
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

McKelvey School of Engineering Theses &
Dissertations McKelvey School of Engineering

Summer 8-15-2017

Parallel Real-Time Scheduling for Latency-Critical Applications Parallel Real-Time Scheduling for Latency-Critical Applications

Jing Li
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Li, Jing, "Parallel Real-Time Scheduling for Latency-Critical Applications" (2017). McKelvey School of
Engineering Theses & Dissertations. 302.
https://openscholarship.wustl.edu/eng_etds/302

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Feng_etds%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/302?utm_source=openscholarship.wustl.edu%2Feng_etds%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Computer Science and Engineering

Dissertation Examination Committee:

Chenyang Lu, Chair

Kunal Agrawal, Co-Chair

Sameh Elnikety

Christopher Gill

Roch Guérin

I-Ting Angelina Lee

Parallel Real-Time Scheduling for Latency-Critical Applications

by

Jing Li

A dissertation presented to

The Graduate School

of Washington University in

partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

August 2017

St. Louis, Missouri

Table of Contents

List of Tables ... vii

List of Figures .. viii

Acknowledgments... xv

Abstract ..xviii

Chapter 1: Introduction ... 1

1.1 Systems with Latency-Critical Applications .. 3

1.2 Parallel Scheduling for Applications .. 5

1.3 Thesis Statement .. 7

1.4 Thesis Contributions ... 8

Chapter 2: Preliminaries and Notation ... 13

2.1 Parallel Job Model .. 13

2.2 Scheduling Parallel Jobs ... 15

2.2.1 Centralized Greedy Schedulers ... 16

2.2.2 Randomized Work-Stealing Schedulers .. 17

2.3 Parallel Languages and Runtime Systems... 18

2.4 Classic Static Real-Time System Model ... 19

2.5 Classic Online Scheduling Model .. 22

Part I Static Real-Time Systems for Parallel Tasks with Deadlines 25

Chapter 3: Global Scheduling for Parallel Real-Time Tasks......................... 29

3.1 Related Work on Hard Real-Time Systems ... 30

3.2 Canonical Form of a DAG Task ... 33

3.3 Capacity Augmentation Bound of Global EDF .. 40

3.3.1 Upper Bound on Capacity Augmentation of GEDF.. 40

3.3.2 Lower Bound on Capacity Augmentation of GEDF .. 42

3.4 Capacity Augmentation of Global RM... 44

3.5 Parallel GEDF Platform ... 46

ii

3.5.1 Background ... 47

3.5.2 PGEDF Programming Interface ... 50

3.5.3 PGEDF Operation .. 52

Chapter 4: Federated Scheduling for Parallel Real-Time Tasks.................... 56

4.1 Federated Scheduling Algorithm... 57

4.2 Capacity Augmentation Bound of 2 for Federated Scheduling 58

4.3 Lower Bound on Capacity Augmentation of Any Scheduler for Parallel Tasks 62

4.4 Practical Considerations ... 62

4.5 Implementation of a Federated Scheduling Platform 64

4.6 Empirical Comparison Between PGEDF and RTCG..................................... 66

4.6.1 Task Generation ... 67

4.6.2 Baseline Platform.. 68

4.6.3 Experimental Results ... 70

Chapter 5: Mixed-Criticality Federated Scheduling 72

5.1 System Model and Background .. 74

5.1.1 Mixed-Criticality Parallel Real-Time Tasks Model ... 74

5.1.2 System Model for Dual-Criticality System .. 75

5.1.3 Schedulability Conditions for Dual-Criticality Systems...................................... 76

5.1.4 Dual-Criticality Capacity Augmentation Bound .. 77

5.1.5 Background ... 77

5.2 Related Work on Mixed-Criticality Scheduling .. 80

5.3 Scheduling Dual-Criticality High-Utilization Tasks 81

5.3.1 Mapping Algorithm ... 82

5.3.2 Schedulability Conditions of MCFS .. 83

5.3.3 MCFS Runtime Execution .. 84

5.4 Proof of Correctness and Capacity Augmentation Bound 85

5.4.1 LH tasks under MCFS ... 85

5.4.2 HVH tasks under MCFS... 86

5.4.3 HMH tasks under MCFS .. 89

5.4.4 Proof of Correctness .. 93

5.4.5 Proof of Capacity Augmentation Bound 2 +
√

2 .. 94

iii

5.4.6 Lower Bound on Capacity Augmentation for High-Utilization Tasks 97

5.5 MCFS for Multi-Criticality Systems .. 98

5.5.1 Multi-Criticality System Model .. 98

5.5.2 Multi-Criticality MCFS Algorithm and Bound ..100

5.6 Improve MCFS Algorithm for High-Utilization Tasks 104

5.7 General Case for Dual-Criticality MCFS .. 109

5.8 Implementation of a MCFS Runtime System .. 112

5.9 Numerical Evaluation .. 119

5.10 Empirical Evaluation ... 130

Chapter 6: Federated Scheduling for Stochastic Parallel Real-time Tasks135

6.1 Related Work on Soft Real-Time Scheduling ... 136

6.2 System Model for Stochastic Parallel Real-Time Tasks.................................. 137

6.3 Stochastic Federated Scheduling Guarantees Bounded Tardiness 139

6.3.1 Stochastic Federated Scheduling Strategy...139

6.3.2 Mapping Algorithms Guarantee Bounded Tardiness ...140

6.3.3 Calculating Expected Tardiness ...142

6.3.4 A Mapping Algorithm for Stochastic Federated Scheduling144

6.3.5 BASIC Federated Mapping Algorithm ...144

6.3.6 FAIR Federated Mapping Algorithm ...146

6.3.7 ILP-Based Federated Mapping Algorithm ..147

6.4 Stochastic Capacity Augmentation of 2 for Stochastic Federated Scheduling 151

6.4.1 Stochastic Capacity Augmentation Bound for BASIC151

6.4.2 Stochastic Capacity Augmentation Bound for FAIR ...153

6.5 Numerical Evaluation .. 154

6.5.1 Task Sets Generation and Experimental Setup ..154

6.5.2 Experiment Results ...155

Chapter 7: Work Stealing for Large Scale Soft Real-time Systems...............159

7.1 The Case for Randomized Work Stealing for Soft Real-Time Tasks.................. 161

7.1.1 Scalability Comparison...161

7.1.2 Tightness of Randomized Work Stealing in Practice ...166

iv

7.2 Adaptation to Federated Scheduling using Work Stealing 168

7.2.1 Federated Scheduling for Parallel Real-Time Tasks ..168

7.2.2 Incorporating Work Stealing Overhead into Federated Scheduling169

7.3 RTWS Platform ... 172

7.4 Platform Evaluation .. 174

7.4.1 Benchmark Task Sets Generation ...174

7.4.2 Evaluation Results ..175

Part II Online Systems with Parallel Latency-Critical Jobs180

Chapter 8: Scheduling Parallel Jobs Online to Meet Target Latency184

8.1 Background and Terminology .. 187

8.1.1 Terminology ...187

8.1.2 Characteristics of Interactive Services..187

8.2 Intuitions for Tail-Control ... 188

8.3 Tail-Control Scheduler ... 193

8.3.1 The Threshold-Calculation Algorithm ...193

8.3.2 Extending Work-Stealing with Tail-Control ..201

8.4 Experimental Evaluation .. 206

8.4.1 Different Work Distributions ...208

8.4.2 Different Arrival Distributions ...211

8.4.3 Request with Sub-Linear Speedup ..212

8.4.4 Inaccurate Input Work Distribution ..213

8.4.5 Increased System Capacity..215

8.4.6 Comparison with Additional Algorithms ..216

8.4.7 The Inner Workings of Tail-Control ..218

Chapter 9: Scheduling Parallel Jobs Online to Maximize Profit220

9.1 Preliminaries .. 224

9.2 Maximizing Profit of Jobs with Deadlines .. 225

9.2.1 Scheduler S for Maximizing Profit of Jobs with Deadlines226

9.2.2 Properties of the Scheduler S ..229

9.2.3 Bounding the Profit of Jobs Completed by S ..230

v

9.2.4 Bounding the Profit of Jobs Completed by OPT ...233

9.3 Maximizing Profit of Jobs with General Profit Functions............................... 238

9.3.1 Scheduler S′ for Maximizing General Profit ..238

9.3.2 Properties of the Scheduler S′ ..239

9.3.3 Bounding the Profit of Jobs Completed by S′ ...240

9.3.4 Bounding the Profit of Jobs Completed by OPT ...243

9.4 Lower Bound Examples .. 246

Chapter 10: Scheduling Parallel Jobs Online to Minimize Max Flow Time ..248

10.1 Preliminaries .. 251

10.2 Unweighted Maximum Flow Time using FIFO .. 253

10.3 Unweighted Maximum Flow Time using Work Stealing 256

10.4 Work Stealing Lower Bound for Maximum Flow Time 267

10.5 Experimental Results for Unweighted Maximum Flow Time........................... 268

10.6 Maximum Weighted Flow Time using Biggest-Weight-First 270

Chapter 11: Scheduling Parallel Jobs Online to Minimize Average Flow Time277

11.1 Preliminaries .. 282

11.2 Algorithm: LAPS ... 284

11.3 Algorithm: SJF .. 289

11.3.1 Analysis of SJF for Fractional Flow Time ..289

11.3.2 SJF Falls Behind with Resource Augmentation ...295

11.3.3 From Fractional to Integral ...300

Chapter 12: A Distributed Scheduler for Minimizing Average Flow Time ...307

12.1 Preliminaries .. 312

12.2 DREP: A New Sequential Algorithm ... 314

12.3 DREP: A New Parallel Algorithm and Analysis .. 315

12.3.1 DREP Algorithm for Parallel Jobs..316

12.3.2 Probability of Working on a Job under DREP ..316

12.3.3 Potential Function Analysis for DREP ..318

Chapter 13: Conclusion ..323

References ...325

vi

List of Tables

4.1 Task Set Characteristics .. 67

5.1 Table of Notations in Chapter 5 .. 82

5.2 High-Utilization Task Classification.. 82

5.3 High-Utilization Task Virtual Deadline and Core Assignment 83

5.4 Tasks’ Per-Criticality Work, Critical-Path Length and Core Assignment of a

3-Criticality System .. 99

5.5 High-Utilization Task Classification of a 3-Criticality System....................... 100

5.6 High-Utilization Tasks’ Assignments of a 3-Criticality System 100

5.7 Task Set Parameters ... 133

7.1 Median, maximum, and 99th percentile execution times of synchronous tasks

for OpenMP and Cilk Plus implementations (in milliseconds) and the ratios

of the maximum execution times of Cilk Plus over OpenMP implementations. 162

7.2 Median, maximum, and 99th percentile execution times of Cholesky, LU, and

Heat for OpenMP and Cilk Plus implementations (in seconds) and the ratio

of the maximum execution times of Cilk Plus over OpenMP implementations. 166

8.1 Notation Table in Chapter 8 ... 195

9.1 Notations and definitions throughout Chapter 9 225

9.2 Notations and definitions specific to jobs with deadlines 226

9.3 Notations and definitions specific to jobs with general profit functions........... 226

10.1 Symbols and Definitions in Chapter 10 ... 252

vii

List of Figures

2.1 A directed acyclic graph (DAG) job J1 with six nodes. The execution time

of each node is annotated in the center of the node. The total work C1 is

the sum of the execution times of all nodes, which is 12. The critical-path,

i.e., the longest path in the DAG, is annotated using the dashed line. The

critical-path length L1 is 10. ... 14

2.2 A synchronous task with two parallel-for loops. The execution time of each

node is annotated in the center of the node. The second segment contains 20

nodes. .. 15

2.3 Example of a synchronous program. ... 16

2.4 Examples of centralized scheduling and work stealing 17

3.1 A high-utilization DAG task τi with Li = 12, Ci = 20, Ti = Di = 16,

and ui = 1.25 and its canonical form, where the number in each node is its

execution time. .. 34

3.2 q∗i (t, α), qi(t, α), work∗i (t, α) and worki(t, α) for the high-utilization task τi in

Figure 3.1. .. 36

3.3 The required speedup of GEDF under different settings.............................. 41

3.4 The upper bound of GEDF provided in Theorem 5 and the lower bound in

Theorem 8 with respect to the capacity augmentation bound. 44

3.5 The required speedup of GRM when m is sufficiently large and UL = 0 (i.e.

U∑ = UH). .. 45

3.6 Task Program Format ... 51

3.7 Format of the Configuration File ... 52

3.8 Main Structure of Each Real-Time Task in PGEDF 53

viii

4.1 Task Set Deadline Miss ratio of RTCG vs. PGEDF vs. RT-OpenMP with

different types of task sets with varying percentages of utilization on 14 and

7 cores. .. 69

5.1 MCFS-Improve mapping algorithm and schedulability test (initialization step) 105

5.2 MCFS-Improve mapping algorithm and schedulability test (adjustment step) . 106

5.3 Periodic Task Invocation Psuedocode ... 116

5.4 Mode Aware Barrier Psuedocode ... 117

5.5 Fraction of schedulable task sets of MCFS-Bound vs. MCFS vs. MCFS-

Improve on 32 cores setting with pmax = 1.5
b

. From (a) to (f), figures show

the results for total nominal utilizations ranging from [12.5%m, 25%m,

37.5%m, 50%m, 62.5%m, 75%m], respectively. Each figure shows the results

for increasing total overload utilizations. ... 122

5.6 Fraction of schedulable task sets of MCFS-Bound vs. MCFS vs. MCFS-

Improve on 32 cores setting with pmax = 1.5
b

. From (a) to (f), figures show

the results for total overload utilizations ranging from [12.5%m, 25%m,

37.5%m, 50%m, 62.5%m, 75%m], respectively. Each figure shows the results

for increasing total nominal utilizations. .. 123

5.7 Fraction of schedulable task sets of MCFS (labeled “M.”) vs. MCFS-Improve

(labeled “M.-Imp.”) on 16 cores (labeled “16-core”) vs. 64 cores (labeled

“64-core”) with pmax = 1.5
b

. From (a) to (f), figures show the results for vary-

ing total overload utilizations. Each figure shows the results for increasing

total nominal utilizations. .. 124

5.8 Fraction of schedulable task sets of MCFS (labeled “M.”) vs. MCFS-Improve

(labeled “M.-Imp.”) on 16 cores (labeled “16-core”) vs. 64 cores (labeled

“64-core”) with pmax = 1.5
b

. From (a) to (f), figures show the results for vary-

ing total nominal utilizations. Each figure shows the results for increasing

total overload utilizations. .. 125

ix

5.9 Fraction of schedulable task sets of MCFS (dotted line) vs. MCFS-Improve

(solid line) with varying number of cores. Each data point in each figure

shows the average fraction of schedulable task sets of all the different settings

(varying nominal and overload utilizations), given m and maximum ratio pmax

of critical-path length over period. .. 127

5.10 Fraction of schedulable task sets of MCFS (labeled “M.”) vs. MCFS-Improve

(labeled “M.-Imp.”) on 128 cores with pmax = 0.75
b

(labeled “p=0.75/b”) vs.

pmax = 2.25
b

(labeled “p=2.25/b”). From (a) to (f), figures show the results

for varying total overload utilizations. Each figure shows the results for

increasing total nominal utilizations. .. 128

5.11 Fraction of schedulable task sets of MCFS (labeled “M.”) vs. MCFS-Improve

(labeled “M.-Imp.”) on 128 cores with pmax = 0.75
b

(labeled “p=0.75/b”) vs.

pmax = 2.25
b

(labeled “p=2.25/b”). From (a) to (f), figures show the results

for varying total nominal utilizations. Each figure shows the results for

increasing total overload utilizations. .. 129

5.12 Fraction of tasks with no deadline miss, for the sets of tasks with high- and low-

criticality, respectively, when increasing the number of high-criticality tasks

that overrun their nominal parameters. ... 132

5.13 One hyper-period of the experimental task system where Task 1 only requires

5ms of computational time. .. 133

5.14 One hyper-period of the experimental task system where Task 1 requires 20ms

of computational time, necessitating a transition to critical-state. 134

6.1 Task set utilization vs. schedulability ratio (in percentages) for different num-

ber of cores. ... 156

6.2 Maximum, mean and minimum tardiness for parameters with small and large

variances. .. 156

7.1 Speedup of synchronous tasks in OpenMP and Cilk Plus implementations 164

7.2 Speedup of benchmark programs in OpenMP and Cilk Plus implementations . 167

x

7.3 Deadline miss ratio of different task sets (Cholesky, Heat, LU and Mixed

task sets) with increasing total utilization under RTWS (providing federated

scheduling service integrated with a randomized work-stealing scheduler in

GNU Cilk Plus) and RTCG (providing federated scheduling service integrated

with a centralized greedy scheduler in GNU OpenMP). In these experiments,

RTWS and RTCG use the same core assignment. 176

7.4 Average relative response time of different task sets (Cholesky, Heat, LU and

Mixed task sets) with increasing total utilization under RTWS and RTCG. In

these experiments, RTWS and RTCG use the same core assignment. 177

7.5 Required number of cores of different task sets (Cholesky, Heat, LU and Mixed

task sets) with increasing total utilization under RTWS and RTCG. In these

experiments, we increase the number of cores for each task under RTCG until

it misses no more than 60% of deadlines. ... 178

8.1 Work distribution of two interactive services: Bing search server [97] and

an option pricing finance server [135]. Note that in Bing search server the

probabilities of requests with work between 55ms to 200ms are small but

larger than zero and total probability of these requests is around 3.5%. 188

8.2 Neither steal-first nor admit-first always performs best. Each bar plots a

target latency and the ratio (on a log scale) of requests that miss the target

latency under admit-first over those that miss the target latency under steal-

first. When the bar is above 1, steal-first is better. Below 1, admit-first is

better. .. 191

8.3 Algorithm for calculating large request threshold table 194

8.4 Example large request threshold tables output by threshold-calculation with

input of the same work distribution and rps, but three different target laten-

cies. The x-axis is the number of active requests, and the y-axis is the large

request threshold. Each curve plots the output threshold table for a given

latency. .. 201

xi

8.5 The pseudo code for the main loop of tail-control in a work-stealing runtime

system. Tail-control adds only the bold lines and the function check pileup phase

to steal-first. ... 202

8.6 The pseudo code for the helper routines of tail-control in a work-stealing run-

time system. Tail-control adds only the bold lines and the function check pileup phase

to steal-first. ... 203

8.7 Results for the Bing workload with three different load settings and Poisson

arrival. The x-axis shows different target latencies from shorter to longer

from left to right. The y-axis shows the target latency miss ratio. The table

below each figure shows tail-control’s relative improvement over steal-first and

admit-first for a given latency.. 209

8.8 The finance workload results with the same figure and table configuration as

in Figure 8.7.. 209

8.9 The log-normal workload results with the same figure and table configuration

as in Figure 8.7. ... 210

8.10 Results for the log-normal workload and a log-normal arrival distribution with

1200 rps; Figure and table configurations are similar as in Figure 8.9. 212

8.11 Results for the Bing workload and a Poisson arrival distribution with 1200

rps for requests with sub-linear speedup; Figure and table configurations are

similar as in Figure 8.7. .. 213

8.12 Results for the log-normal workload a and Poisson arrival distribution with

1200 rps and a target latency of 28ms. We compare tail-control when using

inaccurate input distributions with smaller to larger standard deviation from

left to right. .. 214

8.13 The Bing workload results. Tail-control increases system capacity for different

target latencies compared to steal-first and admit-first. 215

8.14 The Bing workload results. The figure is the same as Figure 8.7(c), except it

adds default-TBB and TC-Clairvoyant.. 217

xii

8.15 The log-normal workload results. The figure is the same as Figure 8.9(c),

except it adds default-TBB and TC-Clairvoyant. 217

8.16 Number of active requests (lower part) and request latency (upper part) traces

of the same workload under steal-first and tail-control in a 0.8 second window

(Bing workload). .. 219

10.1 An example execution trace of work-stealing identifying jobs’ release and com-

pletion times. .. 261

10.2 Experimental results comparing the maximum flow time running on three

work distributions with three different load settings and scheduled using sim-

ulated OPT, steal-k-first, and admit-first (from left to right). Note that the

scale of the y-axis for the figures differ. From all different settings, OPT has

the smallest max flow time, while admit-first has the largest max flow time. ... 269

11.1 An example schedule of slow and fast SJF on 6 processors 296

11.2 An example schedule of slow and fast SJF for m processors. 298

xiii

Acknowledgments

During my graduate study, I have received enormous help and support from many people,

and this thesis would not have been possible without all of them.

First and foremost, I would like to thank my advisors, Dr. Chenyang Lu and Dr. Kunal

Agrawal, who are my dearest academic father and mother. They taught me every aspect of

research, from technical knowledge, basic research skills, to big picture and research taste.

They always believe in me, help me to get through difficulties and encourage me to reach

for the stars. I have learned from them more than just research. All of these would benefit

me for my academic career and the rest of life.

I was fortunate to have worked closely with many brilliant collaborators. I would like

to express my thanks and appreciation to Dr. Christopher Gill, Dr. Benjamin Moseley,

Dr. I-Ting Angelina Lee and Dr. Jian-Jia Chen for always sparking inspiring ideas about

research and providing generous help to my work. The collaborative work with all of them

has become important parts of my dissertation. I am also grateful to Dr. Sameh Elnikety,

Dr. Yuxiong He and Dr. Kathryn S. McKinley for supervising my internship at Microsoft

Research in 2014, stimulating interesting research directions and giving valuable comments

on my work. I especially want to thank Sameh for his support during my job search.

I am thankful for my fellow collaborators who made this thesis possible: Abusayeed

Saifullah, David Ferry, Kefu Lu, Son Dinh, Shaurya Ahuja, Kevin Kieselbach and Zheng

Luo, with whom I have enjoyed debugging codes, solving math and writing papers together.

I extend my thanks to the students in the Parallel Computing Technology Group that I

sadly did not have the chance to write papers with: Robert Utterback, Jordyn Maglalang,

James Orr, and Ramsay Shuck. Many thanks also to the great collaborators from Purdue

University: Dr. Shirley Dyke and Dr. Arun Prakash, Gregory Bunting and Amin Maghareh.

My heartiest gratitude also goes to all the past and current members of the Cyber-

Physical Systems Laboratory (CPSL): Sisu Xi, Mo Sha, Chengjie Wu, Bo Li, Lanshun Nie,

xiv

Rahav Dor, Chong Li, Dolvara Gunatilaka, Chao Wang, Yao Yuan, Yehan Ma, Haoran Li

and Xin Hu. I have spent countless joyful hours with them, discussing research and enjoying

wonderful times together. Special thanks to Bo Li, who helps me restore confidence and

gives me critical suggestions whenever I struggle in life. Also thanks to my friends in WashU

and many other friends outside school, including Ming Yin, Hao Yan, Xin Chen, Meng Xu,

Hongxing Liu, Han Lu, Shenmeng Xu, Hanyang Chen and Zihang Xiao.

I would like to take this opportunity to express my gratitude to the Department of Com-

puter Science and Engineering at Washington University in St. Louis. I have greatly enjoyed

my graduate study here and received all kinds of help from the friendly department staff

and faculty members. I especially want to thank our Department Chair and my committee

member, Dr. Roch Guérin, for passionately making our department a wonderful place for

study and research, and for being extremely supportive to my graduate study over the years.

Last but not the least, I am grateful to my parents for giving me endless love and

for always being there whenever I need them. Special thank to my husband Mo Yu, for

accompanying me across the continent during my entire graduate study and for making my

life full of pleasure. I could not have become who I am now without all of you.

Jing Li

Washington University in St. Louis

August 2017

xv

Dedicated to my family.

xvi

ABSTRACT OF THE DISSERTATION

Parallel Real-Time Scheduling for Latency-Critical Applications

by

Jing Li

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2017

Professor Chenyang Lu, Chair

Professor Kunal Agrawal, Co-Chair

In order to provide safety guarantees or quality of service guarantees, many of today’s sys-

tems consist of latency-critical applications, e.g. applications with timing constraints. The

problem of scheduling multiple latency-critical jobs on a multiprocessor or multicore machine

has been extensively studied for sequential (non-parallizable) jobs and different system mod-

els and different objectives have been considered. However, the computational requirement

of a single job is still limited by the capacity of a single core. To provide increasingly complex

functionalities of applications and to complete their higher computational demands within

the same or even more stringent timing constraints, we must exploit the internal parallelism

of jobs, where individual jobs are parallel programs and can potentially utilize more than

one core in parallel. However, there is little work considering scheduling multiple parallel

jobs that are latency-critical.

This dissertation focuses on developing new scheduling strategies, analysis tools, and

practical platform design techniques to enable efficient and scalable parallel real-time schedul-

ing for latency-critical applications on multicore systems. In particular, the research is fo-

cused on two types of systems: (1) static real-time systems for tasks with deadlines where

the temporal properties of the tasks that need to execute is known a priori and the goal is

to guarantee the temporal correctness of the tasks prior to their executions; and (2) online

systems for latency-critical jobs where multiple jobs arrive over time and the goal to optimize

for a performance objective of jobs during the execution.

xvii

For static real-time systems for parallel tasks, several scheduling strategies, including

global earliest deadline first, global rate monotonic and a novel federated scheduling, are

proposed, analyzed and implemented. These scheduling strategies have the best known the-

oretical performance for parallel real-time tasks under any global strategy, any fixed priority

scheduling and any scheduling strategy, respectively. In addition, federated scheduling is

generalized to systems with multiple criticality levels and systems with stochastic tasks.

Both numerical and empirical experiments show that federated scheduling and its variations

have good schedulability performance and are efficient in practice.

For online systems with multiple latency-critical jobs, different online scheduling strate-

gies are proposed and analyzed for different objectives, including maximizing the number

of jobs meeting a target latency, maximizing the profit of jobs, minimizing the maximum

latency and minimizing the average latency. For example, a simple First-In-First-Out sched-

uler is proven to be scalable for minimizing the maximum latency. Based on this theoretical

intuition, a more practical work-stealing scheduler is developed, analyzed and implemented.

Empirical evaluations indicate that, on both real world and synthetic workloads, this work-

stealing implementation performs almost as well as an optimal scheduler.

xviii

Chapter 1

Introduction

In order to provide safety guarantees or quality of service guarantees, many of today’s systems

consist of latency-critical applications. For example, in cyber-physical systems, such as

autonomous vehicles [96], avionic systems [127] and hybrid structural testing [120], computers

interact with humans or the physical environment. To guarantee safety and stability of

such systems, the computation of an application must complete by a specific deadline. In

interactive cloud services, such as web search, stock trading, ads, and online gaming, the

services with the most fluid and seamless responsiveness incur a substantial competitive

advantage in attracting and captivating users over less responsive systems [56, 57, 83, 155].

Therefore, these systems strive to minimize latency. With the growing number of application

domains where these kinds of guarantees are needed, there is an increasing need for systems

that can run complex applications with timing constraints.

In addition, today all computing platforms, from cellphones to desktops to clouds, are

parallel machines. The imperatives to reduce power consumptions as well as assembly and

production costs are pushing system deployment toward combining multiple applications

onto a common platform. Examples span from clouds where multiple clients submit their

applications to consolidated Electronic Control Units on modern cars that host multiple

applications with diverse functionalities from brake control to infotainment. As this inte-

gration continues, we face challenges in designing platforms which can provide appropriate

timing guarantees to each application while preserving scalability.

The problem of scheduling multiple latency-critical applications (jobs) on a multiproces-

sor or multicore machine has been extensively studied for sequential (non-parallizable) jobs

and different system models and different objectives have been considered [3, 5, 7, 10, 14, 17,

1

19, 27–30, 40, 49, 50, 54, 74, 76, 105, 109, 117, 144, 149]. In this case, since jobs can only be

executed sequentially and use one core at a time, the system can only exploit parallelism

by running multiple jobs simultaneously on a multicore system. Therefore, increasing the

number of cores allows us to increase the number of jobs the system can schedule, but the

computational requirement of a single job is still limited by the capacity of a single core.

Since the processor speed in today’s hardware platforms has stagnated and systems are

only becoming more parallel, there has been a continually increasing interest in how to har-

ness multicore more effectively. Moreover, to provide increasingly complex functionalities

of applications, the computational demand of each individual job increases significantly. To

complete higher computational demands within the same or even more stringent timing con-

straints, we must exploit the internal parallelism of jobs, where individual jobs are parallel

programs and can potentially utilize more than one core in parallel. Many languages and

libraries, such as such as Cilk [32], Intel Cilk Plus [89], Threading Building Blocks [134],

OpenMP [125], Microsoft’s Task Parallel Library [107], IBM X10 [147], have been designed

to allow programmers to write parallel programs. In these languages, the programmer ex-

presses algorithmic parallelism, through linguistic constructs such as “spawn” and “sync,”

or parallel-for loops.

While researchers have looked at how to schedule multiple sequential jobs with various

timing constraints and latency-related objectives, there is little work considering how to

schedule multiple parallel jobs. In order to exploit the untapped efficiencies in the multicore

platforms and improve the quality of service guarantees to applications, this thesis focuses on

developing theoretical foundations and practical implementations of parallel real-time systems

for latency-critical applications. For different types of real-time systems with different timing

requirements, this thesis develops new scheduling strategies, analysis tools, and practical

platform design techniques in particular to applications that are parallel programs.

In the remainder of this chapter, Section 1.1 first classifies real-time systems with latency-

critical applications into two types and discusses the challenges encountered when exploiting

2

internal parallelism of applications. Section 1.2 introduces how to model and schedule parallel

programs. The thesis statement is presented in Section 1.3, followed by the contribution and

organization of the thesis in Section 1.4.

1.1 Systems with Latency-Critical Applications

This thesis designs and implements provably good and practically efficient scheduling strate-

gies for executing multiple latency-critical applications. Latency-critical applications arise

in many real-world systems, where computation processes interact with humans and/or the

physical environment. In this thesis, based on the types of timing constraints and models of

the systems, we classify these systems into two types.

Static real-time systems for tasks with deadlines: These systems are time-critical

and have a high cost of failure. For instance, in earthquake engineering, a hybrid-testing

framework studies the dynamic response of the physical structure. This framework connects

the physical specimen within a closed loop through sensors and actuators to an intensive

numerical simulation of the large remaining structure. In order to guarantee system safety

and stability, the computation must be completed by a specific deadline. Therefore, the goal

of these systems is to guarantee the temporal correctness of the applications prior to their

executions, which is crucial for keeping the systems stable and safe.

To provide such timing guarantees, these systems are usually modeled statically, where

the temporal properties of the tasks that are known a priori. Specifically, the arrival pat-

terns and computational demands of jobs are known in advance and modeled as reoccurring

real-time tasks. In these systems, a real-time scheduler must determine the schedulability

(in terms of meeting deadlines) for a given task set at design time. While guaranteeing

schedulability, the scheduler can optimize for higher utilization of the system. The static

real-time system model characterizes many embedded systems and cyber-physical systems,

such as those in autonomous vehicles, avionics and robotic.

3

For static real-time systems, Part I in this thesis for the first time considers scheduling

general parallel tasks that are programs written in parallel languages. This creates new

challenges to the design, analysis and implementation of platforms. Techniques for designing

and analyzing schedulers for sequential jobs do not generalize to parallel tasks due to three

reasons. (1) Unlike a sequential job, a parallel job has internal structure that dictates when

its sub-computations can be executed. (2) The internal scheduling of each job interacts with

the scheduling between jobs. (3) This internal structure may be unknown beforehand.

Part I develops theoretical techniques for analyzing parallel tasks and proved bounds for

different real-time schedulers. To compare the performance between different schedulers for

parallel real-time tasks, this thesis proposes a capacity augmentation bound, which directly

tells us how many resources a scheduler needs. Roughly speaking, a scheduler with a capacity

bound of b can handle a load about 1/b of the capacity (with an additional constraint on

the parallel tasks critical-path lengths).

Online real-time systems for latency-critical jobs: In many application environ-

ments such as clouds, grids and shared servers, clients send jobs to be processed on a server

and the server scheduler decides when to process them. The goal of the scheduler is both to

use the resources efficiently and to provide a good quality of service to jobs. In these systems,

jobs arrive over time and the systems do not know the existence of jobs until they arrive.

Instead of guaranteeing schedulability prior to execution (which would be impossible), online

schedulers try to optimize some application-specific performance objectives.

In interactive services on cloud, the response time (latency, flow time) determines the

service experience of a single user. For example, in an online search service users send search

requests to servers in the cloud and the service needs to respond within 100ms for users

to find the service responsive. With multiple users to serve, system administers optimize

an objective of the accumulated performance over all users. The specific objective depends

on the scenario. For instance, to provide good average quality of service among all users,

4

the system can optimize over its average latency. In contrast, to make sure that even the

worst-case latency any user experienced is still acceptable, the scheduler can minimize the

maximum latency.

While online scheduling has been well-studied for sequential jobs, there is little work on

parallel jobs. Scheduling parallel jobs online presents unique challenges, because parallel

jobs can behave in counter-intuitive ways. For instance, intuitively, if we run the same

set of jobs using the same scheduler on a faster and a slower machine, the faster machine

should perform better. This intuition is correct for sequential jobs and standard techniques

for analyzing online algorithms rely on this fact. Surprisingly, this intuition does not hold

for parallel jobs. In particular, a greedy scheduler may actually fall behind in the aggregate

amount of work processed, when compared to the same scheduler with less speed. Therefore,

to analyze parallel jobs, we had to develop new techniques since standard techniques do not

directly apply.

Part II presents the first nontrivial results considering scheduling parallel jobs online

for different objectives. To compare the theoretical performance of different schedulers, we

define that a scheduler A is s-speed c-competitive, if A is c-competitive when executed on a

s-speed machine while the optimal offline algorithm is on a unit speed machine. We say that

a scheduler is scalable, if it only needs the minimum possible extra speed augmentation to

have constant competitiveness compared to the optimal scheduler.

1.2 Parallel Scheduling for Applications

During the last decade, the performance increase of processor chips has come primarily from

increasing numbers of cores. This has led to extensive work on developing parallel languages

and runtime systems for applications to utilize multiple cores at the same time. Examples

include Intel Cilk Plus [89], Threading Building Blocks [134] and OpenMP [125], etc. Using

these languages, the programmers only need to express algorithmic parallelism, but do not

5

need to provide any mapping from sub-computations to cores — it is the job of the parallel

runtime systems to execute the work of each job onto multiple cores efficiently. Parallel

programs under this approach are also known as dynamic multithreaded programs. A single

parallel job (an execution of a parallel program) can be represented as a directed acyclic

graph (DAG) where each node represents a sequence of instructions (thread) and each edge

represents a dependency between nodes.

Scheduling a single parallel job has been studied extensively in the parallel computing

literature. Parallel runtime systems generally use work-stealing as a scheduler since it is

known to be an efficient scheduler for such programs both theoretically and in practice [33,75].

A single parallel job having W work — the running time on 1 processor, and P critical-path

length — the length of the critical path (the longest path in the program), can be executed in

O(W/m+P) (expected) time on m processors (or workers) using a work-stealing scheduler.

This running time is asymptotically optimal and guarantees linear speedup for programs

with sufficient parallelism.

However, the problem of how to schedule these parallel programs in multiprogrammed

environments where a quality of service guarantee must be provided is not well studied. For

static real-time systems, there have been some prior work that are based on task decompo-

sition [103, 123, 137, 138], which first decomposes each parallel task into a set of sequential

subtasks with assigned intermediate release times and deadlines, and then schedules these

sequential subtasks using a known multiprocessor scheduling algorithm. Decomposition tech-

niques require a thorough knowledge of the structure of tasks as well as the individual worst

case execution time of each subtask prior to execution. Such knowledge is expensive to

acquire and may be inaccurate, pessimistic or even unavailable when tasks from different

vendors are integrated on a common computing platform. Moreover, decomposition intro-

duces implementation complexities in real systems.

For online systems with multiple parallel DAG jobs, there has been some prior work on

how to allocate processors to programs in a fair and efficient manner [2,84], but none of the

6

work considers how to optimize for latency-related objectives. For online system optimizing

for latency-related objectives, a parallelism model, called arbitrary speed-up curve model,

has been considered. In this model, each job i is associated with a sequence of phases, where

each phase is associated with a function that specifies the processing rate of the phase on a

given number of cores. The speed-up curve model was first introduced by [63] and used later

in [12,46–48,65,73,80,81]. While the speed-up curve model is a theoretically elegant model,

most languages and libraries generate parallel programs that are more accurately modeled

using DAGs. The speed-up curve model also cannot be simulated using the DAG model.

For example, in the speed-up curve model one could have a speed-up curve with a processing

rate of
√
m, when given m cores. In the DAG setting, a job’s parallelizability is linear up

to the number of nodes ready to be scheduled and thus it is unclear how to simulate this

speed-up curve.

1.3 Thesis Statement

This thesis designs and implements provably good and practically efficient scheduling strate-

gies for executing multiple parallel latency-critical applications. For both types of systems

described in Section 1.1, different scheduling strategies are designed and proved to have

the best known theoretical performance for the respective scheduling problems. Significant

attention is paid to both the theoretical performance and the practicality of the proposed

scheduling strategies. Therefore, many of the strategies are improved to be more efficient

and scalable, and are implemented in middleware platforms to provide scheduling service

to applications written in widely used parallel languages. The new scheduling strategies,

analysis tools, and practical platform design techniques presented in this thesis supports the

following statement.

7

Thesis Statement: By appropriately leveraging the internal parallelism of latency-critical

applications, static and online real-time systems are able to exploit the untapped efficien-

cies in the multicore platforms to drastically improve the quality of service guarantees of

applications with increasing computational demands.

1.4 Thesis Contributions

In this section, we briefly summarize the organization and contributions of this thesis. The

results of this thesis is from the collaboration with many co-authors: Kunal Agrawal, Shaurya

Ahuja, Jian-Jia Chen, Sameh Elnikety, David Ferry, Christopher Gill, Yuxiong He, Kevin

Kieselbach, I-Ting Angelina Lee, Chenyang Lu, Kefu Lu, Mahesh Mahadevan, Benjamin

Moseley, Kathryn S. McKinley.

Part I of the thesis focuses on the real-time scheduling problems for tasks in static real-

time systems requiring different guarantees. The contributions of this part include:

Scheduling parallel tasks with hard real-time constraints:

• The well known global earliest-deadline-first scheduling (GEDF) is applied to schedule

parallel tasks with hard real-time constraints and is proved to have a capacity augmen-

tation bound of 2.618, which is the best known bound for parallel DAG tasks under

any global strategy (Chapter 3).

•• The widely used global rate-monotonic scheduling is applied to parallel real-time tasks

and is proved to have a capacity augmentation bound of 3.732, which is the best known

bound for parallel DAG tasks under any fixed priority scheduling (Chapter 3).

• A lower bound on the capacity augmentation of GEDF is presented showing that the

bound of 2.618 is tight when the number of cores is sufficiently large (Chapter 3).

8

• A novel scheduling strategy, namely federated scheduling, is proposed for parallel real-

time tasks and is proved to have the best capacity augmentation bound of 2 under any

strategy, which is shown via a lower bound example (Chapter 4).

• A PGEDF platform is developed, which provide GEDF scheduling service to parallel

programs written in the widely used OpenMP language (Chapter 3).

• A RTCG platform is developed, which provide federated scheduling service to parallel

programs written in OpenMP (Chapter 3).

• Empirical experiments on randomly generated task sets show that RTCG generally has

better schedulability in practice (Chapter 3).

Scheduling parallel tasks in mixed-criticality real-time systems:

• Federated scheduling strategy is generalized to real-time systems with two criticality

levels, named MCFS, and is proved to have a capacity augmentation bound of 3.67 for

large number of cores, which to our knowledge is the first such performance bound for

parallel mixed-criticality tasks (Chapter 5).

•• For tasks with utilization at least one, MCFS is applied to both dual-criticality and

multi-criticality systems and is proved to have capacity augmentation bounds of 3.41

and 3.62 , respectively (Chapter 5).

• An implementation of an MCFS runtime system in Linux is presented, which supports

parallel programs written in OpenMP, and is evaluated through empirical experiments

to demonstrate the practicality of MCFS (Chapter 5).

Scheduling parallel tasks with soft real-time constraints:

• A federated scheduling strategy that addresses average-case workloads is proposed and

is proved to have a stochastic capacity augmentation bound of 2, which is the first

known result for stochastic parallel tasks with soft real-time constraints (Chapter 6).

9

•• To support scalable soft real-time computing, a Real-Time Work-Stealing platform

(RTWS) is developed, which is a real-time extension to the widely used Cilk Plus

concurrency platform (Chapter 7).

• For large scale soft real-time systems, experimental evaluations show that RTWS out-

performs RTCG in term of deadline miss ratio, relative response time and resource

efficiency (Chapter 7).

Part II of the thesis focuses on the online scheduling problems for parallel latency-critical

jobs that optimize different latency-related objectives. The contributions of this part include:

Online Scheduling of parallel jobs to maximize profit:

• For maximizing the number of jobs that meet a single target latency during an execu-

tion, a new adaptive work stealing policy, called tail-control, is designed, which utilizes

instantaneous job progress and system load to choose when to parallelize job by steal-

ing, when to admit new jobs, and when to limit parallelism of large jobs (Chapter 8).

•• Tail-control is implemented in the Intel Threading Building Blocks (TBB) library and

is shown to significantly outperforms three baseline work-stealing schedulers (steal-

first, admit-first, and default TBB) on real-world workloads, achieving up to a 58%

reduction in the number of jobs that exceed the target latency (Chapter 8).

• For maximizing the profit of finishing jobs by their individual deadlines during an exe-

cution, the first non-trivial results is presented, showing an O(1)-competitive algorithm

using resource augmentation (Chapter 9).

• For maximizing the profit of jobs with general profit functions, an algorithm that is

O(1)-competitive using resource augmentation is presented (Chapter 9).

Online Scheduling of parallel tasks to minimize the maximum flow time:

10

• The simple First-In-First-Out scheduler is analyzed and proved to be (1 + ε)-speed

O(1
ε
)-competitive for any ε > 0, which the first known non-trivial results for maximum

flow time in the DAG model (Chapter 10).

•• A more practical work-stealing scheduler is proposed and shown to have a maximum

flow time of O(1
ε2

max{OPT, ln(n)}) for n jobs, with (1 + ε)-speed, which is essentially

tight as a lower bound of Ω(log(n)) for work-stealing is presented (Chapter 10).

• The proposed work-stealing scheduler for minimizing maximum flow time is imple-

mented in Thread Building Block and is shown to have comparable performance com-

pared to a simulated optimal scheduler on realistic and synthetic workloads (Chap-

ter 10).

• For the case where jobs have weights (typically representing priorities) and the objective

is minimizing the maximum weighted flow time, a non-clairvoyant algorithm Biggest-

Weight-First (BWF) is proposed and shown to be (1 + ε)-speed O(1
ε2

)-competitive for

any ε > 0, which is essentially the best positive result that can be shown in the online

setting for the weighted case due to strong lower bounds without resource augmentation

(Chapter 10).

Online Scheduling of parallel tasks to minimize average flow time:

• The Latest-Arrival-Processor-Sharing (LAPS) algorithm is proved to be scalable which

is (1 + ε)-speed O(1
ε3

)-competitive for any ε > 0 (Chapter 11).

•• The first greedy algorithm is presented, which is a generalization of the shortest jobs

first algorithm, and is proved to be (2 + ε)-speed O(1
ε4

)-competitive for any ε > 0

(Chapter 11).

11

• A non-clairvoyant distributed scheduling algorithm Distributed Random Equi-Partition

(DREP), which requires minimal synchronization and a small bounded number of pre-

emptions, is proposed and proved to be (2 + ε)-speed O(1
ε3

)-competitive (Chapter 12).

12

Chapter 2

Preliminaries and Notation

This chapter provides an introduction to parallel job model, static real-time system model

and online real-time system model that are used throughout this thesis.

2.1 Parallel Job Model

We first describe the types of parallel jobs considered in this thesis. Specifically, we are

interested in parallel programs that can be generated using parallel languages and libraries,

such as Cilk [32], Intel Cilk Plus [89], Threading Building Blocks [134], OpenMP [125], Mi-

crosoft’s Task Parallel Library [107], IBM X10 [147], etc. In these languages, the programmer

expresses algorithmic parallelism, through linguistic constructs such as “spawn” and “sync,”

“fork” and “join,” or parallel-for loops.

These programs can be modeled using directed acyclic graphs (DAGs). Each node

(subtask) in the DAG represents a sequence of instructions (a strand) and each edge repre-

sents a dependency between nodes. A node (subtask) is ready to be executed when all its

predecessors have been executed. Multiple ready nodes for the same job can be scheduled

simultaneously, but each core can only execute one node at a time. A job is completed only

once all of the nodes in its DAG have been completely processed. We assume the scheduler

knows the ready nodes for a job at a point in time, but does not know the DAG structure

a priori; the DAG unfolds dynamically as the job executes. Figure 2.1 shows an example of

DAG job with 6 nodes.

13

2

1

4

3

1

1
𝑪𝟏 = 12

𝑳𝟏 = 10

Figure 2.1: A directed acyclic graph (DAG) job J1 with six nodes. The execution time
of each node is annotated in the center of the node. The total work C1 is the sum of
the execution times of all nodes, which is 12. The critical-path, i.e., the longest path
in the DAG, is annotated using the dashed line. The critical-path length L1 is 10.

Throughout this thesis, it is not necessary to build the analysis based on specific structure

of the DAG. Instead, only two parameters related to the execution pattern of job Ji are

defined:

• total execution time (or work) Ci of job Ji: This is the summation of the execution

times of all the subtasks of task τi.

• critical-path length (or span) Li of job Ji: This is the length of the critical-path in

the given DAG. Critical-path length is the execution time of the job on an infinite number

of cores.

Note that by this definition, critical-path length of a sequential job is equal to its work.

Figure 2.1 shows an example of DAG task with the critical-path annotated following the

dashed line.

Both the work and critical-path length of a task can be measured by profiling tools. For

example, both parameters of a Cilk Plus program can be measured using Cilkview [85] or

Cilkprof [139].

In general, parallel programs can have arbitrary DAG structures. In real-time scheduling,

researchers have given special consideration to a subset of DAG tasks, where the programs

only use the parallel-for construct and do not nest these parallel-for loops. This restriction

generates a special type of DAG, which we call synchronous DAG. Each parallel for-loop

is represented by a segment — a segment contains a set of nodes (iterations) that can be

14

executed in parallel with each other. The end of each segment is a synchronization point

and the next segment can begin only after all iterations of the current segment complete.

A sequential region of code is simply a segment with 1 iteration. Each synchronous task

is a sequence of such segments. Synchronous tasks are also called as Fork/Join tasks in

some publications. Figure 2.2 shows an example of a synchronous task with five segments;

two of them are parallel segments, and the remaining three are sequential segments. This

synchronous structure can be generated from a simple program shown in Figure 2.3, where

parallel for constructs can be Cilk Plus’ cilk for constructs or OpenMP’s omp for directives.

Theoretically, there is no difference between scheduling the general DAG and synchronous

task. However, in practice, they are usually implemented using different parallel program-

ming constructs. For example, in Cilk Plus a node in a DAG is generated by cilk spawn and

the synchronization point is realized by cilk sync. Similarly, in OpenMP they are generated

by omp task and omp taskwait. As comparison, segments of synchronous tasks are supported

by many different parallel languages like OpenMP and Cilk Plus in the form of the high-level

parallel for programming construct.

1

41

2

3

3

3

5 5

Figure 2.2: A synchronous task with two parallel-for loops. The execution time of
each node is annotated in the center of the node. The second segment contains 20
nodes.

2.2 Scheduling Parallel Jobs

Most parallel languages and libraries, including those mentioned above, provide a runtime

system that is responsible for scheduling the DAG on the available cores, i.e., dynamically

15

main ()
{

// Do some s e q u e n t i a l work
f oo () ;
// Do the f i r s t p a r a l l e l segment
p a r a l l e l f o r (i = 1 ; i <= 20 ; i++) {

f i r s t f u n c () ;
}
// Other s e q u e n t i a l work
bar () ;
// Do the second p a r a l l e l segment
p a r a l l e l f o r (i = 1 ; i <= 3 ; i++) {

second func () ;
}
// The l a s t s e q u e n t i a l work
baz () ;

}

Figure 2.3: Example of a synchronous program.

dispatch the nodes of the DAG to these cores as the nodes become ready to execute. At

a high-level, two types of scheduling strategies are often used: centralized scheduling and

randomized work-stealing.

2.2.1 Centralized Greedy Schedulers

The system maintains a centralized data structure (such as a queue) of ready nodes that is

shared by all the cores in a work sharing manner. There are a couple of possible instantiations

of this strategy. In push schedulers, there is a master thread that dispatches work to other

threads as they need this work. In pull schedulers, worker threads access this data structure

themselves to grab work (ready nodes) as they need them. For example, the scheduler in

the runtime system of GNU OpenMP is a pull scheduler, as in Figure 2.4(a).

Work-sharing schedulers have the nice property that they are greedy or work-conserving

— as long as there are available ready nodes, no worker idles. However, these schedulers

16

often have high overheads due to constant synchronizations. In particular, in a push sched-

uler, the master thread can only send work to cores one at a time. In a pull scheduler, the

centralized queue must be protected by a lock and often incurs high overheads due to this.

worker
threads centralized

queue
(protected
by a lock)

(a) A pull scheduler

worker
threads

local
deques

steal

push
pop

(b) A work-stealing scheduler

Figure 2.4: Examples of centralized scheduling and work stealing

2.2.2 Randomized Work-Stealing Schedulers

In a randomized work-stealing scheduler, there is no centralized queue and the work dis-

patching is done in a distributed manner [32]. If a job is assigned ni cores, the runtime

system creates ni worker threads for it. Each worker thread maintains a local double-ended

queue (a deque), as shown in Figure 2.4(b). When a worker generates new work (enables a

ready node from the job’s DAG), it pushes the node onto the bottom of its deque. When a

worker finishes its current node, it pops a ready node from the bottom of its deque. If the

local deque is empty, the worker thread becomes a thief and randomly picks a victim thread

among the other workers working on the same task and tries to steal work from the top of

the victim’s deque. For example, the third worker thread’s deque is empty in Figure 2.4(b),

so it randomly picks the second worker thread and steals work.

Given a single job, randomized work-stealing attains asymptotically optimal and scalable

performance with high probability [8,33]. It is also very efficient in practice and the amount

of scheduling and synchronization overhead is small. In contrast to centralized schedulers

17

where the threads synchronize frequently, very little synchronization is needed in work-

stealing schedulers since (1) workers work off their own deques most of the time and don’t

need to communicate with each other at all and (2) even when a worker runs out of work

and steals occur, the thief and the victim generally look at the opposite ends of the deque

and don’t conflict unless the deque has only 1 node on it. In addition, work-stealing often

has good cache performance, again since workers work on their own deques.

However, because of this randomized and distributed characteristic, work-stealing is not

strictly greedy (work conserving). In principle, workers can spend a large amount of time

stealing, even if some other worker has a lot of ready nodes available on its deque. On the

other hand, work-stealing provides strong probabilistic guarantee of linear speedup (“near-

greediness”) [148]. Moreover, it is much more efficient than centralized schedulers in practice.

Therefore, variants of work stealing are the default strategies in many parallel runtime sys-

tems such as Cilk, Cilk Plus, TBB, X10, and TPL [32, 89, 107, 134, 147]. Thus, for soft

real-time systems where occasional deadline misses are allowed, work stealing can be more

resource efficient than a strictly greedy scheduler.

2.3 Parallel Languages and Runtime Systems

OpenMP is a programming interface standard [125] for C, C++, and FORTRAN that al-

lows a programmer to specify where parallelism can be exploited, and the GNU OpenMP

runtime library in GCC is one of implementations of the OpenMP standard. OpenMP al-

lows programmers to express parallelism using compiler directives. In particular, parallel for

loops are expressed by #pragma omp parallel for, a parallel node in a DAG is expressed by

#pragma omp task and synchronization between omp tasks is expressed by #pragma omp

taskwait. While the details of scheduling are somewhat complex, and vary between omp

parallel for loops and omp tasks, at a high level, GNU OpenMP provides an instantiation

of a centralized pull scheduler. Available parallel work of a program is kept in a centralized

18

queue protected by a global lock. Whenever a worker thread generates nodes of omp tasks

or iterations in a parallel for loop, it has to get the global lock and places these nodes in

the queue. When it finishes its current work, it again has to grab the lock to get more work

from the queue.

Cilk Plus is a language extension to C++ for parallel programs and its runtime system

schedules parallel programs using randomized work stealing. All Cilk Plus features are

supported by GCC. Potential parallelism can be expressed using three keywords in the Cilk

Plus language: a parallel node in a DAG is generated by cilk spawn and the synchronization

point is realized by cilk sync; additionally, parallel for-loops are supported using a cilk for

programming construct. Note that in the underlying Cilk Plus runtime system, cilk for is

expanded into cilk spawn and cilk sync in a divide and conquer manner. Therefore, there is no

fundamental difference between executing parallel DAGs or synchronous tasks in Cilk Plus.

The Cilk Plus runtime system implements a version of randomized work stealing. When a

function spawns another function, the child function is executed and the parent is placed on

the bottom of the worker’s deque. A worker always works off the bottom of its own deque.

When its deque becomes empty, it picks a random victim and steals from the top of that

victim’s deque.

2.4 Classic Static Real-Time System Model

In a classic static real-time system, the temporal correctness (i.e. schedulability) of applica-

tions must be guaranteed prior to their executions. Therefore, a priori (static) knowledge of

jobs in the system described using a real-time task model is necessary. In this section, we

describe the classic real-time task model and the theoretical performance bounds considered

in this thesis.

Real-time task model: We consider a set τ of n independent sporadic real-time tasks

{τ1, τ2, . . . , τn}. A task τi represents an infinite sequence of arrivals and executions of task

19

instances (also called jobs). We consider the sporadic task model [26] where, for a task

τi, the minimum inter-arrival time (or period) Ti represents the time between consecutive

arrivals of task instances, and the relative deadline Di represents the temporal constraint

for executing the job. If a task instance of τi arrives at time t, the execution of this instance

must be finished no later than the absolute deadline t+Di and the release of the next instance

of task τi must be no earlier than t plus the minimum inter-arrival time, i.e. t + Ti. We

consider implicit deadline tasks where each task τi’s relative deadline Di is equal to its

minimum inter-arrival time Ti; that is, Ti = Di. We consider the schedulability of this task

set on a uniform multicore system consisting of m identical cores.

Each task τi ∈ τ is a DAG program or a synchronous program — in principle, each job

may have different internal structure. A task τi is characterised by its work Ci and Li critical-

path length. For systems with different temporal constraints, the specific definition for work

and critical-path length varies. In particular, for systems with hard real-time constraints,

i.e., all deadlines of all tasks must be met throughout the system execution, both parameters

are the worst-case values. In other words, the work (critical-path length) of a task τi is

the maximum work (critical-path length) of all its job instances. In contrast, for systems

with soft real-time constraints, we can model the work (critical-path length) as a random

variable. For systems with multiple criticality levels, we use two estimates of work (critical-

path length): nominal work (critical-path length) representing the average computation of

the task and the overload work (critical-path length) bounding the worst-case computation

of the task.

Using the work and period of a task τi, we can calculate its utilization ui = Ci
Ti

= Ci
Di

for

implicit deadlines. The total utilization of the task set is U∑ =
∑

τi∈τ ui, which indicates

the load of the task set. According to whether a task must run in parallel to meet its

deadline, we classify tasks using their utilizations: task τi is a low-utilization task if ui =

Ci/Di ≤ 1 (and hence Ci ≤ Di); or it is a high-utilization task, if τi’s utilization ui > 1.

By this classification, a low-utilization task can meet its deadline even if it is forced to run

20

sequentially, while a high-utilization task needs at least two cores in order to complete its

computation by this deadline.

Theoretical bounds for real-time schedulers: One can generally derive two types of

performance bounds for real-time schedulers. The traditional bound is called a resource

augmentation bound (also called a processor speed-up factor). A scheduler S provides

a resource augmentation bound of b ≥ 1 if it can successfully schedule any task set τ on

m cores of speed b as long as the ideal scheduler can schedule τ on m cores of speed 1.

A resource augmentation bound provides a good notion of how close a scheduler is to the

optimal schedule, but it has a drawback. Note that the ideal scheduler is only a hypothetical

scheduler, meaning that it always finds a feasible schedule if one exists. Unfortunately, since

we often cannot tell whether the ideal scheduler can schedule a given task set on unit-speed

cores, a resource augmentation bound may not provide a schedulability test.

