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Abstract

I/0 abstraction is offered as a new high-level approach to interprocess comrunication. Fune-
tional components of a concurrent system are written as encapsulated modules that act upon
local data structures, some of which may be published for external use. Relationships among
modules are specified by logical connections among their published data structures, Whenever
a module updates published data, I/O takes place implicitly according to the configuration of

logical connections.

The Programmers’ Playground, a software library and run-time system supporting I/0 ab-
straction, is described. Design goals include high-level communication among programs written
in multiple programming languages and the uniform treatment of discrete and continuous data
types. Support for the development of distributed multimedia applications is the motivation for

the work.
1 Introduction

Consider the vision of a global electronic infrastructure with sufficient communication bandwidth
to support remote collaboration, information and resource sharing, and access to electronic services
and broadcast media. This infrastructure will be heterogeneous, consisting of many computer archi-
tectures running various operating systems and supporting many different programming languages
and programming paradigms. Furthermore, this infrastructure will be dynamie, evolving over time,
with users coming and going in order to collaborate, share information, and to provide and use

services electronically.

*This research was supported in part by the National Science Foundation under grants CCR-91-10029 and CDA-
§1-23643. A preliminary version of this work appeared in the Proceedings of the 27th Hawaii International Conference
on Systern Sciences, January 1994, pages 363-372.



location
Hypervideo

path Controller
names

location

VIdEO rate
Server

video
stream

path
names

(sclection) Graphics
Interface

rate

video
stream

Figure 1: A hypervideo browser

Unifortunately, writing programs to communicate in a public heferogeneous environment is
not necessarily easy. Obstacles include the presence of multiple programming languages, multiple
operating systems, and multiple communication protocols. However, simplification of the task
by enforcing the use of a single common language, operating system, and low-level communication
protocols is an impractical solution. Different programming paradigms are better suited for different
problems and individuals have personal preferences, and different applications require different
kinds of communication services. In fact, a single multimedia application may have a variety of
communication needs in order to handle continuous data (such as real-time video and audio), as
well as discrete data. To be successful, an open computing environment must also provide access

protection and privacy, as well as paid access to electronic resources and services.

2 Motivation and Goals

The long-term objective of this work is to facilitate the construction and smooth integration
of diverse of distributed multimedia applications. A simple example of a distributed multimedia
application is the hypervideo browser shown in Figure 1. The application consists of a hypervideo
controller module that interacts with two other modules: a video server and a graphics interface.

The video server has a data interface that includes the current video location (frame number),

the rate of play, and the video stream itself. The hypervideo controller internally maintains a



simple data structure for a directed graph whose vertices denote video segments (start and stop
frame numbers) and whose edges are labeled with sets of path names such that each vertex has at
most one incoming and at most one outgoing edge labeled with a given path name. The intent is
that viewing the sequence of video segments denoted by the vertices of a labeled path conveys a
particular idea or message. The hypervideo controller supplies a video location (connected to the
video server) and a list of path names labeling the incoming and outgoing edges of the vertex for
the segment currently being viewed. At all times, one of these path names is marked as the current
“selection.” The graphics interface has a rate of play output (controlled graphically and connected
to the play rate of the video server), a video stream input (connected to the video stream of the
server and visible in a video window on the display), and a set of names (connected to the path
names of the hypervideo controller and selectable on the display).

As the hypervideo controller executes, it traverses an externally-selected path in the graph. At
each vertex, it updates the video location to the start position in that vertex. This is seen by the
video server, which begins playing video from that location at the specified rate. As the video is
played, the server continually updates the position information, which is seen by the hypervideo
controller. When the end of the video segment for the current vertex is reached, the hypervideo
controller reacts by moving to the next vertex along the currently selected path.

This hypervideo controller is a fairly simple application, but one might imagine extending the
hypervideo controller to be a sophisticated hypervideo editor, where the graph structure may be
changed by direct manipulation in the graphics interface.

It is important to notice that the hypervideo controller itself does not store any video data, but
simply maintains a graph data structure. Also, notice that the video location is updated by both
the hypervideo controller and the video server, and both must react to changes. A different form
of interaction occurs with the path selection. Selected by the user interface, the choice of path is
noticed passively by the hypervideo controller. Traversal to the next vertex is made according to
the currently selected path, but no reaction is necessary at the time the selection is changed.

