performance of intra-machine
communication, and a schedulable bus with reservation is proposed to achieve this. In addition
this requires operating system (OS) mechanisms to negotiate and enforce QoS requirements of
applications. A real-time microkernel executive is proposed for each autonomous unit.
Requirements for real-time microkernel exeutive is proposed for each... Read complete abstract
on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Bovopoulos, Andreas D.; Gopalakrishnan, R.; and Hosseini, Saied, "SYMPHONY: A Hardware, Operating
System, and Protocol Processing Architecture for Distributed Multimedia Applications" Report Number:
WUCS-93-6 (1993). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/328

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.


https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/328?utm_source=openscholarship.wustl.edu%2Fcse_research%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/328

SYMPHONY: A Hardware, Operating System, and Protocol Processing
Architecture for Distributed Multimedia Applications

Andreas D. Bovopoulos, R. Gopalakrishnan, and Saied Hosseini

Complete Abstract:

This paper explores the architectural requirements for computers to be able to process multimedia data
streams such as video and audio. The I/0 subsystem is shown to be a bottleneck, and a network
backplane approach is suggested to alleviate this. The need to provide end-to-end performance
guarantees requires predictable performance of intra-machine communication, and a schedulable bus
with reservation is proposed to achieve this. In addition this requires operating system (0S) mechanisms
to negotiate and enforce QoS requirements of applications. A real-time microkernel executive is proposed
for each autonomous unit. Requirements for real-time microkernel exeutive is proposed for each
autonomous unit. Requirements for real-time scheduling and efficient interprocess communication
mechanisms are described. Finally the implications of the hardware and OS enhancements for the
protocol procesing mechanisms are discussed. A compositional approach to protocol organization that is
capable of catering to the wide variations in transport requirements of various media is described.


https://openscholarship.wustl.edu/cse_research/328?utm_source=openscholarship.wustl.edu%2Fcse_research%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/328?utm_source=openscholarship.wustl.edu%2Fcse_research%2F328&utm_medium=PDF&utm_campaign=PDFCoverPages

SYMPHONY: A Hardware, Operating System, and
Protocol Processing Architecture for Distributed

Multimedia Applications

Andreas D. Bovopoulos, R. Gopalakrishnan and
Saied Hosseini

WUCS-93-06

March 1993

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130-4899

This work was supported by an industrial consortium of Ascom Timeplex,
Bellcore, BNR, DEC, Gold Star Information and Communications, Italtel
SIT, NEC America, NTT and SynOptics Communications.






SYMPHONY: A Hardware, Operating System, And Protocol
Processing Architecture For Distributed Multimedia Applications

Andreas D. Bovopoulos™ R. Gopalakrishnan” Saied Hosseini®

*Department of Computer Science #Department of Electrical Engineering
and
Computer and Communications Research Center

Washington University in Saint Louis, USA

Abstract

This paper explores the architectural requirements for computers to be able to process
multimedia data streamns such as video and audio. The I/O subsystem is shown to be a
bottleneck, and a network backplane approach is suggested to alleviate this. The need
to provide end-to-end performance guarantees requires predictable performance of
intra-machine communication, and a schedulable bus with reservations is proposed to
achieve this. In addition this requires operating system (OS) mechanisms to negotiate
and enforce QoS requirements of applications. A real-time microkernel executive is
proposed for each autonomous unit. Requirements for real-time scheduling and effi-
cient interprocess communication mechanisms are described. Finally the implications
of the hardware and OS enhancements for the protocol processing mechanisms are dis-
cussed. A compositional approach to protocol organization that is capable of catering
to the wide variations in transport requirements of various media is described.

1. Introduction

Distributed processing of multimedia data is becoming a widespread reality, mainly due to the follow-
ing factors: (i) cost effective and high performance VLSI for microprocessors, DSP, and
coding/compression hardware, (ii) advances in broadband networking, (iii) advancement in fiber-optic
transmission technology, (iv) market pressure for new service deployment. Advances in high speed net-
working are being made possible by the development of the Asynchronous Transfer Mode (ATM)
technology, which will provide performance guarantees that make it possible to support connections whose
parameters (such as bandwidth, maximum delay, delay jitter and call types) can vary dynamically and
assume wide range of values. For an ATM network to support multiimedia applications, performance guar-
antees must be provided not only within the ATM network but on an end-to-end basis, i.e. at the application
level. The goal of current research into distributed multimedia systems is to extend QoS guarantees avail-
able at the edge of the network up to the end-applications within the end-system. It is becoming increasingly
evident, however, that this goal cannot be reached without fundamental changes to the architecture, operat-



ing system and applications architecture of the end-systems. The present project aims to address this
problem by proposing SYMPHONY: a hardware, operating system, and protocol processing architecture
Jor distributed multimedia applications.

The proposed SYMPHONY organization differs significantly from current implementations as follows.
The SYMPHONY hardware architecture provides direct paths from the network interface to data source-
s/inks with predictable and tailored transfer characteristics, a scalable I/O bus architecture, and back-to-back
cell processing at high input link rates of up to 620 Mbps. The SYMPHONY operating system organization
incorporates the notion of QoS in its resource management mechanisms, which are reflected in its resource
models, scheduling policies and resource sharing mechanisms. The SYMPHONY communication software
organization caters to the wide diversity in media types, connection modes, and application requirements
that will arise out of the capability of end-systems and networks to handle multimedia data.

2. Design Goals of SYMPHONY

‘With the computer becoming more of a tool for interactive communication, designing the communica-
tion and computing components in isolation of one another is inadequate and inappropriate for offering
multimedia services. The SYMPHONY architecture is based on the proposition that in order to provide
multimedia services with performance guarantees effectively, an architecture must be integrated with
respect to the following three aspects:

» Hardware design (Architecture Integration),

¢ Protocol support (Service Integration),

* (oS specification (Performance Integration).
Given the above requirements, the design goals for the SYMPHONY architecture are formulated as:
Translate the high transmission rates provided by the network into application level throughput.