Another bound that is commonly used for sequential tasks is a utilization bound. A

scheduler S provides a utilization bound of b if it can successfully schedule any task set which

has total utilization at most m/b on m cores.1 A utilization bound provides more information

than a resource augmentation bound; any scheduler that guarantees a utilization bound of

b automatically guarantees a resource augmentation bound of b as well. In addition, it

acts as a very simple schedulability test in itself, since the total utilization of the task set

can be calculated in linear time and compared to m/b. Finally, a utilization bound gives

an indication of how much load a system can handle; allowing us to estimate how much

over-provisioning may be necessary when designing a platform. Unfortunately, it is often

impossible to prove a utilization bound for parallel systems due to Dhall’s effect; often, we

can construct pathological task sets with utilization arbitrarily close to 1, but which cannot

be scheduled on m cores.

1A utilization bound is often stated in terms of 1/b; we adopt this notation in order to be consistent with
the other bounds stated here.

21

Therefore, for parallel systems this thesis defined a concept of capacity augmentation

bound which is similar to the utilization bound, but adds a new condition.

Definition 1 Given a task set τ with total utilization of U∑, a scheduling algorithm S with

capacity augmentation bound b can always schedule this task set on m cores of speed b

as long as τ satisfies the following conditions on unit speed cores.

Utilization does not exceed total cores,
∑
τi∈τ

ui ≤ m (2.1)

For each task τi ∈ τ, the critical path Li ≤ Di (2.2)

Note that no scheduler can schedule a task set τ on m unit speed cores unless Conditions (2.1)

and (2.2) are met. This definition can be equivalently stated (without reference to the

speedup factor) as follows: Condition (2.1) says that the total utilization U∑ is at most

m/b and Condition (2.2) says that the critical-path length of each task is at most 1/b of its

relative deadline, that is, Li ≤ Di/b. Note that a scheduler with a smaller b is better than

another with a larger b.

A capacity augmentation bound is quite similar to a utilization bound: it also provides

more information than a resource augmentation bound does; any scheduler that guarantees a

capacity augmentation bound of b automatically guarantees a resource augmentation bound

of b as well. It also acts as a very simple schedulability test. Finally, it can also provide an

estimation of the load a system is expected to handle.

2.5 Classic Online Scheduling Model

In the online scheduling problem of multiple jobs, n jobs arrive over time and are scheduled

on m identical processors (cores). In the online setting, the scheduler is only aware of the

job at the time it arrives in the system. Hence, each job Ji has an arrival time (release

time) ri, which is the first time an online scheduler is aware of the job. Once a request

22

arrives, it is active until its completion. A request is admitted once the system starts

working on it. An active request is thus either executing or waiting. The time when job Ji

completes under an online scheduler A is denoted as completion time ci. Throughout this

thesis, we consider the setting where each individual job is a parallel job represented by a

Directed-Acyclic-Graph (DAG).

In today’s systems, latency (response time) is often a very important measure of per-

formance. The latency (response time or flow time) Fi of an job is the time elapsed

between the time when the job arrives in the system and the time when the request com-

pletes, i.e., Fi = ci− ri. In an online scheduling problem, there are many different optimiza-

tion objectives, most of which relate to the latency of jobs. For instance, to optimize for

the responsiveness of an interactive service, the scheduler can be designed to minimize the

maximum latency experienced by a job. If the completion of a job is only useful when its

flow time is below a (single) target latency, then the scheduler must optimize the number of

jobs that can meet the target latency. The target latency can be generalized to jobs with

different deadlines and the scheduler tries to maximize the number of jobs that can meet

their individual deadlines. This can be further generalized to system where jobs have differ-

ent importances characterized as weight wi — the weight is usually known to the scheduler

when the job arrives and may not be correlated to the work of the job. For the unweighted

setting, wi = 1 for all jobs.

The online scheduling problem is well-studied theoretically for the case where each job

is sequential, i.e. can only use one processor (core) at a time. For most online scheduling

problems where the scheduler is only given partial knowledge of the arriving jobs during an

execution, no online algorithm can be optimal for all the execution instances. Therefore, to

evaluate the theoretical performance of an online scheduler, we compare the performance of

the scheduler A with the performance f(O, I) of an optimal offline algorithm O that knows

the entire knowledge of the jobs in an execution instance I in advance. We say that an online

scheduler A is c-competitive, if f(A, I) ≤ cf(O, I) + b, where b is a fixed constant.

23

For different objectives, such as maximum weighted flow time and average flow time, there

exist strong lower bounds showing that no schedule can achieve constant competitiveness on

multiprocessor systems. Therefore, previous work has considered a resource augmenta-

tion analysis where the algorithm is given extra speed over the optimal scheduler [93]. We

say that a scheduler A is s-speed c-competitive, if A is c-competitive when executed on

a s-speed machine while the optimal schedule is on a unit speed machine. In particular, if

a scheduler is (1 + ε)-speed O(f(ε))-competitive for any ε > 0 where f(ε) is some function

that only depends on ε, we say that it is scalable and this is the best positive result one

can show for problems that have strong lower bounds on the competitive ratio.

24

Part I

Static Real-Time Systems for
Parallel Tasks with Deadlines

25

Introduction

This part of the thesis focuses on the parallel real-time scheduling problems for tasks in

static real-time systems. In these systems, the arrival patterns and computational demands

of jobs are known in advance and modeled as reoccurring real-time tasks; and the temporal

correctness (i.e., schedulability) of tasks must be guaranteed prior to the execution.

Chapter 3 and Chapter 4 consider the problem of scheduling parallel real-time tasks with

implicit deadlines on a uniform multicore machine. Tasks have hard real-time constraints and

are characterized using their worst-case work and critical-path length parameters. Chapter 3

analyzes two well known algorithms, namely global earliest-deadline-first and global rate-

monotonic. A PGEDF platform is implemented for supporting global earliest-deadline-

first scheduling service for parallel programs written in the widely used OpenMP language.

Chapter 4 proposes a new algorithm, namely federated scheduling, which is a generalization

of partitioned scheduling to parallel tasks. Federated scheduling is proven to have the best

theoretical bounds and is implemented in RTCG platform. Empirical results also show that

federated scheduling generally has better schedulability in practice.

Chapter 5 focuses mixed-criticality system that comprises safety-critical and non-safety-

critical tasks sharing a computational platform. Thus, different levels of assurance are re-

quired by different tasks in terms of real-time performance. In addition, as the computational

demands of real-time tasks increases, tasks may require internal parallelism in order to com-

plete within stringent deadlines. In this chapter, we consider the problem of mixed-criticality

scheduling of parallel real-time tasks and propose a novel mixed-criticality federated schedul-

ing (MCFS) algorithm, which is based on federated intuition for scheduling parallel real-time

tasks. It strategically assigns cores and virtual deadlines to tasks, in order to achieve good

schedulability and performance bounds. An implementation of an MCFS runtime system in

26

Linux that supports parallel programs written in OpenMP is presented, which demonstrates

the practicality of the MCFS approach.

Chapter 6 considers the soft real-time performance of federated scheduling and address

average-case workloads instead of worst-case ones. In particular, this chapter considers

stochastic tasks — tasks for which execution time and critical-path length are random vari-

ables. In this context, bounded expected tardiness is used as the schedulability criterion and

stochastic capacity augmentation bound is defined as performance bound. We present three

federated mapping algorithms with different complexities for core allocation and different

schedulability performance. All of them guarantee bounded expected tardiness and provide

the same bound of 2.

Chapter 7 addresses the challenge of scaling up parallel real-time computations on a large

number of cores. Although randomized work stealing has been adopted as a highly scalable

scheduling approach for general-purpose computing, it may seem unsuitable for providing

real-time guarantees due to the non-predictable nature of random stealing. Surprisingly,

this chapter via experiments with benchmark programs shows that random work stealing

delivers tighter distributions in task execution times than a centralized greedy scheduler. To

support scalable soft real-time computing, a Real-Time Work-Stealing platform (RTWS) is

presented. RTWS employs the federated scheduling algorithm in Chapter 6 to allocate cores

to multiple parallel tasks offline, while leveraging the work stealing scheduler to schedule

each task on its dedicated cores online. Experimental results show that RTWS outperforms

RTCG on a 32-core system for soft real-time tasks.

Contents of this part of the thesis have appeared in the following publications:

• J. Li, K. Agrawal, C. Lu and C. Gill, Analysis of Global EDF for Parallel Tasks,

Euromicro Conference on Real-Time Systems (ECRTS’13), July 2013. Outstanding

Paper Award.

27

•• D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C.D. Gill and C. Lu, A Real-Time Schedul-

ing Service for Parallel Tasks, IEEE Real-Time and Embedded Technology and Appli-

cations Symposium (RTAS’13), April 2013.

• A. Saifullah, J. Li, K. Agrawal, C. Lu and C.D. Gill, Multi-core Real-Time Scheduling

for Generalized Parallel Task Models, Real-Time Systems (RTS), Issue 4, pages 404-

435, July 2013.

• J. Li, J.-J. Chen, K. Agrawal, C. Lu, C. Gill and A. Saifullah, Analysis of Federated and

Global Scheduling for Parallel Real-Time Tasks, Euromicro Conference on Real-Time

Systems (ECRTS’14), July 2014.

• J. Li, K. Agrawal, C. Gill and C. Lu, Federated Scheduling for Stochastic Parallel Real-

time Tasks, IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA’14), August 2014.

• J. Li, Z. Luo, D. Ferry, K. Agrawal, C. Gill and C. Lu, Global EDF Scheduling for

Parallel Real-Time Tasks, Real-Time Systems (RTS), 51(4): 395-439, July 2015.

• J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill and C. Lu, Mixed-Criticality Federated

Scheduling for Parallel Real-Time Tasks, IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS’16), April 2016. Outstanding Paper Award.

• J. Li, S. Dinh, K. Kieselbach, K. Agrawal, C. Gill and C. Lu, Randomized Work

Stealing for Large Scale Soft Real-time Systems, IEEE Real-Time Systems Symposium

(RTSS’16), December 2016.

• J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill and C. Lu, Mixed-Criticality Federated

Scheduling for Parallel Real-Time Tasks, Real-Time Systems (RTS), 1-52, June 2017.

28

Chapter 3

Global Scheduling for Parallel
Real-Time Tasks

In this chapter, we consider the problem of scheduling parallel real-time tasks with im-

plicit deadlines on a uniform multicore machine. Tasks have hard real-time constraints and

are characterized using their worst-case work and critical-path length parameters, which is

formally defined in Section 2.4.

In this setting, we consider global policies in which a parallel task is allowed to use all

the available cores in the system and can be migrated among these cores. Specifically, we

analyze two well known global scheduling strategies: namely global earliest-deadline-first

(global EDF or GEDF) and global rate-monotonic (global RM or GRM). In GEDF, a job

has higher priority than another if its absolute deadline is earlier. In GRM, a task has higher

priority than another task if its periods is shorter.

We show that GEDF and GRM provide strong performance guarantees, in the form of

capacity augmentation bounds, for scheduling parallel DAG tasks with implicit deadlines. In

particular, we show that if on unit-speed cores, a task set has total utilization of at most m

and the critical-path length of each task is smaller than its deadline, then GEDF can schedule

it with speed 3+
√

5
2
≈ 2.618; and GRM can schedule it with speed 2 +

√
3 ≈ 3.732. We also

provide lower bounds showing that the bounds are tight for GEDF when m is sufficiently

large. These are the best known capacity augmentation bound for parallel DAG tasks under

any global strategy and any fixed priority scheduling, respectively.

The rest of this chapter is organized as follows. Section 3.1 presents a survey on hard

real-time scheduling for sequential and parallel tasks. Section 3.2 introduces canonical DAG,

29

which is utilized to prove the capacity augmentation bounds for GEDF and GRM in Sec-

tion 3.3 and 3.4, respectively.

3.1 Related Work on Hard Real-Time Systems

Real-time scheduling for sequential tasks: Most prior work on real-time scheduling

atop multiprocessors has concentrated on sequential tasks [54]. In this context, many suf-

ficient schedulability tests for GEDF and other global fixed priority scheduling algorithms

have been proposed [5,10,14,17,29,30,76,105,144]. In particular, for implicit deadline hard

real-time tasks, the best known utilization bound is ≈ 50% using partitioned fixed priority

scheduling [7] or partitioned EDF [19,117]; this trivially implies a capacity bound of 2. [19]

proved that global EDF has a capacity augmentation bound of 2− 1/m for sequential tasks

on multiprocessors.

Earlier work considering intra-task parallelism makes strong assumptions on task models

[52, 106, 121]. For more realistic parallel tasks, e.g. synchronous tasks, Kato et al. [95]

proposed a gang scheduling approach.

Decomposition-based scheduling for parallel real-time tasks: Most earlier ap-

proaches for scheduling synchronous tasks involve task decomposition. Specifically, a parallel

task is decomposed into a set of independent sequential tasks with sub-release time and sub-

deadline. Therefore, the dependency relationships are broken considering that subtasks in

same task are separated by different release offset. In the meanwhile, dependencies are

sustained because sub-release time and sub-deadline from subtasks with dependency rela-

tionships do not overlap. After the task decomposition, subtasks are scheduled using existing

strategies for scheduling sequential tasks on multiprocessors, such as deadline monotonic [72]

or GEDF [17]. A maximum density of a task is bounded after the decomposition or trans-

formation and hence guarantees a capacity augmentation bound.

30

For a restricted set of synchronous tasks, Lakshmanan et al. [103] proved a capacity

augmentation bound of 3.42 using deadline monotonic scheduling for decomposed tasks. For

more general synchronous tasks, Saifullah et al. [138] provided a different decomposition

strategy for general parallel synchronous tasks and proved a capacity augmentation bound

of 4 for GEDF and 5 for partitioned deadline monotonic scheduling. The decomposition

strategy was improved in [123] for using less cores. For the same general synchronous

model, the best known augmentation bound is 3.73 [96] also using decomposition. In the

respective papers, these results are stated as resource augmentation bounds, but they are in

fact the stronger capacity augmentation bounds.

The decomposition approach in [138] was later extended to general DAGs [137] to achieve

a capacity augmentation bound of 4 under GEDF on decomposed tasks (note that in that

work GEDF is used to schedule sequential decomposed tasks, not parallel tasks directly).

This is the best augmentation bound known for task sets with multiple DAGs.

In general, decomposition-based strategies require explicit knowledge of the structure of

the DAG off-line in order to apply decomposition. In contrast, non-decomposition based

strategies, the program can unfold dynamically since no off-line knowledge is required.

Non-decomposition scheduling for parallel real-time tasks: For non-decomposition

strategies, researchers have studied primarily global earliest deadline first (GEDF) and global

rate-monotonic (GRM). Andersson and Niz [6] show that GEDF provides resource augmen-

tation bound of 2 for synchronous tasks with constrained deadlines. [51] and [9] presented

schedulability tests for GEDF and partitioned fixed priority scheduling respectively. Baruah

et al. [23] proved that when the task set is a single DAG task with arbitrary deadlines, GEDF

provides a resource augmentation bound of 2.

For multiple DAGs under GEDF, [34] and [112] independently proved the same resource

augmentation bound 2− 1
m

using different proving techniques, which extended the resource

augmentation bound of 2− 1
m

for sequential multiprocessor scheduling result from [130]. In

31

[34], they also proved that global deadline monotonic scheduling has a resource augmentation

bound of 3− 1
m

, and also present polynomial time and pseudo-polynomial time schedulability

tests for DAGs with arbitrary-deadlines.

There has been some result for other scheduling strategies and different real-time con-

straints. Nogueira et al. [124] explored the use of work-stealing for real-time scheduling.

The paper is mostly experimental and focused on soft real-time performance. The bounds

for hard real-time scheduling only guarantee that tasks meet deadlines if their utilization

is smaller than 1. Liu and Anderson [114] analyzed the response time of GEDF without

decomposition for soft real-time tasks.

Real-time platforms: Various platforms support sequential real-time tasks on multi-

core machines [36, 43, 108]. LITMUSRT [36] is a straightforward implementation of GEDF

scheduling with usability, stability and predictability. The SCHED DEADLINE [108] is an-

other comparable GEDF patch to Linux and has been submitted to mainline Linux. A more

recent work, G-EDF-MP [43] uses massage passing instead of locking and has better scala-

bility than the previous implementations. Our platform prototype, PGEDF, is implemented

using LITMUSRT as the underlying GEDF scheduler. Our goal is to simply to illustrate the

feasibility of GEDF for parallel tasks. We speculate that if the underlying GEDF scheduler

implementation is replaced with one that has lower overhead, the overall performance of

PGEDF will also improve.

Recently, scalability of global scheduling was addressed with the use of message passing to

communicate global scheduling decision [44]. Before that Brandenburg et al., [37] empirically

studied the scalability of several scheduling algorithms for multiprocessors.

As for parallel tasks, there are two systems [71, 96] that support parallel real-time tasks

based on different decomposition strategies. Kim et al. [96] used a reservation-based OS to

implement a system that can run parallel real-time programs for an autonomous vehicle ap-

plication, demonstrating that parallelism can enhance performance for complex tasks. Ferry

32

et al. [71] developed a parallel real-time scheduling service on standard Linux. However,

since both systems adopted task decomposition approaches, they require users to provide

exact task structures and subtask execution time details in order to decompose tasks cor-

rectly. The system presented [71] also requires modifications to the compiler and runtime

system to decompose, dispatch and execute parallel applications. The platform prototype

presented here does not require decomposition or such detailed information.

For platforms without task decomposition, [151] presents a platform supporting parti-

tioned fixed-priority scheduling for parallel synchronous tasks on a special COMPOSITE

operating system with significantly lower parallel overhead.

Ferry et al. [70] studied how to exploit parallelism in real-time hybrid structural simula-

tions (RTHS) to improve real-time performance. The resulted parallelized RTHS program

was executed and scheduled by our RTCG prototype in Chapter 4. Experiments on RTHS

in [70] thus illustrates how parallel real-time scheduling can practically help to improve

performance in cyber-physical systems.

3.2 Canonical Form of a DAG Task

In this section, we introduce the concept of a DAG’s canonical form. Note each task can

have an arbitrarily complex DAG structure which may be difficult to analyze and may not

even be known before runtime. However, given the known task set parameters (work, critical

path length, utilization, etc.) we represent each task using a canonical DAG that allows us

to upper bound the demand of the task in any given interval length t. These results will

play an important role when we analyze the capacity augmentation bounds for GEDF in

Section 3.3 and GRM in Section 3.4.

For analytical purposes, instead of considering the complex DAG structure of individual

tasks τi, we consider a canonical form τ ∗i of task τi. The canonical form of a task is

represented by a simpler DAG. In particular, each subtask (node) of task τ ∗i has execution

33

time ε, which is positive and arbitrarily small. Note that ε is a hypothetical unit-node

execution time. Therefore, it is safe to assume that Di
ε

and Ci
ε

are both integers.

Recall that we classify each task τi as a low-utilization if ui = Ci/Di < 1 (and hence

Ci < Di); or high-utilization task, if τi’s utilization ui ≥ 1. Low and high-utilization tasks

have different canonical forms described below.

• The canonical form τ ∗i of a low-utilization task τi is simply a chain of Ci/ε nodes, each

with execution time ε. Note that task τ ∗i is a sequential task.

• The canonical form τ ∗i of a high-utilization task τi starts with a chain of Di/ε− 1 nodes

each with execution time ε. The total work of this chain is Di − ε. The last node of the

chain forks all the remaining nodes. Hence, all the remaining (Ci −Di + ε)/ε nodes have

an edge from the last node of this chain. Therefore, all these nodes can execute entirely

in parallel.

Figure 3.1 provides an example for such a transformation for a high-utilization task. It

is important to note that the canonical form τ ∗i does not depend on the DAG structure of τi

at all. It depends only on the task parameters of τi.

2

4

5

3

2

1

3

(a) original DAG

ε ε · · · ε ε

...

ε

...
ε

16
ε
− 1 nodes

4
+
ε
ε

n
o
d

es

(b) canonical form: heavy task

Figure 3.1: A high-utilization DAG task τi with Li = 12, Ci = 20, Ti = Di = 16, and
ui = 1.25 and its canonical form, where the number in each node is its execution time.

As an additional analysis tool, we define a hypothetical scheduling strategy S∞ that

schedules a task set τ on an infinite number of cores, that is, m =∞. With infinite number

of cores, the prioritization of the sub-jobs becomes unnecessary and S can obtain an optimal

schedule by simply assigning a sub-job to a core as soon as that sub-job becomes ready

34

for execution. Using this schedule, all the tasks finish within their critical-path length;

therefore, if Li ≤ Di for all tasks τi in τ , the task set always meets the deadlines. We denote

this schedule as S∞. Similarly, S∞,α is the resulting schedule when A∞ schedules tasks on

cores of speed α ≥ 1. Note that S∞,α finishes a job of task τi exactly Li/α time units after

it is released.

We now define some notations based on S∞,α. Let qi(t, α) be the total work finished by

S∞,α between the arrival time ri of task τi and time ri + t. Therefore, in the interval from

ri + t to ri + Di (interval of length Di − t) the remaining Ci − qi(t, α) workload has to be

finished.

We define maximum load, denoted by worki(t, α), for task i as the maximum amount of

work (computation) that S∞,α must do on the sub-jobs of τi in any interval of length t. We

can derive worki(t, α) as follows:

worki(t, α) =


Ci − qi(Di − t, α) t ≤ Di⌊
t
Di

⌋
Ci + worki(t−

⌊
t
Di

⌋
Di, α) t > Di.

(3.1)

Clearly, both qi(t, α) and worki(t, α) for a task depend on the structure of the DAG.

We similarly define q∗i (t, α) for the canonical form τ ∗i . As the canonical form in task τ ∗i is

well-defined, we can derive q∗i (t, α) directly. Note that ε can be arbitrarily small, and, hence,

its impact is ignored when calculating q∗i (t, α).

We can now define the canonical maximum load work∗i (t, α) as the maximum workload

of the canonical task τ ∗i in any interval t in schedule S∞,α. For a low-utilization task τi,

35

t
0 2 4 6 8 10121416182022242628303234363840

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

qi(t, 2)
q∗i (t, 2)

qi(t, 1)

q∗i (t, 1)

(a) q∗i (t, α) and qi(t, α)

t
0 2 4 6 8 10121416182022242628303234363840

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

worki(t, 2)

work∗i (t, 2)

worki(t, 1)

work∗i (t, 1)

(b) work∗i (t, α) and worki(t, α)

Figure 3.2: q∗i (t, α), qi(t, α), work∗i (t, α) and worki(t, α) for the high-utilization task τi in
Figure 3.1.

where Ci/Di < 1, and τ ∗i is a chain, it is easy to see that the canonical workload is

work∗i (t, α) =


0 t < Di − Ci

α

α · (t− (Di − Ci
α

)) Di − Ci
α
≤ t ≤ Di⌊

t
Di

⌋
Ci + work∗i (t−

⌊
t
Di

⌋
Di, α) t > Di.

(3.2)

Similarly, for high-utilization tasks, where Ci/Di ≥ 1, when ε is arbitrarily small, we

have

work∗i (t, α) =


0 t < Di − Di

α

Ci −Di + α · (t− (Di − Di
α

)) Di − Di
α
≤ t ≤ Di⌊

t
Di

⌋
Ci + work∗i (t−

⌊
t
Di

⌋
Di, α) t > Di.

(3.3)

Figure 3.2 shows the q∗i (t, α), qi(t, α), work∗i (t, α), and worki(t, α) of the high-utilization

task τi in Figure 3.1 when Di = 16, α = 1, and α = 2. Note that work∗i (t, α) ≥ worki(t, α).

In fact, the following lemma proves that work∗i (t, α) ≥ worki(t, α) for any t > 0 and α ≥ 1.

36

Lemma 1 For any t > 0 and α ≥ 1, work∗i (t, α) ≥ worki(t, α).

Proof. For low-utilization tasks, the entire work Ci is sequential. When t < Ci
α

, q∗i (t, α) is

αt, so qi(t, α) ≥ αt = q∗i (t, α). When Ci
α
≤ t < Di, qi(t, α) = Ci = q∗i (t, α).

Similarly, for high-utilization tasks, the first Di units of work is sequential, so when

t < Di
α

, q∗i (t, α) = αt. In addition, S∞,α finishes τi exactly Li
α

time units after it is released,

while it finishes the τ ∗i at Di
α

. Since the critical-path length Li ≤ Di for all τi and τ ∗i at

unit-speed system, when t < Li
α

, qi(t, α) ≥ αt = q∗i (t, α). When Li
α
≤ t < Di

α
, qi(t, α) =

q∗i (
Di
α
, α) > q∗i (t, α), When Li < t ≤ Di, Lastly, when Di

α
≤ t < Di, qi(t, α) = Ci = q∗i (t, α)

We can conclude that q∗i (t) ≤ qi(t) for any 0 ≤ t < Di. Combining with the definition of

work(t, α) (Equation (3.1)), we complete the proof.

We classify task τi as a light or heavy task. A task is a light task if ui = Ci/Di < α.

Otherwise, we say that τi is heavy (ui ≥ α) . The following lemmas provide an upper bound

on the density (the ratio of workload that has to be finished to the interval length) for heavy

and light tasks.

Lemma 2 For any task τi, t > 0 and 1 < α, we have

worki(t, α)

t
≤ work∗i (t, α)

t
≤


ui (0 ≤ ui < α)

ui−1
1− 1

α

(α ≤ ui)

(3.4)

Proof. The first inequality in Inequality (3.4) comes from Lemma 1. We now show that

the second inequality also holds for any task. Note that the right hand side is positive, since

1 > ui > 0. There are two cases:

Case 1: 0 < t ≤ Di.

37

• If τi is a low-utilization task, where work∗i (t, α) is defined in Equation (3.2). For any

0 < t ≤ Di, we have

work∗i (t, α)− Ci
Di

· t ≤ α(t−Di +
Ci
α

)− Ci
Di

· t

= (t−Di)(α−
Ci
Di

) ≤ 0

where we rely on assumptions: (a) t ≤ Di; (b) since τi is a low-utilization task, Ci
Di
< 1;

and (c) α > 1. Then,
work∗i (t,α)

t
≤ Ci

Di
= ui.

• If τi is a high-utilization task, where work∗i (t, α) is defined in Equation (3.3). Inequal-

ity (3.4) holds trivially when 0 < t < Di − Di
α

, since the left side is 0 and right side is

positive. For Di − Di
α
≤ t ≤ Di, we have

work∗i (t, α)

t
=
Ci + αt− αDi

t
= α +Di(

ui − α
t

),

Therefore,
work∗i (t,α)

t
is maximized either (a) when t = Di − Di

α
if ui − α ≥ 0 or (b) t = Di

if ui − α < 0.

If τi is a light task with 1 ≤ ui < α and hence (b) is true, then we have
work∗i (Di,α)

Di
= ui.

If heavy task τi with α ≤ ui and hence (a) is true, then

work∗i (Di − Di
α
, α)

Di − Di
α

=
Ci −Di

Di − Di
α

=
ui − 1

1− 1
α

Therefore, Inequality (3.4) holds for 0 < t ≤ Di.

Case 2: t > Di — Suppose that t is kDi + t′, where k is
⌊
t
Di

⌋
and 0 < t′ ≤ Di. When

ui < α, by Equation (3.2) and Equation (3.3), we have

work∗i (t, α)

t
=
kCi + work∗i (t

′, α)

kDi + t′
≤ kuiDi + uit

′

kDi + t′
= ui

38

When α ≤ ui, we can derive that ui ≤ ui−1
1− 1

α

. By Equation (3.3), we have

work∗i (t, α)

t
=
kCi + work∗i (t

′, α)

kDi + t′
≤
kuiDi + ui−1

1− 1
α

t′

kDi + t′

≤
k ui−1

1− 1
α

Di + ui−1
1− 1

α

t′

kDi + t′
≤ ui − 1

1− 1
α

Hence, Inequality (3.4) holds for any task and any t > 0.

We denote τL and τH as the set of light and heavy tasks in a task set, respectively; ‖τH‖

as the number of heavy tasks in the task set; and total utilization of light and heavy tasks

as UL =
∑

τL
ui and UH =

∑
τH
ui, respectively.

Lemma 3 For any task set, the following inequality holds:

W = (
∑

n
i=1worki(t, α)) ≤

(
α·U∑−UL−α·‖τH‖

α−1

)
· t ≤

(
αm−α
α−1

)
· t (3.5)

Proof. By Lemma 2, for any α > 1, it is clear that

W
t

=
∑

τL+τH
supt>0

work∗i (t,α)

t
≤
∑

τL
ui +

∑
τH

(ui−1)

1− 1
α

=
α·
∑
τL
ui−

∑
τL
ui+α·

∑
τH

ui−α·
∑
τH

1

α−1
=

α·U∑−UL−α·‖τH‖
α−1

where sup is the supremum of a set of numbers, τL and τH are the sets of heavy tasks (ui ≥ α)

and light tasks (ui < α), respectively.

Note that
∑

τL
ui +

∑
τH
ui = UL + UH = U∑ ≤ m. Since for τi ∈ τH, ui ≥ α, UH =∑

τH
ui ≥ ‖τH‖α, we can derive the following upper bound:

U∑ − UL − ‖τH‖α ≤ sup
τ

(U∑ − UL − ‖τH‖α) = U∑ − α

This is because for any task set, there are two cases:

• If ‖τH‖ = 0 and hence U∑ = UL, then U∑ − UL − ‖τH‖α = 0.

39

• If ‖τH‖ ≥ 1, then U∑−UL = UH ≤ U∑ and ‖τH‖α ≥ α. Therefore, U∑−UL−‖τH‖α ≤

U∑ − α
Together with the definition of U∑ and

∑
τH

1 = ‖τH‖,

W ≤
(
α·U∑−UL−α·‖τH‖

α−1

)
t ≤

(
α·U∑−α
α−1

)
t ≤

(
αm−α
α−1

)
t

which proves the Inequalities 3.5 and 3.5 of Lemma 3.

We use Lemma 3 in Sections 3.3 and 3.4 to derive bounds on GEDF and GRM scheduling.

3.3 Capacity Augmentation Bound of Global EDF

In this section, we state the capacity augmentation bound of (3+
√

5)/2 for GEDF scheduling

of parallel DAG tasks, using the canonical DAG results from Section 3.2. In addition, we

also show a matching lower bound when m ≥ 3.

3.3.1 Upper Bound on Capacity Augmentation of GEDF

Our analysis builds on the analysis used to prove the resource augmentation bounds by

Bonifaci et al. [34]. We first review the lemma that we will use to achieve our bound.

Lemma 4 If ∀t > 0, (αm − m + 1) · t ≥
∑n

i=1worki(t, α), the task set is schedulable by

GEDF on speed-α cores.

Proof. This is based on a reformulation of Lemma 3 and Definition 10 in [34] considering

cores with speed α.

Theorem 5 The capacity augmentation bound for GEDF is
3− 2

m
+
√

5− 8
m

+ 4
m2

2
(≈ 3+

√
5

2
, when

m is large).

40

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ca
pa

ci
ty

 a
ug

m
en

ta
tio

n
bo

un
d

U / m

U / || H||=20.94
U / || H||=10.47
U / || H||=5.236
U / || H||=2.618

(a) The required speedup of GEDF when m is suf-
ficiently large and UL = 0 (i.e. U∑ = UH).

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ca
pa

ci
ty

 a
ug

m
en

ta
tio

n
bo

un
d

U / m

m=3
m=6
m=12
m=24

(b) The required speedup of GEDF when ‖τH‖ = 1
and UL = 0 (i.e. U∑ = UH).

Figure 3.3: The required speedup of GEDF under different settings.

Proof. From Lemma 3 Inequality (3.5), we have ∀t > 0,
∑n

i=1 worki(t, α) ≤ (αm−α
α−1

) · t. If

α·m−α
α−1

≤ (αm−m + 1), by Lemma 4 the schedulability test for G-EDF holds. To calculate

α, we solve the derived equivalent inequality

mα2 − (3m− 2)α + (m− 1) ≥ 0.

which solves to α =
(

3− 2
m

+
√

5− 8
m

+ 4
m2

)
/2.

Using the above lemma and the canonical form of tasks, we are able to prove the following

theorem for the capacity augmentation bound of GEDF and its generalized corollary relating

the more precise bound using more information of a task set.

Corollary 6 If a task set has total utilization U∑, the total heavy task utilization UH and the

number of heavy task ‖τH‖, then this task set will be schedulable under GEDF on a m-core

machine with speed α =
2+

U∑−‖τH‖−1

m
+

√
4(UH−‖τH‖)

m
+

(U∑−‖τH‖−1)2

m2

2
.

Proof. The proof is the same as in the proof of Theorem 5, but without using the

Inequality (3.5). Instead, we directly use Inequality (3.5). If
α·U∑−UL−α·‖τH‖

α−1
≤ (αm−m+1),

by Lemma 4 the schedulability test for G-EDF holds for this task set. Solving this, we can

get the required speedup α for the schedulability of the task set.

41

However, note that heavy tasks are defined as the set of all tasks τi with utilization

ui ≥ α. Therefore, given a task set, to accurately calculate α, we start with the upper bound

on α, which is α̂ =
(

3− 2
m

+
√

5− 8
m

+ 4
m2

)
/2; then for each iteration i, we can calculate

the required speedup αi by using the U i−1
H and ‖τH‖i−1 from the (i − 1)-th iteration; we

iteratively classify more tasks into the set of heavy tasks and we stop when no more tasks

can be added to this set, i.e., ‖τH‖i−1 = ‖τH‖i. Through these iterative steps, we can calculate

an accurate speedup.

Figure 3.3(a) illustrates the required speedup of GEDF provided in Corollary 6 when m

is sufficiently large (i.e., m = ∞ and 1/m = 0) and UL = 0 (i.e. U∑ = UH). We vary
U∑
m

and
U∑
‖τH‖

. Note that
U∑
‖τH‖

= UH

‖τH‖
is the average utilization of all heavy tasks, which should

be no less than (3 +
√

5)/2 ≈ 2.618. It can be also be seen that the bound is getting closer

to (3 +
√

5)/2, when
U∑
‖τH‖

is larger, which results from ‖τH‖ = 1 and m =∞.

Figure 3.3(b) illustrates the required speedup of GEDF provided in Corollary 6 when

‖τH‖ ≤ 1 and UL = 0 (i.e. U∑ = UH) with varying m. Note that α > 1 is required by the

proof of Corollary 6. And ‖τH‖ = 1 can only be true, if
U∑
m
≥ α

m
(i.e.

U∑
m
≥ 1/3 for m = 3).

3.3.2 Lower Bound on Capacity Augmentation of GEDF

We now provide a lower bound for the capacity augmentation bound for small m.

Consider a task set τ with two tasks, τ1 and τ2. Task τ1 starts with sequential execution

for 1 − ε time and then forks m−2
ε

+ 1 subtasks with execution time ε. Here, we assume ε

is an arbitrarily small positive number and hence it is safe to assume that 1
εm

is a positive

integer. Therefore, the total work of task τ1 is C1 = m − 1 and its critical-path length is

Li = 1. The minimum inter-arrival time of τ1 is 1.

Task τ2 is simply a sequential task with work (execution time) of 1 − 1
α

and minimum

inter-arrival time also 1− 1
α

, where α > 1 will be defined later. Clearly, the total utilization

is m and the critical-path length of each task is at most the relative deadline (minimum

42

inter-arrival time). By considering the schedulability of this task set under GEDF, we are

able to prove the lower bound.

Lemma 7 When α <
3− 2

m
−δ+

√
5− 12

m
+ 4
m2

2
and δ = 2ε + g(ε) and m ≥ 3, then 1−2ε

α
+ m−2

mα
>

1− 1− 1
α

α
holds.

Proof. By solving 1−2ε
α

+ m−2
mα

= 1− 1− 1
α

α
, we know that the equality holds when

α <
3− 2

m
−2ε+

√
5− 12

m
+ 4
m2−g(ε)

2

where g(ε) is a positive function of 1
ε
, which approaches to 0 when ε approaches 0. Now, by

setting δ to 2ε+ g(ε), we reach the conclusion.

Theorem 8 The capacity augmentation bound for GEDF is at least
3− 2

m
+
√

5− 12
m

+ 4
m2

2
when

ε→+ 0.

Proof. Consider the system with two tasks τ1 and τ2 defined in the beginning of Sec-

tion 3.3.2. Suppose that the arrival of task τ1 is at time 0, and the arrival of task τ2 is at

time 1
α

+ ε
α

. By definition, the first jobs of τ1 and τ2 have absolute deadlines at 1 and 1 + ε
α

.

Hence, G-EDF will execute the sequential execution of task τ1 and the sub-jobs of task τ1

first, and then execute τ2.

The finishing time of τ1 at speed α is not earlier than 1−ε
α

+
m−2
ε
ε

mα
= 1−ε

α
+ m−2

mα
. Hence,

the finishing time of task τ2 is not earlier than 1−ε
α

+ m−2
mα

+
1− 1

α

α
.

If 1−ε
α

+ m−2
mα

+
1− 1

α

α
> 1 + ε

α
, then task τ2 misses its deadline. By Lemma 7, we reach the

conclusion.

Figure 3.4 illustrates the upper bound of GEDF provided in Theorem 5 and the lower

bound in Theorem 8 with respect to the capacity augmentation bound. It can be easily seen

that the upper and lower bounds are getting closer when m is larger. When m is 100, the

gap between the upper and the lower bounds is roughly about 0.00452.

43

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 10 20 30 40 50 60 70 80 90 100

ca
pa

ci
ty

 a
ug

m
en

ta
tio

n
bo

un
d

m

upper bound
lower bound

Figure 3.4: The upper bound of GEDF provided in Theorem 5 and the lower bound
in Theorem 8 with respect to the capacity augmentation bound.

It is important to note that the more precise speedup in Corollary 6 is tight even for

small m. This is because in the above example task set, U∑ = m, total high task utilization

UH = m − 1 and number of heavy task ‖τH‖ = 1, then according to the Corollary, the

capacity augmentation bound for this task set under GEDF is

2+
U∑−‖τH‖−1

m
+

√
4(UH−‖τH‖)

m
+

(U∑−‖τH‖−1)2

m2

2
=

2+m−1−1
m

+

√
4(m−1−1)

m
+

(m−1−1)2

m2

2
=

3− 2
m

+
√

5− 12
m

+ 4
m2

2

which is exactly the lower bound in Theorem 8 for ε→+ 0.

3.4 Capacity Augmentation of Global RM

This section shows that GRM provides a capacity augmentation bound of 2 +
√

3 for large

m. The structure of the proof is very similar to the analysis in Section 3.3. Again, we use a

lemma from [34], restated below, to prove Theorem 10.

Lemma 9 If ∀t > 0, 0.5(α · m − m + 1)t ≥
∑

iworki(t, α) the task set is schedulable by

GRM on speed-α cores.

Proof. This is based on a reformulation of Lemma 6 and Definition 10 in [34]. Note

that the analysis in [34] is for deadline-monotonic scheduling, by giving a sub-job of a task

44

higher priority if its relative deadline is shorter. As we consider tasks with implicit deadlines,

deadline-monotonic scheduling is the same as rate-monotonic scheduling.

Proofs like those in Section 3.3.1 give us the bounds below for G-RM scheduling.

Theorem 10 The capacity augmentation bound for GRM is
4− 3

m
+
√

12− 20
m

+ 9
m2

2
(≈ 2 +

√
3,

when m is large).

Proof. (Similar to the proof of Theorem 5:) First, we know from Lemma 3 that ∀t > 0,∑n
i=1worki(t, α) ≤ (αm−α

α−1
)t; Second, if α·m−α

α−1
≤ 0.5(αm−m+ 1). we can also conclude that

the schedulability test for G-RM in Lemma 9 holds. By solving the inequality above, we

have α ≥
4− 3

m
+
√

12− 20
m

+ 9
m2

2
, and prove Theorem 10.

 1.5

 2

 2.5

 3

 3.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ca
pa

ci
ty

 a
ug

m
en

ta
tio

n
bo

un
d

U / m

U / || H||=29.86
U / || H||=14.93
U / || H||=7.464
U / || H||=3.732

Figure 3.5: The required speedup of GRM when m is sufficiently large and UL = 0 (i.e.
U∑ = UH).

The result in Theorem 10 is the best known result for the capacity augmentation bound

for global fixed-priority scheduling for general DAG tasks with arbitrary structures. Inter-

estingly, Kim et al. [96] get the same bound of 2 +
√

3 for global fixed-priority scheduling of

parallel synchronous tasks (a subset of DAG tasks).

The strategy used in [96] is quite different. In their algorithm, the tasks undergo a stretch

transformation which generates a set of sequential subtask (each with its release time and

deadline) for each parallel task in the original task set. These subtasks are then scheduled

using a GDM scheduling algorithm. Note that even though the parallel tasks in the original

45

task set have implicit deadlines, the transformed sequential tasks have only constrained

deadlines — hence the need for deadline monotonic scheduling instead of rate monotonic

scheduling.

Corollary 11 If a task set has total utilization U∑, the total high task utilization UH and

the number of heavy task ‖τH‖, then this task set will be schedulable under GRM on a m-core

machine with speed α =
2+

2U∑−2‖τH‖−1

m
+

√
8(UH−‖τH‖)

m
+

(2U∑−2‖τH‖−1)2

m2

2
.

Proof. The proof is the same as in the proof of Corollary 6, except that instead of using

Lemma 4, it uses Lemma 9.

Figure 3.5 illustrates the required speedup of GRM provided in Corollary 11 when m is

sufficiently large (i.e., m = ∞ and 1/m = 0) and UL = 0 (i.e. U∑ = UH). We vary
U∑
m

and

U∑
‖τH‖

. Again,
U∑
‖τH‖

is the average utilization of all heavy tasks. It can be also be seen that

the bound is getting closer to 2 +
√

3, when
U∑
‖τH‖

is larger, which results from ‖τH‖ = 1 and

m =∞.

3.5 Parallel GEDF Platform

To demonstrate the feasibility of parallel GEDF scheduling, we implemented a simple pro-

totype platform called PGEDF by combining GNU OpenMP runtime system and the

LITMUSRT system. PGEDF is a straightforward implementation based on these off-the-

shelf systems and simply sets appropriate parameters for both OpenMP and LITMUSRT

without modifying either. It is also easy to use this platform; the user can write tasks as

programs with standard OpenMP directives and compile them using the g++ compiler. In

addition, the user provides a task-set configuration file that specifies the tasks in the task-

set and their deadlines. To validate the theory we present, PGEDF is configured for CPU

intensive workloads and cache or I/O effects are beyond the scope this thesis.

46

Note that our goal in implementing PGEDF as a prototype platform is to show that

GEDF is a good scheduler for parallel real-time tasks. This platform uses the GEDF plug-in

of LITMUSRT to execute the tasks. Our experimental results show that this PGEDF imple-

mentation has better performances than other two existing platforms for parallel real-time

tasks in most cases. Recent work [43] has shown that using massage passing instead of

coarse-grain locking (used in LITMUSRT) the overhead of GEDF scheduler can be signifi-

cantly lowered. Therefore, we potentially can get even better performance using G-EDF-MP

as underlying operating system scheduler (instead of LITMUSRT). However, improving the

implementation and performance of PGEDF is beyond the scope of this chapter.

We first describe the relevant aspects of OpenMP and LITMUSRT and then describe

the specific settings that allow us to run parallel real-time tasks on this platforms. Then we

present the API and implementation of PGEDF using OpenMP and LITMUSRT. The empir-

ical evaluations of PGEDF through synthetic task sets will be presented in Chapter 4, which

are compared against an existing decomposition-based platform and a federated scheduling

platform proposed in Chapter 4.

3.5.1 Background

We briefly introduce the GNU OpenMP runtime system and the LITMUSRT patched Linux

operating system, with an emphasis on the particular features that our PGEDF relies on in

order to realize parallel GEDF scheduling.

OpenMP Overview

As introduced in Section 2.3, OpenMP is a specification for parallel programs that defines an

open standard for parallel programming in C, C++, and Fortran [125]. It consists of a set

of compiler directives, library routines and environment variables, which can influence the

runtime behavior. Our PGEDF implementation uses a GNU implementation of OpenMP

47

runtime system (GOMP), which is part of the GCC (GNU Compiler Collection). For our

prototype of PGEDF, we only support parallel synchronous tasks. These tasks are described

as a series of segments which can be parallel or sequential. A parallel segment is described as

a parallel for-loop while a sequential segment consists of arbitrary sequential code. Therefore,

we will restrict our attention to parallel for-loops.

We now briefly describe the OpenMP (specifically GOMP) runtime strategy for such

programs. Under GOMP, each OpenMP program starts with a single thread, called the

master thread. During execution, when the runtime system encounters the first parallel

section of the program, the master thread will create a thread pool and assign that team

of threads to the parallel region. The threads created by the master thread in the thread

pool are called worker threads. The number of worker threads can be set by the user.

The master thread executes the sequential segments. In parallel segments (parallel for-

loops), each iteration is considered a unit of work and maps (distributes) the work to the

team of threads according to the chosen policies, as specified by arguments passed to the

omp set schedule() function call. In OpenMP, there are three different kind of policies:

dynamic, static and guided policies. In the static 1 policy, all iterations are divided

among the team of threads at the start of the loop, and iterations are distributed to threads

one by one: each thread in the team will get one iteration at a time in a round robin manner.

Once a thread finishes all its assigned work from a particular parallel segment, it waits for

all other threads in the team to finish before moving on to the next segment of the task. The

waiting policy can be set by via the environment variable OMP WAIT POLICY. Using passive

synchronization, waiting threads are blocked and put into the Linux sleep queue, where they

do not consume CPU cycle while waiting. On the other hand, active synchronization would

let waiting threads spin without yielding the processors, which would consume CPU cycles

while waiting.

One important property of the GOMP, upon which our implementation relies, is that

the team of threads for each program is reusable. After the execution of a parallel region,

48

the threads in the team are not destroyed. Instead, all threads except the master thread

wait for the next parallel segment, again according to the policy set by OMP WAIT POLICY.

The master thread continues the sequential segment. When it encounters the next parallel

segment GOMP runtime system detects that it already has a team of threads available to

it, and simply reuses them for executing this segment, as before.

LITMUSRT Overview

LITMUSRT (Linux Testbed for Multiprocessor Scheduling in Real-Time Systems) is an

algorithm-oriented real-time extension of Linux [36]. It focuses on multiprocessor real-time

scheduling and synchronization. Many real-time schedulers, including global, clustered, par-

titioned and semi-partitioned schedulers are implemented as plug-ins for Linux. Users can

use these schedulers for real-time tasks, and standard Linux scheduling for non-real-time

tasks.

In LITMUSRT, the GEDF implementation is meant for sequential tasks. A typical

LITMUSRT real-time program contains one or more rt tasks (real-time tasks), which are

released periodically. In fact, each rt task can be regarded as a rt thread, which is a

standard Linux thread with real-time parameters. Under the GEDF scheduler, a rt task

can be suspended and migrated to a different CPU core according to the GEDF scheduling

strategy. The platform consists of three main data structures to hold these tasks: a release

queue, a one-to-one processor mapping, and a shared ready queue. The release queue is

implemented as a priority queue with a clock tick handler, and is used to hold waiting-to-

be-released jobs. The one-to-one processor mapping has the thread that corresponds to each

job that is currently executing on each processor. The ready queue (shared by all processors)

is implemented as a priority queue by using binomial heaps for fast queue-merge operations

triggered by jobs with coinciding release times.

49

In order to run a sequential task as a real-time task under GEDF, LITMUSRT provides

an interface to configure a thread as an rt tasks. The following steps must be taken to

properly configure these [42]:

1. First, function init rt thread() is called to initialize the user-space real-time inter-

face for the thread.

2. Then, the real-time parameters of the thread are set by calling

set rt task param(getid(),&rt task param): the getid() function will return the

actual thread ID in the system; the real-time parameters, including period, relative

deadline, execution time and budget policy, are stored in the rt task param structure;

these parameters will then be stored in the TCB (thread control block) using the

unique thread ID and they will be validated by the kernel.

3. Finally, task mode(LITMUS RT TASK) is called to start running the thread as a real-

time task.

The periodic execution of jobs of rt tasks is achieved by calling LITMUSRT system

calls as well. In particular, after each period, sleep next period() must be called to ask

LITMUSRT to move the thread from the run queue to the release queue. The thread sleeps

in the release queue and the GEDF scheduler within the LITMUSRT will automatically

move it to the ready queue at its next absolute release time. The thread will eventually

be automatically woken up and executed according to GEDF priority based on its absolute

deadline.

3.5.2 PGEDF Programming Interface

Now we describe how our PGEDF platform integrates the GOMP runtime with GEDF

scheduling in LITMUSRT to execute parallel real-time tasks. The PGEDF platform provides

two key features: parallel task execution and real-time GEDF scheduling. The GOMP

50

#inc lude <omp . h>
#inc lude ” task . h”
i n t i n i t (i n t argc , char ∗argv []) {

// I n i t i a l i z e the task
}
i n t run (i n t argc , char ∗argv []) {

// Arb i t rary p a r a l l e l code
}
i n t f i n a l i z e (i n t argc , char ∗argv []) {

// Clean up a f t e r the task
}
t a s k t task = { i n i t , run , f i n a l i z e } ;

Figure 3.6: Task Program Format

runtime system is used to perform parallel execution of each task, while real-time execution

and GEDF scheduling is realized by the LITMUSRT GEDF plug-in.

Currently, PGEDF only supports synchronous task sets with implicit deadlines — tasks

which consist of a sequence of segments and each segment is either a parallel segment (spec-

ified using a parallel-for loop) or a sequential segment (specified as regular code).

The task structure is shown in Figure 3.6. Tasks are C or C++ programs that include

a header file (task.h) and conform to a simple structure: instead of a main function, a

programmer specifies a run function, which is executed when a job of the task is invoked.

Tasks can also specify optional initialize and finalize functions, each of which (if not

null) will be called once, before the first and after the last call to the run function, respectively.

These optional functions let tasks set up and clean up resources as needed.

Additionally, a configuration file must be specified for the task set, specifying runtime

parameters (such as program name and arguments) and real-time parameters (such as worst-

case execution time, critical-path length, and period) for each task in the task set. This

separate specification makes it flexible and easy to maintain; e.g., we do not have to recom-

pile tasks in order to change timing constraints. The configuration file format is shown in

Figure 3.7.

51

SystemFirstCore SystemLastCore
Task1ProgramName Task1Arg1 Task1Arg2 . . .
Task1 : WorstCaseExecutionTime Cr i t i ca lPathLength Period NumIterations
. . .
TasknProgramName TasknArg1 TasknArg2 . . .
Taskn : WorstCaseExecutionTime Cr i t i ca lPathLength Period NumIterations

Figure 3.7: Format of the Configuration File

3.5.3 PGEDF Operation

Unlike sequential tasks where there is only one thread per rt task, for parallel tasks there

is a team of threads generated by OpenMP. Since all the threads in the team belong to the

same task, we must set all their deadlines (periods) to be the same. In addition, we must

make sure that all the threads of all the tasks are properly executed by the GEDF plug-in

in LITMUS. We now describe how to set the parameters of both OpenMP and LITMUS to

properly enforce this policy.

We first describe the specific parameter settings we have to use to ensure correct execu-

tion: (1) We specify the static 1 policy within OpenMP to ensure that each thread gets

approximately the same amount of work. (2) We also set the OpenMP thread synchroniza-

tion policy to be passive. As discussed in Chapter 3.5.1, PGEDF cannot allow spinning

waiting of threads. By using blocking synchronization, once a worker thread finishes its

job, it will go to sleep immediately and yield the processor to threads from other tasks.

Then the GEDF scheduler will assign the available core to the thread in the front of the

prioritized ready queue. Thus, the idle time of one task can be utilized by other tasks,

which is consistent with GEDF scheduling theory. (3) For each task, we set the number

of threads to be equal to the number of available cores, m, using the GOMP function call

omp set num threads(m). This means that if there are n tasks in the system, we will have

a total of mn threads in the system. (4) In LITMUSRT, the budget policy is set equal to

52

NO ENFORCEMENT and the execution time of a thread is set to be the same as the relative

deadline, as we do not need bandwidth control.

In addition to this parameter settings, PGEDF also does additional work to ensure that

all the task parameters are set correctly. In particular, the actual code that is executed by

PGEDF for each task is shown in Figure 3.8. In this code, before we run the task’s actual

run function for the first time, PGEDF performs some additional initialization in the form

of a parallel for-loop. In addition, after each periodic execution of the task’s run function,

PGEDF executes an additional for-loop.

#pragma omp p a r a l l e l f o r schedu le (s t a t i c , 1)
f o r (unsigned i = 0 ; i < num cores ; i++)

r t t h r e a d (per iod , dead l ine) ;

f o r (unsigned j = 0 ; j < num periods ; j++)
{

task . run (task argc , ta sk argv) ;

#pragma omp p a r a l l e l f o r schedu le (s t a t i c , 1)
f o r (unsigned i = 0 ; i < num cores ; i++)

s l e e p n e x t p e r i o d () ;
}

Figure 3.8: Main Structure of Each Real-Time Task in PGEDF

Let us first look at the initial for-loop. This parallel for-loop is meant to set the proper

real-time parameters for this task to be correctly scheduled by GEDF plug-in in LITMUSRT.

We must set the real-time parameters for the entire team of OpenMP threads of this task.

However, OpenMP threads are designed to be invisible to programmers, so we have no direct

access to them. We get around this problem by using this initial for-loop, which has exactly

m iterations — recall that each task has exactly m threads in its thread pool. Note that

before this parallel for-loop, we set the scheduling policy to be static 1 policy, which is a

round robin static mapping between iterations and threads. Therefore, due to the static

1 policy, each iteration is mapped to exactly 1 thread in the thread pool. Therefore, even

53

though we cannot directly access OpenMP threads, we can still set real-time parameters for

them inside the initial parallel for-loop by calling rt thread(period, deadline) within

this loop. This function is defined within the PGEDF platform to perform configuration

for LITMUSRT. In particular, the configuration steps described in the itemized list in the

previous section are performed by this function. Since the thread team is reused for all

parallel regions of the same program, we only need to set the real-time parameters for it

once during task initialization; we need not set it at each job invocation.

After initialization, each task is periodically executed by task.run(task argc, task argv),

inside which there could be multiple parallel for-loops executed by the same team of threads.

Periodic execution is achieved by the parallel for-loop after the task.run function; after each

job invocation, this loop ensures that sleep next period() is called by each thread in the

thread pool. Note again that since the number of iterations in this parallel for-loop is m,

each thread will get exactly one iteration ensuring that each thread calls this function. This

last for-loop is similar to the initialization for-loop, but tells the system that all the threads

in the team of this task have finished their work and that the system should only wake them

up when next period begins.

We can now briefly argue that these settings guarantee the correct GEDF execution. After

we appropriately set the real-time parameters, all the relative deadlines will be automatically

converted to absolute deadlines when scheduled by the LITMUSRT. Since each thread in

the same team of a particular task has the same deadline, all threads of this task have the

same priority. Also, threads of a task with an earlier deadline have higher priority than the

threads of the task with later deadlines — this is guaranteed by LITMUSRT GEDF plug-in.

Since the number of threads allocated to each program is equal to the number of cores, as

required by GEDF, each job can utilize the entire machine when it is the highest priority

task and has enough parallelism. If it does not have enough parallelism, then some of its

threads sleep and yield the machine to the job with the next highest priority. Therefore,

54

the GEDF scheduler within the LITMUSRT enforces the correct priorities using the ready

queue.

55

Chapter 4

Federated Scheduling for Parallel
Real-Time Tasks

In this chapter, we present a novel federated scheduling paradigm for parallel real-time

tasks. Again, task sets have hard real-time constraints and worst-case work and critical-path

length are used to determine their schedulability (defined in Section 2.4). We prove that

federated scheduling has a capacity augmentation bound of 2 for hard real-time scheduling.

This is the best known capacity augmentation bound for parallel tasks and it approaches

the lower bound of any scheduler when the number of cores is large.

In federated scheduling, each high-utilization task (utilization ≥ 1) is allocated a dedi-

cated cluster (set) of cores and all the low-utilization tasks share the cluster composed of the

remaining cores. The federated strategy works in two stages: Given a task set τ , a mapping

algorithm either admits a task set and outputs a core assignment — which consists of

a cluster for each high-utilization task and a final cluster for all low-utilization tasks — or

declares that it can not guarantee schedulability of the task set. Therefore, a mapping al-

gorithm is automatically a schedulability test. After the mapping is done, the scheduling is

straightforward. A greedy (work-conserving) strategy is used to schedule high-utilization

jobs on their dedicated clusters. Since low-utilization tasks can be run sequentially, a multi-

processor scheduling algorithm, such as global earliest deadline first (global EDF or GEDF),

is used to schedule all low-utilization tasks on their shared cluster. Notably, this federated

strategy does not require any task decomposition or transformation; therefore, the internal

structure of the DAGs need not be known in advance in order to use this strategy.