This application is configured from multiple independent modules, incorporates both discrete

and continuous data, and can be highly interactive, depending upon the duration of the video



segments. The video server is not specific to this application and could be used by multiple clients

in a variety of applications.

Motivated by the requirements of distributed multimedia applications, this paper describes an

abstraction and supporting software that

. simplifies the construction of distributed applications,

-

. provides end-user configuration and integration of software modules,
is designed for high-bandwidth communication technology,

provides uniform treatment of discrete and continuous data,
permits a dynamically changing communication structure,

offers protection for data and applications,

. supports existing programming languages and paradigms,

is designed for scalability and modularity,

© ° N @ oo s W

rests on a formal foundation, and

. is compatible with industry’s model of communication services.

—
(=

Our abstraction and supporting software is designed to serve as an insulating layer between the
programming language and the low-level communication protocols. It hides the complexity of the
underlying heterogeneous infrastructure in order to provide a common framework for communica-
tion.

We have stated that our long-term goal is to facilitate the construction and smooth integration
of diverse distributed multimedia applications. Our tools are not yet to the point of being able
to support development of applications like the hypervideo browser. However, in this paper, we
provide an abstraction and implementation design that is the first major step toward realizing this
goal.

The remainder of this paper is organized as follows. In Section 3, we present I/O abstraction,
a connection-oriented model of interprocess communication in which independent modules interact
with an abstract environment. Then, in Section 4, we provide a simple example to illustrate the

I/O abstraction concepts. This is followed, in Section 5, by some general comparisons to other



communication models. Section 6 describes an implementation of The Programmers’ Playground,
a software library and run-time system designed to support I/0 abstraction. We conclude with a

summary and some directions for future work.

3 I/0O Abstraction

I/0O abstraction is a model of interprocess communication in which each module in a system has a
presentation that consists of data structures that may be externally observed and/or manipulated.
An application consists of a collection of independent modules and a configuration of logical connec-
tions among the data structures in the module presentations. Whenever published data structures
are updated, communication occurs implicitly according to the logical connections.

I/O abstraction communication is declarative, rather than imperative. One declares direct high-
level logical connections among the state components of individual modules, as opposed to directing
communication within the control flow of the module. The use of declarative relationships between
program states has been advocated for the visualization of concurrent programs [30]. Here, we
advocate it for interprocess communication in general. Declaring high-level relationships among
the state components of software modules makes implicit communication possible. Once the high-.
level relationships between state components are declared, if a particular state change in one module
should be reflected in the state of another module, then this can be recognized by the system and
the necessary communication can be handled implicitly. Thus, output is essentially a byproduct of
computation, and input is handled passively, treated as a modifier (or an instigator) of computation.

This declarative approach simplifies application programming by cleanly separating computa-
tion from communication. Software modules written using I/0Q abstraction do not make explicit
requests to establish or effect communication, but instead are concerned only with the details of
the local computation. Communication is declared separately as high-level relationships among the
state components of different modules.

The I/O abstraction programming model has its roots in the formal I/Q automaton model of
Lynch and Tuttle [22]. An I/O autornaton is a state machine with a signature consisting of a set

of input actions and a set of locally controlled actions (divided into output actions and internal



actions). Locally controlled actions are under the control of the automaton, while input actions
may occur at any time. Automata may be composed such that when an output action of one
automaton occurs, all automata having a same-named action as an input action make a state
transition simultaneously. A behavior of an I/0 automaton is a sequence of input and output
actions that may occur in an ezecution of that automaton. The I/C abstraction programming
model is designed to benefit from the useful characteristics of the I/Q automaton model (such as
compositionality properties) that are helpful in reasoning formally about distributed systems.!
I/O abstraction is based on three fundamental concepts: data, control, and connections. It
is difficult to discuss these concepts in detail without reference to particular mechanisms for sup-
porting them. Therefore, we present them in the context of The Programmers’ Playground, a
software library, run-time system and programming environment we have designed to support the

development of distributed applications using I/0O abstraction.
3.1 Data

Data (the components of a module’s state} may be kept private or they may be published so that
other modules may access the data. Playground provides a library of data types for declaring
data structures that may be published. These include base types for storing integer, real, boolean,
and string values, tuples for storing records with various fields, and aggregeates for organizations
of homogeneous collections of elements. Some aggregate data types (such as sets, arrays, and
sequences) are provided in the Playground library, and the applications programmer may define
others. Any Playground data type may be used in the field of a tuple or as the element type of an
aggregate.

