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Abstract

This paper examines the performance of synchronous checkpointing in a distributed computing
environment with and without load redistribution. Performance models are developed, and optimum
checkpoint intervals are determined. The analysis extends earlier work by allowing for multiple nodes,
state dependent checkpoint intervals, and a performance metric which is coupled with failure-free perfor-
mance and the speedup functions associated with implementation of parallel algorithms. Expressions for
the optimum checkpoint intervals for synchronous checkpointing with and without load redistribution are
derived and the results are then used to determine when load redistribution is advantageous.






Distributed Computing Systems and Checkpointing*

Ken Wong and Mark Franklin
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Abstract

This paper examines the performance of synchronous
checkpointing in a distributed computing environment
with and without load redistribution. Performance models
are developed, and optimum checkpoint intervals are
determined. The analysis extends earlier work by allowing
Jor multiple nodes, state dependent checkpoint intervals,
and a performance metric which is coupled with failure-
Jree performance and the speedup functions associated
with implementation of parallel algorithms. Expressions
Jor the optimum checkpoint intervals for synchronous
checkpointing with and without load redistribution are
derived and the results are then used to determine when
load redistribution is advantageous.

1. Introduction

The dual emerging technologies associated with gigabit
networks {1] and high-speed processors (supercomputers),
suggest the possibility of tackling very large, computation-
ally intensive problems by coupling these technologies
into a distributed computing environment. The large
applications which make good candidates for this environ-
ment may produce results only after many hours even
when multiple computers are employed. For example,
several computing sites around the U.S. might be willing
to cooperate (i.e., act as a distributed parallel processor) in
tackling a difficult simulation problem. The computing
sites may consist of computational resources from several
vendors, and communcation between sites may require
message transmission over long distances (thousands of
miles) through several intermediate hops. Clearly, com-
puting in this environment is much more precarious and
we can expect higher resource failures rates than in a stan-
dard multiprocessor. Thus, a fundamental problem which
must be addressed in this environment is that of providing
effective computational progress in the face of resource
failures.

* This research has been sponsored in part by funding
from the NSF under Grant CCR-9021041.

In order to achieve maximum speed, the computational
tasks must be assigned to the resources to exploit max-
imum parallelism. However, the possibility of a system
failure (and therefore a complete restart) increases as
larger numbers of processors are brought to bear on the
application. Fault tolerant techniques must be used to
insure finishing times which are comparable with fault-
free performance.

One approach to providing higher reliability is to have
each site periodically checkpoint by making a copy of the
system state onto stable storage such as disk. When a
failure occurs, each site can resume computing after it
restores its system state by reading the latest checkpoint
from its checkpoint storage. An important issue in such a
system concerns the selection of checkpoint frequency.
Checkpointing too frequently in a highly reliable system
results in unnecessary overhead, while checkpointing too
infrequently in a highly unreliable system results in the
loss of large quantities of work — work which must be
repeated after a failure.

Note also that in a system where the repair times are
Iong, it may be beneficial to redistribute the load onto the
remaining operational processors and resume computing
(at a lower aggregate rate) instead of waiting for its repair.
When repair is completed, the load could then be redistri-
buted back onto the repaired processor. This approach
allows for graceful performance degradation in the face of
failures.

This paper examines the performance of synchronous
checkpointing in a distributed computing environment
with and without load redistribution. Performance models
are developed, and optimum checkpoint intervals are
determined. The analysis significantly extends earlier
work by allowing for multiple nodes, state dependent
checkpoint intervals, and a performance metric which is
coupled with failure-free performance and the speedup
functions associated with implementation of parallel algo-
rithms. Expressions for the optimum checkpoint intervals
for synchronous checkpointing with and without load
redistribution are derived and the results are then used to
determine when load redistribution is advantageous. Thus,
the connected issues of checkpoint interval and load redis-
tribution are considered and, for a given set of system and
application parameters, an optimum checkpointing and



load distribution scheme can be selected.

2. Optimum checkpointing

Optimum checkpointing for the single-node case has
been studied extensively [2,3,4,5.6,7,8]. Optimum check-
point intervals have been found by maximizing availabil-
ity or minimizing response time. The objective function is
typically convex, and analytic or numerical solutions can
be found in many cases {8]. In most cases, a transaction-
oriented environment is assumed where jobs or requests
arrive from a Poisson source.