2. Develop an architectural framework for integrating subsystems such as processors, storage, and digital
I/O devices for different media. Furthermore, define hardware and software interfaces to interconnect
subsystems.

3. Allow negotiation of performance parameters and provide guaranteed performance of the various sub-
systems that are used by an application.

4. Provide protocol support for communicating and processing digital streams of different media types
with media and application specific performance requirements.

In the following subsections, the above design goals will dictate design choices affecting the SYM-
PHONY hardware, operating systems and communications software organization. The advantages of the
proposed architecture when compared with more traditional architectures will be demonstrated,

3. Hardware Organization of SYMPHONY

In the previous section four design goals for the SYMPHONY architecture were identified. The first
three of the design goals affect the SYMPHONY hardware organization.

1. Translating the high transmission rates available on network links into application level throughput. To
achieve this, a network I/O interface capable of transferring cells at negotiated rates, to hardware units
attached to this interface at a negotiated rate is required. A viable strategy for providing this is to use
separate paths for unrelated data streams, and to eliminate multiplexing and asynchronous sharing of



physical data paths for in-band data. An alternate mechanism is to provide a multiplexed I/O intercon-
nect that can guarantee the negotiated rate between the respective devices.

2. Developing an architectural framework for integrating subsystems, and defining hardware and software
interfaces to interconnect subsystems. To achieve this a uniform design of each I/O interface that can
be dimensioned or parameterized for each processing unit depending on the unit’s capacity is required.

R-Bus }
o | NA T-Bus
Link <
A
h 4 v y
ATM Interface ATM Interface ATM Interface

h A

HP e l (D

l
€ M M M

Monitor

AVU MPU 10)

I-Bus

MPU: main processing unit
AVU: audio/visual unit BMU
BMU: bus management unit
SU: storage unit

R-Bus: receive bus

T-Bus: transmit bus

I-Bus: intemal bus

NIA: network interface adapter

Figure 1: SYMPHONY Hardware Organization

3. Allowing negotiation of performance parameters and providing guaranteed performance of the various
subsystems that are used by an application. To achieve this, mechanisms are required at the hardware
level to enforce the negotiated performance requirements between each application and the Operating
System (OS). It’s important that the negotiation be provided along the entire processing path for ensur-
ing end-to-end performance. For example, there could be a file transfer application, that streams File
Transfer Protocol Data Units (FTPDUs) directly from the disk controller unit to the network I/O unit.
Thus, the OS must ensure sufficient bandwidth between the disk controller and the network I/O unit to
meet the negotiated transfer rate. However a more conventional application would read FTPDUs into



the application buffers over an internal bus and so in addition, bandwidth must be reserved on the inter-
nal bus as well,

This above requirements have lead to the consideration of a number of choices for the hardware orga-
nization of SYMPHONY. The chosen design is depicted in Figure 1 and is based on a systems integration
approach which has the advantages of openness, simplicity of prototyping and satisfies the requirements
listed above. The hardware organization of SYMPHONY is viewed as a collection of specialized, self-con-
tained, autonomous units that communicate and coordinate their actions to execute an application. These
units are typically the main processing unit (MPU), the storage unit (SU), the network interface adaptor
(NIA), a graphics display controller, and multimedia boards for video and audio. The local resources and
activities of each peripheral unit are managed by a locally executing kernel that serves requests from other
units and can be controlled by the MPU. It is assumed that the quality of service provided by each unit is
negotiable and guaranteed by it’s local kernel,

A crucial aspect of the SYMPHONY hardware organization is the I/O interconnection architecture. In
the rest of this subsection, the design of two major components of the interconnection mechanism -namely
the ATM network I/O backplane and the system I/O backplane, are discussed in detail. In addition, the

design of the arbitration mechanism used and the bus interfaces for each device on these backplanes is pre-
sented.

CPU DMA M
A A F N >

< h 4 Y h 4

VIA Dc NIA
Y
. 4

Y Ethernet
M: memory

DMA: direct memory access controller
VIA: video interface adapter

DC: disk controller

NIA: network interface adapter

Figure 2: Conventional Hardware Organization

3.1. The Network I/O Backplane

This section describes the design of the ATM network interface and its interaction with the rest of the
system. In order to understand the factors that motivated the design, it is necessary to review how network
connectivity is provided in a conventional workstation,

In a conventional bus based workstation (see Figure 2), the network interface adaptor (NIA) is attached
to the system bus and is accessed as an I/O device by the main CPU. Typically, data to be transmitted is
copied into a linked list of frames located in shared dual ported memory, The CPU then issues a command
to the NIA, which then reads the common memory and transmits the frame according to the specific network



protocol. Similarly, incoming data is stored in the Receive Frame area in shared memory, and the system
CPU is informed of data arrival by an interrupt from the NIA.

This organization of the network interface is unsuitable for several reasons. First, the load on the com-
mon system bus can be heavy and unpredictable. This introduces a substantial and variable amount of delay
between the generation of a frame and its transmission. It is therefore difficult to assure throughput and
delay bounds for network traffic. Another drawback that is especially problematic for multimedia traffic
such as video, is that large volumes of network traffic Ioad the main IO bus and degrade system perfor-
mance as a whole[35]. Thus unhindered data transfer over critical paths must be provided, so as to be able
to provide assured bounds on delay and data transfer rate.