The presentation: Each Playground module has a presentation that consists of the data that
it has published. The presentation may change dynamically. Associated with each published data
item in a presentation are a public name, documentation, access privileges, and data type. The
public name, documentation, and data type help users of the module understand its presentation.

The data type information also permits type checking of logical connections. The access privileges

'Relevant similarities between I/O abstraction and the I/O automaton model are noted in the discussion, but
prior familiarity with the I/O automaton model is not necessary.



are used to restrict the use of published data structures.

Protection: Access privileges include read, write, insert, and connect. Read access allows a
module to observe the value of the data structure and write access allows a module to change the
value of the data structure. Insert access allows a new element to be inserted info an aggregate as
the result of an element-to-aggregate connection, described below. Connect access allows a module
(possibly a third party) to relate the data structure to a data structure of some other module,
Access protection may be changed dynamically. Using a UNIX-style protection mechanism, the
access privileges for each published data structure might be different for the owner, a designated
group, and the rest of the world. For example, worldwide read access without connect access would
allow any module to read the data, but only if a (trusted) module with connect access establishes
the connection on its behalf.

The environment: A Playground module interacts with an environment, a collection of other
modules that may be unknown to this module but that read and modify the data items in its
presentation (as permitted by the access privileges).

Behaviors and specifications: A behavior of a module is a sequence of values held by the data
items in its presentation. It is the view that the environment has of the module, and (symmetrically) -
is the view that the module has of its environment. A Playground module can be described in terms
of a behavioral specification including: the data items in the presentation, the behaviors that may
be exhibited by the module, and any assumptions made about the allowable behaviors of the
environment. Dividing the presentation into input (write-only) data items and output (read-only)
data items can simplify the task of constructing a behavioral specification and such a division can
be enforced using access protection. Behavioral specifications are similar to the schedule module
specifications in the I/0 automaton model, except that I/0 automaton behaviors are sequences of

actions, while our behaviors are sequences of state changes at the presentation.

3.2 Control

The control portion of a module defines how its state changes over time and in response to its
environment. Insulated from the structure of its environment, a Playground module interacts en-

tirely through the local data structures published in its presentation. A module may autonomously



modify its local state, and it may react to “miraculous” changes in its local state cause by the
environment. This suggests a natural division of the control into two parts: ective control and
reactive control.? Playground modules may have a mixture of both active and reactive control.

Active control: The active control carries out the ongoing computation of the module. For
example, in a discrete event simulation, the active control would be the iterative computation that
simulates each event. External updates of simulation parameters could affect the course of future
iterations, but would not require any special activity at the time of each change. Modules with
only active control can be quite elegant, since input simply steers the active computation without
requiring a direct response. Active control is analogous to the locally controlled actions of an I/O
automaton.

Reactive control: The reactive control carries out activities in response to input from the
environment. A module with primarily reactive control simply reacts to each input from the
environment, updating its local state and presentation as dictated by that input change. For
example, a data visualization module could be constructed so that each time some data element
changes, the visualization is updated to reflect the change. In the above discrete event simulation,
one might add reactive control to check the consistency of simulation parameters that are modified.
by ‘the environment. Reactive control is analogous to the input actions of an I/0 automaton.

Specifying control: The active control component of a Playground module is defined by the
“mainline” portion of the module. Reactive control is specified by associating a reaction function
with a presentation data item. This function defines the activity to be performed that data item
is updated by the environment. As a simple example, one might associate with data item z an
enqueue operation for some local queue ¢. With each external update to z, the new value of z

would be enqueued into ¢ for later processing by the module.
3.3 Connections

Relationships between data items in the presentations of different modules are declared with logical

connections between those data items. These connections define the communication pattern of

2RAPIE[21}, a rapid prototyping language for concurrent systems based on partially ordered event sets, is an
example of another system that supports this distinction.



the system. Connections are established by a special Playground module, called the connection
manager, that enforces type compatibility across connections and guards against access protection
violations by establishing only authorized connections.

