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ABSTRACT OF THE DISSERTATION

Advances in real-time thoracic guidance systems

by

Ryan L. Smith

Doctor of Philosophy in Biomedical Engineering

Washington University in St. Louis, 2011

Research Advisor: Professor Parag J. Parikh

Substantial tissue motion (>1cm) arises in the thoracic/abdominal cavity due to res-

piration. There are many clinical applications in which localizing tissue with high ac-

curacy (<1mm) is important. Potential applications include radiation therapy, radio

frequency ablation, lung/liver biopsies, and brachytherapy seed placement. Recent

efforts have made highly accurate sub-mm 3D localization of discrete points available

via electromagnetic (EM) position monitoring. Technology from Calypso Medical R©

allows for simultaneous tracking of up to three implanted wireless transponders. Ad-

ditionally, Medtronic Navigation uses wired electromagnetic tracking to guide surgical

tools for image guided surgery (IGS).

Utilizing real-time EM position monitoring, a prototype system was developed to

guide a therapeutic linear accelerator to follow a moving target (tumor) within the

lung/abdomen. In a clinical setting, electromagnetic transponders would be bron-

choscopically implanted into the lung of the patient in or near the tumor. These

transponders would affix to the lung tissue in a stable manner and allow real-time
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position knowledge throughout a course of radiation therapy. During each dose of

radiation, the beam is either halted when the target is outside of a given threshold,

or in a later study the beam follows the target in real-time based on the EM position

monitoring. We present quantitative analysis of the accuracy and efficiency of the

radiation therapy tumor tracking system.

EM tracking shows promise for IGS applications. Tracking the position of the instru-

ment tip allows for minimally invasive intervention and alleviates the trauma asso-

ciated with conventional surgery. Current clinical IGS implementations are limited

to static targets: e.g. craniospinal, neurological, and orthopedic intervention. We

present work on the development of a respiratory correlated image guided surgery

(RCIGS) system. In the RCIGS system, target positions are modeled via respira-

tory correlated imaging (4DCT) coupled with a breathing surrogate representative of

the patient’s respiratory phase/amplitude. Once the target position is known with

respect to the surrogate, intervention can be performed when the target is in the

correct location. The RCIGS system consists of imaging techniques and custom de-

veloped software to give visual and auditory feedback to the surgeon indicating both

the proper location and time for intervention. Presented here are the details of the

IGS lung system along with quantitative results of the system accuracy in motion

phantom, ex-vivo porcine lung, and human cadaver environments.
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Chapter 1

Introduction

The accuracy of intervention on targets within the body has increased in conjunction

with advances in technology. In areas ranging from surgery to radiation therapy,

treatments and diagnostic procedures are becoming more precise and less invasive.

For targets within the lung and abdomen, respiration causes substantial motion and

tissue deformation. Targets near the diaphragm can move at amplitudes up to several

centimeters. With recent advances in interventional techniques, the accuracy of many

systems are currently limited by respiratory motion. Failure to account for this motion

can lead to inaccuracies, complications and decrease the effectiveness of procedures

within the lung and abdomen.

For biopsies of targets within the lung, the diagnostic yield decreases as the spatial

error associated with the biopsy increases. It is more complicated to obtain accurate

samples of mobile targets due to the fact that the physician is now intervening in both

space and time. Conventionally these procedures have been guided using real-time

imaging, such as fluoroscopy or ultrasound. In clinical use, both of these modalities

are limited to two dimensions. Fluoroscopic imaging delivers ionizing radiation to

both the surgeon and patient, and ultrasound suffers from low soft tissue contrast.

Many pulmonologists will only attempt biopsies on tumors of larger size (>1cm) due

to accuracy limitations. A more accurate means of intervening on mobile tumors

within the lung would allow physicians to biopsy smaller lesions; providing early

detection and improvement in patient outcomes.

Radio frequency ablation (RFA) also could benefit from respiratory correlated guid-

ance. In this technique, lesions are heated using a radio frequency probe. Currently

1



RFA is commonly used for liver lesions, however clinically stereotactic radiosurgery

is preferred over RFA for lesions within the lung. Liver applications are currently

limited to regions far from the diaphragm and large blood vessels due to respiratory

motion and heat dissipation concerns respectively. Failure to account for respiratory

motion could lead to the probe being positioned incorrectly, resulting in ablation of

healthy tissue. A respiratory correlated intervention system for RFA has the potential

to increase accuracy and allow for minimally invasive procedures in the lung and liver

on targets proximal to the diaphragm.

In radiation oncology, linear accelerators are capable of delivering radiation to the pa-

tient with high accuracy (1 mm). Inaccuracies can result from daily routine patient

alignment, or respiratory motion within a treatment. Although most modern linear

accelerators are equipped with on-board imaging (OBI) systems, the computational

power needed to segment and determine a tumor location in real-time is not avail-

able. Additionally, many linear accelerators offer cone beam CT imaging, however

acquisition takes approximately 60 seconds and as a result motion blur artifacts are

substantial. In order to account for inaccuracies associated with the target position

and ensure the target receives the prescribed radiation dose, margins, or buffer areas

surrounding a target, are added and irradiated during the treatment. Current clinical

margins at Washington University Medical School for standard lung tumors are 1cm

additions on each side. Increasing the accuracy at which the target location is known

could result in decreased treatment margins and spare healthy tissue from irradiation.

Healthy tissue dose is the limiting factor in escalating the dose to tumors. It has been

shown for non-small cell lung cancer (NSCLC) that escalating the dose to the tumor

volume (>70 Gy) can provide better local control than lower doses (<70 Gy) [10, 77].

Increased accuracy in the presence of motion shows promise for escalating dose to the

tumor site while sparing surrounding healthy tissue.

A system from Calypso Medical provides small implantable wireless transponders

which are sequentially queried to report the position of up to three points within the

patient’s body. An array is placed above the patient, and the transponder positions

are monitored with respect to the array via electromagnetics. The specifics regarding

how the system works are described in Appendix B.9. Balter et al have reported

submillimeter accuracy when tracking the transponders moving at 3 cm/s in a volume

that is 14x14 cm in width, and up to 27 cm away from the source array [2]. In a
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study from Santanam et al the system was again found to be sub-mm accurate as

confirmed by onboard kilovoltage imaging [78]. The system is currently FDA cleared

for use in the prostate, and potential applications in the lung and abdomen (where

motion is substantial) are promising.

Additionally, Medtronic Navigation has developed a system of tracking surgical in-

strument tips in real-time. The StealthStation system is currently used for cran-

iospinal applications in which the patient’s head is stationary. The system displays

the tool tip overlaid on an a priori acquired CT or MRI image. Guidance is pro-

vided in real-time to ensure the physician is taking the intended path to the target.

The system currently is not used for targeting within the lung or abdomen due to

respiratory motion and soft tissue deformation concerns. Surgical navigation within

these areas would be useful for tumor biopsies, radio frequency ablation (RFA), or

brachytherapy seed placement.

Imaging systems provide high spatial accuracy, however the temporal accuracy of

target localization is not suitable for real-time lung target interventions. Due to their

high temporal accuracy, the aforementioned electromagnetic systems have potential

to increase treatment capabilities in both radiation therapy as well as image guided

surgery procedures. This dissertation covers work associated with creating new inter-

ventional systems for lung applications by integrating electromagnetic tracking. In

the following chapters, these specific aims are addressed in more detail:
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1.1 Specific Aim 1: Incorporate real-time electro-

magnetic position monitoring into a spatial gat-

ing solution for motion management in the de-

livery of radiation therapy.

1.2 Specific Aim 2: Incorporate real-time electro-

magnetic position monitoring into a Dynamic

Multileaf Collimator (DMLC) tracking system

for highly accurate continuous radiation deliv-

ery to mobile targets

1.3 Specific Aim 3: Determine the accuracy of an

internal fiducial marker with known position

at predicting adjacent target motion.

1.4 Specific Aim 4: Develop a robust system for

image guided surgery (IGS) applications in the

presence of respiratory motion.
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Chapter 2

Linear Accelerator EM Gating

2.1 Introduction

The goal of radiation therapy is to maximize the absorbed dose to the target volume

while minimizing the dose to surrounding healthy tissue. Intrafraction motion due

to respiration can cause the tumor to move considerably throughout treatment. The

displacements associated with respiration can be up to 3 cm within the thorax. [41] To

account for this motion, radiation oncologists must incorporate substantial margins

(typically 1 cm superior/inferior and 0.5 cm for both anterior/posterior and lateral)

in the design of each planning target volume (PTV). This leads to large volumes

of irradiated normal tissue that can limit the total dose that the patient can safely

receive. This has led researchers to explore beam gating techniques with the goal of

more accurate radiation delivery to tumors impacted by respiratory motion.

Respiratory correlation has been used extensively in CT and MR imaging in an effort

to reduce breathing related image artifacts.[74, 69] More recently, similar techniques

have been employed to localize the tumor and gate the linear accelerator.[91, 49, 35,

37, 8] Conventional gating setups use a variety of techniques to measure breathing

motion including: optically tracked external marker blocks, thermocouples, thermis-

tors, strain gauges, and pneumotachographs.[38] Current techniques rely on the use

of external markers or sensors to determine the internal position of the target. Al-

though a correlation exists between external markers and internal tumor position, for

some patients external marker trajectories do not serve as an adequate surrogate for

internal tumor position.[16]
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Respiration induces considerable deformation within the thoracic cavity. As the di-

aphragm contracts, internal anatomy compresses and distends. Often the external

anatomy exhibits good correlation with the motion of the internal structures such

as the diaphragm and/or lung tumors.[49, 16] The external anatomy moves due to

respiration, however studies have shown considerable differences between external

anatomy and internal motion. These differences can come in the form correlated mo-

tion with a phase lag between the external and internal motion, or less frequently the

motion might not exhibit correlation. Margeras and Yorke have reported up to a 0.5

second lag between Varian RPM marker block position and diaphragm position mea-

sured fluoroscopically.[51] Koch et al found that correlation was poor and unstable

unless the external surrogate measuring skin surface position was near the tumor.[36]

In a study from Berbeco et al, lung tumor motion was measured via continuous flu-

oroscopy concurrently with measurement of external abdominal surface positions.[7]

The amount of residual tumor motion, defined as the amount of tumor motion during

a respiratory gate based upon the movement of the external surrogate, showed large

fluctuations (>300%) for both intra- and inter-fraction motion. The residual motion

was found to be up to 8 mm in magnitude, which strongly suggests that external

position monitoring cannot accurately reflect the internal position of a tumor for all

cases. The periods in which external and internal motion exhibit poor correlation are

often transient; however these transient periods may have dosimetric implications.[68]

The lack of correlation between internal/external positions has led investigators to

examine alternative techniques for accurately tracking the position of targets inside

the thoracic cavity. Shirato et al developed a real-time target tracking system that

uses four integrated kilovoltage imaging systems.[89] The fluoroscopic imaging system

used in this technique provides accurate information on the location of discrete points

inside the abdomen. However, accurate tracking of the target comes at the expense of

an increased imaging dose. For a single fluoroscope, the estimated skin surface dose

rate can up be to 118 cGy/h.[93] In addition, for 3D target tracking, stereoscopic

fluoroscopes are necessary which means further accumulated dose due to imaging.

The SynchronyTMRespiratory Tracking System (RTS) treatment option of the Cy-

berKnife robotic radiotherapy system provides another image based system for track-

ing internal fiducial markers.[85] With this technique, gold fiducials are placed inside

the thoracic cavity near the tumor while the patient wears a vest with LEDs that

6



indicate the position of the chest or abdomen. Before the treatment begins, a series

of orthogonal x-ray images are acquired that are used to correlate the position of the

external markers to the internal fiducials. A correspondence model is developed and

periodic images are obtained during the course of delivery to ensure the continued

validity of the correspondence model. While the SynchronyTM RTS delivers a lower

radiation dose to the patient as compared to continuous fluoroscopic imaging, this

is achieved at the expense of intermittent absolute knowledge of internal positions.

TG75 states that the entrance dose per image can be as high as 0.2 cGy.[64] For

a 2 hour session with imaging performed every 30 seconds, the patient receives 48

cGy over the course of the treatment. Alternative image based solutions have been

investigated which utilize the on board imaging (OBI) functionality of many modern

linear accelerators.[6] Similarly to the fluoroscopy based solutions previously men-

tioned, OBI solutions deliver dose to the patient in order to image and track internal

markers/tumors. Another factor limiting this technique is the fact that high energy

MV scatter from the treatment beam can degrade the image quality of the kV im-

ages typically used for tracking.[47] Imaging based methods do have the advantage

of providing information about the surrounding tissue, which a pure electromagnetic

position monitoring solution cannot provide.

Continuous electromagnetic position monitoring is now available without additional

dose to the patient (Calypso Medical, Seattle WA). The system uses one or more

wireless transponders which are subject to performance testing as part of the manu-

facturing operation to ensure they can stand up to high levels of radiation throughout

the treatment process. The transponders are currently implanted into the prostate

via a 14-gauge needle in a procedure similar to existing gold fiducial implants cur-

rently in use clinically. During treatment planning, the location of the transponders

is recorded with respect to isocenter and a plan is developed. During delivery, an

array is placed above the patient. Four source coils in the array excite the transpon-

ders via magnetic induction. After excitation, 32 receiver coils in the array detect

the resulting response signal. Each transponder has a unique resonant frequency, and

they are sequentially exited in order to independently query position information.