We present the federated scheduling algorithm in Section 4.1, followed by the proof

for its capacity augmentation bound of 2 in Section 4.2. Section 4.3 presents an example

56

showing the lower bound on capacity augmentation of any scheduler for parallel tasks. In

Section 4.4, we compare the efficiency of GEDF, GRM and federated scheduling from a

practical perspective. Finally, we present a platform providing the federated scheduling

service for OpenMP programs and show some preliminary evaluation results in Section 4.5.

4.1 Federated Scheduling Algorithm

Given a task set τ , the federated scheduling algorithm works as follows: First, tasks are

divided into two disjoint sets: τhigh contains all high-utilization tasks — tasks with worst-

case utilization at least one (ui ≥ 1), and τlow contains all the remaining low-utilization tasks.

Consider a high-utilization task τi with worst-case execution time Ci, worst-case critical-path

length Li, and deadline Di (which is equal to its period Ti). We assign ni dedicated cores to

τi, where ni is

ni =

⌈
Ci − Li
Di − Li

⌉
(4.1)

We use nhigh =
∑

τi∈τhigh ni to denote the total number of cores assigned to high-utilization

tasks τhigh. We assign the remaining cores to all low-utilization tasks τlow, denoted as nlow =

m− nhigh. The federated scheduling algorithm admits the task set τ , if nlow is non-negative

and nlow ≥ 2
∑

τi∈τlow ui.

After a valid core allocation, runtime scheduling proceeds as follows: (1) Any greedy

(work-conserving) parallel scheduler can be used to schedule a high-utilization task τi on

its assigned ni cores. Informally, a greedy scheduler is one that never keeps a core idle if

some node is ready to execute. (2) Low-utilization tasks are treated and executed as though

they are sequential tasks and any multiprocessor scheduling algorithm (such as partitioned

EDF [117], or various rate-monotonic schedulers [7]) with a utilization bound of at most

1/2 can be used to schedule all the low-utilization tasks on the allocated nlow cores. The

57

important observation is that we can safely treat low-utilization tasks as sequential tasks

since Ci ≤ Di and parallel execution is not required to meet their deadlines.2

4.2 Capacity Augmentation Bound of 2 for Federated

Scheduling

Theorem 12 The federated scheduling algorithm has a capacity augmentation bound of 2.

To prove Theorem 12, we consider a task set τ that satisfies Conditions (2.1) and (2.2)

from Definition 1 for b =2. Then, we (1) state the relatively obvious Lemma 13; (2) prove

that a high utilization task τi meets its deadline when assigned ni cores; and (3) show that

nlow is non-negative and satisfies nlow ≥ b
∑

τi∈τlow ui and therefore all low utilization tasks

in τ will meet deadlines when scheduled using any multiprocessor scheduling strategy with

utilization bound no less than b (i.e. can afford total task set utilization of m/b = 50%m).

These three steps complete the proof.

Lemma 13 A task set τ is classified into disjoint subsets s1, s2, ..., sk, and each subset is

assigned a dedicated cluster of cores with size n1, n2, ..., nk respectively, such that
∑

i ni ≤ m.

If each subset sj is schedulable on its nj cores using some scheduling algorithm Sj (possibly

different for each subset), then the whole task set is guaranteed to be schedulable on m cores.

High-Utilization Tasks Are Schedulable. Assume that a machine’s execution time

is divided into discrete quanta called steps. During each step a core can be either idle or

performing one unit of work. We say a step is complete if no core is idle during that step, and

otherwise we say it is incomplete. A greedy scheduler never keeps a cores idle if there is ready

work available. Then, for a greedy scheduler on ni cores, we can state two straightforward

lemmas.

2Even if these tasks are expressed as parallel programs, it is easy to enforce correct sequential execution
of parallel tasks — any topological ordered execution of the nodes of the DAG is a valid sequential execution.

58

Lemma 14 Consider a greedy scheduler running on ni cores for t time steps. If the total

number of incomplete steps during this period is t∗, the total work F t done during these time

steps is at least F t ≥ nit− (ni − 1)t∗.

Lemma 15 If a job of task τi is executed by a greedy scheduler, then every incomplete step

reduces the remaining critical-path length of the job by 1.

From Lemmas 14 and 15, we can establish Theorem 16.

Theorem 16 If an implicit-deadline deterministic parallel task τi is assigned ni =
⌈
Ci−Li
Di−Li

⌉
dedicated cores, then all its jobs can meet their deadlines, when using a greedy scheduler.

Proof. For contradiction, assume that some job of a high-utilization task τi misses its

deadline when scheduled on ni cores by a greedy scheduler. Therefore, during the Di time

steps between the release of this job and its deadline, there are fewer than Li incomplete

steps; otherwise, by Lemma 15, the job would have completed. Therefore, by Lemma 14,

the scheduler must have finished at least niDi − (ni − 1)Li work.

niDi − (ni − 1)Li = ni(Di − Li) + Li =

⌈
Ci − Li
Di − Li

⌉
(Di − Li) + Li

≥ Ci − Li
Di − Li

(Di − Li) + Li = Ci

Since the job has work of at most Ci, it must have finished in Di steps, leading to a contra-

diction.

Low-Utilization Tasks are Schedulable. We first calculate a lower bound on nlow, the

number of total cores assigned to low-utilization tasks, when a task set τ that satisfies

Conditions (2.1) and (2.2) of Definition 1 for b = 2 is scheduled using a federated scheduling

strategy.

Lemma 17 The number of cores assigned to low-utilization tasks is nlow ≥ 2
∑

low ui.

59

Proof. Here, for brevity of the proof, we denote σi = Di
Li

. It is obvious that Di = σiLi and

hence Ci = Diui = σiuiLi. Therefore,

ni =

⌈
Ci − Li
Di − Li

⌉
=

⌈
σiuiLi − Li
σiLi − Li

⌉
=

⌈
σiui − 1

σi − 1

⌉

Since each task τi in task set τ satisfies Condition (2.2) of Definition 1 for b = 2; therefore,

the critical-path length of each task is at most 1/b of its relative deadline, that is, Li ≤

Di/b =⇒ σi ≥ b = 2.

By the definition of high-utilization task τi, we have 1 ≤ ui. Together with σi ≥ 2, we

know that:

0 ≤ (ui − 1)(σi − 2)

σi − 1

From the definition of ceiling, we can derive

ni =

⌈
σiui − 1

σi − 1

⌉
<
σiui − 1

σi − 1
+ 1 =

σiui + σi − 2

σi − 1

≤ σiui + σi − 2

σi − 1
+

(ui − 1)(σi − 2)

σi − 1
=
σiui + σi − 2 + σiui − 2ui − σi + 2

σi − 1

=
2σiui − 2ui
σi − 1

=
2ui(σi − 1)

σi − 1
= 2ui

= bui

In summary, for each high-utilization task, ni < bui. So, their sum τhigh satisfies nhigh =∑
high ni < b

∑
high ui. Since the task set also satisfies Condition (2.1), we have

nlow = m− nhigh > b
∑
all

ui − b
∑
high

ui = b
∑
low

ui

Therefore, the number of remaining cores allocated to low-utilization tasks is at least

nlow > 2
∑

low ui.

60

Corollary 18 For task sets satisfying Conditions (2.1) and (2.2), a multiprocessor scheduler

with utilization bound of at least 50% can schedule all the low-utilization tasks sequentially

on the remaining nlow cores.

Proof. Low-utilization tasks are allocated nlow cores, and from Lemma 17 we know that

the total utilization of the low utilization tasks is less than nlow/b = 50%nlow. Therefore, any

multiprocessor scheduling algorithm that provides a utilization bound of 2 (i.e., can schedule

any task set with total worst-case utilization ratio no more than 50%) can schedule it.

Many multiprocessor scheduling algorithms (such as partitioned EDF or partitioned RM)

provide a utilization bound of 1/2 (i.e., 50%) to sequential tasks. That is, given nlow cores,

they can schedule any task set with a total worst-case utilization up to nlow/2. Using any of

these algorithms for low-utilization tasks will guarantee that the federated algorithm meets

all deadlines with capacity augmentation of 2.

Therefore, since we can successfully schedule both high and low-utilization tasks that

satisfy Conditions (2.1) and (2.2), we have proven Theorem 12 (using Lemma 13).

As mentioned before, a capacity augmentation bound acts as a simple schedulability test.

However, for federated scheduling, this test can be pessimistic, especially for tasks with high

parallelism. Note, however, that the federated scheduling algorithm described in Section 4.1

can also be directly used as a (polynomial-time) schedulability test: given a task set, after

assigning cores to each high-utilization task using this algorithm, if the remaining cores are

sufficient for all low-utilization tasks, then the task set is schedulable and we can admit it

without deadline misses. This schedulability test admits a strict superset of tasks admitted

by the capacity augmentation bound test, and in practice, it may admits task sets with

utilization greater than m/2.

61

4.3 Lower Bound on Capacity Augmentation of Any

Scheduler for Parallel Tasks

On a system with m cores, consider a task set τ with a single task, τ1, which starts with

sequential execution for 1 − ε time and then forks m−1
ε

+ 1 subtasks with execution time

ε. Here, we assume ε is an arbitrarily small positive number. Therefore, the total work of

task τ1 is C1 = m and its critical-path length Li = 1. The deadline (and also minimum

inter-arrival time) of τ1 is 1.

Theorem 19 The capacity augmentation bound for any scheduler for parallel tasks on m

cores is at least 2− 1
m

, when ε→+ 0.

Proof. Consider the system defined above. The finishing time of τ1 by running at speed α

is not earlier than 1−ε
α

+
m−1
ε
ε

mα
= 2

α
− 1

mα
− ε

α
. If α > 2− 1

m
and ε→+ 0, then 2

α
− 1

mα
− ε

α
> 1,

then task τ1 misses its deadline. Therefore, we reach the conclusion.

Since Lemma 19 works for any scheduler for parallel tasks, we can conclude that the lower

bound on capacity augmentation of federated scheduling is at least 2 , when m is sufficiently

large. Since we have shown that the upper bound on capacity augmentation of federated

scheduling is also 2, therefore, we have closed the gap between the lower and upper bound

of federated scheduling for large m. Moreover, for sufficiently large m, federated scheduling

has the best capacity augmentation bound, among all schedulers for parallel tasks.

4.4 Practical Considerations

As have shown in the previous sections, the capacity augmentation bound for federated

scheduling, GEDF and GRM are 2, 2.618 and 3.732, respectively. In this section, we con-

sider their run-time efficiency and efficacy from a practical perspective. We consider four

62

dimensions — static vs. dynamic priorities, and global vs. partitioned scheduling, overheads

due to scheduling and synchronization overheads, and work-conserving vs. not.

Practitioners have generally found it easier to implement fixed (task) priority schedulers

(such as RM) than dynamic priority schedulers (such as EDF). Fixed priority schedulers

have always been well-supported in almost all real-time operating systems. Recently, there

has been efforts on efficient implementations of job-level dynamic priority (EDF and GEDF)

schedulers for sequential tasks [36]. Federated scheduling does not require any priority

assignment for high-utilization tasks (since they own their cores exclusively) and can use

either fixed or dynamic priority for low-utilization tasks. Thus, it is relatively easier to

implement GRM and federated scheduling.

For sequential tasks, in general, global scheduling may incur more overhead due to thread

migration and the associated cache penalty, the extent of which depends on the cache archi-

tecture and the task sets. In particular, for parallel tasks, the overheads for global scheduling

could be worse. For sequential tasks, preemptions and migrations only occur when a new

job with higher priority is released. In contrast, for parallel tasks, a preemption and possibly

migration could occur whenever a node in the DAG of a job with higher priority is enabled.

Since nodes in a DAG often represent a fine-grained units of computation, the number of

nodes in the task set can be larger than the number of tasks. Hence, we can expect a larger

number of such events. Since federated scheduling is a generalization of partitioned schedul-

ing to parallel tasks, it has advantages similar to partitioning. In fact, if we use a partitioned

RM or partitioned EDF strategy for low-utilization tasks, there are only preemptions but

no migration for low-utilization tasks. Meanwhile, federated scheduling only allocates the

minimum number of dedicated cores to ensure the schedulability of each high-utilization

task, so there is no preemptions for high-utilization tasks and the number of migrations is

minimized. Hence, we expect that federated scheduling will have less overhead than global

schedulers.

63

In addition, parallel runtime systems have additional parallel overheads, such as synchro-

nization and scheduling overheads. These overheads (per task) usually are approximately

linear in the number of cores allocated to each task. Under federated scheduling, a minimum

number of cores is assigned. However, depending on the particular implementation, global

scheduling may execute a task on all the cores in the system and may have higher overheads.

Finally, note that federated scheduling is not a greedy (work conserving) strategy for

the entire task set, although it uses a greedy schedule for each individual task. In many

real systems, the worst-case execution times are normally over-estimated. Under federated

scheduling cores allocated to tasks with overestimated execution times may idle due to re-

source over-provisioning. In contrast, work-conserving strategies (such as GEDF and GRM)

and can utilize available cores through thread migration dynamically.

4.5 Implementation of a Federated Scheduling Plat-

form

In this section, we describe the design of a scheduling service based on the federated schedul-

ing algorithm presented in Section 4.1 and how we integrated this service into Real-Time

Centralized Greedy RTCG platform. RTCG has several benefits: (1) It separates the goals

of efficient parallel performance and rigorous real-time execution. This separation of concerns

allows programmers to re-purpose existing parallel applications to be run with real-time se-

mantics with minimal modifications. (2) It allows the use of existing parallel languages and

runtime systems (not designed for real-time programs) to explore the degree of real-time

performance one can achieve without implementing an entirely new parallel runtime system.

Therefore, we were able to evaluate the performance of the greedy centralized scheduler from

64

OpenMP for real-time task sets. (3) While RTCG does not explicitly consider cache over-

heads, the scheduling policy has an inherent advantage with respect to cache locality, since

parallel tasks are allocated dedicated cores and never migrate.

Application Programming Interface (API): The RTCG API makes it easy to convert

existing parallel programs into real-time programs, which is similar to that of PGEDF in

Section 3.5.2. Tasks are C or C++ programs that include a header file (task.h) and conform

to a simple structure: instead of a main function, a run function is specified, which is

periodically executed when a job of the task is invoked. Tasks can also specify optional

initialize and finalize functions. Each (if defined) will be called once, before and after

the periodic run function, respectively. These optional functions let tasks set up and clean

up resources as needed. In addition, a configuration file must be provided for the task

set, specifying runtime parameters (including program name and arguments) and real-time

parameters (including period, work and critical-path length) for each task.

Platform Structure and Operation: RTCG separates the functionalities of parallel

scheduling and real-time scheduling. We use two components to enforce these two func-

tionalities, an real-time scheduler (RT-scheduler) and a parallel dispatcher (PL-

dispatcher).

Specifically, the RT-scheduler provides the real-time performance of a task. Prior to

execution, it reads tasks’ real-time parameters from the configuration file and calculates a

core assignment during offline. The main function (provided by RTCG) binds each task to its

assigned cores (by changing the CPU affinity mask). This core assignment ensures that each

task has sufficient number of dedicated cores to meet most of its deadline during execution.

Moreover, because each parallel task is executed on dedicated cores and no other tasks can

introduce CPU interference with it, the PL-dispatcher does not need to be deadline- or

priority-aware.

65

During execution, the PL-dispatcher enforces the periodic invocation of each task and

calls an individual GNU OpenMP runtime system to provide parallel execution of each task.

Since there are multiple concurrent parallel runtime systems that are unaware of each other,

we need to entirely isolate them from each other to minimize scheduling overheads and CPU

interference. Therefore, for OpenMP we use static thread management to create exactly

ni threads to each task. In other words, there is only one worker thread per core and

hence the worker assignment by PL-dispatcher is consistent with the core assignment of the

RT-scheduler.

PL-dispatcher executes the (optional) user-specified initialize functions. All tasks

in the system perform an initial synchronization, and then start execution at their relative

release times by calling run for each invocation. After the periodic invocations, PL-dispatcher

executes the (optional) finalize functions.

4.6 Empirical Comparison Between PGEDF and RTCG

In the following experiments, we make comparison of PGEDF in Chapter 3 and RTCG with

another platform that we implemented for scheduling parallel real-time tasks, namely RT-

OpenMP [71]. Note that all these platforms can schedule OpenMP programs with only paral-

lel for-loops, but each provides a different scheduling strategy. Specifically, RT-OpenMP im-

plements a decomposition-based rate-monotonic scheduling and PGEDF implements global

EDF scheduling. We compare these systems with randomly generated synthetic workload

with increasing total utilizations.

We now describe our empirical evaluation using randomly generated synthetic synchronous

tasks in OpenMP. Experiments were conducted on a 16-core machine composed of two Intel

Xeon E5-2687W processors. When running experiments, we reserved two cores for operating

system services, leaving 14 experimental cores.

66

We compare these platforms in terms task set deadline miss ratio – we define a task

set having deadline misses if (1) it cannot be scheduled under the given scheduling policy; or

(2) it can be scheduled, but there exists at least one deadline miss among all executed jobs

from all tasks in the task set. We find that under many conditions, RTCG provides better

schedulability than the other two platforms.

We should note two things here about how we define this criterion in our experiments

which may be a little unintuitive. First, even if a task set is theoretically schedulable, a

deadline miss may occur due to system overheads. Second, when we say that a task set can

not be scheduled, we do not mean that the task set fails the theoretical schedulability test of

the scheduler. We try to run a task set even if the scheduling algorithm can not guarantee

schedulability. For instance, the global EDF algorithm used in PGEDF only guarantees

schedulability to task sets with utilization of about 40%, while we only say that the task set

fails if it actually misses a deadline. However, if we can not find any way to run the task

set using the respective scheduler, we also say the task set fails – which sometimes happens

with RTCG and RT-OpenMP, but never with PGEDF.

4.6.1 Task Generation

We randomly generate task sets with synchronous tasks consisting of parallel for-loops. Each

task has varying number of segments with varying lengths and numbers of iterations. We

ran 4 categories of task sets (shown in Table 4.1), with T7:LP:LS using 7 cores and the rest

using 14 cores. For each task, period (and deadline) D are chosen uniformly from the list

{4ms, 8ms, 16ms, 32ms, 64ms, 128ms} to form harmonic task sets.

Total Avg. Avg. #Tasks

Name #Cores L/D #iter per TaskSet

T7:LP:LS 7 100% 8 3.66
T14:LP:LS 14 100% 8 5.03
T14:HP:LS 14 100% 12 3.38
T14:HP:HS 14 50% 12 5.22

Table 4.1: Task Set Characteristics

67

Tasks in Table 4.1 are different in two dimensions: (1) low-parallelism (LP) or high-

parallelism (HP), controlled by the average number of iterations (Avg. #iter) in each

parallel for-loop drawn from a log-normal distribution. (2) low-slack (LS) or high-slack

(HS), controlled by the maximum ratio between its critical-path length and deadline (L/D).

In general, low-slack tasks are more difficult to schedule. We do not present the combina-

tion of low-parallelism and high-slack because this is the easiest setting to schedule and all

platforms have roughly the same performance.

For tasks, the maximum execution time of each iteration was chosen from a log-normal

distribution with a mean of 700 micro-seconds. Segments were added to the task until adding

another segment would make its critical-path length longer than the desired ratio (1/2 for

high-slack tasks and 1 for low-slack tasks). Each task set starts empty and adds parallel

tasks with utilization larger than 1, until the total utilization was between m − 1 and m

(the number of cores in the machine). Then a last task with approximately the remaining

utilization is added.

For each experiment setting, we first generated 100 task sets with total utilization approx-

imately m, and then scaled down the execution time by the desired speedup. For example,

for a speedup of 2, a iteration with execution time of 700 micro-seconds will be scaled down

to 350 micro-seconds, and the total utilization ratio of the task set will be about 50%. In this

manner, we achieve the desired total utilizations ratio {20%, 30%, 40%, 50%, 56%, 62.5%,

71.4%, 83.3%} of m, using speedup values {5, 3.3, 2.5, 2, 1.8, 1.6, 1.4, 1.2}.

4.6.2 Baseline Platform

We compared the performance of PGEDF and RTCG with another platform that we im-

plemented, RT-OpenMP from [71] — labeled RT-OpenMP — that can schedule parallel

synchronous task sets on multicore system. RT-OpenMP is based on a task decomposition

68

0.2 0.3 0.4 0.5 0.56 0.625 0.714 0.833

Percentage of Utilization

0

0.2

0.4

0.6

0.8

1

T
a
s
k
 S

e
t
D

e
a
d
lin

e
 M

is
s
 R

a
ti
o

RT-OpenMP
PGEDF
RTCG

5 3.3 2.5 2 1.8 1.6 1.4 1.2

Speedup

(a) T14:HP:LS (high-parallelism, low-slack).

0.2 0.3 0.4 0.5 0.56 0.625 0.714 0.833

Percentage of Utilization

0

0.2

0.4

0.6

0.8

1

T
a
s
k
 S

e
t
D

e
a
d
lin

e
 M

is
s
 R

a
ti
o

RT-OpenMP
PGEDF
RTCG

5 3.3 2.5 2 1.8 1.6 1.4 1.2

Speedup

(b) T14:HP:HS (high-parallelism, high-slack).

0.2 0.3 0.4 0.5 0.56 0.625 0.714 0.833

Percentage of Utilization

0

0.2

0.4

0.6

0.8

1

T
a
s
k
 S

e
t
D

e
a
d
lin

e
 M

is
s
 R

a
ti
o

RT-OpenMP
PGEDF
RTCG

5 3.3 2.5 2 1.8 1.6 1.4 1.2

Speedup

(c) T14:LP:LS (low-parallelism, low-slack).

0.2 0.3 0.4 0.5 0.56 0.625 0.714 0.833

Percentage of Utilization

0

0.2

0.4

0.6

0.8

1

T
a
s
k
 S

e
t
D

e
a
d
lin

e
 M

is
s
 R

a
ti
o

RT-OpenMP
PGEDF
RTCG

5 3.3 2.5 2 1.8 1.6 1.4 1.2

Speedup

(d) T7:LP:LS (low-parallelism, low-slack).

Figure 4.1: Task Set Deadline Miss ratio of RTCG vs. PGEDF vs. RT-OpenMP with
different types of task sets with varying percentages of utilization on 14 and 7 cores.

scheduling strategy: parallel tasks are decomposed into sequential subtasks with interme-

diate release times and deadlines. These sequential tasks are scheduled using a partitioned

deadline monotonic scheduling strategy [72]. This decomposition based scheduler was shown

to guarantee a capacity augmentation of 5 [138]. In theory, any valid bin-packing strategy

provides this augmentation bound. The original paper [71] compared a worst-fit and best-

fit bin-packing strategy for partitioning and found that worst-fit always performed better.

Therefore, we only compare PGEDF and RTCG vs. RT-OpenMP with worst-fit bin-packing.

69

4.6.3 Experimental Results

We can see that when the total utilization ratio is less than 70%, RTCG outperforms PGEDF

and both are significantly better than RT-OpenMP. This is mainly because RT-OpenMP

has much higher overheads than the other two and even PGEDF has higher overheads than

RTCG. For instance, due to overheads, RT-OpenMP misses deadlines even at 20% utilization,

even though all task sets with that utilization are guaranteed to be schedulable in theory

using the scheduler RT-OpenMP uses. PGEDF also has several task sets miss deadline even

when global EDF scheduler theoretically guarantees schedulability, again due to overheads.

In contrast, RTCG has the minimum overheads, since there is no preemption or migration

overheads for federated scheduling. In fact, we find that if the federated mapping algorithm

admits a task set, the task set seldom misses a deadline — in all our experiments only 1

task out of thousands of task sets had any deadline misses and even this task only missed

10 deadlines out of thousands of deadlines.

We note, however, that the deadline miss ratio of RTCG is higher than PGEDF for very

high utilization task sets (70% and 80%). This is due to the fact that at these utilizations,

the main cause of task set deadline misses comes from the theoretical schedulability of the

corresponding scheduling policy. Since federated scheduling is not work-conserving, with

high workloads, it cannot generate a feasible core assignment, while global EDF can try to

schedule a task set even if there is no guarantee in theory.

Figure 4.1(d) shows the task set level deadline miss ratio for the 7-core task set (low-

parallelism, low-slack task sets on 7 cores). We can see that RTCG and PGEDF have

comparable performance and they both outperform RT-OpenMP for almost all utilizations.

For instance, RTCG starts to miss deadlines at 62.5%, and PGEDF starts to miss deadlines

at 56%, while RT-OpenMP cannot schedule 10 task sets even at 20% utilization.

In conclusion, even though RTCG and PGEDF are not designed for scheduling task sets

for providing hard real-time guarantees, under stress testing settings, they still provides

70

(almost) hard real-time performance and outperforms the decomposition-based platform

under many settings. In particular, the capacity augmentation bound of 2 and 2.618 for

the federated scheduling and GEDF scheduler holds for all experiments conducted here,

respectively.

71

Chapter 5

Mixed-Criticality Federated
Scheduling

In this chapter, we study the problem of mixed-criticality scheduling of parallel real-time

tasks. In mixed-criticality systems, tasks with different criticality levels share a computing

platform and demand different levels of assurance in terms of real-time performance. For

example, when an autonomous vehicle is in danger of an accident, crash-avoidance systems is

more safety-critical than route planning or stability enhancing systems. On the other hand,

in normal driving conditions all these features are essential and need to meet their deadlines

to provide a smooth and stable drive, while infotainment systems only need to make the

best effort.

Mixed-criticality model is an emerging paradigm for real-time systems, since it can sig-

nificantly improve resource efficiency. Specifically, safety-critical tasks must be approved by

some certification authority (CA) and their schedulability must be guaranteed under possibly

pessimistic assumptions about task execution parameters, while system designers usually try

to meet the deadlines of all tasks but with less stringent validation. Both the CA and system

designers must make estimates of each task’s worst-case execution time (work). Thus, a task

τi may be characterized by two different worst-case work values: a pessimistic overload work

CO
i for certification and a less pessimistic nominal work CN

i from empirical measurements.

The goal of mixed-criticality scheduling is two-fold: (1) In the typical-state — when all tasks

exhibit nominal behavior — all tasks must be schedulable. (2) In the critical-state — when

some task exceeds its nominal work — all safety-critical tasks must still be schedulable, but

we need not guarantee schedulability of other tasks.

72

Three related trends make it increasingly important to accelerate the convergence of

mixed-criticality systems and parallel tasks: (1) rapid increases in the number of cores per

chip; (2) increasing demand for consolidation and integration of functionality with different

levels of criticality on shared multi-core platforms; and (3) increasing computational demands

of individual tasks, which makes parallel execution essential to meet deadlines. Although

there has been extensive research on the two related problems, namely, mixed-criticality

scheduling of sequential tasks (see [39] for a survey); and single-criticality scheduling of

parallel tasks [6, 23, 34, 51, 96, 103, 111, 112, 114, 123, 138]. To our knowledge, there has been

almost no prior work on the combined problem of mixed-criticality scheduling of parallel

tasks, except for [115].

Challenges of scheduling mixed-criticality parallel task sets: Incorporating par-

allelism presents novel challenges for scheduling. The DAG structure of a task may not be

known in advance; in fact, each job of the same task may have a different DAG structure.

Thus the schedulability analysis and scheduler cannot rely on tasks’ structural information.

Moreover, tasks may have utilization much smaller than 1 in the typical-state, but much

larger than 1 in the critical-state. To deal with this dramatic change, the scheduler must be

able to detect the overload behavior early and increase the resource allotment so that the

task can still meet its deadline.

In this chapter, we propose a mixed-criticality federated scheduling (MCFS) algorithm

and prove its capacity augmentation bound under various conditions. MCFS generalizes

federated scheduling in Chapter 4 to mixed-criticality systems. Federated scheduling (and

thus MCFS) has the advantage of not requiring task decomposition. Likewise, the scheduler

not need to know the internal structure of the tasks, a priori. The work and critical-path

length estimates of a task give an abstraction of the DAG. Moreover, they can be empirically

measured without knowing the specific structure of all the instances of the task. We assume

that task sets are implicit-deadline sporadic task sets.

73

Section 5.3 provides details of the MCFS algorithm and schedulability test for dual-

criticality systems where all tasks are high-utilization tasks — that is, all tasks have either

nominal or overload utilization larger than 1. We consider only high-utilization tasks, since

parallelism is essential for them to meet their deadlines. For this dual-criticality system

with high-utilization tasks, we prove the correctness of MCFS and also prove that it has a

capacity augmentation bound of 2 +
√

2 ≈ 3.41 in Section 5.4. To our knowledge, this is the

first known augmentation bound for parallel mixed-criticality tasks.

We demonstrate the applicability of MCFS by implementing a MCFS runtime system

in Linux that supports OpenMP parallel programs (Section 5.8). We conduct empirical

evaluations to show the practicality of MCFS (Section 5.9). Empirical evaluation shows that

the MCFS runtime system not only delivers mixed-criticality scheduling for parallel tasks,

but also supports graceful degradation; that is, if a high-criticality task enters its overload

state, the system need not immediately discard all low-criticality tasks. Instead, it will

gradually discard low-criticality tasks as needed.

5.1 System Model and Background

5.1.1 Mixed-Criticality Parallel Real-Time Tasks Model

Now we formally define the mixed-criticality parallel real-time task model. Each job (instance

of a parallel task) can be modeled as a dynamically unfolding directed acyclic graph (DAG), in

which each node represents a sequence of instructions and each edge represents a precedence

constraint between nodes. A node is ready to be executed when all its predecessors have been

executed. Note that each job of a task could be a different DAG — it may be completely

different structurally. For each job Ji of τi, we consider two parameters: (1) the total work

(execution time) Ci of job Ji is the sum of execution times of all nodes in job Ji’s DAG; and

(2) the critical-path length Li of job Ji is the length of the longest path weighted by node

execution times.

74

We consider a task set τ of n independent sporadic mixed-criticality parallel tasks

{τ1, τ2, ..., τn}. The tuple (Zi, C
N
i , C

O
i , L

N
i , L

O
i , Di) characterizes a task τi. Zi represents

the criticality of a task. For example, in dual-criticality systems Zi ∈ {LO,HI}, where HI

(high-criticality) and LO (low-criticality) are the two criticality levels. CN
i and CO

i are the

nominal work and overload work, respectively. CN
i is the less pessimistic estimate gen-

erally expected to occur during normal operation, while CO
i is the potentially much more

pessimistic estimate considered during the certification process. Similarly, LNi and LOi are,

respectively, the nominal and overload critical-path length estimates. In this chapter, we

focus on implicit-deadline sporadic tasks, where the relative deadline Di is equal to the min-

imum inter-arrival time between two consecutive jobs of the same task. For a task τi, its

nominal utilization is denoted as uNi = CN
i /Di and its overload utilization is uOi = CO

i /Di.

When a job Ji of task τi is released, we do not know its actual work Ci nor its actual

critical-path length Li in advance — these are only revealed as Ji executes. If a job Ji has

Ci ≤ CN
i and Li ≤ LNi , then we say that the job exhibits nominal behavior ; otherwise, it

exhibits overload behavior. We assume that Ci and Li never exceed CO
i and LOi , respectively.

5.1.2 System Model for Dual-Criticality System

A dual-criticality system (we extend it to multi-criticality system in Section 5.5) has two

types of tasks: low- and high-criticality tasks. Thus this system has two corresponding states:

typical-state (low-criticality mode) and critical-state (high-criticality mode). Crucially,

at runtime the scheduler does not know if a task will exhibit nominal or overload behavior

for a particular run. Thus, the system begins in the typical-state, assuming each job will

satisfy its nominal CN
i and LNi . If, however, any job overruns, then the system transitions to

the critical-state. Jobs of the low-criticality tasks may be discarded, but the scheduler must

ensure that all high-criticality jobs can still meet all their deadlines even if they all execute

for their overload parameters CO
i and LOi .

75

For the purpose of determining task set feasibility, the total utilization of a task set in the

typical-state is the sum of the nominal utilizations of all tasks: UN =
∑

τi∈τ u
N
i . Similarly,

the total utilization of a task set in the critical-state is the sum of the overload utilizations

of high-criticality tasks UO =
∑

τi∈τ and Zi=HI u
O
i .

5.1.3 Schedulability Conditions for Dual-Criticality Systems

A mixed-criticality scheduler has two components. Given a task set, the schedulability test

must first decide whether or not to admit this task set on a machine with m cores. If the

test admits the task set, then the runtime scheduler must guarantee the following mixed-

criticality correctness conditions.

Definition 2 A dual-criticality scheduler is correct if for every task set it admits, it satisfies

the following two conditions:

(1) If the system stays in the typical-state during its entire execution, all tasks must meet

their deadlines.

(2) After the system transitions into critical-state, all high-criticality tasks must meet their

deadlines.

The runtime scheduler must transition properly from typical- to critical-state. Since the

DAG of a particular job Ji unfolds dynamically during its execution, the runtime scheduler

does not know, a priori, whether a particular job will exhibit nominal or overload behavior.

Therefore, the runtime scheduler must infer the transition time (if any) of the system from

typical- to critical-state dynamically at runtime, based on the execution of the current jobs.

Note that low-criticality tasks need not define CO
i , since the runtime scheduler is allowed

to discard all low-criticality tasks in the critical-state. Even if defined, it is not used in our

analysis and so we ignore it.

76

5.1.4 Dual-Criticality Capacity Augmentation Bound

In Chapter 2 a capacity augmentation bound is defined for parallel tasks with single-

criticality. We generalize this definition to dual-criticality parallel tasks with implicit dead-

lines.

Definition 3 A scheduler provides a capacity augmentation bound of b for dual-criticality

parallel task systems, if it can schedule any task set which satisfies the following conditions.

(1) The total nominal utilization of all tasks (high and low-criticality) in typical-state

UN =
∑
τi∈τ

CN
i /Di ≤ m/b

(2) The total overload utilization of high-criticality tasks in critical-state

UO =
∑

τi∈τ and Zi=HI

CO
i /Di ≤ m/b

(3) For all tasks, LNi ≤ LOi ≤ Di/b.

Note that no scheduler can guarantee b < 1 — thus the capacity augmentation bound, just

like utilization bound, provides an indication of how much slack is needed in the system to

guarantee schedulability.

5.1.5 Background

We now describe a couple of ideas from prior work that MCFS is based on. In particular,

MCFS uses important concepts from two different lines of work. It borrows the idea of virtual

deadlines from work on mixed-criticality scheduling of sequential tasks [18,21] and the idea

of federated scheduling from single-criticality scheduling of parallel tasks in Chapter 4.

Virtual Deadline: MCFS utilizes the idea of virtual deadline, first used in single processor

mixed-criticality scheduler EDF-VD [18] and also used in multiprocessor mixed-criticality

77

schedulers [21]. At a high level, in these algorithms each high-criticality task is assigned

a virtual deadline D′i < Di. This virtual deadline serves two purposes: (1) It boosts the

priority of a high-criticality job so that if the job exhibits overload behaviour, then the

scheduler detects it early and transitions into critical-state. (2) It provides enough slack so

that after the transition, there is enough time to complete the overload work of the job.

To see how virtual deadlines are used for mixed-critical tasks, we briefly discuss three

relevant algorithms, namely, EDF-VD [18] — an algorithm for scheduling dual-criticality

tasks on a single processor; and MC-Global (referred to as Algorithm Global in [21]) and

MC-Partition [21] — algorithms for scheduling dual criticality sequential tasks on m identical

speed processors. In each of these algorithms, the schedulability test occurs as part of a pre-

processing phase prior to runtime. At this time, all tasks are assigned a virtual deadline D′i ≤

Di. Using this virtual deadline assignment, the schedulability of the task set is determined.

At run-time, jobs are initially dispatched with the expectation that no job will execute

for more than its nominal work and all jobs’ deadlines are assumed to be D′i instead of

Di. During runtime, if some job does execute beyond its nominal work, then the system

transitions into the critical-state. The runtime scheduling and dispatching algorithms are

immediately modified in the following way: (1) All currently-active jobs of low-criticality

tasks are immediately discarded; henceforth, no job of a low-criticality task will be allowed

to execute. (2) The scheduling algorithm now considers the real deadlines Di rather than the

virtual deadlines D′i when making scheduling and dispatching decisions for high-criticality

tasks.

The three algorithms differ in the details of their schedulability tests, calculation of the

virtual deadlines, and details of their runtime scheduling and dispatching algorithms. EDF-

VD is designed for single-processor systems and uses EDF for both low and high-criticality

modes of the system. It guarantees a resource augmentation bound of 4/3. MC-Global algo-

rithm extends the scheduling of sequential mixed-criticality workloads from single-processor

78

to the multiprocessor setting and provides a resource augmentation bound of
√

5 + 1. MC-

Partition partitions tasks among processors and then uses EDF-VD on each processor. In

particular, a version of MC-Partition, namely MC-Partition-UT-0.75 provides a utilization

bound of about 3/8, by incorporating scheduling tasks with utilizations up to 1 — we use

this one as a black box in MCFS to schedule tasks whose utilization never exceeds 1.

Federated Scheduling: MCFS is based on the federated scheduling that assigns dedicated

cores to high-utilization tasks and schedules them using a work-conserving scheduler. The

key insight of the federated scheduling paradigm is to calculate the minimum number of

cores to assign to a job in order to complete its remaining work and meet its deadline, which

is given by the following lemma and used throughout this chapter.

Lemma 20 If job Ji needs to execute C ′i remaining work and L′i remaining critical-path

length, it is schedulable by a work-conserving scheduler and can complete its execution within

D′i time on ni dedicated cores, where ni ≥ C′i−L′i
D′i−L′i

.

Proof. This Lemma can be proved using arguments very similar to Theorem 16 in

Chapter 4. Here, we only provide the intuition. Recall that a work-conserving (greedy)

scheduler never keeps a core idle if there is any work available. We say that a time step is

incomplete if any of the ni dedicated cores is idle during that time step and the time step

is complete otherwise. It is straight-forward to see that if the job’s remaining critical-path

length is at most L′i, then the total number of incomplete steps is I ≤ L′i. In addition, the

total number of complete steps is X ≤ C′i−L′i
ni
≤ D′i − L′i, if we substitute the value of ni.

Since each step is either complete or incomplete, the total number of time steps to complete

the job is I +X, which is bounded by D′i.

We now describe the basics of the federated scheduling for single-criticality parallel tasks

on m identical cores. Each task τi has worst case execution time (work) Ci, worst case critical

path length Li, deadline (equal to minimum inter-arrival time) Di, and utilization ui =

Ci/Di. The federated scheduling algorithm first classifies tasks into either high utilization

79

tasks (ui > 1) or a low-utilization tasks (ui ≤ 1). Each high utilization task τi is assigned

ni dedicated cores, where ni =
⌈
Ci−Li
Di−Li

⌉
. Therefore, the total number of cores assigned to

high-utilization tasks is nhigh =
∑

τi∈τhigh ni. The remaining nlow = m − nhigh cores are

assigned collectively to low-utilization tasks. The algorithm admits the task set τ , if nlow is

non-negative and nlow ≥ 2
∑

τi∈τlow ui.

At runtime, any greedy (work-conserving) parallel scheduler can be used to schedule a

high-utilization task τi on its assigned ni cores. Low-utilization tasks are treated as though

they are sequential tasks and any multiprocessor scheduling algorithm with a utilization

bound of at least 50% can be used to schedule the low-utilization tasks on the allotted nlow

cores. This approach provides a capacity augmentation bound of 2 — that is, a task set is

admitted and meets all deadlines as long as its total utilization is smaller than m/2 and for

each task τi, its worst-case critical-path length Li ≤ Di/2.

5.2 Related Work on Mixed-Criticality Scheduling

In this section, we offer a brief survey of related work on real-time scheduling of mixed-

criticality tasks. Since [150] first proposed a formal model for mixed-criticality systems,

researchers have studied scheduling sequential tasks on both single processor [20,22,61,67,

78, 79, 102, 142] and multiprocessor machines [128, 129]. In Section 5.1, we discussed the

algorithms most relevant to our work that use virtual deadlines [18,21]. Models where other

parameters, such as period and deadline, depend on the criticality of the task, have been

investigated in [15,55,145].

None of these schedulers considers intra-task parallelism, however. Baruah [16] has con-

sidered limited forms of parallelism (such as that generated by Simulink programs). Most

recently, Liu et. al [115] consider scheduling of mixed-criticality synchronous tasks using a

decomposition-based strategy. Like all decomposition strategies, the parallel task is decom-

posed into sequential tasks before runtime, so the task structure must be known in advance

80

and cannot change between different jobs of the same task. In contrast, MCFS considers a

more general DAG model and does not assume that the scheduler knows the structure of

the DAG in advance, allowing the task to generate different DAG structures in each run.

5.3 Scheduling Dual-Criticality High-Utilization Tasks

The MCFS scheduler consists of two parts: (1) a mapping algorithm (including schedulability

test) runs before the tasks start executing; and (2) a runtime scheduler executes tasks if the

task set is schedulable. Before runtime, the MCFS scheduler tries to generate a mapping

for each criticality state: the typical-state (low-criticality) mapping ST and the critical-state

(high-criticality) mapping SC . If it cannot find a valid mapping for both the states, then the

task set is declared unschedulable. At runtime, the scheduler performs typical-state mapping

ST when all jobs exhibit nominal behavior. If any job exceeds its nominal parameters, then

the system transitions into the critical-state and the scheduler switches to using mapping

SC .

In this section, we only consider dual-criticality systems where all tasks are high-utilization

tasks. Intuitively, a task is a high-utilization task, if it requires parallel execution to meet

its deadline. We consider task systems that contain both high and low-utilization tasks in

Section 5.7. Table 5.1 shows the notation used throughout this chapter.

Definition 4 A task is a high-utilization task if it is a high-criticality task with overload

utilization larger than 1; or it is a low-criticality task with nominal utilization larger than 1.

81

Table 5.1: Table of Notations in Chapter 5

Symbol Meaning in the chapter

CN
i (CO

i) Nominal (overload) work (or execution time) of task τi

LNi (LOi) Nominal (overload) critical-path length of task τi

uNi (uOi) Nominal (overload) utilization of task τi

Di Implicit deadline of sporadic task τi

D′i Assigned virtual deadline of τi for nominal behavior

nNi Number of assigned cores to τi for nominal behavior

nOi Number of assigned cores to τi for overload behavior

τC Set of tasks in category C ∈ {LH, ..., HVH, HMH}

UN
C (UO

C) Total nominal (overload) utilization of category C tasks

NN
C (NO

C) Total #cores assigned to τC for nominal (overload) behavior

SS Mapping in state S ∈ {typical, intermediate, ..., critical}

Table 5.2: High-Utilization Task Classification

Task Type Criticality Nominal Utilization Overload Utilization

HMH High 1
b−1

< uNi ≤ uOi 1 < uOi

HVH High uNi ≤ 1
b−1

1 < uOi

LH Low 1 < uNi NA

5.3.1 Mapping Algorithm

MCFS computes two quantities for each task: (1) a virtual deadline; and (2) the number of

cores assigned to the task in both the typical- and the critical-state. At a high level, the dead-

line assignment and the core assignment are designed to carefully balance the requirements

in both states. To generate a mapping, MCFS classifies tasks into three categories.

1. LO-High (LH) tasks are low-criticality tasks with high-utilization in nominal behav-

ior, i.e. uNi > 1. Again, these tasks are discarded in critical-state.

82

Table 5.3: High-Utilization Task Virtual Deadline and Core Assignment

Task Virtual Number of assigned cores Number of assigned cores

Type b Deadline D′i nNi for nominal behavior nOi for overload behavior

HMH 2 +
√

2 2Di
b

max
{⌈

CNi −LNi
D′i−LNi

⌉
,
⌈
uOi
⌉}

max
{
nNi ,

⌈
COi −nNi D′i−LOi
Di−D′i−LOi

⌉}
HVH 2 +

√
2 Di

b−1

⌊
uOi
⌋ ⌈

COi −nNi D′i−LOi
Di−D′i−LOi

⌉
LH 2 Di

⌈
CNi −LNi
Di−LNi

⌉
NA

2. HI-VeryLow-High (HVH) tasks are high-criticality tasks with very low utilization

uNi ≤ 1/(b− 1) in nominal behavior and high utilization uOi > 1 in overload behavior.

3. HI-Moderate-High (HMH) tasks are high-criticality tasks with moderate utiliza-

tion uNi > 1/(b − 1) in nominal behavior and high-utilization uOi > 1 in overload

behavior.

Table 5.2 shows the classification criterion and Table 5.3 shows the virtual deadline

assignments and the core assignments for all the categories. As mentioned earlier, we only

consider high-utilization tasks; therefore, the above categories are exhaustive.

5.3.2 Schedulability Conditions of MCFS

The MCFS scheduler declares a task set schedulable, if and only if it is schedulable in both

typical- and critical-states. The schedulability of a task set τ can be determined by the

following conditions:

• If LNi ≥ D′i for any task, or if LOi ≥ Di − D′i for any high-criticality task, then τ is

declared unschedulable.

83

• If there are not enough cores for the typical-state mapping, i.e. NN
LH +NN

HVH +NN
HMH >

m, then τ is unschedulable.

• If there are not enough cores for the critical-state mapping, i.e. NO
HVH + NO

HMH > m,

then τ is unschedulable.

• If none of above cases occurs, then τ is schedulable.

In the next section, we will show that if the MCFS schedulability test admits a task set,

then the runtime scheduler guarantees meeting the correctness conditions from Definition 2.

We will also show that MCFS has a capacity augmentation bound of 2 +
√

2 ≈ 3.41 for task

sets with high-utilization tasks.

5.3.3 MCFS Runtime Execution

At runtime, the system is assumed to start in the typical-state and the runtime scheduler

executes jobs according to the typical-state mapping ST — that is, each task is scheduled

by a work-conserving scheduler on nNi dedicated cores.

If a high-criticality job Ji does not complete within its virtual deadline D′i, then the

system transitions into the critical-state. All low-criticality jobs can be abandoned and

future jobs of low-criticality tasks need not be admitted. The scheduler now executes all

jobs according to their critical-state mapping SC . That is, all high-utilization tasks are now

allocated nOi dedicated cores and scheduled using a work-conserving scheduler.

Remark: Note that after transitioning to the critical-state, MCFS needs not abandon all

low-criticality tasks; it can degrade gracefully by abandoning low-criticality tasks on demand.

If, for instance, a high-criticality job Ji of τi exceeds its virtual deadline, it requires nOi −nNi

additional cores. Then, MCFS only needs to suspend enough low-criticality tasks to free

up these cores and it can leave the remaining tasks unaffected. In addition, once job J

84

completes, MCFS can recover from critical-state to typical-state simply by giving nNi cores

to τi and re-admitting the low-criticality tasks that were suspended.

5.4 Proof of Correctness and Capacity Augmentation

Bound

We now prove that for high-utilization tasks MCFS guarantees (1) correctness (as described

in Definition 2) and; (2) a capacity augmentation bound of 2 +
√

2 (as described in Defini-

tion 3). We first prove properties of the mappings generated by MCFS (from Table 5.3) for

each of the three categories of tasks (from Table 5.2). In particular, we will show that each

task of a category is schedulable under the generated mapping and the numbers of cores

assigned to the task are bounded in both typical- and critical-state. These properties then

allow us to prove correctness and the capacity augmentation bound.

Before diving into the proofs, we state two simple mathematical inequalities that will be

used throughout the proofs.

(1) If a
b
≥ c > 0 and 0 ≤ x ≤ y < b, then a

b
≤ a−cx

b−x ≤
a−cy
b−y ;

(2) If 0 < a
b
≤ c and 0 ≤ x ≤ y < b, then a

b
≥ a−cx

b−x ≥
a−cy
b−y ;

5.4.1 LH tasks under MCFS

Recall that an LH task τi is a low-criticality task with high utilization (uNi > 1) under nominal

condition. Since these tasks may be discarded in critical-state, we need only consider their

typical-state behavior where they are assigned with nNi =
⌈
CNi −LNi
Di−LNi

⌉
dedicated cores (see

Table 5.3) and a virtual deadline D′i = Di. Given these facts, the following lemma is obvious

from Lemma 20.

Lemma 21 LH tasks are schedulable under MCFS.

We now prove that the number of cores assigned to a LH task is bounded.

85

Lemma 22 For any b ≥ 3, if a LH task τi has Di ≥ bLNi , then the number of cores it is

assigned in the typical-state is bounded by nNi ≤ (b− 1)uNi .

Proof. A LH task has high utilization; therefore, uNi = CN
i /Di > 1.

Since LNi ≤ Di/b, using Ineq (1), we have

nNi =

⌈
CN
i − LNi
Di − LNi

⌉
<
CN
i − LNi
Di − LNi

+ 1 ≤ CN
i −Di/b

Di −Di/b
+ 1

≤ buNi − 1

b− 1
+ 1 =

buNi + b− 2

b− 1
≤ buNi + (b− 2)uNi

b− 1
= 2uNi

Therefore, nNi ≤ (b− 1)uNi for any b ≥ 3.

5.4.2 HVH tasks under MCFS

Recall that a HVH task τi is a high-criticality task with very low utilization uNi ≤ 1/(b−1) in

the nominal condition and with high utilization uOi ≥ 1 in the overload condition. Table 5.3

shows that MCFS assigns a HVH task
⌊
uOi
⌋

dedicated cores in the typical-state and increases

the number of allocated cores to nOi =
⌈
COi −nNi D′i−LOi
Di−D′i−LOi

⌉
in the critical-state. Its virtual deadline

is set as D′i = Di/(b− 1).

Lemma 23 HVH tasks are schedulable under MCFS.

Proof. In typical-state, the total work of an HVH task τi is CN
i = Diu

N
i ≤ Di/(b−1) = D′i.

Therefore, a single dedicated core is already enough to complete this work. Since uOi ≥ 1,

the number of cores assigned to a HVH task nNi =
⌊
uOi
⌋
≥ 1 is sufficient.

Now let us consider the critical-state. There are two cases:

Case 1: The transition occurred before the release of job ji. Then the job gets nOi =⌈
COi −nNi D′i−LOi
Di−D′i−LOi

⌉
cores. Since uOi > 1, we have

nNi =
⌊
uOi
⌋
≤ uOi =

CO
i

Di

≤ CO
i − LOi
Di − LOi

86

Then by applying Ineq (1), we get

nOi =

⌈
CO
i − LOi − nNi D′i
Di − LOi −D′i

⌉
≥
⌈
CO
i − LOi
Di − LOi

⌉

Thus, nOi are sufficient by Lemma 20.

Case 2: The transition to critical-state occurred during the execution of a job ji of

task τi. Say ji was released at time ri and the transition to critical-state occurred at time

t ≤ ri +D′i (If t is larger, then ji would have finished executing already).

Let e = t− ri ≤ D′i be the duration for which the job executes before the transition. In

these e time steps before the transition, say that the job has t∗ complete steps (where all cores

are busy working) and e− t∗ incomplete steps (where the critical-path length decreases). By

definition, t∗ ≤ e ≤ D′i. Then, at the transition, it has at most CO−nNi t∗− e+ t∗ remaining

work and LOi − e+ t∗ remaining critical-path length that must be completed in Di − e time

steps. By Lemma 20, τi is guaranteed to complete by the deadline, if τi is allocated at least

n dedicated cores, where:

n =

⌈
(CO

i − nNi t∗ − e+ t∗)− (LOi − e+ t∗)

(Di − e)− (LOi − e+ t∗)

⌉
=

⌈
CO
i − LOi − nNi t∗

Di − LOi − t∗

⌉

Similar to Case 1, since nNi ≤
COi −LOi
Di−LOi

and t∗ ≤ D′i, by Ineq (1) we have

nOi =

⌈
CO
i − nNi D′i − LOi
Di −D′i − LOi

⌉
≥
⌈
CO
i − nNi t∗ − LOi
Di − t∗ − LOi

⌉

By Lemma 20, the nOi cores are enough for it to be schedulable.

We now bound the number of cores assigned to HVH tasks. Since HVH tasks have high

overload utilization, the following lemma is true.

Lemma 24 For an HVH task τi, the number of assigned cores in the typical-state is nNi =⌊
uOi
⌋
≤ uOi .

87

Lemma 25 For an HVH task τi, if Di ≥ bLOi ≥ bLNi , then the number of cores assigned in

the critical-state is nOi ≤ buOi , for all 7+
√

33
4
≤ b ≤ 5+

√
17

2
.

Proof. Since HVH task τi satisfies uOi > 1, we can derive that nNi ≥ 1 and nNi =
⌊
uOi
⌋
≤

uOi ≤
COi −LOi
Di−LOi

. Therefore, by Ineq (1) and LOi ≤ Di/b we get

nOi <
CO
i − nNi Di

b−1
− LOi

Di − Di
b−1
− LOi

+ 1 ≤
CO
i − nNi Di

b−1
− Di

b

Di − Di
b−1
− Di

b

+ 1

=
b(b− 1)uOi − bnNi − (b− 1) + b2 − 3b+ 1

b2 − 3b+ 1

Note that ∀b ∈ [5−
√

17
2

, 5+
√

17
2

] we have b2− 5b+ 2 ≤ 0. In addition, for b ≥ 7+
√

33
4

> 3+
√

5
2

it is true that b2 − 3b+ 1 > 0 and b2 − 3b+ 2 > 0.

Now let us consider two cases:

Case 1: If uOi < 2, then nNi = 1. Hence, by Ineq (1) we can derive

nOi <
b(b− 1)uOi + b2 − 5b+ 2

b2 − 3b+ 1

<
b(b− 1)uOi + (b2 − 5b+ 2)

uOi
2

b2 − 3b+ 1
[since b2 − 5b+ 2 ≤ 0 and

uOi
2
< 1]

=
3b2 − 7b+ 2

2(b2 − 3b+ 1)
uOi

Case 2: If uOi ≥ 2, then nNi =
⌊
uOi
⌋
> uOi − 1. By Ineq (1), we can derive

nOi <
b(b− 1)uOi − b(uOi − 1)− (b− 1) + b2 − 3b+ 1

b2 − 3b+ 1

=
b(b− 2)uOi + b2 − 3b+ 2

b2 − 3b+ 1

≤
b(b− 2)uOi + (b2 − 3b+ 2)

uOi
2

b2 − 3b+ 1
[since b2 − 3b+ 2 > 0 and

uOi
2
≥ 1]

=
3b2 − 7b+ 2

2(b2 − 3b+ 1)
uOi

88

Therefore, in both cases, we have

nOi <
3b2 − 7b+ 2

2(b2 − 3b+ 1)
uOi (5.3)

By solving 3b2−7b+2
2(b2−3b+1)

≤ b, which is equivalent to 2b2 − 7b + 2 ≥ 0 for b > 1, we can

conclude that for all b ≥ 7+
√

33
4
≈ 3.19, we have nOi ≤ buOi .

Finally, by intersecting all the ranges of b, we get the required result nOi ≤ buOi , for all

7+
√

33
4
≤ b ≤ 5+

√
17

2
.

Remark: The classification and core assignment to HVH tasks may seem strange at first

glance. Since the tasks have such a low utilization in the typical-state, why do we assign

dedicated cores rather than assigning multiple tasks to each core? This is due to balancing

core assignments in the typical- and critical-state. Intuitively, if tasks share cores (basically

assigning fewer cores per task) in the typical-state, then we must assign more cores in the

critical-state. In particular, note that Lemma 25 uses the fact that the task has dedicated

cores to prove a lower bound on the amount of work this task completes by its virtual

deadline, allowing us to upper bound the amount of left-over work in the critical-state. If we

didn’t assign dedicated cores, then such a lower bound would be difficult to prove; therefore,

MCFS would have to assign more cores to these tasks in the critical-state, giving a worse

bound.

5.4.3 HMH tasks under MCFS

Recall that a HMH task τi is a high-criticality task with moderate or high utilization

uNi > 1/(b−1) in the nominal condition and with high utilization uOi > 1 in the overload con-

dition. Table 5.3 shows that MCFS assigns each HMH task nNi = max
{⌈

CNi −LNi
2Di/b−LNi

⌉
,
⌈
uOi
⌉}

dedicated cores in the typical-state and increases the number of allocated cores to nOi =

max
{
nNi ,

⌈
COi −nNi D′i−LOi
Di−D′i−LOi

⌉}
in the critical-state. Its virtual deadline is D′i = 2Di/b.