Connections are declared separately from modules so that one can design each module with a
local orientation and later connect them together in various ways. Connections are designed to
accommodate both discrete data (such as sets of integers) and continuous data (such as audio and
video) in a single high-level mechanism, with differences in low-level communication requirements
handled automatically by the run-time system according to data type information.

If we liken the data items in the presentation of a Playground module to the actions in the
signature of an I/O automaton, then just as like-named actions in automaton signatures define
the sharing of actions, connections define the sharing of state change information. However, if a
simple asynchronous data transmission algorithm is used, state changes at a connection’s endpoints
do not necessarily appear to occur atomically. We are currently working o support various data
transmission ordering requirements, such as atomic and causal ordering, in the context of I/0
abstraction.

Playground supports two kinds of connections, simple connections and elemeni-to-aggregate
connections. A given data item may be involved in multiple connections of both kinds.

Simple connections: A simple connection relates two data items of the same type, and may
be either unidirectional or bidirectional. The semantics of a unidirectional connection from integer
z in module A to integer y in module B is that whenever A updates the value of z, item y in module
B is correspondingly updated. If the connection is bidirectional, then an update of y’s value by
module B would also result in a corresponding update to z in A. Arbitrary fan-out and fan-in are
permitted so that multiple simple connections may emanate from or converge to a given data item.
If z in the above example is also connected to integer z in module €, then whenever z is updated,
so are both y and 2. Bidirectional simple connections are useful for interactive or collaborative
work, while a unidirectional connection with high fan-out would be appropriate for connecting a
video source to multiple viewing stations.

Element-to-aggregate connections: A Playground aggregate is an organized homogeneous



collection of elements, such as a set of integers or an array of tuples. The element type of an
aggregate is the data type of its elements. For example, if s is a set of integers, the element type
of s is integer.

An element-to-aggregate connection results when a connection is formed between a data item of
type T and an aggregate data item with element type T. For example, a client/server application
could be constructed by having the server publish a data structure of type set(T) and having each
client publish a data structure of type T. If an element-to-aggregate connection is created between
each client’s type T data structure and the server’s set(T) data structure, then the server program
will see a set of client data structures, and each client may interact with the server through its
individual element. As another example, a connection from a data structure of type T to a data
structure of type sequence(T) might be used for a producer/consumer application.

Element-to-aggregate connections may take two different forms: distinguished element connec-
tions and element siream connections, with the choice being made when the aggregate is published.
Let = be an integer and s be a set of integers, and consider an element-to-aggregate connection
from z to s:

A distinguished element connection from z to s causes a new element to be created in the -
aggregate s. All interaction for that connection takes place through that distinguished element and
T, as if there is a simple connection between 2 and the distinguished element of s. The distinguished
element is deleted when the connection is removed. Distinguished element connections are suitable
for the client/server scenario described above. Like simple connections, they may be unidirectional
or bidirectional, and permit arbitrary fan-out and fan-in. In the client/server example, arbitrarily
many clients could be handled by multiple distinguished element connections to the same aggregate,
each with its own distinguished element,

An element stream connection from 2 to s causes 2 new element (with the value currently held
by z) to be created in s each time z is updated. Element stream connections are suitable for the
producer/consumer scenario described above and are inherently unidirectional (from the element
to the aggregate). Multiple fan-in is allowed, and could be used to allow many modules to produce

elements for a single consumer, for example.
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Figure 2: Configuration for a process control simulation
4 Example: Process Control Simulation

The following simple application illustrates some of the I/Q abstraction concepts supported by
the Programmers’ Playground. It is not infended to illustrate all of the power of the model (for
example, element-to-aggregate connections are not illustrated), but is meant to provide a feeling
for how software modules are written using I/O abstraction. The example is a process control
simulation for a factory in which maple sap is concentrated under low heat to produce maple
syrup. The application consists of three modules, configured as shown in Figure 2.