The array is registered to the room via stereoscopic infrared cameras, and hence the

transponder position is known with respect to isocenter. Balter et al have reported

submillimeter accuracy when tracking the transponders moving at 3 cm/s in a vol-

ume that is 14x14 cm in width, and up to 27 cm away from the array.[2] In a study
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from Santanam et al the system was again found to be sub-mm accurate as con-

firmed by concurrent onboard kilovoltage imaging.[78] In a clinical prostate cancer

treatment study, Willoughby et al have shown the system to be functional in a linac

environment, even when the linac is treating directly through the array.[108] To date

there have been no published failures of the transponders due to radiation dose. The

system is currently FDA cleared for use in the prostate and prostatic bed. Potential

applications in the lung and abdomen (where motion is substantial) are promising.

In this study, we have investigated the feasibility of using real-time electromagnetic

tracking for linac gating. The system uses a spatial gating technique which gates the

beam via absolute 3D position of the internal fiducials (Figure 2.1) as opposed to

using phase or amplitude like conventional external surrogate systems currently use.

This approach has two primary advantages: (1) the beam is gated off of the internal

position of the tumor as opposed to an external surrogate and (2) it does not require

any additional imaging dose.

2.2 Gating: Latency Estimates

In order to characterize the system initial latency estimates were performed. If the

latency between the time the target leaves the volume to the gating of the linear

accelerator is large when compared with the velocity of the target, this can lead

to substantial dosimetric error. In an initial study to determine the latency of the

system, the signal directly from the dynamic phantom was compared with the “target

current” test-point signal from the linear accelerator using a logic analyzer. Target

current is the current measured at the metal target of the linear accelerator’s electron

beam and hence this signal is analogous to the presence or absence of the treatment

beam. Using the target current as opposed to radiographic methods permits a more

precise measurement of latency using standard test equipment. It also facilitates

acquisition of large numbers of beam transitions for accumulating a histogram of

latencies. The Calypso system was set to monitor positions at 30hz with an update

period of approximately 26ms. Based on this method, a histogram of latencies was

generated over the motion from 200 circular motion cycles (Figure 2.2).
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Figure 2.1: Gating setup. The 4D phantom moves the attached film phantom in
realistic breathing trajectories. Real-time position information of the transponders

implanted in the film phantom are acquired via the array and sent to a decision
making computer. Each position measurement is analyzed to determine whether it

is inside a predefined 3D volume. If so, the beam is turned on and delivery
proceeds. If the position is outside the volume, a Beam Hold is enacted and delivery

halts until the target returns.
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Figure 2.2: Latency histograms for the gating system.

The latencies were broken down into two categories: beam-on latency and beam-off

latency. Beam-on latency is defined as the time duration from target entering gating

volume (as indicated by signal from motion phantom) to first observed target current

pulse on the LINAC. Beam-off latency is defined as the time duration from target

leaving gating volume (as indicated by signal from motion phantom) to last observed

target current pulse on the linac. The mean latencies between transponder position

and linear accelerator modulation were found to be 75.0 ± 12.7 msec for beam-on and

65.1 ± 12.9 msec for beam-off given as mean ± 1 standard deviation (Figure 2.2). The

difference between the beam-on and beam-off times could be attributed to asymmetry

in the LINAC turn-on and turn-off times, or partially due to imperfect alignment of

the phantom with respect to the Calypso gating volume. The range in the latencies

can be attributed to the software implementation of the gating decision unit, as well

as the finite integration times of the transponders (26ms). The latency associated

with enacting a Beam Hold or reestablishing treatment via the linear accelerator

is relatively small, approximately 17 msec [22]. Given the experimental setup, this

value is incorporated into the total latency values reported for the spatial gating

system. Update rates and latencies of the system are comparable to optical [28] and

fluoroscopy [91] based gating systems reported previously.

2.3 Gating: Clinical Dosimetry

In addition, clinically relevant dosimetric analyses were performed. A four field, 6MV,

200 cGy, 3DCRT treatment plan for a random lung cancer patient was selected for
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this study. The treatment plan was developed using Pinnacle version 7.1 (Philips,

Madison, WI) and delivered via a Varian Trilogy linear accelerator. The phantom in

this study was comprised of a standard solid water phantom with one sheet of the solid

water replaced with an equivalently sized acrylic slab containing three electromagnetic

transponders as well as a piece of radiographic film. For each exposure, the film was

placed in the coronal plane. The platform was programmed using respiratory motion

data measured for a lung cancer patient using 4DCT and spirometry (Figure 2.3)

[45].

Figure 2.3: Lung trajectories reconstructed from a 4DCT and spirometry from a
lung cancer patient.[45]
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Figure 2.4: Dose difference maps. Films irradiated in the presence of clinically
relevant motion were subtracted from the static ‘gold standard’ case. A) The entire

dose profile with the ROI indicated via a box.. B) The high gradient region of
interest as denoted by the box in A). C/D) Normalized difference maps were

calculated to show over- and under-dosing as a percentage of maximum dose. Red
and blue regions indicate over and under dosing respectively. Gating reduces the
spread and magnitude of dose mismatch that occurs in the presence of motion.
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Dosimetric films were utilized to determine the dose profile from one fraction of treat-

ment. One baseline run with no motion was used to generate a static film. This film

was used as the ideal dose distribution in the absence of patient motion. The static

film was compared with films irradiated using the same treatment plan delivered both

with and without gating in the presence of motion. Using beam gating, better dose

localization was observed and the film results show better correlation with the static

dose distribution (Figure 2.4). The effects of gating were most evident in the regions

of high dose gradient, as the non-gated case effectively ‘blurs’ the dose over the region

that passes through the isocenter during respiratory motion. Difference maps show

that dose blurring found in the non-gated dynamic case is significantly reduced when

the gating solution is implemented (Figure 2.4). Dosimetric analysis was performed

to quantify the level of over/under dosing. For the no intervention case, 32.1% of

points failed to be within ±10 cGy from the ideal dose and 8.6% failed for ±20 cGy.

For gating, 3.4% failed for ±10 cGy and 0.0% failed to be within ±20 cGy.

Gamma analysis was performed on both the non-gated and gated films. Although

no points failed a 3mm/3% test, 8.3% of the points in the non-gated film failed at

1.5mm/1.5% compared to 0% of the points in the gated film (Figure 2.5).

Figure 2.5: Gamma Maps. Gamma maps for the gated and non-gated cases are
displayed. As described previously, the gamma tool allows for simultaneous analysis

of both distance to agreement and dose difference. Lower values indicate higher
dosimetric agreement.

It is evident in multiple line profiles that gating produces an increase in achievable

dose gradients (Figure 2.6). This increase in dose gradients has clinical implications.

For targets that are close to critical structures, it is ideal to have high dose to the
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target with rapid falloff of the dose to spare the adjacent tissue. Increasing the

achievable dose gradients in the presence of motion ensures better dose conformality

to the target and increases tissue sparing to adjacent tissue. Patient throughput is

a clinical concern. Even when considering the small gating window used for these

preliminary studies, the duty cycle was 47% and 49% respectively for each of the two

lung trajectories. This shows that for most cases the increase in treatment time is

small when compared to the time spent initially aligning the patient and moving the

gantry to the various beam angles. This will not be the case for instances of drastic

motion or when the target leaves the gating volume for an extended period of time.

Figure 2.6: Gating reduces dose blurring and improves dose gradients when
compared to no intervention. Here, dose gradients of line profiles are analyzed for

lines at y=3mm, 8mm, and 13mm (b-d). Raw data is plotted with a polynomial fit
overlaid. It is evident that gating improves dose gradients to match the delivery in

the absence of motion.
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2.4 Gating: Discussion

Gating is a widely used technique for dose localization. One of the limiting factors

in the effectiveness of gating is that most implementations use external markers to

predict internal movement of tumors. Although studies have shown correlation be-

tween external and internal motion, variations on the order of 1 cm have been found

between internal fiducial motion and external markers.[16, 7] Thus it is important to

implement a solution for determining the precise location of internal anatomy without

exposing the patient to additional imaging dose throughout the course of treatment.

It has been shown that large latencies can produce a phase mismatch between beam

gating and tumor position.[86] For the initial studies shown here, a software based

decision making setup was implemented. For a clinical implementation, a hardware

based solution would offer lower latencies. The latencies associated with our system

are as good as or better than alternative options. For instance, fluoroscopic and op-

tical gating systems claim latencies of 90 ms[89] and 170 ms[28] respectively. Note

that the low latencies associated with our setup demonstrated a measurable dosi-

metric difference without the use of predictive algorithms.[86] This internal tracking

implementation can be incorporated with any linear accelerator in a standard size

vault.

In a clinical implementation the exact dimensions of the 3D gating volume will likely

vary from patient to patient. The 3D volume would be chosen based on a number

of factors: the relationship and level of correlation between the transponder and

the tumor as evidenced via respiratory correlated imaging, the proximity to normal

structures, the amount of target motion, and the desired efficiency of the treatment.

The number of implanted transponders does have an adverse affect on the update rate

of the system. The use of a single transponder increases the acquisition frequency

for the spatial position information, but at the expense of rotational information

obtained via multiple transponders. Studies are needed to determine the cost/benefit

from acquiring spatial information from multiple transponders when compared to the

additional latency associated with multiple transponder readings. For instance, in

a potential clinical implementation multiple transponders could be used during the

patient setup process, but a single transponder localized for gating throughout the

treatment.
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Work is needed to ensure that implantation in the lung is safe. Pneumothorax is a typ-

ical complication with percutaneous implantation of a fiducial in the lung. Although

bronchoscopic implants have lower pneumothorax rates (1.8%)[26] than implants done

percutaneously (33%)[105], additional work is needed to ensure the system is safe for

patient use. Work in developing a bronchoscopic implantation technique for electro-

magnetic transponders is promising.[56]

Additionally, the implanted EM transponders have been shown to be stable in the

prostate case. Targeting of a lung tumor may be more challenging since the transpon-

ders will not likely have a fixed relationship to the lung tumor. Incorporation of the

uncertainty will affect the size of a gating window. Work on a modified transponder

design with stability features shows good fixation to the lung tissue.[56]

If left unchecked, breathing motion prevents high dose gradient regions in which the

delivered dose to the surrounding healthy tissue decays rapidly. High dose gradi-

ents are necessary for dose escalation to tumor sites while ensuring that surrounding

critical structures do not receive substantial dose. As noted in Figure 2.6, the dose

gradients achieved via the gating solution are larger when compared to no intervention

in the presence of motion.

In conclusion, an electromagnetic tracking system has been successfully interfaced

with a linac gating system. The latencies measured were comparable to other real-

time radiation therapy systems, and film experiments using realistic lung trajectories

showed that gating provides significant dosimetric improvements. The aforemen-

tioned gating study has been published in a peer reviewed journal.[95]
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Chapter 3

DMLC Tracking

3.1 Introduction

Due to the widespread adoption of MLCs for use with conformal and IMRT treat-

ments, it is intuitive and cost effective to implement a motion management solution

relying on already implemented hardware. Dynamic MLC (DMLC) tracking is a

technique that attempts to mitigate the dosimetric error associated with target mo-

tion by updating the positions of the beam-attenuating leaves based on real-time

target position. This technique effectively moves the aperture such that the beam is

continuously centered on the target. This technique alleviates some of the problems

associated with gating. For instance, if a prostate target moves outside of the gating

volume indefinitely due to rectal filling, a gating solution requires the therapist to

enter the treatment room and reposition the patient. At the time of this manuscript,

there has been much published on DMLC tracking [33, 71, 72], however there are

currently no clinical implementations. Additionally, to date all published work on

MLC tracking has relied on external position monitoring, which has associated lim-

itations as noted previously in the Background and Significance section. We intend

to implement an MLC tracking solution in which the beam aperture is moved corre-

sponding to real-time output from the Calypso electromagnetic position monitoring

system. In order to characterize the system latency estimates, geometric accuracy

and dosimetric measurements must be performed.
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3.2 DMLC Tracking: Latency Estimates

There are a variety of factors contributing the latency between target position mea-

surement and MLC response. There is an integration time associated with electro-

magnetic position monitoring. Once positions are acquired, new leaf positions must

be determined based on the new location of the target. Additionally, the leaves have

finite velocities and hence the time required to move into position must also be ac-

counted for. Here we define latency as the time between when the target is at a given

location and the time at which MLC aperture is centered at that location. If the

latency of the system is substantial when compared to the velocity of the target, it

is necessary to implement prediction algorithms in order to maximize geometric ac-

curacy. In an experiment designed to characterize the latency of the DMLC tracking

system, a motion phantom was programmed to move in a sinusoidal trajectory (± 1.5

cm, 15 cycles/min) parallel to the direction of leaf motion. The phantom carried Ca-

lypso Beacon transponders, as well as a steel BB that shows up clearly on Electronic

Portal Imaging Device (EPID) images. EPID images were continuously recorded as

the static prediction window of the DMLC tracking system was systematically varied

for each run from 0 to 250 ms. The EPID images were segmented offline in order

to determine both the location of the steel BB as well as the center of the MLC

defined aperture. The BB location is analogous to the instantaneous position of the

target, and based on the spatial offset between this position and the center of the

aperture the latency of the system was calculated to be 220ms. Target and aperture

trajectories recorded in the absence of motion are shown in Figure 3.1.

