Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-93-35

1993-01-01

A Unified Model for Shared-Memory and Message-Passing
Systems

Kenneth Goldman and Katherine Yelick

A unified model of distributed systems that accomodates both shared-memory and message-
passing communication is proposed. An extension of the I/0 automaton model of Lynch and
Tuttle, the model provides a full range of types of atomic accesses to shared memory, from
basic reads and writes to read-modify-write. In addition to supporting the specification and
verification of shared memory algorithms, the unified model is particularly helpful for proving
correspondences between atomic shared objects and invocation-response systems and for
proving the correctness of systems that contain both message passing and shared memory
(such as a network of shared-memory multiprocessors or a... Read complete abstract on page
2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Goldman, Kenneth and Yelick, Katherine, "A Unified Model for Shared-Memory and Message-Passing
Systems" Report Number: WUCS-93-35 (1993). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/324

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/324?utm_source=openscholarship.wustl.edu%2Fcse_research%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/324

A Unified Model for Shared-Memory and Message-Passing Systems

Kenneth Goldman and Katherine Yelick

Complete Abstract:

A unified model of distributed systems that accomodates both shared-memory and message-passing
communication is proposed. An extension of the I/0 automaton model of Lynch and Tuttle, the model
provides a full range of types of atomic accesses to shared memory, from basic reads and writes to read-
modify-write. In addition to supporting the specification and verification of shared memory algorithms, the
unified model is particularly helpful for proving correspondences between atomic shared objects and
invocation-response systems and for proving the correctness of systems that contain both message
passing and shared memory (such as a network of shared-memory multiprocessors or a distributed
memory multiprocessor with multi-threaded nodes). As an illustration of the model, we consider
distributed systems in which the shared objects have the linearizability property proposed by Herlihy and
Wing. We use the model to construct a careful proof that invocation-response systems constructed from
linearizable objects simulate atomic shared memory systems. In addition, we extend the work of Herlihy
and Wing by treating not only safety properties of invocation-response systems, but also liveness
properties.

https://openscholarship.wustl.edu/cse_research/324?utm_source=openscholarship.wustl.edu%2Fcse_research%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/324?utm_source=openscholarship.wustl.edu%2Fcse_research%2F324&utm_medium=PDF&utm_campaign=PDFCoverPages

A TUnified Model for
Shared-Memory and Message-Passing Systems

Kenneth Goldman and Katherine Yelick

WUCS-93-35

June 1993

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

A Unified Model for Shared-Memory and Message-Passing Systems

Kenneth Goldman* Katherine Yelick!
Department of Computer Science Computer Science Division
Washington University University of California
5t. Louis, MO 63130 Berkeley, CA 94720
kjg@cs.wustl.edu yelick@cs.berkeley.edu

June 29, 1993

Abstract

A unified model of distributed systems that accommodates both shared-memory and message-
passing communication is proposed. An extension of the /O automaton model of Lynch and
Tuttle, the model provides a full range of types of atomic accesses to shared memory, from
basic reads and writes to read-modify-write. In addition to supporting the specification and
verification of shared memory algorithms, the unified model is particularly helpful for proving
correspondences between atomic shared objects and invocation-response systems and for prov-
ing the correctness of systems that contain both message passing and shared memory (such
as a network of shared-memory multiprocessors or a distributed memory multiprocessor with
multi-threaded nodes). As an illustration of the model, we consider distributed systems in
which the shared objects have the linearizability property proposed by Herlihy and Wing. We
use the model to construct a careful proof that invocation-response systems constructed from
linearizable objects simulate atomic shared memory systems. In addition, we extend the work
of Herlthy and Wing by treating not only safety properties of invocation-response systems, but
also liveness properties.

Keywords: distributed systems, I/O automata, invocation-response, linearizability, message
passing, models, shared memory

1 Introduction

Reasoning about algorithms for asynchronous concurrent systems is difficult, primarily because of
the arbitrary interleaving of process steps that may occur in an execution. As a result, researchers
have turned to formal models in order to define problems precisely, give unambiguous descriptions

"This work was supported in part by the National Science Foundation as a Research Initiation Award (number
CCR-91-10029). A portion of this work has appeared as: Kenneth Goldman and Nancy Lynch, Modelling Shared
State in 2 Shared Action Model, Proceedings of the 5th Annual IEEE Symposium on Logic in Computer Science,
June 1990, and was supported in part by the National Science Foundation under Grant CCR-86-11442, by the
Office of Naval Research under Contract N00014-85-K-0168, and by the Defense Advanced Research Projects Agency
(DARPA) under Contract N00014-83-K-0125.

"This work was supported in part by the National Science Foundation as a Research Initiation Award (number
CCR-9210260), and as an Infrastructure Grant {(number CDA-8722788), by Lawrence Livermore National Laboratory
{task number 33), by the Advanced Research Projects Agency of the Department of Defense monitored by the Office
of Naval Research under contract DABT63-92-C-0026, by the Semiconductor Research Consortium under contract
92-DC-008 and $3-DC-008, and by AT&T. The information presented here does not necessarily reflect the position
or the policy of the Government and no official endorsement should be inferred.

of algorithms, and construct careful proofs for safety and progress properties. These models allow
one to be explicit about the possible interleavings that may occur in a distributed system and may
specify which of those interleavings are to be considered “fair” to the individual system components.
Examples include CSP [9], in which system components communicate by sending messages over
synchronous channels, and UNITY [4], in which components communicate by reading and modifying
shared variables.

The I/0 automaton model [15, 16] is particularly well-suited for modelling distributed algo-
rithms described using message passing. The I/O automaton model is a (not necessarily finite)
state machine model that provides extra support for classifying actions as input or output and for
describing fairness conditions. Precise problem statements are defined in terms of the input and
output actions that occur at the boundary between the algorithm and its “environment.” These
problem statements may include nontrivial liveness constraints on the behavior of the algorithm.
Careful algorithm descriptions are constructed by specifying the states and transition relations of
I/O auntomata. A range of proof techniques, from simple assertional reasoning to hierarchical pos-
sibilities mappings, may be used to verify an algorithm satisfies a problem statement. In addition,
the model can be used for carrying out complexity analysis and for proving impossibility results.
The communication mechanism in a distributed system is modeled as an explicit I/0 automaton
that shares actions with the other system components. Therefore, the model can accommodate a
variety of message-passing systems, from systems with strictly FIFO message delivery to those in
which messages may be delivered out of order or not at all.

Although the I/O automaton model provides excellent support for modelling message-passing
algorithms, many of the important asynchronous concurrent algorithms are described using shared
memory. Also, one might wish to use both shared-memory and message-passing to describe different
components of a heterogeneous system. Therefore, introducing a shared-memory mechanism into
the I/O automaton model is a useful unification of these two approaches. The shared memory
model of Lynch and Fischer {13] introduced the separation of input and output actions, and was a
precursor of the current I/0 automaton model. However, until now it has not been clear how to
integrate the two basic approaches.

In this paper, we present an extension to the I/O automaton model to allow modelling of
shared memory systems, as well as systems that have both shared memory and shared action
communication. A full range of types of atomic accesses to shared memory is allowed, from basic
reads and writes to atomic read-modify-write. We define a special class of actions, called “shared
memory actions,” to model atomic accesses to shared memory. Actions in the basic I/0 Automaton
model contain information about input and output values; we define shared memory actions to
contain additional information that corresponds to the contents of the shared memory before and
after the action occurs. A “shared memory automaton” is then defined to be an I/O automaton
that satisfies certain natural conditions regarding its shared memory actions. For example, one
condition captures the idea that an access to shared memory must be prepared to observe any
value in the memory.

Since shared memory aufomata are simply special cases of I/O automata, all the /O automa-
ton model definitions and properties, notably composition and fairness, apply to shared memory
automata as well. We show that composing of a collection of shared memory automata (for a given
set of shared variables) yields another shared memory automaton (for the same set of variables).
To combine shared memory automata having different (not necessarily disjoint) sets of shared vari-
ables, we define an “augmentation” operator that is used to expand the set of shared variables
for each component before composing. We show that the natural compositionality results hold
when we combine shared memory automata in this way. For example, projecting the execution
of a composition on the individual components yiclds executions of those components. Since we

expose the observed state of shared memory in the behavior of an automaton, we also achieve
compositionality of the behaviors of shared memory automata. That is, in the standard sense of
I/0 automaton composition, the behaviors of a composition of shared memory automata are the
same as the composition of the behaviors of the individual automata.

Shared memory automata operate in a system in which the environment is free to change the
contents of the shared memory at any time. We define a “closeout”™ operator, which takes a shared
memory automaton and a set of variables and produces a new shared memory automaton in which
the given set of variables is made private, absorbed into the local state. In this way, we restrict
the set of components in a system that may access portions of the shared memory.! We provide an
analogous closeout operator on sets of behaviors, and we show that the behaviors of a closed out
automaton are the same as the closed out behaviors of the original automaton.

Just as does the original I/O automaton model, our extended model supports careful prob-
lem specification (including both safety and progress properties), unambiguous system description,
verification and analysis. Both safety and progress properties of algorithms may be shown using
standard proof techniques (e.g., invariant assertions and variant functions). For example, these
techniques have been used within the extended model for proving the correctness of Dijkstra’s
classical shared memory mutual exclusion algorithm [7].

Although the shared memory extensions do expand the capabilities of the I/O automaton model
to include support for shared memory algorithms, the major benefit of a unified model that supports
both atomic shared memory and message passing is not merely the ability to reason about shared
memory algorithms and message passing algorithms with the same set of tools. The major benefit is
the ability to combine shared memory and message passing in a single formal setting. For example,
the extended model has been used as the basis of a new methodology for reasoning about recursive
distributed algorithms in which each recursive invocation of an algorithm is modeled as a separate
aufomaton using dynamic process creation. The various recursive instantiations of the algorithm on
a given processor communicate with their corresponding instantiations on other processors through
message passing, and they communicate among themselves through shared memory [17].

In addition, a unified model provides the ability to describe systems that use both shared
memory and message passing communication. For example, systems like the Alewife multiprocessor
[1] or the Split-C language [5] implement a global shared memory abstraction using a combination
of message passing between processors and shared memory accesses between threads (or handlers)
on a single processor. Reasoning about the behavior of these systems requires a mixture of shared
memory and message passing semantics. Another class of systems that mix message passing and
shared memory arve programs (typically scientific applications) implemented on a heterogeneous
network of workstations and multiprocessors. Within a multiprocessor, communication may be
done using shared memory, while communicating across the network involves message passing.
Numerous examples of systems exist to support such heterogeneous network computing, with one
of the most popular being PVM [6].