The “sensors” module outputs simulated changes in readings that would be reported by sensors
in the factory (liquid temperature, volume, and concentration) based on the current conditions,
including the current flow of sap into the tank and whether or not the liquid is being heated. The
“control” module, based on current readings, regulates the valve controlling the flow of sap into
the tank and also turns the burners under the tank on and off. The “display” module is simply a
graphical representation of the conditions in the factory.

Example code for the sensors and control modules are shown in Figures 3 and 4, respectively.
The first line of the sensors module includes the Playground header file. It then declares its program
name (for use by the connection manager) and declares five Playground data items (flame, flow,

temp, level, and conc). Two ordinary procedures are defined to compute the new temperature

11



#include *PG.hh"
PGprogram("Sensors"};

PGbool flame;
PGint flow;
PGreal temp, level, conc;

real newTemp (bool flame, int flow, real level, real temp)
{ ... returns the new temperature ... }

real newLevel (bool flame, int flow, real oldlevel, real temp)
{ ... returns the new liquid volume ... }

main() {
PGinitialize();

PGpublish(flame, WRITE_CONLY, “heating");
PGpublish(flow, WRITE_DNLY, “flow");
PGpublish(temp, READ_ONLY, "temperature");
PGpublish(level, READ_ODNLY, ‘“volume");
PGpublish{cong, READ.ONLY, “concentration");

real oldtemp;
while ({conc < 4.0) || (flame == ON) || (flow > 0))
{
oldtemp = temp;
temp = newTemp (flame, flow, level, temp);
lovel = newLevel (flame, flow, level, oldtemp);
if (level > 0) conc * input_volume / level;
}
PGterminate();

}

Figure 3: Sensors module in the process control application

12



#include "PG.hh*
Plprogram("control module");

PGbool flame;
PGint valve;
PGreal temp, level, conc;

void watchTemp() {
if ((temp >= high_temp)} && (flame == ON))

flame = OFF;
else if ((temp < low_temp) && (level > low_level) && (flame == OFF))
flame = ON;

}

void watchLevel() {
if ((level <= low_level) && (flame == ON)) flame = OFF;

valve = ...

¥

main() {
PGinitialize();

PGpublish(flame, READ_ONLY, ‘''burners"};
PGpublish(valve, READ_ONLY, ‘valve");
PGpublish(temp, WRITE_ONLY, "temperature");

PGpublish(level, WRITE_ONLY, "volume");
PGpublish{conc, WRITE_ONLY, "concentration®);

PGreact(temp, watchTemp);
PGreact(level, watchlevel);

while (conc < target_concentration) usleep(100};

flame = OFF; valve = 0;
PGterminate();

Figure 4: Control module in the process control application

13



and level based on the current conditions. The mainline publishes the five Playground data items,
specifying external names and access protection for each. The main loop performs the simulation,
calling the newTemp and newLevel procedures repeatedly until the desired concentration is reached,
the flow has stopped, and flame has been turned off. Each time through the loop, it computes the
new concentration based on the current volume and the cumulative additions of sap to the tank.
These new values are sent to other modules implicitly by the run-time system, according to the

logical connections.

While the sensors module simulation uses active control, the control module uses primarily reac-
tive, Like the sensors module, it creates and publishes some Playground data items. It defines two
procedures (watchTemp and watchLevel) as reaction functions that will be executed whenever the
presentation variables temp and level are updated, respectively. These procedures are responsible
for adjusting the burner and valve to keep within the desired set points. The main loop in the
control module simply waits for the liquid to reach the desired concentration.

An important observation is that neither module makes any reference to any other module in
the system. The sensors module, for example, does not have to connect explicitly to the two other
modules and send each of them updated readings when the simulation changes the values. In fact,
the programmer need not know anything about how communication of data values is accomplished.
Each module is written independently in terms of its data interface with its own variable names.
The configuration is handled separately as in Figure 2. Communication is handled implicitly by

the run-time system on the basis of the logical connections.