3.3 DMLC Tracking: Geometric Accuracy

The geometric accuracy of the system was characterized in a similar manner to the

method used for calculating the latency of the system. EPID images were acquired

and segmented to determine the geometric offset between the target as indicated by

the steel BB and the MLC defined aperture center. For the geometric analysis, the

motion phantom was programmed with the following three trajectories: a respiratory

trace showing high variability, recorded using a dual-fluoroscopic real-time radiother-

apy (RTRT) system [91], a respiratory trace showing moderate variability, recorded
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Figure 3.1: Target (BB) and MLC aperture trajectories in the run recorded with no
prediction. These values were used to calculate the total temporal latency of the

system ( 220 ms). Figure credit Sawant et al. [81].

using the Synchrony system [100] and a prostate motion trace showing relatively

high variability, recorded using the Calypso system [39]. For all geometric accuracy

measurements, the DMLC tracking system was set to update using 220ms predic-

tion. Figure 3.2 shows the geometric accuracy of the system for the aforementioned

trajectories. Accuracy parallel and orthogonal to leaf orientation is characterized

independently due to independent physical limitations of the MLC leaves. The geo-

metric results were evaluated favorably and have been published in a peer reviewed

journal.[81]
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Figure 3.2: Distributions of geometric accuracy for three different motion
trajectories. Figure credit Sawant et al. [81]
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3.4 DMLC Tracking: Dosimetric Accuracy

Even with known geometric accuracy of the system, there remain some clinical ques-

tions regarding implementation. Interplay between the IMRT delivery technique and

tumor motion can lead to dosimetric error [27, 102, 5]. Moreover, the addition of a

motion tracking system to MLC movement during delivery adds complexity to the

therapy quality assurance. Here we intend to investigate the dosimetric effects of

coupling the electromagnetic position measurement guided DMLC tracking system

with IMRT delivery for targets with substantial intrafraction motion and compare

the dosimetric accuracy of this technique with gating via internal position monitor-

ing. Our hypothesis was that an integrated electromagnetic position measurement

- DMLC tracking system should show similar dosimetric results to electromagnetic

position measurement - gating system, but with improved efficiency.

Similar to the previous experiments, the Calypso system was configured to output

3D positions in real-time. The following settings were used for all cases: gantry 90◦,

collimator 90◦, 200 MU delivered via a 6 MV photon beam. The MLC leaves for

both the S-IMRT and D-IMRT plans are aligned in the superior/inferior (primary)

direction of motion. The delivered dose for each plan was approximately 100 cGy at

isocenter. The moving phantom was loaded with a single film aligned in the sagittal

plane at isocenter and irradiated as it moved with two different plans: (1) an S-IMRT

field, and (2) a D-IMRT field. The phantom was programmed with no motion, or

with motion obtained from a lung cancer patient using the CyberKnife Synchrony

(Accuray, Sunnyvale, CA) tracking system [100]. The trajectory had a frequency

of 23 breaths/min and had the following peak to peak amplitudes: 7mm lateral, 23

mm sup/inf, and 6 mm ant/post. The breathing trajectory was relatively periodic,

however not totally uniform throughout the treatment. Dosimetric results in the

presence of motion were recorded for each plan using three different effector systems:

no intervention, DMLC tracking, and a 4mm x 4mm x 4mm spatial gating system.

The comparators for the dosimetric results in the presence of motion were the dose

results obtained with a static target.
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Plan Intervention 3%, 3mm 6%,6mm ±3cGy ±5cGy

Step+Shoot Gating 0.18% 0.00% 10.91% 3.26%
Step+Shoot DMLC 1.21% 0.00% 7.53% 2.73%
Step+Shoot None 2.45% 0.16% 10.86% 5.02%
D-IMRT Gating 0.22% 0.00% 3.30% 0.64%
D-IMRT DMLC 0.24% 0.20% 7.20% 2.02%
D-IMRT None 1.55% 1.09% 13.06% 4.99%

Table 3.1: Dosimetry Failure Rates. Gamma failure rates were reported for all
cases. Note that failure rates for D-IMRT plans were comparable for gating and

DMLC tracking. S-IMRT gating outperformed DMLC tracking. Gating and DMLC
tracking outperformed no intervention in both plans.

Figure 3.3 shows the dose difference maps between the effector systems and the static

‘gold standard’ film. For the S-IMRT case (Figure 3.3a), the DMLC tracking dif-

ference map and gating difference map show similar amounts of mismatch, though

the locations of the mismatch differ. For the single field D-IMRT difference maps

(Figure 3.3b), the gating and DMLC tracking films are comparable. The dose in

the interior of the region is relatively homogeneous, and as a result a difference map

is not the best metric for observing dose artifacts due to motion. In the S-IMRT

delivery, the percentage of points with a difference of ±3 cGy from the static case

were 10.91% and 7.53% for gating and DMLC tracking respectively; for the D-IMRT

3.30% failed for gating while 7.20% failed for DMLC tracking (Table 3.1). Analysis of

the gamma output for 3mm and 3% shows that gating outperforms DMLC tracking

for the S-IMRT case with failure rates of 0.18% and 1.21% respectively (Figure 3.4).

For the D-IMRT case the two intervention methods were comparable, with failure

rates of 0.22% for gating and 0.24% for DMLC tracking (Table 3.1). Both methods

of intervention outperform no intervention with failure rates of 2.45% and 1.45% in

the presence of motion for the S-IMRT and the D-IMRT plan.

3.5 DMLC: Tracking: Efficiencies

In addition to dosimetric accuracy, the delivery efficiencies were recorded for each

case. The ‘Beam-On Time’ and ‘Total Time’ displayed on the console of the linac

were recorded for each delivery. These metrics are used to determine the efficiency of
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Figure 3.3: Difference maps were produced after registering the dose profiles in the
presence of motion with the film obtained via static delivery (the ‘gold standard’).

The control from runs in the absence of motion are given as a reference in each case.
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Figure 3.4: Gamma values were calculated for each of the moving images. The
values for the distance to agreement criterion ∆d= 3mm and the dose agreement

criterion ∆D = 3% of the maximum dose. The control runs in the absence of
motion is given as a reference for each case.
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Beam On Total Time Duty Cycle
Plan Intervention Time (min) (min) (Normalized)

Step+Shoot Gating 0.30 1.68 38%
Step+Shoot DMLC 0.32 0.60 100%
Step+Shoot None 0.32 0.64 100%
D-IMRT Gating 0.30 0.53 22%
D-IMRT DMLC 0.32 0.36 100%
D-IMRT None 0.33 0.35 100%

Table 3.2: Efficiency Values. Delivery efficiencies were recorded in the form of Beam
on Time and Total Time for each of the delivery conditions. Values along with

associated duty cycles are reported. The duty cycle values are normalized to the
static delivery case (100% indicates no efficiency drop due to intervention).

delivery for each effector system. Delivery without intervention requires Beam Holds

as the leaves in the MLC move from position to position. Our metric for efficiency

uses a normalized duty cycle in which 100% matches the efficiency of delivery without

intervention. Results show that DMLC tracking provides for drastic improvements

in delivery efficiency when compared to beam gating (Table 3.2). DMLC tracking

and beam gating showed duty cycles of 100% and 38% when delivering the S-IMRT

plan. In addition DMLC tracking outperformed gating in the D-IMRT plan (100%

and 22% respectively). The dosimetric and efficiency results have been published in

a peer reviewed journal.[96]

3.6 DMLC: Tracking: Discussion

We have successfully implemented a tracking system that does not rely on ionizing

radiation or an external tumor surrogate for the detection of internal targets. The

DMLC tracking solution shows promise for the reduction of motion-related dosimetric

errors. However there are several details that still need to be addressed. For the case

of the D-IMRT plan, the gating solution produced comparable dosimetric output

when compared with the DMLC tracking. The D-IMRT plan shows relatively few

high dose gradient regions in the center of the dose distribution. As a result, in the

interior of the target the dosimetric errors associated with superior inferior motion

are not as evident from a difference map.
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The S-IMRT delivery to the moving phantom with no intervention corresponds to a

convolution of the beam profile for each step-and-shoot segment with the motion of

the phantom during delivery of that segment. With gating, the delivery corresponds

to a convolution with the residual motion within the gating window. Therefore, one

would expect small blurring of the dose profiles with dosimetric errors related to the

size of the gating volume. The errors associated with DMLC tracking are not as lucid.

Here, the discrepancy with the static case is caused by failure to align instantaneously

to the target position and the coarse (one leaf width) aperture resolution orthogonal

to the leaf direction. It is possible that the target motion oscillated in a fashion that

dictated a shift back and forth of one leaf position in the anterior/posterior direction,

this could lead to substantial dosimetric error on the order of the size of the 1 leaf (5

mm). It should be noted that our algorithm did not use subleaves to estimate motion

orthogonal to the leaf direction.[82] As a result, a shift in the anterior/posterior

direction is ‘all or nothing’ which could have potentially led to the dosimetric error

seen in the S-IMRT DMLC tracking films.

It is notable that increased efficiency has potential for dosimetric implications, not just

patient throughput. If the patient is on the table considerably longer (e.g. when using

a very small gating window), it is possible the patient will move due to discomfort.

Though not in the scope of this experiment, this motion has potential dosimetric

consequences.

There is further work to be done on the system. Currently there is variable latency in

the position monitoring which is not taken into account by the prediction algorithm.

Setting a fixed latency for the position monitoring, or accounting for the variable la-

tency in the MLC tracking algorithm would provide for better geometric (and hence

dosimetric) results. In addition, reducing the overall latency of the system as a whole

would provide for better dosimetric results. Incorporating target deformation and ro-

tation into the beam shaping is another potential improvement for the system. Work

needs to be done to evaluate a variety of treatment plans to ensure the MLC track-

ing algorithm is robust and accurate when applied to any conventionally generated

treatment plan.

There are plans for commercialization of this system. It may be safer to implement

the system for prostate cancer management, since there are currently approved uses
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for Calypso Beacon implantation for that location. Further uses, such as lung tumor

tracking, will need a new transponder design that can be safely inserted in the thorax.

It is not clear whether changes in treatment planning software will be necessary,

though they may be desirable to fully take advantage of the DMLC tracking capability.

The tools for quality assurance of the system will have to be developed, and may

include motion phantoms such as the one used in this work. Safety and reliability of

a commercial implementation will have to be investigated in a more thorough manner

than this preliminary work.

In summary, we have integrated a system that senses real-time internal anatomy

positions without the use of ionizing radiation with a DMLC tracking system to

deliver continuous dose to a moving target. The dose profiles are comparable with an

internal gating solution, eliminate the uncertainties inherent in the use of chest wall

surrogates for tumor position, and show much higher delivery efficiencies with the

promise of increased clinical confidence in the delivered dose. More work is left to be

done in further improving the dosimetric results in an effort to create a system that

delivers accurate radiation with sub millimeter intrafraction motion management, as

well as designing a solution for routine quality assurance of the system.
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Chapter 4

Internal Fiducial Motion

Correlation

4.1 Fiducial Correlation: Motivation

Radiation therapy often relies on fractionated treatment, which requires repeated pa-

tient positioning. Motion associated with respiration can be on the order of centime-

ters. For targets in the lung and abdomen, respiratory motion complicates accurate

radiation delivery.

In order to mitigate the effects of motion, external surrogates have been employed to

monitor the breathing cycle and ‘gate’ the beam such that it only irradiates during

exhalation. While these surrogates offer a noninvasive option for motion management,

the degree to which external respiratory surrogates reflect internal tumor motion

varies.[13, 7, 16]

Recent work has shown that implanted fiducial tumor surrogates are safe and stable

throughout the course of treatment. In a study from Kupelian et al, CT imaging

was used to assess the proximity between an implanted metal fiducial and the GTV

centroid throughout the course of treatment.[40] The average 3D variation in the

GTV center relative to the marker was 2.6mm, with all cases <5mm. Although

tumor shrinkage was apparent as a result of radiation, fiducials in or near tumors

were relatively stable throughout treatment. Additionally, there was no incidence of

pneumothorax in the 6 patients that underwent transbronchial implantation.
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Real-time applications using internal fiducials as analogues for tumor motion have

been developed, and the use of implanted fiducials in or near a target of interest has

seen widespread adoption for daily patient alignment.[91, 39, 108] We have previously

published use of wireless electromagnetic transponders (Calypso Medical, Seattle WA)

for radiation therapy to increase dosimetric accuracy in the presence of respiratory

motion.[95, 96, 81] The transponder positions with respect to isocenter are continu-

ously monitored in real-time using electromagnetics. In an initial study, the real-time

internal fiducial position was used to gate the beam.[95] In later studies, the beam

aperture was effectively ‘moved’ using dynamic multileaf collimator (DMLC) tracking

in order to follow the real-time position of a transponder.[96, 81]

The Cyberknife Synchrony system and the ExacTrac X-Ray 6D IGRT system (Brain-

LAB) rely on stereoscopic X-ray imaging in order to determine the position of an

internal fiducial in real-time.[83, 63] A correlation model developed at the start of

treatment relates the internal fiducial motion with respect to infrared markers at-

tached to the patient’s surface. Intermittent imaging is employed to confirm and

continually update the correlation model. Using this position, the beam is moved

using a robotic arm or gated in order to mitigate the effects of respiratory motion.