In order to solve the above problems, the network backplane approach shall be used. The network back-
plane provides a separate physical access path to the network interface for each device in SYMPHONY. 1t
also supports multicast within the machine in a natural manner. The arbitration mechanism that coordinates
access to the backplane assures negotiated performance and can be implemented entirely in hardware. Also
the design is'scalable as link speeds increase and new media types are introduced. The backplane has two
data buses and a set of control lines that are controlled by the Network Interface Adaptor. These components
are described below.

data N R-Bus
ATM In | (Clock recovery| clk _> HEC —_b GFC
—_—p h y S/P CLP
Cell delineation| 1k 1k 1k
clk > b » Checker c rr mpc
I-Bus
BIU

ATM Out | Transmission ‘__ HEC 4_ Scheduled polier T-Bus
— ]

Circuitry Generator Cell collector | .

A

GFC: generic flow control
CLP: celi loss priority

PT: payload type check

HEC: header error correction
BIU: bus interface unit

Figure 3: The NIA Unit

3.1.1. The NIA unit

The network interface adaptor, as the name suggests, is physically attached to the network medium. It
handles the low level hardware functions such as clock recovery, signal encoding/decoding, and serial/par-
allel conversion. The NIA terminates two buses - the R-Bus and the T-Bus. Once a cell is received over the
network, the NIA places it on the R-Bus to be read by the downstream devices. It also collects cells from
each upstream device over the T-Bus and multiplexes them over the ATM network channel. The NIA is the
only bus master over the T-Bus and R-Bus, and thus there is no overhead of bus arbitration or contention.



The logic on the NIA ensures that bus bandwidth is allocated in proportion to the bandwidth demand of each
device on the bus. The NIA also supports local broadcast by providing a loopback mechanism.

3.1.2. The R-Bus

The R-Bus originates from the NIA and downstream devices attach to the R-Bus through a standard
interface, The R-Bus consists of data and control lines. The control lines mainly consist of the clock, fram-
ing and data valid signals. The data bus width depends on speed requirements and could be up to 32 bits
wide. A device attached to the R-Bus samples the VCI and VPI fields of each cell sent from the NIA. If the
connection with this VCI/VPI has an endpoint on the device, it reads in the rest of the cell and passes it on
to the next stage. It is easy to see that this design supports multicast. In addition the design allows protocol
processing for each connection to be performed on the destination device, thus bypassing the main CPU
altogether. As will be seen later, this design has many implications for the organization of communications
software.

Versatile

R-Bus q Ceil Filter ﬁ Buffer ﬁ
BFMU Processing

x .
Unit

h 4 y

BFMU l

YCI/VPI Versatile

T-Bus h prepender h Buffer M

I-Bus

BFMU: buffer management unit

Figure 4: The ATM Interface

3.1.3. The T-Bus and its Scheduling Algorithm

The T-Bus terminates at and is controlled by the NIA. Upstream devices attach to it and communicate
with the NIA through a cell addressable shared memory resident on each device. The memory on each
device is viewed as an ATM cell queue that is written to by the device and read by the NIA. The NIA man-
ages the T-Bus as a time multiplexed resource that is allocated to a device in proportion to the aggregate
link bandwidth that has been reserved for connections that have endpoints on this device. The part of the
NIA. that controls the T-Bus uses a scheduling algorithm to poll the devices based on the traffic description
of each connection emanating from that device. The intent is to implement appropriate scheduling schemes
in hardware. The T-Bus could have up to a 32 bit data path, control lines for accessing shared device mem-
ory, and status lines originating from each device.

A unique aspect of the T-Bus design, not present in conventional systems, is the scheduling mechanism

to share the link bandwidth between connections that originate from the different devices on the system.
This has been made possible because ATM provides a connection oriented network abstraction with nego-



tiated connection characteristics which is known to the NIA scheduler. The actual scheduling algorithm will
take into consideration any traffic shaping and/or policing mechanism imposed by the network at the User
Network Interface (UNI). The scheduler uses information about existing connections in order to decide if it
can support a new connection with the requested parameters. Once a connection request is accepted the
scheduler must ensure that the delay is bounded within the machine and that cells are drained at the nego-
tiated rate. A number of alternative scheduling algorithms may be used, including static priority algorithms
(such as rate monotonic scheduling) or dynamic priority algorithms based on deadlines [23].

3.2. The System I/O Backplane

This section describes how local communication between units is effected in SYMPHONY. It is as
important to provide uniform and predictable performance for intra-machine operations as it is to provide
such performance for inter-machine operations, since a local operation could very well be the bottleneck in
the processing path of an application. However unlike network I/O traffic, the communication between
devices is not connection oriented and involves variable data sizes. Nevertheless, certain applications such

as high speed animation, video editing and high speed file transfers generate large volumes of data at almost
fixed intervals and require internal data paths with an assured capacity. Therefore it is desirable to arbitrate

usage of the system bus to deliver predictable performance. The hardware design of SYMPHONY
incorporates this requirement in the I-Bus design, in order to achieve guaranteed performance by allowing
devices on the bus to make resource reservations, as is described below.

3.2.1. Conventional Bus Operation

The conventional bus has data, address and control lines which form a backplane to which other devices
are attached. The arbitration unit (or arbiter) enforces a protocol among devices in order to ensure correct
bus operation. At any given time, the arbiter makes one of the devices the bus master, which makes exclu-
sive use of the address and data lines. A device indicates its need to use the bus by raising a bus grant signal
to the arbiter. Depending on the priority of the requester(s), the arbiter grants the bus to one requester, which
then becomes the bus master.

The problem with this scheme is that, once a device becomes the master, it must release the bus (in most
cases) voluntarily, before another device, is able to access the bus. Also, the priority mechanism is static
because the bus grant signal is physically daisy chained from one device to the other in order to reduce the
number of wires on the backplane. Therefore a device cannot expect to have access to the bus when it
desires, and wide variations in the delay between the bus request and bus grant may result, In addition, the
bus mechanisms are primarily meant to support infrequent and bursty usage patterns, Finally, most devices
use caches and other mechanisms to reduce their traffic over the bus.