5 Related Work

I/O abstraction is a new approach to interprocess communication that is designed specifically to
satisfy the needs of distributed multimedia applications. However, it is natural to ask why existing
models fail to satisfy these needs. Figure 5 summarizes the key properties of I/Q abstraction that
relate to our research goals and indicates their presence in the following communication models
(listed here with some example implementations): datagrams [24], streams {2, 29, 25], remote

procedure call [5, 20, 35], shared memory [18], shared dataspace [1, 31], shared objects [7, 8, 14],

14
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continuous streams v Vi non-blk v

Figure 5: Properties of I/O abstraction and their presence in other communication models.

and dataflow [12, 33]. The rest of this section discusses the importance of these properties to our
goals and explains the comparisons made in the table.

Three high-level remarks about the table are in order. First, we offer this table with the
hope that it will assist the reader in making comparisons with systems not specifically addressed
here. However, the table is intended only as a starting point for such comparisons, as specific
systems based on these models vary. Second, since one communication model can often be used to
implement another (indeed, our implementation of I/O abstraction is based on message passing),
we compare the models only on the abstraction they provide directly, and not on what properties
could be achieved by adding other mechanisms or abstractions on top of these models. Finally, we
only consider properties that are important to our goals. We are by no means claiming that I/0Q
abstraction subsumes all the other models, as the other models each have different properties that
are not considered here.

Program Modules: Both active and reactive control are important for simplifying distributed
applications. Simulations need active control, while many server applications would require reac-
tive control. Shared memory systems tend not to have reactive control, since the communication
is indirect, while dataflow systems tend to provide only reactive control. Writing program modules
in terms of an abstract environment, besides simplifying programming, is important for decou-

pling programs from the communication structure in order to provide end-user configuration and
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integration and is useful for letting the run-time system deal with the low-level communication
requirements. Modules written in terms of an abstract environment can be written independently,
without knowledge about the behavior of other modules in the system. In datagram communica-
tion, modules must know the network addresses of the other modules with which they communicate.
With RPC, modules must be aware of the interfaces of other modules in order to make the appropri-
ate procedure calls and expect certain results. Furthermore, RPC requires that the environment be
understood in terms of the procedural paradigm, making it more difficult to integrate rule-based
or dataflow programs into an RPC-based application. In most shared data systems, programs
modules must agree on shared variables. In shared dataspace systems, it is:an open bulletin-board
approach. Coordination languages (see discussion below) for message-passing or shared data can
provide a decoupling of communication from computation by manipulation of binding tables.

Configuration: A connection-oriented configuration is useful for providing a dynamic com-
munication structure where communication requirements can be declared and protection can be
enforced on a connection-by-connection basis. The connection-oriented approach not only provides
users with an intuitive and uniform communication model, but it also provides system designers
with opportunities for analysis and optimization based on configuration information®. Stream-
based message-passing systems and dataflow systems tend to be connection-oriented, while the
others listed tend not to be. Providing end-user configuration is a central goal of our research.
Most of the models do not directly support end-user configuration, but in many cases reconfigura-
tion is possible through additional coordination languages that change binding tables dynamically
(noted by “bind” in the table).

Coordination languages [10] separate communication from computation in order to offer pro-
grammers a uniform communication abstraction that is independent of a particular programming
language or operating system. The separation of computation from communication permits local
reasoning about functional components in terms of well-defined interfaces and allows systems to be
designed by assembling collections of individually verified functional components. There are many

examples, Darwin [16, 23, 17] is a coordination language for managing message-passing connections

3 For example, in a Playground application configured so that some presentation entries lack logical connections,
dead code elimination techniques could be used to optimize away the computation of unused values
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between process “ports” in a dynamic system. Processes are expressed in a separate computation
language that allows ports to be declared for interconnection within Darwin. In Polylith [27, 28],
a configuration is expressed using “module interconnection constructs” that establish procedure
call bindings among modules in a distributed system. CONCERT [36] provides a uniform com-
munication abstraction by extending several procedural programming languages to support the
Hermes {32] distributed process model. PROFIT [15] provides a mixture of data sharing and RPC
communication through facets with data and procedure slots that are bound to slots in other facets
during compilation. Extensions to PROFIT enable dynamic binding of slots in special cases [13).
Coordination languages can be implemented .directly on top of each supported operating system
and programming language, or for ease of portability, they may be implemented on top of a uniform
set of system level communication constructs for heterogeneous distributed systems, such as the
Mercury system [19] or PVM [9)].