The optimum selection of checkpoint intervals for the
multicomputer case has been sparsely studied. Gelenbe,
et. al., developed a model which included the overhead of
fault detection [9]. Gelenbe assumed that the nodes were
homogeneous, the load at each node was identical, the
nodes were tested periodically for faults, and there was an
external source of jobs. In his development, requests sent
to faulty nodes were routed to operational ones. Thus, the
mean input rate to a node is a function of the job source
rate, the number of faulty nodes, and the precision of fault
detection. Based on these assumptions, expressions for
the optimum checkpoint interval and optimum testing
interval were obtained.

Our models consider a related situation but with the
following differences:

1) Jobs are generated internally as the result of other jobs
rather than coming from an external Poisson source.

2) Synchronous checkpointing is employed rather than an
asynchronous checkpointing algorithm.

3) Fault detection is not explicitly modeled.

Our motivation is driven by a desire to model applications

in a scientific computation environment rather than a

transaction-criented one. These differences lead to dif-

ferent models, solution techniques, and results.

We begin by considering the single-node case and then
extend this to multiple nodes. A node can be viewed as
being in one of three states: A) available,
C) checkpointing, or R)recovering. For mathematical
tractability and simplicity, we assume 1) Markovian state
occupancy times, 2) failures form a Poisson process, and
3) failures only occur when a node is in the available state.
This is reasonable when checkpoint and recovery times
are small compared to the time that the node is available
between such events.

The state transition-rate diagram for this Markov pro-
cess is shown in Figure 1, and the parameters in the
diagram are defined in Table I. After spending on average
o' time units in the available state (A), the system will
enter the checkpointing state (C). It spends on average 3!
time units saving the system state before it reenters the
available state to resume computing. Occasionally, the
system will fail. On average, the system will be available
for ¢! time units before this happens. When a failure
occurs, the system will spend o™! time units recovering to

the failure point before resuming the computation in the
available state.

Figure 1, Single-Node State Transition Rate Diagram.

Parameter Description

¢‘1 mean failure time

ot mean time between checkpoints
Bt mean time to perform a checkpoint
o mean recovery time

Table I. Model Parameters.

The availability (steady-state probability of being in the
available state} m, can be derived wsing standard CTMC
{continuous-time Markov chain) techniques [10]:

o
+—+

-1

- L2

Ty [i B 6}
Note that the mean recovery rate @ is a function of the
mean checkpoint rate o since the amount of work to be
repeated after a failure is related to the time between
checkpoints. In order to determine how the availability
T, varies with the intercheckpoint frequency o, we must

first-express ¢ as a function of o.

The mean recovery time ¢! consists of three time
components: 1) a mean system repair time p", 2) a mean
state restoration time r, and 3)a mean recomputation
time. The recomputation time is the time spent recomput-
ing from the restored state to the failure point. If the sys-
tem is never idle while in the available state, renewal
theory says that the failure point will occur o' from the
latest checkpoint since the failure and checkpointing
processes are Poisson. If we assume that the system is
never idle while in the available state, the mean recompu-
tation time is

(1)

ol=pt+r+a’ 2)
The availability can now be written as:
-1
Ty = [1 + % + ¢[p“‘ +r+ rx“]} 3

Setting the derivative of m, with respect to o to O and
solving for ot leads us to the optimum checkpoint rate:

o =VH B (@)



This corresponds to the result found in the literature [2,3].
The optimum checkpoint rate o” behaves as expected.
That is, checkpoints should be taken more frequently
(larger o} as failures occur more frequently (larger ¢).
Also, as checkpoints take less time (larger B), checkpoints
can be taken more often (larger o) since there is less over-
head associated with checkpointing.

At first, it may seem strange that the optimum check-
point rate does not depend upon the repair and recovery
parameters p and r. However, in the time interval
between failures, the checkpoint frequency (o) controls
only the overheads associated with checkpointing (through
the number of checkpoints) and recomputation during
recovery (through the intercheckpoint period). Changing
the checkpointing frequency will not affect the repair and
restore time components p~' and r respectively.