89

Lemma 26 HMH tasks are schedulable under MCFS.

Proof. In the typical-state, by Lemma 20 we know that
⌈

CNi −LNi
2Di/b−LNi

⌉
is sufficient for a HMH

task τi to complete its CN
i and LNi within its virtual deadline 2Di/b. Thus, nNi cores are

enough for it to be schedulable in the typical-state.

Now let us consider the critical-state. There are two cases:

Case 1: The transition occurred before the release of ji.

For nOi = max
{
nNi ,

⌈
COi −nNi D′i−LOi
Di−D′i−LOi

⌉}
, there are two sub-cases:

(a) If nNi >
COi −LOi
Di−LOi

, then by nNi being integer and Ineq (2), we get

nOi = nNi ≥
⌈
CO
i − LOi
Di − LOi

⌉
≥
⌈
CO
i − LOi − nNi D′i
Di − LOi −D′i

⌉

(b) If nNi ≤
COi −LOi
Di−LOi

, similarly by applying Ineq (1), we get

nOi =

⌈
CO
i − LOi − nNi D′i
Di − LOi −D′i

⌉
≥
⌈
CO
i − LOi
Di − LOi

⌉
≥ nNi

Hence, in both sub-cases, we have nOi ≥
⌈
COi −LOi
Di−LOi

⌉
. Thus, by Lemma 20, nOi cores is

sufficient to complete its work CO
i and critical-path length LOi within deadline Di.

Case 2: The transition to critical-state occurred during the execution of a job ji of

task τi. Say ji was released at time ri and the transition to critical-state occurred at time

t ≤ ri +D′i (If t is larger, then ji would have finished executing already).

Let e = t− ri ≤ D′i be the duration for which the job executes before the transition. In

these e time steps before the transition, say that the job has t∗ complete steps (where all

cores are busy working) and e−t∗ incomplete steps (where the critical-path length decreases).

By definition, t∗ ≤ D′i. Similar to Case 2 in Lemma 23, τi is guaranteed to complete by the

deadline, if τi is allocated at least n =
⌈
COi −LOi −nNi t∗

Di−LOi −t∗

⌉
dedicated cores.

Again, there are two cases:

90

(a) If nNi >
COi −LOi
Di−LOi

, then by t∗ ≤ D′i and Ineq (2), we get

nOi = nNi ≥
⌈
CO
i − LOi
Di − LOi

⌉
≥ n ≥

⌈
CO
i − LOi − nNi D′i
Di − LOi −D′i

⌉

(b) If nNi ≤
COi −LOi
Di−LOi

, then by t∗ ≤ D′i and Ineq (1) we get

n =

⌈
CO
i − LOi − nNi t∗

Di − LOi − t∗

⌉
≤
⌈
CO
i − LOi − nNi D′i
Di − LOi −D′i

⌉
≤ nOi

Since nOi ≥ n in both cases, nOi cores are enough for a HMH job ji to be schedulable if

the transition happens during its execution.

In the following two lemmas, we bound the numbers of cores assigned to HMH tasks in

both the typical- and critical-state.

Lemma 27 For each HMH task τi, if Di ≥ bLNi , then the number of cores assigned in

typical-state is bounded by nNi ≤ (b− 1)uNi + uOi , for any b ≥ 2.

Proof. HMH task τi satisfies uNi > 1/(b − 1) and uOi > 1 ≥ 2/b, for b ≥ 2 . We consider

three cases for uNi and nNi :

Case 1. uN
i ≤ 2/b:

Since CN
i ≤ 2Di/b, from Inequality (2), we have

CN
i − LNi

2Di/b− LNi
≤ CN

i

2Di/b
≤ 1 ≤ uOi ⇒

⌈
CN
i − LNi

2Di/b− LNi

⌉
≤
⌈
uOi
⌉

Since 1/(b− 1) < uNi , we know (b− 1)uNi > 1. We can derive

nNi =
⌈
uOi
⌉
< 1 + uOi < (b− 1)uNi + uOi

Case 2. uN
i > 2/b and

⌈
CN

i −L
N
i

2Di/b−LN
i

⌉
≤
⌈
uO
i

⌉
:

This case is similar to Case 1; we also have nNi =
⌈
uOi
⌉
< (b− 1)uNi + uOi .

91

Case 3. uN
i > 2/b and

⌈
CN

i −L
N
i

2Di/b−LN
i

⌉
>
⌈
uO
i

⌉
:

In this case, since CN
i ≥ 2Di/b and LNi ≤ Di/b, from Inequality (1),

nNi =

⌈
CN
i − LNi

2Di/b− LNi

⌉
<

CN
i − LNi

2Di/b− LNi
+ 1 ≤ CN

i −Di/b

2Di/b−Di/b
+ 1 = buNi

Since uNi ≤ uOi , we get nNi ≤ buNi ≤ (b− 1)uNi + uOi .

Lemma 28 For a HMH task τi, if Di ≥ bLOi ≥ bLNi , then the number of cores assigned in

the critical-state is bounded by nOi ≤ buOi , for all 4 > b ≥ 2 +
√

2.

Proof. We denote n′ =
⌈
COi −nNi D′i−LOi
Di−D′i−LOi

⌉
and we will show that n′ < buOi .

n′ =

⌈
CO
i − nNi D′i − LOi
Di −D′i − LOi

⌉
≤
⌈
CO
i − uOi D′i − LOi
Di −D′i − LOi

⌉
[since nNi ≥ duOi e ≥ uOi]

=

⌈
CO
i − 2CO

i /b− LOi
Di − 2Di/b− LOi

⌉
[since D′i = 2Di/b]

<
CO
i − 2CO

i /b− LOi
Di − 2Di/b− LOi

+ 1

Since HMH task satisfies uOi > 1, so we have

CO
i −

2CO
i

b
= (1− 2

b
)uOi Di > (1− 2

b
)Di = Di −

2Di

b

92

Again by applying Inequality (1), we can get

n′ ≤ CO
i − 2CO

i /b−Di/b

Di − 2Di/b−Di/b
+ 1 [since LOi ≤ Di/b]

=
(b− 2)uOi − 1

b− 3
+ 1

<
(b− 2)uOi
b− 3

[since 1− 1
b−3

< 0, ∀4 > b > 3] (5.4)

≤ b(b− 3)uOi
b− 3

[since b(b− 3) ≥ (b− 2), ∀b ≥ 2 +
√

2]

= buOi

In Lemma 27, we know that nNi ≤ (b − 1)uNi + uOi ≤ buOi . Thus, by intersecting all the

ranges of b, we get the required result nOi = max
{
nNi , n

′} ≤ buOi , for all 4 > b ≥ 2 +
√

2.

Remark: At a high-level, the intuition behind the allocation is similar to HVH tasks,

albeit more complex. Clearly, nNi must be enough to schedule the nominal work; we need

nNi ≥
⌈
CNi −LNi
D′i−LNi

⌉
. In addition, we must balance the utilization in typical- and critical-states

by providing a lower bound on the amount of work done in the typical-state. In the first line

of Lemma 28, we calculate this lower bound by using the fact that nNi ≥ uOi . The overload

assignment is somewhat more straightforward; we must assign enough cores to complete the

remaining work after the mode transition, i.e. nOi ≥
⌈
COi −nNi D′i−LOi
Di−D′i−LOi

⌉
. In addition, we must

be careful that the number of cores does not decrease after the transition.

5.4.4 Proof of Correctness

Theorem 29 MCFS is correct — if the MCFS schedulability test declares a task set schedu-

lable, then the runtime scheduler guarantees that the conditions in Definition 2 are met for

all possible executions of the task system.

The correctness is obvious from Lemmas 21, 23 and 26.

93

Remark: Note that the correctness of MCFS does not rely on a particular b. In fact, the

schedulability test in Section 5.3.2 can use any b > 2 to check the schedulability. In fact, it

can use different b’s for different tasks. If the test passes for any set of b’s for various tasks,

then the task set is schedulable. Therefore, in principle, one can do an exhaustive search

using different values of b’s for different tasks to check for schedulability. The particular

values of b we used in our description are only in order to provide the capacity augmentation

bound. Based on this observation, we provide an improved schedulability test and mapping

algorithm for these high-utilization tasks in Section 5.6.

5.4.5 Proof of Capacity Augmentation Bound 2 +
√

2

We now show a capacity augmentation bound for a particular b = 2+
√

2; that is, if the total

utilizations in both the typical and critical-state are no more than m/b and the critical-path

lengths in both the nominal and overload condition are no more than the deadline divided

by b for all tasks, then MCFS always declares the task set schedulable.

We first define some notations, summarized in Table 5.1. The total nominal utilization

of all tasks of category C ∈ {LH, HVH, HMH} is denoted by UN
C and their total overload

utilization is UO
C . Similarly, the total number of cores assigned to tasks in category C in the

typical-state mapping ST is NN
C and in the critical-state mapping SC is NO

C .

Theorem 30 MCFS has a capacity augmentation bound of 2+
√

2. That is, if the conditions

from Definition 3 hold for b = 2 +
√

2, then the task set always satisfies the following

conditions (from Section 5.3.2):

(1) virtual deadline is valid — any task has LNi ≤ D′i and any high-criticality task has

LOi ≤ Di −D′i;

(2) typical-state mapping is valid — NN
LH +NN

HVH +NN
HMH ≤ m;

(3) critical-state mapping is valid — NO
HVH +NO

HMH ≤ m.

94

We prove the theorem by showing that MCFS satisfies each of the required conditions

via the following three lemmas.

Lemma 31 For any b > 3, if LNi ≤ LOi ≤ Di/b (Condition 3 of Definition 3), then the

virtual deadline is always valid.

Proof. LHI tasks: Virtual deadline D′i = Di, so LNi ≤ D′i.

HVH tasks: Virtual deadline D′i = Di/(b − 1) > Di/b ≥ LNi and Di − D′i = (b −

2)Di/(b− 1) > Di/b ≥ LOi , since for any b > 3, we have (b− 2)/(b− 1) > (b− 2)/b ≥ 1/b.

HMH tasks: Virtual deadline is D′i = 2Di/b > Di/b ≥ LNi and Di−D′i = (b−2)Di/b >

Di/b ≥ LOi for b > 3.

We now argue that a valid mapping ST can be generated for typical-state for a capacity

augmentation bound of b = 2 +
√

2.

Lemma 32 If the Conditions of Definition 3 hold for any b ≥ 2 +
√

2, then m ≥ NN
LH +

NN
HVH +NN

HMH and the typical state mapping ST is valid.

Proof. LHI tasks: From Lemma 22, for any b ≥ 2 +
√

2 > 3 we have

NN
LH =

∑
τi∈τLH

nNi ≤
∑
τi∈τLH

(b− 1)uNi = (b− 1)UN
LH

HVH tasks: From Lemma 24, for any b we always have

NN
HVH =

∑
τi∈τHVH

nNi ≤
∑

τi∈τHVH

uOi = UO
HVH

HMH tasks: From Lemma 27, for b ≥ 2 +
√

2 > 2 we have

NN
HMH ≤

∑
τi∈τHMH

((b− 1)uNi + uOi) = (b− 1)UN
HMH + UO

HMH

95

Since the Conditions of Definition 3 hold, we know UN = UN
LH + UN

HVH + UN
HMH ≤ m

b
and

UO = UO
HVH + UO

HMH ≤ m
b

. Therefore, we can derive

NN
LH +NN

HVH +NN
HMH

≤(b− 1)UN
LH + UO

HVH + (b− 1)UN
HMH + UO

HMH

≤(b− 1)(UN
LH + UN

HVH + UN
HMH) + UO

HVH + UO
HMH

≤(b− 1)m/b+m/b

=m

Thus, typical-state mapping is always valid if b = 2 +
√

2.

We now argue that the critical-state mapping SC is valid for b = 2 +
√

2.

Lemma 33 For a task set in critical-state under MCFS, if the Conditions of Definition 3

hold for b = 2 +
√

2 ≈ 3.41, then m ≥ NO
HVH +NO

HMH and mapping SC is valid.

Proof. HVH tasks: From Lemma 25, for for b = 2 +
√

2 ≈ 3.41 > 7+
√

33
4
≈ 3.19

NO
HVH =

∑
τi∈τHVH

nOi ≤
∑

τi∈τHVH

buOi = bUO
HVH

HMH tasks: From Lemma 28, for b = 2 +
√

2 we know

NC
HMH =

∑
τi∈τHMH

nOi ≤
∑

τi∈τHMH

buOi = bUO
HMH

Since the Conditions of Definition 3 hold, UO = UO
HVH + UO

HMH ≤ m/b.

NC
HVH +NC

HMH ≤ bUO
HVH + bUO

HMH ≤ m

Thus, critical-state mapping is always valid if b = 2 +
√

2.

96

Based on the properties of LH, HVH and HMH tasks, we observe that the bound of

2 +
√

2 is only required for HMH tasks in the critical-state mapping.

5.4.6 Lower Bound on Capacity Augmentation for High-Utilization

Tasks

Now we use an example task set to show the tightness of MCFS capacity augmentation

bound.

Theorem 34 The capacity augmentation bound for MCFS for high-utilization tasks on m

cores is at least β = 2 − 3
2m

+
√

(2− 3
2m

)2 − 2, when m > 9. When m → ∞, β → 2 +
√

2.

When m→ 9, β → 3.

Proof. On a system with m cores, consider a task set τ with a two tasks: τ1 is a low

criticality LH task with an utilization of u1 = 1 + ε1, where ε1 is an arbitrarily small positive

number; τ2 is a high criticality HMH task with an overload utilization of uO2 = −3
β2−4β+2

and

a nominal utilization of uN2 = (2
b
− 1

β
)uO2 . In addition, the nominal and overload critical-path

length of both tasks equals to 1/β of their deadlines.

Note that β = 2 − 3
2m

+
√

(2− 3
2m

)2 − 2 is one of the roots of −3
β2−4β+2

= m/β. Hence,

the total overload utilization of the task set is uO2 = m/β, while the total nominal utiliza-

tion of the task set is less than m/β. Therefore, the task set satisfies the conditions from

Section 5.3.2 for a bound of β.

For HMH task τ2, we know that by the MCFS mapping b = 2 +
√

2 and

⌈
CN

2 − LN2
2Di/b− LN2

⌉
=

⌈
βuN2 − 1

2β/b− 1

⌉
=

⌈
β(2

b
− 1

β
)uO2 − 1

2β/b− 1

⌉
<
⌈
uO2
⌉

Hence it is assigned with nN2 =
⌈
uO2
⌉

cores in the typical-state mapping.

97

Note that the larger the m, the larger the β. When m→∞, β → 2 +
√

2. Hence, β > b.

In the critical-state mapping, τ2 is assigned with nO2 cores.

nO2 =

⌈
CO
i − nNi D′i − LOi
Di −D′i − LOi

⌉
=

⌈
βuO2 −

2β
b

⌈
uO2
⌉
− 1

β − 2β
b
− 1

⌉

≥

⌈
βuO2 − 2

⌈
uO2
⌉
− 1

β − 2− 1

⌉
>

⌈
βuO2 − 2(uO2 + 1)− 1

β − 2− 1

⌉
=

⌈
(β − 2)uO2 − 3

β − 3

⌉
≥ (β − 2)uO2 − 3

β − 3

Note that for uO2 = −3
β2−4β+2

, we have
(β−2)uO2 −3

β−3
= βuO2 . Hence, nO2 > βuO2 = m and there

is not enough cores to assign to task τ2 in the critical-state mapping. Therefore, we reach

the conclusion.

5.5 MCFS for Multi-Criticality Systems

We now extend MCFS to systems with more than two criticality levels, still assuming that

all tasks are high-utilization tasks. We describe the system model with 3 criticality levels,

which can be generalized easily to more than three levels. Then, we will argue that MCFS

provides a capacity augmentation bound of (5 +
√

5)/2 for systems with 3 or more criticality

levels.

5.5.1 Multi-Criticality System Model

The tuple (Zi, C
N
i , C

O
i , L

N
i , L

O
i , Di) still represents a task; that is, in our model, each task

still has two behaviours: nominal work CN
i estimated by the system designer and overload

work CO
i estimated by the certification authorities (similarly for critical-path length).3 In

all the criticality levels that are same or below Zi, task τi exhibits nominal behavior. If

3There is another multi-criticality model [150] assuming that a task has more than two work estimates,
one for each criticality level.

98

τi overruns its nominal parameters, then the system transitions to the criticality level Zi.

The only exception is for tasks with the lowest criticality level Zi = LO: if they overrun

their nominal parameters, they are allowed to miss their deadlines. An example for three

criticality levels Zi ∈ {LO,ME,HI} for low, medium and high, is shown in Table 5.4.

Table 5.4: Tasks’ Per-Criticality Work, Critical-Path Length and Core Assignment of
a 3-Criticality System

Work, Critical-Path Length Core Assignment under MCFS

Task LO- ME- HI- Typical- Intermediate- Critical-

Criticality Work Work Work State State State

LO CN
i , LNi - - nNi - -

ME CN
i , LNi CO

i , LOi - nNi nOi -

HI CN
i , LNi CN

i , LNi CO
i , LOi nNi nNi nOi

A scheduler for a 3-Criticality System must satisfy the following conditions:

(1) If the system remains in the typical-state, then all tasks must meet their deadlines

based on their nominal parameters (work and critical-path length);

(2) If any medium-criticality task exceeds its nominal parameters, then the system transi-

tions into the intermediate-state — all medium- and high-criticality tasks must meet

their deadlines based on their medium-criticality parameters (including work and critical-

path length) shown in the second column in Table 5.4 (i.e. nominal parameters for

high-criticality tasks and overload parameters for medium-criticality tasks). The sched-

uler is allowed to discard all low-criticality tasks;

(3) If any high-criticality task overruns its nominal parameters, then the system transi-

tion into the critical-state. High-criticality tasks still meet their deadlines based on

their high-criticality parameters shown in the third column in Table 5.4 (i.e. overload

parameters). The scheduler is allowed to discard all low and medium-criticality tasks.

99

Table 5.5: High-Utilization Task Classification of a 3-Criticality System

Task Type Criticality Nominal Utilization Overload Utilization

HMH High 1
b−1

< uNi ≤ uOi 1 < uOi

HVH High uNi ≤ 1
b−1

1 < uOi

MMHMMHMMH MediumMediumMedium 1
b−1

< uNi ≤ uOi 1 < uOi

MVHMVHMVH MediumMediumMedium uNi ≤ 1
b−1

1 < uOi

LH Low 1 < uNi NA

Table 5.6: High-Utilization Tasks’ Assignments of a 3-Criticality System

Task Virtual Number of assigned cores Number of assigned cores

Type b Deadline D′i nNi for nominal behavior nOi for overload behavior

HMH 2 +
√

2 2Di
b

max
{⌈

CNi −LNi
D′i−LNi

⌉
,
⌈
uOi
⌉}

max
{
nNi ,

⌈
COi −nNi D′i−LOi
Di−D′i−LOi

⌉}
HVH 2 +

√
2 Di

b−1

⌊
uOi
⌋ ⌈

COi −nNi D′i−LOi
Di−D′i−LOi

⌉
MMHMMHMMH (5 +

√
5)/2(5 +
√

5)/2(5 +
√

5)/2 2Di
b

max
{⌈

CNi −LNi
D′i−LNi

⌉
,
⌈
uOi
⌉}

max
{
nNi ,

⌈
COi −nNi D′i−LOi
Di−D′i−LOi

⌉}
MVHMVHMVH (5 +

√
5)/2(5 +
√

5)/2(5 +
√

5)/2 Di
b−1

⌊
uOi
⌋ ⌈

COi −nNi D′i−LOi
Di−D′i−LOi

⌉
LH 2 Di

⌈
CNi −LNi
Di−LNi

⌉
NA

5.5.2 Multi-Criticality MCFS Algorithm and Bound

We now generalize the MCFS algorithm to 3-criticality systems. The classification, virtual

deadline and core assignments are shown in Table 5.5 and 5.6. Note that the classification

is similar to the one shown in Section 5.3. Moreover, the assignments for medium-criticality

tasks are almost identical to high-criticality tasks, except for a slightly larger b that is

designed to provide the capacity augmentation bound of multi-criticality MCFS.

100

To calculate the mappings ST , SI , and SC , we simply assign cores according to the task

behavior shown in Table 5.4. For instance, in the intermediate-state mapping, a medium-

criticality task gets nOi cores while a high-criticality task gets nNi cores. In the schedulability

test, we add an additional condition saying that the total number of cores assigned in the

intermediate-state is at most m. The other conditions remain the same. The following

theorem gives the capacity augmentation bound.

Theorem 35 Multi-criticality MCFS with only high-utilization tasks is correct and has a

capacity bound of (5 +
√

5)/2 — if the conditions from Definition 3 hold for b = (5 +
√

5)/2,

then the task set satisfies the following conditions of MCFS schedulability test:

(1) virtual deadlines for high-utilization tasks are valid — any LH, HVH or HMH task has

LNi ≤ D′i and any HVH or HMH task has LOi ≤ Di −D′i;

(2) typical-state mapping is valid — nNLH + nNMVH + nNMMH + nNHVH + nNHMH ≤ m;

(3) intermediate-state mapping is valid — nOMVH + nOMMH + nNHVH + nNHMH ≤ m;

(4) critical-state mapping is valid — nOHVH + nOHMH ≤ m.

Proof. Recall that we noted in Section 5.4.4 that if the schedulability test passes for

any b > 2, then the task set is schedulable. Since medium-criticality tasks are classified and

scheduled just like high-criticality ones with the only modification that b = (5+
√

5)/2 ≈ 3.62,

the correctness is obvious.

The proof of capacity augmentation is similar to Theorem 30: the critical-state mapping

is identical to Lemma 33; and the proofs for the typical-state mapping and the virtual

deadline are similar to Lemma 32 and Lemma 31, respectively, with the only difference

being b = (5 +
√

5)/2.

Now we only prove the differences. We must bound the number of assigned cores in the

intermediate-state mapping and prove that NO
MVH + NO

MMH + NN
HVH + NN

HMH ≤ m. Note

that in the intermediate-state, medium-criticality tasks are assigned cores according to their

101

overload parameters, while high-criticality tasks are assigned according to their nominal

parameters.

For high-criticality tasks, from Lemmas 24 and 27 we have

NN
HVH +NN

HMH ≤ UO
HVH + (b− 1)UN

HMH + UO
HMH

Medium-criticality tasks are more interesting. In order to use a lemma similar to Lemma 32,

we must bound nOMVH and nOMMH. Unfortunately, it is not sufficient to bound them by bUO
MVH

and bUO
MMH as in Lemmas 25 and 28.

Instead, we show a modified result similar to Lemma 25 and bound nOMVH by (b−1)UO
MVH.

From Lemma 25, we know that Inequality (5.3) is correct for any b. Since we want to bound

nOMVH by (b− 1)UO
MVH, we need to solve the inequality 3b2−7b+2

2(b2−3b+1)
≤ b− 1, which is equivalent

to 2b3− 11b2 + 15b− 4 ≥ 0. We denote f(b) = 2b3− 11b2 + 15b− 4. Note that f(b) is always

increasing for b ≥ (5 +
√

5)/2 ≈ 3.62 > (11 +
√

31)/6 ≈ 2.76 and f((5 +
√

5)/2) = 1 > 0.

Therefore, for b ≥ (5 +
√

5)/2, we have:

nOi ≤
3b2 − 7b+ 2

2(b2 − 3b+ 1)
uOi ≤ (b− 1)uOi

Similarly, we derive a modified result for Lemma 28. The Inequality (5.4) in Lemma 28

is correct for any 4 > b > 3. Since we want to bound nOMMH by (b − 1)UO
MMH, this requires

that b− 2 ≤ (b− 1)(b− 3). Therefore, for b ≥ (5 +
√

5)/2 ≈ 3.62 we have

nOi ≤
(b− 2)uOi
b− 3

≤ (b− 1)uOi

102

Thus, for b ≥ (5 +
√

5)/2, we can show that NO
MVH ≤ (b − 1)UO

MVH and NO
MMH ≤ (b −

1)UO
MMH. Therefore, the intermediate-state mapping has

nOMVH + nOMMH + nNHVH + nNHMH

≤(b− 1)UO
MVH + (b− 1)UO

MMH + UO
HVH + (b− 1)UN

HMH + UO
HMH

≤(b− 1)(UO
MVH + UO

MMH + UN
HVH + UN

HMH) + UO
HVH + UO

HMH

≤(b− 1)m/b+m/b ≤ m

The typical-state mapping is similar to Lemma 32, while the critical-state mapping is

the same as Lemma 33. By intersecting all the ranges of b, multi-criticality MCFS has a

capacity bound of (5 +
√

5)/2 ≈ 3.62.

Remark: Why is the capacity augmentation bound 2+
√

2 for dual-criticality systems and

(5 +
√

5)/2 for systems with 3 or more criticality levels? In general, when a system is in the

criticality level Zi, the tasks at criticality level Zi exhibit overload behavior, while all tasks

with higher criticality levels exhibit nominal behavior. However, dual-criticality systems have

a special property that lets us prove a better bound: when the system is in the typical-state,

the low-criticality tasks exhibit nominal behavior (instead of overload behavior).

Generalization to more than 3 criticality levels: Consider the system with l criti-

cality levels {LO, Z2, ..., Zi, ..., Zl−1,HI}. The classification, virtual deadline and core assign-

ments for a task with criticality Zi where 1 < i < l are identical to medium-criticality tasks

shown in Table 5.5 and 5.6, using b = (5 +
√

5)/2. In particular, tasks with criticality Zi

where 1 < i < l are classified into ZiMH and ZiVH tasks, based on their nominal utilization.

Since the assignments for ZiMH tasks are the same as MMH tasks and the assignments for

ZiVH tasks are the same as MVH tasks, hence we can prove the correctness and capacity

augmentation bound similarly.

103

Note that this bound is not related to the number of criticality levels. This is because

in our model each task has two behaviours: the nominal behaviour estimated by the system

designer and the overload behavior estimated by the certification authorities. For a task τi

with criticality Zi where 1 < i < l, all tasks with lower criticality levels than τi are discarded;

all tasks with higher but not highest criticality level Zj where i < j < l exhibit nominal

behavior and have the same nominal core assignment using b = (5 +
√

5)/2, so we do not

need to distinguish them. In addition, since Lemma 24 and 27 hold for b = (5 +
√

5)/2, for

criticality level Zj we have nNZjVH + nNZjMH ≤ UO
ZjVH + (b− 1)UN

ZjMH +UO
ZjMH. Similar to (3) in

Theorem 35, the mapping for criticality level Zi is valid — nOMVH + nOMMH + nNZjVH + nNZjMH +

nNHVH +nNHMH ≤ m. Therefore, the capacity augmentation bound remains the same for more

than 3 criticality levels.

5.6 Improve MCFS Algorithm for High-Utilization Tasks

In Sections 5.3 and 5.5, we presented the MCFS mapping algorithm for high-utilization

tasks that are designed especially for task sets satisfying the conditions from Section 5.3.2

for a capacity augmentation bound of 2 +
√

2 and (5 +
√

5)/2 for dual- and multi-criticality

task sets, respectively. Because of the design of this particular MCFS mapping algorithm,

however, for task sets that violate these conditions it may not be able to find a valid mapping,

even though there may exist a mapping that can schedule the task sets.

To improve the schedulability of MCFS algorithm, in this section we present the improved

MCFS algorithm as MCFS-Improve based on heuristics for finding a valid mapping for

task sets having even higher utilizations than is indicated by the capacity augmentation

bound. For the rest of this section, we use the dual-criticality system as an example. The

proposed MCFS-Improve algorithm can be easily extended from dual- to multi-criticality

systems.

104

1 // First, assign virtual deadlines and cores according to the basic MCFS mapping

2 b = 2 +
√

2
3 for each task τi in the task set
4 if τi is a LH task:
5 if Di − LNi ≤ 0: return unschedulable

6 D′i = Di; n
N
i =

⌈
CNi −LNi
Di−LNi

⌉
; nOi = 0

7 elseif τi is a HVH task:
8 if Di − LNi − LOi ≤ 0: return unschedulable

9 elseif b−2
b−1

Di > LOi : D′i = Di
b−1

; nNi =
⌊
uOi
⌋
; nOi =

⌈
COi −nNi D′i−LOi
Di−D′i−LOi

⌉
10 else : D′i =

LNi Di
LNi +LOi

; nNi =
⌈
CNi −LNi
D′i−LNi

⌉
; nOi = max

{
nNi ,

⌈
COi −nNi D′i−LOi
Di−D′i−LOi

⌉}
11 elseif τi is a HMH task:
12 if Di − LNi − LOi ≤ 0: return unschedulable

13 elseif b−2
b
Di > LOi : D′i = 2

b
Di; n

N
i = max

{⌈
CNi −LNi
D′i−LNi

⌉
,
⌈
uOi
⌉}

;

14 else : D′i =
LNi Di
LNi +LOi

; nNi =
⌈
CNi −LNi
D′i−LNi

⌉
;

15 nOi = max
{
nNi ,

⌈
COi −nNi D′i−LOi
Di−D′i−LOi

⌉}
Figure 5.1: MCFS-Improve mapping algorithm and schedulability test (initialization
step)

Why can’t MCFS mapping algorithm generate a valid mapping for task sets that do not

satisfy conditions of capacity augmentation bounds? This is mainly caused by the fixed

parameter b in table 5.3 and 5.6. As discussed in Section 5.4.4, the correctness of MCFS

does not rely on a particular b. The particular value of b is chosen to assign roughly b times

the total utilization in nominal-state and also b times the total utilization in critical-state.

When conditions of capacity augmentation bound of b are satisfied, the total utilizations in

both states are less than m/b, so there are enough cores to assign to each task. However,

when the conditions are not satisfied, e.g. the total utilization in critical-state is larger than

m/b while the total utilization in typical-state is less than m/b, the available cores in the

critical-state are not enough. Note that there are extra cores in the typical-state that are

not assigned to any task. These cores could be assigned to some tasks in the typical-state,

so that the tasks would need less cores in the critical-state.

105

1 nN =
∑

i n
N
i , nO =

∑
i n

O
i

2 // Both critical- and typical-state mappings are valid
3 if nN ≤ m and nO ≤ m: return schedulable
4 // Both critical- and typical-state mappings are not valid
5 elseif nN > m and nO > m: return unschedulable
6 // There are not enough cores for critical-state mapping
7 elseif nN ≤ m and nO > m:
8 while nN =

∑
i n

N
i ≤ m:

9 a = min{m− nN , 1}
10 for each task τi in the task set, where τi is not a LH task:

11 n̄Ni = nNi + a, D̄′i =
CNi −LNi
n̄Ni

+ LNi ;

12 if n̄Ni <
COi −LOi
Di−LOi

: n̄Oi =
⌈
COi −n̄Ni D̄′i−LOi
Di−D̄′i−LOi

⌉
13 else : n̄Oi =

⌈
COi −n̄Ni (D̄′i−LNi)−LOi
Di−D̄′i−(LOi −LNi)

⌉
14 xi = nOi − n̄Oi
15 τi is the task with the maximum decrease xi
16 for τi, update D′i = D̄′i, n

N
i = n̄Ni , nOi = n̄Oi

17 if a == 0: for each τi, update D′i = D̄′i, n
N
i = n̄Ni ; nOi = n̄Oi ; break

18 if nO =
∑

i n
O
i ≤ m: return schedulable

19 else : return unschedulable
20 // There are not enough cores for typical-state mapping
21 elseif nN > m and nO ≤ m:
22 while nO =

∑
i n

O
i ≤ m:

23 b = min{m− nO, 1}
24 for each task τi in the task set, where τi is not a LH task:

25 n̄Ni = nNi − 1, D̄′i =
CNi −LNi
n̄Ni

+ LNi ;

26 if Di − D̄′i − LOi ≤ 0: yi =MAX, continue

27 if n̄Ni <
COi −LOi
Di−LOi

: n̄Oi =
⌈
COi −n̄Ni D̄′i−LOi
Di−D̄′i−LOi

⌉
28 else : n̄Oi =

⌈
COi −n̄Ni (D̄′i−LNi)−LOi
Di−D̄′i−(LOi −LNi)

⌉
29 yi = n̄Oi − nOi
30 τi is the task with the minimum increase yi
31 if yi ≤ b: for τi, update D′i = D̄′i, n

N
i = n̄Ni , nOi = n̄Oi

32 else : break
33 if nN =

∑
i n

N
i ≤ m: return schedulable

34 else : return unschedulable

Figure 5.2: MCFS-Improve mapping algorithm and schedulability test (adjustment
step)

106

The MCFS-Improve algorithm is designed based on this observation. As shown in Fig-

ure 5.1, it starts with the original MCFS mapping in table 5.3, with the exception for tasks

with critical-path lengths longer than Di/b. For these tasks, the originally assigned virtual

deadline may not be enough to complete the critical-path length in one of the states. Unlike

the basic MCFS that deems such tasks unschedulable, MCFS-Improve still tries to calculate

a valid virtual deadline in the initialization step. If the initial core assignments in the typical-

and critical-state are already valid, then MCFS-Improve admits this task set. Note that for

task sets satisfying the conditions of capacity augmentation bound, the virtual deadline and

core assignments are the same, so MCFS-Improve also has a capacity augmentation bound

of 2 +
√

2.

Moreover, for task sets without a valid mapping in the initialization step, MCFS-Improve

adjusts the virtual deadline and core assignment according to some heuristics. At a high

level, according to whether the number of cores is insufficient in the typical- or critical-state,

MCFS-Improve selectively chooses some tasks, and decreases or increases the number of cores

assigned in the typical-state. The tasks are chosen greedily, in order to have the maximum

impact on balancing the core assignments in both states. For example, when there are not

enough cores in the critical-state, MCFS-Improve chooses a task τi to increase the number

of cores in the typical-state. With extra cores, τi is able to complete its nominal work faster,

allowing a shorter virtual deadline and hence more time to complete its overload work. Thus,

the number of cores required by τi in the critical-state could decrease. Task τi is selected,

such that it has the maximum decrease of the number of cores in the critical-state. By

increasing the total cores assigned in typical-state, the total cores assigned in critical-state

could eventually be less than m. The adjustment strategy is similar for the case where there

are not enough cores in the typical-state.

The correctness of MCFS-Improve algorithm in Figure 5.2 can be derived from the fol-

lowing lemma, which tells us how to calculate the minimum number of cores required in the

critical-state, given the core assignment in the typical-state. Note that for LH tasks, the

107

core assignment is already tight for the typical-state and the LH tasks are not assigned any

core in the critical-state, so MCFS-Improve does not change the mapping for LH tasks.

Lemma 36 If a high-criticality high-utilization task τi is assigned with nNi cores in the

typical-state, then it can complete its nominal work by a virtual deadline of D′i, where D′i =

CNi −LNi
nNi

+ LNi . Given nNi and D′i, it only needs nOi cores to complete the overload work by

deadline Di, where

nOi =


⌈
COi −nNi D′i−LOi
Di−D′i−LOi

⌉
nNi <

COi −LOi
Di−LOi⌈

COi −nNi (D′i−LNi)−LOi
(Di−D′i)−(LOi −LNi)

⌉
nNi ≥

COi −LOi
Di−LOi

.

Proof. We can easily prove that the virtual deadline is sufficient by applying Lemma

20. For the number of cores assigned in the critical-state, the proof is similar to that of

Lemma 26. Let t∗ ≤ D′i be the number of complete steps where all cores are busy working

and D′i−t∗ ≤ LNi be the number of incomplete steps where the critical-path length decreases

before the transition. Then, at the transition, the job has CO − nNi t∗ − D′i + t∗ remaining

work and LOi − D′i + t∗ remaining critical-path length that must be completed in Di − D′i

time steps. Therefore, τi is guaranteed to complete by the deadline, if τi is allocated at least

n dedicated cores, where

n =

⌈
(CO − nNi t∗ −D′i + t∗)− (LOi −D′i + t∗)

(Di −D′i)− (LOi −D′i + t∗)

⌉
=

⌈
CO
i − LOi − nNi t∗

Di − LOi − t∗

⌉

Now consider two cases:

Case 1: If nNi <
COi −LOi
Di−LOi

, by applying Ineq (1) and t∗ ≤ D′i, we get

n =

⌈
CO
i − LOi − nNi t∗

Di − LOi − t∗

⌉
≤
⌈
CO
i − LOi − nNi D′i
Di − LOi −D′i

⌉
= nOi

108

Case 2: If nNi ≥
COi −LOi
Di−LOi

, by applying Ineq (2) and t∗ ≥ D′i − LNi , we get

n =

⌈
CO
i − LOi − nNi t∗

Di − LOi − t∗

⌉
≤
⌈
CO
i − LOi − nNi (D′i − LNi)

Di − LOi − (D′i − LNi)

⌉
= nOi

Combining the two cases gives us the proof.

Remark: MCFS-Improve algorithm is a greedy algorithm that runs in polynomial time.

The numerical experiments conducted in Section 5.9 are consistent with the analysis that

MCFS-Improve can admit more task sets than the original MCFS algorithm and it can admit

task sets with utilizations much higher than that indicated by the capacity augmentation

bound. Note that due to the integer requirement of core assignment as well as the complexity

of the calculation, the derived mapping may not be the global optimal mapping. However,

when CO
i − LOi > CN

i − LNi and (CO
i − LOi)(Di − LOi − LNi) > (CN

i − LNi)LNi (both are

reasonable constraints on a parallel task) the calculation is approximately convex, so the

algorithm may find the close to optimal mapping.

5.7 General Case for Dual-Criticality MCFS

We can generalize MCFS to dual-criticality task systems with both high- and low-utilization

tasks (both the nominal utilization and overload utilization are at most 1). The high-

utilization tasks are still scheduled in a similar manner as in Section 5.3, while we treat

low-utilization tasks as sequential tasks and schedule them using a mixed-criticality multi-

processor scheduler for sequential tasks. In particular, in addition to the three categories

from Section 5.3, we have two additional categories specific to low-utilization tasks. LO-Low

(LL) tasks are low-criticality tasks with low-utilization in nominal behavior, i.e. uNi ≤ 1.

HI-Low-Low (HLL) tasks are high-criticality tasks with low-utilization in both behaviors,

i.e. uNi ≤ uOi ≤ 1. We denote the set of low-utilization tasks as τSeq = {τi ∈ τLL ∪ τHLL} and

their total utilizations in nominal and overload behavior as UN
Seq and UO

Seq, respectively.

109

Note that these tasks are essentially sequential tasks, since they do not require parallel

execution to meet their deadlines in either states. Therefore, MCFS can use any existing

mixed-criticality multiprocessor scheduler S for sequential tasks to schedule these tasks.

Here, as an example, we assume that we will use MC-Partition [21] to assign these tasks to

cores. Say that the total numbers of assigned cores in typical- and critical-state to these

tasks is NN
Seq and NO

Seq; unlike MC-Partition, these may be unequal.

At runtime, in the typical-state, high-utilization tasks still execute on their dedicated

cores in parallel, while all tasks in τSeq execute on shared NN
Seq cores. If any HLL task

overruns its nominal work, the system transitions to critical-state and all LL tasks are

immediately discarded. In addition, if NO
Seq > NN

Seq, some HLL tasks may need to migrate

to cores assigned to some additional low-criticality tasks (from set LH). LH tasks may also

be discarded in order to acquire NO
Seq total cores for HLL tasks in overload behavior.

Therefore, even though high-utilization tasks never migrate even when the system tran-

sitions to critical-state, migration may be required for low-utilization tasks. This is because

two or more HLL tasks may share a core in typical state without exceeding the nominal uti-

lization bound of a single core, but their total overload utilization may increase to more than

the capacity of a single core. For example, if we choose to use the MC-Partition-UT-0.75

algorithm presented in [21] to schedule low-utilization tasks, the total numbers of assigned

cores NN
Seq and NO

Seq in typical- and critical-state could be different. In such cases, some

high-criticality low-utilization tasks may migrate when the system transitions from typical-

to critical-state.

Correctness and Capacity Augmentation Bound: Recall that tasks in the LL and

HLL categories are scheduled using the chosen scheduler S and are executed sequentially

since they have utilization no more than 1 in both states. Therefore, the correctness of this

algorithm follows from Section 5.4.4 and from the correctness of the chosen scheduler S for

low-criticality tasks.

110

The following theorem proves the capacity augmentation bound.

Theorem 37 For dual-criticality systems with both high- and low-utilization tasks, MCFS

has a capacity augmentation bound of (s + 1)m/(m − 1) where 1
s
≥ 1

1+
√

2
is the utilization

bound of the mixed-criticality multiprocessor scheduler S used by MCFS to schedule low-

utilization tasks. For instance using a modified version of MC-partition [21], we get a bound

of 11/3×m/(m− 1) ≈ 3.67 for large m.

Proof. The proof for capacity augmentation is obtained by simply noticing that all the

relevant lemmas for high-utilization tasks, namely Lemmas 22, 24, 27, 25, and 28, work for

s+ 1 ≥ 2 +
√

2. In addition, Section 5.3 shows that virtual deadlines are valid for any b > 3.

Here we denote UN = UN
Seq +UN

LHi +UN
HVH +UN

HMH ≤ m/b and UO = UO
Seq +UO

HVH +UO
HMH ≤

m/b.

As 1
s

is the utilization bound of the chosen scheduler S for low-utilization tasks, the

number of cores assigned to them in nominal and critical-states are

NN
Seq =

⌈
sUN

Seq

⌉
< sUN

Seq + 1 and NO
Seq =

⌈
sUO

Seq

⌉
< sUN

Seq + 1

As b = (s+ 1)/(1− 1/m), for typical-state mapping we can derive

NN
Seq +NN

LHi +NN
HVH +NN

HMH

≤sUN
Seq + 1 + sUN

LHi + UO
HVH + sUN

HMH + UO
HMH

≤sUN + 1 + UO ≤ sm/b+ 1 + UO

≤ ((1− 1/m)b− 1)m/b+ 1 +m/b = m

For critical-state mapping, we can also derive that

NO
Seq +NO

HVH +NO
HMH ≤ sUO + 1 ≤ sm/b+ 1 ≤ m

111

For instance, since MC-Partition-UT-0.75 has a utilization bound4 of 3
8
, MCFS using

MC-Partition has a capacity augmentation bound approaching 11
3

, when m is large and

m/(m− 1) ≈ 1.

In principle, the MCFS scheduler, can handle low-utilization tasks by utilizing any mixed-

criticality multiprocessor scheduling strategy for sequential tasks. However, as far as we

know, there is no prior work that shows a utilization bound for systems with more than

2 criticality levels; therefore, for such task sets we cannot prove a capacity-augmentation

bound and restrict ourselves to tasks which exhibit high-utilization at least in their overload

state.

5.8 Implementation of a MCFS Runtime System

We demonstrate the applicability of MCFS, as described in Section 5.3, by implementing

a real-time MCFS runtime system for a dual-criticality system with high-utilization tasks.

This reference implementation supports parallel programs written in OpenMP [125]. It uses

Linux with the RT PREEMPT patch as the underlying RTOS and the OpenMP parallel

concurrency platform to manage threads and assign work at runtime.

Three key requirements are derived for the MCFS runtime: (1) the system must detect

when any high-criticality task has overrun its virtual deadline; (2) it must modify the core

allocation to give more cores to high-criticality tasks in the event of a virtual deadline miss;

and (3) since the number of active threads in the system fluctuates with its criticality state,

it must provide a state-aware concurrency mechanism to facilitate parallel programming —

i.e., a state-aware barrier.

Overrun Detection: The MCFS runtime system detects that a high-criticality task over-

runs its virtual deadline via Linux’s timer create and timer settime API. These timers

are set and disarmed at the start and end of each period by each high-criticality task while

4As proved in [21], it has a speedup of 8
3 compared to 100% utilization.

112

in the typical-state, so expiration only occurs in the event of an overrun. Timer expirations

are delivered via signals and signal handlers. To make sure that the timer expiration is

noticed promptly, kernel ksoftirq threads are given higher real-time priority than all other

threads.5

Core Reallocation: A key requirement of MCFS is to increase the allocation of cores

to a high-criticality task when it exceeds its virtual deadline, by taking cores away from

low-criticality tasks. This is accomplished in four parts. (1) At the start of execution, each

high-criticality task τi creates the maximum number of threads it would need in the critical-

state (nOi). Each low criticality task creates nNi threads. (2) When the runtime system

initializes (in typical-state), only nNi threads are awake for each task and they are pinned to

distinct cores6. (3) The remaining nOi − nNi threads of high-criticality tasks are put to sleep

with the FUTEX WAIT system call, while also pinned to their cores (which may be shared with

a low-criticality task). These threads sleep at a priority higher than any low-criticality thread

on the same core. (4) When a job of high-criticality task τi overruns its virtual deadline, its

sleeping threads are awoken with FUTEX WAKE and they preempt the low-criticality thread

on the same core and begin executing.

Note that the set of cores assigned by the typical-state mapping to τi is a subset of the

cores assigned by the critical-state mapping; therefore, the system needs no migration for

the high-utilization tasks.

In this design, the threads of each task must be activated and deactivated each period via

the OpenMP directive #pragma omp parallel. Thus, this approach of maintaining a pool

of unused, high-criticality threads does impose an additional overhead on the system, even if

it never transitions into critical-state, due to these activations and deactivations. However,

5This could be a potential source of criticality inversion; however, in our system, this is not a major
source of overhead. The alternative, thread-context notification, can be subject to unsuitably long delays.

6In order to pin threads to cores, before the task execution, we use an initial #pragma omp parallel

directive where individual threads make a call to Linux’s sched setaffinity and pin themselves to the
assigned cores.

113

these overheads are only imposed on low-criticality tasks by high-criticality tasks, so there

is no criticality inversion.

When a job of high-criticality task τi overruns its virtual deadline and preempts the

low-criticality tasks on the shared cores, the current jobs of these low-criticality tasks may

continue to execute when the higher-priority threads from high-criticality tasks are idling. If,

however, the start times of the these low-criticality jobs are already later than their absolute

deadlines, such jobs are dropped voluntarily by low-criticality tasks. Therefore, when the

system is able to recover from critical-state to typical-state, there is little backlog of low-

criticality jobs and the future arriving jobs of the same task are able to resume normal

execution. Note that for systems that can tolerate tardiness for low-criticality jobs, an

alternative implementation would not drop these backlogged jobs.

The primary reason for allowing current low-criticality jobs to run at a lower priority

instead of directly killing the threads of these job is to avoid the cost of creating new threads

during system operation, but it also allows the low-criticality threads to make progress on

a best-effort basis. Note that since we allow low-criticality threads to continue executing

after a mode transition has occurred, they will continue to interfere with high-criticality

threads through cache pollution, resource contention, and other effects. Even so, allowing

low-criticality threads to continue progressing seems appropriate for a soft real-time system.

The other options are to kill these processes or to suspend them, but we do not investigate

these options here.

Since high-criticality tasks do not share cores in MCFS, if a high-criticality task receives a

timer signal, indicating that it has overrun its virtual deadline, it does not initiate a system-

wide mode switch. Instead, it simply wakes up its sleeping nOi − nNi threads and acquires

the necessary additional cores from a subset of low-criticality tasks. If a low-criticality task

overruns its deadline, it need not do anything. This natural implementation leads to graceful

degradation since not all low-criticality tasks are discarded on entering critical-state.

114

Latency due to mode transition: The most important factor to optimize for ensuring

the safe operation of high-criticality tasks is the high-criticality activation latency— the delay

between when a mode transition is detected and when the additional nOi −nNi high-criticality

threads that were sleeping in the typical mode wake up and are ready to perform work. We

measure this by inducing a mode transition at a fixed time, and the extra threads perform

a time-stamp as soon as they wake up. The difference between the mode switch time and

the latest time-stamp gives the latency. This latency was very low in general and increases

with the increasing number of threads. We varied the number of awoken threads from one

to fourteen, measuring the latency 400 times for each setting, and the maximum observed

latency was 84 microseconds.

Note that this mode transition latency may occur only once for each high-criticality job

in the critical-state. To incorporate it into schedulability analysis, we subtract it from the

deadline of each high-criticality task.

Impact of high-criticality tasks on low-criticality tasks: As discussed in Section 5.8,

low-criticality tasks incur overhead when they share a core with a high-criticality task. The

low-criticality task is subject to interruption by high-criticality threads that must sleep

and awake at the start and end of every period, which involves two context switches, the

start and end of a #pragma omp parallel directive, and interactions with a Linux futex.

We compare the wall-clock execution time of the low-criticality task with the Linux clock

source CLOCK THREAD CPUTIME ID to infer the total amount of time the low-criticality task

was preempted. The maximum observed overhead was relatively high at 1555 microseconds

per preemption. In our system, it was important to incorporate this overhead into the

schedulability test to ensure that low-criticality tasks meet their deadlines. This overhead

is only incurred when a high-criticality task’s sleeping thread is sharing a core with a low-

criticality task in the typical-state. In addition, the preemption only occurs once per period

of the high-criticality task. Therefore, we can calculate the maximum number of preemptions

115

and subtract the appropriate time from the low-criticality task’s deadline. This allows the

scheduler to assign the correct number of cores to low-criticality tasks.

Discussion:: For tasks in our experiments on the simple prototype platform, we were able

to mitigate the effect of this overhead by incorporating it into the schedulability test. For

tasks at smaller time scales, this overhead may be unacceptably high. It is mostly attributed

to the cost of entering and exiting the #pragma omp parallel each period as shown in

Figure 5.3. For a reference system like we have described here, the choice of including

the parallel directive within the periodic invocation greatly simplifies programming and

reasoning about the system, as well as allows the user to use existing parallel programs

with little modification, but the overhead may be unsuitably high for practical systems. In

a traditional OpenMP program, the parallel directive would be used once or just a few

times— calling it once every period exposes an important limitation of this standard parallel

concurrency platform when used in real-time systems.

1 perioidic iteration(){
2 #pragma omp parallel
3 {
4 if(typical state && high crit task)
5 sleep extra threads()
6
7 // Do parallel program
8 #pragma omp for schedule(dynamic) nowait
9 for (j = 0; j < num strands; ++j)

10 {
11 // Perform work
12 busy work()
13 }
14
15 mc barrier wait()
16 wake extra threads()
17 }
18 }

Figure 5.3: Periodic Task Invocation Psuedocode

116

1 // Called asynchronously by signal handler
2 barrier state switch()
3 needs switch = true
4
5 check needs updating()
6 if (needs switch)
7 atomically claim switcher()
8 if (switcher)
9 verify barrier inactive()

10 update barrier count()
11 needs switch = false
12 release spinwaiters()
13 else spinwait()
14
15 mc barrier wait()
16 check needs updating()
17 do barrier wait()

Figure 5.4: Mode Aware Barrier Psuedocode

State-Aware Barrier Implementation: One side-effect of mixed-criticality model for

parallel tasks is that counting-based thread synchronization methods such as barriers will

not work properly as the number of active threads fluctuates. For OpenMP in particular,

if some threads in an OpenMP team are sleeping (as in our implementation), the implicit

barrier at the end of each #pragma omp for loop may deadlock, if the sleeping threads never

arrive.

We address this by removing the implicit barrier with the OpenMP clause nowait, as

shown in Figure 5.3 and implementing a state-aware barrier shown in Figure 5.4, which

operates as follows. When a task begins a transition, its signal handler sets a variable

indicating that the barrier needs updating before waking the extra high-criticality threads.

The next thread to encounter the barrier checks this variable and claims responsibility for

updating with an atomic compare-and-swap on a boolean flag. Other threads arriving after

that will spin-wait. The update thread will then verify that the barrier is not currently being

117

modified by any thread that arrived before the transition, spin-waiting otherwise, and finally

will increment the barrier count when it is safe to do so. It then releases any threads that

are spin-waiting so that they may proceed through the barrier.

This imposes a small, constant overhead every time a thread accesses the barrier, since

threads must check to see if the barrier needs updating. However, it allows us to use the same

barrier in both states, and the barrier can be updated even if some threads are currently

waiting on the barrier. Without such an arrangement, the transition overhead could be

unbounded, since the additional nOi −nNi high-criticality threads could not be released while

any barrier was in an indeterminate state.

Recover from critical-state to typical-state: As observed at the end of Section 5.3, the

MCFS scheduling theory naturally supports tasks that may transition between the typical-

state and critical-state many times over the life of the system. This is desirable as it allows

low-criticality tasks to continue executing on a best-effort basis. Otherwise, a high-criticality

task transitioning into critical-state would permanently impair any low-criticality task it hap-

pened to share a processor core with, even if the conditions that lead to the state transition

were transient.

Reverting to typical-state is straightforward compared with transitioning into the critical-

state, because the MCFS theory allows this to happen at a time of our choosing and not

in response to any external event. Thus, a particularly convenient time for this to occur is

outside the execution of any job of the task, because the task’s team of parallel threads is not

active during those times. Modifying the system while a parallel computation is underway

is the major source of complexity for the critical-state transition and is what requires the

complex core reallocation and state-aware barrier mechanisms that are discussed above.

Affecting the transition to typical-state requires resetting the state-aware barrier and

reducing the number of threads that will participate in future job invocations. Since this

process occurs outside the execution of any job, it is guaranteed that the barrier is not in

118

use and that no parallel threads are active. Thus there are no concurrency issues to resolve,

and reversion is accomplished without synchronization. In particular, the state-aware barrier

is reconfigured to expect the number of threads that should be active in the typical-state

(i.e. a modified version of update barrier count() from Figure 5.4 may be called without

protection). Second, a global flag is set which indicates to the critical-state threads that

they should sleep with FUTEX WAIT upon activation rather than immediately participating.

Under the MCFS theory this reversion may be performed as often as the finish of each

individual job that has entered the critical-state. In effect, the critical-state transition occurs

on a per-job basis rather than a per-task basis, and all new jobs start in the typical-state

but may transition to the critical-state as needed, allowing for very fine grained control

over the system criticality and providing the minimum interruption to low-criticality tasks.

Such low-criticality tasks operate on a best-effort basis but are not guaranteed in the face of

interference from a task in the critical-state. In Section 5.9, we construct benchmark task

set to test and evaluate the recovery to typical-state feature of MCFS runtime system.

5.9 Numerical Evaluation

We first conduct an extensive study comparing the schedulability tests of basic MCFS,

MCFS-Improve and capacity augmentation bound of 2 +
√

2 on a wide range of parameters.

In particular, we investigate the impact of the following parameters on the schedulabilities

of MCFS and MCFS-Improve: the number of cores m, the total nominal utilization UN ,

the total overload utilization UO, and the maximum ratio pmax of the overload critical-

path length over period. For each of these settings, we ran the MCFS schedulability test

on 1000 task sets and show the fraction of schedulable task sets admitted by MCFS and

MCFS-Improve.

119

Task Set Generation

First, we explain how we generate task sets for the evaluation. We vary the number of cores

m from 16, 32, 64 and 128. Given m cores, we vary both the total nominal utilization UN

and overload utilization UO of task sets from 1 to m.

With the desired total nominal and overload utilization UN and UO of each setting, we

first add high-criticality tasks until UO is reached and then add low-criticality tasks until

UN is reached. To limit high-criticality tasks’ total nominal utilization to UN , for each

setting we calculated a maximum “nominal over overload utilization ratio” rmax = UN/UO.

High-criticality tasks’ nominal over overload utilizations will not exceed the maximum ratio.

To evaluate the impact of critical-path length, we also vary the maximum ratio pmax of the

overload critical-path length over period as pmax = [0.25
b
, 0.5
b
, 0.75

b
, 1
b
, 1.25

b
, 1.5
b
, 1.75

b
, 2
b
, 2.25

b
, 2.5
b
, 2.75

b
, 3
b
],

where b = 2 +
√

2. Note that the capacity augmentation bound of b requires that pmax ≤ 1
b
.

The larger the pmax, the harder to schedule the task set under the family of MCFS algorithms.

Note that for the two MCFS algorithms, the schedulability only depends on the work

and critical-path length of tasks rather than their parallel structures (whether they are

synchronous or DAG tasks). Therefore, for the numerical experiments we directly generate

these parameters for each task.

Our task set generation proceeds as follows.

(1) Criticality zi: 50% high-criticality and 50% low-criticality.

(2) Nominal and overload utilization ratio ri for high-criticality task: uniformly from 0.01

and a calculate rmax; This ratio ri for low-criticality task is always 1.

(3) Overload utilization uOi : randomly chosen from a log normal distribution with mean

of 1 +
√
m/3.

(4) Nominal utilization uNi = riu
O
i .