Communication: Having implicit communication means that the programmer need not think
about when to initiate communication. Communication occurs as a byproduct of computation.
In the message-passing model, communication is inherently explicit (sends and receives). For
dataflow, the implicit communication category is not applicable, since dataflow modules are not
autonomous. Direct communication is important for modules that must react to input from another
module. Shared data systems use indirect communication, where a module must access a shared
variable in order to learn that the value has changed. Reactive control (see above) requires direct
communication. Bidirectional communication is important for interactive applications, where there
a lot of sharing. The dataflow model does not support bidirectional communication well.

Multiway communication is important for interactive applications with multiple participants.
Multiway communication is not part of the datagram model since each message is an indepen-
dent event. However, multiway communication be achieved with streams, provided that there are
indirect bindings for the streams and a copy mechanism exists. Some kinds of multiway commu-
nication, notably for multicast to process groups implementing distributed servers, is supported
in RPC systems. Indirect multiway communication is possible in shared data systems; however,

coordination among the processes is required so that all readers have an opportunity to see the data
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Figure 6: A Playground system

before it is overwritten. Continuous sireams are the natural abstraction for continuous datatypes
such as audio and video. Dataflow and message-passing streams support this, and non-blocking
RPC’s provide a (somewhat unnatural) mechanism for continuous streams. Datagram and shared

data systems are not well-suited for continuous streams.

6 Implementation

The Programmers’ Playground is designed as a software library, run-time system, and program-
ming environment that insulates the applications programmer from the operating system and the
network. The version of the system described here supports applications written in C++ on top of
the SunOS UNIX operating system with sockets as the underlying communication mechanism. A
logical overview of a Playground system is shown in Figure 6.

Veneer: Each Playground module is written using I/O abstraction, as described earlier. Fach
module includes a software library called the veneerthat serves as an abstraction barrier between the
Playground module and its environment. The veneer defines the Playground datatypes, manages
the presentation information, and handles reactive control. Each supported programming language
requires its own Playground veneer.

Protocol: At module initialization, the veneer automatically launches a separate protocol pro-

cess that handles interprocess communication resulting from updates to published data. The mod-
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ule’s veneer and protocol communicate through data structures in shared memory. The protocol
also interacts with the connection manager, a special application that is used to create logical con-
nections among the published data items of different modules. The protocol makes the module’s
presentation known to the connection manager and the connection manager informs the protocol
of the connections established between the module’s published data structures and those of other
modules.

Connection Manager: The connection manager is itself implemented as a Playground mod-
ule. It interacts with the protocol processes of other Playground modules through element-to-
aggregate connections that are automatically set up by those protocol processes. These “bootstrap”
connections are used by the protocols to convey presentation descriptions to the connection man-
ager, and to learn about changes to the logical connection structure. (These presentation entries
are shown in Figure 6 as P and L, respectively.) The connection manager also publishes a queue of
connection requests (shown as R in the Figure 6) into which modules, such as a graphical configura-
tion application, may enqueue connection requests using an element-to-aggregate (element stream)
connection. For each connection request, the connection manager checks for type compatibility, ver-
ifies that the connection obeys the access protections established for the endpoint data structures,
and adds the connection to its published connection information. The protocols at the endpoints
of the requested connection are advised of the new connection through the normal implicit I/0
abstraction communication mechanism. Note that the connection manager is not a communica-
tion bottleneck since it simply sets up connections that are thereafier handled individually by the
endpoint protocols.

Communication: Whenever the application updates the value of a published data structure,
the veneer encodes the data and informs the protocol. The protocol then forwards the new value to
all all other modules to whom an outgoing connection has been established from that data structure.
Depending on the encoding scheme used, the entire data structure or only the updated portion is
sent. Upon receipt of a new value for a data structure, the protocol updates the data structure and
any necessary reactive control is handled. Note that all of this I/O happens implicitly, whenever a

module updates the value of a published data structure.
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Atomicity: Locks are used to prevent two applications from concurrently changing the data
structures at the endpoints of a single logical connection. The lock (token) is held by the veneer
before each update and released after the update. When the lock for a logical connection is not
local, the protocol makes an external request for the lock on behalf of the veneer. The protocol
is responsible for ensuring that at most one lock exists among the protocols participating in each
logical connection, and it regenerates the token when it is lost (due to a partition, for example).