The multi-node case offers us the opportunity to choose
between several recovery methods. Consider two syn-
chronous ‘checkpoint recovery methods: one with load
redistribution and one without load redistribution. Typi-
cally, if the down time after a failure is short, it is reason-
able to wait for the failed node to recover before continu-
ing the computation. However, if the failed node will be
unavailable for a significant amount of time, it may make
sense to redistribute the Ioad among the remaining nodes,
repeat the lost work, and then continue.

In addition to the three single-node model assumptions
discussed earlier, we assume that 4) the fault-free speed-
up curve is known, 5) the nodes are homogeneous, 6) the
load is balanced across the processors, and 7) the proces-
sor utilization is approximately equal to the ratio of the
speed-up to the number of processors. Assumption 4 is
reasonable for many scientific computations. The fault-
free speed-up is the ratio of the single-node and multi-
node finishing times in a fault-free system (T(1) and
T(N)) and is defined as:

(1)
TWNY’

Figure 2 shows two typical curves for S (). In the ideal
situation, the speed-up with N processors would be N.
Because of multiprocessor overheads, synchronization
delays, and communication delays, however, the speed-up
is generally less than N. The dashed curve indicates linear
speed-up. The solid curve is approximately the same as
the dashed curve for small numbers of processors, but
then reaches an assymptote for larger numbers of proces-
sors. This deviation from linearity can be a result of a
lack of sufficient parallelism, or heavy message traffic,
We extend the speed-up measure to a faulty environment
by defining the speed-up in a faulty environment S to be
the ratio of the fault-free single-node finishing time T(1)
to the fanity multi-node finishing time T#(N); that is,

- (1)
SWN)= N

S(N)= N=1 (5

N>1 (6)

. e(N-1)+1

b(1—e W41

N

Figure 2. Speed-Up as a Function of Number of Nodes.

Assumptions 5 and 6 (homogeneous nodes and load
balance) are made for illustrative purposes. Equivalently,
the interfailure time, intercheckpoint time, and checkpoint
duration at any node are stochastically identical to those
on any other node. Although we make this last assump-
tion for analytic tractability, the basic development would
remain the same even without this last assumption,
although the resuiting equations would be more complex.

Assumption 7 is also made for analytic tractability. We
assumie that the fault-free utilization U/ (V) is

SNy _ T 1
N  T(NYN’

Note that this is equivalent to assuming that the sum of the
CPU time component of all processors is equal to the CPU
time of a single processor system. This can be seen by
noting that U7 (N)T(¥) is the CPU time of each processor.
The sum of the CPU times of all N processors is
NU(N)T(N) which is equal to T(1) when U{N) is
replaced by the righthand side of Equation 7.

UWN) = Nzt )

3. Model I — synchronous checkpointing
without load redistribution

Begin by considering the simplest case: synchronous
checkpointing without load redistribution. The disadvan-
tages of this approach for systems with many nodes are
the high synchronization cost and low availability when
repair times are slow. In this approach, all nodes check-
point at approximately the same time. A two-phase com-
mit protocol might be used to synchronize the start of a
checkpointing phase. Once the checkpointing is done the
system is available for normal computation. If any node
fails, the whole system must go through a recovery phase.
After recovery, the system is again operational with N
nodes.

The system is equivalent to a single-node running N
times as fast when operational, but also failing N times as
often. Such a system can be in one of three states: A) all
nodes are available, C)all nodes are checkpointing, or
R) all nodes are recovering. The availability w, of this
system can be obtained from the single-node case by not-
ing that the mean system failure rate is now N¢ instead of
¢. Furthermore, since the nodes can be idle during the

‘intercheckpoint period, the mean recompute time is now

given by U(N)o™! where U (N) is the fault-free utilization



when there are N processors. Using equation 3, the availa-
bility is:

-1

o

B

The objective is to maximize the availability of the sys-
tem, Since the multi-node availability equation is identi-
cal to the single-node one except N¢ replaced ¢, and
Ut replaced o', it is easy to see that the optimum
checkpoint rate will be

a% = NORU(N) &)