The degree to which the motion of an implanted lung fiducial marker correlates with

the motion of a tumor typically deteriorates with increased implantation distance be-

tween the fiducial and the tumor. It has been shown that increasing the proximity be-

tween an external respiratory sensor and internal target increases the correlation.[36]

Similarly, increasing the distance between an implanted fiducial and the target has the

potential to increase the error resulting from deformation between the fiducial/target.

For fiducials in the lung, bronchoscopic implantation is typically favored over percu-

taneous implantation due to the reduced risk of pneumothorax.[40] Distal airways

are smaller in diameter and limit access to peripheral lesions, which typically exhibit

large amplitudes of motion ( 1-4 cm). As a result, the proximity of the internal

transponder and the target of interest is limited by the bronchial tree structure.

While the previous studies have investigated the overall fixation of an internal marker

for lung tumor tracking, there has not been a quantitative assessment of how close a

fiducial marker must be placed with respect to a tumor in order to ensure accurate

motion representation. We intend to investigate the level at which an implanted
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internal fiducial can predict the intrafraction motion of surrounding anatomy within

the lung. This knowledge will increase the confidence of the fiducial-based intervention

systems and potentially allow for decreased PTV margins, sparing healthy tissue.

4.2 Fiducial Correlation: Methods

4.2.1 Dataset and Techniques

Ten randomly chosen primary lung cancer patients underwent 4DCT scans in the

supine position. The scans were performed using a Philips Brilliance 16 slice CT

scanner (Philips Medical Systems) that was operated in cinè mode with a stationary

couch during the scan. The axial slice thickness was set at 1.5mm, which yielded a

total thickness of 24mm for each couch position (16 slices x 1.5mm/slice). For each

axial slice, 25 images were acquired over the course of two to three breathing cycles.

Respiration was monitored using spirometry and a pneumatic bellows pressure sensor

attached to the patient’s abdomen.[46] Each acquired image was synchronized with

a corresponding tidal volume as measured by respiratory monitoring devices. The

4DCT scans were reconstructed at maximum inspiration and maximum expiration

using amplitude-based reconstruction techniques described previously.[44] The deci-

sion to use only maximum inspiration and maximum expiration phases was based on

the fact that previously published results have shown that hysteresis derived motion

is typically less of a factor than tidal volume related motion.[113]

Each 4DCT dataset was imported into clinical treatment planning software (Pinnacle

v. 8.0u, Philips Medical). The tumor and four main lobes of the lung (right/left

upper/lower) were contoured at exhalation. The right middle lobe was not contoured

due to its lack of size. Both inhalation and exhalation scans, along with the contours,

were exported and loaded into custom software developed in MATLAB (2007a, The

MathWorks) in order to perform deformable registration.[110]

Deformable registration was performed using the Horn-Schunck optical flow algorithm[24]

in order to obtain motion vectors between exhalation and inhalation for each voxel

within the thoracic cavity. After the vectors were obtained for each patient, they were
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manually inspected to ensure the vector magnitude increased near the diaphragm and

the motion vectors matched with the motion of internal high contrast landmarks, such

as bronchial branch points. Each scan was reviewed in detail by one of the authors

[RS].

Once the vectors were manually verified, two studies were performed. In the first

study, a series of regularly spaced ‘seed points’ (every 4th voxel. 4mm spacing lateral

and anterior/posterior with 6mm spacing superior inferior) throughout each lobe were

selected to determine the degree of correlation with surrounding tissue motion. In

the second study, ‘tumor-centric’ analysis was performed to evaluate the effects of

increased rigidity associated with cancerous tissue on motion vector correlation in

areas surrounding a tumor.

4.2.2 Correlation Radius

A region growing algorithm was employed to determine the maximum radius at which

the magnitude of the vector motion of 95% of the voxels surrounding a seed point

correlated to within 3mm of the motion of the seed voxel. The technique for the

correlation radius analysis is outlined in Figure 4.1. A seed point array with 4mm

spacing in the lateral and anterior/posterior directions and 6mm spacing in the su-

perior/inferior directions was analyzed. For each seed point, the region-growing al-

gorithm expanded radially with an increment (∆r) of 1mm. After each iteration, the

exhalation to inhalation motion vectors within the spherical region surrounding the

seed point were compared to the motion of the seed voxel. If the motion vector for

a given voxel correlated to within the spatial threshold (3mm) when compared with

the motion of the seed voxel, the voxel was considered accepted via our criteria. The

spherical region expanded to the maximum radius value at which 95% of the voxels

within the region correlated to within 3mm. Voxels not within the same lung lobe as

the seed voxel were disregarded.
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4.2.3 Tumor Correlation

In order to quantitatively analyze whether the increased rigidity associated with can-

cerous tissue affects the surrounding tissue correlation, the volumetric centroid of the

tumor was selected as the representative tumor motion vector. This vector represents

the offset of the tumor between maximum exhalation and maximum inhalation. The

motion vector from the tumor centroid was compared with the motion vectors of all

surrounding tissue within the lungs. If it is assumed that a given voxel moves in a

rigid manner with respect to the tumor centroid, this difference effectively represents

the intrafraction motion error if a fiducial was placed at that voxel. Differences in

the tumor motion vector and the surrounding tissue were plotted using color overlays

indicating the motion correlation of surrounding tissue motion with that of the tumor.

Figure 4.1: Correlation Radius Technique: Lung lobes and tumor were contoured at
expiration (1). Deformable registration was performed between inhalation and
exhalation CT scans to obtain motion vectors (2). Seed points were selected at

random, ten per lung lobe (3). A spherical region growing algorithm was employed
to determine the maximum radius at which 95% of the surrounding voxels

correlated with the seed voxel motion (4).

32



4.3 Fiducial Correlation: Results

4.3.1 Motion Correlation: General Lung Results

Correlation radius values were obtained for each patient. In one patient (35), the

motion within the right upper lobe was minimal and hence the vectors correlated

to within 3mm regardless of seed point position. The radius values for this patient

were set at the maximum radius value (7cm). The mean correlation radii for each

lobe are shown in the Table 4.1. Additionally, histograms of the radii values for

each lobe can be found in Figure 4.2. Tumor correlation radii values were found to

be higher than those of healthy lung tissue (p<0.005) indicating that the increased

rigidity associated with cancerous tissue makes surrounding lung tissue motion highly

correlated. Additionally, the upper lobes were found to have radii values significantly

higher than the lower lobes (p<0.005).

Lobe Mean (std)

Left Lower 1.7 (1.1)
Right Lower 1.6 (1.1)
Left Upper 2.1 (1.0)
Right Upper 2.9 (1.8)
Tumor 3.1 (1.8)

Table 4.1: Correlation Radius Values. Correlation radii values to represent 3mm
motion. Means and standard deviations are reported for each lobe in units of cm.
Tumor correlation radii were significantly higher (p<0.005) than the healthy lung

tissue radii values.
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Figure 4.2: Histograms of correlation radii values for each lobe. Notice increased
correlation radii values for the upper lobes when compared to the lower lobes.

Correlation radii values were capped at 7cm, which resulted in the 7cm peak in the
low motion Right Upper lobe.
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Correlation maps were made for each patient (Figure 4.3). The maps show a coronal

and sagittal view take at the carina and middle of the left lung respectively. For each

map, the interpolated correlation radii for each voxel are overlaid. The correlation

with surrounding tissue varies substantially with position and is inversely related to

the divergence of the motion vector field (Equation 4.1).

~T ∝ (5 · ~M)−1 (4.1)

where
~T = Surrounding Tissue Correlation
~M = Motion Vector Field

Correlation radius maps were made for each patient. The background of each map is

a coronal slice containing the carina as a reference landmark. The centroid of each

circle overlay is the location of the seed voxel. The radius of each circle overlay is the

maximum correlation radius for each given seed voxel (Figure 4.3). It is evident that

there is considerable patient to patient as well as lobe to lobe variation in correlation

radius.

4.3.2 Motion Correlation: Tumor Centric Results

Correlation values between the volumetric centroid of the tumor and the surrounding

tissue were calculated. The correlation with surrounding tissue is plotted in Figure

4.4. Variations in tumor motion correlation with surrounding tissue are evident due

to local variations in the divergence of the motion vector field. Tumor motions ranged

from 1.6mm to 12.0mm with a mean motion of 6.0mm across all patients.

4.4 Fiducial Correlation: Discussion

It is evident that the radius at which surrounding tissue motion correlates with an

internal point within the lung is highly variable both from patient to patient as well
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Figure 4.3: Correlation Radii Maps. Regularly spaced voxel within the lung were
analyzed using the process described in Figure 4.1. Correlation maps were produced

to display how well the anatomy correlates with adjacent anatomy within the
thoracic cavity. Red indicates low correlation with surrounding anatomy motion,

blue indicates high correlation.

36



as from point to point within a single patient. As a result, clinical decisions such as

reducing PTV margins due to an internal fiducial based motion management solution

should account for both the error associated with the tracking system, as well as the

error associated with tumor/fiducial correlation.

As deformable modeling techniques and computing power improve, a potential imple-

mentation could incorporate real-time deformation between the tumor and respiratory

surrogate at time of treatment. However, given other uncertainties which contribute

to increased margins such as lack of robust knowledge of what surrounding tissue is

potentially harmful as well as daily alignment and changes in internal morphology, it

is likely that considerable time will pass before real-time deformable intervention is

clinically implemented. As a result, focused efforts on obtaining a patient by patient

routine for determining rigid correlation between internal targets and implanted fidu-

cials will provide confidence in fiducial-based treatment delivery for mobile targets.

Deformable registration techniques are computationally intensive, however in practice

they can be automated to a large extent. Additionally, although computation time

is a concern, on order the registration and region growing algorithm presented here

take less than the amount of time associated with conventional D-IMRT planning.

A system in which the data from a 4DCT scan is loaded into a software package,

deformable registration is automatically performed (possibly overnight using tradi-

tionally idle computational resources), and correlation maps such as those in Figure

4.4 are presented to the physician could provide useful feedback in treatment deci-

sions.

A general rule on where to implant with respect to the tumor was not established.

Typically tissue motion correlation deteriorates when moving in the superior/inferior

direction. This is usually the largest component vector of respiratory motion and

generally has the largest divergence of the vector field. This relationship was not

the case for many of the patients found in Figure 4.4. In summary, internal motion

correlation is highly patient specific as well as specific to the lobe within the lung

based on the breathing patterns for a given patient.
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Figure 4.4: Correlation Tumor Maps: Motion correlation values were observed with
respect to the tumor centroid (indicated by white point). It is evident that

correlation is variable based on the divergence of local motion vectors.

38



Chapter 5

Lung Image Guided Surgery

5.1 Introduction

Advancements in surgical intervention have drastically improved outcomes as well as

minimized the complications associated with invasive procedures. Effort has been

made to minimize the trauma associated with surgical procedures by incorporating

technology. Decreasing the invasiveness of surgery has the potential to result in

increased survival rates, fewer complications as well as a reduced recovery time prior

to returning to normal healthy life.

The advent of minimally invasive technologies has impacted medical practice from di-

agnostic to interventional procedures. Image guided surgery (IGS) offers the physician

alternative imaging approaches during surgical intervention. Currently, commercial

IGS products focus on neurosurgery[18], orthopedic[61] and otolaryngologic[19] ap-

plications. A surgical system that could reduce trauma for procedures within the

thorax and abdomen is appealing.

Procedures in the lung/abdomen that would benefit from IGS include radio frequency

ablation (RFA), lung biopsies, as well as brachytherapy seed placement. In RFA, ra-

dio frequency energy is imparted through a catheter to ablate a tumor. RFA offers

local heating from inside a tumor, assuming the guidance system to get the catheter

in the proper location is sufficiently accurate. As a result, this modality has the po-

tential to reduce trauma to adjacent healthy tissue when compared with conventional

external beam stereotactic radiotherapy. Currently, RFA is not routinely clinically

implemented in the lung, however procedures in the heart and liver are routine.
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The use of needle biopsy techniques is widespread in efforts to determine malig-

nancy of lesions within the lung. In order to guide the physician, imaging techniques

such as computed tomography (CT) and fluoroscopy are routinely employed. Even

when using advanced imaging techniques, the diagnostic accuracies of needle biop-

sies are poor when the lesions are small.[101, 42] Li et al report a drop in diagnos-

tic accuracy from 96% to 74% when comparing nodules of diameter >1.5cm and

≤1.5cm respectively.[42] Tumors have been shown to move at amplitudes >1cm due

to respiration;[50, 99] failure to account for this motion will lower biopsy accuracy

rates, especially for smaller lesions. As a result, many institutions currently will not

attempt to biopsy lesions less than a centimeter in diameter. Creating a system capa-

ble of sufficient accuracy to biopsy small lesions could provide the potential for early

detection. Early detection has shown to be a key factor in survival rates. Henschke

et al report early diagnosis of Stage I lesions resulted in a five year survival rate of

90%, compared with patients diagnosed with Stage III or IV lesions which have 5

year survival rates of 15%.[23]

Finally, brachytherapy seed placement could benefit from an accurate respiratory

correlated guidance system. In brachytherapy, a radioactive source is placed inside

of the body in order to irradiate a tumor. This allows for more localized radiation

and sparing of healthy tissue, however it is reliant on accurate placement of the seed

source. As a result, the procedure has conventionally been limited to percutaneous use

in the prostate, cervix, and breast. Brachytherapy has been used in the lung, however

it has been limited to intraoperative use due to the imprecision of percutaneous or

bronchoscopic seed placement in the presence of motion.