However, the data and the traffic patterns generated by multimedia devices have different characteris-
tics, and hence different abstractions and mechanisms are required. First, the data is not reusable, and hence
caching techniques cannot be used. Second, the data is of a fairly periodic nature, and the burst sizes are
predictable. Therefore it is worthwhile to consider a resource reservation approach to provide such sources
guaranteed response times and throughput for intra machine data transfer [1,35].

3.2.2. I-Bus: A Schedulable Bus with Reservations

In the SYMPHONY architecture, the functionality of the arbitration unit (BMU) is enhanced, so that a
sending device can specify the interval(s) between bus requests and the duration of each active period. For



example, an application providing a video retrieval service would make reservations for retrieving video
frames for one or more sessions, each of which could have different retrieval rates. The BMU operates in a
deadline driven fashion in order to allocate the bus to each device according to the temporal pattern of its
requests. For the period during which no scheduled request is active, the bus is asynchronously shared by
any other requesting devices in the normal fashion. The BMU will use algorithms to determine when a par-
ticular request pattern can be satisfied and a priority scheme to resolve conflicts. The algorithms used will
be very similar to the ones used in the switching nodes within the network, but will be simpler because of
negligible feedback delay between devices. The device drivers for each device must know the request pat-
terns of the applications using the device and must communicate with the arbiter using a hardware protocol
which will be developed as part of this project. This has implications for the applications and the system
call interface provided by the operating system because they must be able to specify the request patterns as
well as volume of data generated to exploit the facility provided by the bus interface.

4. Operating System Organization for SYMPHONY

The goal of providing mechanisms for an application to specify and negotiate performance imposes
requirements on the operating system. This goal was motivated by the fact that applications have end-to-
end performance requirements, and therefore the OS must be aware of application performance require-
ments and must provide mechanisms to enforce them{6,32]. There is a fundamental difference in the way
the modeling and allocation of resources and the scheduling of activities is done within the network and
within the machine. The network is modeled as a collection of communication resources (such as band-
width, memory and processing power)[17]. This model allows the distributed control mechanism to allocate
resources and schedule activities according to the QoS needs of the connections. On the other hand, the con-
ventional time shared computer system is modeled as a virfual machine so that it appears as if each process
has a copy of each resource for itself. A copy is mapped to its physical counterpart whenever the latter
becomes available and no higher priority process is waiting for it. Once this mapping is set up, the processor
is allocated to a process for a certain time slice. One difficulty in preserving QoS within the computer arises
from the fact that a process has no control over the position or the duration of its time slice with respect to
real time. Thus there is no attempt to coordinate related activities in time, which leads to unpredictable vari-
ations in the time taken to carry out periodic activities. Another difficulty stems from the fact that the |
resource scheduling is not in proportion to client requirements, but aims to satisfy unrestricted and unpre-
dictable demands for resources from clients. This has resulted in the operating system evolving to provide
a feature rich set of abstractions with little attention paid to providing predictable and negotiable perfor-
mance. In the SYMPHONY environment the operating system in order to schedule different applications
takes into consideration the requested resources and the required QoS.

The need for negotiability and predictability in operation will mainly affect policies for resource and
task scheduling, resource modeling and management. It will also impact to some extent the system call
interface, device driver interfaces and communications software support. An overview of suggested oper-
ating system organizations for multimedia support is presented and will form the basic context of our
discussion of the above-mentioned issues.

4.1. Specialized Microkernel Executives

The need for flexibility, maintainability and extensibility drives current research in software sys-
tems[5,24,32]. This is especially true for operating system software for distributed and communication
intensive environments. The role of the operating system is primarily to provide basic functionality for



resource management and interprocess communication (IPC). A key idea is the separation of policy and the
mechanism used to implement it, which is effected by having a microkernel providing basic mechanisms to
support abstractions for tasks, address spaces and IPC. The traditional operating system functions are imple-
mented as user level processes and use the kernel primitives to implement various resource management
policies. This approach is more modular and can be specialized for specific requirements.

The industry standard Mach© operating system microkernel will be used as the basic microkernel.
Mach provides basic abstractions of tasks and threads, address spaces and communication ports. Initial pro-
totyping of the OS support will be implemented over the NeXTSTEP® 3.0 object oriented operating
system on a NeXT workstation with Objective-C support. Since the SYMPHONY architecture is composed
of specialized units, each managing its resources autonomously, a natural choice would be to have a spe-
cialized microkernel executive running on each unit. User level tasks will be used to implement real time
scheduling of active resources for each unit, A set of server processes executing on a unit allow local and
remote tasks (on another unit or different machine) to access its resources. The servers are implemented as
application objects, with well-defined procedural interfaces. The object invocation mechanism can be
implemented with an efficient remote procedure call (RPC) mechanism. A common machine transparent
interface must be provided to applications.

A user application is executed by one or more tasks on the MPU (see Figure 1). These tasks access other
resources as clients, in accordance with the client-server paradigm. A client task may change the QoS of
specific resources that it uses through that resource’s service interface. Communication traffic between
tasks on the machine can be optimized over the I-Bus. Resources and their servers are identified through a
nameserver task running on the MPU.

4.2. Resource Management Policies

The resource management policies are critical with regard to providing predictable and timely perfor-
mance. Resource management mainly involves resource modeling and allocation. Allocation is usually
referred to as scheduling for active resources such as processors and the network and system backplanes.
Passive resources, such as memory and disk blocks, must also be allocated, but will be assumed to be allo-
cated locally.