The speed-up using the optimum checkpoint frequency
can now be derived. If T(N) is the finishing time of the
favlt-free system with N processors, the finishing time of
the faulty system is T#(N)=T(NVm, since ®, is the
fraction of time that the faulty system is operational.
From our definition of speed-up in a faulty environment,

ray _. T)
T#(N) " T(N)
where S(N} is the fault-free speed-up; that is, the speed-
up in the faulty environment is reduced by a factor equal
to the system availability, After substituting for o
(from 9} into the availability equation (8), equation 10
becomes:

SN

+ Nq)[p‘] +r+ U(N)oc“IJ (8)

TEA=I:1+

Sy = =my S(N) (10)

- S(N) -
1+ 2NN QU NYB+No(p™+r)

Figure 3 shows the speed-up curves for N=4 to N=64
processors for the parameters shown in Table II. Check-
point and state restoration times are representative of
times for writing and reading a few megabytes of data
from moveable head disk and synchronizing the check-
point and recovery activities. The mean failure time of
10° seconds is a typical value [11], while the mean repair
times of 10° seconds and 10 seconds represent two short
repair times. The dashed curve is the failure-free speed-
up curve with exponential form (constants b=128 and
a=1/128). The lower solid curve corresponds to the case
when the mean repair time is p~'=10° seconds. The other
solid curve comesponds to the case when the mean repair
time is smaller by two orders of magnitude.

(11

Param. Value Description

B 1 sec Mean checkpoint time

a,b 1/128,128 Exponential fault-free
speed-up params.

r 1 sec Mean state restoration time

o Optimum Mean checkpoint rate

o 10° sec Mean failure time

p'] {10°,10) sec | Mean repair time

Table IX. Model I Parameter Values.

S*
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Figure 3. Speed-Up Versus Number of Processors (Model I.

4. Model II — synchronous checkpointing
with load redistribution

In synchronous checkpointing without load redistribu-
tion, long recovery times due to permanent errors which
can not be resolved by quick system resets forces the
entire system to be idle for large time periods. In this
situation, it would make more sense to work around the
faulty node and redistribute the load onto operational
nodes. But typically, the cost of load redistribution is
significant. If the faulty node becomes operational
immediately after the load is redistributed, it would have
been better to wait for the faulty node to be repaired and
not redistribute the load. Furthermore, in our analysis, the
checkpoint interval is allowed to be dependent on the
number of operational nodes. This section quantifies the
overheads that justify a load redistribution and determines
the optimum checkpoint intervals.

For homogeneous nodes, the system state can be
defined in terms of the vector S = (ny .,np,ng,n) where
the components correspond to the number of nodes in the
states A, C, R, and F. These parameters are are shown in
Table III. The state transition rate diagram is shown in
Figure 4. In the available state (N—£,0,0,k) (column 2,
Figure 4), N—k nodes are operational and k nodes are
being repaired. When checkpointing is initiated from this
state, the system enters the checkpointing state
(0.N—£,0,k) (column 4). After checkpointing, the system
reenters the available state (N—k,0,0,k). When a failure
occurs, the system enters the state (0,0,N—k—1.k+1)
(column 1) where it downsizes (redistributes the load
down to the N—k—1 operational nodes). After load redis-
tribution, the system enters the available state
(N—k~—1,0,0,k+1} (column 2) where it resumes computa-
tion with one less processor. Nodes are repaired (in paral-
lel} while in state (V—£,0,0,k). After a repair, the system
is in state {0,0,N—k-+1,k—1) where the system takes a
checkpoint and then upsizes (redistributes the load among
the N —k+1 operational nodes).
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Figure 4. State Transition Rate Diagram
(Synchronous Checkpointing With Load Redistribution).




Param. Description

ny number of nodes in available state

He number of nodes in checkpointing state

Hp number of nodes in load redistribution state
np number of failed nodes

Table ITI. Markov State Components.

In one case, the load is not redistributed after a failure.
This occurs when there is only one operational node
which then fails. In this case, the load can not be redistri-
buted and the system must be repaired and lost work must
be repeated.