There are some current commercial minimally invasive lung guidance systems. The

superDimension InReach system provides a minimally invasive means for broncho-

scopic lung biopsies. The system relies on electromagnetic position monitoring of

a catheter inserted through the working channel of a bronchoscope. Registration

between a priori acquired CT or MRI images and the room coordinate system is per-

formed by advancing the bronchoscope down several pathways. The EM coordinates

in doing so are then compared with the pathways on the autosegmented volumetric

imageset. During a procedure, the bronchoscope is advanced until it cannot continue

due to the width of the surrounding bronchiole. From here, the EM catheter and

surrounding guide sheath are advanced without the use of real-time bronchoscopic

40



imaging. The position of the catheter tip is shown on the previously acquired volu-

metric images. The catheter is mechanically steerable, and the position of the distal

tip is updated in real-time on the computer console. Once in the correct location,

the guide sheath surrounding the catheter is left in place, the catheter is removed

and bronchoscopic tools are employed to gather tissue samples. The superDimension

is novel in that it provides minimally invasive access to distal sites conventionally

unreachable by a bronchoscope, however there are some limitations. The system does

not attempt to account for tissue motion due to respiration. Additionally, the pub-

lished accuracy results for the system are limited to the spatial accuracy of the EM

tracking system. This fails to address the spatial accuracy of intervention in a human,

which has inaccuracies related to registration and respiratory motion.

The Philips PercuNav system uses EM tracked instruments along with real-time ul-

trasound registered to a priori acquired volumetric images. It offers automated reg-

istration of the real-time ultrasound images to the volumetric imagesets via tracking

the ultrasound probe in 3D. The PercuNav system does have some rudimentary res-

piratory gating capabilities, however there is no real-time modeling of the tumor

trajectory for intervention in the lungs.

The StealthStation Treon system from Medtronic Navigation is routinely used in

craniospinal minimally invasive procedures. Similar to the previously mentioned sys-

tems, this system uses electromagnetic navigation over a priori acquired volumetric

images. The system is widely used in cranial applications, however it is currently not

for clinical use in the lungs or abdomen. The StealthStation offers two methods for

registration. In point based registration a series of CT contrast markers are defined

both on the CT image and in the room coordinate system by systematically touching

the EM tools to each point. Alternatively, tracer based registration relies on tracing

a known structure such as the bridge of the nose and forehead using an EM tool, and

the acquired points are automatically matched to the autosegmented skull surface

in the CT image. Once registration is performed, the system shows the position of

the catheter in real-time, however there is currently no motion model for respiratory

correlated IGS. More information on the StealthStation is included in Appendix B.10

We incorporated previously published tissue modeling[45] based on respiratory corre-

lated imaging (4DCT) in an effort to develop an IGS system that accounts for target
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motion and improves the accuracy of minimally invasive needle biopsy techniques in

the lung. A temporal guidance and planning system was developed and the accuracy

of the system is characterized in phantom, ex-vivo porcine and human cadaver set-

tings. The system works in conjunction with a Medtronic StealthStation, provided

to [RS] as part of a computer aided surgery grant from Medtronic Navigation.

Figure 5.1: Medtronic StealthStation. The field generator (black, foreground) and
the Medtronic StealthStation (background) are shown. A position sensitive

magnetic field is generated with respect to the field generator, which allows for
precise location monitoring of EM tools in the tracking volume.

5.2 Methods and Materials

A commercially available IGS solution (StealthStation) was employed in order to

track the tips of interventional tools via electromagnetics. A field generator con-

nected to the StealthStation creates a position dependent magnetic field inside of the

patient. The system uses tools with two copper wire coils near the tip that act as

inductors. Based on the amount of current induced in the coils of the tool from the

surrounding magnetic field, the positions of the AxiEM tools are known to sub-mm
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accuracy in three dimensions (Figure 5.1). The respiratory correlated image guided

surgery (RCIGS) system consists of additional software that communicates with the

StealthStation via application programming interfaces (APIs). The RCIGS system

works in conjunction with the StealthStation to offer temporal guidance to the physi-

cian for intervention on moving targets. The RCIGS surgical guidance planning and

intervention is described in Figure 5.2.

5.2.1 RCIGS System Overview

4DCT acquisition

A respiratory correlated imaging technique (4DCT) using a commercial CT scanner

(Philips Brilliance 64 or Philips Brilliance Big Bore 16 depending on availability) was

employed to obtain a series (n=4) of volumetric images, each of which correlate with

a specific phase/amplitude of the breathing cycle as indicated by a respiratory sur-

rogate. The respiratory surrogate used was a pneumotachograph (Figure 5.5) which

provides an accurate, calibrated representation of tidal volume and airflow throughout

the image acquisition. The imaging mode was retrospective helical reconstruction,

with a voltage of 120kVp and current of 133mAs.[65] For more information on the

details of 4DCT acquisition, please refer to Appendix B.2

Target Position

After 4DCT imaging, the reconstructed DICOM images are network transferred to

a research system containing Philips Pinnacle (version 8.1y). Pinnacle is a clinical

radiation therapy treatment planning software package which offers a robust envi-

ronment for manual image segmentation and contouring. Targets were defined using

a lung viewing window (W:1600, L:-600) and their position centroids recorded on

each of the volumetric images from the 4DCT. This provides a location of the target

based on the signal from an external respiratory surrogate. At the completion of this

stage, 4 target locations are available with corresponding tidal volume and airflow

measurements from the respiratory surrogate.
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Figure 5.2: Lung IGS Workflow. 4DCT images are acquired based on a respiratory
waveform from a pneumotachograph connected to the patient’s mouth piece. The
4DCT images are sent to the RCIGS planning software, as well as a contouring

workstation for target definition with respect to respiratory phase. The
StealthStation receives entry and target points from the RCIGS planning software,

the exhalation CT, and the real-time tool position via EM position monitoring. The
StealthStation offers real-time visual guidance to the physician on the location of
the needle tip inside the patient. Four target points with respect to respiratory
phase are sent from the Pinnacle workstation to the 5D model computer. The

model parameters (α/β) are input to the RCIGS guidance software, along with the
real-time respiratory waveform. From here, the RCIGS guidance software

determines the position of the target in real-time, and indicates the proper time for
intervention to the physician via auditory and visual feedback.

44



Model Calibration

The 4 target positions along with tidal volume and airflow measurements are used

to calibrate a previously described model for respiratory motion. In short, the model

is parameterized via the 4 known target positions and at completion the model can

accurately predict with the position of the target at any tidal volume and airflow rate

in real-time. The details of the model are not included here for the sake of brevity,

but can be found in previously published work[45] as well as Appendix B.2.

Surgical Plan

Once the target position is known for any tidal volume and airflow, a location and

time of intervention is selected. The location should attempt to maximize the time

at which the target is relatively stationary and respiration is reproducible. This

typically occurs at exhalation. Once the entry and target points for the plan are

selected, custom software displays the motion of tissue within the lung to ensure

critical structures do not move into the surgical path as a result of respiration (Figure

5.4).

The planning software was written in C++ using the following open source libraries:

the visualization toolkit (VTK) for image processing and visualization, the insight

toolkit (ITK) for image segmentation and registration and the Fast Light Toolkit

(FLTK) for graphical user interface (GUI) generation. The aforementioned toolkits

provide a framework for reading and manipulating 3D medical image datasets without

programming the low level functions for image interaction in C++. This allowed for

rapid deployment of software without solving tedious computer science problems that

have previously been investigated. The relation in which the frameworks are employed

is displayed in Figure 5.3

The RCIGS planning software displays the trajectory of the needle tip with respect

to the motion of the tissue due to respiration. In order to achieve this goal, a 4DCT

dataset consisting of a series (4-10) of 3D volumetric images is loaded from the hard

drive into RAM. The memory required for this task is approximately 1.5GB, which is

available on currently affordable consumer computers. The CT images are displayed

45



using three orthogonal views. Once the 4DCT datasets are loaded, the trajectory

of the tooltip is overlaid. The approach trajectory can be modified if it interferes

with critical structures. The motion of the tissue due to respiration can be simulated,

and the software loops through the various phases of the 4DCT while updating the

displays in real-time. This allows for evaluation of critical structure motion due to

respiration, and the path to the target can be modified accordingly. The software

also has basic window/level functionality available in most image display software in

order to increase contrast depending on the region of interest within the body.
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Figure 5.3: RCIGS Software Architecture. The RCIGS package is built on open
source software libraries. The libraries provide a means for segmentation,

visualization and fast data manipulation in C++. The Visualization Toolkit (VTK)
and Insight Toolkit (ITK) packages rely on commonly used lower level techniques

and libraries such as the GDCM (DICOM image reading/writing), OpenGL
(computer visualization), and VNL (numerics)

Figure 5.4: Lung IGS Planning Software. Target, entry and approach trajectories
are visually displayed along with respiratory correlated imaging. This allows the
physician to determine whether critical structures enter the approach path as a

result of respiration prior to surgical intervention.
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Surgical Guidance

Figure 5.5: Pneumotachograph. A
pneumotach head (A, side profile: F) is
attached to a custom fabricated circuit
board. The board offers voltage output
corresponding to raw air flow (B) after

analogue low pass filtering (C).
Additionally, there is on-board analogue
to digital conversion and encoding (D) in

order to interface via a serial port (E)
with a Philips Brilliance CT scanner.

Once the surgical plan is established;

part of the RCIGS software package

(Figure 5.6) guides the physician on

when to perform the intervention. The

position of the target is known in real-

time based on the signal from the respira-

tory surrogate, and the target position is

displayed to the physician. Additionally,

visual and auditory feedback are given

when the target is within a predefined

volume. This allows the physician to ad-

vance the needle and/or perform the tis-

sue resection when the target is in the

appropriate location. Due to the lim-

its imposed by human motor skills, in-

tervening on a point static in space at a

time in which the target is at that loca-

tion is more accurate attempting to fol-

low the target with the needle as it moves

through the entire range of motion.

The real-time guidance software was de-

veloped in C# using National Instru-

ments Measurement Studio for data ac-

quisition and display. Measurement stu-

dio provides a series of .NET libraries

and classes for building measurement

and automated display applications us-

ing Microsoft Visual Studio. A pneumo-

tachograph was employed to obtain ac-

curate tidal volume and airflow measure-

ments. The device consists of a chamber

with several small capillaries designed to ensure the flow between the entrance and

48



exit is laminar (Figure 5.5). The pressure at the entrance and exit is fed to a dif-

ferential pressure transducer. This pressure differential is proportional to the flow

through the device. Low pass filtering is done to get rid of high frequency noise, and

efforts were made to minimize the drift in the circuit over time. The board offers on-

board analogue to digital conversion and encodes the respiratory signal in a manner

to directly communicate with a Philips Brilliance CT scanner. The electrical circuit

used for the board was based on a schematic from an industry partner, and as a

result the circuit is not included here. The board offers raw voltage output to a data

acquisition board (DAQ) connected to a PC with the real-time guidance software.

The software acquires and displays the respiratory tidal volume signal in real-time.

Additionally, the software shows the position of the moving target with respect to

the static location of intervention in real-time based on the previously calibrated 5D

model.

Figure 5.6: Lung IGS Intervention Software. The respiratory waveform is displayed
to the physician. Binary auditory and visual feedback is given to the physician

when the target is within a predetermined range. The static intervention target is
shown as a yellow dot with multi-plane views. The position of the red dot changes

in real-time based on the previously calibrated 5D model indicating the target
position as a function of the respiratory surrogate.

The pneumotach was calibrated using a precision machined 600 ml syringe to inject

a known volume of air through the device. A series of 10 inhalation/exhalations

49



were performed to determine the reproducibility of the pneumotach for a known tidal

volume. The calibration waveform is displayed in Figure 5.7. Peak detection was

employed to obtain standard deviations at inhalation (1.6%) and exhalation (0.2%).

These variations are suitable for highly accurate respiratory motion modeling, and are

likely a result of nonlinearities present at the beginning and end of manually pushing

the syringe.

Figure 5.7: Pneumotach Calibration. A pneumotachograph was constructed to
obtain highly accurate tidal volume recordings. The calibration waveform was

obtained using a 600ml syringe. Standard deviations were obtained at inhalation
(1.6%) and exhalation (0.2%) using peak detection.