4.2.1. Processor Scheduling

Processor scheduling is performed by the scheduler tasks executing on the processors of each special-
ized unit. The algorithms being considered are earliest-deadline-first, least-laxity-first and rate monotonic
scheduling. Since most time critical events involve activities relating to real-time data transmission, recep-
tion and presentation, a static rate monotonic approach will be adequate and has the advantage of having a
low overhead. The period of requests depends on the nature of the media involved. Furthermore, a varying
amount of data may be generated while in the active state. The scheduler normally performs a schedulability
test to make sure that a process’s needs can be met. It then must generate a schedule that is feasible.

4.2.2. Network I/O Backplane Scheduling

‘When an application task wishes to communicate with a remote task, it creates a new network connec-
tion or becomes a new endpoint of an existing network connection [14]. An endpoint specifies the QoS it
requires in terms of bandwidth and delay parameters. The connection manager task that runs on the NIA
attempts to set up a connection with the requested characteristics and returns a success or failure notification
to the requesting task. Apart from negotiating the QoS inside the network, the NIA must also ensure that the



required bandwidth and delay constraints are not violated within the NIA itself or the network I/O back-
plane. To do this the NIA performs a schedulability test to ensure that both active resources, such as the

processor, and passive resources such as local memory, are sufficient to ensure connection quality. The NIA
also generates a schedule for polling the send queues of devices that are on the T-bus. The polling mecha-
nism can be implemented in hardware using a bus protocol. It would be desirable to take advantage of
accurate traffic specifications to achieve a high utilization of the network backplane.

4.2.3. 1-Bus Scheduling

The device managing this resource is the BMU and is accessible to other application and system tasks
through an arbitration server task. This task is responsible for processing requests for bus usage from other
tasks and using these requests to direct the arbitration mechanism. The server exports a procedural interface
and is accessible as an application object. Asynchronous requests for bus usage are implemented in hard-
ware for purposes of speed and efficiency.

4.2.4. Task Scheduling

Application programs in Mach are implemented as tasks containing one or more threads. Task manage-
ment involves maintaining task state and the scheduling of threads. The scheduler can be implemented
outside the kernel as a scheduler task and can be tuned to manage the activities on each unit Tasks are sched-
uled in a time shared manner. However, the deadlines associated with any periodic activity (such as
generation of a video frame) are also taken into account. An important aspect of handling multimedia
streams is synchronization of concurrent related streams in timef27,29,32,33,34,36]. This means that two
or more tasks executing on separate processors must be scheduled according to some prespecified temporal
relationship. The scheduler task provides a mechanism to do this through its interface functions.

4.3. Inter Task Communication Using The Object Based Communications
Model

The Mach kernel implements the message passing IPC abstraction among task threads. It uses the
notion of ports and port rights to address the threads within the tasks. The ports can be either local or remote,
and port rights can be transferred between tasks in messages. This IPC mechanism can be used to implement
network protocols such as TCP/IP at the level of user tasks. The NeXT operating system provides an object
based interface for tasks built on top of the Mach message ports facility. It supports communication between
local as well as remote objects, supports various parameter passing modes, and can handle objects as
method arguments. The higher level interface provided by the object based communications model, allows
the changing of application behavior dynamicaily in a structured manner. Since most system services are
implemented as tasks, the object model makes it easy to build client-server systems with a higher level pro-
cedural interface. The object model is very useful for an incremental and compositional approach to
building and experimenting with communication software.

5. SYMPHONY Communication Software Architecture

Suppotting multimedia traffic with adequate performance is the primary goal for the SYMPHONY. The
applications envisaged for the high speed packet switched networks have diverse and demanding transport
requirements for which effective and well accepted solutions are not currently available. Distributed multi-
media applications also require communication abstractions and associated primitives to model their

10



multipoint communication patterns and complex session control requirements. In this section, a communi-
cations software approach that directly addresses these two goals is presented. This software approach will
be tightly coupled with SYMPHONY hardware and operating system organization, which provide the
architectural framework on which the communication support will be built.

5.1. Decentralized Protocol Architecture

The design goals of SYMPHONY that significantly impact the communications software architecture
are:
1. Provide hardware and OS support for real-time data traffic with QoS guarantees without degrading per-
formance of local I/O.

2. Provide protocol support for a diverse mix of media, application requirements and connection modes.

The design strategy adopted in order to meet these objectives is:
1. Provide a separate path for network IO and partition its bandwidth among the units in the machine.

2. Separate the incoming cell stream depending on the type of media it carries and deliver it to its destina-
tion device.

The design strategy described above is the rationale for the decentralized architecture which can be
described informally as “perform the protocol processing where the data originates or is destined.” The data
from connections that comprise an application session are processed concurrently at their respective desti-
nation devices by media and application specific protocol modules. This implies a uniform and common
execution environment for protocol modules on each unit, multiple independent state machines for an appli-
cation’s connections possibly maintained on different units, and mechanisms to set up and manage
connections with specified QoS on the various units. Furthermore, the processing of data units belonging to
the connections of an application must be coordinated in accordance with the dependencies that could exist
between them. These dependencies could arise out of temporal relationships, causal relationships or user
program intervention. Therefore the architecture must provide mechanisms to synchronize activities of
related connections and to act upon a set of connections as a whole. This implies an abstraction for associ-
ating connections and referring to their controlling entities, as well as run time mechanisms to synchronize
the protocol modules that maintain connection state. In subsequent sections, the manner in which the SYM-
PHONY design achieves these objectives is explored.