(5) Implicit deadline Di: uniformly from 100ms to 1000ms.

120

(6) Max overload critical-path length L′: 40%, 50%, 70% and 100% of Dipmax, with prob-

ability of 0.4, 0.3, 0.2 and 0.1.

(7) Overload critical-path length LOi : uniformly chosen from [0, L′].

(8) Nominal critical-path length LNi = riL
O
i .

With the above parameters, we can calculate the nominal and overload work, which are

used in the schedulability tests.

Impact of varying UN and UO

We first evaluate the schedulabilities of MCFS-Bound MCFS and MCFS-Improve on a 32-

core setting with pmax = 1.5
b

in Figure 5.5 and 5.6. In particular, we select 6 representative to-

tal overload utilizations UO ranging from [12.5%m, 25%m, 37.5%m, 50%m, 62.5%m, 75%m],

as shown in Figure 5.5(a) to 5.5(f). In each figure, we increase the total nominal utilization

and plot the fraction of schedulable task sets of MCFS-Bound, MCFS and MCFS-Improve.

By the definition of capacity augmentation bound 2 +
√

2, the task sets that are deemed

schedulable by MCFS-Bound are those with both LNi and LOi no more than Di
2+
√

2
and

with both UN and UO no more than m
2+
√

2
≈ 29%m ≈ 9.4 on 32 cores. So only some of the

task sets in the left one third of Figure 5.5(a), 5.5(b), 5.6(a) and 5.6(b) are schedulable by

MCFS-Bound. Apparently, both MCFS and MCFS-Improve can admit many more task sets

than is indicated by the capacity augmentation bound.

The trend of the Figure 5.5 and 5.6 shows that both MCFS and MCFS-Improve can

schedule more task sets, when the total utilizations are lower. Moreover, we can observe

that MCFS-Improve can schedule more task sets than MCFS, especially when the load of

the system is high. For example, MCFS-Improve admits almost twice the number of task sets

admitted by the basic MCFS schedulability test for UO = 75%m in Figure 5.5(f) and 5.6(e);

in Figure 5.6(f), almost no task sets are schedulable under basic MCFS, while MCFS-Improve

can still schedule most task sets with overload utilization up to 8.

121

0 4 8 12 16 20 24 28 32

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

MCFS-Bound

MCFS

MCFS-Improve

(a) For UO = 12.5%m and m = 32.

0 4 8 12 16 20 24 28 32

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o
n

 o
f

S
c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

MCFS-Bound

MCFS

MCFS-Improve

(b) For UO = 25%m and m = 32.

0 4 8 12 16 20 24 28 32

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

MCFS-Bound

MCFS

MCFS-Improve

(c) For UO = 37.5%m and m = 32.

0 4 8 12 16 20 24 28 32

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

MCFS-Bound

MCFS

MCFS-Improve

(d) For UO = 50%m and m = 32.

0 4 8 12 16 20 24 28 32

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

MCFS-Bound

MCFS

MCFS-Improve

(e) For UO = 62.5%m and m = 32.

0 4 8 12 16 20 24 28 32

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

MCFS-Bound

MCFS

MCFS-Improve

(f) For UO = 75%m and m = 32.

Figure 5.5: Fraction of schedulable task sets of MCFS-Bound vs. MCFS vs. MCFS-
Improve on 32 cores setting with pmax = 1.5

b . From (a) to (f), figures show the results
for total nominal utilizations ranging from [12.5%m, 25%m, 37.5%m, 50%m, 62.5%m,
75%m], respectively. Each figure shows the results for increasing total overload uti-
lizations.

122

0 4 8 12 16 20 24 28 32

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

MCFS-Bound

MCFS

MCFS-Improve

(a) For UN = 12.5%m and m = 32.

0 4 8 12 16 20 24 28 32

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o
n

 o
f

S
c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

MCFS-Bound

MCFS

MCFS-Improve

(b) For UN = 25%m and m = 32.

0 4 8 12 16 20 24 28 32

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

MCFS-Bound

MCFS

MCFS-Improve

(c) For UN = 37.5%m and m = 32.

0 4 8 12 16 20 24 28 32

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

MCFS-Bound

MCFS

MCFS-Improve

(d) For UN = 50%m and m = 32.

0 4 8 12 16 20 24 28 32

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

MCFS-Bound

MCFS

MCFS-Improve

(e) For UN = 62.5%m and m = 32.

0 4 8 12 16 20 24 28 32

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

MCFS-Bound

MCFS

MCFS-Improve

(f) For UN = 75%m and m = 32.

Figure 5.6: Fraction of schedulable task sets of MCFS-Bound vs. MCFS vs. MCFS-
Improve on 32 cores setting with pmax = 1.5

b . From (a) to (f), figures show the results
for total overload utilizations ranging from [12.5%m, 25%m, 37.5%m, 50%m, 62.5%m,
75%m], respectively. Each figure shows the results for increasing total nominal uti-
lizations.

123

0 16 32 48 64 80 96 112 128

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

16-core M.

16-core M.-Imp.

64-core M.

64-core M.-Imp.

(a) For UO = 12.5%m.

0 16 32 48 64 80 96 112 128

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o
n

 o
f

S
c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

16-core M.

16-core M.-Imp.

64-core M.

64-core M.-Imp.

(b) For UO = 25%m.

0 16 32 48 64 80 96 112 128

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

16-core M.

16-core M.-Imp.

64-core M.

64-core M.-Imp.

(c) For UO = 37.5%m.

0 16 32 48 64 80 96 112 128

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

16-core M.

16-core M.-Imp.

64-core M.

64-core M.-Imp.

(d) For UO = 50%m.

0 16 32 48 64 80 96 112 128

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

16-core M.

16-core M.-Imp.

64-core M.

64-core M.-Imp.

(e) For UO = 62.5%m.

0 16 32 48 64 80 96 112 128

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

16-core M.

16-core M.-Imp.

64-core M.

64-core M.-Imp.

(f) For UO = 75%m.

Figure 5.7: Fraction of schedulable task sets of MCFS (labeled “M.”) vs. MCFS-
Improve (labeled “M.-Imp.”) on 16 cores (labeled “16-core”) vs. 64 cores (labeled
“64-core”) with pmax = 1.5

b . From (a) to (f), figures show the results for varying to-
tal overload utilizations. Each figure shows the results for increasing total nominal
utilizations.

124

0 16 32 48 64 80 96 112 128

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

16-core M.

16-core M.-Imp.

64-core M.

64-core M.-Imp.

(a) For UN = 12.5%m.

0 16 32 48 64 80 96 112 128

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o
n

 o
f

S
c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

16-core M.

16-core M.-Imp.

64-core M.

64-core M.-Imp.

(b) For UN = 25%m.

0 16 32 48 64 80 96 112 128

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

16-core M.

16-core M.-Imp.

64-core M.

64-core M.-Imp.

(c) For UN = 37.5%m.

0 16 32 48 64 80 96 112 128

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

16-core M.

16-core M.-Imp.

64-core M.

64-core M.-Imp.

(d) For UN = 50%m.

0 16 32 48 64 80 96 112 128

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

16-core M.

16-core M.-Imp.

64-core M.

64-core M.-Imp.

(e) For UN = 62.5%m.

0 16 32 48 64 80 96 112 128

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

16-core M.

16-core M.-Imp.

64-core M.

64-core M.-Imp.

(f) For UN = 75%m.

Figure 5.8: Fraction of schedulable task sets of MCFS (labeled “M.”) vs. MCFS-
Improve (labeled “M.-Imp.”) on 16 cores (labeled “16-core”) vs. 64 cores (labeled
“64-core”) with pmax = 1.5

b . From (a) to (f), figures show the results for varying to-
tal nominal utilizations. Each figure shows the results for increasing total overload
utilizations.

125

Impact of varying m

The trend of the schedulability comparison between MCFS and MCFS-Improve for 32 cores is

similar to those of 16, 64 and 128 cores. In Figure 5.7 and 5.8, we can compare the fraction of

schedulable task sets between the 16-core and 64-core setting on task sets with varying loads.

We can observe that when the number of cores increases, both MCFS and MCFS-Improve

can admit more task sets. Moreover, MCFS-Improve significantly improves over MCFS

when the nominal utilization is high and the overload utilization is low in Figures 5.8(e) and

5.8(f). This is because in these cases there are many low-criticality tasks requiring many

dedicated cores in the typical state. Hence, there are less cores remains for high-criticality

tasks in typical state, while all cores are available for their low total overload utilizations in

the critical state. For such cases, MCFS-Improve is able to find better virtual deadlines to

decrease the number of cores assigned in the typical state and increase the number of cores

assigned in the critical state, balancing the total core assignments in both states.

Impact of critical-path length

In Figure 5.9, we present the results with varying number of cores m and maximum ratio pmax

of critical-path length over period. Each data point in each figure shows the average fraction

of schedulable task sets of all the settings with varying nominal and overload utilizations. For

example, we have randomly generated and evaluated 256,000 task sets for the setting m = 64

and pmax = 2.5
b
≈ 0.8. MCFS can schedule 16.4% of these task sets, while MCFS-Improve

can schedule 32.3% task sets. In this setting, MCFS-Improve has a relative improvement

almost 100% over that of MCFS.

The ratio pmax has large impact on the schedulability of the family of MCFS algorithms,

since it affects the parallelism of tasks. This is because given the same nominal and overload

work, tasks with lower pmax have higher parallelism. In addition, when pmax decreases,

tasks have more slack before the implicit deadline to complete their parallel work, so they

126

0.5/b 1/b 1.5/b 2/b 2.5/b 3/b

Max Ratio of Critical-Path Length over Period

0

0.1

0.2

0.3

0.4

0.5

F
ra

c
ti
o

n
 o

f
S

c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

MCFS

MCFS-Improve

(a) m = 16.

0.5/b 1/b 1.5/b 2/b 2.5/b 3/b

Max Ratio of Critical-Path Length over Period

0

0.1

0.2

0.3

0.4

0.5

F
ra

c
ti
o
n

 o
f

S
c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

MCFS

MCFS-Improve

(b) m = 32.

0.5/b 1/b 1.5/b 2/b 2.5/b 3/b

Max Ratio of Critical-Path Length over Period

0

0.1

0.2

0.3

0.4

0.5

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

MCFS

MCFS-Improve

(c) m = 64.

0.5/b 1/b 1.5/b 2/b 2.5/b 3/b

Max Ratio of Critical-Path Length over Period

0

0.1

0.2

0.3

0.4

0.5

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

MCFS

MCFS-Improve

(d) m = 128.

Figure 5.9: Fraction of schedulable task sets of MCFS (dotted line) vs. MCFS-
Improve (solid line) with varying number of cores. Each data point in each figure
shows the average fraction of schedulable task sets of all the different settings (varying
nominal and overload utilizations), given m and maximum ratio pmax of critical-path
length over period.

require less dedicated cores. Therefore, MCFS and MCFS-Improve can schedule more task

sets when pmax is lower. In addition, the improvement of MCFS-Improve increases with

increasing pmax. This is because MCFS-Improve can adjust the virtual deadline to balance

the slacks before the virtual deadline and real deadline. This balances the core assignments

in typical and critical states, so it results in considerably better schedulability.

To have a detailed look at the influences of the maximum critical-path length ratio

pmax, we plot the results for 128-core with pmax = 0.75
b

and pmax = 2.25
b

in Figure 5.10 and

Figure 5.11. Again, we can observe that MCFS and MCFS-Improve can admit more task

127

0 16 32 48 64 80 96 112 128

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

p=2.25/b M.

p=2.25/b M.-Imp.

p=0.75/b M.

p=0.75/b M.-Imp.

(a) For UO = 12.5%m and m = 128.

0 16 32 48 64 80 96 112 128

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o
n

 o
f

S
c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

p=2.25/b M.

p=2.25/b M.-Imp.

p=0.75/b M.

p=0.75/b M.-Imp.

(b) For UO = 25%m and m = 128.

0 16 32 48 64 80 96 112 128

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

p=2.25/b M.

p=2.25/b M.-Imp.

p=0.75/b M.

p=0.75/b M.-Imp.

(c) For UO = 37.5%m and m = 128.

0 16 32 48 64 80 96 112 128

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

p=2.25/b M.

p=2.25/b M.-Imp.

p=0.75/b M.

p=0.75/b M.-Imp.

(d) For UO = 50%m and m = 128.

0 16 32 48 64 80 96 112 128

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

p=2.25/b M.

p=2.25/b M.-Imp.

p=0.75/b M.

p=0.75/b M.-Imp.

(e) For UO = 62.5%m and m = 128.

0 16 32 48 64 80 96 112 128

Total Nominal Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

p=2.25/b M.

p=2.25/b M.-Imp.

p=0.75/b M.

p=0.75/b M.-Imp.

(f) For UO = 75%m and m = 128.

Figure 5.10: Fraction of schedulable task sets of MCFS (labeled “M.”) vs. MCFS-
Improve (labeled “M.-Imp.”) on 128 cores with pmax = 0.75

b (labeled “p=0.75/b”) vs.
pmax = 2.25

b (labeled “p=2.25/b”). From (a) to (f), figures show the results for varying
total overload utilizations. Each figure shows the results for increasing total nominal
utilizations.

128

0 16 32 48 64 80 96 112 128

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

p=2.25/b M.

p=2.25/b M.-Imp.

p=0.75/b M.

p=0.75/b M.-Imp.

(a) For UN = 12.5%m and m = 128.

0 16 32 48 64 80 96 112 128

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o
n

 o
f

S
c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

p=2.25/b M.

p=2.25/b M.-Imp.

p=0.75/b M.

p=0.75/b M.-Imp.

(b) For UN = 25%m and m = 128.

0 16 32 48 64 80 96 112 128

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d
u

la
b

le
 T

a
s
k
 S

e
ts

p=2.25/b M.

p=2.25/b M.-Imp.

p=0.75/b M.

p=0.75/b M.-Imp.

(c) For UN = 37.5%m and m = 128.

0 16 32 48 64 80 96 112 128

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

p=2.25/b M.

p=2.25/b M.-Imp.

p=0.75/b M.

p=0.75/b M.-Imp.

(d) For UN = 50%m and m = 128.

0 16 32 48 64 80 96 112 128

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

p=2.25/b M.

p=2.25/b M.-Imp.

p=0.75/b M.

p=0.75/b M.-Imp.

(e) For UN = 62.5%m and m = 128.

0 16 32 48 64 80 96 112 128

Total Overload Utilization

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
S

c
h

e
d

u
la

b
le

 T
a

s
k
 S

e
ts

p=2.25/b M.

p=2.25/b M.-Imp.

p=0.75/b M.

p=0.75/b M.-Imp.

(f) For UN = 75%m and m = 128.

Figure 5.11: Fraction of schedulable task sets of MCFS (labeled “M.”) vs. MCFS-
Improve (labeled “M.-Imp.”) on 128 cores with pmax = 0.75

b (labeled “p=0.75/b”) vs.
pmax = 2.25

b (labeled “p=2.25/b”). From (a) to (f), figures show the results for varying
total nominal utilizations. Each figure shows the results for increasing total overload
utilizations.

129

sets when pmax is lower. However, pmax affect the performance of MCFS more than MCFS-

Improve. By comparing these figures with previous figures, we can conclude that MCFS-

Improve significantly improves over MCFS when tasks’ critical-path lengths are relatively

long, the number of cores is large, and/or the total nominal utilization is high.

5.10 Empirical Evaluation

We also evaluate our implementation of the MCFS runtime system described in Section 5.8

using synthetic workloads written in OpenMP. Experiments were conducted on a 16-core

machine composed of two Intel Xeon E5-2687W processors (each with 8 cores). When

running the experiments, we reserved two cores for operating system services, leaving 14

experimental cores. Linux with RT PREEMPT patch version 4.1.7-rt8 was the underlying

RTOS. For each setting, we randomly generate 100 task sets, each of which runs for 5 minutes

— 300× the maximum period.

Task Set Generation

Now we explain how we generate task sets for the empirical evaluation. In these empirical

experiments, the number of cores m is 14. We construct a task set by keep adding randomly

generated tasks until MCFS schedulability test cannot admit any more tasks. Tasks are

either high- or low-criticality with equal probability.

Note that the synthetic tasks in the empirical experiments are written in OpenMP. Each

task has a sequence of parallel for loops, or segments. Each iteration of a segment is called

a strand. We generate a task by first randomly choosing a desired overload critical-path

length L′, and then keep adding randomly generated segments until L′ is reached.

The task parameters generation process is similar to [138]. To generate tasks with large

parallelism, we fix the maximum ratio pmax of the overload critical-path length over period

as pmax = 1
2(2+

√
2)

.

130

(1) Criticality zi: 50% high-criticality and 50% low-criticality.

(2) Nominal and overload utilization ratio ri for high-criticality tasks: uniformly from

[0.025, 0.25]; The ratio ri for low-criticality tasks is 1.

(3) Implicit deadline Di: uniformly from 100ms to 1000ms.

(4) Max overload critical-path length L′: 40%, 50%, 70% and 100% of Dipmax, with prob-

ability of 0.4, 0.3, 0.2 and 0.1.

(5) Number of strands of a segment si,j: randomly chosen from a log normal distribution

with mean of 1 +
√
m/3.

(6) Overload length of strands of a segment tOi,j: randomly chosen from a log normal

distribution with mean of 5ms.

(7) Nominal length of strands of a segment tNi,j = rit
O
i,j.

With above parameters, we can calculate the nominal and overload work and critical-path

length, which are used in MCFS schedulability test.

Stress Testing

We first conducted experiments to stress test the performance of the MCFS runtime sys-

tem in both typical- and critical-states. In the typical-state stress testing, both high- and

low-criticality task, execute exactly their worst-case nominal work and critical-path length.

Experimental results are consistent with the correctness condition; no mode transition occurs

and all high- and low-criticality tasks meet all their deadlines. In the critical-state stress test-

ing, each task executes exactly its worst-case overload work and critical-path length. Again,

in this worst case behavior, the result is also consistent with the correctness condition; every

high-criticality task successfully transitions to critical-state and has no deadline miss. Some

low-criticality tasks are preempted by high-criticality tasks, suspend some of their jobs and

hence have deadline misses, which is allowed in critical-state.

131

Figure 5.12: Fraction of tasks with no deadline miss, for the sets of tasks with high-
and low-criticality, respectively, when increasing the number of high-criticality tasks
that overrun their nominal parameters.

Graceful Degradation

The mixed-criticality correctness condition allows us to discard all low-criticality tasks as

soon as any task misses its virtual deadline and the system transitions to critical-state.

However, the MCFS need not do so as discussed in Section 5.3.3. Figure 5.12 demonstrates

that the MCFS runtime system can continue to run many low-criticality tasks even after

some high-criticality jobs transitions to critical-state. Here, we pick task sets with at least 4

high-criticality tasks. For each set, we run 5 experiments: either 0, 1, 2, 3 or 4 high-criticality

tasks execute for their overload parameters and the remaining for their nominal parameters.

We plot the fraction of tasks with no deadline miss. We can see that all high-criticality tasks

always meet their deadlines. In contrast, the low-criticality task performance does not drop

abruptly to zero as soon as the transition occurs. For instance, when only 1 high-criticality

task overruns, only about 33% low-criticality tasks miss their deadlines.

Recovery from Critical-State to Typical-State

As discussed in Section 5.3, high-criticality tasks may optionally revert to the typical-state

under the MCFS theory. Otherwise the transition to critical-state would be permanent

132

Figure 5.13: One hyper-period of the experimental task system where Task 1 only
requires 5ms of computational time.

and any low-criticality tasks sharing a processor would be permanently impaired. Here we

construct a task system to illustrate the capability of the MCFS runtime system to recover

from critical-state to typical-state, as shown below.

Table 5.7: Task Set Parameters
Task CN

i CO
i Di D′i SN SO

τ1 5ms 20ms 20ms 10ms 1 1,2
τ2 3ms - 5ms - 2 -

The task τ1 is a high-criticality task constructed with the rand() function so that ap-

proximately 20% of the time it will require 20ms of computational effort, but the remainder

of the time it will only require 5ms. Thus, roughly one-fifth of the time jobs of this task

overruns its virtual deadline at 10ms, trigger a transition to critical-state, and involve the

shared processor to help finish its computation on time. Task τ1 is assigned with a single core

(core 1) in the typical-state and it requires one additional core (core 2) in the critical-state.

The computation (dense matrix multiplication) of the task is embarrassingly parallel, so,

once activated, both threads will contribute nearly equal amounts of computational effort.

Task τ2 is a low-criticality task, which is assigned to core 2 in the typical-state. Hence, core

2 is shared among task τ1 and τ2.

The one hyper-period of the typical and critical situations are depicted in Figure 5.13

and Figure 5.14, respectively. If the system was not capable of recovering from the critical-

to typical-state, task τ1 would trigger a transition nearly immediately and task τ2 would miss

approximately half of its deadlines. However, with state recovery enabled, task τ2 should

133

Figure 5.14: One hyper-period of the experimental task system where Task 1 requires
20ms of computational time, necessitating a transition to critical-state.

miss two deadlines for each overrun of τ1, but recover in those hyper-periods where τ1 runs

entirely in the typical-state. Indeed, when executed this is exactly what was found.

The task system was run for 100,000 hyper-periods. Task τ1 missed zero deadlines but

entered the critical state 21,087 times. Task τ2 missed 42,174 deadlines out of 400,000, i.e.,

approximately 10.5% of the time. As confirmation, we also configured task τ1 so that it

always required 20ms of execution time and thus would always enter the critical-state. As

expected, task τ2 missed exactly half of its deadlines.

134

Chapter 6

Federated Scheduling for Stochastic
Parallel Real-time Tasks

Different applications have different real-time requirements and characteristics. Some

have a strict constraint that all deadlines must be met and hard real-time guarantees

should be provided; others have soft real-time constraints and can tolerate tardiness as long

as it can be bounded. In this chapter, we explore the soft real-time performance of federated

scheduling and address average-case workloads instead of worst-case ones. In particular,

we consider stochastic tasks, which may have large variability in their parameters; the

worst-case execution time could be orders of magnitude larger than the mean execution

time. In this case, the system may suffer significant utilization loss if we use only worst-case

execution time when analyzing schedulability. Instead, we could use the mean and variance

of task parameters for analysis. For these tasks, our schedulers guarantee that the expected

tardiness of tasks is bounded.

For stochastic parallel real-time tasks with soft real-time constraints, we choose to analyze

the federated scheduling because of two reasons. First, as Chapter 4 has shown that federated

scheduling has the best known capacity augmentation bound of 2 for hard real-time parallel

tasks, it is interesting to analyze its performance for the average case. Second, the federated

scheduling is a generalization of partitioned scheduling to parallel tasks. It assigns dedicated

cores to each high-utilization task, which makes each high-utilization task being isolated from

any interference from other tasks. Therefore, we could analyze each of them individually and

directly apply result from single server queueing theory to bound the expected tardiness.

Note that to guarantee hard real-time schedulability, worst-case values are used for task

parameters. In constrast, stochastic tasks are based on average-case workload (formally

135

defined in Section 6.2). In this case, we use bounded expected tardiness as the schedula-

bility criterion. We define a stochastic capacity augmentation bound that uses expected

values for utilization and critical-path length to provide bounded expected tardiness. In con-

trast to using a hard real-time bound, it allows the system to be over-utilized in the worst

case, as long as in average total workload is less than the bound.

Section 6.3 presents the stochastic federated scheduling strategy and expected tardiness

calculation, and proves that expected tardiness is bounded. Section 6.3.4 present one feder-

ated mapping algorithm that guarantees bounded expected tardiness and provide the same

capacity augmentation bound 2 for stochastic tasks which is proved in Section 6.4.

6.1 Related Work on Soft Real-Time Scheduling

Real-time multiprocessor scheduling for tasks with worst-case task parameters has been

studied extensively (see Section 2.4 for an introduction). In this Section, we survey the

related work considering soft real-time guarantees for tasks.

Most prior work on bounded tardiness (and other soft real-time guarantees) considers se-

quential tasks with worst-case parameters [58]. For these tasks, an earliest-pseudo-deadline-

first scheduler [143] and GEDF [59, 68] both provide bounded tardiness with no utilization

loss; these results were generalized to many global schedulers [110]. Lateness guarantees also

have been studied for GEDF-like scheduling [69]. For parallel tasks, Liu et al. [114] for the

first time provide a soft real-time response time analysis for GEDF.

For stochastic analysis, there is some prior work on sequential stochastic tasks. For

a resource reservation scheduler, a lower bound on the probability of deadline misses was

derived in [126]. For multiprocessor scheduling, [122] shows that GEDF guarantees bounded

tardiness to sequential tasks if the total expected utilization is smaller than the number

of cores. We use this result directly in our algorithms and analysis to guarantee bounded

tardiness to low-utilization tasks. There also has been some work on stochastic analysis of

a system via Markov processes or approximation [60,116].

136

6.2 System Model for Stochastic Parallel Real-Time

Tasks

In this section, we formalize the stochastic task model in which execution time and

critical-path length are described using probabilistic distributions, which is consistent with

the task model for sequential tasks in existing work on stochastic real-time analysis [122].

We also define the capacity augmentation bound for stochastic tasks with soft real-time

tardiness constraint. Throughout this chapter, we use the calligraphic letters to represent

random variables.

Like ordinary real-time tasks, stochastic tasks have a fixed relative deadline Di (= Pi,

the period, for implicit deadline tasks). However, each stochastic task is described using

its stochastic work Ci — total execution time on 1 core, and stochastic critical-path

length Li — execution time when it is running on a machine with an in infinite number of

cores. Note that both Ci and Li are random variables.

In this chapter, the internal structure of each DAG task is not assumed or used to derive

the schedulability analysis. The execution time of each node from the same task could vary

in different jobs (execution instances), which would result in varying execution times and

critical-path lengths. Moreover, the internal structure of each job from the same task could

also be different each time. For example, a parallel for-loop in a program could have different

numbers of iterations given different inputs, resulting in a different DAG structure.

We assume that the expectations E [Ci] and E [Li] of these random variables are known.

Given E [Ci] and E [Li], we can calculate the expected utilization of a stochastic task τi as

E [Ui] = E [Ci] /Di, and the total expected utilization of the entire task set as
∑

i E [Ui].

We now specify a few additional parameters that are needed only if we wish to calculate

an upper bound on the tardiness. First, for all tasks, we must know the standard deviations

δCi and δLi of the execution time and the critical-path length. Second, for low-utilization

tasks, we need the finite worst-case execution time ĉi for calculating tardiness. Finally,

137

for high-utilization tasks, we need the covariance σ(Ci,Li) between work and critical-path

length.

The exact distributions of Ci and Li are not explicitly required in all three schedulability

tests. Our linear-time algorithm can calculate mappings that provide bounded tardiness us-

ing just these parameters. With the distributions, another algorithm can generate potentially

better mappings.

In addition, for analysis purposes, we define some job specific parameters: ci,j is the

actual execution time of job j of task i and li,j is its actual critical-path length; these are

drawn from distributions Ci and Li respectively.

We say that the release time of job j of task i is ri,j and its response time (or completion

time) is ti,j. Tardiness Ti,j of job τi,j is defined as max (0, ti,j −Di). Tardiness Ti of a task

τi is also a random variable; E [Ti] is its expected value.

We now define the capacity augmentation bound for stochastic tasks. In particular, we

consider the schedulability criterion of bounded expected tardiness; that is, a task set τ

is deemed schedulable by a scheduling algorithm S if the expected tardiness of each task is

guaranteed to be bounded under S.

Definition 5 A scheduling algorithm S provides a stochastic capacity augmentation

bound of b if, given m cores, S can guarantee bounded expected tardiness to any task set τ

as long as it satisfies the following conditions:

Total available cores, m ≥ b
∑

E [Ui] (6.1)

For each task, Di ≥ b(E [Li] + εi) (6.2)

where εi is 0 if the variances of Ci and Li are 0, and is an arbitrarily small positive constant

otherwise.

138

Note that when Ci and Li are deterministic, the variance of Ci and Li is 0, so εi = 0 and

the definition of stochastic capacity augmentation bound reduces to the definition for hard

real-time constraints based on worst-case task parameters.

6.3 Stochastic Federated Scheduling Guarantees Bounded

Tardiness

In this section, we first describe stochastic federated scheduling; Then we prove that if

federated scheduling algorithm can produce a valid mapping, then it guarantees bounded

expected tardiness; Finally, we calculate the expected tardiness.

6.3.1 Stochastic Federated Scheduling Strategy

Just like the corresponding federated scheduling strategy for hard real-time tasks, the stochas-

tic federated scheduling strategy classifies tasks into two sets: τhigh contains all high-

utilization tasks — tasks with expected utilization at least 1 (E [Ui] ≥ 1), and τlow contains

all the remaining low-utilization tasks. The federated scheduling strategy works in two

stages:

1. Given a task set τ , a mapping algorithm either admits τ and outputs a core as-

signment, or declares that it cannot guarantee schedulability of τ . Different mapping

algorithms differ in the assignment of ni dedicated cores to each high-utilization task

τi, but ni >
E[Ci]−E[Li]
Di−E[Li] is always required. All low-utilization tasks share the remain-

ing nlow = m −
∑

τi∈τhigh ni cores. Each mapping algorithm only admits a task set if

nlow >
∑

τi∈τlow E [Ui] always holds.

2. Once the mapping is done, the scheduling is straightforward. The high-utilization tasks

are scheduled on their dedicated cores using a greedy (work-conserving) scheduler. The

139

low-utilization tasks are scheduled and executed sequentially on the remaining cluster

of cores via a GEDF scheduler.

Note that we chose GEDF to schedule low-utilization tasks, because of an existing result

that shows that GEDF provides bounded tardiness to sequential stochastic tasks [122]; we

can apply this result directly to low-utilization tasks since they are executed sequentially

by our federated scheduler. Other multiprocessor scheduling algorithms can be used only if

they provide guarantees of bounded tardiness for sequential tasks.

6.3.2 Mapping Algorithms Guarantee Bounded Tardiness

We first analyze high-utilization tasks. Since each of them has dedicated cores and does not

suffer any interference from other tasks, we can analyze each task τi individually. We use

the following result from queueing theory [98] which indicates that if the service time of jobs

is less than the inter-arrival time, then the expected waiting time is bounded.

Lemma 38 [KING70] For a D/G/1 queue, customers arrive with minimum inter-arrival

time Y , and the service time X is a distribution with mean E [X] and variance δ2
X . If E [X] <

Y , then the queue is stable and the expected waiting time W is bounded E [W] ≤ δ2X
2(Y−E[X])

.

In our context, for each high-utilization task, jobs are the customers; the inter-arrival time

is Y = Di (= Pi); the response time X = ti,j is the service time for job j of task τi. For a

high-utilization job τi,j, its tardiness Ti,j depends on its response time ti,j, the tardiness Ti,j−1

of previous job τi,j−1 and deadline Di. In particular, we have Ti,j ≤ max{0, Ti,j−1 + ti,j−Di}.

Therefore, the waiting time W is a bound on the tardiness T .

For a greedy scheduler on ni cores, we can easily bound the finish time ti,j.

Lemma 39 If a job Ji,j executes by itself under a greedy scheduler on ni identical cores and

it takes ti,j time to finish its execution, then ti,j ≤ (ci,j + (ni − 1)li,j)/ni.

140

Thus the response time for a job is bounded by (ci,j + (ni − 1)li,j)/ni. Using properties

of mean and variance, we get

E [X] = E [ti,j] ≤ (E [Ci] + (ni − 1)E [Li])/ni (6.3)

δ2
X = δ2

ti,j
≤ δ2

Li((ni − 1)/ni)
2 + δ2

Ci/n
2
i + 2σ(Li, Ci)(ni − 1)/n2

i (6.4)

Note that Lemma 38 states that if E [X] < Y , then the queue is stable and the tardiness

is bounded. Therefore, to prove the bounded expected tardiness of high-utilization task, we

only need to prove E [X] = (E [Ci] + (ni − 1)E [Li])/ni < Di = Y .

Theorem 40 A mapping algorithm for stochastic federated scheduling guarantees bounded

tardiness to high-utilization task τi, if the assigned number of cores ni >
E[Ci]−E[Li]
Di−E[Li] .

Proof. We first prove (E [Ci] + (ni − 1)E [Li])/ni < Di.

Dini − (ni − 1)E [Li] = ni(Di − E [Li]) + E [Li]

>
E [Ci]− E [Li]
Di − E [Li]

(Di − E [Li]) + E [Li]

> E [Ci]

Hence, E [X] = E [ti,j] = (E [Ci]+(ni−1)E [Li])/ni < Di = Y and by Lemma 38 the tardiness

of τi is bounded.

In the stochastic federated scheduling strategy, ni >
E[Ci]−E[Li]
Di−E[Li] is always required for any

mapping algorithm. We will show later that for the proposed mapping algorithm, this is

indeed satisfied for each high-utilization task.

Now we analyze the tardiness of low-utilization tasks, since they share nlow cores and

are executed sequentially using GEDF scheduler. In [122], the following Lemma has been

established.

141

Lemma 41 [Mills10] If a set of sequential tasks τlow is scheduled on nlow cores using GEDF

and nlow >
∑

τi∈τlow E [Ui], then the expected tardiness of each task is bounded.

Since the different mapping algorithms only admit a task set if E [Ulow] =
∑

τi∈τlow E [Ui] <

nlow and then schedule these tasks using GEDF, we can conclude that the expected tardiness

of low-utilization tasks is also bounded.

Any task set that the mapping algorithm admits can be scheduled while guaranteeing

bounded expected tardiness; hence, the mapping algorithm serves as a schedulability test.

6.3.3 Calculating Expected Tardiness

Here, we explain how the tardiness is calculated. Even though all the mapping algorithms

provide bounded expected tardiness, the actual (upper bound on) tardiness can be different,

because the corresponding core assignments (ni for each high-utilization task and nlow for

all low-utilization tasks) are different.

Note that from Section 6.3.4, we can see that for the BASIC and FAIR mapping algo-

rithms, the tardiness calculation is not necessary for producing core assignments. It is only

needed in ILP mapping or to get the actual expected tardiness.

Tardiness of High-Utilization Tasks

For each high-utilization tasks with ni assigned dedicated cores, by Lemma 38 and Inequal-

ity (6.4), the bounded expected tardiness is:

E [Ti] ≤
δ2
X

2(Y − E [X])
≤
δ2
Li(ni − 1)2/n2

i + δ2
Ci/n

2
i + 2σ(Li, Ci)(ni − 1)/n2

i

2(Di − (E [Li] (ni − 1) + E [Ci])/ni)
(6.5)

Tardiness of Low-Utilization Tasks

Since low-utilization tasks are executed sequentially using GEDF, we can use the linear-

programming procedure described in [122] directly.

142

We first restate a couple of lemmas from [122] in our terminology. The first lemma bounds

the tardiness of a hypothetical processor-sharing (PS) scheduler which always guarantees an

execution rate of ûi (henceforth called the PS rate allocation) to each task τi.

Lemma 42 [Mills10] For a given PS rate allocation such that E [Ui] ≤ ûi ≤ 1 and
∑

E [Ui] ≤

nlow, the PS scheduler has a bounded tardiness E [Fi] ≤
δ2Ci

/û2i
2(Di−E[Ci]/ûi) .

Using this tardiness bound, they then provide a bound on the tardiness provided by

GEDF for low-utilization tasks.

Lemma 43 [Mills10] For low-utilization tasks scheduled by a GEDF scheduler on nlow

cores, the expected tardiness of each task E [Ti] ≤ E [Fi] + η+nlowM
nlow−v

+ ĉi, where E [Fi] is

the expected tardiness of a hypothetical PS scheduler, ĉi is the worst-case execution time of

the task, η is the sum of the nlow − 1 largest ĉi, M is the maximum tardiness in PS, and v

is the sum of nlow − 1 largest assigned ûi in PS.

All the parameters except E [Fi] are known or measurable (and bounded). In order to

calculate E [Fi], we must calculate the PS rate allocation ûi for each task τi.

As we will show in Section 6.3.4, for the BASIC mapping, there exists a simple calculation

of ûi; while for FAIR and ILP mappings, the following linear program (LP) from [122] (can

be derived using Lemma 42) is used to calculate the PS rate allocations.

max ζ

s.t. Diûi −
δ2
Ci
2
ζ ≥ E [Ci] ∀i,E [Ui] < 1∑

i,E[Ui]<1

ûi ≤ n̂low

ui ≤ ûi ≤ 1 ∀i,E [Ui] < 1

where ζ−1 ≥ maxi (
δ2Li

2(ûiDi−E[Li])) = maxi E [Fi]. Therefore, solving the linear program pro-

videsthe PS rate allocations ûi as well as a bound on the expected tardiness E [Fi] of the PS

143

scheduler. Given these values, we can calculate the tardiness of low-utilization tasks using

Lemma 43.

6.3.4 A Mapping Algorithm for Stochastic Federated Scheduling

We propose three mapping algorithms for stochastic federated scheduling. The three al-

gorithms differ in their calculation of ni for high-utilization tasks. They have increasing

computational complexity and also have increasing schedulability performance or decreasing

upper bound on expected tardiness: The first algorithm, BASIC, assigns cores based on uti-

lization; The second algorithm, FAIR, assumes that the distributions of execution time and

critical-path length are known and assigns cores based on the values with the same cumu-

lative probability from task parameter distributions among all tasks; The last (ILP-Based)

algorithm, (ILP), tries to minimize the maximum expected tardiness.

6.3.5 BASIC Federated Mapping Algorithm

For a high-utilization tasks τi, this mapping algorithm calculates ni, the number of cores

assigned to τi as follows:

ni =


⌈

E[Ci]−E[Li]−αi
Di−E[Li]−αi

⌉
(E [Ui] > 1)

2 (E [Ui] = 1)

(6.6)

where αi = Di/b− E [Li] > 0 and b = 2.

The remaining nlow = m −
∑

high ni cores are assigned to the low-utilization tasks. The

mapping algorithm admits a task set as long as E [Ulow] =
∑

low E [Ui] ≤ nlow/b for b = 2.

Note that the major difference between this ni and the one in Chapter 4 is the extra

term αi. αi is used to accommodate the variation of execution time and critical-path length.

We set this value of αi to assign roughly the same number of cores relative to utilization.

Hence, variances are not required to assign cores.

144

Bounded Tardiness (Schedulability Test): The tardiness can be bounded for any positive

αi since:

1. For E [Ui] = 1, E[Ci]−E[Li]
Di−E[Li] = 1, so ni = 2 > E[Ci]−E[Li]

Di−E[Li] .

2. For E [Ui] > 1, since Di − E [Li] > αi > 0, we have

ni ≥ E[Ci]−E[Li]−αi
Di−E[Li]−αi > E[Ci]−E[Li]

Di−E[Li] > E[Ci]
Di

= E [Ui] > 1

3. For E [Ui] < 1, E [Ulow] ≤ nlow/2 < nlow.

By Theorem 40 and Lemma 41, this mapping algorithm can guarantee bounded tardiness

for both high and low-utilization tasks. Hence, the it serves as a schedulability test that

runs in linear time.

Tardiness calculation: Now we describe a faster and simpler method to calculate the upper

bound on the expected tardiness of low-utilization tasks when using the BASIC mapping.

This method relies on the requirement that nlow ≥ b
∑

low E [Ui] for b = 2. We can simply set

PS rate allocation ûi = min (bE [Ui] , 1). This allocation satisfies the requirement in Lemma

42; therefore, the PS tardiness is

E [Fi] ≤
δ2
Ci

2(û2
iDi − ûiE [Ci])

,

and by Lemma 43 the expected tardiness of low-utilization task under GEDF can be calcu-

lated directly as

E [Ti] ≤
δ2
Ci

2(û2
iDi − ûiE [Ci])

+
η + nlowM

nlow − v
+ êi, (6.7)

Unlike the FAIR and ILP algorithms, this tardiness calculation here does not require

solving a linear program; it can be done in linear time.

145

6.3.6 FAIR Federated Mapping Algorithm

We now present the FAIR mapping, which admits more task sets than the BASIC one, while

still providing the same theoretical guarantees. The FAIR mapping utilizes the distributions

of execution time and critical-path length and assigns cores based on the values with the

same cumulative probability from distributions among all tasks to provide fairness in core

assignment. The schedulability test in FAIR still runs in linear time; however, the calcu-

lations for core assignment and expected tardiness are more complex, requiring near linear

time and linear programming respectively.

We denote Ci(p) as the value ci of random variable Ci when its cumulative distribution

function (CDF) FCi(ci) = p (meaning that the probability that Ci ≤ ci is equal to p). We

denote Li(p) and Ui(p) similarly.

Note that when p = 0.5, Ci(p) = E [Ci] and Li(p) = E [Li]. Additionally, Ci(p) and Li(p)

will increase when p increases.

In the FAIR mapping, the number of cores assigned to high-utilization task τi (represented

by n̂i) is calculated below.

n̂i(p) =

⌊
Ci(p)− Li(p)
Di − Li(p)

+ 1

⌋
(6.8)

=


⌈
Ci(p)−Li(p)
Di−Li(p)

⌉ (
Ci(p)−Li(p)
Di−Li(p) is not integer

)
Ci(p)−Li(p)
Di−Li(p) + 1

(
Ci(p)−Li(p)
Di−Li(p) is integer

)
where p is the same probability for all tasks and 0.5 ≤ p < 1.

The FAIR mapping will admit a task set if nlow = m −
∑

high n̂i(p) >
∑

low E [Ui(p)] for

p = 0.5.

Bounded Tardiness (Schedulability Test): It is obvious that for p = 0.5, each n̂i(p = 0.5) =⌊
E[Ci]−E[Li]
Di−E[Li] + 1

⌋
> E[Ci]−E[Li]

Di−E[Li] for high-utilization task. Also, for all low-utilization tasks,

146

nlow >
∑

low E [Ui(p = 0.5)] =
∑

low E [Ui]. By Theorem 40 and Lemma 41, FAIR guarantees

bounded tardiness for all tasks and serves as a linear time schedulability test.

Dominance in Schedulability: In Section 6.4, we will show that n̂i(p = 0.5) ≤ ni (of BASIC

mapping) for any task τi and hence n̂low ≥ nlow. Also, the FAIR algorithm allows E [Ulow]

to be as high as n̂low (instead of nlow/2 allowed by BASIC). Therefore, FAIR admits strictly

more tasks than BASIC.

Core Allocation: n̂i(p = 0.5), the minimum core assignment, is the minimum number of

cores required to guarantee bounded tardiness for high-utilization tasks. However, directly

using it will result in large tardiness for high-utilization tasks, because more cores are assigned

to low-utilization tasks. To be fair to all tasks, the FAIR mapping further improves the

minimum core allocation by increasing p until the largest p̂ while still satisfying nlow =

m−
∑

high n̂i(p̂) >
∑

low(Ci(p̂)/Di). In this way, FAIR in fact increases the core assignment

and PS rate allocation for each task by the same amount according to the CDF of execution

time and critical-path length. This ensures fairness among all tasks, because p̂ is independent

of τi. The complexity of this core assignment depends on the number of values of p tested

until reaching p̂. In practice, a binary search only needs at most 6 tests to find p̂ with an

accuracy of 0.01.

6.3.7 ILP-Based Federated Mapping Algorithm

We now present a third, ILP-Based, mapping algorithm for stochastic federated scheduling.

This algorithm admits exactly the same task sets as FAIR (though it may find a different

mapping for these task sets); therefore, it also provides the same theoretical guarantees.

However, BASIC and FAIR make no attempt to balance maximum tardiness explicitly among

high and low-utilization tasks. Compared to FAIR, the ILP mapping does not require the

distributions of execution time and critical-path length. Instead, the stander deviations and

covariance are used in ILP.

147

The ILP algorithm converts the mapping problem for high-utilization tasks into an integer

linear program (ILP) that tries to minimize the maximum tardiness; when combined with

the linear program for low-utilization tasks stated in Section 6.3.3, the resulting mixed linear

program indirectly tries to balance the tardiness among all tasks.

We convert Inequality (6.5) into a form similar to the expected tardiness of the PS

schedule; that is, we define ζi where ζ−1 = maxi E [Ti] and ζ is defined in terms of ni. First,

for task τi, let δ2
i = max

(
δ2
Li(m− 1)2/m, δ2

Ci/2, σ(Li, Ci)(m− 1)/m
)
. Note that δ2

i is bounded

and can be calculated using only the expectation and variance of the task’s execution time

and critical-path length without knowing ni. Now we use the fact that 2 ≤ ni ≤ m for

high-utilization task τi and see that

δ2
i ≥ δ2

Li(m− 1)2/m = δ2
Li(m− 1)(1− 1/m)

≥ δ2
Li(ni − 1)(1− 1/ni) = δ2

Li(ni − 1)2/ni

δ2
i ≥ δ2

Ci/2 ≥ δ2
Ci/ni

δ2
i ≥ σ(Li, Ci)(m− 1)/m = σ(Li, Ci)(1− 1/m)

≥ σ(Li, Ci)(1− 1/ni) = σ(Li, Ci)(ni − 1)/ni.

Now we calculate the upper bound on the variance of δ2
ti,j

(from Inequality (6.4)) using

δ2
i

δ2
ti,j

= δ2
Li(ni − 1)2/n2

i + δ2
Ci/n

2
i + 2σ(Li, Ci)(ni − 1)/n2

i

=
δ2
Li(ni − 1)2/ni + δ2

Ci/ni + 2σ(Li, Ci)(ni − 1)/ni

ni

≤ 4δ2
i /ni

148

By Corollary 38, the expected tardiness is bounded by

E [Ti] ≤
δ2
X

2(Y − E [X])

≤ 4δ2
i /ni

2(Di − (E [Li] (ni − 1) + E [Ci])/ni)

≤ 2δ2
i

niDi − (E [Li] (ni − 1) + E [Ci])

=
2δ2
i

ni(Di − E [Li])− (E [Ci]− E [Li])
(6.9)

Now we can set ζ−1 ≥ maxi (
2δ2i

ni(Di−E[Li])−(E[Ci]−E[Li])) ≥ maxi E [Ti] for high-utilization

tasks and get inequality (6.11).

Combining this definition of ζ with the linear program in Section 6.3.3, we get the

following mixed linear program:

max ζ

s.t. Diûi −
δ2
Ci
2
ζ ≥ E [Ci] ∀i,E [Ui] < 1 (6.10)

(Di − E [Li])ni − 2δ2
i ζ ≥ E [Ci]− E [Li]

∀i,E [Ui] ≥ 1 (6.11)∑
i,E[Ui]<1

ûi +
∑

i,E[Ui]≥1

ni ≤ m (6.12)

ui ≤ ûi ≤ 1 ∀i,E [Ui] < 1 (6.13)

n̂i(p = 0.5) ≤ ni ∀i,E [Ui] ≥ 1 (6.14)

ni is integer ∀i,E [Ui] ≥ 1 (6.15)

We solve this ILP to calculate: integral ni— the number of cores assigned to high uti-

lization task τi; fractional ûi — a valid PS rate allocation for low-utilization task τi; and ζ.

Using the resulting ni for high utilization tasks, we can calculate nlow = m −
∑

high ni, the

number of cores assigned to low-utilization tasks.

149

Explanation of Constraints: Constraints (6.14) and (6.15) guarantee that each high-utilization

task τi gets at least n̂i(p = 0.5) dedicated cores; therefore Theorem 40 guarantees its bounded

tardiness. Constraint (6.13) guarantees that the PS rate allocation is larger than the uti-

lization of low-utilization tasks; therefore Lemma 42 guarantees bounded tardiness of these

tasks. Constraint (6.12) guarantees that nlow + nhigh ≤ m. Finally, Constraint (6.10) is

inherited from the LP in Section 6.3.3.

Optimal Greedy Solution to the ILP: General ILP problems can be hard to solve. However,

there is a unique property of the above ILP — ζ will decrease if at least one ni or
∑

low ûi

increases and the rest remain the same. Relying on this, we can easily see that a greedy

algorithm — starting with the core assignment (ni and ûi(p = 0.5)) from the minimum

core allocation of the FAIR mapping, iteratively increases the ni or
∑

low ûi (a high utiliza-

tion task or the sum of low utilization tasks) with largest tardiness by 1 until just before

Constraint (6.12) would not hold — will successfully find the optimal solution to this ILP

problem (provided that the LP in Section 6.3.3 can directly calculate an optimal solution).

By applying the greedy solution, we can reduce the mixed-ILP problem to an iterative LP

problem. Obviously, the maximum number of iterations needed by the greedy algorithm is

m.

Relationship to FAIR: The ILP mapping algorithm admits exactly the same task sets that

FAIR admits: if FAIR admits a task set (n̂i(p = 0.5) and nlow = m −
∑

high n̂i(p = 0.5)),

then that mapping is a trivially feasible solution to the ILP since it satisfies all constraints

for ζ = 0. On the other hand, if the FAIR algorithm cannot find a solution, then there is no

feasible solution to the ILP. Therefore, since FAIR provides a capacity augmentation bound

of 2, so does this algorithm.

Faster Schedulability Test: As a consequence of the relationship with FAIR, we do not have

to solve the ILP to check if the task set is schedulable using this ILP-based mapping; we can

simply run FAIR to check for schedulability and only solve the ILP to find the mapping if

the task set is, in fact, schedulable.

150

Tardiness Calculation: On solving the mixed linear program, we get ni for each high

utilization task and ûi for each low utilization task. Therefore, we can use Inequalities (6.5)

and (6.7) to calculate the tardiness of these tasks, respectively.

Note that the mixed linear program criterion is a little imprecise; maximizing ζ does not

directly optimize the overall tardiness bound. Instead, it only tries to balance parts of the

tardiness. After applying Inequalities (6.7) and (6.5) for calculating tardiness, the resulting

tardiness of each high-utilization task is actually less than the optimized bound ζ−1, while

the tardiness of low-utilization tasks is actually higher than ζ−1.

To further balance the overall tardiness, instead of using the strict upper bound of δ2
ti,j

(from Inequality (6.9)) in the calculation of ζ, we can approximate it. The reason we cannot

directly use Inequality (6.4) to calculate δ2
ti,j

is because we do not know ni before we solve

the integer linear program. However, we can approximate δ2
ti,j

by using n̂i(p = 0.5) instead

of ni. Then, we have δ2
ti,j

=
δ2Li

(n̂i−1)2/n̂i+δ
2
Ci
/n̂i+2σ(Li,Ci)(n̂i−1)/n̂i

ni
=

δ2i
ni

. This may provide a

better tardiness bound for all tasks.

However, when the worst-case execution time of a low-utilization task is large, the

achieved mapping may still result in a larger maximum tardiness (for that task) than optimal.

6.4 Stochastic Capacity Augmentation of 2 for Stochas-

tic Federated Scheduling

6.4.1 Stochastic Capacity Augmentation Bound for BASIC

Theorem 44 The federated scheduling algorithm has a stochastic capacity augmentation

bound of b =2.

In order to prove Theorem 44, we first prove that the BASIC mapping strategy always

admits all eligible task sets — task sets that satisfy Conditions (6.1) and (6.2) in Definition 5

for for b =2.

151

The BASIC mapping algorithm admits a task set if, E [Ulow] ≤ nlow/b for b = 2. Therefore,

we must prove that for all task sets that satisfy Conditions (6.1) and (6.2), nlow is large enough

to admit the task set.

First, we prove that the number of cores assigned to high-utilization tasks nhigh is bounded

by b
∑

high E [Ui].

Lemma 45 For a high-utilization task τi (1 ≤ E [Ui]), if Di > bE [L]i (Condition (6.2)),

then the number of assigned cores ni ≤ bE [Ui] with b = 2.

Proof. For E [Ui] > 1, since b(E [Li] + αi) = Di, so

E [Ci] = b(E [Li] + αi)E [Ui]

⇒ Di − E [Li]− αi = (b− 1)(E [Li] + αi)

Therefore, we can bound ni by

ni =

⌈
E [Ci]− E [Li]− αi
Di − E [Li]− αi

⌉
<

E [Ci]− E [Li]− αi
Di − E [Li]− αi

+ 1

=
2(E [Li] + αi)E [Ui]− (E [Li] + αi)

E [Li] + αi
+ 1

= 2E [Ui]

For E [Ui] = 1, ni = 2 = 2E [Ui]. Therefore, nhigh =
∑

high ni ≤ b
∑

high E [Ui] for b = 2.

Since task set τ satisfies Condition (6.1), the total utilization
∑

E [Ui] ≤ m/b for b = 2.

So we have

nlow = m− nhigh ≥ b
∑
i

E [Ui]− b
∑
high

E [Ui] = b
∑
low

E [Ui]

Hence, BASIC’s admission criterion is satisfied and it admits any task set satisfying Condi-

tions (6.1) and (6.2). Since BASIC always provides bounded tardiness to task sets it admits

(Section 6.3.2), by Definition 5 this establishes Theorem 44.

152

6.4.2 Stochastic Capacity Augmentation Bound for FAIR

Theorem 46 The FAIR federated scheduling algorithm has a stochastic capacity augmen-

tation bound of b = 2.

To prove Theorem 46, we simply prove if the BASIC admits a task set, then FAIR does as

well; since BASIC admits any task set that satisfies Conditions (6.1) and (6.2) of Definition 5

for b = 2, FAIR also admits them. Since FAIR always provides bounded tardiness to task

sets it admits, this establishes Theorem 46.

First, we show that the minimum core assignment n̂i(p = 0.5) to each high-utilization

task by the FAIR algorithm is at most the number of cores ni that the BASIC algorithm

assigns.

Lemma 47 If ni =
⌈

E[Ci]−E[Li]−αi
Di−E[Li]−αi

⌉
for E [Ui] > 1 and n1 = 2 for E [Ui] = 1; and n̂i(p =

0.5) =
⌊
Ci(p)−Li(p)
Di−Li(p) + 1

⌋
=
⌊

E[Ci]−E[Li]
Di−E[Li] + 1

⌋
; then n̂i ≤ ni for all E [Ui] ≥ 1.

Proof. To make the proof straightforward, we use the two cases from our definition of n̂i

in Section 6.3.4.

For E [Ui] > 1, obviously E[Ci]−E[Li]−αi
Di−E[Li]−αi > E[Ci]−E[Li]

Di−E[Li] > 1, since Di−E [Li] > αi > 0. So we

denote ε > 0 and

E [Ci]− E [Li]− αi
Di − E [Li]− αi

=
E [Ci]− E [Li]
Di − E [Li]

+ ε

When E[Ci]−E[Li]
Di−E[Li] is not integer,

n̂i(p = 0.5) =

⌈
E [Ci]− E [Li]
Di − E [Li]

⌉
≤
⌈

E [Ci]− E [Li]− αi
Di − E [Li]− αi

⌉
= ni

153

When E[Ci]−E[Li]
Di−E[Li] is integer, since ε > 0,

ni =

⌈
E [Ci]− E [Li]− αi
Di − E [Li]− αi

⌉
=

⌈
E [Ci]− E [Li]
Di − E [Li]

+ ε

⌉
≥ E [Ci]− E [Li]

Di − E [Li]
+ 1 = n̂i(p = 0.5)

For E [Ui] = 1, n̂i = 2 = ni. Therefore, for all cases, n̂high =
∑

high n̂i ≤
∑

high ni = nhigh.

FAIR has more cores available for low utilization tasks than BASIC does, since n̂low(p =

0.5) = m − n̂high(p = 0.5) ≥ m − nhigh = nlow. It also allows the total utilization of low-

utilization tasks to be as high as n̂low(p = 0.5), while basic only allows it to be nlow/b.

Therefore, FAIR admits any task set that BASIC admits.

Note that FAIR will only increase n̂i to n̂i(p > 0.5) if it admits the task set. Thus, as far

as the schedulability and capacity augmentation bound are concerned, this will not affect

the proof above. In the most loaded case, n̂i(p̂) = n̂i(p = 0.5).

6.5 Numerical Evaluation

To compare the different performances of these schedulability tests for stochastic task sets,

here, we present a numerical evaluation on randomly generated task sets with probability

distributions on execution time and critical-path length.

6.5.1 Task Sets Generation and Experimental Setup

We evaluate the schedulability results on a varying number of cores m: 4, 8, 16, 32, and 64.

For various total task set utilizations U starting from 10% to 80%, we generate task sets, add

tasks and load the system to be exactly mU — fully loading a unit speed machine. Results

for 4 and 64 cores are similar to the rest, so we omit them for brevity.

154

For each task, we assume normal distributions of execution time and critical-path length.