Perhaps one of the most important benefits of a unified model is that of providing a context
in which to understand and prove correspondences between shared memory and message passing
systems. We emphasize that both shared memory and message passing are modelled directly; in no
sense is one “implemented” on top of the other. Therefore, one may describe both kinds of systems
using the primitives of the model, and then formally relate the two.

To illustrate this benefit of our unified model, we consider the problem of simulating an atomic
shared memory in a distributed system where message passing is the physical means of communica-

!The ability to closeout with respect to a subset of the shared variables {(as opposed to the entire set) may be
likened to lexical scoping of variable declarations in a conventional programming language.

tion. The motivation for simulating an atomic shared memory system on a message passing system
is that algorithms described using atomic accesses to shared memory are easy to reason about, since
one is not concerned with the possible interleavings of invocations and responses for object access.
However, the invocation-response approach, in which the invocation of an operation on an object
and the corresponding response are modelled as separate atomic steps, fits more naturally with
multiprocessor architectures and often supports greater concurrency. Thus, an important problem
in multiprocessor algorithm design is to carefully construct the processes and objects in such a way
that any the invocation-response system “simulates” an atomic access system. One approach to this
problem has been advanced by Herlihy and Wing [8]. They propose a property of objects, called
linearizability, that permits one to construct invocation-response systems, and then to reason about
only those executions in which each response immediately follows the corresponding invocation.

We exercise the unified model resulting from our shared memory extensions by proving a useful
relationship between the invocation-response approach and the atomic access approach in the con-
text of linearizable objects. In addition, we extend the work of Herlihy and Wing by treating not
only safety properties of invocation-response systems, but liveness properties as well. The proof
rests on a simulation argument, namely that systems of linearizable objects “simulate” atomic
shared memory systems. The unified model assists us in this proof possible because we are able
to express both the invocation-response system and the atomic shared memory system within the
same model, and thereby are able to relate the two.

The remainder of the paper is organized as follows. In Section 2, we review the 1/0 automaton
model. We define our extensions for shared memory in Section 3 and show some important proper-
ties that follow from these definitions. Next, in Section 4, we use the extended model to establish
a formal relationship between invocation-response systems and atomic access systems. The paper
concludes with a summary and discussion.

2 The I/O Automaton Model

The I/0 automaton model of Lynch and Tuttle [15, 16] is the starting point for this work. One
of the I/O automaton model’s distinguishing features is the clear separation of input and output
actions. This will be particularly important for our shared memory extensions for two reasons.
First, the fact that each action is under the control of exactly one component means that simply
by using output actions to model updates to the shared memory, we capture the notion of a single
module making an atomic update to shared memory (without any active participation by other
modules). Second, the fact that input actions are always enabled means that we can write modules
that passively observe the shared memory accesses by others without interfering. Other features of
the model important to us are its treatment of fairness and its compositionality properties.

Before describing our extensions to the I/0 automaton model, we present a brief introduction
to the I/O automaton model. This brief introduction is adapted from [16], which explains the
model in more detail, presents examples, and includes comparisons to other models.

2.1 I/0 Automata

I/0 automata are best suited for modelling systems in which the components operate asyn-
chronously. DBach system component is modeled as an I/O automaton, which is essentially a
nondeterministic (possibly infinite state) automaton with an action labeling each transition. An
automaton’s actions are classified as either ‘input’, ‘output’, or ‘internal’. An automaton can es-
tablish restrictions on when it will perform an output or internal action, but it is unable to block

the performance of an input action. An automaton is said to be closed if it has no input actions;
it models a closed system that does not interact with its environment.

Formally, an action signature S is a partition of a set acts(S) of actions into three disjoint
sets in(.S), out(s), and ini(S) of input actions, output aciions, and internal actions, respectively.
We denote by ext(S) = in(S5) U out(S) the set of external actions. We denote by local(5) =
out(S)Vint(S) the set of locally-controlled actions. An I/O automaton consists of five components:

e an action signature sig(A4),

a set states(A) of states,

a nonempty set start{A) C states(A) of start states,

a transition relation steps(A) C states(A) x acts(A) x states(A) with the property that for
every state s’ and input action % there is a transition (¢', =, s) in steps(4), and

¢ an equivalence relation part{A) partitioning the set local(A) into at most a countable number
of equivalence classes.

The equivalence relation part(A) will be used in the definition of fair computation. Each class of
the partition may be thought of as a separate process. We refer to an element (¢, 7, s) of steps(4)
as a stepof A. If (¢/,7,$)is a step of A, then 7 is said to be enabled in s’. Since every input action
is enabled in every state, automata are said to be inpui-enabled. This means that the automaton
is unable to block its input.

An ezecution of A is a finite sequence sg, 71, 31, . . ., Tn, Sy, OF an infinite sequence sq, %1, 81, T2, . . .
of alternating states and actions of A such that (s;,miy1,8:41) is a step of 4 for every i and
sp € start(A). The schedule of an execution « is the subsequence of & consisting of the actions
appearing in c. The behavior of an execution or schedule & of A is the subsequence of « consisting of
ezxternal actions. The sets of executions, finite executions, schedules, finite schedules, behaviors, and
finite behaviors are denoted execs(A), finevecs(A), scheds(A), finscheds(A), behs(A), and finbehs(A),
respectively. The same action may occur several times in an execution or a schedule; we refer to a
particular occurrence of an action as an event.

The separation of input and output actions will be important in our shared memory extensions
for two reasons. First, the fact that each action is under the control of exactly one component
means that by simply using actions to model updates to the shared memory, we capture the notion
of a single module making an atomic update to shared memory (without any active participation
by other modules). Second, the fact that input actions are always enabled means that we can
use shared memory input actions to construct modules that passively observe the shared memory
accesses by others without interfering.

2.2 Composition

We can construct an automaton modelling a complex system by composing automata modelling
the simpler system components. When we compose a collection of automata, we identify an output
action 7 of one automaton with the input action = of each automaton having 7 as an input action.
Consequently, when one automaton having = as an output action performs = , all automata having
7 as an action perform 7 simultaneously (automata not having % as an action do nothing).

Since we require that at most one system component controls the performance of any given
action, we must place some compatibility restrictions on the collections of automata that may be
composed. A countable collection {Si}ie 7 of action signatures is said to be strongly compatible if
for all ¢, 7 € I satisfying i # j we have

1. out(S;) Nout(S;) = 0,
2. nt(8;) N acts(S;) = 6, and
3. no action is contained in infinitely many sets acts(S;).

We say that a collection of automata are strongly compatible if their action signatures are strongly

compatible.
The composition § = [];c; 5; of a countable collection of strongly compatible action signatures

{8:};er is defined to be the action signature with
o n(S) = Uierin(S;) — Uierout(S:),
o out(5) = Uicrout(5;), and
o ni(5) = Userint(S;).

The composition A = [];c; A; of a countable collection of strongly compatible automata {A;},;¢; is
the automaton defined as follows:?

o sig(A) = [ies sig{Ai),
o states(A) =], states(A;),
o start(A) = [;c start(A;),

o steps(A}is the set of triples (s, 7, §2) such that, for alli € I,if v € acts(A;) then (si[é], 7, §[7]) €
steps(A;), and if © & acts(4;) then & [i] = $2[7), and

¢ part(A) = Userpart(4;).

Given an execution a = s§omidy... of A, let a]A; (zead “o projected on A;”) be the sequence
obtained by deleting 7;5; when 7; € acts(4;) and replacing the remaining §; by §;[¢].

2.3 Fairness

Of all the executions of an I/O antomaton, we are primarily interested in the ‘fair’ executions —
those that permit each of the automaton’s primitive components (i.e., its classes or processes) to
have infinitely many chances to perform output or internal actions. The definition of automaton
composition says that an equivalence class of a component automaton becomes an equivalence
class of a composition, and hence that composition retains the essential structure of the system’s
primitive components. In the model, therefore, being fair to each component means being fair to
each equivalence class of locally-controlled actions. A fair execution of an automaton A is defined
to be an execution a of A such that the following conditions hold for each class C' of part(A):

1. If & is finite, then no action of C is enabled in the final state of «.

2. If « is infinite, then either o contains infinitely many events from C, or & contains infinitely
many occurrences of states in which no action of €' is enabled.

?Here start(A) and states(A) are defined in terms of the ordinary Cartesian product, while sig{A) is defined in
terms of the compeosition of actions signatures just defined. Also, we use the notation 7] to denote the ith component

of the state vector §.

We denote the set of fair executions of A by fairexecs(A). We say that 8 is a fair behavior of A if 8
is the behavior of a fair execution of A, and we denote the set of fair behaviors of A by fairbehs(A).
Similarly, 5 is a fair schedule of A if B is the schedule of a fair execution of A, and we denofe the
set of fair schedules of 4 by fairscheds(A).

The definitions of composition and fairness imply certain natural relationships between the (fair)
executions of a composition and the (fair) executions of the individual components. For example,
the following lemma from [16] states that (fair) executions of component automata can often be
pasted together to form a (fair) execution of the composition.

Lemma 1: Let {Ai}iel’ be a strongly compatible collection of automata and let A = Il;erA:.
Suppose «; is a (fair) execution of A; for every ¢ € I, and suppose J is a sequence of actions in
acts(A) such that B|A; = sched(o;) for every ¢ € Z. Then there is an (fair) execution a of A such
that § = sched(a) and «; = afA; for every ¢ € Z. Moreover, the same result holds when acts and
sched are replaced by ezt and beh, respectively.

2.4 Problem Specification

A ‘problem’ to be solved by an 1/O automaton is formalized as a set of (finite and infinite) sequences
of external actions. An automaton is said to solve a problem P provided that its set of fair behaviors
is a subset of P. Although the model does not allow an automaton to block its environment or
eliminate undesirable inputs, we can formulate our problems (i.e., correctness conditions) to require
that an automaton exhibits some behavior only when the enviromment observes certain restrictions
on the production of inpufs.

We want a problem specification to be an interface together with a set of behaviors. We therefore
define a schedule module H to consist of two components, an action signature sig(H), and a set
scheds(H) of schedules. Each schedule in scheds(H) is a finite or infinite sequence of actions of H.
Subject to the same restrictions as automata, schedule modules may be composed to form other
schedule modules. The resulting signature is defined as for automata, and the schedules scheds(H)
is the set of sequences 8 of actions of H such that for every module H’ in the composition, S| H' is
a schedule of '

It is often the case that an automaton behaves correctly only in the context of certain restrictions
on its input. A useful notion for discussing such restrictions is that of a module ‘preserving’ a
property of behaviors. A set of sequences P is said to be prefiz-closed if § € P whenever both 3
is a prefix of @ and & € P. A module M (either an automaton or schedule module) is said to be
prefiz-closed provided that finbehs(M) is prefix-closed. Let 3 be a prefix-closed module and let P
be a nonempty, prefix-closed set of sequences of actions from a set ® satisfying ® N int(M) = @.
We say that M preserves P if An|® € P whenever §{® € P, 7 € out(M), and fn|M € finbehs(M).
Informally, a module preserves a property P iff the module is not the first to violate P: as long
as the environment only provides inputs such that the cumulative behavior satisfies 7, the module
will only perform outputs such that the cumulative behavior satisfies P. One can prove that a
composition preserves a property by showing that each of the component automata preserves the

property.