5.2. Execution Environment for Communication Modules in SYMPHONY

- As described in the previous section, SYMPHONY distributed applications are implemented over the
Mach operating system and are organized as application objects that communicate using method invocation.
This kind of operating environment is currently provided by the NeXTSTEP 3.0, the object-oriented oper-
ating system on NeXT workstations. The initial implementation of the proposed communication software
architecture will be done in this environment. The communication software architecture is implemented as
a collection of system servers and user level tasks, each forming a component of the overall communications
infrastructure. The distributed object model for applications provides a rich set of runtime support mecha-
nisms which allow the mapping of the decentralized protocol processing architecture onto a collection of
system and user level tasks cooperating via a high level procedural interface. Some of the advanced features
of distributed objects, such as remote invocation, object arguments, and object transfer, will be used to
implement the runtime mechanisms to setup and coordinate connections of an application that could be
active on different devices. The granularity of an object instance is well suited for encapsulation of connec-

11



tion state and the resources associated with it, along with procedures for manipulating its properties during
its lifetime. In addition, organization of protocol modules into a class hierarchy is a structured methodology
for reducing complexity from the software engineering point of view. In this general architectural setting,
the three main components of the communications software of SYMPHONY are now identified and
described.

Z:Presenti o]
Delivery Module

nchronization Mo
‘i%% o e

ranspprt Conneetion Object:

| ‘;TmnsPIr'jn'Conqgc_Lioa:ijcct '

Transport Connection Object

Figure 5: SYMPHONY Protocol Processing System Architecture

5.3. Network Interface System (NIS)

The NIS is responsible for handling client requests for network services. The NIS software resides on
the NIA unit and is accessible through an interface provided by 4 server task running on the NIA. The main
modules of NIS are the Application Programming Interface (API)[2,3,4] that provides a procedural inter-
face to clients, the call manager that maintains the call and connection status for local clients, and a UNI
protocol module that implements the signaling protocol between the host and the network. These three
aspects of the NIS are elaborated upon below,

12



5.3.1. Network Service APIL

The API is a procedural interface that allows a user to gain access to network services. The procedural
interface provides transparency from the signaling protocols that are exchanged across the User Network
Interface (UNI). The network service interface that we use is the call model [7,14,18] that has been imple-
mented for the Washington university campus ATM network[11]. The API functions allow a user to setup
a call, supply participant addresses, and setup data connections with suitable transport characteristics. The
attributes of the call and subsequent operations vary depending upon the call type used. The existing model
for the call binds a set of addresses and allocates network resources among them. A call enfolds a set of
connections with specific QoS parameters. Therefore the API has procedures to create and manipulate calls,
add connections and negotiate their service parameters.The API will be implemented as a user level object
that gets instantiated depending on the application request.

5.3.2. Call Manager

The call manager maintains state information on the calls that the local node participates in. As the net-
work abstraction for ATM is connection oriented, it is necessary to maintain state information that includes
the list of connections per call, the VCI/VPI to be used for transmitting on each connection, the VCIs/VPIs
that have been assigned to other endpoints of the connections in the call, the transport characteristics per
connection, and any other relevant information. The call manager also performs operations on a call in
response to API functions invoked from above.

5.3.3. UNI Protocol Module

The ATM network is accessed through a signalling mechanism at the lowest level. The signaling occurs
at the network edges known as the User Network Interface (UNI). The signaling protocol that will be used
is called the Connection Management Access Protocol (CMAP) and is implemented for the Washington
University campus network. Similar signaling standards are being developed by other bodies and can be
incorporated as and when they are adopted.

5.4. The Transport Function Composition System (TFCS)

The TFCS is responsible for binding a set of transport function objects to a transport connection. The
choice of algorithms for protocol functions is guided by the transport service category (TSC)[37] of the
connection {see Figure 6), or can be explicitly specified by the creator during the establishment phase. The
QoS requested is used to guide the choice of parameters (if any) with which to instantiate the objects chosen.
These choices also involve negotiation with other endpoints of the connection. The main tasks of the TECS
are:

1. Matching TSCs to a set of protocol function objects (PFOs),
2. Negotiation of QoS with the network,

3. Instantiating the connection and the associated function objects with the negotiated parameters at the
appropriate device.

5.4.1. Matching Transport Requirements to Mechanisms

This phase is guided by the TSC of the connection and the transport service quality requested. The TSC
is specified by the application along with the QoS parameters.The TSC determines the choice of the set of
objects that implement varjous protocol functions.The QoS is used to determine the parameters with which

13



these objects are instantiated. The choice of parameter values is determined by methods defined in the cho-
sen objects. The chosen configuration is then bound to the connection. For example, consider an
isochronous (i.e samples generated periodically) voice stream being multicast over a connection. The TSC
would dictate a rate-based muiticast transmission strategy, no acknowledgment generation and no error con-
trol.The parameters of relevance would be the size of a transmission unit (the number of bytes in a voice
sample), the maximum transmission delay (150 msec), and the delivery rate to the recipient(s) (chosen to
be the sampling interval at the source). The choices made above are then negotiated with the NIS as well as
the remote peer, if the application requires it.

Application Requirements

Connection Modes

) . . o N
Interactive Delay and Tﬂ&shg:pmg Videoccﬁt‘crcncmg J B — g (Unicast)
Delay Jitter Sensitive

B 1N (Multicas))

High Throughput,

& File Transfer

Stored Video ewscasting > .
Non-Interactive, - Dg m N-M(Multiway)
Delay-Jitter Sensitive Monitoring Monitoring
. Radiological
High Throughput, I\ Data Retrieval
Low Response time,
Low Error Tolerasice
Distributed Databases .
Low Response Time, [SF rg Windowing Systems
Moderate Throughput, Network File -
Zero Error Tolerance. Systems

Zero Error Tolerance

¥ 1 1 L] >
Media Types

Data N Continuous ~ Isochronous  Raster/fmage

on-Isochronous

Figure 6: Transport Service Categories [33]

5.4.2. Negotiation with Service Provider

When an application wants to communicate, it must establish a call and add connections to it with req-
uisite properties.This is done by invoking appropriate network services through the API mentioned
above.The parameters to be passed are the set of endpoint addresses that participate in the call, as well as a
list of connections and their transport characteristics. If network resources are unavailable, then the param-
eters are either relaxed or a failure status is reported.