We uniformly generate the expected execution time E [Ci] between 1 and 100. For tasks

with small variance, we uniformly generate variance to be from 5% to 10% of E [Ci]; for

tasks with large variance, we let it be from 5% to 500%. We generate the critical-path

length following the same rules and ensure the average parallelism E [Ci] /E [Li] is 32. To

ensure a reasonable amount of high-utilization tasks in a task set on m cores, we uniformly

generate the task utilization ui between 0.4 to
√
m. Since we assume a normal distribution

for execution time and critical-path length, with the expected mean and standard deviation,

we can calculate the worst-case execution time by calculating the value ĉi of the distribution

when the probability of a longer execution time is less than 0.01. Deadline is calculated by

uiE [Ci]

Using the task set setups above, we run each setting for 100 task sets. We conduct two

sets of experiments:

(1) We want to evaluate the performance of the two schedulability tests: BASIC and

FAIR. In addition, we use the simple schedulability test from the stochastic capacity

augmentation bound as a baseline comparison.

(2) We want to evaluate the different tardiness bounds of each individual task using dif-

ferent federated mapping algorithms. For task sets that are schedulable according the

BASIC test, we record the maximum, mean and minimum tardiness of each task set.

6.5.2 Experiment Results

Schedulability Performance

We evaluate the performances of different schedulability tests: BOUND (as a baseline),

BASIC and FAIR. Note that, as we have proved, schedulability with the ILP mapping

algorithm is exactly the same as with the FAIR mapping algorithm (denoted as FAIR/ILP

in the figure). Also, since the exact variance of a task is not needed to run these schedulability

155

(a) 8 cores (b) 16 cores (c) 32 cores

Figure 6.1: Task set utilization vs. schedulability ratio (in percentages) for different
number of cores.

(a) BASIC mapping, small variance (b) FAIR mapping, small variance (c) ILP mapping, small variance

(d) BASIC mapping, large variance (e) FAIR mapping, large variance (f) ILP mapping, large variance

Figure 6.2: Maximum, mean and minimum tardiness for parameters with small and
large variances.

156

tests, the calculated schedulability of task sets with small variance and large variance is the

same. Therefore, we do not include these curves in the figures.

From Figure 6.1, we can see that across different numbers of cores, the FAIR/ILP al-

gorithm performs the best, while BOUND performs the worst. Even though the bound

indicates that task sets with total utilization larger than 50%m may not be schedulable in

terms of bounded tardiness, the two other linear time schedulability tests can still admit

task sets up to around 60% for BASIC and 80% for FAIR.

Also note that some task sets with 10% utilization are deemed unschedulable by BOUND.

This is due to the critical-path length requirement for parallel tasks by BOUND. For a few

tasks with 100% utilization, the FAIR algorithm still guarantees bounded tardiness, because

all tasks in the set are low-utilization tasks, and the GEDF scheduler can ensure bounded

tardiness for sequential tasks with no utilization loss.

Tardiness of Tasks with Small and Large Variance

For task sets for which bounded tardiness is guaranteed, we would like to compare the

guaranteed expected tardiness. Note that both the LP and ILP optimization in the FAIR

and ILP mapping algorithms only try to optimize the maximum tardiness of the entire task

sets. Therefore, it would be more interesting to see the different expected tardiness bound

for the individual tasks.

Figure 6.2 shows the maximum, mean and minimum expected tardiness calculated from

the BASIC, FAIR and ILP mappings for task sets with small and large execution time

variations respectively. To make it easy to compare them, we sort all the figures according

to the maximum tardiness of the ILP mapping for that corresponding setting (low and high

variances).

Not surprisingly, BASIC performs the worst among all three mappings, if we count the

number of task sets for which BASIC generates the largest maximum tardiness. In fact, out

of all randomly generated task sets, 92% and 85% of the task sets have smaller maximum

157

tardiness with ILP than with BASIC, given small and large variance respectively. Compare

FAIR and BASIC, 58% and 76% respectively have lower maximum tardiness under FAIR.

However, we can also see that the maximum tardiness from the BASIC mapping is

comparable to (only slightly worse than) that from the FAIR mapping, when variances of

execution time and critical-path length are small. It is also comparable to ILP when the

variances are large. This is probably because all compared task sets satisfy the requirement

of the bound. Therefore, there are enough cores for BASIC mapping to approximate the

better core assignment. Hence, when the variations are small, one could use the BASIC

mapping to bound the tardiness.

We also find that with large variances, the increase of maximum tardiness with FAIR

is not significant, compared to BASIC and ILP. This is not surprising for BASIC result,

because it confirms our hypothesis that the BASIC mapping does not take variation into

account when allocating cores. However, ILP does try to balance the tardiness of all tasks,

considering variance similarly to FAIR.

In fact, comparing FAIR and ILP, we notice that 67% and 58% task sets respectively have

smaller maximum tardiness using ILP. ILP results seem much worse with large variances,

only because for some task sets, the maximum tardiness comes from low-utilization tasks.

Even through ILP can minimize the tardiness for high-utilization tasks, the LP calculation

for low-utilization tasks only minimize the part of tardiness (the maximum tardiness of the

PS scheduler in Lemma 42) but cannot directly minimize the overall tardiness in Lemma 43.

As FAIR inflates the parameters for low-utilization tasks, the LP calculation may result in

a better PS rate allocation and hence smaller tardiness.

158

Chapter 7

Work Stealing for Large Scale Soft
Real-time Systems

Parallel real-time scheduling has emerged as a promising scheduling paradigm for compu-

tationally intensive real-time applications on multicore systems. Unlike in traditional mul-

tiprocessor scheduling with only inter-task parallelism (where each sequential task can only

utilize one core at a time), in parallel scheduling each task has intra-task parallelism and

can run on multiple cores at the same time. As today’s real-time applications are trying to

provide increasingly complex functionalities and hence have higher computational demands,

they ask for larger scale systems in order to provide the same real-time performance. For ex-

ample, real-time hybrid structural testing for a large building may require executing complex

structural models over many cores at the same frequency as the physical structure [70].

Despite recent results in parallel real-time scheduling, however, we still face significant

challenges in deploying large-scale real-time applications on microprocessors with increasing

numbers of cores. In order to guarantee desired parallel execution of a task to meet its

deadline, theoretic analysis often assumes that it is executed by a greedy (work conserving)

scheduler, which requires a centralized data structure for scheduling. On the other hand, for

general-purpose parallel job scheduling it has been known that centralized scheduling ap-

proaches suffer considerable scheduling overhead and performance bottleneck as the number

of cores increases. In contrast, a randomized work stealing approach is widely used in many

parallel runtime systems, such as Cilk, Cilk Plus, TBB, X10, and TPL [32,89,107,134,147].

In work stealing, each core steals work from a randomly chosen core in a decentralized man-

ner, thereby avoiding the overhead and bottleneck of centralized scheduling. However, unlike

159

a centralized scheduler, due to the randomized and distributed scheduling decision making

strategy, work stealing may not be suitable for hard real-time tasks.

In this chapter, we explore using randomized work stealing to support large-scale soft real-

time applications that have timing constraints but do not require hard guarantees. Despite

the unpredictable nature of work stealing, our experiments with benchmark programs found

that work stealing (in Cilk Plus) delivers smaller maximum response times than a centralized

greedy scheduler (in GNU OpenMP) while exhibiting small variance. To leverage randomized

work stealing for scalable real-time computing, we present Real-Time Work Stealing (RTWS),

a real-time extension to the widely used Cilk Plus concurrency platform. RTWS employs

federated scheduling to decide static core assignment to parallel real-time tasks offline, while

using the work stealing scheduler to execute each task on its dedicated cores online. RTWS

supports parallel programs written in Cilk Plus with only minimal modifications, namely a

single level of indirection of the program’s entry point. Furthermore, RTWS requires only

task parameters that can be readily measured using existing Cilk Plus tools.

This chapter presents the following contributions:

1. Empirical study of the performance and variability of parallel tasks under randomized

work stealing vs. centralized greedy scheduler.

2. Design and implementation of RTWS, which schedules multiple parallel real-time tasks

through the integration of federating scheduling and work stealing.

3. Theoretical analysis to adapt federated scheduling to incorporate work stealing over-

head.

4. Evaluation of RTWS with benchmark applications on a 32-core testbed that demon-

strates the significant advantages of RTWS in terms of deadline miss ratio, relative

response time and required resource capacity when comparing with the integration of

federated scheduling and centralized scheduler.

160

7.1 The Case for Randomized Work Stealing for Soft

Real-Time Tasks

In this section, we compare the performance of a work stealing scheduler in GNU Cilk

Plus with a centralized scheduler in GNU OpenMP for highly scalable parallel programs

(see Section 2.3 for a brief introduction). We choose these two implementations because

OpenMP and CilkPlus are two of the most widely used parallel languages (and runtime

systems) that have been developed by industry and the open source community over more

than a decade; they are the only two parallel languages that are supported by both GCC

and ICC.

Our goal is to answer two questions: (1) Is it indeed the case that work stealing pro-

vides substantially better performance than centralized scheduler for parallel programs? Our

experiments indicate that for many programs, including both synthetic tasks and real bench-

mark programs, work stealing provides much higher scalability. (2) Can work stealing be

used for real-time systems? In particular, one might suspect that even if work stealing per-

forms better than centralized scheduler on average, the randomization used in work stealing

would make its performance too unpredictable to use even in soft real-time systems. Our

experiments indicate that this is not the case — in fact, the variation in execution time using

Cilk Plus’ work-stealing scheduler is small and is comparable to or better than the variation

seen in the deterministic centralized scheduler.

7.1.1 Scalability Comparison

We first compare the scalability of the OpenMP centralized scheduler with the Cilk Plus

work-stealing scheduler. To do so, we use two types of programs: (1) three synthetic pro-

grams that are synchronous tasks; and (2) three real benchmark programs, namely Cholesky

161

Synchronous Task - Type 1
No. cores OpenMP Cilk Plus Ratio

(med., max, 99th per.) (med., max, 99th per.)
1 955.13, 958.10, 956.98 948.52, 953.41, 950.94 1.00
6 173.68, 174.31, 174.18 160.77, 161.46, 161.26 0.93
12 256.63, 259.19, 258.89 81.68, 82.56, 81.93 0.32
18 342.20, 365.99, 362.99 55.42, 59.22, 58.96 0.16
24 328.52, 331.11, 329.75 41.23, 45.22, 44.78 0.14
30 311.92, 330.00, 329.00 33.66, 35.02, 34.64 0.11

Synchronous Task - Type 2
No. cores OpenMP Cilk Plus Ratio

(med., max, 99th per.) (med., max, 99th per.)
1 1243.7, 1247.2, 1246.6 1237.2, 1239.9, 1239.2 0.99
6 210.22, 210.84, 210.74 213.77, 214.30, 214.19 1.02
12 111.58, 111.94, 111.87 107.90, 108.69, 108.11 0.97
18 95.55, 95.96, 95.92 73.45, 73.82, 73.62 0.77
24 85.97, 126.00, 123.01 58.95, 74.80, 69.18 0.59
30 86.74, 119.01, 86.96 45.07, 48.27, 47.33 0.41

Synchronous Task - Type 3
No. cores OpenMP Cilk Plus Ratio

(med., max, 99th per.) (med., max, 99th per.)
1 948.42, 950.39, 949.97 902.38, 903.29, 903.18 0.95
6 156.47, 156.94, 156.77 155.77, 156.06, 156.00 0.99
12 79.03, 79.34, 79.27 78.80, 79.46, 78.97 1.00
18 53.07, 53.49, 53.28 54.05, 54.41, 54.29 1.02
24 39.99, 69.95, 40.18 40.68, 44.35, 43.62 0.63
30 32.20, 33.18, 32.39 33.40, 37.12, 34.48 1.12

Table 7.1: Median, maximum, and 99th percentile execution times of synchronous
tasks for OpenMP and Cilk Plus implementations (in milliseconds) and the ratios of
the maximum execution times of Cilk Plus over OpenMP implementations.

factorization, LU decomposition and Heat diffusion — none is synchronous and all have

complex DAG dependences (of different types).

We implemented these programs in both Cilk Plus and OpenMP. It is important to note

that the entire source code of each program is the same, except that the parallel directives

are in either Cilk Plus or OpenMP. Both implementations are compiled by GCC, while linked

to either Cilk Plus or OpenMP runtime libraries. Hence, the same program written in Cilk

Plus and OpenMP has the same structure and therefore the same theoretical work and span.

162

Synthetic Synchronous Tasks: The synthetic synchronous tasks have different charac-

teristics to compare the schedulers under different circumstances:

(1) Type 1 tasks have a large number of nodes per segment, but nodes has small execution

times.

(2) Type 2 tasks have a moderate number of nodes per segment and moderate work per

node.

(3) Type 3 tasks have a small number of nodes per segment, but nodes have large execu-

tion times.

The number of segments for all three types of synchronous tasks are generated from 10

to 20. For synchronous task type 1, we generate the number of nodes for each segment from

100, 000 to 200, 000 and the execution time per node from 5 to 10 nanoseconds; for task type

2, the number of nodes per segment varies from 10, 000 to 20, 000 and the execution time of

each node from 2, 000 to 4, 500 nanoseconds; for task type 3, the number of nodes for each

segment is from 1, 000 to 2, 000 and each node rans from 20, 000 to 50, 000 nanoseconds.

The total work for synchronous tasks of different types was therefore similar. For each

synchronous task generated, we ran it on varying numbers of cores with both Cilk Plus and

OpenMP and we ran it 1000 times for each setting.

Table 7.1 shows the median, maximum, and 99th percentile execution times of OpenMP

and Cilk Plus tasks as well as the ratios of the maximum execution time of Cilk Plus over

OpenMP implementations for the three types of synchronous tasks on varying numbers of

cores. For most settings, Cilk Plus tasks obtain smaller maximum execution times than

OpenMP tasks, as shown in the ratios. We also notice that for type 1 tasks the execution

times of the OpenMP tasks even increase when the number of cores is high (e.g, for 18, 24,

30 cores) whereas Cilk Plus tasks keep a steady speedup.

Figure 7.1 shows the speedup of these synchronous tasks. For all three types of tasks,

Cilk Plus provides steady and almost linear speedup as we scale up the number of cores. In

contrast, for synchronous task type 1 in Figure 7.1(a) where the segment lengths are short

163

1 3 6 9 12 15 18 21 24 27 30

Number of Cores

5

10

15

20

25

30

S
p

e
e

d
u

p
OpenMP

Cilk Plus

(a) Speedup of task type 1

1 3 6 9 12 15 18 21 24 27 30

Number of Cores

5

10

15

20

25

30

S
p

e
e

d
u

p

OpenMP

Cilk Plus

(b) Speedup of task type 2

1 3 6 9 12 15 18 21 24 27 30

Number of Cores

5

10

15

20

25

30

S
p

e
e

d
u

p

OpenMP

Cilk Plus

(c) Speedup of task type 3

Figure 7.1: Speedup of synchronous tasks in OpenMP and Cilk Plus implementations

and there are many nodes in each segment, OpenMP inevitably suffers high synchronization

overhead due to the contention among threads that constantly access the global work queue.

This overhead is mitigated when the number of nodes in each segment is smaller and the seg-

ment lengths are longer, as in Fig. 7.1(c). In this setting, OpenMP slightly outperforms Cilk

Plus, though Cilk Plus still has comparable speedup to OpenMP. Figure 7.1(b) demonstrates

the scalability of OpenMP and Cilk Plus with parameters generated in between.

Real DAG Benchmark Programs: To compare the performance between work stealing

and centralized scheduler for programs with more complex DAG structures, we use three

benchmark programs as described below.

(a) Cholesky factorization (Cholesky): Using divide and conquer, Cholesky program

performs Cholesky factorization of a sparse symmetric positive definite matrix into the prod-

uct of a lower triangular matrix and its transpose. The work and parallelism of Cholesky

both increase when the matrix size increases. Note that because Cholesky is parallelized us-

ing divide and conquer method, it has lots of spawn and sync operations, forming a complex

DAG structure.

(b) LU decomposition (LU): Similar to Cholesky, LU also performs matrix factor-

ization, but the input matrix does not need to be positive definite and the output upper

triangular matrix is not necessarily the transpose of the lower triangular matrix. LU also

decomposes the matrix using divide and conquer and provides abundant parallelism.

164

(c) Heat diffusion (Heat): This program uses the Jacobi iterative method to solve an

approximation of a partial differential equation that models the heat diffusion problem. The

input includes a 2-dimension grid with the numbers of rows and columns, and the number of

time steps (or iterations) the computation is performed on that 2D grid. Within each time

step, the computation is carried out in a divide and conquer manner.

The Cholesky program was run for a matrix of size 3000 × 3000. The LU program was

run for a matrix of size 2048 × 2048. For both of them, the base case matrix had size of

32× 32. The Heat program was run with a 2-dimensional input of size 4096× 1024 and 800

time steps. For each setting, we ran the program 100 times.

For each program, we first compare its execution times under work stealing and central-

ized scheduler on varying numbers of cores, as shown in Table 7.2. For all three benchmarks,

we notice that the execution times are tight which means both scheduling strategies have a

decent predictability. However, Cilk Plus implementations have smaller maximum execution

times which means that Cilk Plus tasks have higher chance of finishing by their deadlines.

Figure 7.2 shows the speedups of these programs in the same experiments. For matrix

computation programs like Cholesky and LU, where there is abundant parallelism, OpenMP

obtains good speedups but Cilk Plus obtaines even better speedups. The difference is more

notable in the Heat diffusion program, where there is less parallelism to exploit. For this

program, Cilk Plus still has reasonable speedup, while the speedup of OpenMP starts to

degrade when the number of cores is more than 21.

We also notice that for Cholesky and LU programs, the performances of OpenMP are

quite sensitive to the base case sizes whereas Cilk Plus performed equally well regardless

of the base case sizes. For demonstration, Figure 7.2(b) shows the experiment results of

Cholesky with a base case matrix of size 4 × 4. Notably, no speedup was observed for

OpenMP when the number of cores increases. Thus, one has to tune the base case size for

OpenMP in order to get comparable performance with their Cilk Plus counterparts. This is

165

Cholesky Factorization
No. cores OpenMP Cilk Plus Ratio

(med., max, 99th per.) (med., max, 99th per.)
1 32.12, 32.18, 32.17 32.31, 32.36, 32.35 1.01
6 7.39, 7.62, 7.61 5.44, 5.47, 5.47 0.72
12 3.58, 3.72, 3.71 2.79, 2.89, 2.87 0.78
18 2.36, 2.43, 2.43 1.91, 1.96, 1.95 0.81
24 1.85, 1.92, 1.92 1.48, 1.52, 1.51 0.79
30 1.56, 1.62, 1.61 1.23, 1.28, 1.28 0.79

LU Decomposition
No. cores OpenMP Cilk Plus Ratio

(med., max, 99th per.) (med., max, 99th per.)
1 16.98, 17.09, 17.07 16.76, 16.82, 16.82 0.98
6 3.53, 3.79, 3.79 2.82, 2.84, 2.83 0.75
12 1.89, 1.97, 1.97 1.44, 1.87, 1.78 0.95
18 1.27, 1.37, 1.35 0.99, 1.07, 1.06 0.78
24 0.99, 1.06, 1.05 0.76, 0.84, 0.83 0.79
30 0.82, 0.86, 0.86 0.64, 0.71, 0.69 0.82

Heat Diffusion
No. cores OpenMP Cilk Plus Ratio

(med., max, 99th per.) (med., max, 99th per.)
1 51.57, 52.04, 52.04 51.70, 52.11, 52.11 1.00
6 13.50, 13.83, 13.81 8.80, 9.28, 9.26 0.67
12 7.93, 8.41, 8.31 5.06, 5.82, 5.70 0.69
18 6.40, 6.73, 6.69 3.73, 3.96, 3.95 0.59
24 5.94, 6.10, 6.10 3.06, 4.06, 3.67 0.67
30 6.87, 7.20, 7.17 2.62, 2.73, 2.73 0.38

Table 7.2: Median, maximum, and 99th percentile execution times of Cholesky, LU,
and Heat for OpenMP and Cilk Plus implementations (in seconds) and the ratio of
the maximum execution times of Cilk Plus over OpenMP implementations.

again caused by the fact that the overhead of centralized scheduler adds up and outweighs

the performance gain by running program in parallel, when the base case is small.

7.1.2 Tightness of Randomized Work Stealing in Practice

One might expect that even though a work-stealing scheduler may perform well on average

due to low overheads, would not be suitable for real-time platforms due to high variability in

its execution times due to randomness. However, this intuition turns out to be inaccurate.

166

1 3 6 9 12 15 18 21 24 27 30

Number of Cores

5

10

15

20

25

30
S

p
e
e
d

u
p

OMP

CILK

(a) Cholesky with size 3000 × 3000 and base case
32× 32

1 4 8 12 16 20 24 28 32

Number of Cores

0

2

4

6

8

10

12

14

S
p

e
e
d

u
p

OMP

CILK

(b) Cholesky with input size 1000× 1000 and base
case 4× 4

1 3 6 9 12 15 18 21 24 27 30

Number of Cores

5

10

15

20

S
p

e
e
d

u
p

OMP

CILK

(c) Heat with input size 4096× 1024

1 3 6 9 12 15 18 21 24 27 30

Number of Cores

5

10

15

20

25

30

S
p

e
e
d

u
p

OMP

CILK

(d) LU with matrix size 2048× 2048

Figure 7.2: Speedup of benchmark programs in OpenMP and Cilk Plus implementa-
tions

Theoretically, strong high probability bounds have been proven for the execution times for

work stealing [33, 148]. Our experiments also suggest that the variation in execution time

is small in practice. In our experiments, the difference between the mean execution time

and the 99th percentile execution time is less than 5% most of the times and the variation

between the mean and the maximum execution time is also small.

More importantly, the variation shown by work stealing is never worse than (and is

generally better than) that shown by the deterministic scheduler used by OpenMP. This

indicates that work-stealing schedulers show promise for use in real-time systems, especially

167

soft real-time systems which can tolerate some deadline misses, since they can potentially

provide much better resource utilization than centralized schedulers for parallel tasks.

Discussion: One might wander whether a different centralized scheduler that builds on

better synchronization primitives can outperform Cilk Plus’s work-stealing scheduler. Our

experiments in Figure 7.1(a), 7.1(b) and 7.2(b) indicate that the higher overhead of cen-

tralized scheduler mostly comes from the larger number of synchronization operations on

the centralized global queue compared to lower contention on the distributed local queues.

Therefore, even if synchronization primitives of the centralized scheduler is further optimized

to reduce overheads, it is still unlikely to negate the inherent scalability advantages of ran-

domized work-stealing, especially with increasing number of cores and workload complexity.

7.2 Adaptation to Federated Scheduling using Work

Stealing

As demonstrated in Section 7.1, a centralized greedy scheduler incurs high overheads for par-

allel tasks and is less scalable compared to a randomized work-stealing scheduler. Therefore,

when the task set allows occational deadline misses, using randomized work stealing can be

more resource efficient and scalable. In order to leverage work stealing, while providing soft

real-time performance to parallel task sets, we adapt federated scheduling to incorporate

work stealing overhead. In this section, we first briefly introduce federated scheduling and

then present how we can adapt it to incorporate work stealing overhead.

7.2.1 Federated Scheduling for Parallel Real-Time Tasks

The federated scheduling in Chapter 4 is an scheduling paradigm for parallel real-time tasks.

Given a task set τ , federated scheduling either admits a task set and outputs a core assign-

ment for each task; or declares the task set to be unschedulable. In the core assignment, each

168

high-utilization task (utilization > 1) is allocated ni dedicated cores, where ni =
⌈
Ci−Li
Di−Li

⌉
.

During runtime, a greedy scheduler is required to execute each high-utilization task on its

dedicated cores. All the low-utilization tasks are forced to execute sequentially on the remain-

ing cores scheduled by a multiprocessor scheduling algorithm. Since low-utilization tasks do

not need parallelism to meet deadlines, in this work we focus only on high-utilization tasks.

Federated scheduling has been proved to have a capacity augmentation bound of 2,

meaning that given m cores federated scheduling can guarantee schedulability to any task

set τ as long as it satisfies: (1) the total utilization of the task set is no more than half of

the total available cores –
∑
ui ≤ m/2; (2) for each task, the critical-path length is less than

half of its deadline – Li < Di/2.

Discussion: Why do we choose to integrate work stealing into federated scheduling instead

of other real-time schedulers, such as global EDF? Firstly, as discussed in related work,

federated scheduling has the best capacity augmentation bound of 2, so it can schedule task

sets with higher load than other scheduler strategies. More importantly, it has the benefit

that the parallel scheduler used for executing parallel task does not need to be deadline- or

priority-aware, since the task is assigned with dedicated cores. Otherwise, worker threads

of the parallel scheduler have to be able to quickly switch to jobs with shorter deadlines or

higher priorities when they arrive. However, recall that the advantage of work stealing is that

a worker thread works off its own deque most of the time, which is against the requirement of

fast switching between jobs. Because of this, implementing other parallel real-time scheduling

strategies using work stealing can be difficult and involve high overheads.

7.2.2 Incorporating Work Stealing Overhead into Federated Schedul-

ing

When each parallel task is executed by a work-stealing scheduler on its dedicated cores, the

core assignment of federated scheduling needs to incorporate work stealing overheads when

169

calculating core assignment. In work stealing, there are two types of overheads that we need

to consider: stealing overhead and randomization overhead.

Stealing overheads includes the explicit costs of bookkeeping parallel nodes and the im-

plicit cost of cache misses due to the migration of stolen nodes. Since stealing can only occur

at spawn and sync points in the DAG, given a specific DAG one can estimate the overheads

due to scheduling events by counting these quantities. Based on this insight, burdened DAG

is introduced to estimate stealing overheads for DAG task [85]. Using profiling tools, such

as Cilk View and Cilkprof [139], the burdened critical-path length L̂i, with stealing overheads

incorporated, can be measured. When calculating core assignment for tasks, we use the

burdened critical-path length L̂i to replace critical-path length Li, so that stealing overhead

is included.

Compared to a greedy scheduler, the randomness of work stealing introduces additional

overhead. In particular, even if there is available work on another core, a core may still

take some time to find the available work, because the random stealing may fail to find the

available work. Thus, the execution time of a task under work stealing is a random variable.

By extending the result of stochastic federated scheduling in Chapter 6, we incorporate the

randomization overhead into core assignment and also analyze the expected tardiness bound

for federated scheduling using work stealing.

To analyze the randomness overhead, we first state known results on work-stealing re-

sponse time γi for task τi with total execution time Ci and critical path-length Li [148].

Lemma 48 [Tchi.13] A work-stealing scheduler guarantees completion time γi on ni dedi-

cated cores where

E [γi] ≤ Ci
ni

+ δLi + 1 (7.1)

P
{
γi ≤ Ci

ni
+ δ(Li + log2

1
ε
) + 1

}
≥ 1− ε (7.2)

170

Note that the δ in the above formula is the critical-path length coefficient. Theoretically it

has been proven to be at most 3.65, while empirically it is set to 1.7 for measurement using

Cilk View [85] and is set to 1.5 when using Cilkprof.

Consider a random variable X with CDF function

F(x) = P{X ≤ x} = 1− e−λ(x−µ)

where µ = Ci
ni

+ δLi + 1 and λ = ln 2
δ

. This is the CDF of a shifted exponential distribution

with mean value E [X] = µ+ 1
λ

= Ci
ni

+ δ(Li + 1
ln 2

) + 1 and variance λ−2.

If we set x = µ + δ log2
1
ε
, then we get ε = e−λ(x−µ). Using Inequality (7.2), the above

CDF can be rewritten as

F(x) =P
{
X ≤ Ci

ni
+ δ(Li + log2

1

ε
) + 1

}
= 1− ε

≥P
{
γi ≤

Ci
ni

+ δ(Li + log2

1

ε
) + 1

}

Therefore, the CDF of random variable X is the upper bound of the CDF of completion

time γi. Every instance j drawn from the distribution of γi can be mapped to an instance

in the distribution of X that is no smaller than j. In other words, X’s probability density

function of f(x) = λe−λ(x−µ) is the worst-case distribution of completion time γi of task τi

under work stealing.

Now we can use a lemma from queueing theory [98] to calculate core assignment and

bound the response time for federated scheduling incorporated with work stealing.

Inspired by the stochastic analyses in [122] and Section 6.3.3, Lemma 38 in Section 6.3.3

can be interpreted as follows: parallel jobs are customers; implicit deadline is the inter-

arrival time Y = Di; and the completion time on ni dedicated cores using work stealing is

the service time X = γi. As discussed above, f(x) is the worst-case distribution of γi with

mean value Ci
ni

+ δ(Li + 1
ln 2

) + 1. Thus, Lemma 38 guarantees bounded response time for

171

ni >
Ci

Di−δ(Li+ 1
ln 2

)−1
, since

E [X] = E [γi] ≤
Ci
ni

+ δ(Li +
1

ln 2
) + 1 < Di = Y

Therefore, after incorporating the stealing overhead and randomness overhead into fed-

erated scheduling, the number of cores assigned to a task is adapted as

ni =

⌊
Ci +Di − δL̂i
Di − δL̂i

⌋
(7.3)

Note that we omitted the terms 1
ln 2

and 1, because they are in unit time step, which is neg-

ligible compared with Ci and Li in actual time. If Di ≤ δL̂i, the task is deem unschedulable.

From Lemma 38, we can also calculate the bound on task expected response time Ri.

Again as f(x) is the worst-case distribution of γi with variance (δ
ln 2

)2, given ni cores the

expected response time of task τi is bounded by

E [Ri] ≤ E [γi] +
δ2
γi

2(Di − E [γi])
≤ Ci
ni

+ δL̂i +
(δ

ln 2
)2

2(Di − Ci
ni
− δL̂i)

7.3 RTWS Platform

In this section, we describe the design of the RTWS platform, which provides federated

scheduling service for parallel real-time tasks. which

Note that RTWS and RTCG have the same API and similar design. Because each parallel

task is executed on dedicated cores, and no other tasks can introduce CPU interference with

them. Therefore, the parallel scheduler does not need to be deadline- or priority-aware. This

design allows us to use existing Cilk Plus runtime systems to schedule parallel tasks.

Here we point out the major differences in the RTWS platform from RTCG. The RT-

scheduler in RTWS calculates a core assignment using the formula (7.3) in Section 7.2

172

during offline, which has incorporated work stealing overheads into federated scheduling.

During execution, the PL-dispatcher enforces the periodic invocation of each task and calls

an individual GNU Cilk Plus runtime system to provide parallel execution of each task. To

isolate multiple concurrent parallel runtime systems from each other, we modified its runtime

system, so that each Cilk Plus runtime only creates ni workers, each of which is pinned to

one of the ni assigned cores.

Profiling Tool: Since the work and critical-path length of each task must be specified to

the platform (in the configuration file), we also provide a simple profiling utility to auto-

matically measure these quantities for each task. The work of a task can be measured by

running the profiling program on a single core. Measuring the critical-path length is more

difficult. We adopt a profiling tool Cilkprof [139], which can automatically measure the work

and the burdened critical-path length of a single job. In particular, Cilkprof uses compiler

instrumentation to gather the execution time of every call site (i.e., a node in the DAG)

and calculate the critical-path length in nanosecond. To be consistent with GNU Cilk Plus

(and GNU OpenMP), we use a version of Cilkprof that instrumented the GCC compiler

and incorporated the burdened DAG into the measurement. Intel provides another tool

Cilkview [85] that can measure the number of instructions of burdened critical-path length

using dynamic binary instrumentation.

Discussion: As shown in Section 7.1, work stealing has better parallel performance than

the centralized scheduler. Thus, RTWS using work stealing is a better candidate for parallel

tasks with soft real-time constraints, as confirmed via the empirical comparison in Section 7.4.

However, it may not be the best approach for other scenarios. First and foremost, the

execution time of a parallel task using work stealing can be as slow as its sequential execution

time in the worst case, even though the probability of the worst case happening can be

extremely low in practice. Therefore, it can never be applied to hard real-time systems

without modifying the work stealing protocol to provide some form of progress guarantee.

173

In addition, for special purposed system where the structure of parallel task is static and well

measured, a static scheduler that decides how to execute the parallel task prior to execution

can effectively reduce scheduling overheads and may perform better than work stealing.

7.4 Platform Evaluation

In this section, we evaluate the soft real-time performance provided by RTWS using a ran-

domized work-stealing scheduler (RTWS) compared to the alternative implementation of

federated scheduling using a centralized greedy scheduler (RTCG). We use three DAG ap-

plications written in both Cilk Plus and OpenMP (discussed in Section 7.1) to randomly

generate task sets for emperical experiments. To the best of our knowledge, RTWS is the

first real-time platform that supports general DAG tasks, such as these benchmark programs.

Since other existing real-time systems do not support parallel DAG tasks, we do not compare

against them.

Experiments were conducted on a 32-core machine composed of four Intel Xeon processors

(each with 8 cores). When running experiments, we reserved two cores for operating system

services, leaving 30 experimental cores. Linux with CONFIG PREEMPT RT patch version

r14 applied was the underlying RTOS.

7.4.1 Benchmark Task Sets Generation

We now describe how we generate task sets composed of the three benchmark programs

(Cholesky, Heat and LU) with the general DAG structures. We generate 4 sets of task sets

and evaluate their performances. The first 3 sets are composed with tasks running the same

application, denoted as Cholesky, Head and LU task sets. The last set comprises a mix

of all benchmarks, denoted as Mixed task sets.

We profile Cholesky, Heat and LU programs using 14, 6 and 3 different input sizes,

respectively. For each program with each input size, we measure its work and burdened

174

critical-path length using Cilkprof. Then we generate different tasks (from one benchmark

with one input size) and assign it with a randomly generated utilization. To see the effect of

scalability of large parallel tasks (i.e., spanning many cores), we intentionally create 5 types

of tasks: tasks with mean utilization from {1, 3, 6, 12, 15}. When assigning utilization to

a task, we always try to pick the largest mean utilization that does not make the task set

utilization exceed the total utilization that we desire. After deciding a mean utilization, we

will then randomly generate the utilization of the task using the mean value. A task’s period

is calculated using its work over utilization. We keep adding tasks into the task set, until it

reaches the desired total utilization. For each setting, we randomly generate 10 task sets.

7.4.2 Evaluation Results

For each DAG task set, we record the deadline miss ratio, which is calculated using the

total number of deadline misses divided by the total number of jobs in the task set. We also

record the response time of each individual job during the execution to calculate a relative

response time, which is the job’s response time over its deadline. We then calculate the

average relative response time for each task set.

In the first two comparisons between RTWS and RTCG, we’d like to see how the in-

tegration of federated scheduling and randomized work stealing performs compared with

federated scheduling using a centralized greedy scheduler given the same resource capacity

for soft real-time task sets. Therefore, for these experiments we use the same core assign-

ment as described in Section 7.2, which incorporates work stealing overheads into federated

scheduling.

Since the centralized scheduler generally has larger overheads and takes longer to execute

as shown in Section 7.1, it is not surprising to see that RTCG performs worse than RTWS

given the same resource capacity. To further analyze the performance difference between the

two approaches, in the last experiment we increase the resource capacity for RTCG. We’d

175

like to see how much more resource capacity RTCG requires in order to schedule the same

task sets compared with RTWS.

20% 30% 40% 50% 56% 62% 71% 83%

Percentage of Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

a
d

li
n

e
 M

is
s

 R
a

ti
o

RTWS

RTCG

(a) Deadline miss ratio of Cholesky task sets

20% 30% 40% 50% 56% 62% 71% 83%

Percentage of Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

a
d

li
n

e
 M

is
s

 R
a

ti
o

RTWS

RTCG

(b) Deadline miss ratio of Heat task sets

20% 30% 40% 50% 56% 62% 71% 83%

Percentage of Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

a
d

li
n

e
 M

is
s

 R
a

ti
o

RTWS

RTCG

(c) Deadline miss ratio of LU task sets

20% 30% 40% 50% 56% 62% 71% 83%

Percentage of Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

a
d

li
n

e
 M

is
s

 R
a

ti
o

RTWS

RTCG

(d) Deadline miss ratio of Mixed task sets

Figure 7.3: Deadline miss ratio of different task sets (Cholesky, Heat, LU and
Mixed task sets) with increasing total utilization under RTWS (providing federated
scheduling service integrated with a randomized work-stealing scheduler in GNU Cilk
Plus) and RTCG (providing federated scheduling service integrated with a centralized
greedy scheduler in GNU OpenMP). In these experiments, RTWS and RTCG use the
same core assignment.

(1) Deadline miss ratio comparison: We first compare the deadline miss ratio in Fig-

ure 7.3(a),7.3(b),7.3(c) and 7.3(d) for Cholesky, Heat, LU and Mixed task sets, respectively.

Notably, most of the task sets under RTWS has no deadline misses and all of the task sets

176

have a deadline miss ratio no more than 10%. In fact, from all the experiments we run, there

are only 2.25% tasks (28 out of 1243 tasks) having deadline misses. In contrast, given the

same core assignment RTCG misses substantially more deadlines, especially for Heat task

sets where many tasks miss all of their deadlines.

20% 30% 40% 50% 56% 62% 71% 83%

Percentage of Utilization

0.5

1

1.5

2

2.5

3

A
v

e
ra

g
e

 R
e

la
ti

v
e

 R
e

s
p

o
n

s
e

 T
im

e

RTWS

RTCG

(a) Relative Response time of Cholesky task sets

20% 30% 40% 50% 56% 62% 71% 83%

Percentage of Utilization

0.5

1

1.5

2

2.5

3

A
v

e
ra

g
e

 R
e

la
ti

v
e

 R
e

s
p

o
n

s
e

 T
im

e

RTWS

RTCG

(b) Relative Response time of Heat task sets

20% 30% 40% 50% 56% 62% 71% 83%

Percentage of Utilization

0.5

1

1.5

2

2.5

3

A
v

e
ra

g
e

 R
e

la
ti

v
e

 R
e

s
p

o
n

s
e

 T
im

e

RTWS

RTCG

(c) Relative Response time of LU task sets

20% 30% 40% 50% 56% 62% 71% 83%

Percentage of Utilization

0.5

1

1.5

2

2.5

3

A
v

e
ra

g
e

 R
e

la
ti

v
e

 R
e

s
p

o
n

s
e

 T
im

e

RTWS

RTCG

(d) Relative Response time of Mixed task sets

Figure 7.4: Average relative response time of different task sets (Cholesky, Heat,
LU and Mixed task sets) with increasing total utilization under RTWS and RTCG. In
these experiments, RTWS and RTCG use the same core assignment.

(2) Relative response time comparison: In Figure 7.4(a),7.4(b),7.4(c) and 7.4(d), we

observe that RTCG has much higher average relative response time than RTWS, given the

same resource capacity. For all task sets, the average relative response time of RTWS is

177

less than 1, while some tasks under RTCG even have relative response times larger than a

hundred. In order to clearly see the relative response times smaller than 1, when plotting

the figures we mark all the relative response times that are larger than 3 as 3.

20% 30% 40% 50% 56% 62% 71% 83%

Percentage of Utilization

5

10

15

20

25

30

R
e

q
u

ir
e

d
 N

u
m

b
e

r
o

f
C

o
re

s

RTWS

RTCG

(a) Required number of cores of Cholesky task sets

20% 30% 40% 50% 56% 62% 71% 83%

Percentage of Utilization

5

10

15

20

25

30

R
e

q
u

ir
e

d
 N

u
m

b
e

r
o

f
C

o
re

s

RTWS

RTCG

(b) Required number of cores of Heat task sets

20% 30% 40% 50% 56% 62% 71% 83%

Percentage of Utilization

5

10

15

20

25

30

R
e

q
u

ir
e

d
 N

u
m

b
e

r
o

f
C

o
re

s

RTWS

RTCG

(c) Required number of cores of LU task sets

20% 30% 40% 50% 56% 62% 71% 83%

Percentage of Utilization

5

10

15

20

25

30

R
e

q
u

ir
e

d
 N

u
m

b
e

r
o

f
C

o
re

s

RTWS

RTCG

(d) Required number of cores of Mixed task sets

Figure 7.5: Required number of cores of different task sets (Cholesky, Heat, LU and
Mixed task sets) with increasing total utilization under RTWS and RTCG. In these
experiments, we increase the number of cores for each task under RTCG until it misses
no more than 60% of deadlines.

(3) Required resource capacity: From the first two comparisons, we can clearly see that

RTCG requires more cores (i.e., resource capacity) in order to provide the same real-time

performance as RTWS. Thus, in Figure 7.5(a),7.5(b),7.5(c) and 7.5(d) we keep increasing

178

the number of cores assigned to tasks under RTCG that have more than 25% of deadline

misses. Note that all tasks under RTWS meet at least 80% of deadlines. We compare the

required number of cores of RTCG and RTWS for the same task sets to meet most of their

deadlines. If a task set misses most deadlines when allocated with all the 30 available cores,

then we mark the number of required cores as 34. For Cholesky and LU task sets, RTCG

requires about 1 to 3 additional cores. For some Heat task sets, even doubling the number

of cores for RTCG is still not sufficient.

179

Part II

Online Systems with
Parallel Latency-Critical Jobs

180

Introduction

This part of the thesis focus on the online scheduling problems for parallel latency-critical

jobs. In these systems, jobs arrive over time and the scheduler does not know the existence

of jobs until they arrive. The goal of the scheduler is both to use the resources efficiently

and to provide a good quality of service to jobs.

Chapter 8 focuses on the performance metric of minimizing the number of jobs that

miss a target latency. It shows how to generalize work-stealing, which is traditionally used

to minimize the makespan of a single parallel job, to optimize for a target latency in in-

teractive services with multiple parallel jobs. Our experiments indicate that our prototype

work-stealing scheduler using TBB is very effective for highly parallel interactive workloads.

Although no current interactive service uses work stealing, as far as we are aware, the work

stealing framework is appealing because it supports the most general models of both static

and dynamic parallelism. To use our framework, services need only to express the parallelism

in individual requests. The benefits of the proposed scheduling strategy include improved

user experience with more consistent responsiveness and increased system capacity for inter-

active services.

Chapter 9 focuses on scheduling parallel jobs online to maximize the throughput or profit

of the execution. Specifically, in an execution a set of n jobs arrive online and each job Ji

has an associated function pi(t), the profit obtained for finishing job Ji at time t. Each job

has its own arbitrary non-increasing profit function. This chapter gives the first non-trivial

results for the profit scheduling problem for DAG jobs.

Chapter 10 studies the problem of scheduling a set of parallel jobs with the objective

of minimizing the maximum latency experienced by any job. In this setting, jobs arrive

online and the scheduler has no information about the arrival rate, arrival time or work

distribution of the jobs. The scheduling goal is to minimize the maximum amount of time

181

between the arrival of a job and its completion — this goal is referred to in scheduling

literature as maximum flow time. In addition, this chapter also considers the case where

jobs have weights (typically representing priorities) and the objective is minimizing the

maximum weighted flow time.

Chapter 11 studies the problem of scheduling parallel jobs online with an objective of

minimizing average flow time. For this objective, we present a scalable algorithm which

is (1 + ε)-speed O(1
ε3

)-competitive for any ε > 0. We further introduce the first greedy

algorithm for scheduling parallel jobs — our algorithm is a generalization of the shortest

jobs first algorithm. Greedy algorithms are among the most useful in practice due to their

simplicity. We show that this algorithm is (2 + ε)-speed O(1
ε4

)-competitive for any ε > 0.

Chapter 12 also considers the problem of minimizing average flow time (latency) of paral-

lel jobs online on multicore machines. Although the algorithms proposed in Chapter 11 have

good theoretical performance, they are impractical to implement. Therefore, this chapter

proposed a new distributed scheduling algorithm that has the same theoretical performance

as the greedy algorithm in Chapter 11. This distributed algorithm has several practical ad-

vantages: (1) it is a non-clairvoyant algorithm — it does not know the execution character-

istics of jobs. (2) The scheduling algorithm consists of a simple protocol where all processors

make scheduling decisions in a distributed manner requiring minimal synchronization. (3)

It requires a small bounded number of preemptions.

Contents of this part of the thesis have appeared in the following publications:

• Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley. Scheduling Parallel DAG

Jobs Online to Minimize Average Flow Time, ACM-SIAM Symposium on Discrete

Algorithms (SODA’16), January 2016.

•• Jing Li, Kunal Agrawal, Sameh Elnikety, Yuxiong He, I-Ting Angelina Lee, Chenyang

Lu, and Kathryn S. McKinley. 2016. Work stealing for interactive services to meet

182

target latency. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPoPP’16), March 2016.

• Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley. 2016. Scheduling Paralleliz-

able Jobs Online to Minimize the Maximum Flow Time. In Proceedings of the 28th

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’16), July

2016.

• Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley. 2017. Brief Announcement:

Scheduling Parallelizable Jobs Online to Maximize Throughput. In Proceedings of the

29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’17),

July 2017.

183

Chapter 8

Scheduling Parallel Jobs Online to
Meet Target Latency

Delivering consistent interactive latencies is the key performance metric for interactive cloud

services, such as web search, stock trading, ads, and online gaming. The services with

the most fluid and seamless responsiveness incur a substantial competitive advantage in

attracting and captivating users over less responsive systems [56, 57, 83, 155]. Many such

services are deployed on cloud systems that span hundreds or thousands of servers, where

achieving interactive latencies is even more challenging [91,133,135,154,156]. The seemingly

infrequent occurrence of high latency responses at one server is significantly amplified because

services aggregate responses from large number of servers. Therefore, these servers are

designed to minimize tail latency, i.e., the latency of requests in the high percentiles, such

as 99th percentile latency. This chapter studies a closely related problem, optimizing for

a target latency — given a target latency, the system minimizes the number of requests

whose latency exceeds this target.

This chapter explores interactive services on a multicore server with multiple parallel

requests. Interactive service workloads tend to be computationally intensive with highly

variable work demand [56, 82, 83, 91, 94, 156]. A web search engine, for example, represents,

partitions, and replicates billions of documents on thousands of servers to meet responsive-

ness requirements. Request work is unknown when it arrives at a server and prediction is

unappealing because it is never perfect or free [90,97,118]. The amount of work per request

varies widely. The work of the 99th percentile requests is often larger than the median by

orders of magnitude, ranging from 10 to over 100 times larger. Moreover, the workload is

184

highly parallelizable — it has inter-request parallelism (multiple distinct requests exe-

cute simultaneously) and fine-grain intra-request parallelism [82, 91, 156]. For instance,

search could process every document independently. More generally, the parallelism of these

requests may change as the request executes.

Many modern concurrency platforms support scheduling a single parallel program, in-

cluding Cilk Plus [89], Java Fork/Join [104], OpenMP [125], Task Parallel Library [107],

Threading Building Blocks (TBB) [134], and X10 [147]. Most of these platforms use a

work-stealing scheduler, which is efficient both in theory and in practice [8,32,33]. It is a

distributed scheduling strategy with low scheduling overheads. The goal of traditional work

stealing is to deliver the smallest possible makespan for one job. In contrast, interactive

services have multiple requests (jobs) and the goal is to meet a target latency. To exploit the

benefits of work-stealing strategy for interactive services, in this chapter, we modify work

stealing so it can optimize for target latency.

Designing such a strategy faces several challenges. (1) When a request arrives in the

system, the request’s work is unknown. (2) Which requests to sacrifice depends on the

request’s progress, the target latency, and current load. Serializing large request can limit

their impact on queuing delay of waiting small requests and enabling more requests to

meet the target latency. However, serialized large requests will almost certainly miss the

target latency and thus we must not unnecessarily serialize large requests. (3) In interactive

services, we know the expected average system load and workload distribution, but the

instantaneous load can vary substantially due to unpredictable request arrival patterns.

Whether a particular request should be serialized depends on its work and the instantaneous

load. If the system is heavily loaded, even a moderately large request may increase the

waiting time of many small requests. Therefore, we must be more aggressive about serializing

requests. When the system is lightly loaded, we should be less aggressive and execute even

very large requests in parallel so they can also meet the target latency. In short, there is no

185

fixed threshold for classifying a request as large and serializing it; rather, the runtime should

adapt the threshold based on instantaneous system load.

Based on these intuitions, this chapter introduces the tail-control work-stealing schedul-

ing strategy for interactive workloads with multiple simultaneous requests. Tail-control

continuously monitors the system load, estimated by the number of active requests. It

aggressively parallelizes requests when the system is lightly loaded. When the system is

momentarily overloaded, it identifies and serializes large requests to limit their impact on

other waiting requests. Specifically, the contributions of this chapter are as follows:

(1) We design an offline threshold-calculation algorithm that takes as input the target

latency, the work demand distribution, and the number of cores on the server, and cal-

culates a large request threshold for every value of the instantaneous load. It generates

offline a table indexed by system load that the online scheduler uses to decide which

requests to serialize.

(2) We extend work stealing to handle multiple requests simultaneously and incorporate

the tail-control strategy into the stealing protocol. We perform bookkeeping to track

a) the instantaneous system load; and b) the total work done by each request thus far.

Most bookkeeping is done distributedly, which amortizes its overhead with steal at-

tempts. Our modified work-stealing scheduler add no constraints on the programming

model and thus can schedule any dynamic multithreaded program.

(3) We implement a tail-control work-stealing server in the Intel Thread Building Block

(TBB) runtime library [134] and evaluate the system with several interactive server

workloads: a Bing search workload, a finance server workload [83], and synthetic work-

loads with long-tail distributions. We compare tail-control with three baseline work-

stealing schedulers, steal-first, admit-first, and default TBB. The empirical results show

that tail-control significantly outperforms them, achieving up to a 58% reduction in

the number of requests that exceed the target latency.

186

Section 8.1 provides background information about parallelism in interactive service re-

quests and simple work stealing extensions to online multiple jobs scheduling. Based upon

the intuitions of minimizing tail latency presented in Section 8.2, we provide the specific

threshold calculation in Section 8.3.1 and present our algorithm design in Section 8.3.2. Sec-

tions 8.4 presents experimental evaluations using synthetic workload based on real search

request workload.

8.1 Background and Terminology

This section defines terminology used throughout this chapter and characterizes interactive

services and available intra-request parallelism.

8.1.1 Terminology

The response time (latency) of an interactive service request is the time elapsed between

the time when the request arrives in the system and the time when the request completes.

Once a request arrives, it is active until its completion. A request is admitted once the

system starts working on it. An active request is thus either executing or waiting. Since

the service may perform some or all of the request in parallel to reduce its execution time,

we define request work as the total amount of computation time that all workers spend on

it. A request is large or small according to its relative total work. A request misses a

specified target latency if its latency is larger than the target.

8.1.2 Characteristics of Interactive Services

Three important characteristics of interactive services inform our scheduler design. First,

many interactive services, such as web search, stock trading, online gaming, and video

187

streaming are computationally intensive [56,83,91,94]. For instance, banks and fund manage-

ment companies evaluate thousands of financial derivatives every day, submitting requests

that value derivatives and then making immediate trading decisions — many of these meth-

ods use computationally intensive Monte Carlo methods [38, 53]. Second, the work demand

per request can be highly variable. Figure 8.1 shows representative request work distribu-

tions for Bing and a finance server. Many requests are small and the smallest are more than

40 times smaller than the largest for Bing and 13 for the finance server. Third, the requests

often have internal parallelism and each request can potentially utilize multiple cores.

0	

0.2	

0.4	

0.6	

5	
 55	
 105	
 155	
 205	

Pr
ob

ab
ili
ty
	

Request	
 Total	
 Work	
 (ms)	

Bing	
 Search	
 Server	

Request	
 Work	
 DistribuEon	

(a) Bing search

0	

0.1	

0.2	

0.3	

0.4	

0.5	

4	
 12	
 20	
 28	
 36	
 44	
 52	

Pr
ob

ab
ili
ty
	

Request	
 Total	
 Work	
 (ms)	

Finance	
 Server	

Request	
 Work	

DistribuEon	

(b) Finance server

Figure 8.1: Work distribution of two interactive services: Bing search server [97] and
an option pricing finance server [135]. Note that in Bing search server the probabilities
of requests with work between 55ms to 200ms are small but larger than zero and total
probability of these requests is around 3.5%.

8.2 Intuitions for Tail-Control

This section describes intuitions for reducing the number of requests that miss a target

latency. We first review results from scheduling sequential requests to derive inspiration and

then show how to adapt them to work stealing for parallel requests.

188

Theoretical Results on Minimizing Tail Latency.

The theoretical results for online scheduling of sequential requests on multiple processors

indicate that no single scheduling strategy is optimal for minimizing tail latency [35, 152].

When a system is lightly loaded or when all requests have similar execution times, a first-

come-first-serve (FCFS) strategy is asymptotically optimal [152]. The intuition is that

under these circumstances, the scheduler should minimize the execution time of each request,

and FCFS does exactly that. However, under heavily loaded systems and when requests have

high variability in work, FCFS is not optimal, since under high loads, large requests can de-

lay many small requests by monopolizing processing resources. Under these circumstances,

schedulers that prevent large requests from monopolizing processing resources perform bet-

ter. Examples include a processor sharing scheduler [99] that divides up the processing

resources equally among all requests and an SRPT-like (shortest remaining processing time)

scheduler [140] that gives priority to small requests.

In interactive services, the request work is often highly variable, and the instantaneous

load varies as the system executes. When the instantaneous load is low, an approximation

of FCFS will work well. However, when the instantaneous load is high, the system should

prevent large requests from delaying small requests. We now see how we can apply these

intuitions to a work-stealing scheduler.

Baseline Variations of Work Stealing for Interactive Services.

Since traditional work-stealing does not handle multiple requests, we first make a simple

modification to work stealing to handle dynamically arriving multiple requests. We add

a global FIFO queue that keeps all the requests that have arrived, but have not started

executing on any worker. A request is admitted when some worker removes it from the

global queue and starts executing it.

189

Now consider how to achieve FCFS in work stealing for multiple parallel requests. To

minimize execution time, we want to exploit all the parallelism — which leads to the default

steal-first work-stealing policy. We modify steal first for the server setting as follows. When

a worker runs out of work on its deque, it still randomly steals work from victims, but if

there is no stealable work, then it admits a new request. Intuitively, steal-first minimizes

the execution time of a request, because it executes requests with as much parallelism as the

application and hardware support and only admits new requests when fine-grain parallelism

of already admitted requests is exhausted. However, we find it has the same weakness as

FCFS — when the system is heavily loaded, a large request can delay many small requests.

In fact, this effect is amplified since in steal first for the server setting because a large request

with ample parallelism may monopolize all of the processors.

A simple and appealing strategy for high load is admit-first, where workers preferentially

admit new requests and only steal if the global queue is empty. Intuitively, admit first

minimizes queuing delay, but each request may take longer, since the system does not fully

exploit available fine-grain parallelism.

Motivating Results.

We perform a simple experiment that confirms these intuitions. We create two workloads

with only small and large requests, both with ample software parallelism (more inter-request

parallelism than cores). The first workload, named “short tail”, contains two kinds of re-

quests: 98% are small requests and 2% medium requests with 5 times more work than the

small ones. The second workload, named “long tail”, contains 98% small requests and 2%

large requests with 100 times more work than the small ones. Both systems have an average

utilization of 65% and the request arrival rate follows the Poisson distribution. Therefore,

even though the average utilization is modest, on occasion, the system will be under- and

over-subscribed due to the variability in arrival patterns. We run both workloads 10,000

requests on a 16-core machine (see Section 8.4 for hardware details).

190

0.12	

0.35	

0.69	

1.96	

2.80	

3.46	

0.1	

1	

1013	
 1515	
 1904	
 51.83	
 76.93	
 85.48	

AF:	
 Admit-­‐First	
 miss	

ra8o	
 5.0%	
 1.0%	
 0.5%	
 9.8%	
 2.8%	
 1.7%	

SF:	
 Steal-­‐First	
 miss	

ra8o	
 40.7%	
 2.9%	
 0.7%	
 5.0%	
 1.0%	
 0.5%	

Rela8ve	
 performance	

=	
 AF	
 /	
 SF	
 0.12	
 0.35	
 0.69	
 1.96	
 2.80	
 3.46	

Re
la
8v

e	

pe

rf
or
m
an

ce
	
 o
f	
 	

ad
m
it-­‐
fir
st
	
 o
ve
r	
 s
te
al
-­‐fi
rs
t	

in
	
 lo
g	

sc
al
e	

Target	
 latency	
 (ms)	

long	
 tail	
 	
 	
 	
 	
 	
 short	
 tail	

Figure 8.2: Neither steal-first nor admit-first always performs best. Each bar plots a
target latency and the ratio (on a log scale) of requests that miss the target latency
under admit-first over those that miss the target latency under steal-first. When the
bar is above 1, steal-first is better. Below 1, admit-first is better.