The parameters in the state transition rate diagram are
summarized in Table IV. The mean rates ¢, and ¢ have
the same interpretations as in the single-node case. In the
multi-node model, the failure rate while in state
(N—k.,0,0,k}) is (N=k )¢ since each of the N—k operational
nodes fail at a mean rate of ¢. The mean rate oy,
k=1,..,N, is the multiprocessor equivalent to o and are the
mean intercheckpoint rates when there are & operational
nodes. The mean rate B, k=1,...,N, is the multiprocessor
equivalent to 3 and are the mean checkpoint rates when
there are % operational nodes. The two rates §,,
" k=1,..,N-1,and vy, k=2,....N, are the recovery rates asso-
ciated with downsizing (omitting a failed node) and upsiz-
ing (including a repaired node) respectively. During
downsizing, the load must be redistributed, the state must
be reloaded, and the work lost since the latest checkpoint
must be repeated. The mean downsizing time is

S'l=d +n +UG+Dogl,  k=1..N-1 (12)

where the first term is the mean load redistribution time,
the second term is the mean state restoration time, and the
third term is the mean recomputation time. During upsiz-
ing, a checkpoint is made and then the load is redistri-
buted. The mean upsizing time is

Vet =Bt 4 g+, k=2,..N (13)
Param. Description

N Number of processors

k Number of operational nodes

i Mean checkpoint time

Uk) Fault-free utilization

T Mean state restoration time

O Optimum mean checkpoint rate

0 Mean failure rate of a single node

P Mean repair rate of a single node

d, Mean redistribution time (downsize)
2 Mean redistribution time (upsize)

Table IV. Model II Parameters.

Appendix I shows how the state probabilities can be com-
puted using local balance equations and probability con-
servation.

Unlike the prior case, this system can continue to
operate with failed nodes. However, when & nodes are
under repair, the speed-up will be less than the N node
case. Thus, our performance measure should account for
variations in the speed-up due to node failures. We define
the average speed-up to be

_ N N
SN)= 3 Sk pon—r = X kUK gon—r (14)

k=1 k=t
where U(k) is the fault-free utilization when &£ nodes are
operational. Appendix I shows that the average speed-up

can be derived as
Nk
L
P

and the optimum checkpoint interval when there are k
operational nodes is

o™ = kOB, U (k) (16}

Thus the kth state-dependent checkpoint rate is identical to
the optimum checkpoint rate of a system with k nodes
using synchronous checkpointing without load redistribu-
tion.

Figure 5 shows the speed-up curves for N=4 to N=64
processors for the parameters shown in Table V. The
parameters are the same as in Table II, but augmented by
the load redistribution parameters 4, and g,. For this
example, we assumed that the mean checkpoint time
(Bx=P), and the mean load redistribution times &, and g,
are independent of the number of operational nodes. The
dashed curve is the failure-free speed-up curve with
exponential form (constants »=128 and a=1/128). The
two solid curves are almost identical and indicate speed-
ups which are not significantly worse than the one in a
fault-free environment. This contrasts with the result in
Model I where a longer mean repair time affected the per-
formance substantially. Bécause Model II allows work to
continue after redistributing the load, the affect of faunlty
nodes has a smaller impact on performance than in Model
I

N

_ N
S (N) = TCN,O,O,O E U(k)[N_ (15)
k=1

k=1,..N

Parameter | Value Description

dy, 10 sec | Mean redistribution time (downsize)

& 10 sec | Mean redistribution time (upsize)
{gr=dy)

Others See Table H

Table V. Example Model II Parameters.
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Figure 5. Speed-Up Versus Number of Processors (Model II),

5. An example

This section presents an example indicating how the
expressions derived can be used to determine whether or
not to employ load redistribution techniques. Table VI
shows the parameter values which are uosed in this
section’s examples. In order fo factor out the fault-free
behavior from the examples, the fault-free utilization is
assumed to be 1 (U(k)=1). Although U(k) affects the
absolute performance of the two algorithms, it will not
affect their relative performance. Bracketed values in
column two indicate that parameter values have been
chosen from the interval indicated in brackeis. The
parameter values have been chosen as before to represent
both typical and pedagogic cases. Both N=8 nodes and
N=064 nodes have been evaluated to examine the effect of
node population on performance.