The application may also require negotiation at the transport system level. This would be necessary in
order to inform the other endpoint(s) of the specific transport algorithms that have been composed for the
connection. This negotiation is done on a separate connection between the TFCS entities on each system.

14



5.4.3. Instantiating the Transport Function Objects

Once the transport protocol mechanisms have been agreed upon and the transport service parameters
have been determined, the protocol objects must be instantiated, and associated to each other according to
their functional relationships to perform protocol processing on data exchanged over the connection. These
instantiated protocol objects composing the processing pipeline constitute a connection and are managed by
a connection object. Each connection object is associated with a connection endpoint and resides on the pro-
cessing unit where the endpoint is located. The connection object stores state information and pointers to
the objects that support the connection. It also collects statistics and performs overall control of the transport
service provided to the connection, such as reconfiguration of connection components.

5.4.4. Transport Function Class Hierarchy

Due to flexibility requirements and the necessity of aiding experimentation, the main transport layer func-
tions have been identified and implemented as separate objects. The granularity of the objects from which
a protocol suite is composed is much smaller than the layer by layer compositiori‘ found in current systems.
The objects comprising the transport functions library implement different algorithms for the general trans-
port functions such as connection management, transmission control and reception control. Figure 6 shows
the components of the general transport functions, which have been organized in a class hierarchy.

Transport Connection Class

 Transmission “:Transport - Connection
s Control {:Abstraction” Management

‘Control-: =

Figure 7: Transport Function Class Hierarchy Related Work

5.5. The Association and Presentation System (APS)

The way in which the transport requirements of an application’s data stream are translated by the TFCS
into a transport connection with suitable mechanisms and parameter values has been described above. Sev-
eral such connections are carried by separate virtual circuits that can provide the bandwidth and delay
requirements negotiated for each connection by the transport subsystem. The network in turn supports sev-
eral access modes such as the call to carry these related virtual circuits used by an application. Since these
connections are related by virtue of supporting a single application activity, there must be a mechanism to

15



exercise overall control over the communication activity. This is supported by the APS which provides the
association mechanism{21] that binds the endpoints of an application and their connections. The APS has
two main components, namely session management and transfer management. Session management creates
the association given a list of endpoint addresses and performs operations such as adding and deleting end-
points, controlling attributes of the association such as accessibility, monitoring and modifiability.
Accessibility controls how other endpoints join the association. Monitoring allows an endpoint to be noti-
fied of changes in the association attributes.

Transfer management allows an endpoint to setup connections and to specify their QoS. It then allows
the creator to negotiate with the transport subsystem to satisfy the QoS requested. Another important func-
tion provided is enforcement of temporal relations between data on related connections. It is expected that

for continuous and isochronous data, the application will require some sort of temporal ordering to be
maintained among the data samples of the streams. A well-known example is the “lip-syncing” problem in
video communication.

0. Related Work in Multimedia Computing Systems

We briefly mention some of the work in multimedia computer systems. Pandora’s box [22] aims to pro-
vide video support within the system with external hardware for a video handling subsystem and a pixel
switch. The approach is specific to a single media type and is loosely integrated into the system. The ANSA
group [6] has a more general approach wherein a case is made for real-time operating system support in
order to provide flexibility., A distributed, object-oriented micro-kernel is advocated to provide system wide
support. The IDCM [1] approach raises many difficult system software design issues in providing complete
integration of continuous media, but does not address hardware architectural issues for achieving this. The
ViewStation program[38] is investigating the design and deployment of distributed video systems. A soft-
ware intensive approach and a kernel providing sufficient real-time support is described. I/O

" interconnection architectures are dealt with in [35]. A survey of scheduling algorithms that are suitable for
multimedia systems is dealt with in [23].

References

[1]  Anderson, D. P., Govindan, R., Homsy, G., Wahbe, R., “Integrated Digital Continuous Media: A
Framework Based on MACH, X11, and TCP/IP,” Technical Report, Department of EECS, Univer-
sity of California, Berkeley, August 1990.

[2]  Arango, M. et. al, “Touring Machine: A Software Platform for Distributed Multimedia Applica-
tions,” IFIP, Vancouver, May 1992.

[3} Arango, M. et. al, “Touring Machine: A Software Infrastructure to Support Multimedia Communi-
cations,” 4th IEEE COMSOC, International Workshop on Multimedia, Monterrey, April 1992.

f4] Arango, M. et. al, “The Application Programming Interface to the Touring Machine,” Bellcore, Mor-
ristown NJ, 1992.

[5] Blakowski, G., “Supporting the Distributed Processing of Multimedia Information in an Object-Ori-
ented, Heterogeneous Environment,” First International Workshop on Network and Operating
System Support for Digital Audio and Video, ICS], Berkeley, November 1990.

16



f6]

[7]

(8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Blair, G. S., Coulson, G., Davies, N., Willaims, N., “The Role of Operating Systems in Object-Ori-
ented Distributed Multimedia Platforms,” Distributed Multimedia Research Group, Department of
Computing, Lancaster University,1992.

Bubenick, R., Gaddis, M.E. and DeHart, J.D., “Communicating with Virtual Paths and Virtual Chan-
nels,” Proceedings of the IEEE INFOCOM'92 Conference, Florence, Italy, May 6-8, 1992.

Cheriton, D.R., “The V Distributed System,” Communications of the ACM, Val. 31, No. 3, March
1988.

Chesson, G., “XTP/PE Design Considerations,” Proceedings of the 1st International Workshop on
High Speed Networks, May 1989.

Clark, D.D., “Modularity and Efficiency in Protocol Implementation,” MIT Laboratory for Computer
Science, RFC 817, July 1982.