5.2.2 System Accuracy: Overview

In order to develop the RCIGS system and obtain quantitative measurements of the

overall accuracy, a series of experiments were designed with increasing difficulty. Mo-

tion phantom, ex-vivo porcine, and human cadaver models were successively employed

and each stage had an associated criteria for success. An overview of the success cri-

teria and problems that each model attempted to address is included in Figure 5.8,

with details on each model found in Sections 5.2.3, 5.2.4, 5.2.5 respectively.
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Figure 5.8: System Accuracy Models. The RCIGS system was tested in robotic
phantom, porcine, and human cadaver environments. The table outlines the

problem each model attempted to address, as well as a quantitative success metric.
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5.2.3 System Accuracy: Phantom Assessment

A robotic motion phantom (Washington University 4D Phantom)[52] was used to

initially characterize the accuracy of the system. The goal of the motion phantom

study was to characterize both the target motion modeling portion of the RCIGS

package, as well as the intervention on a moving target by a surgeon. The phantom

was programmed to reproduce the motion from a lung trajectory recorded via an

implanted position-monitoring device (Beacon, Calypso Medical) in the lung of a

human patient.[56] The arm had several radiopaque markers (IZI Medical MM3005)

affixed that are readily apparent on CT imaging. A 4DCT image was acquired of

the motion phantom as it moved, which was subsequently used for model calibration

and intervention planning according to the RCIGS system. (5.2) Since the original

trajectory is known, it is possible to compare the output from our model to the

actual trajectory. This was performed both for the entire trajectory as well as for the

portion of the trajectory at exhalation, which is when the surgical intervention occurs.

Criteria for model calibration success was a mean error of <1mm at exhalation, which

allows for additional errors associated with positioning the probe, registration, and

motion while still allowing for our goal of 1cm lesion intervention.

Point based registration between the CT image and surgical room coordinate system

was performed by using an EM tool to touch several radiopaque markers affixed

to the phantom arm, and defining the same positions inside of the StealthStation

software on the CT image. An EM ‘patient tracker’ sensor was affixed to the non-

moving base of the phantom. This sensor offers a coordinate transformation and

ensures the registration is accurate even if the ‘patient’ moves with respect to the

field generator. Since the target exhibits motion, it was necessary to know both the

location of the surgeon’s tool as well as the location of the phantom arm at the time

of simulated intervention. Two electromagnetic tools (AxiEM) were used. One probe

was handled by the surgeon performing the intervention [RS], while the other was

affixed to the phantom arm to provide the position in real-time as the phantom moved.

The phantom arm was hidden from view leaving the surgeon reliant on the guidance

software provided from the StealthStation along with the RCIGS package to perform

the intervention. Additionally, a static offset was used when selecting a target point

such that there was no physical contact between the motion arm and the intervention

tool. The motion phantom was programmed to run the same trajectory used during
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imaging. When the target/tool were in the correct location as indicated by the RCIGS

software, the surgeon simulated intervention by depressing a footswitch. At this

time the RCIGS software communicated via TCP/IP over an ethernet link with the

StealthStation to obtain the position of both EM tools. The positions (n=25) of the

arm and intervention tool were simultaneously recorded for error analysis. Criteria

for success were 3D errors between the tool tip and the phantom arm of <3mm,

indicating an accuracy of intervention sufficient for a 1cm diameter spherical lesion

while allowing for additional errors due to soft tissue registration and deformation in

further studies.

5.2.4 System Accuracy: Ex-Vivo Porcine Assessment

Phantom characterization is useful due to the fact that the target position is known

at all times, however it ignores some of the problems associated with intervention in

actual tissue. Most notably, the needle tip will move as a result of the motion imparted

by surrounding tissue. Additionally, tissue will deform due to the forces imposed by

an implantation needle. An ex-vivo porcine model was employed to further analyze

the system accuracy in the presence of the aforementioned difficulties.

The RCIGS system was used to guide intervention on simulated targets in porcine

lungs (BioQuest, eNasco). The lungs were preserved in proplyene glycol, which pre-

vents bacteria growth as well as acts as a dessicant to prevent the lungs from drying

out and becoming rigid. The lungs were placed inside of a plastic container supported

with foam (Figure 5.10). The trachea was held rigidly, the lateral and posterior sides

were supported, with the superior and anterior sides of the lung free to move. The

lungs could slide with respect to the container. These efforts were made in order to

maximize the amount of superior/inferior and anterior/posterior motion similar to

that found in-vivo. Twelve highly attenuating small pieces of 23 gauge copper wire

were percutaneously implanted through a Teflon guide sheath into three sets of lungs

to serve as targets.

The lungs were attached to a ventilator (Aequitron Medical, LP10) and inflated via

positive pressure. The ventilation parameters were 30 bpm, 1.8 liter volume, with 1.2

seconds inspiration time. The pressure exterior of the lung inside the housing was
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Figure 5.9: Lung IGS Phantom Study Schematic. A 4D motion phantom recreates
realistic motion trajectories. A bellows device receives the respiratory signal via a
surrogate axis and a computer calculates the target position using a pre-calibrated
5D model. This information is used to guide the physician on when to intervene.

When an intervention is performed, the position of an AxiEM marker on the motion
phantom arm is recorded along with the position of the surgeon’s tool tip. This
allows for quantitative analysis of the accuracy of the temporal guidance system.
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Figure 5.10: Porcine Lungs. The lungs were affixed in a housing which maximized
the amount of anterior/posterior and superior/inferior motion by restricting the

lateral edges. The lungs were attached to ventilator and inflated via positive
pressure.
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unregulated at atmospheric pressure. The expiratory pressure remained constant

from breath to breath at 20mm H2O via a positive end expiratory pressure (PEEP)

valve.

The RCIGS system was used to image, plan, and intervene on each of the targets

within the lungs. Point based registration was performed on circular CT contrast

markers affixed to the container holding the lungs.
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Figure 5.11: Surgical tools. An AxiEM stylette with PEEK guide sheath/needle as
well as a bare AxiEM stylette are shown.

During intervention, the EM tool (Figure 5.11) was affixed inside of a piece of 16

gauge Teflon tubing (Small Parts inc.) in which the leading end was cut at an acute

angle. The wall thickness of the tubing was high (0.4mm) in order to provide rigidity

and effectively make the Teflon guide sheath a needle capable of piercing lung tissue.

The EM tool and guide sheath combination was advanced during expiration when the

target was in the static approach path defined during planning. Once in place, the

EM tool was removed and a piece of copper wire was inserted into the guide sheath.

The entire assembly was fixed in place with cyanoacrylate and after all interventions

were performed the lungs were imaged again via 4DCT for interventional accuracy

assessment. After imaging, the exhalation 4DCT was loaded into clinical radiation

therapy treatment planning software (Philips Pinnacle version 8.1y) in order to define

the needle tip and target points in 3D (Figure 5.12). Error analysis was performed
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in order to define the three dimensional distance between the needle tips and target

points.

Figure 5.12: Target/Intervention accuracy assessment. The needle tip and target
are defined inside of clinical treatment planning software. The 3D offset is recorded

for each run. Yellow grid marks = 1cm increments.

5.2.5 System Accuracy: Human Cadaver Assessment

Additional concerns arise when using the RCIGS system for intervention in the human

lung. For instance, the approach plan must account for both rib and critical structure

motion such as vasculature to ensure the needle doesn’t interfere. Additionally, the

registration technique used for the porcine trial is not applicable in a human cadaver.

In order to determine the system accuracy in a clinically relevant scenerio, a human

cadaver was utilized.

The thorax of a human cadaver was prepared for respiratory correlated intervention.

The carbon fiber couch on a Philips Brilliance CT Scanner was replaced with a wood

plan in order to minimize interference with the magnetic fields required for 3D tool

location. The torso was placed on the couch and bilateral chest tubes were implanted

and affixed to a vacuum unit with a reservoir chamber to collect effusion fluid (Pleur-

Evac). Once the pleural space was evacuated, a cuffed endotracheal tube was inserted

and connected to a ventilator to inflate the lungs via positive pressure. The settings on

the ventilator were as follows: volume = 1 liter, breath per minute = 14, inspiratory

time = 1 second, assist/control mode. The torso was imaged via CT to determine

optimal locations for target implantation. Four small radiopaque markers constructed

of single stranded copper wire were implanted percutaneously into the lungs to serve
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as targets. The targets were implanted laterally through a needle with a plunger to

evacuate the targets. The targets were implanted with distances of approximately

10cm from the anterior surface to ensure the system is accurate for intervention on

deep lesions.

Once the targets were implanted, several circular radiopaque CT markers were affixed

to the chest wall and the cadaver was imaged via 4DCT (Figure 5.13). Similarly to

the previous porcine and phantom models, point based registration was performed

using the CT markers. Unlike the previous models, the registration points are moving

due to respiratory induced chest wall expansion and hence the registration must be

gated at exhalation. Additionally, a patient tracker EM sensor is affixed to the torso.

This sensor also moves/rotates due to chest wall motion. The position of the EM tool

is constantly updated based on a coordinate system transformation obtained from

the patient tracker. As a result, the position of any EM tracked tool is only accurate

during the phase at which registration was performed (exhalation). This is acceptable

due to the fact that intervention and needle advancement will be gated at the same

phase that registration was performed.

Figure 5.13: Cadaver Registration. Several small radiopaque CT contrast markers
were affixed to the chest wall for registration. The markers have a circular hole in

the middle, which is the same size as the head of an EM tool. The tool is touched in
each of the markers during exhalation, and the StealthStation matches these points
in CT room coordinates (with respect to the black magnetic field generator) with

the associated points defined on the CT image.

A guide sheath constructed of polyetheretherketone (PEEK) was placed around the

EM tool to be used for intervention. PEEK was employed as opposed to the PTFE

59



(Teflon) tubing used in the porcine model due to the need for a stronger polymer in

order to penetrate the chest wall and tissue surrounding the lungs. A metal guide

sheath would act as a Faraday cage, shielding the inner tool from the magnetic field

and preventing 3D localization. PEEK offers rigidity comparable to steel in a non-

ferromagnetic material. The tool/sheath was advanced through a small incision on

the anterior surface of the torso. This approach path is different than the lateral

path used to implant the targets to ensure the intervention needle was not simply

following the hole in the tissue made during target implantation. Once the EM tool

was guided to the appropriate position, it was removed from the guide sheath and a

piece of copper wire was inserted and affixed with cyanoacrylate. The copper wire is

readily visible via CT imaging and was used to determine the efficacy of intervention.

5.3 Results

5.3.1 Phantom Assessment

Since the trajectory delivered from the phantom is known, this makes it possible to

characterize the accuracy of each step of the RCIGS process. The first stage of the

process is model calibration via the target locations on a segmented 4DCT image.

The calibrated 5D model positions were compared with the actual positions delivered

by the motion phantom during imaging to determine the 3D error at the end of this

stage. A histogram of the errors is shown in Figure 5.14. Additionally, a histogram

of the errors within the exhalation gating window is shown. Note that the errors

from modeling decrease when observing exhalation vs. the entire breathing waveform

(mean: 0.8 vs. 0.9mm; max: 2.0 vs. 2.9mm respectively).
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Figure 5.14: Lung Motion: Modeling Errors. The output from the 5D model used to
determine the tumor position during treatment was compared with the actual

tumor trajectory. Errors are reported for the entire waveform (blue) as well as only
at exhalation (yellow).
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Once the model was shown to be accurate, intervention was performed as described in

the methods section. A total of 25 interventions on a moving target were performed.

Errors from the interventions are reported in Figure 5.15. The intervention showed

good agreement with a mean error of 2.0mm and a maximum error of 3.3mm.

Figure 5.15: Lung Motion: Phantom Intervention Errors. Intervention was
performed on a moving target. A histogram of the errors from 25 interventions in

shown.
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3D Error (mm) Target Motion (mm) Target Depth (cm)

2.9 8 2.3
2.6 7 2.4
1.0 10 1.8
4.0 8 3.7
6.9 15 1.2
1.7 12 2.3
2.1 9 1.5
5.6 7 1.2
6.8 15 2.1
4.0 15 2.1
4.4 11 2.2
3.9 11 2.2

Table 5.1: Porcine Intervention Accuracies. The target to needle tip errors are
reported. Additionally, the target motion and depth are reported.

5.3.2 Porcine Assessment

In Figure 5.12, CT images of the target and tooltip are displayed. Additionally,

table 5.1 contains the 3D error between the target and tooltip for each run. 9/12

intervention attempts provided accuracy suitable for intervention on a 1cm tumor.

All attempts provided accuracies capable of intervening on a 1.5 cm diameter tumor.

The mean error associated with intervention was 3.8mm (SD=0.8mm).

5.3.3 Cadaver Assessment

The RCIGS system displayed excellent accuracy in the human cadaver interventions.

The table of geometric errors, equivalent tumor biopsy diameter, target depth and

target motion is displayed in Table 5.2. The mean accuracy of intervention was

found to be 4.0mm, with a mean target depth of 9cm. All target/tooltip errors were

less than 5mm, which indicates intervention is suitable for 1cm tumors in 4/4 cases.