Param. Value Description

N [8,64] Number of processors

B:? 1 sec Mean checkpoint time

Uk 1.0 Fault-free utilization

) 1 sec Mean state restoration time

o Optimum Mean checkpoint rate

¢ [1078, 107 sec™! | Mean failure rate

8] [10_4,10_1] sec”! | Mean repair rate

dy [1,10*] sec Mean redistribution
time (downsize)

& [1,10%?] sec Mean redistribution
time (upsize)

Table VI. Mode!l II Parameter Values.

In order to focus on the fractional difference between
the performance of the two algorithms, we use the ratio of
the average speed-up S(¥) to the ideal speed-up (N) as
our performance measure and refer to this measure as the
efficiency €. In Model I (without load redistribution), the
average speed-up is the speed-up given by Equation 11
since the system is only operational when all N processors
are operational. However, in Model II (with ioad

redistribution), the average speed-up is given by Equation
15.

_S@V)
- N

Figures 6a and 6b show the effect of the mean repair
rate p on the efficiency € for different values of the mean
load redistribution time d,=d and N=8 nodes. The solid
(dashed) curves indicate the model II () efficiencies.
Note that the horizontal axis is a log scale where p has
been varied over four orders of magnitude.

(17
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Figure 6(a). Efficiency (g) Versus Repair Rate (p)
(N=8 Processors, ¢ = 107% sec™).
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Figure 6(b). Efficiency (¢) Versus Repair Rate (p)
(N=8 Processors, ¢ = 107 sec™)).

Let g and &; denote the efficiencies using models I
and II respectively. The curves indicate that:

1) When the load redistribution cost is low (small d), the
load should be redistributed for greater efficiency (i.e.,
£y > &) since the system is more resilient to failures.

2) When the load redistribution cost is high (large ), the
best strategy depends on the repair rate. The costs of



load redistribution must be offset by an increase in
availability. Load redistribution is better (g, >¢;)
when repairs are slow (small p). Load redistribution is
not better (g < €;) when repairs are fast (large p).

3) The efficiency of model II is fairly insensitive to the
repair rate p while the opposite is true of the efficiency
of model I. Failures requiring a large repair time
{small repair rate) are disastrous when the load can not
be redistributed.

The curves also seem to suggest we should always redis-

tribute the load since the efficiency of model I is never

significantly better than that of model II. However, our
next example shows that this is not always the case.
Figures 7a and 7b show the efficiency curves for the
same parameter values used in the preceding example
except that there are N=64 nodes instead of N=8 nodes.
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Figure 7(a). Efficiency (g) Versus Repair Rate (p)
{(IN=64 Processors, § = 1078 sec™).
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Figure 7(b). Efficiency (£) Versus Repair Rate {p)
(N=64 Processors, ¢ = 107° sec”™),

The curves have the same general shapes as before but the
details indicate additional features:

1) The efficiency in both models is less than before. This
is due to the higher over-all system failure rate caused
by a greater number of failure sources (nodes).

2) The repair rate has a more dramatic effect on the
efficiency in model I than model II. For example, in
order to have an efficiency in model I that is at least
0.80, the mean repair time can be no more than 250 sec
(25 sec) when the failure rate is 1076 sec™ (107 sec™).

3) The efficiency in model II is less affected by the
increased node population. It drops to only .80 even
when the failure rate is high (107 sec™!) and repair rate
islow (107 sec™).

4) The load redistribution time 4 must be kept low in
order to maintain high efficiency in model II, especially
when failure rates are high. For example, when the
failure rate is 107 sec™, there is a 10% difference
between the efficiencies when d=1 sec and d=100 sec.

6. Conclusions and further research

The proper checkpointing strategy will be necessary to
maintain high efficiency in long-running, massively paral-
lel applications which are subject to failures. We have
analyzed two checkpoint/recovery strategies for non-
transaction-oriented systems: synchronous checkpointing
with and without load redistribution. Optimum check-
point rate(s) were determined analytically and have fami-
liar forms. The models indicate operational regions where
one is preferred over the other. In particular, synchronous
checkpointing without load redistribution will have lim-
ited use in large node population applications because of
its lack of resilience to failures. Synchronous checkpoint-
ing with load redistribution is more resilient to failures,
but the load redistribution and checkpointing overheads
must be kept small to maintain high efficiency. . This
becomes even more imperative with ever increasing node
popuiations.