The locks alone do not prevent “blind” writes in which a value written by one module is
obliterated without being observed by any other module. If an atomic read-compute-write for a
published data structure is required, or if an atomic operation involving several published data .
structures is required, the programmer may use the functions begin_atomic_step(obj_list) and
end.atomic_step()} provided by the veneer for encapsulating a set of changes as an atomic step.
The obj_list names the set of objects for which locks should be held for the duration for the
atomic step. At the end of the atomic step, the locks are released and all the changed objects are
forwarded to other applications as one atomic change.

Current status: As of this writing, we have a small Playground implementation that includes
a veneer for C++, a protocol that uses TCP socket communication on top of the SunOS (UNIX)
operating system, and a connection manager. The veneer contains implementations for all the
basic Playground data types, tuples, and some aggregates (set, queue, and array). The protocol,
launched with each application, automatically sets up a “main” socket through which it provides
presentation description information to the connection manager and accepts connection information
from the connection manager. Updates are transmitted through the usual implicit I/O abstraction
communication mechanism.

All updates to the presentation data result in the necessary implicit communication according
to the logical connections. These updates are caught by overloading the assignment operator for the
Playground data types. Currently, incremental changes to aggregates result in the entire new value
of the aggregate being sent by the protocol, instead of just the changed element(s). Whenever the
application reads the presentation, any pending input changes are handled so that the application

sees recent and consistent data. Reactive control is not fully implemented. In our current design,
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reactive control resides in the same process with the active control, so each module’s active control
must periodically access the presentation in order to give the veneer an opportunity to handle the
external updates. The protocol’s concurrency control algorithms are not yet implemented, so race
conditions for updates to data elements are possible. Simple connections and element-to-aggregate

connections are supported. Access protection is not currently enforced.

7 Summary and Future Work

We have offered I/O abstraction as a high-level communication abstraction that can span multiple
programming languages and support the communication needs of a variety of-applications.. Each
module’s computation is expressed in terms of local data structures. These may be published in a
well-defined data interface through which the application interacts with an abstract environment.
The environment may observe and/or modify the published data structures. Logical connections
between the published data structures are configured separately from the application programs
and may be changed dynamically. The application need not be concerned with explicitly sending
data to and receiving data from other modules, and need not be concerned with coordinating its
activities with specific processes. Access protection is provided so that changes occur only to those
published data structures that are expected to change. An important benefit of I/O abstraction is
the potential for integrating discrete data and continuous data within one communication model.

The connection-oriented flavor of I/O abstraction is particularly well-suited for ATM networks,
where a straightforward implementation of logical connections would be to allocate the correspond-
ing network bandwidth for data transmission. Logical connections that have arbitrary fan-out
could be handled with multicast connections in the network. As a testbed for this work, we plan to
use the high speed packet-switched network that is being deployed on the Washington University
campus [6]. The network, called Zeus, is based on fast packet switching technology that has been
developed at Washington University over the past several years and is designed to support port
interfaces at up to 2.4 Gb/s. The Zeus network will allow us to implement multimedia applications
that communicate using real-time digital video and audio, as well as discrete data.

Natural directions for further development include writing veneers to support more program-
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ming languages, implementing process migration [34], as well as extending the protection mech-
anism to support authentication, encryption and connection-based accounting services. Research
questions remain in data transmission ordering, concurrency control, and program verification. We
are working on new algorithms for causal and logically synchronous ordering of data transmis-
sion, building on [4, 11] for example, but exploiting the connection information available in the
connection manager.

The concurrency control assumptions in I/O abstraction differ from those of classical concur-
rency confrol theory [3]. In a sense, we have a “continuous read” semantics that may have
interesting implications for concurrency control algorithms.

We expect that useful techniques for the verification of Playground programs will be developed

on the basis of commonalities between the I/O automaton model and I/0 abstraction.
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