Additionally, the target depths were large (7-10 cm). As a result, if a target was

implanted at a depth larger than this, it is likely the intervention would have been

performed from the posterior chest wall as opposed to anterior.
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3D Error (mm) Target Motion (mm) Target Depth (cm)

4.5 2 7.8
4.8 2 10.1
3.2 4 8.9
3.4 5 9.3

Table 5.2: Cadaver Intervention Accuracies. The target to needle tip errors are
reported. Additionally, the target motion and depth are reported.

The motion for the first two targets was minimal (2mm). These targets were both

implanted in the right lung of the patient, which had substantial fluid to be drained

prior to implantation/intervention (Figure 5.16). The fluid in the pleural space col-

lapsed the lung substantially prior to draining via chest tubes, and as a result the

lung possibly exhibited less motion.

Figure 5.16: Pleural Effusion. Substantial fluid buildup (A) was present in one lung
prior to draining via a chest tube affixed to a vacuum source. The lung was
collapsed (B) prior to draining and this might have reduced the amount of

respiratory related target motion for the two targets implanted into this lung. The
right is a CT of the same lung after draining the fluid.

5.4 Discussion

The RCIGS system shows promise for minimally invasive intervention in the lung/abdomen.

There are several commercial systems on the market to currently address the prob-

lem, but to date none have published results encompassing the accuracy of the system

from start to finish for interventions in the lung.
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One group from Georgetown University has showcased their IGS software based on

the open source Image Guided Surgery Toolkit (IGSTK).[3] In this study, three live

swine were implanted with tumor analogues. The swine were sedated and intervention

was performed to determine the accuracy of the guidance system in the presence of

respiratory motion. The errors reported were substantially higher than our system

(9.4±3.0mm vs 4.0±0.8mm).

There are improvements to the RCIGS package that would need to be made prior to

a clinical implementation. In practice, it is unlikely a pulmonologist would refer a

patient to an imaging center at a remote location in order to obtain the 4DCT for

respiratory correlated intervention planning. Aside from workflow efficiency concerns,

having the patient move between imaging and intervention has the potential to in-

crease registration error. A mobile, compact system for performing CT acquisition has

been developed (O-arm Surgical Imaging, Medtronic Navigation). A CT system capa-

ble of imaging within a pulmonary intervention suite would allow for increased patient

throughput. Additionally, the acquired images would be automatically registered to

room coordinates, which alleviates the need for point based registration. This would

allow for workflow improvements as well as decrease the errors associated with do-

ing registration on moving soft tissue body surfaces. Bronchoscopic intervention[26]

is typically favored over percutaneous intervention[105] due to the reduced rate of

pneumothorax. Development of flexible tools would allow for intervention through

the working channel of a bronchoscope.
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Chapter 6

Discussion

In 2006, respiratory correlated imaging was recently seeing clinical acceptance for

modeling lung tumor motion and guiding treatment decisions. Volumetric imaging

was used for daily alignment, however there was no respiratory correlated imaging

used at time of treatment. An external marker block system (RPM, Varian Medi-

cal Systems) for gating the treatment beam based on respiration was starting to see

adoption in clinical practice, however internal fiducial based systems, such as that

offered by Calypso Medical, were not FDA cleared for use in any anatomical location.

Since 2006 there have been many significant milestones in clinical radiation therapy

technology development. After obtaining FDA clearance for use in the prostate, the

Calypso system has been routinely used for daily clinical alignment. Additionally, our

group worked in conjunction with Calypso Medical to develop a modified transpon-

der with stabilizing legs that allow for fixation when deployed in the lung. This

transponder has recently been implanted in 9/2010 into the first human lung cancer

patient. Gating via internal electromagnetic transponders has been through FDA

510k approval and will be implemented clinically in the near future. DMLC guidance

has been thoroughly quantified and tested, and once proper safety checks and quality

assurance measures are in place, it will see clinical implementation in the next two

years.

The use of electromagnetic position monitoring in radiation oncology has been ex-

plored, however there are many potential improvements. Implanted transponder po-

sition knowledge throughout treatment can be used for more than just guiding the

radiation dose in real-time. As shown in the previous chapters, even an accurate guid-

ance system using the effectors we have developed still has geometric and dosimetric
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errors over the course of treatment. A system that could model the dose actually de-

livered to internal structures would allow for adaptive planning. One could propose a

system in which the gating/DMLC tracking systems were implemented. After daily

treatment, the positions of the transponders and correlated beam-on information are

loaded into a deformable modeling application to determine the location of internal

structures based on the locations of internal transponders throughout the treatment.

The dose is then calculated on a voxel-by-voxel basis using the deformed organ posi-

tion maps and correlated treatment beam information. The dose for subsequent treat-

ments could then be modified to account for hot/cold spots from motion/alignment

errors in previous fractions. If this adaptive system was sufficiently accurate, it has

the potential to provide a drastic reduction in treatment margins; which would allow

for dose escalation due to reduction in irradiated healthy tissue.

Internal markers have been shown to be safe for implantation and have displayed

promise for guiding external beam radiation therapy, however there are room for

improvements. They provide high temporal resolution but low spatial resolution (only

1-3 markers conventionally). This is complementary to the high spatial resolution but

low temporal resolution offered by current volumetric imaging modalities. Markers

have the potential to be implanted into more anatomical locations. Lung implantation

has been explored, but is not currently FDA approved. Additional locations include

the abdomen or breast tissue. For breast radiation therapy, an alternative solution

to the Calypso transponder might be of interest. The transponder is effectively a

wire coil, which are not for use in an MRI environment. Since external beam breast

therapy is conventionally coupled with a follow up MRI, this means the transponder

would have to be removed prior to imaging. An alternative solution from Navotek uses

minute radioactive sources implanted in the body. The source can be localized with

respect to the linear accelerator head, and the 3D position calculated. The dose from

the sources is negligible when compared to that of a conventional radiation therapy

treatment, and the source can remain in place following the treatment. Additionally,

the sources can be made considerably smaller than the Calypso Beacon transponders,

however the system is limited to a single source due to the fact that multiple sources

would give a continuous signal which correlates to the superposition of the sources.

This means the applications are limited to solely spatial position knowledge, where

rotation is not of interest.
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A combined cobalt gamma ray source and MRI machine is currently under devel-

opment (Renaissance System, Viewray Inc.). Non-ionizing imaging available during

treatment would provide target volumes and locations in real-time. Techniques re-

liant on real-time imaging to determine the position of internal anatomy throughout

the treatment session could provide more information than a small number of internal

fiducial positions. Currently, the computational power is not available for decision

making based on real-time image segmentation. However, there are efforts being

focused on this technology and it is likely to be implemented in the near future. Vol-

umetric imaging throughout the treatment could potentially allow for the adaptive

therapy described previously without the need for deformation modeling based on

internal fiducials.

The RCIGS package has further development prior to being ready for a clinical im-

plementation. As mentioned in the discussion, integration with an in-room movable

CT scanner (Medtronic O-arm) would be ideal. There is work to be done in order

to use the current O-arm for respiratory correlated surgical applications. First, the

reconstructed field of view needs to be expanded in order to allow for large plan-

ning volumes such as the thorax. Additionally, respiratory correlated imaging is not

currently available. A prospective 4DCT acquisition protocol could be developed in

which images were only acquired when the patient is at the tidal volume of interest.

This method would not only limit the imaging dose to the patient, but provide for less

computationally expensive reconstruction times when compared with those of retro-

spective 4DCT. Additional porcine and cadaver trials will be necessary to ensure the

system is robust, but will likely come after integration with the additional hardware.

Radiation therapy tumor tracking has seen substantial improvements in the past sev-

eral years. Additional advancements in tracking technologies and adaptive radiation

therapy planning will further our work. Image guided surgery is still a relatively new

field. Surgeons conventionally have less time than radiation oncologists to learn new

technologies related to respiratory motion management. Taking the radiation ther-

apy concepts routinely used in the clinic and applying them to further a respiratory

correlated image guided surgery package has the potential to improve diagnostic and

interventional procedures within the lung and abdomen.
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Appendix A

Abbreviations and Acronyms

4DCT four dimensional (respiratory correlated) computed tomography

BEV beams eye view

CT computed tomography

CTV clinical target volume

DMLC dynamic multileaf collimator

DTA distance to agreement

EPID electronic portal imaging device

IGS image guided surgery

IMRT intensity modulated radiation therapy

LINAC linear accelerator

MLC multileaf collimator ...

NSCLC non small cell lung cancer

OBI on board imaging

PTV planning target volume

RF radio frequency

RTRT real-time radiotherapy

RTS respiratory tracking system
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Appendix B

Definition of terms

B.1 Linear Accelerators

In external beam radiation therapy, the source of ionizing radiation must pass through

healthy tissue between the radiation source and the target site. Typically several dif-

ferent beam angles are used to irradiate the target and spread the dose to surround-

ing healthy tissue. In conventional linear accelerator (linac) setups, the entire gantry

rotates around the patient to spread the dose to surrounding structures while con-

tinuously irradiating the target. This rotating gantry provides multiple beam angles

to irradiate a single target site. Coupled with a couch that translates and rotates,

non-coplaner beams can be utilized for special cases when avoiding critical structures

surrounding the target (e.g. spinal cord, rectum).

Tumors are not uniform in size or shape, and as a result efforts are made to pro-

duce custom treatments on a per-patient basis. This has led to the use of multileaf

collimators (MLCs) attached to the heads of traditional linear accelerator gantries.

MLCs are composed of a series of heavy metal (typically tungsten) leaves that highly

attenuate the x-rays emitting from the linear accelerator. The leaves are arranged in

parallel and can be moved independently with one degree of freedom. The addition

of MLCs allows for conformal radiation therapy, in which an aperture is defined for

every beam angle that constricts the beam to the target’s shape from the particular

beam’s eye view (BEV). It has been shown that the addition of conformal therapy

allows for dose escalation, which has a positive effect on clinical outcomes [112].
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B.2 4DCT

Computed tomography (CT) has become a widely used method for volumetric imag-

ing in both clinical and basic science applications. Conventional CT provides high-

resolution tomographic images with high contrast. Although traditional CT images

are static in time, a technique known as 4DCT has been developed to image anatomy

as it moves due to the respiratory cycle [69, 11, 67]. The final output from a 4DCT

is a series of 3D volumetric images in which each 3D image contains the location of

the anatomy from a given phase/amplitude of the respiratory cycle.

At Washington University in St. Louis, a 4DCT imageset is acquired using the follow-

ing method [44]. The patient is placed on the CT couch, and a respiratory surrogate

such as a bellows and/or spirometer is affixed. This surrogate will simultaneously

record the respiratory waveform throughout image acquisition. A computer receives

this respiration signal along with the x-ray ON signal from the CT scanner, and as

a result each acquired 2D tomographic image slice can be correlated with respect to

the respiration waveform. Each 2D axial slice is oversampled in order to ensure that

the given slice is acquired at each phase of the breathing cycle. For instance, if the

intended 4DCT will be reconstructed at 10 phases, the output will be 10 volumetric

3D CT images each with all the anatomy corresponding to a given phase/amplitude.

For this hypothetical acquisition, 25 images for each slice might be acquired to en-

sure that the phase of at least one of the images for that slice matches each of the 10

reconstructed phases.

At completion, 4DCT provides CT resolution images with temporal changes in in-

ternal anatomy. One of the concerns associated with this technique is increased

radiation dose to the patient due to the oversampling required to generate the 4DCT.

For patients undergoing radiation therapy, this concern is minimal compared to the

dose associated with the treatment. For alternative applications, the benefits of the

imaging technique must be weighed against the cost of the extra radiation to the

patient.
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B.3 IMRT

MLCs have been widely adopted in clinical use for conformal radiation therapy. In

an effort to increase dose conformality to the target, many treatment centers have

implemented Intensity Modulated Radiation Therapy (IMRT). It has been shown that

IMRT delivery improves dose conformality over conformal radiation therapy [111]. In

IMRT planning, critical structures are defined via manual contouring, and constraints

are set to ensure proper dose to the target and dose limits to surrounding healthy

structures. After a dosimetrist defines all the constraints, an iterative algorithm

calculates the best intensity profile to deliver from each beam angle in order to satisfy

the initial conditions. There are two major types of IMRT delivery, S-IMRT and D-

IMRT.

B.3.1 S-IMRT

In S-IMRT delivery, during the planning stage a dosimetrist divides each beam angle

into a series of segments. These segments are composed of different leaf sequences for

a given beam angle, delivering a series of small static conformal beams for each angle.

During delivery for a given beam angle, the leaves are aligned to the first segment and

the beam is turned on. The dose prescribed for a given segment is delivered and at

completion the beam is turned off. The leaves then move to their respective positions

for the next segment and the beam is turned on again. In S-IMRT the leaves are

never moving when the beam is on, and as a result this technique is often referred

to as ‘Step and Shoot’ IMRT. During the planning phase, the segments are adjusted

to ensure coverage of the target while minimizing hotspots in the dose profile. At

completion, the plan contains a series of beam angles, and a series of segments for

each angle.