3 Shared Memory Definitions

In this section, we present a set of definitions that extends the I/0 automaton model in order to
allow modelling shared memory algorithms. We do not redefine any concepts, but simply add new
concepls Lo Lhe exisling model. We model each system componenl Lhal accesses shared memory as

a restricted I/0 automaton called a “shared memory automaton”. The fact that shared memory
automata are simply special cases of I/0O automata means that all the standard definitions and
properties of I/O automata (e.g., composition and fairness) can be used directly in descriptions
and proofs of shared memory algorithms.

3.1 Variables

We will model shared memory in terms of a collection of variables, so the first step is to define
what is meant by a variable. We define a variable z to have a domain dom(z) of values and an
initial value init(z) € dom(z). Given a set X of variables, we model a state of X by an assignment
mapping for X, denoted fx, that maps each variable z € X to a value in dom(z). Welet Fx denote
the set of all possible assignment mappings for X. We define inst(X) to be the assignment mapping
fx € Fy such that Vo € X, fx(2) = init{z). If X and Y are sets of variables such that ¥ C X,
we define fx|Y to be the assignment mapping fy € Fy such that forall y € Y, fy(y) = fx(y). If
X and Y are disjoint sets of variables, and Sx, Sy are sets of assignment mappings for X and Y,
respectively, then we define Sx o Sy to be the set of assignment mappings 5 for X UY such that for
all s € 5,5|X € §x and s]Y € Sy. As shorthand, we may represent a singleton set of assignment
mappings by its only element. For example, if fx is an assignment mapping for X, we write fy oSy
instead of {fx} o Sy. Analogously, for fx € Fx and fy € Fy, we let fx o fy represent its only
element when it is clear from context that a mapping (rather than a set of mappings) is called for.
If f€ Fy,z € X, and v € dom(z), we define fl;—,) to be the assignment mapping f! such that

FUX = {2}) = Fl(X - {=}) and f'(z) = v.

3.2 Shared Memory Actions

Since the only “sharing” that occurs in the I/O automaton model is the sharing of actions, we
construct shared memory on top of the existing shared action mechanism. We begin by defining a
special type of action called a “shared memory action” that will be used to model accesses to the
shared variables. In some sense, this is the reverse of what is often done to incorporate message
passing into a shared memory model. In UNITY [4], for example, shared queue variables are
declared to model “channels” and atomic accesses to these shared queues model “sending” and
“receiving” data across the channels. However, we emphasize that we do not implement shared
memory on top of message passing. Rather, both are modelled directly in terms of the shared
action mechanism.

We fix £, a universal set of access labels. Let X be a set of variables. We define a shared
memory action for X to be a triple of the form (f%,a, fx), where fk, fx € Fy and a € L2 We let
sm-acts(X } denote the set of all possible shared memory actions for X. We say that « is a shared
memory action iff it is a shared memory action for some X. We say ¢ is a shared memory step (for
X)) iff its contained action is a shared memory action {for X). .

To construct signatures for shared memory automata, we need the following technical definition.
Let II be a set of actions and X a set of variables. We say that II is complete for X ift Vx € II, if
T = (f¥,a, fx) is a shared memory action for X, then Vfi-,f:\r € Fy, (fj{,a,fx) ¢ II1.

Let X and Y be sets of variables such that Y C X. If 7 = (fY, a, fx) is a shared memory action
for X, we define its projection on Y, denoted 7|Y, to be (f%|Y, a, fx|Y), a shared memory action
for Y. If 8 is a sequence of actions, all of whose shared memory actions are shared memory actions
for X, then we define S|Y to be the sequence that results from replacing each shared memory
action of B by its projection on Y. Projections on sets of shared memory actions, signatures

3These triples are action names, not to be confused with the steps of an avtomaton.

containing shared memory actions, and sets of sequences containing shared memory actions are
defined analogously. If ¢ = (&', 7,s) is a step with 7 a shared memory action for X, then |V is

defined to be (¢, 7)Y, s).

3.3 Shared Memory Automata

Let X be a set of variables, and let A be an I/O automaton all of whose shared memory actions are
external shared memory actions for X. Let shared-in(A) denote the set of shared memory actions
that are inputs to A, and let shared-out(A) denote the shared memory actions that are outputs of
A. We say that A is a shared memory automaton for X iff it satisfies the following conditions:

1. The sets of actions shared-in{ A) and shared-oui(A) are each complete for X.

2. For all steps (¢',(fy,a, fx),s) € steps(A),
if (fy,a, fx) € shared-out(A), then for all f% € Fx, there exists a state § and some f}; € Fy
such that (&', (f%,a, fx),8) € steps(A).

3. In the equivalence relation part(A), any two output actions (fY%,a, fx) and (fnj{,a, fx) are
elements of the same equivalence class.

The first condition says that if 4 has a shared memory action with a given label a, then it has all
possible shared memory actions with label ¢. For input actions, this means that A must be prepared
to handle any value it may observe in the shared variables (since inputs are always enabled). For
output actions, this condition is simply a technical restriction that makes composition of shared
memory automata work out properly, as we will see later. The condition also makes describing the
signatures of shared memory automata more convenient, since we need not list all the allowable
values of the shared variables for each shared memory action label used.

The second condition says that for each shared memory output step, there exists a step from
the same state for each possible assignment of the shared variables. In essence, this says that the
preconditions of an output action may not depend on the values of the shared variables. This
corresponds with the notion that one cannot observe the values of shared variables except by
accessing them, and that one must be prepared to handle any value that might be observed.

The third condition says that the equivalence class membership of an output action may not
depend upon the values of the external variables. This is a technical condition that prevents
a nonsensical situation in which executions must be “fair” to the different values of the shared
variables.

Since a shared memory automaton is an I/O automaton, all the standard I/O automaton
definitions for executions, schedules, behaviors, composition, and fairness carry over to shared
memory automata.

Theorem 2: The composition of a strongly compatible collection of shared memory automata for
X is a shared memory automaton for X.

Proof: We know that the composition of a strongly compatible collection of I/O automata is
an I/0 automaton. Furthermore, since external actions of the components are external actions
of the composition, we know that all of the shared memory actions are external actions in the
composition. All of these are shared memory actions for X. It remains to be shown that the
composition satisfies the three conditions imposed on shared memory automata for X. Condition
1 holds, since the union of complete sets of actions is clearly a complete set. For condition 2, we
note that composition does not introduce any new output actions, nor does it remove any existing

cutput actions. Furthermore, input-enabling and the definition of composition imply that for each
output step (s, m,s;) of a component A;, for all states s’ of the composition A, if s'|.A; = si, then
there exists a state s of A such that (s',7,s) is a step of A. Thus, Condition 2 holds. Since
the equivalence relation of the composition is the union of the individual equivalence relations of
the components, any two actions in the same equivalence class in a component are in the same
equivalence class in the composition. Since the set of shared memory output actions for each
component is complete, strong compatibility assures us that no two shared memory output actions
with the same label occur in different classes of the composition. This guarantees Condition 3. =

So far, we have given a general set of definitions for modelling collections of modules that access
shared memory. Our accesses allow a module to atomically read the entire contents of memory,
perform some local computation (possibly resulting in a state transition), and update the entire
contents of shared memory. This general type of shared memory access is, of course, an expensive
operation to implement. Therefore, we would like to define systems in which the shared memory
accesses are moie restricted. For example, in the most restricted case, we might only allow read or
write accesses to single shared variables.

Let A be a shared memory automaton for X, let @ be an access label of A, and let z € X. We

say that a is a

1. read access to z i Y(s',(f',a, f),s) € steps(A),

(a) f=f and
(b) ¥f € Fx such that f(2) = F/(2), (s, (f,a, f), s) € steps(A).

2. write access to ¥ with value v iff V(s',(f',a, f), s) € steps(A),

(a) f= ffx:u] and
(b) Vf € FX} (sl:(f?aaf[x=v}): ‘S) € steps(A).

In a read access to z, the shared memory is unmodified and the new state of A depends only
upon the value observed in variable . In a write access to z, the “before” and “after” states of
shared memory differ only in the value of variable z, and the new state of A and the new value of
z are independent of the “before” state of shared memory.

We now define a restricted class of shared memory automata called “single-variable read-write
automata.” In such automata, each access label for a shared memory output is constrained to be a
read access or a write access to a single variable. Let A be a shared memory automaton for X, and
let 1) be a partition of the access labels for actions in shared-oui{ A) such that there exist exactly
two classes in 1 for each variable in 2 € X, denoted () and 1,(z). The partition 4 is called the
access partition of A. We say that A is a single-variable read-write automaton under ¢ iff Vo € X,
1, (z) contains only read accesses to z and v,(z) contains only write accesses to . We say that
such an automaton can read x iff 1,(2) is nonempty, and can write iff 1,,(z) is nonempty. If Q is
a collection of single-variable read-write automata, then a component of @ is said to own a variable
z if it is the only component that can write ; in this case, = is said to be a single-writer variable.
Mulli-writer, single-reader, and multi-reader variables are defined in the obvious way.

Other classes of shared memory automata could be constructed in a similar manner. For
example, one might define test-and-set or memory-to-memory-swap accesses and define automata
in which the access labels are appropriately partitioned into additional classes. In fact, this style of
definition can be used to define shared memory accesses for operations on arbitrary data types, such
as enqueue and dequeue. Of course, any shared memory algorithm could be expressed and studied

10

using the general shared memory automaton definition only, but being specific about the types of
shared memory accesses allowed makes the assumptions about the underlying shared memory more
explicit, and also may help simplify reasoning about the algorithm.

Notice that by exposing the values of the shared variables as part of the shared memory accesses,
we not only carry forward the compositionality properties of /0 automaton behaviors but also
provide a useful notion of a shared memory action as an input. We expect normal communication
through shared variables to be modeled using output actions only, but the input actions allow a
module to passively observe the accesses to shared memory made by other processes. We see two
potential uses for this feature. First, one might use shared memory actions as inputs to construct
external processes that are not part of the algorithm but monitor the use of shared memory (possibly
as a means to check algorithms in a simulation system). Second, in a modular algorithm design,
it may be appropriate to divide a task into several I/O automaton components such that only one
component accesses the shared memory while the others are kept “informed” of these accesses by
receiving them as inputs (e.g., to model a collection of processes “snooping” on a memory bus to

update local caches).