Although the material presented here assumes a sym-
metric system in which all nodes act identically (in the
stochastic sense), it is a straightforward extension to han-
dle the heterogeneous case or to add more state dependent
considerations to the model (e.g., mean checkpoint time).
Another related issue that can also be addressed in our
framework is the distribution of tasks in a heterogeneous
system.

Our models could easily be extended to include the
possibility for handling transient and permanent failures
differently. A transient failure is one in which the repair
time is measured in seconds (e.g., software/hardware
reset) whereas a permanent failure requires a much longer
repair time which is measured in hours or even days. The
response to a permanent failure might be to redistribute
the load whereas the response to a transient failure might
be to wait for recovery without load redistribution.

We are also in the process of modeling specific check-
pointing strategies [12,13] and exploring alternative asyn-
chronous strategies which take local snapshots and allow
for partial operation during checkpoint periods.



The models presented in this paper characterize the
system architecture explicitly and the task assignment
indirectly through the fault-free speed-up curve. Anocther
approach is to model the computational load by a task
graph explicitly and the system architecture indirectly as
affects on arc andfor node costs. We are also developing
models using this alternative approach and trying to match
the model parameters to real workloads (e.g., logic simu-
lation) and use speed-up curves derived from experimental
data. Our hope is that results from both approaches can be
used iteratively to produce results which identify the fun-
damental parameters in determining task allocation in a
faulty computation environment.

Appendix I

Optimum Synchronous Checkpointing
With Load Redistribution

The Markov chain for Model II obeys local balance
equations [14]. These equations can be written using four
pairs of arcs for each row of states where row k
coiresponds to the states with k failed nodes:

1} the arcs coming into and going out of a downsizing
recovery state (column 1);

2) the arc going out of an availabile state (V£ ,0,0,k) due
to a failure and the arc going out of the available state
(N—k—1,0,0,k+1) due to a repair,

3) the arcs going into and out of an upsizing recovery
state (column 3);

4} arcs going into and out of checkpoint states (column 4).
These arc pairs correspond to surfaces for states in
columns 1, 2, 3, and 4 in the state transition diagram
respectively. We equate the flows across these pairs of
arcs. The solution to these local balance equations also
satisfy the global balance equations in which the flow into
each state is equal to the flow out of each state.

We first write the state probabilities for the active states
(column 2) in terms of Ty g00. Then, all other state proba-
bilities are written in terms of Ty ggo. For the states in
column 2 (excluding state (0,0,0,N)),

N k
L YA
p

k
For the state (0,0,0,]N), and then the states in coluzmns 1, 3,
and 4:

Tyt 004 = TN 000 (18)

N
_ N
1T = &) 4p 1
0,008 = TN 0,00 o pn (19)
N 0 k k
ng,%}\,_k,k=nh,vo‘ﬂ,o{k [F —"—5N o k=1,.,N-1 (20)

N[ o) W=k
BNk k =“N,o.o,o[k] [%‘ %, k=0, . .N-1 (21
N_
N *o -
Tonet ok =11:N|0‘0‘0[k] [ig-} ﬁ k=0,.N-1  (22)

Using probability conservation, we can solve for my g0
The details can be found in [15]. Since all state probabili-
ties have been written in terms of my ¢4 above, we have
solved for all state probabilities.

The problem now is to find checkpoint rates o, for
k=1,....N operational nodes which will optimize the aver-
age speed-up S(NV).

_ N
SWN)Y=3, kU (k)T ook
k=1

N N ¢ N-k
=Ty 00,0 E kU (k) [N—k] ['{3‘] (23)
k=1

A necessary (but not sufficient) condition for optimality
of the checkpoint rates is that the partial derivatives of
S(N) with respect to the checkpoint rates be zero. But
since Ty g0 is the only term in the S (V) expression that
depends on the checkpoint rates o, the requirement for
optimality is equivalent to finding the roots of the N equa-
tions:

d Ty 000

=0, k=1,...N
d o

(24)

Note that the recovery rates are state dependent.
Recovery from the states in column 3 in which there were
N-—f operational nodes (k=2,...,N'} involves checkpointing
and then redistributing the load (including reloading the
state); that is,

L [o k=1
Yk N Bk_l'*-gk +rk, k=2,...,N

The parameters g, and ry, k=1,...,N, are the mean times
for load redistribution and state restoration respectively.
Recovery from state {0,0,0,N) involves repairing the sys-
tem, reloading the state, and then repeating work lost since
the latest checkpoint.