Figure 8.2 shows the results. When all requests are about the same length, the short-tail

workload shown in hashed red bars, steal first works better since it approximates FCFS

and processes requests as quickly as it can. On the other hand with the long-tail workload,

steal-first performs poorly due to the relative difference in large and small requests — large

requests delay many small requests.

Tail-Control Algorithm Overview.

Since the workloads for interactive services have a range of time varying demand, we design

a scheduler that adapts dynamically based on the instantaneous load. Under low load, we

use steal-first to maximize parallelism, executing each request as fast as possible. Under

high load, we wish to minimize the impact of large requests on the waiting time of small

191

requests. Therefore, we execute large requests sequentially (thereby giving up on them,

making them unlikely to achieve the target latency) and use steal-first for the other requests.

At any moment, say k requests of work greater than l are serialized. Given m workers, the

remaining m−k workers execute all the remaining requests of work smaller than l in parallel.

Thus, the policy effectively converts a high-load, high-variable-work instance on m workers

into a low-variable-work instance on m−k workers. Since steal-first is a good policy for low-

variable-work instances, we get good performance for the requests that were not serialized.

Note that we have been playing fast and loose with the term large request. There is no

fixed threshold which determines if a request is large or not — this threshold is a function

of system load.

A key insight of this chapter is that the higher the load, the more aggressively we
want to serialize requests by lowering the large request threshold.

The challenges for implementing such a policy include (a) identifying large requests dynam-

ically, because the individual request work is unknown at arrival time and hard to predict;

(b) determining how much and when requests are imposing queuing delay on other requests

— thereby determining large requests as a function of current load; and (c) dynamically

adjusting the policy.

Since we cannot determine the work of a request when it arrives, tail-control conserva-

tively defaults to a steal-first policy that parallelizes all requests. We note that the large

requests reveal themselves. Tail-control keeps track of the total work done so far by all

active requests. Therefore only later, when a request reveals itself by executing for some

threshold amount of work and when system load is high, do we force a request to execute

sequentially. As mentioned earlier, the higher the load, the smaller the threshold at which

we serialize requests. This approach also has the advantage that the higher the load, the

earlier we serialize large requests, thereby reducing the amount of parallel processing time

we spend on hopeless requests.

192

The next section presents our offline threshold-calculation that calculates the large re-

quest threshold for each value of system load based on the probabilities in a given work

distribution. The higher the load, the lower the large request threshold calculated by this

algorithm. It also shows how tail-control uses this information, load, and request progress

to dynamically control parallelism.

8.3 Tail-Control Scheduler

This section describes the tail-control scheduler which seeks to reduce the number of requests

that exceed a target latency. At runtime, the scheduler uses the number of active requests

to estimate system load and continuously calculates each request’s work progress. Tail-

control serializes large requests to limit their impact on the waiting time of other requests.

The scheduler identifies large requests based on when their work exceeds a large request

threshold, which is a value that varies based on the instantaneous system load and the

target latency. The higher the load, the lower the threshold and the more large requests

tail-control serializes, such that more small requests make the target latency.

The tail-control scheduler has two components: (1) an offline threshold-calculation algo-

rithm that computes a table containing large request thresholds indexed by the number of

active requests, and (2) an online runtime that uses steal-first, but as needed, serializes large

requests based on the large request threshold table.

8.3.1 The Threshold-Calculation Algorithm

We first explain how we compute the large request threshold table offline. The table is a set

of tuples {qt : 1 to qmax | (qt, lqt)} indicating the large request threshold lqt indexed by the

number of active requests qt. Figure 8.3 presents the pseudo code for calculating the table.

For each qt, the algorithm iterates through the set of candidate large request thresholds l and

calculates the expected number of requests that will miss the target latency if the threshold

193

is set as l. It sets lqt as the l that has the minimum expected requests whose latency will

exceed the target.

1 for each number of active request qt from 1 to qmax
2 for each large request threshold candidate l ∈ L
3 calculate the length of pileup phase T
4 calculate the number of large request exceeding target missl
5 calculate the number of small request exceeding target misss
6 lqt is the l minimizing total misses missl +misss for given qt
7 Add (qt, lqt) to large request threshold table

Figure 8.3: Algorithm for calculating large request threshold table

The algorithm takes as input: (a) a target latency, target; (b) requests per second, rps;

(c) the number of cores in the server m; and (d) the work distribution, such as the examples

shown in Figure 8.1. We derive the maximum number of active requests qmax from profiling

or a heuristic such as twice the average number of active requests based on rps using queuing

theory.

The work distribution is a probability distribution of the work per request, which service

providers already compute to provision their servers. Here we use it for scheduling. We

represent it as a set of non-overlapping bins: {bin i : 1 to n | (pi, wi)}, where each bin has

two values: the probability of a request falling into this bin pi and the maximum work of

the requests in this bin wi. Note that the sum of the probability of all bins is one, i.e.∑
bin i pi = 1. For each bin in the work distribution, we only know the maximum work of

requests falling in this bin. Therefore, we only need to consider these discrete values for

large request thresholds l, since we pessimistically assume any request that exceeds wi will

definitely execute until wi+1.Therefore, formally the set of large request threshold candidate

set is L = {i : 1 to n | wi}.

We define an instantaneous pileup as a short period of time when the system expe-

riences a high load. To reduce the number of requests that miss the tail latency constraint

194

Symbol Definition
target Target Latency
rps Request per second of a server
m Number of cores of a server machine
pi Probability of a request falling in bin i
wi Work of a request falling in bin i
qt Instantaneous number of active requests at time t
l Large request threshold
L Set of potential large request thresholds
w̄ Average work per request
pl Probability of a request being a large request
w̄s Expected work per small request
w̄f Expected superfluous work per large request
w̄e Expected essential work per request

Table 8.1: Notation Table in Chapter 8

during a pileup, our scheduler limits the processing capacity spent on large requests, to

prevent them from blocking other requests.

The key of this algorithm is thus to calculate the expected number of requests that will

miss the target latency during a pileup if the system load is qt and the large request threshold

is l, for every candidate l ∈ L given the other parameters. We first calculate the expected

work of requests, expected parallel work, and expected sequential work due to requests that

exceed l. We then use these quantities to calculate the expected length of a pileup and the

approximate number of requests whose latency will exceed the target. Table 8.1 defines the

notations for this calculation.

Basic Work Calculation.

To start, consider the simple expected work calculations that depend only on the work

distribution and a large request threshold candidate l. First, we calculate the expected work

of a request w̄ =
∑

bin i piwi. Next, we can calculate the probability that a particular request

is large: pl =
∑

wi>l
pi; and the probability that a request is small: ps = 1−pl. Additionally,

the expected work per small request can be derived as w̄s = (
∑

wi≤l piwi)/(1− pl).

195

Now consider the expected essential work per request w̄e — the work that tail-control

may execute in parallel. In tail-control, the entire work of small requests may execute in

parallel. In addition, because a large request is only detected and serialized after being

processed for l amount of work, hence every large request’s initial l amount of work will

execute in parallel given sufficient resources.

w̄e =
∑
wi≤l

piwi +
∑
wi>l

pil

We call this essential work since processing this work quickly allows us to meet target latency

and detect large requests.

The remaining work of a large request exceeding l is serialized. We deem this work

superfluous since these requests are very likely to miss the target latency and therefore this

work will not contribute to the scheduling goal. We calculate the expected amount of work

that is serialized per large request, formally denoted as the expected superfluous work

per large request w̄f :

w̄f =

∑
wi>l

pi(wi − l)∑
wi>l

pi

Pileup Phase Length.

Now we calculate the length of a pileup when the number of active requests is qt and the

large request threshold is l. We define the pileup start time as the time when a large request

is first detected in the non-pileup state. The pileup ends when the large request that caused

the pileup is completed, all the work that has accumulated in the server due to this overload

is also completed, and the system reaches a steady state again.

We can approximately calculate the amount of accumulated work at the start of a pileup.

First, let us look at the first large request that was detected. This request has the essential

work of l and the remaining expected superfluous work of w̄f ; it has a total of w̄f + l work

196

in expectation. In addition, each of the remaining qt − 1 active requests has an expected

work of w̄. Thus, the total accumulated work at the start of a pileup phase is estimated by

w̄f + l + (qt − 1)w̄.

We also need to account for the work that arrives during the pileup. We define the

average utilization of the server as U = w̄× rps. We assume that U < m since otherwise the

latency of the requests will increase unboundedly as the system gets more and more loaded

over time. In expectation, the new requests that arrive during the pileup have a utilization

of U , which means that we need U cores to process them. Therefore, tail-control has m−U

remaining cores with which to execute the already accumulated work. Thus, to entirely

finish the accumulated work, it will take about
(w̄f+l)+(qt−1)w̄

m−U time.

Now consider the first large request in a pileup: it executes in parallel for l amount of

work and then executes sequentially for w̄f time. Its minimum completion time would be

l/m + w̄f , which assumes that it runs on all the cores before being detected and serialized.

Thus, the expected length of the pileup phase T is the maximum of the time to entirely

finish the accumulated work and the time to finish the first large request:

T = max

{
(w̄f + l) + (qt − 1)w̄

m− U
, l/m+ w̄f

}

Large Request Target Misses.

Once we know the length of the pileup phase, we can trivially derive the number of requests

that are expected to arrive during this window, which is rps × T . Now we can calculate

the expected number of large requests during the pileup phase. Since the probability of one

request being large is pl, we expect pl(rps× T + qt− 1) + 1 large requests in total, including

the first large request and the other potential large requests that become active or arrive in

the interim. In the calculation, we pessimistically assume that large requests always exceed

the target latency, as we will serialize them. This assumption enforces the serialization of

requests to be conservative. Hence, the number of large requests exceeding the target latency

197

missl is

missl = pl(rps× T + qt − 1) + 1

Small Request Target Misses.

We now calculate the number of small requests, misss, that will miss the target latency,

given a particular value of active requests qt and large request threshold l. We optimistically

assume that small requests always run with full parallelism. Therefore, if a small request

starts executing as soon as it arrives, it will always meet the target latency. Thus, we first

calculate how long a small request must wait to miss the target latency. Then we calculate

x, which is how many requests must be ahead of this request in order to have this long of a

wait. Finally, we calculate how many requests could have x requests ahead of them during

a pileup phase.

We first calculate the average number of cores that are spent on executing the superfluous

work of large requests. There are missl large requests, each in expectation has w̄f superfluous

work. Therefore, the total amount of superfluous work in the pileup is missl × w̄f . Hence,

on average, missl × w̄f/T cores are wasted on working on the superfluous work since the

pileup lasts for time T . Note that this quantity is very likely to be less than m assuming

the system utilization U < m.7 Thus, the remaining ms = m − (missl × w̄f/T) cores can

work on the essential work of both small and large requests. Since we now only consider the

essential work, we can think of it as scheduling on a new system with ms cores, the same

rps as the original system, but the expected work per request is now w̄e.

For a small request with total expected work w̄s, its minimum execution time on the

remaining ms cores is w̄s/ms. Given the target latency target, it will exceed the target if

its waiting time is more than target − w̄s/ms. Given x requests ahead of this request in

7If missl × w̄f/T is greater than m, this configuration of l would lead to system overrun, which means
that this particular l is not a good candidate for lqt . Thus, we simply set misss to be ∞.

198

addition to the first large request that triggered the pileup, then the essential work that

needs to execute on these ms cores before we get to the small request in consideration is

l+ w̄ex. Therefore, its waiting time can be estimated as (l+ w̄ex)/ms. A request misses the

target latency if there are at least x requests ahead of it where x = (target×ms−w̄s− l)/w̄e.

Among the qt requests that are active when we detect the large request, there are y1 =

max(qt− 1−x, 0) requests that have at least x requests in addition to the first large request

that are ahead of it. These y1 requests (where y1 can be 0) will likely overrun the target

latency. In addition, we must account for the additional requests that arrive while the queue

is still longer than x. Assuming optimistically that requests run one by one in full parallelism,

then requests leave at the rate of 1/(w̄e/ms) = ms/w̄e. On the other hand, the system has

a request arrival rate of rps. Hence the number of requests in the system decreases with a

rate of ms/w̄e − rps.8 Thus, it takes y1/(ms/w̄e − rps) amount of time for the number of

active requests to decrease from qt to x+ 1. During this time, the number of newly arrived

requests is then y2 = y1/(ms/w̄e − rps)× rps.

Therefore in total, we have y1 +y2 requests that will wait for more than x requests. Since

a request is small with probability (1− pl), the expected number of small requests that miss

the target latency is

misss = (y1 + y2)(1− pl)

= max(qt − 1− x, 0)× ms/w̄e
(ms/w̄e − rps)

× (1− pl)

Thus, we get the expected total number of requests exceeding the target latency for qt number

of active requests and l large request threshold is miss = misss +missl.

Discussion: The complexity of the offline algorithm is O(qmax×n2), where n is the number

of bins in the request work distribution. Note that we are conservative in serializing large

8Note that this rate is positive in order for the l in consideration to be a good candidate for lqt . Thus if
the rate is not positive, we again set misss to be ∞

199

requests. We estimate the execution time for a small request to be w̄s/ms, which is minimum

by assuming that it can occupy all available cores ms and execute with linear speedup.

However, some requests (especially small requests) may not have enough parallelism to use

all m cores. The system is thus conservative in serializing large requests, because this

calculation may overestimate the waiting time before the small requests miss the target

latency. If the system profiler also profiles the average parallelism of requests in all bins (or

the average span9 of requests in all bins — these are equivalent), we can incorporate this

information into the calculation easily to perform more accurate calculations, potentially

leading to more aggressive parallelization of large requests.

Example Output.

Figures 8.4 shows an example output from threshold-calculation with input of the same work

distribution and rps but three different target latencies. Let’s first examine a single curve, say

the one with 14.77ms target latency. As the number of active requests increases (i.e., higher

instantaneous system load), the large request threshold decreases, indicating that the system

serializes requests more aggressively. When examining all three curves collectively, Figure 8.4

illustrates how the relationship between the threshold and active number of requests varies

according to the target latency. As the target latency increases, the curves shift towards the

right, showing that when given the same number of active request, the system can increase

the large request threshold because of the longer target latency. In other words, given the

same instantaneous load, the system is less aggressive about serializing requests when the

target latency is longer.

9The span of a request is the longest dependency chain in the request that must execute sequentially.

200

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

1	
 6	
 11	
 16	
 21	
 26	
 31	
 36	
 41	
 46	
 51	

La
rg
e	

Re

qu
es
t	
 T

hr
es
ho

ld
	
 (m

s)
	

Number	
 of	
 AcAve	
 Requests	

25.63ms	

21.34ms	

14.77ms	

Figure 8.4: Example large request threshold tables output by threshold-calculation
with input of the same work distribution and rps, but three different target laten-
cies. The x-axis is the number of active requests, and the y-axis is the large request
threshold. Each curve plots the output threshold table for a given latency.

8.3.2 Extending Work-Stealing with Tail-Control

This section describes how to use the large request table to implement the tail-control strat-

egy in a work-stealing runtime. While we implemented our system in TBB [134], this ap-

proach is easy to add to other work-stealing runtimes.

Scheduler Overview.

As with the basic work-stealing scheduler, tail-control is a distributed scheduler, and each

worker maintains its own work deque. A shared global FIFO queue contains requests that

have arrived but not yet being admitted. Tail-control behaves like steal-first by default.

Only when the system identifies a large request does its behavior diverge from steal-first with

respect to the identified large request — it serializes the large request’s remaining execution.

Specifically, tail-control performs the following additional actions: 1) it tracks the number

of active requests in the system to estimate system load; 2) it tracks processing time spent

thus far on each executing request; 3) it identifies a large request based on processing time

and serializes its remaining execution.

201

1 void scheduling_loop(Worker *w) {

2 Task *task = NULL, *last_task = NULL;

3 while (more_work_to_do()) {

4 if (task != NULL) {

5 do {

6 execute(task);

7 last_task = task;

8 task = pop_deque(w);

9 } while(task != NULL);

10 if (last_task->parent() != NULL) {

11 task = last_task->parent();

12 if (task->ref_count() == 0) continue;

13 } else if (last_task->is_root() &&

14 last_task->is_done()) {

15 global_queue->dec_active_request_count();

16 }

17 }

// about to switch request; update bookkeeping info

18 long long proc_time = get_time() - w->start_time;

19 w->last_request = w->curr_request;

20 w->curr_request = NULL;

21 w->last_request->accum_process_time(proc_time);

22 } //end of if (task != NULL)

23 check_pileup_phase();

24 task = try_random_steal();

25 if (task == NULL)

26 task = global_queue->admit_request();

27 if (task != NULL) {

28 w->start_time = get_time();

29 w->curr_request = task->get_request();

30 }

31 } // end of while (more_work_to_do())

32 } // end of scheudling_loop

Figure 8.5: The pseudo code for the main loop of tail-control in a work-stealing runtime
system. Tail-control adds only the bold lines and the function check pileup phase to
steal-first.

Tail-control performs actions 1) and 2) in a distributed fashion. Each worker accumulates

processing time for its active request. Whenever a worker finishes a request completely, it

decrements a shared global counter that maintains the number of executing requests in the

system. Overhead for action 1) is minimal since it occurs infrequently. Overhead for action

2) is amortized against the cost of steals, since it needs to be done only between steals.

Action 3) requires more coordination. To identify a large request, it is necessary to collect

processing time scattered across all the workers that are executing a request, which can incur

overhead. Ideally, we would like to check each request’s processing time frequently so that a

request does not execute any longer once it exceeds the large request threshold. On the other

hand, we do not want to burden executing workers with the overhead of frequent checks.

202

1 Task * try_random_steal() {

2 Task *task = NULL;

3 while (has_stealable_victims()) {

4 Worker *vic = choose_random_victim();

5 task = try_steal_deque_top(vic);

6 }

7 return task;

8 }

9 void check_pileup_phase() {

10 int active = global_queue->get_active_request_count();

11 int req_thresh = large_request_table[active];

12 long long added_time, new_proc_time,

13 long long curr_time = get_time();

14 hashtable req_map;

// update the processing time for each executing request

15 for (Worker *w : worker_list) {

16 Request *req = w->curr_request;

17 if (req == NULL) continue;

18 added_time = curr_time - w->start_time;

// find returns 0 if req is not found

19 if (req_map.find(req) == 0)

20 new_proc_time = req->get_proc_time() + added_time;

21 else

22 new_proc_time = req_map.find(req) + added_time;

23 req_map.insert(req, new_proc_time);

// mark a request that exceeds threshold

24 if (new_proc_time > req_thresh) {

25 if (req.is_valid()) req->set_stealable(false);

26 }

27 }

28 }

Figure 8.6: The pseudo code for the helper routines of tail-control in a work-
stealing runtime system. Tail-control adds only the bold lines and the function
check pileup phase to steal-first.

Thus, we piggyback the execution of action 3) on a thief looking for work to do. Whenever a

worker runs out of work, before it steals again, it first computes processing time of executing

requests on all other workers, computes the accumulated processing time for each request,

and marks any requests that exceed the threshold. Once a request is marked as large, it

needs to be serialized. We modify the stealing protocol to mark large requests lazily. If a

thief tries to steal from a deque with tasks that belong to a large request, the thief simply

gives up and tries to steal somewhere else. Again, the overhead is amortized against the cost

of steals.

203

Implementation of Tail-Control.

Figure 8.5 shows the pseudo code for the top-level scheduling loop that a worker executes

in tail-control. The bold lines mark the code that is only necessary for tail-control but not

steal-first. During execution, a worker always first tries to pop tasks off its local deque as

long as there is more work in the deque (lines 5–8). When a worker’s deque becomes empty,

it tries to resume the parent of its last executed task if it is ready to be resumed (lines 9–12).

In short, a worker always executes tasks corresponding to a single request for as long as

work can be found locally (lines 5–12). As part of the bookkeeping in tail-control, if the last

executed task has no parent (i.e., root), the worker checks for the completion of a request

and decrements the active-request counter if appropriate (lines 13–16).

Once the control reaches line 18, a worker has exhausted all its tasks locally, and it is

ready to find more work. Before performing a random steal, a worker performs the necessary

bookkeeping to accumulate the processing time it spent on last request lines 18–21). It

updates its curr request field to reflect the fact it is not working on a request. This field

keeps tracks of the worker’s current request, and is read by a thief in check pileup phase

when it accumulates processing time of an executing request.

Then the worker calls check pileup phase (line 23) to identify large requests and mark

them as not stealable. It then becomes a thief and tries to steal randomly (line 24). If no

currently executing requests are stealable, try random steal returns NULL, and tail-control

admits a new request (line 26) and assigns it to the worker. Regardless of how the worker

obtains new work, it updates its curr request and the start time for this request (lines 27–

30). When it completes this work, it loops back to the beginning of the scheduling loop to

perform book keeping and find more work. In a server system, this scheduling loop executes

continuously.

The tail-control implementation has the same high-level control flow as in steal-first,

since except for the pileup phase, it follows the steal-first policy. Moreover, the difference

204

between steal-first and admit-first is simply in the order in which a thief finds new work.

By switching the sequence of stealing and admitting, i.e., switching line 24 and line 26, one

trivially obtains admit-first.

Figure 8.6 shows the pseudo code for subroutines invoked by the main scheduling loop.

Again, the differences between tail-control and steal-first are few and are highlighted in

bold. Specifically, in tail-control, a thief gives up on the steal if the task on top of the

victim’s deque is a not-stealable large request. The try random steal (line 5) and the

has stealable victims (line 3) implement this difference. This implementation causes the

marked large request to serialize lazily; the parallelism dissolves when all workers working

on that request exhaust their local tasks. We choose not to enforce the marked request to

serialize immediately to avoid additional overhead.

The check pileup phase function implements the detection and marking of large re-

quests. When a thief executes this function, it first evaluates the current load by getting

the active-request count, and uses it to index the large request threshold table (lines 10–11).

With the given threshold, it then examines all workers and accumulates the processing time

of all executing requests into a local hashtable (lines 15–27). The hashtable uses requests as

keys and stores their processing time as values. A hashtable is needed because there could be

multiple workers working on the same request. The processing time of an executing request

is essentially the time accumulated on the request thus far, and the additional processing

time elapsed on an executing worker since the last time it updated its start time. Lines

16–23 does exactly that calculation.

Note the pseudo code simply shows the high-level control flow, abstracting many oper-

ations, including synchronization. Shared fields in a request object and the global queue

are protected by locks. The locks are acquired only when concurrent writes are possi-

ble. One notable feature is that when a thief executes check pileup phase, it does not

acquire locks when reading shared fields, such as w->start time, w->curr request, and

req->get proc time. We intentionally avoid this locking overhead at the cost of some loss

205

in accuracy in calculating the requests’ processing time due to potentially stale values of

these fields the thief may read. In this way, the processing time calculation happens entirely

in a distributed manner and a thief will never interfere workers who are busy executing

requests.

8.4 Experimental Evaluation

We now present an empirical evaluation of the tail-control strategy as implemented in the

TBB work-stealing scheduler. We compare tail-control to steal-first and admit-first, and

show that tail-control can improve over all baselines. Our primary performance metric is the

number of requests that exceed the latency target.

Experimental Setup.

Experiments were conducted on a server with dual eight-core Intel Xeon 2.4Ghz proces-

sors with 64GB memory and Linux version 3.13.0. When running experiments, we disable

processor throttling, processor sleeping, and hyper-threading. The Tail-control scheduler is

implemented in the Intel Thread Building Block (TBB) library [134], version 4.3.

We evaluate our strategy on several different workloads that vary along three dimensions:

(1) different work distributions (two real-world workloads and several synthetic workloads),

(2) different inter-arrival time distributions (Poisson distribution with different means and

long-tail distributions with varying means and standard deviations), and (3) different request

parallelism degrees (embarrassingly parallel requests and requests with parallelism less than

the number of cores).

First, we evaluate requests with different work distributions. The two real-world work

distributions are shown in Figure 8.1. Henceforth, we shall refer to them as the Bing

workload and the finance workload, respectively. In addition, we also evaluate synthetic

workload with log-normal distributions, referred as log-normal workload. A log-normal

206

distribution generates random variables whose logarithm is normally distributed. Thus,

it has a longer tail than a normal distribution and represents the characteristics of many

real-world workloads. For all the workloads, we use a simple program to generate work

— the program performs a financial calculation which estimates the price of European-

style options with Black-Scholes Partial Differential Equation. Each request is parallelized

using parallel-for loops. Note that the particular computation performed by the workload is

not important for the evaluation of our strategy; any computation that provides the same

workload distribution should provide similar results.

Second, we evaluate requests with different arrival distributions. In particular, to ran-

domly generate the inter-arrival time between requests, we use two distributions: a Poisson

distribution with a mean that is equal to 1/rps, and a log-normal distributions with a mean

equal to 1/rps and varying standard deviations. In other words, for all the distributions,

the requests are generated in an open loop at the rate of rps (queries per second). We use

100, 000 requests to obtain single point in the experiments.

In addition, we evaluate the effect of requests with different parallelism degrees. In

addition to the embarrassingly parallel requests generated by parallel-for loops of Black-

Scholes, we also intentionally insert sequential segments to make requests less parallel. For

each request, we add sequential segments with total length of 10% of its work. By doing so,

the parallelism of requests is less than 10, which is smaller than the 16 available cores.

Finally, we explore some additional properties of tail-control. We test its performance

when the input work distribution is inaccurate and differs from the actual work distribution.

We also present the improvement of tail-control in terms of system capacity. We conduct

comparison with two additional algorithms to position the performance of steal-first, admit-

first, and tail-control. Lastly, we present a result trace to unveil the inner workings of

tail-control.

207

8.4.1 Different Work Distributions

We first compare the performance of tail-control to admit-first and steal-first, the two base-

line work-stealing policies described in Section 8.2, with various loads and target latencies.

For all the experiments in this subsection, requests arrive according to Poisson distribution

with varying mean inter-arrival times. Figures 8.7, 8.8 and 8.9 show the results on work

distribution for Bing,finance, and log-normal work distributions respectively, where each bar

graph in a figure shows the result for one load setting (light, medium or heavy when going

from left to right). Within each graph, we compare the policies for five latency targets.

As we go from left to right, the target latency increases,10 and thus all policies improve in

performance from left to right. Now we can look at the specific results for each workload.

Bing Workload.

From Figure 8.7, we can make three observations. First, for the Bing workload, admit-first

performs better than steal-first in most cases. The reason is, as seen in Figure 8.1(a), the

Bing workload has high variability between the work of the largest vs. the smallest requests.

As discussed in Section 8.2, steal-first is likely to perform worse in this situation since it al-

lows very large requests to monopolize the processing resources, potentially delaying a high

number of small and medium requests. Second, as target latency increases, steal-first’s per-

formance in comparison to admit-first improves, finally overtaking it slightly for the longest

latency target. As the target latency increases, the impact on waiting time due to executing

large requests reduces and steal-first starts reaping the benefits of exploiting intra-request

parallelism; therefore, it starts performing better than admit-first. This observation reflects

the trade-off between steal-first and admit-first and confirms that they cannot perform well

in all settings. Finally, tail-control provides consistently fewer missed requests across the

three load settings and target latencies — it has a relative improvement of 35% to 58% over

10The target latencies are chosen as the 97.5%, 98.5%, 99%, 99.5% and 99.75% tail latencies of steal-first
in order to provide evidence that tail-control performs well under varying conditions.

208

Target (ms) 13.1 15.4 17.2 18.3 20.0
Imp. over SF 47% 41% 35% 40% 39%
Imp. over AF 24% 25% 26% 39% 47%

Figure	
 6(a)	

Table	
 6(a)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

13.1 15.4 17.2 18.3 20.0

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Bing workload

Light load
(RPS 800, Util 46%)

steal-first
admit-first
tail-control

 Target Latency (ms)

Target (ms) 18.6 21.3 23.8 25.6 28.2
Imp. over SF 54% 46% 43% 55% 54%
Imp. over AF 33% 33% 35% 52% 57%

Figure	
 6(b)	

Table	
 6(b)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

18.6 21.3 23.8 25.6 28.2

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Bing workload
Medium load

(RPS 1000, Util 57.5%)

steal-first
admit-first
tail-control

 Target Latency (ms)

Target (ms) 31.3 36.6 40.8 43.6 46.8
Imp. over SF 52% 49% 52% 56% 58%
Imp. over AF 31% 34% 45% 54% 65%

Figure	
 6(c)	

Table	
 6(c)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

31.3 36.6 40.8 43.6 46.8

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Bing workload
Heavy load

(RPS 1200, Util 68.8%)

steal-first
admit-first
tail-control

 Target Latency (ms)

Figure 8.7: Results for the Bing workload with three different load settings and Poisson
arrival. The x-axis shows different target latencies from shorter to longer from left
to right. The y-axis shows the target latency miss ratio. The table below each figure
shows tail-control’s relative improvement over steal-first and admit-first for a given
latency.

Target (ms) 10.9 12.3 13.3 14.0 15.0
Imp. over SF 5% 3% 9% 1% 19%
Imp. over AF 29% 39% 51% 53% 67%

Figure	
 7(a)	

Table	
 7(a)

 Target Latency (ms)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

10.9 12.3 13.3 14.0 15.0

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Finance workload
Light load

(RPS 800, Util 56%)
steal-first
admit-first
tail-control

Target (ms) 14.2 16.1 17.3 18.3 19.6
Imp. over SF 18% 36% 2% 14% 36%
Imp. over AF 39% 61% 49% 60% 76%

Figure	
 7(b)	

Table	
 7(b)

 Target Latency (ms)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

14.2 16.1 17.3 18.3 19.6

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Finance workload
Medium load

(RPS 900, Util 63%)
steal-first
admit-first
tail-control

Target (ms) 19.5 22.1 23.9 25.3 27.4
Imp. over SF 31% 15% 29% -3% -1%
Imp. over AF 49% 47% 63% 52% 58%

Figure	
 7(c)	

Table	
 7(c)

 Target Latency (ms)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

19.5 22.1 23.9 25.3 27.4

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Finance workload
Heavy load

(RPS 1000, Util 70%)
steal-first
admit-first
tail-control

Figure 8.8: The finance workload results with the same figure and table configuration
as in Figure 8.7.

steal-first and of 24% to 65% over admit-first in all settings. In particular, tail-control has

higher improvement at the harsher setting — when the system load is heavier and the target

latency is shorter. It limits the impact of large requests by serializing the large requests.

However, it still reaps the benefit of intra-request parallelism since it parallelizes short and

medium requests and processes them quickly.

209

Target (ms) 8.9 10.0 11.2 12.0 13.2
Imp. over SF 25% 25% 23% 24% 17%
Imp. over AF 20% 26% 29% 35% 34%

Figure	
 8(a)	

Table	
 8(a)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

8.9 10.0 11.2 12.0 13.2

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Log-normal workload

Light load
(RPS 800, Util 46%)

steal-first
admit-first
tail-control

 Target Latency (ms)

Target (ms) 12.4 14.4 15.9 16.9 18.3
Imp. over SF 33% 40% 35% 28% 22%
Imp. over AF 26% 43% 44% 43% 49%

Figure	
 8(b)	

Table	
 8(b)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

12.4 14.4 15.9 16.9 18.3

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Log-normal workload
Medium load

(RPS 1000, Util 57.5%)

steal-first
admit-first
tail-control

 Target Latency (ms)

Target (ms) 20.6 23.3 25.3 25.7 28.3
Imp. over SF 42% 27% 37% 18% 41%
Imp. over AF 37% 32% 50% 49% 66%

Figure	
 8(c)	

Table	
 8(c)

 Target Latency (ms)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

20.6 23.3 25.3 25.7 28.3

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Log-normal workload
Heavy load

(RPS 1200, Util 68.8%)
steal-first
admit-first
tail-control

Figure 8.9: The log-normal workload results with the same figure and table configu-
ration as in Figure 8.7.

Finance Workload.

Figure 8.8 shows the results for the finance workload, and the results reinforce the observa-

tions made above. The finance workload has less variability in its work distribution compared

to the Bing workload; therefore, as our intuition indicates, steal-first performs better than

admit-first. Since large requests are not that much larger than other requests, they do not

impact the other requests as significantly. Therefore, steal-first is a good strategy for this

workload. In the settings under the heavy load and the two longest target latencies, tail-

control provides exactly the same schedule as steal-first, since the calculated thresholds from

threshold-calculation are high resulting in no request being serialized. This result indicates

that when steal-first is the best strategy, tail-control essentially defaults to it and does not

gratuitously increase target latency misses by serializing requests unnecessarily. In addi-

tion, even though tail-control has a higher overhead due to bookkeeping, the overhead is

lightweight and not significant enough to affect performance. Moreover, even on this work-

load where steal-first is already a good strategy, tail-control still significantly improves the

miss ratio in some cases. For instance, under medium load with the longest target latency,

tail-control provides a 36% improvement. These results indicate that tail-control performs

well under different types of workload characteristics.

210

Log-normal Workload.

In Figure 8.9, we generate the work of a request using a log-normal distribution with mean

of 10ms and standard deviation of 13ms. We selectively choose the mean of 10ms in order to

directly compare the results with that of Bing workload, as the mean work of Bing workload

is also 10ms. The standard deviation is chosen, such that the log-normal work distribution

has a slightly shorter tail than the Bing workload, but a longer tail than finance workload.

For a log-normal workload, steal-first performs better than admit-first when target latency

is long and slightly worse when the target latency is short. In this setting, tail-control

consistently outperforms steal-first and admit-first with improvement from 17% up to 66%.

8.4.2 Different Arrival Distributions

Note that in all the previous experiments, requests arrive according to a Poisson arrival

process. In these experiments, we vary the inter-arrival time distribution and select the log-

normal distribution, which has larger variance than the Poisson distribution. Figure 8.10

shows experimental results for a log-normal workload and a log-normal arrival distribution

with mean inter-arrival time of 0.83ms (rps of 1200) and standard deviation of 1.09ms. Note

that this experiment is constructed such that it has almost the same parameters as that

of Figure 8(c), except that the latter’s inter-arrival time has a smaller standard deviation

of 0.91ms. By comparing the two experiments, we can see that the relative trend remains

the same. In particular, steal-first is better than admit-first, while tail-control outperforms

the best of them by 25% to 44%. The comparison between Poisson and log-normal arrival

distribution with Bing workload are similar too. The results indicate that request arrival

distribution does not impact the relative performance much.

211

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

22.0 24.5 26.6 28.1 30.5
Ta

rg
et

 la
te

nc
y

m
is

s
ra

tio

Log-normal arrival distribution
Log-normal workload

Heavy load
(RPS 1200, Util 68.8%)

steal-first
admit-first
tail-control

Target (ms) 22.0 24.5 26.6 28.1 30.5
Imp. over SF 45% 25% 42% 31% 44%
Imp. over AF 38% 29% 53% 51% 65%

 Target Latency (ms)

Figure 8.10: Results for the log-normal workload and a log-normal arrival distribution
with 1200 rps; Figure and table configurations are similar as in Figure 8.9.

8.4.3 Request with Sub-Linear Speedup

For the rest of the section, we focus on the Bing and log-normal workloads at the heavy

load of 1200 rps. In all the previous experiments, requests are embarrassingly parallel with

near linear speedup. Here we evaluate how well tail-control performs, when increasing the

span and decreasing the parallelism degree of requests. In particular, in Figure 8.11 we

intentionally add sequential segments with a total length of 10% work into each request,

resulting a parallelism degree of less than 10 and smaller than the total 16 cores. As discussed

in Section 8.3.1, we incorporate the span into the tail-control threshold calculation. Note

that this experiment has almost the same parameters as Figure 6(c), except for a smaller

parallelism degree. By comparing the two, we can see that the relative trend among different

algorithms remains the same. However, tail-control has less improvement over steal-first and

admit-first from 17% to 46%. The results for log-normal workload are similar to that of Bing

workload. Tail-control improves less in this setting, because small requests are not able to

utilize all the available cores, even when large requests are serialized. Moreover, the large

request does not monopolize the entire system due to its long sequential segments. Note

that in the extreme case where all requests are sequential, all the three algorithms will be

212

Target (ms) 32.9 39.2 43.1 45.5 48.7
Imp. over SF 40% 44% 39% 35% 31%
Imp. over AF 17% 27% 33% 38% 46%

 Target Latency (ms)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

32.9 39.2 43.1 45.5 48.7
Ta

rg
et

 la
te

nc
y

m
is

s
ra

tio

Bing workload
with sub-linear speedup

Heavy load
(RPS 1200, Util 68.8%)

steal-first
admit-first
tail-control

Figure 8.11: Results for the Bing workload and a Poisson arrival distribution with
1200 rps for requests with sub-linear speedup; Figure and table configurations are
similar as in Figure 8.7.

the same. The improvement that tail-control provides depends on the parallelism of requests

and the target latency. As the degree of request parallelism increases, tail-control provides

more benefit.

8.4.4 Inaccurate Input Work Distribution

Note that tail-control calculates large request threshold using request work distribution as

input. Hence, it is natural to ask how tail-control performs when the work distribution differs

from the input work distribution for the threshold-calculation algorithm. We experimentally

evaluate how brittle tail-control is when provided with a somewhat inaccurate input work

distribution. The experiment in Figure 8.12 has the same setting as Figure 8(c) with target

latency of 28ms. In addition to the tail-control with the correct input, we also run tail-control

using inaccurate input. In particular, we slightly alter the input work distribution by chang-

ing the standard deviation while keeping the same mean work. As the input distribution is

inaccurate, the calculated thresholds are also inaccurate.

213

From Figure 8.12, we can see that when the input inaccuracies are small, for example

standard deviation of 10ms and 17ms instead of the true 13ms, tail-control still has com-

parable performance. However, the improvement of tail-control decreases when the error

increases. Moreover, tail-control is less sensitive to a larger inaccurate standard deviation

than a smaller one. When the standard deviation of the profiling workload is small, tail-

control less aggressively serializes requests and it performs similarly to steal-first. In contrast,

when the standard deviation of the profiling workload is large, tail-control is slightly more

aggressive than it should be. In this case, it unnecessarily serializes only a few large requests.

Since the probability of large requests is small, it affects the performance of tail-control only

slightly. However, when the input is significantly different from the actual work distribution

(for example, when the mean work is significantly inaccurate), tail-control could have worse

performance than steal-first and admit-first. This case causes tail-control to very aggressively

serialize requests, even when the number of requests is less than the number of cores.

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0.9%

28.34

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Target latency (ms)

Log-normal workload
Heavy load

(RPS 1200, Util 66%)
steal-first
admit-first
TC* std. 13ms
TC std. 4ms
TC std. 7ms
TC std. 10ms
TC std. 17ms
TC std. 24ms
TC std. 34ms

Figure 8.12: Results for the log-normal workload a and Poisson arrival distribution
with 1200 rps and a target latency of 28ms. We compare tail-control when using
inaccurate input distributions with smaller to larger standard deviation from left to
right.

In summary, tail-control does require a relatively accurate work distribution, but it does

not need to be exact. If the system load changes significantly over time, the system operator

214

750	

800	

850	

900	

950	

1000	

1050	

1100	

1150	

1200	

1250	

20.0	
 22.3	
 28.2	
 36.6	
 46.8	

RP
S	

Target	
 Latency	
 (ms)	

Affordable	
 Capacity	
 with	
 	

Varying	
 Target	
 Latency	

steal-­‐first	

admit-­‐first	

tail-­‐control	

Figure 8.13: The Bing workload results. Tail-control increases system capacity for
different target latencies compared to steal-first and admit-first.

or an online profiling mechanism should profile the new work distribution and rps. Although

we presented the threshold calculation (Section 8.3.1) as an offline algorithm, it is fast; thus,

an interactive service could sample its workload and recalculate the large request thresholds

on-line and then adapt the tail-control scheduler in real-time.

8.4.5 Increased System Capacity

The benefits of tail-control can be used to increase server capacity, thereby reducing the

number of servers needed to run a particular aggregate workload as each server can run

a higher number of requests per second. For instance, say we have m servers and for a

particular workload, steal-first enables 99.5% of the requests to meet the target latency.

Here, tail-control can provide the same guarantee (99.5% requests meet the same latency

target) with a higher system load. Figure 8.13 provides evidence for this claim. It shows

the maximum load for several target latencies at the 99.5-percentile. For instance, at target

latency 20.00ms, tail-control sustains 880 rps compared to 800 for steal-first and 775 for

admit-first, showing 10% capacity increase over the best of the two.

215

8.4.6 Comparison with Additional Algorithms

Now we provide a comparison with two additional algorithms. The first one is denoted as

default-TBB, as it is the algorithm of the default TBB implementation. Note that in both

steal-first and admit-first, requests are first submitted to a global FIFO queue and workers

explicitly decide whether and when to admit requests. In contrast, default-TBB implicitly

admit requests by submitting requests to the end of a random worker’s deque. After doing

so, workers can act as if there is a single request and they only need to randomly steal when

running out of work. This strategy may have smaller overhead than the global FIFO queue.

However, now requests are admitted randomly instead of in the FIFO order, so it may cause

a waiting request to starve in the worst case.

We measure the performance of default-TBB for all three workloads with Poisson arrival

and observe that default-TBB has comparable or worse performance than admit-first in

most settings. Default-TBB acts similarly to admit-first, but it admits requests in a random

order. A request that has waited for a very long time could potentially be admitted later than

a request that just arrived, causing significantly increases in the latency of some requests

when the system is busy and consequently increasing the request target miss ratio. On

the other hand, without any global queue default-TBB has smaller overheads. In this case,

the system processes requests slightly faster and hence reduces the length of pileup phase.

Thus, default-TBB performs slightly better than admit-first in these cases. However, tail-

control still outperforms default-TBB by at least 31% in Figure 8.14 and 32% in Figure 8.15,

respectively.

The second baseline algorithm marked as TC-Clairvoyant in Figure 8.15 and Fig-

ure 8.14 shows the lower bound of tail-control, because this scheduler utilizes the exact

work of each request to perform tail-control strategy. Specifically, we modified TBB and

the application server to mark each request with its actual work when it is submitted to

216

 Target Latency (ms)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

31.3 36.6 40.8 43.6 46.8

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Bing workload
Heavy load

(RPS 1200, Util 68.8%)
default-TBB
steal-first
admit-first
tail-control
TC-Clairvoyant

Figure 8.14: The Bing workload results. The figure is the same as Figure 8.7(c),
except it adds default-TBB and TC-Clairvoyant.

 Target Latency (ms)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

20.6 23.3 25.3 25.7 28.3

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Log-normal workload
Heavy load

(RPS 1200, Util 68.8%)
default-TBB
steal-first
admit-first
tail-control
TC-Clairvoyant

Figure 8.15: The log-normal workload results. The figure is the same as Figure 8.9(c),
except it adds default-TBB and TC-Clairvoyant.

the global FIFO queue. For threshold calculation, we adjust the threshold calculation al-

gorithm described in Section 4 for TC-Clairvoyant to account for the fact that a serialized

large request under TC-Clairvoyant is never executed on more than one processor. During

online execution, the TC-Clairvoyant scheduler knows the exact work of each request even

before its execution (thus clairvoyant). Hence, unlike tail-control, TC-Clairvoyant knows

217

whether a request is a large request and can directly serialize it without any parallel execu-

tion. Thus, TC-Clairvoyant serves as a lower bound of non-clairvoyant tail-control, as it can

more effectively limit the impact of large request if the actual work of each request is known

ahead-of-time to the scheduler. Of course, this this knowledge is not typically available.

From Figure 8.15 and Figure 8.14, we can see that TC-Clairvoyant and tail-control have

comparable performance when the target latency is long, because to minimize for long target

latency, only the very large requests need to be serialized. When the work distribution has a

relatively long tail, we can more easily distinguish large requests from other medium or small

requests. TC-Clairvoyant improves much more when the target latency is short because it

on occasion will serialize some medium requests as soon as they begin executing. In the

case of tail-control, medium requests will execute for most of their work before tail-control

can distinguish them from small requests. The TC-Clairvoyant results shows that our tail-

control strategy would improve performance even more if there was an accurate and efficient

mechanism to predict work.

8.4.7 The Inner Workings of Tail-Control

We now look a little deeper into the inner workings of tail-control. Figure 8.16 shows the

trace of the execution of the same workload under both steal-first and tail-control. The x-axis

is time t as the trace executes. The lower y-axis is the queue length at time t. Recall that

tail-control works in the same way as steal-first, except that under highly loaded conditions,

it serializes large requests so as to reduce the waiting time of small requests in the queue.

This figure shows that tail-control succeeds in this stated goal — when the instantaneously

system load is high (for instance, at time 0.2s and 0.6s), the queue length is shorter under

tail-control than under steal-first, but otherwise they follow each other closely.

The top part of the figure is even more interesting. For the same experiment, the upper

y-axis shows the latency of each request released at time t along the x-axis. We can see

218

-­‐100	

-­‐80	

-­‐60	

-­‐40	

-­‐20	

0	

20	

40	

60	

80	

100	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

110	

120	

130	

140	

0	
 0.2	
 0.4	
 0.6	
 0.8	

Re
qu

es
t	
 l
at
en

cy
	
 (m

s)
	

N
um

be
r	
 o

f	
 a
cA
ve
	
 re

qu
es
ts
	

Current	
 Ame	
 in	
 seconds	

tail-­‐control	

steal-­‐first	

Figure 8.16: Number of active requests (lower part) and request latency (upper part)
traces of the same workload under steal-first and tail-control in a 0.8 second window
(Bing workload).

clearly that tail-control sacrifices a few requests (e.g., the ones with over 60ms latency),

increasing their latency by a large amount in order to reduce the latency of the remaining

requests. For the high instantaneous load at time 0.2s for instance, tail-control has a few

requests that have very large latencies, but the remaining requests have smaller latencies

than steal first. In particular, under steal-first, 183 requests have latencies that exceed the

target latency of 25ms, while only 42 requests exceed the target under tail-control.

219

Chapter 9

Scheduling Parallel Jobs Online to
Maximize Profit

Scheduling preemptive jobs online to meet deadlines is a fundamental problem and, con-

sequently, this area has been extensively studied. In a typical setting, there are n jobs

that arrive over time. Each job Ji arrives at time ri, has a deadline di, relative deadline

Di = di− ri and a profit or weight pi that is obtained if the job is completed by its deadline.

The throughput of a schedule is the total profit of the jobs completed by their deadlines,

and a popular scheduling objective is to maximize the throughput of the schedule.

In a generalization of the throughput problem, each job Ji is associated with a function

pi(t), which specifies the profit obtained for finishing job Ji at time ri + t. It is assumed that

pi can be different for each job Ji and the functions are arbitrary non-increasing functions.

The goal is for the scheduler to maximize
∑

i∈[n] pi(ti). We call this problem the general

profit problem.

In this work, we consider the throughput and general profit scheduling problems in the

preemptive online setting for parallel jobs. In this setting, the online scheduler is only aware

of the job at the time it arrives in the system, and a job is preemptive if it can be started,

stopped, and resumed from the previous position later. We model each parallel job as a

directed acyclic graph (DAG). Each node in the DAG is a sequence of instructions to

be executed; the edges in the DAG represent dependencies. A node can be executed if and

only if all of its predecessors have been completed. Therefore, two nodes can potentially

run in parallel if neither precedes the other in the DAG. In this setting, each job Ji arrives

as a single independent DAG and a profit of pi is obtained if all nodes of the DAG are

completed by job Ji’s deadline. The DAG model can represent parallel programs written in

220

many widely used parallel languages and libraries, such as OpenMP [125], Cilk Plus [89],

Intel TBB [134] and Microsoft Parallel Programming Library [41].

Both the throughput and general profit scheduling problem have been studied extensively

for sequential jobs. In the simplest setting, each job Ji has work or processing time Wi to

be processed on a single machine. It is known that there exists a deterministic algorithm

which is O(δ)-competitive, where δ is the ratio of the maximum to minimum density of a

job [24, 25, 101, 153]. The density of job Ji is pi
Wi

(the ratio of its profit to its work). In

addition, this is the best possible result for any deterministic online algorithm even in the

case where all jobs have unit profit and the goal is to complete as many jobs as possible

by their deadlines. If the algorithm can be randomized, Θ(min{log δ, log ∆}) is the optimal

competitive ratio [92,100]. ∆ is the ratio of the maximum to minimum job processing time.

These strong lower bounds on the competitive ratio of any online algorithm makes it

difficult to differentiate between algorithms and to discover the key algorithmic ideas that

work well in practice. To overcome this challenge, the now standard form of analysis in

scheduling theory is a resource augmentation analysis [93, 141]. In a resource augmentation

analysis, the algorithm is given extra resources over the adversary and the competitive ratio

is bounded. A s-speed c-competitive algorithm is given a processor that is s times faster

than the optimal solution and achieves a competitive ratio of c. The seminal scheduling

paper [93] considered the throughput scheduling problem and gave the best possible (1 + ε)-

speed O(1
ε
)-competitive algorithm for any fixed ε > 0.

Since this work, there has been an effort to understand and develop algorithms for more

general scheduling environments and objectives. In the identical machine setting where the

jobs can be scheduled on m identical parallel machines, a (1 + ε)-speed O(1)-competitive

algorithm is known for fixed ε > 0 [11]. This has been extended to the case where the

machines have speed scalable processors and the scheduler is energy aware [132]. In the

related machines and unrelated machines settings, similar results have been obtained as

221

well [87]. In [119] similar results were obtained in a distributed model. None of the prior

work considers parallel jobs.

Results: We give the first non-trivial results for scheduling parallelizable DAG jobs online

to maximize throughput and then we generalize these results to the general profit problem.

Two important parameters in the DAG setting are the critical-path length Li of job Ji (its

execution time on an infinite number of processors) and its total work Wi (its uninterrupted

execution time on a single processor). The value of max{Li,Wi/m} is a lower bound on

the amount of time any 1-speed scheduler takes to complete job Ji on m cores. We will

focus on schedulers that are aware of the values of Li and Wi when the job arrives, but are

unaware of the internal structure of the job’s DAG. That is, besides Li and Wi, the only

other information a scheduler has on a job’s DAG is which nodes are currently available

to execute. We call such an algorithm semi-non-clairvoyant — for DAG jobs. This is a

reasonable model for the real world programs since the DAG generally unfolds dynamically

as the program executes. We first state a simple theorem about these schedulers.

Theorem 49 There exists inputs where any semi-non-clairvoyant scheduler requires a speed

augmentation of 2− 1/m to be O(1)-competitive for maximizing throughput.

Scheduling even a single DAG job in time smaller than Wi−Li
m

+Li is a hard problem even

in the offline setting where the entire job structure is known in advance. This is captured by

the classic problem of scheduling a precedence constrained jobs to minimize the makespan.

For this problem, there is no 2 − ε approximation assuming a variant of the unique games

conjecture [146]. We can construct a DAG where any semi-non-clairvoyant scheduler will

take roughly Wi−Li
m

+ Li time to complete, while a fully clairvoyant scheduler can finish in

time Wi/m. By setting the relative deadline to be Di = Wi/m = Li, every semi-clairvoyant

scheduler will require a speed augmentation of 2− 1/m to have bounded competitiveness.

With the previous theorem in place, we cannot hope for a (1+ ε)-speed O(1)-competitive

algorithm. To circumvent this hurdle, one could hope to show O(1)-competitiveness by either

222

using more resource augmentation or by making an assumption on the input. Intuitively,

the hardness comes from having a relative deadline Di close to max{Li,Wi/m}. In practice,

this is unlikely to be the case. We show that so long as Di ≥ (1 + ε)(Wi−Li
m

+ Li) then there

is a O(1
ε6

)-competitive algorithm.

Theorem 50 If (1 + ε)(Wi−Li
m

+ Li) ≤ Di for every job Ji, there is a O(1
ε6

)-competitive

algorithm for maximizing throughput.

We note that this immediately implies the following corollaries. One with no assumptions

on the input and one for “reasonable jobs.”

Corollary 51 There is a (2 + ε)-speed O(1
ε6

)-competitive algorithm for maximizing through-

put.

Proof. No schedule can finish a job Ji if its relative deadline is smaller than max{Li, Wi

m
}

and we may assume that no such job exists. Using this, we have that (Wi

m
+ Li) ≤ 2Di.

Consider transforming the problem instance giving the algorithm and the optimal solution

together 2 + ε speed. In this case, the condition of Theorem 50 is met since we can view this

as scaling the work in each node of the jobs by 2 + ε. This scales the work and critical-path

length by 2 + ε. The corollary follows by observing that in this case we are comparing to

an optimal solution with 2 + ε speed which is only stronger than comparing to an optimal

solution with 1 speed.

We note that the theorem also immediately implies the following corollary for “reasonable

jobs.”

Corollary 52 There is a (1+ε)-speed O(1
ε6

)-competitive for maximizing throughput if (Wi−

Li)/m+ Li ≤ Di for all jobs Ji.

The assumption on the job deadline is reasonable as there exists inputs for which even

the optimal semi-non-clairvoyant scheduler has unbounded performance if the deadline is

any smaller.

223

For the general profit scheduling problem, we can make the following assumption. For

all jobs Ji its general profit function satisfies pi(d) = pi(x
∗
i), where 0 < d ≤ x∗i for some

x∗i ≥ (1 + ε)(Wi−Li
m

+ Li). This assumption states that there is no additional benefit for

completing a job Ji before time x∗i ; this is the natural generalization of the assumption in

the throughput case. Using this, we show the following.

Theorem 53 If for every job Ji it is the case that pi(d) = pi(x
∗
i), where 0 < d ≤ x∗i for

some value of x∗i ≥ (1+ ε)(Wi−Li
m

+Li), there is a O(1
ε6

)-competitive algorithm for the general

profit objective.

Corollary 54 There is a (2 + ε)-speed O(1
ε6

)-competitive algorithm for maximizing general

profit.

9.1 Preliminaries

In the problem considered, there is a set J of n jobs {J1, J2, ..., Jn} which arrive online. The

jobs are to be scheduled on m identical processors. Job Ji arrives at time ri. Let pi(t) be

an arbitrary non-negative non-increasing function for job Ji. The value of pi(t) is the profit

obtained by completing job i at time ri + t. Under some schedule, let ti be the time it takes

to complete job i after its arrival (that is, the job completes at time ri + ti). The goal is for

the scheduler to maximize
∑

i∈[n] pi(ti).

A special case of this problem is scheduling jobs with deadlines. In this problem, each

job Ji has a deadline di and obtains a profit of pi if it is completed by this time. In this case,

we let Di = di − ri be the relative deadline of the job. To make the underlying ideas of our

approach clear, we will first focus on proving this case and the more general problem can be

found in the Section 9.3.

Each individual job is represented by a Directed-Acyclic-Graph (DAG). A node in the

DAG is ready to execute if all its predecessors have completed. A job is completed only when

224

all nodes in the job’s DAG have been processed. We assume the scheduler knows the ready

nodes for a job at any point in time, but does not know the entire DAG structure a priori.

Any set of ready nodes can be processed at once, but each processor can only execute one

node at a time.

A DAG job has two important parameters. The total work Wi is the sum of the processing

time of the nodes in job i’s DAG. The span or critical-path-length Li is the length of the

longest path in job i’s DAG, where the length of the path is the sum of the processing time of

nodes on the path. The notations used throughout this chapter is summarized in Tables 9.1,

9.2 and 9.3.

Notation Definition
OPT optimal schedule and also optimal objective
m the number of processors
Wi the total work of job Ji
Li the span of job Ji
Di relative deadline of job Ji
ri the arrival time of Ji
di the absolute deadline of Ji (that is, ri +Di)
A(T, v1, v2) all jobs in T with density within the range [v1, v2)
N(T, v1, v2) =

∑
Ji∈A(T,v1,v2) ni, the total number

of processors required by A(T, v1, v2)
v-dense if Job Ji has density vi ≥ v
δ < ε/2
c ≥ 1 + 1

εδ

b = (1+2δ
1+ε

)1/2 < 1

a = 1 + 1+2δ
ε−2δ

Table 9.1: Notations and definitions throughout Chapter 9

9.2 Maximizing Profit of Jobs with Deadlines

In this section, we give an algorithm and analysis proving Theorem 50 when jobs have

deadlines and profits. Throughout the proof, we let CO denote the jobs that the optimal

solution completes by their deadline and let
∥∥CO

∥∥ denote the total profit obtained by the

225

Notation Definition
pi the profit of job Ji
ni = (Wi−Li)

Di
1+2δ

−Li
, the number of processors allocated to Ji

xi = Wi−Li
ni

+ Li, the maximum execution time of Ji
vi = pi

xini
the density of Ji

δ-good job Ji has Di ≥ (1 + 2δ)xi
δ-fresh at time t, job Ji has di − t ≥ (1 + δ)xi
R the set of jobs started by S
C the set of jobs completed by S
U unfinished jobs by S (that is, R \ C)
CO the set of jobs completed by OPT
J the set of all jobs
TO(v, E) the total work processed by the optimal schedule

for the jobs in E that are v-dense
TS(v, E) the total number of processors steps S used

for executing jobs in E that are v-dense

Table 9.2: Notations and definitions specific to jobs with deadlines

Notation Definition
pi(t) the profit of job Ji if the job with arrival time ri

completes by ri + t

ni = (Wi−Li)
x∗
i

1+2δ
−Li

, the number of processors allocated to Ji

xi = Wi−Li
ni

+ Li, the maximum execution time of Ji

vi = pi(Di)
xini

the density of Ji

Table 9.3: Notations and definitions specific to jobs with general profit functions

optimal solution. Our goal is to design a scheduler that achieves profit close to
∥∥CO

∥∥.