3.4 Augmentation and Augmented-Composition

In building up I/O automaton systems, we may wish to compose collections of shared memory
automata having different (either intersecting or disjoint) sets of shared variables. We would like
the result of this composition to be a shared memory automaton for Z, where Z is the union of
the sets of shared variables of the automata being composed. In order to accomplish this, we first
“augment” each of the automata with additional shared variables so that its set of shared variables
is Z. Then we compose as usual.*

We now define what is meant by augmenting an automaton. Let X and Z be sets of variables,
with X C Z. Given a shared memory automaton A for X, we define eugmeni(A, Z), read “the
augmentation of A to Z,” to be the automaton B as follows:

o in(B) = {r €sm-acts(Z) : m|X Eshared-in(A)} U
(in(A)—shared-in{ 4)).

e out(B) = {m €sm-acts(Z) : w|X €shared-out(A)} U
(out(A)—shared-out(A}).

o int(B) = int(A).
o states{B) = states(A).
s start(B) = start(A4).
o steps(B) = all steps ¢ = (&', 7, s) such that either
1. o € steps(A) and 7 is not a shared memory action, or
2. ¢|X € steps(A) and © Eshared-in(B), or
3. glX € steps(A), m = (f, a, fz) Eshared-oul(B), and f5|(Z — X) = fz|(Z — X).

o part(B) = {C C local(B) : C|X € part(A)} such that part(B) forms a partition of the
locally-controlled actions of B.

*When composing a shared memory automaton with an “ordinary” I/O automaton, no augmentation is necessary,
since an ordinary 1/O automaton is by definition an SMA for any set of variables X.

11

Essentially, we augment A by making the signature complete for Z, while leaving the set of states
unchanged. For each step involving a shared memory action 7 for X, we substitute the set of all
steps in which 7 is replaced by a shared memory action for Z (call it #*) such that ='|X = 7. For
output actions steps, we make the further restriction that if #’ = (f}, a, fz), then f5 and fy differ
only in their assignments to the variables of X. This models the fact that outputs of B only change
the values of shared variables in X. We do not make this restriction for input actions because
they are always enabled. This also highlights the fact that the shared memory accesses of B are
independent of all shared variables other than those in X. The partition of B is constructed from
that of A to reflect the differences in their signatures.

Theorem 3: Let X and Z be sets of variables, with X C Z, and let A be a shared memory
automaton for X. Then augment(A, Z) is a shared memory automaton for Z.
Proof: Immediate from the definitions of angmentation and shared memory automata. n

Our next result, Theorem 6, says that augmentation does not (in any significant way)} affect the
behavior of an automaton. This is proved using the following lemmas.

Lemma 4: Let X and Z be sets of variables such that X C Z. If A is a shared memory automaton
for X and a4 is an execution of A, then there exists an execution ag of B = augment(A, Z) such
that apg|X = ay4.

Proof: Clearly, if a4 contains no actions, the claim holds. For the inductive hypothesis, let
aq = oymas be an execution of A, and let a’p be the execution of B such that op|X = o).
Clearly the state of A after /4 is the same as the state of B after o5. Let this state be s'. Tt
remains to be shown that some g is enabled from s’ in B, resulting in state s, where mg|X = 7 4.
If 4 is not a shared memory action, then the result is trivial, since the steps of 4 and B differ
only with respect to shared memory actions. If 74 is a shared memory action {f¥,q, fx), then by
the definition of augmentation, there must be a step (s', 75 = (f%, @, fz),s) € steps(B) such that
7g|X = 74. =

Lemma 5: Let X and Z be sets of variables such that X C Z. If A is a shared memory automaton
for X and ap is an execution of B = augment(A, Z), then there exists an execution ay of A such
that ag = ap|X.

Proof: If ap has no actions, the claim holds. For the inductive hypothesis, let ap = azmps
be an execution of B, and let oy be the execution of A such that ¢/4|X = &/y. Clearly the state
of B after o'y is the same as the state of A after o/,. Let this state be s'. It remains to be shown
that some 74 is enabled from s’ in A4, resulting in state s, where 74 = 75| X. If 75 is not a shared
memory action, then the result is trivial as before. If 7p is a shared memory action (f3,a, fz),
then by the definition of augmentation, the step (', (f5|X, e, fz| X), s) € steps(A). Therefore, the
second claim holds. n

Theorem 6: Let X and Z be sets of variables such that X C Z. If A is a shared memory
automaton for X, then

1. behs(augment(A, Z))|X = behs(A), and
2. fairbehs(augment(A, Z))| X = fairbehs(A).

Proof: Part 1 is immediate from Lemmas 4 and 5.
For Part 2, let a4 be a fair execution of A, and let f4 = beh(ay). From Lemma 4, we know
that there exists an execution ap of B = augmeni(A, Z) such that ag|X = a4. To show that

12

ap is fair, we apply the definition of augmentation. From the construction of steps(B), a shared
memory action 7 € acis(B) is enabled in state s of B only if «|X is enabled in state s of A. The
remaining actions 7 € acts(B) are enabled in in state s of B only if = is enabled in state s of A.
Furthermore, any two actions 7 and «’ are in the same equivalence class of B iff 7|X and #']X are
in the same equivalence class of A. So, since a4 is fair, oy is fair.

Now, to show the other direction, let ag be a fair execution of B. By Lemma 5, there exists an
execution ay of A such that a4 = ap|X. To show that a4 is fair, we argue similarly to above. =

We can now define augmented—composition, making use of the augmentation definition and stan-
dard I/0 automaton composition.

Augmented—Composition: Let {X;};.; be a collection of (not necessarily disjoint) sets of vari-
ables, let Z = U;erX;, let each A; be a shared memory automaton for X;, and let the collection
{augment(A;)},c; be strongly compatible. We define the augmented composition H;"E 1 A; to be the
ordinary I/0O automaton composition [[;c; augment(4;, Z).

Theorem T: Let {X;},.; be a collection of (not necessarily disjoint) sets of variables, let Z =
Uier X5, let each A; be a shared memory automaton for X;, and suppose that the collection of
automata {augment(A;, Z)},.; is strongly compatible. Then the augmented composition H;*;E 1 A;
is a shared memory automaton for Z.

Proof: By Theorem 3, for each A;, augment(A;, Z)} is a shared memory automaton for Z.
Therefore, by Theorem 2, the result holds.]

The following three compositionality results follow immediately from the corresponding results in
[16], together with Theorems 6 and 7. The first result says that an execution of an augmented-
composition induces executions of the component shared memory automata.

Corollary 8: Let {X;};c; be a collection of sets of variables, where Z = U;er.X;. Let {Ai}ics bea
collection of automata such that each A; is a shared memory automaton for X;. Let the collection
of automata {augment(A;, Z)},c; be strongly compatible, and let A = Hjé rAi. K o € execs{A)
then (o]augment(A;, Z))|X; € execs(A;) for every 1 € I. Moreover, the same result holds if ezecs()
is replaced by fairezecs(), scheds(), fairscheds(), behs(), or fairbehs().

The next result says that executions of component shared memory automata can often be pasted
together to form an execution of the augmented-composition.

Corollary 9: Let {X;},.; be a collection of sets of variables, where Z = U;er X;. Let {A;};o; bea
collection of automata such that each A; is a shared memory automaton for X;. Let the collection
of automata {augment(A4;, Z)};er be strongly compatible, and let 4 = Hf’e 7 A;. Suppose ; is a
(fair) execution of A; for every i € I, and let be a sequence of actions in acts(A) such that
(B|augment(A;, Z))|X; = sched(o;) for every ¢ € I. Then there is a (fair) execution a of A such
that B = sched(a) and oy = (a|augment{A;, Z))|X; for every ¢ € I. Moreover, the same result
holds when acts() and scheds() are replaced by ezt() and beh().

Finally, schedules and behaviors of component shared memory automata can also be pasted together
to form schedules and behaviors of the augmented-composition.

Corollary 10: Let {X;};.; be a collection of sets of variables, where Z = U;erX;. Let {Aities
be a collection of automata such that each A; is a shared memory automaton for X;. Let the
collection of automata {augment(A;, Z)},.; be strongly compatible, and let A = H;"E ;Ai. Let g

13

be a sequence of actions in acts(A). If (8|augment(4;, Z))|X; € scheds(A;) for every i € I, then
B € scheds(A). Moreover, the same result holds when acts() and scheds() are replaced by ext()
and behs(), respectively, and similarly when replaced by acis() and fairscheds() or by exzt() and
fairbehs().

3.5 The Closeout Operator

So far, we have introduced shared memory actions to model accesses to shared variables, and we
have defined a special kind of I/O automaton containing shared memory actions in its signature.
We have interpreted the first triple of each action as the “before state” of shared memory and
the third component as the “after state.” However, we have not yet placed any restrictions on
the the relationship between the “after state” of one shared memory action and the “before state”
of the next. A shared memory automaton is not guaranteed that the value it writes to a given
shared variable will be the value observed by the next system component reading that variable. In
other words, we permit the environment to freely modify the values in shared memory. We would
like to construct systems in which the set of components that may modify a particular shared
variable is fixed, closed to the environment. We therefore define a “closeout” operator, which takes
a shared memory automaton A and produces a new automaton B such that some or all of the
shared variables of A become part of the local state of B. In this way, the “absorbed” variables can
be touched only the by the actions of B. Since A may be the result of composing several shared
memory automata, the closeout operator achieves the desired result of restricting shared variable
accesses to a particular collection of system modules.

We now define the closeout operator C. Since the state of an automaton may be thought of as
a mapping from a set of variables to a set of values, we will feel free to operate on states as if they
were assignment mappings. Let X and ¥ be disjoint sets of variables, let Z = X UY, and let A be
a shared memory automaton for Z. We define B = C({4, X) as follows:

o sig(B) = sig(A)|Y

o states(B) = states(A) o Fx,

o start(B) = start(A) o init(X),

e steps(B) contains exactly the following set of steps: for each step (&, 7,s) in steps(A4),

1. if # = (fy,a, fz) is a shared memory action, then
("o (f21X), (F5lY, a, f2]Y), s 0 (f2| X)) € steps(B),
2. if w is not a shared memory action, then
{(s'o fx, @, sofx): fx € Fx} C steps(B), and

o part(B) = part(A), where each class is projected on Y.

Essentially, the variables in X are absorbed into the internal state of the “closed out” automaton.
If # € X, we use the familiar record notation s.z to refer to the value of # in a particular state s
of B. That is, if sgp = s4 o fx, where s4 is a state of A, then sp.x = fx(z).

Given the definition of the closeout operator, we get the following natural result.