(23)

o l=p +r+ U)oy (26)

Recovery from the states in column 1 in which there are
N—k operational nodes involves redistributing the load
(including reloading the state) and then repeating the work
lost since the latest checkpoint. The parameter d,
k=1,..,N=1, is the analog to g, in the expression for v,
and represents the load redistribution time,

Sl =dy+r + Ulk+Dogh,  k=1,.,N-1 @n

After substituting the expressions for y;1, ™!, and ;!
into the equations obtained from taking the N derivatives,



~ the resulting derivatives can be shown to be quadratic in
¢y with one non-negative root in each case. After some
algebra, the optimum checkpoint rates can be shown to be

of = kOB, U k),

10.

1.

k=l,.N (28)

REFERENCES

J.S. Turner, “‘Design of a Broadcast Packet
Switching Network,”” IEEE Trans. on Comm.
36(6) pp. 734-743 (June 1988).

John W. Young, ““‘A First Order Approximation
to the Optimum Checkpoint Interval,”’
Communications of the ACM 17(9) pp. 530-531
{Sept. 1974).

K. Mani Chandy, James C. Browne, Charles W.
Dissly, and Werner R. Uhrig, ‘‘Analytic Models
for Rollback and Recovery Strategies in Data
Base Systems,”” IEEE Transactions on Software
Engineering SE-1(1) pp. 100-110 (March 1975).
E. Gelenbe and D. Derochette, ‘‘Performance of
Rollback Recovery Systems under Intermittent
Failures,”” Comm. ACM 21(6) pp. 493-499 (June
1978).

Erol Gelenbe, “‘On the Optimum Checkpoint
Interval,”” Journal of the ACM 26(2) pp. 259-
270 (Apr. 1979).

Asser N. Tantawi and Manfred Ruschitzka,
““Performance Analysis of Checkpointing
Strategies,” ACM Transactions on Computer
System 2(2) pp. 123-144 (May 1984),

Kang G. Shin, Tein-Hsiang Lin, and Yann-Hang
Lee, “‘Optimal Checkpointing of Real-Time
Tasks,”’ IEEE Transactions on Computers C-
36(11) pp. 1328-1341 (Nov. 1987).

Victor F. Nicola and Johannes M. Van Spanje,
*‘Comparative Analysis of Different Models of
Checkpointing and Recovery,”” I[EEE Trans.
Software Engineering 16(8) pp. 807-821 (Aug.
1990;,

Erol Gelenbe, David Finkel, and Satish K.
Tripathi, ‘“Availability of a Distributed
Computer System with Failures,’" Acta
Informatica 23 pp. 643-655 (1986).

Kishor Shridharbhai Trivedi, Probability and
Statistics with Reliability, Queueing, and
Computer Science Applications, Prentice-Hall,
Englewood Cliffs, New Jersey (1982),

X. Castille, S. R. McConnel, and D. P.
Siewiorek, ‘‘Derivation and Calibration of a
Transient Error Reliability Model,”” IEEE
Trans. on Comm. C-31(7) pp. 658-671 (July
1982).

-10 -

13.

14.

15.

Richard Kco and Sam Toueg, ‘‘Checkpointing
and Rollback-Recovery for Distributed
Systems,”” IEEE Transactions on Software
Engineering SE-13(1) pp. 23-31 (January 1987).
Kai Li, Jeffrey F. Naughton, and James S.
Plank, *“An Efficient Checkpointing Method for
Multicomputers with Wormhole Routing,”
International Journal of Parallel Processing,
{June 1992),

K. Kant, Intreduction to Computer System
Performance Evaluation, McGraw Hill, New
York (1992). _

Ken Wong and Mark Franklin, ‘‘Distributed
Computing Systems and Checkpointing,””
WUEE 92-115, Department of Electrical
Engineering, Washington University (January
1992).



	Distributed Computing Systems and Checkpointing
	Recommended Citation
	Distributed Computing Systems and Checkpointing

	tmp.1439928365.pdf.mFD57