B.3.2 D-IMRT

In D-IMRT the plans are developed computationally. For each beam angle the fluence

for each pixel in the beam’s eye view (BEV) is defined independently. Throughout
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delivery the beam is enabled while the leaves are moving. The leaf pairs move such

that for a given pixel in the BEV plane, the time between the leading leaf exposing

a given pixel and the following leaf shielding a given pixel is sufficient to deliver the

appropriate fluence (dose). This relationship can be described as follows:

vr(m,x) =
vl(m+ I(x), x)

1− dI(x)
dx

vl(m+ I(x), x)
(B.1)

where

m= moment in time (conventionally measured in monitor units)

x = position along the direction of leaf motion

I(x)= intensity

vr= velocity of the right (leading) leaf

vl= velocity of the left (trailing) leaf

B.4 Dosimetric Analysis

In order to determine the effectiveness of various motion management techniques,

dosimetric analysis is performed to quantitatively analyze the level at which the

dose in the presence of motion (target image) matches the dose in the absence of

motion (reference image). Dose is conventionally measured by dosimetric film, or

arrays of ion chambers or diodes. There are a number of metrics for quantitatively

comparing dosimetric accuracy. A brief overview of the most common dosimetric

analysis techniques is included below.

B.4.1 Difference Maps

In difference maps, the dose from the reference image is subtracted from that of the

target image on a pixel-by-pixel basis. As a result, positive values indicate overdosing

and negative values indicate under dosing. In areas of very steep dose gradients, a

very small spatial offset can lead to drastic dosimetric differences.
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B.4.2 Distance to Agreement (DTA)

In the distance to agreement, the dose value for each pixel in the target image is

compared to values in the surrounding area on the reference image. The minimum

distance needed to find a corresponding dose value is recorded, using interpolation

for discretized dose distributions. The DTA function is complementary to difference

mapping in that it returns large values for relatively small dose differences in regions

of shallow dose gradient.

B.4.3 Gamma (γ) Tool

The γ tool effectively combines both dose difference and distance to agreement metrics

which each break down in steep and shallow dose gradient regions respectively. The

Γ function is defined as the minimum generalized gamma function for all points:

Γ(~re, ~rr) =

√
r2(~re, ~rr)

∆d2
+
δ2(~re, ~rr)

∆D2
(B.2)

where

(~re, ~rr)= the positions on the evaluated

and reference images respectively

r(~re, ~rr) = the spatial distance between the two points (~re, ~rr)

δ(~re, ~rr)= the difference between the

evaluated dose and the reference dose

∆d= the distance to agreement criterion (typically 3mm)

∆D= the dose agreement criterion (typically 3% of the max dose)

We leave out the details for the sake of brevity; however further information on the

γ tool can be found in the literature [45].
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B.5 Intra/Inter -fraction motion

Due to the complicated nature and computational load associated with planning

treatments, it is not currently clinically feasible to replan the patient at each fraction

using daily volumetric imaging. With this in mind, at each fraction the patient is

typically aligned via bony anatomy on orthogonal fluoroscopy images obtained at

time of treatment. It is possible that although the bony anatomy is in the same

location, the internal soft tissue may not be in the same location. Inter-fraction

motion, or motion associated with repositioning the patient on the table between

fractions, causes significant error in terms of target localization. In addition, intra-

fraction motion can come in many forms. Many target sites are associated with intra-

fraction motion (e.g. respiratory correlated motion in the lung and prostate shifts

due to rectal filling). With this in mind, margins are added to the Clinical Target

Volume (CTV) in order to ensure proper coverage when accounting for uncertainty

in target position. The resulting Planning Target Volume (PTV) is then used for

treatment planning [57]. Reducing the uncertainty in target location can lead to a

reduction in PTV margins and allow for dose escalation to the target site.

Figure B.1: The Washington University 4D Phantom.
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B.6 Washington University 4D Phantom

In order to evaluate the accuracy of methods for mitigating respiratory motion, it

is necessary to recreate patient motion with precision and accuracy. With this in

mind, a 4D phantom was developed capable of reproducing motion to sub millimeter

accuracy [52]. The phantom, shown in Figure B.1, contains a platform capable of

holding a load sufficient for carrying dosimetric phantoms. It is composed of a four

axis motion controller that can be loaded with a custom trajectory at 100hz. Once

programmed with a trajectory, the phantom can recreate motion in three dimensions

using orthogonally placed stepper motors as well as offer a fourth surrogate axis for

independant motion analogous to a respiratory surrogate signal. For many charac-

terization studies described herein, the 4D phantom was used to accurately recreate

patient breathing trajectories.

Figure B.2: Lung motion model. The motion of the object at baseline (circle) is
shown at a given phase point (square). Component vectors related to the tidal

volume (~rv) and airflow (~rf ) predict the position of the object (~rp) with respect to
baseline ( ~rp0) at any phase of the breathing cycle.
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B.7 Respiratory Motion Model

The ability to accurately predict tissue motion within the lung as it moves due to res-

piration is useful for a variety of interventional applications. A respiratory correlated

lung motion model has been developed which relies on the signal from an external

respiratory surrogate (spirometry) to correlate internal tissue motion with tidal vol-

ume and airflow in the lung. [45]. As described visually in Figure B.2 the position of

an object within the lung can be predicted based on two independent vectors (r̂v, r̂f )

related to the tidal volume and airflow respectively. Typically the main portion of

motion is derived from tidal volume changes in the lung. Hysteresis occurs due to air-

flow derived local pressure differences, and this motion is accounted for by the second

vector r̂f . Conventionally the model is calibrated using the position of the target on

a 4DCT image set obtained either via manual segmentation or automatic template

matching for high contrast easily identifiable landmarks. Once the 3D target position

along with the mean tidal volume and flow is delineated for each phase of the 4DCT,

these parameters can be used to calibrate the 5D model. The model yields the target

position based on the external surrogate for any tidal volume/airflow as described in

equation B.3. Research is ongoing confirming the accuracy of this model for clinical

applications.

~rp = αvr̂v + βfr̂f (B.3)

where

~rp0= the baseline position at exhalation.

~rp= the vector offset from baseline position ~rp0

α, β = Model constants (tidal volume, airflow respectively)

r̂v, r̂f = Unit tidal volume and airflow component vectors

v= tidal volume

f= airflow
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B.8 Target Localization Techniques

Respiratory correlation has been used extensively in CT and MR imaging in an effort

to reduce breathing related image artifacts [75, 69]. More recently, similar techniques

have been employed to localize the tumor and gate (turn on/off) the linear acceler-

ator [91, 49, 35]. Conventional gating setups use a variety of techniques to measure

breathing motion including: optically tracked external marker blocks, thermocouples,

thermistors, strain gauges, and pneumotachographs [38]. Current techniques rely on

the use of external markers or sensors to determine the internal position of the target.

If a relationship between the external surrogate and the internal target position can

be established, the beam can be turned off or ‘gated’ when the target is outside of the

delivery volume. Although a correlation exists between external markers and internal

tumor position, for some patients’ external marker trajectories do not serve as an

adequate surrogate for internal tumor position [16].

Respiration induces considerable deformation within the thoracic cavity. As the di-

aphragm contracts, internal anatomy compresses and distends. Often the external

anatomy exhibits good correlation with the motion of the internal structures such

as the diaphragm and/or lung tumors [49, 16]. The external anatomy moves due

to respiration; however studies have shown considerable differences between external

anatomy and internal motion. These differences can come in the form of correlated

motion with a phase lag between the external and internal motion, or less frequently

the motion might not exhibit correlation. Margeras and Yorke have reported up to a

0.5 second lag between Varian RPM marker block position and diaphragm position

measured fluoroscopically [50]. Koch et al found that correlation was poor and unsta-

ble unless the external surrogate measuring skin surface position was near the tumor

[36]. In a study from Berbeco et al, lung tumor motion was measured via continuous

fluoroscopy concurrently with measurement of external abdominal surface positions

[7]. The amount of residual tumor motion, defined as the amount of tumor motion

during a respiratory gate based upon the movement of the external surrogate, showed

large fluctuations (>300%) for both intra- and inter-fraction motion. The residual

motion was found to be up to 8 mm in magnitude, which strongly suggests that exter-

nal position monitoring cannot accurately reflect the internal position of a tumor for

all cases. The periods in which external and internal motion exhibit poor correlation
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are often transient; however these transient periods have dosimetric implications [68].

The lack of correlation between internal/external positions has led investigators to

examine alternative techniques for accurately tracking the position of targets inside

the thoracic cavity. Shirato et al developed a real-time target tracking system that

uses four integrated kilovoltage imaging systems [89]. The fluoroscopic imaging sys-

tem used in this technique provides accurate information on the location of discrete

points inside the abdomen. However, accurate tracking of the target comes at the

expense of an increased imaging dose. For a single fluoroscope, the estimated skin

surface dose rate can be up to 118 cGy/h [93]. In addition, for 3D target tracking,

stereoscopic fluoroscopes are necessary which means further accumulated dose due to

imaging. The SynchronyTMRespiratory Tracking System (RTS) treatment option of

the CyberKnife robotic radiotherapy system provides another image based system for

tracking internal fiducial markers [85]. With this technique, gold fiducials are placed

inside the thoracic cavity near the tumor while the patient wears a vest with LEDs

that indicate the position of the chest and abdomen. Before the treatment begins, a

series of orthogonal x-ray images are acquired that are used to correlate the position

of the external markers to the internal fiducials. A correspondence model is developed

and periodic images are obtained during the course of delivery to ensure the continued

validity of the correspondence model. While the SynchronyTMRTS delivers a lower

radiation dose to the patient as compared to continuous fluoroscopic imaging, this

is achieved at the expense of intermittent absolute knowledge of internal positions.

Previous studies state that the entrance dose per image can be as high as 0.2 cGy [64].

For a 2-hour session with imaging performed every 30 seconds, the patient receives

48 cGy over the course of the treatment due to imaging.

Alternative image based solutions have been investigated which utilize the on board

imaging (OBI) functionality of many modern linear accelerators [6]. Similarly to the

fluoroscopy based solutions previously mentioned, OBI solutions deliver dose to the

patient in order to image and track internal markers/tumors. Another factor limit-

ing this technique is the fact that high energy MV scatter from the treatment beam

can degrade the image quality of the kV images typically used for tracking [48]. OBI

based methods do have the advantage of providing information about the surrounding

tissue, which a pure electromagnetic position monitoring solution cannot provide.
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B.9 Calypso Electromagnetic Position Monitoring

Continuous electromagnetic position monitoring is now available without additional

dose to the patient (Calypso Medical, Seattle WA). The system uses one or more

wireless transponders which are subject to performance testing as part of the manu-

facturing operation to ensure they can stand up to high levels of radiation throughout

the treatment process. The transponders are implanted into the patient via a 14-gauge

needle in a procedure similar to existing gold fiducial implants currently in use clin-

ically. During treatment planning, the location of the transponders is recorded with

respect to isocenter, and a plan is developed.

During delivery, an array is placed above the patient. Four source coils in the array

excite the transponders via magnetic induction. After excitation, 32 receiver coils

in the array detect the resulting response signal. Each transponder contains and

RLC circuit tuned to a unique resonant frequency (300kHz, 400kHz, or 500kHz), and

they are sequentially excited in order to independently query position information.

When the array excites at a particular frequency, only the transponder tuned to that

frequency can store the energy to later emit back to the array for detection. For a

simple series RLC circuit, the resonant frequency is defined as: ωo = 1√
LC

. The array

is registered to the room via stereoscopic infrared cameras, and hence the transponder

position is known with respect to the room isocenter.

Balter et al have reported submillimeter accuracy when tracking the transponders

moving at 3 cm/s in a volume that is 14x14 cm in width, and up to 27 cm away from

the array [2]. In a study from Santanam et al the system was again found to be sub-

mm accurate as confirmed by onboard kilovoltage imaging [78]. In a clinical prostate

cancer treatment study, Willoughby et al have shown the system to be functional in

a linac environment, even when the linac is treating directly through the array [108].

To date there have been no published failures of the transponders due to radiation

dose. The system is currently FDA cleared for use in the prostate, and potential

applications in the lung and abdomen (where motion is substantial) are promising.
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B.10 Medtronic StealthStation

The Medtronic StealthStation (pictured Figure 5.1) is an IGS system for minimally

invasive surgical procedures. The StealthStation AxiEM technology provides elec-

tromagnetic tracking of wired instruments within the body. In this EM tracking

implementation, a position varient magnetic field is generated within the patient us-

ing three orthogonal coils contained inside of the field generator. Tools for the AxiEM

system have one or more coils near the tip, and upon entering the magnetic field a

position dependent current is induced. The tools are connected via a wire back to

the StealthStation and the amplitude of the induced current allows for continuous 3D

localization.

AxiEM tools offer some advantages over optically tracked IGS systems. First, line of

sight is not required to track the tools. Additionally, using single-coil tools allows for

the potential of flexible tools that could be implanted via a bronchoscope. Optical

tools require the tool to be rigid with respect to the optical base which is tracked

outside of the body. If the tip of the optical tool bends during implantation with

respect to the base, the localization error of the tip will be large.
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