Theorem 11: Let A be a shared memory automaton for Z and let X and ¥ be disjoint sets of
variables such that 2 = X UY. Then B = C(4, X)is a shared memory automaton for ¥,

Proof: To show that B is an I/O automaton, we must demonstrate that for all states ¢’ and
input actions 7 of B, there exists a state s’ of B such that (&', 7,) € steps(B). Since this property

14

is true of 4, and since shared-in(A) is complete, this property is also true of B by the construction
of steps(B). (When we construct the steps of B, completeness of shared-in{ A) guarantees that we
include all possible values for X in the “before states” of the steps for each input action.)

We now show that I/O automaton B is a shared memory automaton for Y. Clearly, all the
shared memory actions of B are external shared memory actions for Y. We now show that each
of the three conditions in the definition of a shared memory automaton hold for B. For the first
condition, since shared-in{A) is complete for Z, shared-in(B) = shared-in(A)|Y must be complete for
Y. Similarly, for shared-out(B). The second condition requires that for every step (¢, (fi-, ¢, fr), s)
in steps(B), if (f{-,a, fy) € shared-out(B), then for all f;’, € Fy, there exists a stale & and some
fy € Fy such that (¢,(f}, a, fy), 3) is in steps(B). Since this condition is true for A, we know that
for each shared memory output action label a, there exists a step (s', (f% o f-,a, fx o fv),s) for
every possible assignment mapping f% o fi for Z. Therefore, when we project on ¥ in constructing
steps(B), we have a step (', (f{-,q, fr),s) for each possible assignment mapping fi, for Y. The
third condition, regarding membership of equivalence classes, is obviously true of B. n

3.6 Closeout for behaviors

We now give a closeout definition for behaviors that is analogous to the one for automata.
Let X and Z be sets of variables with X C Z. If § is a sequence of actions of a shared memory
automaton A for 7, then we say that § is consistent for X iff the following conditions hold:

1. if (f%,a, fz) is the first shared memory action in 3, then f5|X = init(X), and

2. if (f7, 01, f%) and (f%, aa, fz) are shared memory actions in 8 such that no shared memory

action occurs between them, then fZ]X = f5|X.

If ¥ is a set of sequences of actions of a shared memory automaton for Z, then we define C(Z, X)
to be the set Zx|(Z — X), where Iy is the subset of ¥ containing exactly those sequences that are

consistent for X.

Lemma 12: Let X and Z be sets of variables such that X C Z. Let A be a shared memory
automaton for Z, and let ap be an execution of B = (A, X') with behavior 8. Then there exists
an execution ay of A, with behavior 54 consistent for X, such that 84((Z ~ X) = 8p.

Proof: Let Y = Z — X. We construct the sequence ay from ap as follows. For each step
("o fy,ms50 fx)in ap, if 7 = (fi,q, fr) is a shared memory action of B, then we let the
corresponding step in a4 be (¢, (f} o fi.a, fir o fx),s); and if 7 is not a shared memory action,
we let the corresponding step in a4 be (s, 7,).

Let B = beh{ay). Cleatly, fg|Y = 4. It remains to be shown that a4 is an execution
of A and that §4 is comsistent for X. We show that a4 is an execution of A by showing that
each step of ay is in steps(A). Let 0 = (' o fiy,m,80 fx) be astep of B. f 7 = (f},a, fr) is
a shared memory action of B, then by the construction of steps(B) in the definition of closeout,
(s, (fy- o fx»a, fr o fx),) must be a step of A. Similarly, if = is not a shared memory action, then
(s',m,s) must be a step of A. Therefore, the construction produces an execution of A.

Finally, we show that 84 is consistent for X. Since every initial state of C(A4, X) is in states(A)o
init(X), it must be that the first shared memory action (f%,a, fz) of B has f/|X = init(X), so
the first consistency condition is satisfied. We know that the second consistency condition must
be satisfied, since any two successive steps (8,71, s”) and (s, m9,8) of any execution must have
s" = &, the assignments to the variables of X are part of the state of C(4, X'), and the only actions
that may change the values for X in the state of C(4, X) correspond to shared memory actions for
for Z. =

15

Lemma 13: Let X and Z be sets of variables such that X C Z. Let A be a shared memory
antomaton for Z and let a4 be an execution of A with behavior 84. If 84 is consistent for X, then
there exists an execution ag of B = C(A, X)) such that f4|(Z — X) is the behavior of ap.

Proof: LetY = Z — X. Let ap be the execution constructed from a4 as follows. For each
shared memory action 7 in a4, let the corresponding action in ag be 7|Y. Leave the remaining
actions as in a4. For each state s in a4, let the corresponding state in ap be so(fz|X), where fz
is the third component of the preceding shared memory action in ey (or fz = init(Z) if there is
no preceding shared memory action).

Clearly B4|Y = beh{ap). We claim that ap is an execution of B. To prove this claim, we
proceed by induction on the length of ap, showing that each action is enabled from the state in
which it occurs. Clearly, if ap contains no actions, then the claim holds. Let (s4,7,54) be a step of
o, and let oy be the portion of g up to (but not including) the action n|Y for the corresponding
step in ap. We wish to show that if op ends in state si, then the step (sg, 7|Y, sg) € steps(B),
where sp is the next state of ap. By the construction, we know that s = &4 o (f}|X), where f4
is the third component of the preceding shared memory action in a4 (or f5 = init(Z) if there is
no preceding shared memory action), and similarly for sg. There are two cases for :

1. If = is not a shared memory action, then clearly it is enabled from s, since (by the construc-
tion) sy and sk are identical except that s/, does not assign values to the variables in X.
Furthermore, since 7 is not a shared memory action, sg[X = s5|X, so the step exists by the
definition of the closeout operator.

2. If 7 = (fz,0,fz) is a shared memory action, then consistency of B4 requires that f} be
the third component of the preceding shared memory action in ay4 (or init(Z) if there is no
such preceding action). By the definition of closeout, we know steps(B) contains the step
(8% 0 (f31X), (fZlY, @, f2]Y), s4 0 (fz]X)). And by the construction, s/ o (f5|X) = s and
s4 o (fziX) = sp. Therefore, the desired step exists.

In both cases, 7|Y is enabled and leads to state sg. "

Theorem 14: Let X and Z be sets of variables such that X C Z. If A is a shared memory
automaton for Z, then

1. behs(C(A, X)) = C(behs(A), X), and
2. fairbehs(C(A, X)) = C(fairbehs(A), X).

Proof: Part 1: LetY = Z — X. By Lemma 12, we know that if 3|Y is a behavior of C(A,X),
then § is a behavior of A that is consistent for X. Therefore 8|Y € C(behs(A), X), by definition. If
BlY € C(behs(A), X), then by definition of closeout on behaviors, 8 is consistent for X . Therefore,
Lemma 13 tells us that 8|Y € behs(C(4, X)).

Part 2: First, we show that fairbehs(C(A, X)) contains C(fuirbehs(A), X). Let Bg be a fair
behavior of B = C(4,X), and let ap be an execution of B with beh(ag) = Bp. Construct
execution a4 of A from ap as in the proof of Lemma 12 such that beh(e4)|(Z — X) = f. Since
A is a shared memory automaton, we know that shared-out{A) is complete and that for any given
access label a € £, all shared memory actions with label a belong to the same class. Furthermore,
by the definition of closeout, 74 and 7’y belong to the same equivalence class in A iff 74|X and
74| X belong to the same equivalence class in B. Therefore, given that ap is fair, we can show
that as is fair by arguing that an action 74 is enabled in state s4 of g iff m4|X is enabled in
the corresponding state sp of ag. This is casily seen from the construction of steps(B), since
sa = sB|(Z - X).

16

Now, we show that C(fairbehs(A), X') contains the set fairbehs(C(A,X)). Let f4 be a fair
behavior of A that is consistent for X, and let ag be an execution of A with beh{as) = fa.
Construct execution ap of C(4, X} from a4 as in the proof of Lemma 13 such that S4|(Z — X) =
beh(ap). The remainder of the proof is argued as above. "

4 Proofs for Shared Object Systems

It is convenient to use shared atomic objects as system components when building large concurrent
systems. Each operation on an atomic object appears to execute indivisibly, thereby allowing the
programrer to consider only interleavings of the operations, rather than their true concurrency. For
performance reasons, however, it is often useful to allow concurrency between operations on a single
object, so the condition of atomicity is only on an object’s behavior, not on its implementation.

There are two general approaches to modelling shared objects. Which is more natural depends
upon whether the intent is to model a system that uses atomic objects, or one that implements
them. In a system that uses atomic objects, it is convenient to represent each operation as a single
shared action between the object and the invoking process; we call these atomnic access systems. In
a system that implements atomic objects, each operation can be modeled by an invocation event
and response event, denoting, respectively, the beginning and end of operation execution; we call
these nvocation-response systems.

In an invocation-response system, it is possible to consider operation executions that overlap
in time. Herlihy and Wing [8] use this model to define a correctness condition called linearizabil-
ity that extends Lamport’s notion of atomicity for reads and writes [11] to arbitrary data types.
Linearizability requires that in any (concurrent) execution, each operation “appears” to take effect
imstantaneously, sometime between the invocation and response events of the operation. Lineariz-
ability is also similar to Lamport’s sequential consistency [10], but requires that if two operations on
a given object do not overlap in time, then the order in which they “appear” to occur is consistent
with the order in which they actually occur ®. Furthermore, unlike sequential consistency, lineariz-
ability has a locality property: if each object is linearizable, then the entire system is linearizable.

In this section, we take the linearizability notion one step further, and show that a linearizable
invocation-response system is equivalent to an atomic access system. In particular, we show that
if the objects in the invocation-response system are each linearizable, then every behavior of the
entire invocation-response system is a behavior of the atomic access system. Thus, in reasoning
about complex systems, it is possible to consider overlapping operation executions at one level of
abstraction, and shared atomic actions for the same operations when reasoning at higher levels of
abstraction. This is an important benefit of using a model that unifies invocation-response and
atomic access in a single formal framework. In addition, we extend the work of Herlihy and Wing
by treating not only safety properties of invocation-response systems, but liveness properties as
well.

These results are intended to be used for reasoning about multiprocessor programs, in which the
shared memory is assumed to be atomic and the program is modularized by layers of linearizable
concurrent objects. They may also be useful in reasoning systems having a mixture of message
passing and shared memory operations. For example, a network of shared memory multiprocessors
or a message passing multiprocessor with multi-threaded nodes would involve message passing
between nodes and shared memory operations within a node.