Cox, I. R. and Turner, I., “Project Zeus: Design of a Broadband Network and its Application on a
University Campus,” Washington University, Department of Computer Science, Technical Report
WUCS-91-45, 1991,

Crowcroft, I. and Wakeman, L, “A Technique for the Transmission of IP Datagrams Over B-ISDN
Networks,” Draft RFC, IETF, April 1992,

Crutcher, L. and Grinham, J., “Connection Management for an Integrated-services Network and its
Application to the Multi-media Communications of a Distributed Team,” First International Work-
shop on Network and Operating System Support for Digital Audio and Video, ICSI, Berkeley,
November 1990,

DeHart, 1.D., Gaddis, M.E. and Bubenik, R., “Connection Management Access Protocol (CMAP)
Specification,” Washington University, Department of Computer Science, Technical Report WUCS-
92-01, February 1992,

Doeringer et. al, “A Survey of Light weight Transport Protocols for High Speed Networks,” IEEE
Transactions in Communication, Vol. 38, No. 11, November 1990.

Doshi, B.T. and Johri, P.K., “Communication Protocols For High Speed Packet Networks,” Com-
puter Networks and ISDN Systems, Vol, 24, 1992,

Ferrari, D., Verma, D. C., “A Scheme for Real-time Channel Establishment for Wide-Area Net-
works,”, IEEE Journal on Selected Areas in Communications, Vol. 8, pp. 368-379, April 1990.

Gaddis, M.E, Bubenick, R. and DeHart, J.D., “A Call Model for Multipoint Communication in
Switched Networks,” Proceedings of ICC’92, Boston, June 1992.

Gopal, G., Herman, G. and Vecchi, M.P., “The Touring Machine Project: Toward a Public Network
Platform for Multimedia Applications,” Proceedings of SETSS, Florence, March 1992,

Hanko, J. et. al “Workstation Support for Time-Critical Applications,” 2nd International Workshop

17



[21]

[22]

[23]

[24]

(23]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

on Support for Digital Audio and Video, Heidelberg, November 1991.

Hong, Z. and McCoy, W., “An Associated Object Model for Distributed Systems,” Operating Sys-
tems Review, October 1990.

Hopper A., “Pandora - An Experimental System for Multimedia Applications,” Operating Systems
Review, April 1990.

Herrtwich, R. G., “An Introduction to Real-Time Scheduling”, Technical Report TR-90-035, Dept.
of EECS, University of California at Berkeley, July 30, 1990.

Hutchinson, N.C. and Peterson, L.L., “The x-kernel: An Architecture for Implementing Network
Protocols,”, IEEE Transactions on Software Engineering, January 1991.

Kalfa Winfried, “Proposal of an External Processor Scheduling in Micro-Kernel based Operating
Systems,” Technical Report TR-92-028, Dept. of EECS, University of California, Berkeley, May,
1992.

Leffler, S., et. al, The Design and Implementation of the 4.3BSD UNIX Operating System, Addison-
Wesley, 1989,

Leung, W.H. et. al, “A Software Architecture for Workstations Supporting Multimedia Conferencing
in Packet Switching Networks,” IEEE Journal on Selected Areas in Communications, Vol. 8, pp.
380-390, April 1990.

Lippman, S.B., The C++ Primer, Addison-Wesley, 1991.

Little, T.D.C. and Ghafoor, A., “Multimedia Synchronization Protocols,” IEEE Journal on Selected
Areas in Communications, Vol. 9, pp. 1368-1382, December 1991.

Minzer, S., “Broadband ISDN and Asynchronous Transfer Mode (ATM),” IEEE Communications
Magazine, Vol. 27, no. 9, pp. 17-24, September 1989.

Netravali, A.N., Roome, W.D. and Sabnani, K.K., “Design and Implementation of a High Speed Pro-
tocol,.” IEEE Transactions on Communications, Vol. 38, pp. 2010-2024, 1990.

Nicolaou, C., “An Architecture for Real-Time Multimedia Communications Systems,” IEEE Journal
on Selected Areas in Communications, vol.8, no. 3, pp. 391-400, April 1990,

Raman G. and Bovopoulos, A. D., “Design of a Multimedia Applications Development System,”
Technical Report WUCS-92-27, Department of Computer Science, Washington University, 1992.

Ravindran, K., “Real-Time Synchronization of Multimedia Data Streams in High Speed Networks,”
Technical Report, Kansas State University, January 1992,

Sah, A., Verma, D. C. and Oklobdjiza, V. G., “A Study of I/O Architecture for High Performance
Next Generation Computers,” Technical Report TR-91-008, ICSI, University of Berkeley, CA, 1991.

18



[36]

[37]

[38]

[39]

Schill, A., “Objects and Distribution: Advantages, Problems and Solutions,” Intelligent Tools Con-
Jerence, Paris, November 1989,

Schmidt, D.C., Box, D.F. and Suda, T., “ADAPTIVE A Flexible and Adaptive Transport System
Architecture to Support Multimedia Applications on High-Speed Networks,” Technical Report 92-
46, Department of Information and Computer Science, University of California, Irvine, 1992.

Tennenhouse, D., Ciholas, M. and Davin, J., “Telemedia, Networks and Systems,” Group Annual
Report (AR-001), July 1991-June 1992, Laboratory for Computer Science, MIT.

Yavatkar, R., “Communication Support for Collaborative Multimedia Applications,” Technical
Report 181-91, Department of Computer Science, University of Kentucky, 1991.

19



	SYMPHONY: A Hardware, Operating System, and Protocol Processing Architecture for Distributed Multimedia Applications
	Recommended Citation
	SYMPHONY: A Hardware, Operating System, and Protocol Processing Architecture for Distributed Multimedia Applications

	tmp.1439928365.pdf.ff0DZ