We begin, in Section 4.1 by describing the basic architecture of an invocation-response system,
including the interfaces and specification mechanisms for the objects and processes. Then, in

®A comparison of sequential consistency and linearizability is given by Attiya and Welch [2}

17

Section 4.2, we describe three systems: a concurrent system, a sequential system, and an atomic
system. All three systems are described in the I/O automaton model. We show that if the objects of
the concurrent system are linearizable and if the processes obey certain well-formedness restrictions,
then each of these systems “simulates” the next. This gives us a unified theory for describing systems
in terms of invocations and responses, but reasoning about them in terms of atomic accesses.

4.1 Invocation-Response Systems

We are interested in studying systems in which processes invoke operations on objects and then wait
for the objects to respond. In this section, we define a general architecture for invocation-response
systems (or IR systems). Later, this architecture will be used to define two systems: System C,
a concurrent system containing linearizable objects, and System B, a sequential system used as
a stepping stone in our proof. A different structure will be used to define System A, an atomic
shared object system that will form the basis of our correctness condition.

An IR system consists of a set of processes and a set of objects, where each process and each
object is modelled as an I/Q automaton. Processes may request operations on objects by issuing
“invoke” actions. These actions are inputs to the objects, which issue “respond” output actions
after performing the requested operation. The interface at the boundary between a process and its
environment is analogous to the interface at the boundary between an object and a process. To
request that the system perform a particular function, the environment may “invoke” operations on
a process, which later replies to the environment with a “respond” action. Here, we consider systems
of only three layers: the objects, the processes, and the environment. However, by modelling the
interaction between a process and the environment in the same way as the interaction between an
object and a process, we set the stage for constructing complicated objects hierarchically. That
is, one might compose a collection of objects and processes, and treat the composition as a single
object. To describe the set of operations that may be invoked on an object or process, we define
an “interface type.” An interface type T consists of:

e ops(T), a set of operation names, and
 for each operation p € ops(T),

— args(p), the domain of arguments to the operation, and

— rets(p), the domain of return values of the operation.

The operation names identify the operations that may be invoked on the corresponding object or
process. For each operation name, the domain of argument values specifies the allowable operation
arguments that may be supplied by the user of the object. Similarly, the return value domain for
an operation specifies the possible values that may be returned by the object as a result of that
operation. We will see shortly how the interface type of an object or process is used to derive the
signature of the corresponding automaton.

In IR systems, there are three kinds of components: the shared objects, the processes that
invoke operations on those objects, and the environment that directs the activities of the processes.
For the remainder of the paper, we fix three sets of indices, Z, 7, and K. We use the elements of 7
to name the objects in a system, and we use the elements of .7 to name the processes that invoke
operations on the objects. An IR system is modelled as the composition of an object automaton o;
for each 7 € 7, and a process automaton p; for each j € J. The indices in K identify the processes
(or users) that constitute the environment of a system.

An example IR system is shown in Figure 1. Objects (in Z) are shown as squares, processes
{(in J) are circles, and components of the environment (in) are triangles. We do not model the

18

environment { E i E a

invoke

respond

processes
invoke

V \/ \ / respond

objects

Figure 1: An IR System.

environment explicitly, but simply use the elements of £ to refer to its components. One may think
of these components either as I/O automata or as users interacting with the system. We require
that the environment, as a whale, obey certain well-formedness restrictions on its interactions with
each process. Informally, we require that the environment wait for a process to respond to a request
before making a new request of that process.® If several components in the environment may make
requests of the same process, then those components must cooperate (possibly by participating in
a mutual exclusion protocol) in order to ensure that well-formedness is preserved at that process.
We now define the objects and processes of IR systems.

4.1.1 Objects

Fach object automaton o;,¢ € Z, has an associated interface type, denoted type(), and the signature
of o; is determined from this interface type. For each ¢ € Z, we define sig(o;) as follows:

Input Actions: invoke; ;(p,a),j € J, p € ops(type(s)) and a € args(p)

Output Actions: respond; ;(p,a,r),J € J, p € ops(type(?)), a € args(p), and r € rets(p)
The subscripts on each action identify the cobject automaton o; at which the operation occurs
and the process automaton p; responsible for the request. The following definition is useful for
describing executions of o;. Let & be an execution of 0;. We say that « is input well-formed iff
¥j € J, no two invoke; ; actions occur in o without a respond; ; action between them. Input well-
formedness does not prohibit concurrency at an object, since multiple invocations from different
elements of 7 may occur without intervening responses.

4.1.2 Processes

Each process in an IR system is modelled as an I/0 automaton p;, j € 7, that has an associated
interface type, denoted type(j). The interface type describes the set of operations that may be
imvoked on a process. In addition, a process may itself invoke operations on objects. Therefore,
its signature not only contains actions corresponding to operations in its interface type, but also
invoke and respond actions corresponding to the interface types of the objects that it may access.
For each 7 € 7, we let obj(j) C T denote that set of objects that p; may access, and define the
signature of p; as follows:

®A similar idea appears in [14] on page 79.

19

Input Actions: invoke;x(p, e}, where k € K, p € ops(type(7)) and a € args(p)
respond; ;(p, a,7), where ¢ € 0bj(7), p € ops(type(?)), a € args(p),
and r € rets(p)
Output Actions: respond;i(p,a,r), where k € K, p € ops(type(7)), a € args(p),
and r € rets(p)
invoke; ;{p, @), where i € 0bj(F), p € ops(type(i)) and a € args(p)

In reasoning about the schedules of a process in an IR system, it will be helpful to distinguish
those actions that are shared with the objects from those shared with the environment. Let 2 be a
sequence of actions of p;. We define 5|7 to be the subsequence of # containing exactly the invoke; ;
and respond; ; actions, for all ¢ € 7 (the objects). Similarly, we define §|K to be the subsequence
of B containing exactly the invoke;; and respond;, actions, for all £ € K (the environment).

As mentioned earlier, we constrain the interaction between each process and the environment
so that the process receives no inputs from the environment while the process has an outstanding
request. That is, we want the invocations and responses at the environment boundary of each
process to alternate, where each response is appropriate for the preceding invocation. For this
purpose, we use the following definition. If v is a sequence of actions, j € 7, and 8 = v|p;, we say
that v is eaternally well-formed for 7 iff $|K is an alternating sequence of invoke and respond actions,
beginning with an invoke action, such that ¥k € K,Vp € ops(F;),Va € args(p),Vr € rets(p), each
respond; x(p,a,r) action is immediately preceded by an invoke;(p,a) action. We say that v is
externally well-formed iff it is externally well-formed for all 7 € J. An execution is externally
well-formed iff its schedule is well-formed.

In externally well-formed sequences, we think of a process as being “active” in the interval
between receiving an invocation and generating a response. More formally, let 3 be an externally-
well formed sequence of p;, 7 € J. If §' is a prefix of 3, we say that p; is active after 8/ iff F/|K
ends with an invoke action. If is important to notice that in externally well-formed executions,
a process receives no inputs from the environment while it is active. However, multiple processes
in J may be active at once, providing the environment with concurrent access to the underlying
objects. In the example of Figure 1, each process is accessed by at most one component of the
environment, so as long as each component of the environment preserves external well-formedness,
so will the environment as a whole. A similar effect would be achieved by an implementation that
dynamically created a new process for each invocation from the environment.

The processes in an IR system model the programs that access the objects on behalf of the
environment, and their implementation depends upon the semantics needed for the application.
Therefore, in stating the general definition of an IR system, we do not explicitly define the process
automata. However, we do require that each p;, 7 € J preserves the following well-formedness
condition. Let 8 be a sequence of actions, and let 3; = B|p;, 7 € J. We say that § is well-formed
for j iff the following conditions hold:

e 4 is externally well-formed for 7.
¢ Dvery action in §;|Z occurs from a prefix of 3; after which p; is active.

¢ The sequence 3;|Z is an alternating sequence of invoke and respond actions, beginning with
an invoke action, such that Vi € Z,Vp € ops(type(:)),Va € args(p),¥r € rets(p), each
respond; ;(p, @,) action is immediately preceded in §; by an invoke; ;(p, a) action.

So, in order to preserve well-formedness, p; must respond at most once to each request from the
environment, and it may invoke operations on objects only in the interval between a request from
the environment and its response to that request. Furthermore, if p; invokes an operation on an

20

object, it may not produce any output actions until the corresponding response from that object
occurs. Note that the third condition implies that p; preserves input well-formedness in g for all
1€ 1.

4.2 Simulating Atomic Access Systems with IR Systems

At the beginning of Section 4, we stated that an important problem in programming multiprocessor
systems is to build IR systems containing concurrently accessed shared objects in such a way that
the environment cannot distinguish them from atomically accessed shared memory systems. In this
section, we take advantage of ability to study both shared memory and message-passing systems
in the I/0 automaton model in order to show a formal correspondence between systems containing
concurrently accessed linearizable objects and systems having atomically accessed shared memory.
We present three systems. The first is an IR system (System C) that models the system containing
concurrently accessed linearizable objects. The second system, derived from the first, is an IR
system (System B) in which at most one operation is in progress at each object at any time. Finally,
we present an atomic access system (System A) that corresponds to system B, but implements the
objects in atomically accessed shared memory. We show that the fair behaviors of System C are
contained in those of System B, and that the fair behaviors of System B are contained in those
of System A. This serves to formalize the notion that systems containing linearizable objects
“simulate” those in which the objects are implemented in atomic memory. We begin with an
overview of the three systems.

System C is the concurrent invocation-response system that we wish to prove simulates an
atomic object system. It is an IR system, so each process of System C has an interface type,
the appropriate signature for that type, and is required to preserve well-formedness. In addition,
the processes must satisfy a property that implies that objects eventually respond to all operation
requests. In order to define the objects of System C, we present a natural definition for a “sequential
specification” of an object and define formally what it means for an object to be a “linearizable
implementation” of such a specification. Bach object of System C is described by a sequential
specification and is constrained to be a linearizable implementation of that specification. Aside
from the above restrictions, the processes and objects of System C are completely general. We
do not use any information about the particular sequential specifications or implementations of
the objects in order to prove our results. In this way, our results hold for any IR system with
linearizable objects.

As we have said, our notion of correctness is that every fair behavior of System C should be
a fair behavior of a system in which the objects are accessed atomically {as opposed to separate
invocations and responses). In other words, System C should “simulate” a system in which the each
operation on an object is implemented as a single atomic access to a shared memory. Rather than
showing this simulation directly, we construct an intermediate system in which the processes are
the same as in System C, but in which the objects are constructed explicitly from their sequential
specifications. This intermediate system, called System B, is used as a stepping stone in the proof.
We show that for every fair execution of System C, there is a fair execution of System B having the
same external behavior, and in which each invocation of an operation on an object is immediately
followed by the corresponding response.

Finally, we construct System A, the atomic system that forms the basis of our correctness
condition. System A consists of a set of processes that perform atomic accesses on a shared memory.
The system is constructed from the processes of System C and the sequential specifications of the
objects. We show that for every fair execution of System B in which invocations are immediately
followed by their corresponding responses, there is a fair execution of system A with the same

21

behavior. The two simulation arguments (that System C simulates a certain class of executions
of System B, and that those executions correspond to executions of System A) are combined to
complete the proof.

4,2.1 System C

In this section, we define System (', the IR system that we wish to prove correct. System C is
the composition of a collection of linearizable objects and processes that we wish to show behaves
correctly. The automata in System ¢ are not given fo us explicitly, but are guaranteed to satisfy
certain properties. From the definition of an IR system, we know that in System C each process
automaton p;, j € J, preserves well-formedness. Furthermore, we will assume that each object in
System C is a “linearizable implementation” of a “sequential specification”. In addition, we will
make an assumption about liveness in System . We begin by defining a sequential specification,
and say what it means to be a linearizable implementation of one.
For each ¢ € I, we fix a seguential specification 5; consisting of the following information:

o states(i}, a set of states containing a set of initial states init(z).
¢ two predicates for each operation name p € ops(type(s)):

— predicate P, on elements from args(p) X states(s), and
— predicate @, on elements from args(p) X states(i) X states(z) X rets(p).

This means that if @ € args(p) is the argument to operation p, ' € states(z) is the “current state”
of object O, and the predicate P, holds on ¢ and 2’, then there exists an 2 € states(i) and an
r € rets(p) such that Q,(a,z’,z,r) is true. One such & becomes the current state of O following
the operation, and » is returned by the operation. For arguments a and states &’ for which P,(a,z")
does not hold, the new state and return value are unspecified. In Larch specifications[3], this in-
formation is conveniently represented in the following way:

p = proc(aargs(p)) returns (r:rets(p))
requires: P,(a,z)
ensures: Q,(a,z’,2,7)

Having defined a sequential specification, we now wish to define what it means for the object
automata of System C' to be linearizable implementations of their sequential specifications.

Borrowing a technique from [12], we construct a particular automaton, called a “sequential
object” that captures the meaning of a sequential specification. The sequential object construction
will be used nol only to define a linearizable implementation of a sequential specification, but also
to define System B.

We capture the meaning of each sequential specification 5;, 1 € Z, with a sequential object au-
tomaton a;. The sequential object automaton a; has signature sig(o;) and the following state compo-
nents: current € states(i), user € JUL, op € ops(type(d))U.L, and arg € Ueops(ype(iy) @795(p)U L.
The component current holds the “current state” of the object, and is initially in indt(). The com-
ponent user, initially L, is the index of the process currently using the object. Components op
and arg hold the name and argument of the operation in progress; initially, these are both L. The
transition relation for the sequential object automaton is given in Figure 2. “Pre” and “Post”
denote precondition and postcondition, respectively. An action is enabled in exactly those states s’
for which the precondition is satisfied. If an action has no precondition, it is enabled in all states.
When an action occurs, p;’s new state s must satisfy the statements in the postcondition. States

22

¢ invoke; ;(p,a)
Post: s.user= 75
s.op=p
s.arg = a

¢ respond; ;(p,a,r)
Pre: suser=7;
sop=p
sarg=a
P,(a,s .current)
Post: Q,(a,s'.current, s.current, r)

sauser = L
s.op= L
s.arg = 1

Figure 2: Transition relation for sequential object automaton a;.

s and s’ agree on components not explicitly constrained by the postcondition. The partition of ¢;
consists of a single class containing all the output actions of a;.

When an invocation occurs at g;, the automaton simply stores the id of the process making the
request, the name of the operation, and the values of the arguments to the operation. Whenever an
operation has been requested but the response has not yet occurred, a; may respond to the request,
supplying a return value consistent with the sequential specification and resetting the user, op and
arg components to their initial values.

Next, we would like to define what it means for an automaton to be a linearizable implementation
of sequential specification .5;. But first we need to define a particular class of executions of a;. We
say that « is a sequential ezecution of a; iff sched(e) is an alternating sequence of invoke and
respond actions.

We can now formally define linearizability. We say that o; is a linearizable implementation of
S iff for all input well-formed fair executions a of o;, there exists a sequential fair execution o’ of
a; such that for all 7,5 € 7,

L. a'|p; = afp;, and
2. if a respond; j» event 7’ precedes an invoke; ; event 7 in «, then =’ precedes 7 in o'

Informally, the first condition says that each individual process cannot distinguish « from of. The
second condition says that if the invocation-response intervals of two operations at an object do
not overlap in e, then they must occur in the same relative order in o as they do in .

For every ¢ € I, we require that o; in System C is a linearizable implementation of §;. Note that
the linearizable implementation requirement is a local property of each object, and not a property
of the system as a whole. We will consider global linearizability properties after defining System
B.

Our final assumption about System C' concerus liveness. We require that all externally well-
formed executions v of System C' are response-live, meaning that for all : € Z, for all § € 7, for
all p € ops(type(7)), for all a € args(p), if 7 = invoke; ;(p, a) occurs in 7, then there exists a state
s after m such that some respond;; action is enabled from each state after s until such an action
occurs. With this assumption, we get the following liveness result:

23

Lemma 15: Let 7 be an externally well-formed fair execution of System €. Then for all ¢ € 7,
for all j € 7, if an invoke; ; action occurs in -y then a respond; ; action occurs later in 7.
Proof: Immediate from the definitions of response-live and fairness. n

Notice that we could have imposed a condition stronger than response-liveness by prohibiting
partial operations in sequential specifications entirely. (Prohibiting partial operations would ensure,
by the definition of a; and linearizability, that each object eventually responds to each request.)
However, in order to allow modelling a class of systems in which the processes cooperate to ensure
that operations are invoked only when appropriate, we choose to take a more general approach, in
which the system must guarantee that a response eventually occurs for each request. For example,
an object might be responsible for granting permission to use a shared resource (a lock) so that
no two processes have permission simultaneously. Such an object could have two operations, one
for requesting the lock and another for releasing it. If one process requests the lock while a second
process process is holding the lock, then the object cannot respond to the request until the second
process releases the lock. Thus, the operation is partial, but as long as processes are guaranteed to
eventually release the lock, then all requests can be satisfied.

A special case of the response-live property is one that says that for all ¢ € Z, for all j € 7,
for all p € ops(type(i)), for all « € args(p), if = = invoke; j(p, a) occurs in v, then some respond; ;
action is enabled from each state after = until such an action occurs. In other words, if an object
has partial operations, then (1) they are invoked only in states for which they are defined, and (2)
if an operation is pending at a process, then no state change occurs to prevent a response to that
operation. Although this property is stronger than the response-liveness property, it is a safety
property and may be easier to prove when it is applicable.

4.2.2 System B

Rather than directly showing that System C simulates an atomic access system, it will be convenient
to define an intermediate system, System B. We define System B to be identical to System C except
that for all 7 € Z, each object automaton ¢; is replaced by a;, the sequential object automaton
corresponding to the sequential specification 5;.

Let 8 be an execution of System B. We say that § is a sequential ezecution of System B iff for
all ¢ € Z, Bla; is a sequential execution of a; and no actions occur in § within each invoke/respond
interval of fla;. So, 6|7 consists of an alternating sequence of invoke and respond actions, beginning
with an invoke action, such that Vi € Z,Vj € J,Vp € ops(type(s)),Va € args(p),Vr € rets(p), each
respond; ;(p, ¢, 7) action is immediately preceded by an invoke; ;(p,a) action. We now prove our
first simulation result.

Lemma 16: Let 7 be an externally well-formed fair execution of System . Then there exists a
sequential fair execution § of System B such that for all j € 7, 8|p; = v|p;.

Proof:" From the definition of System C, all processes Pj, 7 € J and objects o;, 1« € T preserve
well-formedness. Therefore, since 7 is externally well-formed, we know that for all j € 7, v|p; is
well-formed. Recall this means that:

¢ Every action in v;[Z occurs from a prefix of ; after which p; is active.
o The sequence ;|7 is an alternating sequence of invoke and respond actions, beginning with

an invoke action, such that Vi € Z,Vp € ops(type(i)),Va € args(p),¥r € rets(p), each
respond; ;(p, a,) action is immediately preceded in ; by an invoke; ;(p, a) action.

"This proof follows closely the proof of a similar theorem in [8] and uses ideas from f14], page 78, to treat the
actions of the eavironment.

24

The second condition induces a total order <; on the operations invoked by p;, and by Lemma 15,
we know that each invocation has a matching response. Furthermore, since each object in System
C is linearizable, we know that for each ¢ € Z, we can fix a fair execution +; of @; such that for all

5Li'ed,
1. 7%lps = (7]oi)|p;, and

2. if a respond; j+ event n’ precedes an invoke; ; event 7 in -, then 7’ precedes = in ;.

Each «; induces a total order <; on the operations invoked on ¢; in ~.

In order to show that the execution [exists, we first show that there exists a total order <1 on
all the operations invoked in 7 that is consistent with all the total orders <;,7 € J and <;,i € Z.
It is sufficient to show that the transitive closure < of the union of all <;,7 € J and <;,1 € T is
a partial order. Suppose not. Then there exists some cycle in <. We know that the cycle must
involve a pair of operations ordered by <; for some j € J. Otherwise, all the operations in the
cycle would be ordered by the same <;,¢ € Z, an immediate contradiction, since <; is a total order.
Let op; and op; denote two operations ordered by <; in our cycle, and without loss of generality,
let opy <; opz. This means that the response for op; occurs in 7 before the invocation of op;. Since
opy and op, are in a cycle, we also know that there exists a sequence of operations opy, aps, ..., op,
with op; = op, such that the response of each op,, precedes the invocation of opy,4q. But this
means that the response of opy precedes the invocation of opy in v, a contradiction.

So, to construct 8, we first construct the schedule of 8 by taking the sequence of the invo-
cation/response pairs in the order specified by <7, and then, for all 7 € J, & € K, inserting in
all invoke;y and respond; ;. actions appearing in 7 so that 8|p; = 7|p;. That is, we place each
invocation/response pair of the environment “around” the corresponding sequence of object op-
erations pairs, and place any invocation from the environment that is lacking a response after
the last object operation pair. Now, we know from the construction of < that for all ¢ € Z,
sched(f)|o; = sched(vy)|o;. Furthermore, by the construction of <r and the alternating sequence
condition of well-formedness for j, we know that for all § € J, (sched(8)|T)|p; = (sched()|T)|p;.
And from well-formedness, we know that for all 7 € J, every action in ¥;]Z occurs from a prefix of
7; after which p; is active. Therefore, we know that it is possible to place the invocation/response
pairs of the environment around the corresponding sequence invocation/response object operation
pairs so that for all j € J, sched(B)|p; = sched(v)|p;. Now, since all processes and objects have
the same schedules in 8 as in v, we can insert the states of § so that for all 5 € J, the sequence of
state transitions in 8 for p; is the same in § as in . (In other words, because its schedule is the
same, each process p; cannot tell whether it is in 8 or in +.) Since each object o; is a linearizable
implementation of its sequential specification, we know that for all ¢ € Z, there exists a sequential
fair execution f3; of a; with schedule sched(y)|o;. Therefore, for each i € Z, we let the sequence of
state transitions of a; in B be as in f;. For each object a;, we know that a response occurs in 8 for
each invocation, so f[a; is fair. Since vy is fair and for all § € J, B|p; = v|p;, we know that B|p; is
fair, for all 7. So, applying Lemma 1, we know that 3 is a sequential fair execution of System B. =

This result tells us that any externally well-formed fair execution of System C looks to the
environment as if it is a sequential fair execution of System B. Now, we would like to say that
any sequential fair execution of System B looks 1o the environment as if it is a fair execution of a
system in which the objects are implemented in atomically accessed shared memory. This brings
us to System A.

4.2.3 System A

Tn this section, we define System A, which forms the basis of our correctness condition. System A
is a system in which objects are modelled as variables in a global shared memory that is accessed
atomically by the processes. It is in the construction of System A (and the related proofs) that we
exploit the shared memory extensions of the I/0 automaton model. They allow us to model and
reason about both the atomic access systems and the IR systems using a single unified model.

In order to define System A, we need a general transformation that takes a process automaton
(as given to us in System C') and a set of sequential specifications (also given), and produces a
shared memory automaton that corresponds to the original process but accesses the objects as
atomic variables in a shared memory. We now define this transformation.

Given a process antomaton p; that accesses shared variables using the invocation-response
mechanism as described above, we can comstruct an “equivalent” shared memory automaton s;
that accesses shared variables using atomic accesses to a shared memory. Since the transition
relation of the shared memory automaton must specify how the shared variables are updated, the
definition of s; depends not only upon the definition of p;, but also upon the sequential specifications
for the objects that p; accesses.

Changing the style of object access from invocation-response to atomic variable access is ac-
complished by a uniform syntactic transformation. We replace the invoke and respond actions in
the signature by atomic shared memory actions. For all ¢ € Z, let X; take on values from states(7),
and let init(X;) = init(s). Let X = U;er Xi, and X; = X ~ {X;}. Automaton s; is defined as
follows.

o sig(s;) is the signature:
Input Actions: invoke;x(p, @), where k € K, p € ops(P;) and a € args(p)
Output Actions: respond;.(p,a,r), where k € K, p € ops(F;), a € args(p),
and r € rets(p)
(v', pi,(a),v), where v,v" € dom(X), i € Z, p € ops(type(s)),
and a € args(p).

e states(s;) = states(p;),
s start(s;) = start(p;),
o steps(s;) = the set of all steps (s”, 7, s) such that either
1. = = invoke; or respond; s, k € K and (s”, 7, 8) € steps(p;}, or
2. ™= (v, pij(a),v) and 3r, s’ such that
(a) (8", invoke; ;(p, a), ') € steps(p;),
(b) (¢, respond; ;(p, a,7), 3) € steps(p;),

(c) Pyle,v'|X;) = Qula,v|Xi,v|X;,7), and
(d) »|X; = | X

¢ part(s;) = pari(p;), except that each invoke; ;(p, @) action is replaced by the actions (v, p; ;(a), v).

A few words explaining the transition relation for s; are in order. We include directly in the
steps of s; each step of p; for a process invocation or a response to the environment (i.e., each
step not involving an object access). In addition, we include shared memory steps that correspond
to invocation/response pairs for objects in System B. Conditions (a) and (b) say that the state
change that occurs at s; as a result of the atomic access corresponds to a state change that can

26

occur in p; as a result of the invocation/response pair. Condition (c) ensures that the new value of
the shared variable X; is consistent with the sequential specification §;. Finally, condition (d) says
that no shared variables other than X; are changed by the step.

Lemma 17: For all j € 7,s; is a shared memory automaton for X.
Proof: Immediate from the definitions of I/0 automata and shared memory automata. x

We define System A to be the composition of the shared memory automata corresponding to
the process automata of System ', closed out on the entire set of shared variables. More formally,
A = C(Il;ers;,X). We now show that for each execution of System B, there is an execution of
System A in which the environment observes the same system behavior.

Lemma 18: Let § be a sequential fair execution of System B. Then there exists a fair execution
a of System A such that beh(a)|K = beh(F)|K.

Proof: We “collapse” 3 to get o Since 5 is a sequential execution, each object operation
invocation is immediately followed by its corresponding response. Therefore, to construct ¢, for all
te€X,je J, wereplace each subsequence

"o S /
s", invoke; ;(p, a), ', respond; ;(p,a,7),s

in # by the corresponding step)
(5", pi.4(a), 5) € steps(A)

in @ such that for all 7/ € J s”|s; = s"|pjr, §|s; = s|pyr, and for all @’ € Z, the values of X in s
and § match (s"|a;).current and (s|ay).current, respectively. From the definition of a;, we know
that the state change at a; is between s and s is consistent with the sequential specification 5.
Therefore, we know that the step (", p; ;(a),3) must exist in steps(A). By the definition of s;,
is an execution of A. To see that « is fair, we note that 3 is fair and each action (v, p; ;(a),v) of
s; is enabled exactly from those states in which invoke; ;(p,) is enabled in p;. "

Our main result follows immediately.

Theorem 19: Let v be a fair execution of System . Then there exists a fair execution « of
System A such that beh(a)|K = beh(7)|K.
Proof: Immediate from Lemmas 16 and 18.]

Thus, we have shown formally that if the objects in an invocation-response system are each
linearizable, then every fair behavior of the entire invocation-response system is a fair behavior of
the corresponding atomic access system, as far as the components of the environment can tell.

5 Conclusion

We have extended the I/O automaton model to allow modelling of shared memory systems, as
well as systems that include both shared memory and shared action communication. The extended
model was shown to support all types of atomic accesses to shared memory, from the very restrictive
single-variable reads and writes to operations on arbitrary abstract data types. By building our
shared memory model on top of I/O automata, we could take advantage of existing features of
the model, most notably composition and compositionality properties, fairness, and the separation
of inputs and outputs. Using the built-in notion of an output action being under the control of
a single process, we were able to capture the idea of a single module making an atomic update

27

to shared memory (without any active participation by other modules). In addition, by exposing
the values of the shared variables as part of the shared memory accesses, we were able to not only
carry forward the compositionality properties of I/0 automaton behaviors but also provide a useful
notion of a shared memory action as an input.

We used the model to prove that invocation-response systems built from linearizable objects
simulate atomic shared memory systems. This provided a demonstration that the I/O automaton
model, when extended with our shared memory definitions, provides & unified framework in which
we can prove relationships between message passing systems and shared memory systems.

Acknowledgments

We thank Nancy Lynch for her contributions to the definitions, and for her comments on earlier
drafts.

References

[1} Anant Agarwal, David Chaiken, Godfrey D’Souza, Kirk Johnson, David Kranz, John Kubi-
atowicz, Kiyoshi Kurihara, Beng-Hong Lim, Gino Maa, Dan Nussbaum, Mike Parkin, and
Donald Yeung. The mit alewife machine: A large-scale distributed-memory multiprocessor.
In Proceedings of Workshop on Scaluble Shared Memory Mulliprocessors. Kluwer Academic
Publishers, 1991.

(2] Hagit Attiya and Jennifer L. Welch. Sequential consistency versus linearizability. Technical
Report 694, Technion, Department of Computer Science, October 1991.

[3] Andrew Birrell, John Guttag, Jim Horning, and Roy Levin. Synchronization primitives for a
multiprocessor: A formal specification. Technical Report 20, Digital Equipment Corporation
Stanford Research Center, August 1987.

[4}] K. Mani Chandy and Jayadev Misra. A Foundation of Parallel Program Design. Addison—
Wesley, Reading, MA, 1988.

[5] David E. Culler, Andrea Dusseau, Seth C. Goldstein, Arvind Krishnamurthy, Steven Lumetta,
Thorsten von Eicken, and Katherine Yelick. Parallel programming in split-c. Submitted for
publication, 1993.

{6] G. A. Geist and V. S. Sunderam. The PVM system: Supercomputer level concurrent com-
putation on a heterogeneous network of workstations. In Sizth Annual Distributed-Memory
Computer Conference, pages 258-261, 1991.

(7] Kenneth Goldman and Nancy Lynch. Modelling shared state in a shared action model. In
Proceedings of the 5th Annual IEEE Symposium on Logic in Comnputer Science, June 1990.

(8] Maurice P. Herlihy and Jeannette M. Wing. Axioms for concurrent objects. In Proceedings of
the 14th Principles of Programming Languages, pages 13-26, January 1987. Also to appear in
Transactions on Programming Languages and Systems.

[9] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, Englewood
Cliffs, New Jersey, 1985.

28

[10] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, 28(9):690, September 1979.

{11] Leslie Lamport. On interprocess communication. Distributed Computing, 1{1):77-85,86-101,
1986.

[12] N. Lynch and M. Merritt. Introduction to the theory of nested transactions. In International
Conference on Database Theory, pages 278-305, Rome, Italy, September 1986. Also, expanded
version in Technical Report, MIT/L.CS/TR-367, MIT Laboratory for Computer Science, July
1986. Revised version in Theoretical Computer Science, 62(1988):123-185.

[13] Nancy A. Lynch and Michael J. Fischer. On describing the behavior and implementation of a
distributed system. Theoretical Compuier Science, 13:17-43, 1981.

[14] Nancy A. Lynch and Kenneth J. Goldman. Distributed algorithms. Technical Report
MIT/LCS/RSS-5, MIT Laboratory for Computer Science, May 1989. MIT Research Semi-
nar Series.

[15] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed algorithms.
In Proceedings of the 6th ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, pages 137-151, August 1987. A full version is available as MIT Technical Report
MIT/LCS/TR-387.

[16] Nancy A. Lynch and Mark R. Tuttle. An introduction to Input/Qutput Automata. CWI-
Quarterly, 2(3), 1989.

[17} Bala Swaminathan and Kenneth J. Goldman. Hierarchical correctness proofs for recursive dis-
tributed algorithms using dynamic process creation. Technical Report WUCS-92-10, Wash-
ington University in St. Louis, September 1992. Revised April 1993.

29

	A Unified Model for Shared-Memory and Message-Passing Systems
	Recommended Citation
	A Unified Model for Shared-Memory and Message-Passing Systems

	tmp.1439928365.pdf.ggtFp