Throughout the proof, it will be useful to discuss the aggregate number of processors assigned

to a job over all time.

9.2.1 Scheduler S for Maximizing Profit of Jobs with Deadlines

Here we present an algorithm S for jobs with deadlines and profits for which Theorem 50

holds.

On every time step, the algorithm S must decide which jobs to schedule and which

ready nodes of each job to schedule. When a job Ji arrives, S calculates a value, ni —

226

the number of processors “allocated” to Ji. On any time step when S decides to run Ji, it

will always allocate ni processors to Ji. In addition, since S is semi-non-clairvoyant, it is

unable to distinguish between ready nodes of Ji; when it decides to allocate ni nodes to Ji,

it arbitrarily picks ni ready nodes to execute if more than ni nodes are ready.

In the assumption of Theorem 50, each job follows the condition that (1+ε)(Wi−Li
m

+Li) ≤

Di for some positive constant ε.

We define the following constants. Let δ < ε/2, c ≥ 1 + 1
δε

and b = (1+2δ
1+ε

)1/2 < 1 be

fixed constants. For each job Ji, the algorithm S calculates ni = (Wi−Li)
Di

1+2δ
−Li

, where ni is the

number of processors S will give to Ji if it decides to execute Ji on a time step.

Let xi = Wi−Li
ni

+ Li, which is the number of time steps to complete Ji on ni dedicated

processors (regardless of the order the nodes are executed in). Therefore, job Ji can meet

its deadline if it is given ni dedicated processors for xi time steps during [ri, di].

We define a processor step as a unit of time on a single processor and the density of a

job as vi = pi
xini

. Note that this is a non-standard definition of density. We define the density

as pi
xini

instead of pi
Wi

, because we think of Ji requiring xini processor steps to complete by

S. Thus, this definition of density indicates the potential profit per processor step that S

can obtain by executing job Ji.

The scheduler S maintains jobs that have arrived but are unfinished in two priority

queues. Queue Q stores all the jobs that have been started by S. Queue P stores all the jobs

that have arrived but have not been started. In both queues, the jobs are sorted according

to the density from high to low.

Job Execution: At each time step t, S picks a set of jobs in Q to execute in order from

highest to lowest density. If a job Ji has been completed or if its absolute deadline di has

passed (di > t), S removes the job from Q. When considering job Ji, if the number of

unallocated processors is at least ni the scheduler assigns ni processors to Ji for execution.

227

Otherwise, it continues on to the next job. S stops this procedure when either all jobs have

been considered or when there are no remaining processors to allocate.

A job Ji is δ-good if Di ≥ (1 + 2δ)xi. A job is δ-fresh at time t if di − t ≥ (1 + δ)xi.

For any set T of jobs, let the set A(T, v1, v2) contains all jobs in T with density within

the range [v1, v2). We define N(T, v1, v2) =
∑

Ji∈A(T,v1,v2) ni. This is the total number of

processors that S allocates to jobs in A(T, v1, v2). We say that the set of job A(T, v1, v2)

requires N(T, v1, v2) processors.

Adding Jobs: There are two types of events that may cause S to add a job to Q. Either a

job arrives or S completes a job. When a job Ji arrives, S adds it to queue Q if it satisfies

the following:

(1) Ji is δ-good;

(2) For all job Jj ∈ Q ∪ Ji it is the case that N (Q ∪ Ji, vj, cvj) ≤ bm. In words, the total

number of processors required by jobs in Q ∪ Ji with density in the range [vj, cvj) is

no more than bm.

If these conditions are met, then Ji is inserted into queue Q; otherwise, job Ji is inserted

into queue P . When a job is added to Q, we say that the job is started by S.

When a job completes, S considers the jobs in P from highest to lowest density but first

removes all jobs with absolute deadlines that have passed. Then S checks if a job Ji in P

can be moved to queue Q by checking if job Ji is δ-fresh and meets condition (2) from above.

If both are true, then Ji is moved from queue P to Q.

Remark: Note that the Scheduler S pre-computes a fixed number of processors ni assigned

to each job; this may seem strange. We chose this design because ni is approximately the

minimum number of dedicated cores job Ji requires to complete by Di
1+2δ

→ Di, without

knowing Ji’s the DAG structure.

Outline of the Analysis of S: Our goal is to bound the total profit that S obtains. We first

discuss some basic properties of S in Section 9.2.2. In Section 9.2.3 be bound the total profit

228

of all the jobs S starts by the total profit of jobs that S completes. Then in Section 9.2.4 we

bound the total profit of the jobs the optimal solution completes by the total profit of jobs

that S starts. Putting these two together, we are able to bound the performance of S.

9.2.2 Properties of the Scheduler S

We begin by stating two observations regarding the parallel jobs.

Observation 55 If a job Ji has all of its r ready nodes being executed by a schedule with

speed s on m processors, where r ≤ m, then the remaining critical-path length of Ji decreases

at a rate of s.

Observation 56 Job Ji can meet its deadline if it is given ni dedicated processors for xi

time steps in the interval [ri, di].

We now show some structural properties for S that we will leverage in the proof. We

first bound the number of processors ni that S will allocate to job Ji.

Lemma 57 For every job Ji we have that ni ≤ b2m.

Proof. By assumption we know that

Di ≥ (1 + ε)(Wi−Li
m

+ Li)

The definition of ni gives ni = Wi−Li
Di

1+2δ
−Li
≤ Wi−Li

1+ε
1+2δ

(
Wi−Li
m

+Li)−Li
≤ 1+2δ

1+ε
m = b2m.

We now show that every job is δ-good.

Lemma 58 Every job Ji is δ-good, i.e. xi(1 + 2δ) ≤ Di.

Proof. Note that Li ≤ 1
1+ε

Di by definition. Since ni = Wi−Li
D

1+2δ
−Li

, we have xi(1 + 2δ) =

(Wi−Li
ni

+ Li)(1 + 2δ) = (Di
1+2δ
− Li + Li)(1 + 2δ) ≤ Di.

The next lemma bounds the total number of processor steps occupied by a job.

229

Lemma 59 xini ≤ aWi, where a is 1 + 1+2δ
ε−2δ

.

Proof. By definition we have

xini = Wi − Li + niLi ≤ Wi +
Wi − Li
Di

1+2δ
− Li

Li ≤ Wi +
Wi − Li
Di

1+2δ
− Di

1+ε

(Di

1 + ε

)
≤ Wi +

(Wi − Li)Di(1 + 2δ)

Di(ε− 2δ)
≤ Wi +

Wi(1 + 2δ)

ε− 2δ
≤ Wi

(
1 +

1 + 2δ

ε− 2δ

)

Observation 60 At any time and for any v > 0, the total number of processors required by

all the jobs Ji that are in queue Q and have density v ≤ vi < cv is no more than bm, i.e.

N(Q, vi, cvi) ≤ bm.

Proof. Jobs are only added to queue Q when a new job arrives or a job completes.

According to algorithm S, at both times, a job is only added to Q when this condition is

satisfied.

9.2.3 Bounding the Profit of Jobs Completed by S

In this section, we bound the profit of jobs completed by S compared to the profit of all

jobs it ever starts (adds to Q). Let R denote the set of jobs S starts (that is, the set of jobs

added to queue Q). Among the jobs in R, let C be the set of jobs it completes and U be the

set of jobs that are unfinished. We say job Ji (and its assigned processors) is v-dense, if its

density vi ≥ v. For any set A of jobs, define ‖A‖ as
∑

i∈A pi, the sum of the profits of jobs

in the set.

Lemma 61 For a job Ji ∈ U = R \ C that was added to queue Q but does not complete

by its deadline, S must have run cvi-dense jobs for at least δxi time steps where Ji is in Q

using at least (1− b)m processors at each such time.

230

Proof. Since Ji is at least δ-fresh when added to Q and it does not complete by its deadline,

there are at least δxi time steps where S is not executing Ji by Observation 56. In each of

these the time steps, all the m processors are executing vi-dense jobs.

By Observation 60, jobs in Q with density in range [vi, cvi) require at most N(Q, vi, cvi) ≤

bm processors to execute. Therefore, for each of the δxi time steps, there are at least (1−b)m

processors executing cvi-dense jobs. So the total number processor steps where cvi-dense jobs

are executing is at least δxi(1− b)m.

We now bound the profit of the jobs completed by their deadline under S by those started.

Lemma 62 ‖C‖ ≥ (ε− 1
(c−1)δ

) ‖R‖.

Proof. We use a charging scheme with credit transfers between the jobs. We give each job

Ji ∈ R a bank account Bi. Initially, all completed jobs (in C) are given pi credits and other

jobs (in U) have 0 credit. We will transfer credits between jobs in C and jobs in U . We want

to show that after the credit transfer, every job Ji in R will have Bi ≥ (ε − 1
(c−1)δ

)pi. This

implies ‖C‖ ≥ (ε− 1
(c−1)δ

) ‖R‖.

Now we explain how credits are transferred. For each time step, a processor executing

Ji will transfer
vjnj
δbm

credits from Bi to every job Jj in queue Q that has density vj ≤ vi
c

.

For every job Jj ∈ U , Lemma 61 implies that there are at least δxj time steps where at

least (1−b)m processors are executing cvj-dense jobs. By our credit transfer strategy Jj will

receive at least
vjnj
δbm

credits from each processor in a time step. Therefore, the total credits

Jj receives is at least

δxj(1− b)m(
vjnj
δbm

) = vjxjnj(
1− b
b

) = pi(
1− b
b

).

This bounds the total amount of credit each job receives. We now show that not too

much credit is transferred out of each job’s account. We bound this on a job by job basis. Fix

a job Ji ∈ R and consider how many credits it transfers to other jobs during its execution.

231

By Observation 56, we know that Ji can execute for at most xi time steps on ni dedicated

processors before its completion.

The job Ji will transfer credit to all jobs in Q with density less than vi
c

at any point

in time where Ji is being processed. These are the jobs in A(Q, 0, vi
c

). Fix an integer

l ≥ 1 and consider the set of jobs A(Q, vi
cl+1 ,

vi
cl

) in Q that have density within the range

[vi
cl+1 ,

vi
cl

). Note that the total number of processors required by them is N(Q, vi
cl+1 ,

vi
cl

) ≤ bm

by Observation 60. Knowing that a job Jj in A(Q, vi
cl+1 ,

vi
cl

) has density vj ≤ vi
cl

by definition it

is the case that the total credits that Ji gives to jobs in A(Q, vi
cl+1 ,

vi
cl

) per processor assigned

to Ji during any time step is at most

∑
Jj∈A(Q,

vi
cl+1 ,

vi
cl

)

vjnj
δbm

≤
∑

Jj∈A(Q,
vi
cl+1 ,

vi
cl

)

vi
cl
nj

δbm
=

vi
δbmcl

∑
Jj∈A(Q,

vi
cl+1 ,

vi
cl

)

nj

=
vi

δbmcl
N(Q,

vi
cl+1

,
vi
cl

) ≤ vi
δbmcl

bm =
vi
δcl
.

This bounds the total credit transferred to jobs in A(Q, vi
cl+1 ,

vi
cl

) during a time step for

each processor assigned to Ji. We sum this quantity over all l ≥ 1 and all ni processors

assigned to i to bound the total credit transferred from job Ji during a time step. Recall

that c > 1 by definition.

nivi
δ

∞∑
l=1

1

cl
=
(nivi

δ

) 1
c

1− 1
c

=
(nivi

δ

) 1

c− 1

Therefore, the total credits Ji transfers to all the jobs in A(Q, 0, vi
c

) over all times it is

executed is at most (xinivi
δ

) 1
c−1

= pi
(c−1)δ

due to the fact that a job will be executed for at

most xi time steps in S’s schedule.

232

Now we put these two observations together. Each job receives at least pi
1−b
b

credit and

pays at most pi
(c−1)δ

. After the credit transfer, the credits that a job Ji has is at least

pi
1− b
b
− pi

(c− 1)δ
= pi(ε−

1

(c− 1)δ
)

By our setting of c, this quantity is always positive. Therefore, we conclude that ‖C‖ ≥

(ε− 1
(c−1)δ

) ‖R‖.

9.2.4 Bounding the Profit of Jobs Completed by OPT

In this section, we bound the profit of the jobs OPT completes by all of the jobs that S

starts. Our high level goal is to first bound the total amount of time OPT spends processing

jobs that S does not complete by the time S spends processing jobs. Then using this and

properties of S we will be able to bound the total profit of jobs OPT completes. At a high

level, this follows since S focuses on processing high density jobs and OPT and S spend a

similar amount of time processing jobs.

We begin by showing show that if not too many processors are executing vi
c

-dense jobs

then all such jobs must be currently executing.

Lemma 63 For any density vi and time, if there are less than b(1−b)m processors executing

vi
c

-dense jobs, then all vi
c

-dense jobs in queue Q are executing and N(Q, vi
c
,∞) < b(1− b)m.

Proof. By definition, there are at least m− b(1− b)m > bm− b(1− b)m = b2m processors

executing jobs with density less than vi
c

. For the sake of contradiction, suppose there is a

vi
c

-dense job Jj that is not executing by S. By Lemma 57 we know that nj ≤ b2m. Therefore,

Jj would have been executed by S on the b2m processors that are executing lower density

jobs, a contradiction.

Now we know all all vi
c

-dense jobs in queue Q are executing. By assumption they are

using less than b(1− b)m processors and the lemma follows.

233

In the next lemma, we show that if not too many processors are running vi
c

-dense jobs

then when a job arrives or completes, the schedule S will start processing a vi-dense job

that is δ-fresh, for any density vi (if such a job exists). In particular, the job Jj will pass

condition (2) of for adding jobs to Q in the definition of S.

Lemma 64 Fix a density vi. At a time where a new job arrives or a job completes if there

are less than b(1 − b)m processors executing vi
c

-dense jobs, then a δ-fresh vi-dense job Jj

(arriving or in queue P) will be added to Q by S assuming such a job Jj exists.

Proof. By Lemma 63, we know that all vi
c

-dense jobs in queue Q are executing on less

than b(1− b)m processors. By Lemma 57, we know that nj ≤ b2m. Therefore,

N(Q ∪ Jj,
vi
c
,∞) < b(1− b)m+ b2m = bm

Consider any δ-fresh job Jj that is also vi-dense. Consider any job Jk where Jj ∈ A(Q ∪

Ji, vk, cvk). By definition of Jj being vi-dense it must be the case that A(Q ∪ Ji, vk, cvk) ⊆

A(Q∪ Jj, vic ,∞). The above implies that N(Q∪ Ji, vk, cvk) ≤ N(Q∪ Jj, vic ,∞) ≤ bm. Thus,

the condition (2) in our algorithm is satisfied.

For an arbitrary set of jobs E and any v ≥ 0 let TO(v, E) denote the total work processed

by the optimal schedule for the jobs in E that are v-dense. We similarly let TS(v, E) be the

total number of processors steps S used for executing jobs in E that are v-dense over all

time. Now we are ready to bound the time that OPT spends on jobs S never adds to Q.

Lemma 65 Consider the jobs in J \ R, the jobs that are never added to Q. For all v > 0,

TO(v,J \R) ≤ 1+2δ
δb(1−b)TS(v

c
,J).

Proof. Let {Ik = [sk, ek]} be the set of maximal time intervals where at least b(1 − b)m

processors are running v
c
-dense jobs in S’s schedule. Notice that by definition

∑∞
k=1(ek −

sk)b(1− b)m ≤ TS(v
c
,J).

234

Consider a job in Ji ∈ J \ R that is both δ-good and v-dense and additionally arrives

during [sk, sk+1). Note that during the intervals [ek, sk+1], less than b(1− b)m processors are

executing v
c
-dense jobs. Lemma 64 implies that if Ji arrives during [ek, sk+1] it will be added

to Q. This contradicts the assumption that Ji ∈ J \ R. Therefore, Ji must arrive during

[sk, ek) and is in queue P at time ek.

Note that at time ek, the number of processors executing v
c
-dense jobs decreases, so there

must be a job that completes at time ek. Again, by Lemma 64 if Ji is δ-fresh at time ek

then it will be added to Q at this time. Again, this contradicts Ji ∈ J \ R. Thus, the only

reason that S does not add Ji to Q is because Ji is not δ-fresh at time ek. Knowing that Ji

is δ-good at ri and is not δ-fresh at ek, we have

ek − sk ≥ ek − ri ≥ δxi

At time ek, Ji is not δ-fresh, so

di − ek < (1 + δ)xi <
1 + δ

δ
(ek − sk)

Let Kk be the set of v-dense jobs that arrive during [sk, sk+1) but are not completed by

S. Because OPT can only execute all jobs in Kk during [sk, di] on at most m processors, we

get

TO(v,Kk) ≤ (di − sk)m = ((di − ek) + (ek − sk))m ≤
1 + 2δ

δ
(ek − sk)m

This completes the proof, as

TO(v, U) =
∞∑
k=1

TO(v,Kk) ≤
∞∑
k=1

(
1 + 2δ

δ
)m(ek − sk) ≤

1 + 2δ

δ

1

b(1− b)
TS(

v

c
,J)

235

Using the previous lemma, we are ready to bound the profit of jobs completed by OPT

by the profit of jobs started by S.

Lemma 66 ∥∥CO
∥∥ ≤ (1 + (1 +

1 + 2δ

ε− 2δ
)(1 +

1

εδ
)

1 + 2δ

δb(1− b)

)
‖R‖

.

Proof. We may assume WLOG that the adversary completes all jobs it starts. First we

partition CO, the jobs that the adversary completes, into CO
R and CO

S where CO
S = CO ∩R,

that is, our algorithm started the job at some point. The remaining jobs are placed in CO
R .

Clearly
∥∥CO

S

∥∥ ≤ ‖R‖. Now it remains to bound
∥∥CO

R

∥∥.

Consider every job in CO
R and let the set of densities of these jobs be {µ1, µ2, . . . , µm} from

high to low and for notational simplicity let µ0 = ∞ and µm+1 = 0. Recall the adversary

completed all jobs it started. Thus for each job with density µi, the adversary ran the job

for a corresponding Wi processor steps. Let βi denote the number of processor steps our

algorithm takes to run jobs with densities within (µi−1

c
, µi
c

].

We have TO(v,J \R) ≤ 1+2δ
δb(1−b)TS(v

c
,J) from Lemma 65 for all densities v. Equivalently

for any given density v:

TO(v,J \R) =
v∑
i=1

Wi ≤
1 + 2δ

δb(1− b)

v∑
i=1

βi =
1 + 2δ

δb(1− b)
TS(

v

c
,J)

We then sum over all densities. The subtraction of densities is necessary to insure that

each density is only counted a single time.

m∑
v=1

(
(µv − µv+1)

v∑
i=1

Wi

)
≤

m∑
v=1

(
(µv − µv+1)

1 + 2δ

δb(1− b)

v∑
i=1

βi

)

236

The LHS can be simplified:

m∑
v=1

(
(µv − µv+1)

v∑
i=1

Wi

)
=

m∑
i=1

Wi

m∑
v=i

(µv − µv+1) =
m∑
i=1

Wi(µi − µm+1) =
m∑
i=1

Wiµi

The RHS similarly simplifies to 1+2δ
δb(1−b)

∑m
i=1 βiµi, leading to the inequality that

∑m
i=1Wiµi ≤

1+2δ
δb(1−b)

∑m
i=1 βiµi. Recall that densities such as µi are defined by µi = pi

xini
and xini ≤ aWi.

Therefore:

m∑
i=1

Wiµi =
m∑
i=1

Wipi
xini

≥
m∑
i=1

Wipi
aWi

≥
m∑
i=1

pi

(1 + 1+2δ
ε−2δ

)
=

1

(1 + 1+2δ
ε−2δ

)

∥∥CO
R

∥∥
And also, by the definition of βi, we know that

∑m
i=1 βi

µi
c
≤ ‖R‖. Combining these

results, we get:

1

(1 + 1+2δ
ε−2δ

)

∥∥CO
R

∥∥ ≤ m∑
i=1

Wiµi ≤
1 + 2δ

δb(1− b)

m∑
i=1

βiµi ≤
1 + 2δ

δb(1− b)
c ‖R‖

⇒
∥∥CO

R

∥∥ ≤ (1 +
1 + 2δ

ε− 2δ

)(
1 + 2δ

δb(1− b)

)
c ‖R‖

⇒
∥∥CO

∥∥ =
∥∥CO

R

∥∥+
∥∥CO

S

∥∥ ≤ (1 + (1 +
1 + 2δ

ε− 2δ
)(1 +

1

εδ
)

1 + 2δ

δb(1− b)

)
‖R‖

Finally we are ready to complete the proof, bounding the profit OPT obtains by the

total profit the algorithm obtains for jobs it completed.

Lemma 67

∥∥CO
∥∥ ≤ (1+(1+ 1+2δ

ε−2δ
)(1+ 1

εδ
) 1+2δ
δb(1−b))

ε− 1
(c−1)δ

‖C‖

Proof. This is just by combination of Lemma 62 and Lemma 66.

Therefore, we prove Theorem 50 by showing that scheduler S is O(1
ε6

)-competitive for

jobs with deadlines and profits, when (1 + ε)(Wi−Li
m

+ Li) ≤ Di.

237

9.3 Maximizing Profit of Jobs with General Profit Func-

tions

In this section, we focus on a more general case. In particular, each job Ji has a non-

negative non-increasing profit function pi(t) indicating its profit if the job with arrival time

ri completes by ri + t. Our goal is to design a scheduler that maximize the profit to make it

close to what the optimal solution can obtain, denoted as ‖O‖.

9.3.1 Scheduler S ′ for Maximizing General Profit

The algorithm S ′ for jobs with general profit functions is similar to S. Due to space, we

briefly sketch it and point out the differences.

Assigning cores, deadlines and slots to jobs: When a job Ji arrives, S ′ calculates a

relative deadline Di and a set of time steps Ii with ni processors. Ii are the only time steps

in which Ji is allowed to run. In each time step t in Ii, we say that Ji is assigned to t.

Note that for the general profit problem, a job Ji has no deadline. Thus, S ′ computes

a Di by searching all the potential deadlines D to find the minimum valid deadline using a

complicated process which we omit due to space. The set of time steps Ii is then determined

using the chosen deadline Di.

From the assumption in Theorem 53, for each job Ji the profit function stays the same

until x∗i ≥ (Wi−Li
m

+ Li)(1 + ε). We set ni = Wi−Li
x∗i /(1+2δ)−Li , where δ < ε/2. We define its the

density as vi = pi(Di)
xini

= pi(Di)
Wi+(ni−1)Li

, where xi := Wi−Li
ni

+ Li.

Executing jobs: This procedure is similar to S, with the only difference that S ′ only picks

jobs to execute that have been assigned to time step t.

Remark: Unlike the scheduler for jobs with deadlines, here we try to complete a job Ji by a

calculated deadline Di that is as close to x∗i as possible. This is because the obtained profit

decreases as the completion time increases but there is no additional benefit for completing

238

a job Ji before time x∗i . With a carefully designed deadline Di, we are able to prove the

performance bound of the scheduler. Similarly to Section 9.2, we start by stating the basic

properties of the scheduler S ′, followed by bounding the total profit obtained by S ′. However,

the proofs that bound the profit of jobs that are completed by OPT differ greatly from that

for jobs with deadlines. This is because in addition to losing the profit of jobs that do not

complete by their assigned deadlines, scheduler S ′ can also loses profit compared to OPT if

the completion time of a job under S ′ is later than under OPT. By taking into account all

these jobs, we are able to bound the performance of S ′ for jobs with general profit functions.

9.3.2 Properties of the Scheduler S ′

We begin by showing some structural properties for S ′ that we will leverage in the proof and

can be obtained directly from the algorithm of scheduler S ′. Note that these lemmas are the

almost the same as the lemmas shown in Section 9.2.2 if we replace xi∗ with Di. We state

them here again for completeness.

Lemma 68 For every job Ji we have that ni ≤ b2m, where b = (1+2δ
1+ε

)1/2.

Proof. By definition, we know that x∗i ≥ (1 + ε)(Wi−Li
m

+ Li). Therefore, we have

ni =
Wi − Li
x∗i

1+2δ
− Li

≤ Wi − Li
1+ε

1+2δ
(Wi−Li

m
+ Li)− Li

≤ 1 + 2δ

1 + ε
m = b2m

Lemma 69 Under scheduler S ′, we have xini ≤ aWi and vi ≥ pi(Di)
aWi

, where a = 1 + 1+2δ
ε−2δ

.

Proof. By definition, x∗i > Li(1 + ε). Therefore, we have

xini = Wi − Li + niLi = Wi +
Wi − Li
x∗i

1+2δ
− Li

Li ≤ Wi +
Wi − Li
x∗i

1+2δ
− x∗i

1+ε

(x∗i
1 + ε

)
≤ Wi +

(Wi − Li)x∗i (1 + 2δ)

x∗i (ε− 2δ)
≤ Wi

(
1 +

1 + 2δ

ε− 2δ

)
239

Therefore, we have vi = pi(Di)
xini

≥ pi(Di)
aWi

.

Lemma 70 For every job Ji with the assignment ni, Di and Ii, Job Ji can meet its deadline

Di, if it is executed by S ′ for at least xi time steps in Ii (on ni dedicated processors).

Lemma 71 For every job Ji, xi(1 + 2δ) ≤ x∗i .

Proof. Note that Li ≤ 1
1+ε

Di by requirement of potential assignment. Since ni = Wi−Li
x∗
i

1+ε
−Li

,

we have xi(1 + 2δ) = (Wi−Li
ni

+ Li)(1 + 2δ) ≤ (
x∗i

1+ε
− Li + Li)(1 + 2δ) =

x∗i
1+ε

(1 + 2δ) ≤ x∗i .

Lemma 72 At any time step t during the execution and for any density range [v, cv), the

total number of cores required by all the jobs Ji ∈ J(t) (that have been assigned to t) with

density v ≤ vi < cv is no more than bm, i.e. N (J(t), vi, cvi) ≤ bm.

9.3.3 Bounding the Profit of Jobs Completed by S ′

Similar to Section 9.2.3, we bound the profit of jobs completed by scheduler S ′ compared to

the profit of all jobs. Let J denote the set of jobs arrived during the execution, C denote

the set of jobs that actually complete before their deadlines assigned by S ′, and U = J \ C

be the set of jobs that didn’t finish by their deadlines assigned by S ′. We say job Ji (and

its assigned processors during execution) is v-dense, if its density vi ≥ v. For any set A of

jobs, define ‖A‖ as
∑

Ji∈A pi(Di), the sum of the profits of jobs in the set under S ′.

Lemma 73 For a job Ji ∈ J \C that does not complete by its deadline, the number of time

steps in Ii where S ′ runs cvi-dense jobs using at least (1− b)m processors is at least δxi.

Proof. From Lemma 70, we know that job Ji can complete if it can execute for xi time

steps by S ′. Also note that according to the assignment process (1 + δ)xi = ‖Ii‖, where ‖Ii‖

is the number of time steps assigned to Ji during [ri, ri +Di]. Since it does not complete by

its deadline, there are at least δxi time steps in Ii where S ′ does not execute Ji.

240

Consider each of these time steps t. According to Lemma 72, jobs in J(t) with density in

range [vi, cvi) require at most N (J(t), vi, cvi) ≤ bm processors to execute. Therefore, there

must be at least (1− b)m processors executing cvi-dense jobs. Otherwise, S ′ would execute

all jobs in A (J(t), vi, cvi), which includes job Ji.

Lemma 74 ‖C‖ ≥ (ε− 1
(c−1)δ

) ‖J ‖.

Proof. Similar to Lemma 62, we use a charging scheme to transfer credit between the

jobs. We give each job Ji ∈ J an account Bi. In the beginning, all completed jobs (in C)

are given pi(Di) credits and other jobs (in U) have 0 credit. We will transfer credits between

jobs in C and jobs in U . We want to show that after the credit transfer, every job Ji will

have Bi ≥ (ε− 1
(c−1)δ

)× pi(Di). This implies ‖C‖ ≥ (ε− 1
(c−1)δ

) ‖J ‖.

Now we explain how credits are transferred. For each time step t, a processor executing

Ji will transfer
vjnj
δbm

credits from Bi to every job Jj ∈ J(t) that has density vj ≤ vi
c

.

For every job Jj ∈ U , Lemma 73 implies that there are at least δxj time steps in Ij where

at least (1− b)m processors are executing cvj-dense jobs. By our credit transfer strategy Jj

will receive at least
vjnj
δbm

credits from each processor in such a time step. Therefore, the total

credits Jj receives is at least

δxj(1− b)m
(vjnj
δbm

)
= vjxjnj(

1− b
b

) = pi(Di)× (
1− b
b

)

This bounds the total amount of credit each job receives. We now show that not too

much credit is transferred out of each job’s account. We bound this on a job by job basis.

Fix a job Ji ∈ J and let’s consider how many credits it transfers to other jobs during its

execution.

Consider each time step t where Ji is being processed, it will transfer credit to all jobs in

J(t) with density less than vi
c

. These are the jobs in A(J(t), 0, vi
c

). Fix an integer l ≥ 1 and

consider the set of jobs A(J(t), vi
cl+1 ,

vi
cl

) in J(t) that have density within the range [vi
cl+1 ,

vi
cl

).

241

Note that the total number of processors required by them is N(J(t), vi
cl+1 ,

vi
cl

) ≤ bm by

Lemma 72. Knowing that a job Jj in A(J(t), vi
cl+1 ,

vi
cl

) has density vj ≤ vi
cl

by definition, it is

the case that the total credits that Ji gives to jobs in A(J(t), vi
cl+1 ,

vi
cl

) per processor assigned

to Ji is at most

∑
Jj∈A(J(t),

vi
cl+1 ,

vi
cl

)

vjnj
δbm

≤
∑

Jj∈A(J(t),
vi
cl+1 ,

vi
cl

)

vi
cl
nj

δbm
=

vi
δbmcl

∑
Jj∈A(J(t),

vi
cl+1 ,

vi
cl

)

nj

=
vi

δbmcl
N(J(t),

vi
cl+1

,
vi
cl

) ≤ vi
δbmcl

bm =
vi
δcl
.

This bounds the credits transferred to jobs in A(J(t), vi
cl+1 ,

vi
cl

) during time step t for each

processor assigned to Ji. We sum this quantity over all l ≥ 1 and all ni processors assigned

to Ji to bound the total credit transferred from job Ji during a time step where Ji is being

processed. Recall that c > 1 by definition.

nivi
δ

∞∑
l=1

1

cl
=
(nivi

δ

) 1
c

1− 1
c

=
(nivi

δ

) 1

c− 1

By the definition of xi, we know that Ji can execute for at most xi time steps on ni

dedicated processors with before its completion. Therefore, the total credits Ji transfers to

all the jobs in A(J, 0, vi
c

) over all the time steps where it is executing is at most (xinivi
δ

) 1
c−1

=

pi(Di)
(c−1)δ

.

Now we put these two observations together. Each job receives at least pi
1−b
b

credit and

pays at most pi
(c−1)δ

. After the credit transfer, the credits that a job Ji has is at least

pi(Di)× (
1− b
b

)− pi(Di)

(c− 1)δ
= pi(Di)× (ε− 1

(c− 1)δ
)

We conclude that ‖C‖ ≥ (ε− 1
(c−1)δ

) ‖J ‖.

242

9.3.4 Bounding the Profit of Jobs Completed by OPT

Similar to Section 9.2.4, we will now bound the profit of the jobs OPT completes. We are

first going to consider the number of processor steps OPT spends on jobs that S ′ finishes

later than OPT. For these jobs, we assume that S ′ makes no profit since the profit function

may become 0 as soon as OPT finishes it. Our high level goal is to first bound the total

number of processor steps OPT spends on these jobs, which will allow us to bound OPT’s

profit. This section of the proof differ greatly from the throughput case.

We begin by showing that if not too many processors are executing vi
c

-dense jobs then

all such jobs must be currently processed under S ′.

Lemma 75 Consider a job Ji and a time t∗ < Di. For any time step t ∈ [ri, ri + t∗] \ Ii

(that is not added to Ii by S ′), the total number of processors required by vi
c

-dense jobs in

J(t) must be more than b(1− b)m, i.e., N(J(t), vi
c
,∞) > b(1− b)m.

Proof. Because t ∈ [ri, ri + t∗] \ Ii and t∗ < Di, we know that time step t is before Di.

Since t is not added to Ii, it must be the case that for some density vj ∈ (vi
c
, vi],

the required condition is not true, i.e., N (J(t) ∪ Ji, vj, cvj) > bm. Note that vj must be

in the range (vi
c
, vi]. This is because without assigning Ji to time step t it is true that

N (J(t), vj, cvj) ≤ bm according to S ′, therefore Ji must have a density within the range of

[vj, cvj) in order to make impact.

By Lemma 68, we know that ni ≤ b2m. Thus, we have

N (J(t), vj, cvj) = N (J(t) ∪ Ji, vj, cvj)− ni > bm− b2m = b(1− b)m

Therefore, we obtain N(J(t), vi
c
,∞) ≥ N (J(t), vj, cvj) > b(1− b)m.

Let O be the set of jobs completed by OPT. For each job Ji ∈ O, let d be the difference

between Ji’s completion time and arrival time under OPT; the profit of Ji under OPT is

pi(d). According to the assumption in Theorem 53, we know that if d ≤ x∗i , then pi(d) =

243

pi(x
∗
i) for some x∗i ≥ (Wi−Li

m
+ Li)(1 + ε). Therefore, we can assume that OPT assigns

a relative deadline D∗i to Ji, where D∗i = max{d, x∗i }. Thus, OPT obtains a profit of

pi(d) = pi(D
∗
i).

Lemma 76 Consider a job Ji such that Di assigned by scheduler S ′ is larger than the dead-

line D∗i assigned by OPT, i.e., Di > D∗i , the number of time steps during [ri, ri +D∗i) where

scheduler S ′ is actively executing vi
c

-dense jobs on at least b(1− b)m cores is at least δ
1+2δ

D∗i .

Proof. By definition of D∗i and Lemma 71, we know that D∗i ≥ x∗i .

Consider the number of time steps in time interval [ri, ri + D∗i] that are added to Ii, it

must be less than (1 + δ)
(
Wi−Li
ni

+ Li

)
= (1 + δ)xi; otherwise, D∗i would be a valid deadline

under scheduler S ′ with higher profit. Therefore, the number of time steps in [ri, ri+D∗i]\ Ii

is more than D∗i − (1 + δ)xi ≥ D∗i − 1+δ
1+2δ

x∗i ≥ D∗i − 1+δ
1+2δ

D∗i = δ
1+2δ

D∗i .

By Lemma 75, we know that for each time step t ∈ [ri, ri +D∗i] \ Ii, the total number of

processors required by vi
c

-dense jobs in J(t) must be more than b(1− b)m. Therefore, there

must be at least b(1 − b)m cores executing vi
c

-dense jobs under scheduler S ′ at time step t

and the number of such steps is at least δ
1+2δ

D∗i .

Among the jobs in O, let O1 be the set of jobs that the deadline Di assigned by scheduler

S ′ is no larger than that assigned by OPT, i.e., Di ≤ D∗i <∞. In other words, the obtained

profit of these jobs under scheduler S ′ is no less than that under OPT, i.e., pi(Di) ≥ pi(D
∗
i),

since the profit function pi(t) is non-increasing. Let O2 be the remaining jobs O2 = O \O1.

Let ‖X‖∗ be the total profit that OPT obtains from jobs in X and ‖X‖ be the total

profit that S ′ obtains from jobs in X. For jobs in O1, we have ‖O1‖∗ ≤ ‖O1‖.

For an arbitrary set of jobs E and any v ≥ 0 let TO(v, E) denote the total work processed

by the optimal schedule for the jobs in E that are v-dense. Let βi denote the total number

of time steps where S ′ is actively processing job Ji. By definition, we have βi ≤ xi
1+ε

. We

similarly let TS(v, E) be the summation of βini over all jobs i in E that are v-dense. Note

244

that this counts the total number of processor steps S ′ executes jobs in E that are v-dense

over all time.

Now we are ready to bound the time that OPT spends on jobs O2 that scheduler S ′

obtains less profit than OPT.

Lemma 77 Consider a job Ji in O2, the deadline Di assigned by scheduler S ′ is longer than

deadline D∗i assigned by OPT. For all v > 0, TO(v,O2) ≤ 2(1+2δ)
δb(1−b)TS(v

c
,J).

Proof. For any job Ji ∈ O2, we denote the lifetime of Ji under OPT as the time interval

[ri, ri +D∗i), where D∗i is the deadline assigned by OPT. For any density v > 0, let l be the

number of time steps of the union of the lifetimes of all jobs in A(O2, v,∞). By definition,

TO(v,O2) ≤ lm, since OPT can execute them on at most m processors.

Let M ⊆ O2 be the minimum subset of O2 that the union of the lifetimes of jobs in M

covers the same time intervals of jobs in O2. By the minimality of M , we know that at

any time t, there are at most two jobs in M that cover time t. Therefore, we can further

partition M into two sets M1 and M2, where for any two jobs in M1 or any two jobs in M2,

their lifetimes do not overlap. By definition, either M1 or M2 has a union lifetime that is at

least l/2 and we assume WLOG it is M1.

Consider Ji ∈ M1 and let ki be the number of time steps during its lifetime [ri, ri +D∗i)

where scheduler S ′ is actively executing vi
c

-dense jobs on at least b(1 − b)m cores. By

Lemma 76, we know k ≥ δ
1+2δ

D∗i . Therefore, during [ri, ri + D∗i) the number of processor

steps where S ′ is processing vi
c

-dense jobs is at least b(1− b)m δ
1+2δ

D∗i .

Let K =
∑

M1
ki, be the total number of processor steps where S ′ is processing v

c
-dense

jobs (since vi ≥ v) during the intervals in M1. Thus, by definition,

K ≥ δb(1− b)
1 + 2δ

m
∑
Ji∈M1

D∗i >
δb(1− b)

1 + 2δ
m× l

2
≥ δb(1− b)

2(1 + 2δ)
TO(v,O2)

245

Clearly, by adding additional intervals that are not in M1, we have TS(v
c
,J) ≥ K >

δb(1−b)
2(1+2δ)

TO(v,O2), which gives us the bound.

Lemma 78 Comparing the total profit of O obtained by OPT and J obtained by S ′,

‖O‖∗ ≤
(

1 + (1 +
1 + 2δ

ε− 2δ
)(1 +

1

εδ
)
2(1 + 2δ)

δb(1− b)

)
‖J ‖

Proof. First, by the definition of O1 and O2, we have ‖O‖∗ = ‖O1‖∗ + ‖O2‖∗ and

‖O1‖∗ ≤ ‖O1‖ ≤ ‖J ‖. Now it remains to bound ‖O2‖.

We have TO(v,O2) ≤ 2(1+2δ)
δb(1−b)TS(v

c
,J) from Lemma 77 for all densities v. The remaining

proof for the lemma is similar to that in Lemma 66, except for a different constant. Therefore,

‖O2‖∗ ≤ (1 + 1+2δ
ε−2δ

)c2(1+2δ)
δb(1−b) ‖J ‖. Finally, we have

‖O‖∗ = ‖O1‖∗ + ‖O2‖∗ ≤
(

1 +
(

1 +
1 + 2δ

ε− 2δ

)
c
2(1 + 2δ)

δb(1− b)

)
‖J ‖

Finally we are ready to complete the proof, bounding the profit OPT obtains by the

total profit the algorithm obtains for jobs it completed.

Lemma 79
∥∥CO

∥∥ ≤ 1+ac
2(1+2δ)
δb(1−b)

ε− 1
(c−1)δ

‖C‖.

Proof. This is just by combination of Lemma 74 and Lemma 78.

9.4 Lower Bound Examples

In this section, we will give some example DAGs to show why Theorem 50 is close to the

best theorem we can hope for using two examples.

The first example, shown in Figure 9.1(a), shows the limitations of semi-non-clairvoyance.

In particular, a semi-non-clairvoyant scheduler does not know the structure of the DAG in

advance since the DAG unfolds dynamically. At any time step, the scheduler only knows

246

(a) Example 1 (b) Example 2

the ready nodes available for execution. Given this limitation, consider the DAG shown in

Figure 9.1(a). This job has one sequential chain with length L = W
m

, where W is the total

work of the job and m is the number of processors. The remaining W −W/m work are fully

parallelizable in a block and can also be done in parallel with the chain. Therefore, L is the

span of the jobs. Since a semi-non-clairvoyant scheduler cannot distinguish between ready

nodes, it may make unlucky choices and execute the entire block of W−W/m = W−L ready

nodes first in (W − L)/m time steps and then execute the chain of L nodes sequentially —

leading to a total time of (W − L)/m+ L. On the other hand, a fully clairvoyant scheduler

can execute the entire DAG in W/m time. Therefore, a semi-non-clairvoyant scheduler needs

at least 2 − 1/m speed augmentation to ensure that it can complete the DAG at the same

time as OPT.

We now show another example DAG indicating that it would be reasonable to always

set deadlines as D ≥ (W − L)/m+ L if we do not know the structure of the DAG a priori.

Figure 9.1(b) shows an example DAG, which consists of a chain of L− ε nodes followed by

W −L+ ε nodes that can run in parallel. Each node in the DAG takes ε time to run, so the

total work of the DAG is W and the span is L. For such a DAG, even a fully clairvoyant

scheduler needs L− ε+ W−L+ε
m

= W−L
m

+ L− ε(1− 1
m

), which approaches to W−L
m

+ L when

ε→ 0.

247

Chapter 10

Scheduling Parallel Jobs Online to
Minimize the Maximum Flow Time

In today’s systems, response time, or latency, is often a very important measure of per-

formance. For interactive services on clouds and servers, the platform scheduler is often

interested in minimizing the maximum latency experienced by a job once it has been sub-

mitted to be processed. In addition, these services often run on large parallel machines with

many processors and it is important to utilize these parallel machines efficiently to process

these requests. In this chapter, we consider the problem of minimizing the maximum latency

or maximum flow time. Formally, given n parallel jobs and a parallel machine with m

processors, the scheduling goal is to minimize the amount of time between a job’s arrival

and its completion, over all jobs. We consider the online version of this problem, where jobs

arrive dynamically. The objective of maximum flow time is the natural generalization of

the makespan11 objective to the case where jobs arrive over time. We also assume that the

scheduler has no knowledge of the job arrival times or work distribution.

This chapter focuses on parallel directed acyclic graph (DAG) programs. Scheduling a

single parallel DAG program has been studied extensively in the parallel computing litera-

ture. Parallel runtime systems generally use work-stealing as a scheduler since it is known to

be an efficient scheduler for such programs both theoretically and in practice [33,75]. A sin-

gle parallel program having W work — the running time on 1 processor, and P critical-path

length — the length of the critical path (the longest path in the program), can be executed in

O(W/m+P) (expected) time on m processors (or workers) using a work-stealing scheduler.

11The makespan of a schedule is the time that last job completes and this objective is popular when all
jobs arrive at the same time.

248

This running time is asymptotically optimal and guarantees linear speedup for programs

with sufficient parallelism.

However, the problem of how to schedule these parallel programs in multiprogrammed

environments where a quality of service guarantee must be provided is not well studied.

There has been some prior work on how to allocate processors to programs in a fair and

efficient manner [2] and some further work on using it to provide mean completion time

guarantees [84], but none of the work considers maximum flow time.

On the other hand, the multiprogrammed scheduling problem is well-studied for the case

where each job is sequential, i.e. can only use one processor at a time. In particular, it

is known that the algorithm First-In-First-Out (FIFO) is (3/2 − 1
m

)-competitive [3, 28]. A

related problem that has been considered for sequential jobs is when jobs have weights where

weight represents some sort of priority of the job (not necessarily correlated with the job’s

work). In this case, the scheduler is interested in minimizing the maximum weighted flow

time. For this setting, it is known that any algorithm is Ω(W .4)-competitive where W is the

ratio of the maximum weight to minimum weight. This is true even when jobs are sequential

and unit sized [50].

Due to this strong lower bound, previous work has considered a resource augmentation

analysis [93] where the algorithm is given extra speed over the adversary. An s-speed c-

competitive algorithm achieves a competitive ratio of c when given processors s times the

speed of the optimal schedule. An ideal algorithm is (1 + ε)-speed O(f(ε))-competitive for

any ε > 0 where f(ε) is some function that only depends on ε. That is, an algorithm which

achieves constant competitiveness with the minimum possible resource augmentation. Such

an algorithm is referred to as scalable. Finding a scalable algorithm is the best positive result

one can hope for when strong lower bounds exists without resource augmentation. For jobs

with weights, a scalable algorithm is known when jobs are sequential [50].

This chapter presents several theoretical results for minimizing maximum flow time for

parallel jobs. These are the first known non-trivial results for maximum flow time in the

249

DAG model. All of the algorithms considered in this chapter are non-clairvoyant, meaning

that they have no prior knowledge of the size or structure of the jobs or when they arrive.

In particular, our contributions are as follows:

1. Section 10.2 starts with an idealized FIFO scheduler — at each time step, FIFO looks

at jobs in the order of arrival and allocates each job as many processors it can use until

it runs out of jobs or processors. We prove that FIFO is (1+ε)-speed O(1
ε
)-competitive.

2. Section 10.3 then generalizes the result to work stealing. Work stealing is a practical

and efficient scheduler that is used in many parallel languages and libraries. In com-

parison, an implementation of the ideal FIFO scheduler is likely to have high overhead

since it is centralized and potentially preempts jobs and re-allocates processors at every

time step. For work stealing, we prove that a version of it, called admit-first, is scalable

for “reasonable jobs”. In particular, we show that admit-first with (1 + ε)-speed has

maximum flow time O(1
ε2

max{OPT, ln(n)}) over n jobs for any fixed ε > 0 with high

probability. Note that if any job has span Ω(lg n) or work Ω(m lg n), then OPT ≥ lnn

and admit-first is scalable with (1 + ε)-speed O(1
ε2

)-competitive with high probability.

3. We introduce a generalization of admit-first scheduler, called steal-k-first. Our goal

in this generalization is to design a work-stealing scheduler that is closest to FIFO

since intuitively FIFO is the ‘right’ scheduling policy for maximum flow time, but

is inefficient in implementation. Steal-k-first is parameterized by k. Intuitively as k

becomes larger, this algorithm becomes closer to the FIFO scheduler. Theoretically,

this scheduler is (k + 1 + ε))-speed O(1
ε2

max{OPT, ln(n)})-competitive for any ε > 0

and k ≥ 0. It reduces to admit-first when k = 0.

4. Section 10.4 provides a lower bound showing that the competitive ratio of work-stealing

is Ω(lg n) — that is, if all jobs are tiny with work o(lg n), then work stealing cannot be

scalable due to the randomization involved. This shows that our upper bound is close

to being tight.

250

5. We implemented admit-first and steal-k-first in Thread Building Block (TBB) and

compare their performance with a simulated optimal scheduler on realistic and syn-

thetic workloads. Evaluation results shows that a work stealing scheduler (especially

steal-k-first) have comparable performance to the optimal scheduler (Section 10.5).

6. Section 10.6 considers the case where jobs have weights and show a non-clairvoyant

algorithm Biggest-Weight-First (BWF) is (1+ε)-speed O(1
ε2

)-competitive for any ε > 0,

which is the best positive result that can be shown in the online setting for the weighted

case.

10.1 Preliminaries

In the online scheduling problem of multiple jobs, n jobs arrive over time and are scheduled

on m identical processors. Each job Ji has an arrival (release) time ri, which is the first time

an online scheduler is aware of the job. Each job could have a weight wi — this weight is

known to the scheduler when the job arrives and may not be correlated to the work of the

job. For the unweighted setting, wi = 1 for all jobs.

When analyzing the performance of a scheduling algorithm, we denote ci as the comple-

tion time of job Ji in the algorithm’s schedule. We denote Fi = ci − ri as the flow time of

job Ji in the algorithm’s schedule. The goal of the scheduler is to minimize maxi∈[n] wiFi.

A dynamic multithreaded job Ji can be represented as a Directed-Acyclic-Graph

(DAG) Gi. Each node (task) v in Gi has an associated processing time pv and the node

must be processed sequentially on a processor for pv time to be completed. A node in Gi

cannot be executed until all of its predecessors in Gi have been executed. We say that a

node is ready if all of its predecessors have been processed. Multiple ready nodes for the

same job can be scheduled simultaneously. A job is completed only once all of the nodes in

its DAG have been completely processed. Note that we do not assume that the scheduler

knows the DAG in advance; in fact, the DAG unfolds dynamically as the job executes.

251

Symbol Definition
ci completion time of job Ji in schedule
ri arrival time of job Ji
Fi flowtime of job Ji
Pi the critical path length of Ji
m the number of processors
wi the weight of job Ji
OPT optimal schedule and also optimal objective

Table 10.1: Symbols and Definitions in Chapter 10

Dynamic multithreaded jobs can be characterized by two important parameters. The

critical-path length Pi of job Ji is defined to be the execution time of Ji if it were scheduled

continuously on an infinite number of processors. Alternatively, it is defined to be the length

of the longest path in Gi, where each node v in the longest path contributes pv to the length

of the path. Note that Pi is a lower bound on the execution time of Ji for any scheduler.

The Work Wi of job Ji is the execution time on 1 processor; or alternatively, the sum of

the processing times of all the nodes in the DAG. We summarize some of the notations in

Table 10.1.

The following proposition states that any time a scheduler is working on all the ready

nodes for some job Jj, the scheduler must be decreasing the remaining critical path of Jj.

Proposition 80 If during each time step during a time interval [t′, t], a scheduler of speed

s is always scheduling all available nodes for a job Jj, then the scheduler reduces the critical

path length of Ji by s(t− t′).

Difficulties of Analyzing Algorithms in the DAG Model. For scheduling sequential

jobs, previous analyses for maximum flow time follows by showing that the algorithm A

under consideration cannot fall behind for more than mpmax where pmax is the maximum

processing time of a job. The is because either the algorithm A has less than m jobs and so

there can be at most mpmax total work for unsatisfied jobs in its queue; or it has more than

252

m jobs, but then the algorithm A cannot fall behind much since it will always be using all

m processors.

Unfortunately, this argument is no longer straightforward for DAGs. To see this, consider

unweighted flow time and let OPT denote the objective of the optimal solution. Note that

in the sequential setting, OPT ≥ pmax. In contrast, in the DAG model, some jobs could

have work Θ(mOPT). Now, even if the algorithm A under consideration has fewer than m

unsatisfied jobs, it can have a total work of Θ(m2OPT) in its queue — allowing it to fall

very far behind OPT. Thus, it is difficult to directly bound the amount of work an algorithm

falls behind the OPT just as a function of the number of jobs in the algorithm’s schedule. To

prove that the algorithm does not fall far behind the optimal solution, a necessary condition

for an algorithm to be competitive for maximum flow time, we instead identify times where

the algorithm must not be too far behind the optimal solution and then show that the

algorithm must not fall behind much further following those times.

On an additional note, most previous work on scheduling parallel jobs is in the arbitrary

speedup curves model and uses a potential function argument (see [88] for a tutorial). Un-

fortunately, there are currently no known potential function proofs for maximum flow time

unlike for other objectives.

10.2 Unweighted Maximum Flow Time using FIFO

In this section our goal is to prove the following theorem stating that the algorithm First-In-

First-Out (FIFO) is (1+ε)-speed O(1
ε
)-competitive for minimizing the maximum unweighted

flow time for any 0 < ε < 1.

Theorem 81 First-in-First-Out (FIFO) is (1 + ε) speed O(1
ε
) competitive for minimizing

the maximum unweighted flow time for any ε > 0.

253

FIFO is defined as follows. At any time t, FIFO orders the jobs in increasing order by

their arrival time, breaking ties arbitrarily. The algorithm then assigns all of the ready nodes

for the first job to unique processors, then recursively does the same for the next job in the

list. This continues until all processors have been assigned some node or there are no more

ready nodes available. The algorithm may have a choice on which ready nodes of a job to

schedule if the job has more ready nodes than the number of processors that have not been

assigned to a node when the job is considered. In this case, we assume the scheduler chooses

an arbitrary set of ready nodes from the job.

The rest of this section is devoted to proving Theorem 81. We assume for the remaining

of this section that FIFO is given (1+ ε)-speed for some constant 0 < ε < 1 and we will show

that FIFO is 3
ε

competitive. To show this, assume for the sake of contradiction that FIFO

is more than 3
ε
-competitive and we consider the instance for which FIFO does not achieve

a competitive ratio of 3
ε
. Let Ji be the job with the maximum flow Fi at this instance, so

OPT < ε
3
Fi by assumption. Since no jobs that arrive later than Ji has any effect on how

or when Ji is scheduled due to FIFO’s scheduling policy, in our instance Ji is the last job to

arrive.

We begin by showing that during the time interval job Ji is alive in FIFO’s schedule,

the processors must be busy for most of the interval. We define one time step as the time

period for a s-speed processor to execute one unit of work. In other words, in one time step

m processors with speed s can finish m work of jobs. Note that on processors with different

speeds, the length of a time step will be different. Hence, the number of time steps on a

s-speed processor in T time is sT , while it is T on unit speed processor.

Lemma 82 During the interval [ri, ci] in FIFO’s schedule, there can be no more than ε
3
Fi

time steps where not all m processors are busy working on jobs.

Proof. For the sake of contradiction, suppose there is at least ε
3
Fi time steps during [ri, ci]

where not all processors are busy. Consider FIFO’s scheduling policy. Anytime during [ri, ci]

254

where FIFO is not processing nodes on every processor, FIFO must be scheduling all of the

ready nodes of Ji. Due to this, at these times FIFO is working on the critical path length of

Ji by Proposition 80. Let this path length be Pi, then we have Pi ≥ ε
3
Fi.

Also note that OPT cannot finish a job in less time than its critical-path length, this

leads to OPT ≥ Pi ≥ ε
3
Fi, so the competitive ratio is Fi

OPT
≤ 3

ε
, a contradiction.

The previous lemma shows that for most of the time steps in [ri, ci] FIFO has m processors

busy working. In the next lemma, we show that the work done by FIFO during [ri, ci] is

concentrated on jobs which did not arrive before ri−Fi. We define processor idling steps

to be the aggregate number of time steps per processor where the processor is not working

on any job. Hence, during one time step that not all m processors are busy working, there

can be at most m processor idling steps in total.

Lemma 83 During [ri, ci], FIFO does more than m(1 + ε
3
)Fi work on jobs which arrived

after ri − Fi.

Proof. Since Ji is the job with the maximum flow time Fi, all previous jobs must have

had less flow time than Fi. Therefore, all jobs which received any processing during [ri, ci]

must have arrived at earliest ri − Fi.

Now to complete the lemma we calculate the total work done during [ri, ci]. From Lemma

82 the number of processor idling steps is at most m ε
3
Fi during [ri, ci]. Since the processors

have speed 1 + ε, the total work that is done during [ri, ci] is at least

m(1 + ε)Fi −m
ε

3
Fi > m(1 +

ε

3
)Fi

which completes the lemma.

Using the previous lemmas we can complete the proof.

255

Proof of Theorem 81. We consider the work of the optimal schedule. OPT achieves

a flow time of OPT < εFi
3

from the assumption that FIFO does not achieve a competitive

ratio of 3
ε
.

Consider all the jobs which arrived during [ri − Fi, ri], OPT must finish every such job

before ri + ε
3
Fi. During the interval [ri − Fi, ri + ε

3
Fi] the optimal schedule can do at most

m(1 + ε
3
)Fi work with 1 speed.

However from Lemma 83 the jobs which arrive after ri − Fi have more than m(1 +

ε
3
)Fi work. Hence the optimal schedule cannot possibly finish all jobs by time ri + ε

3
Fi, a

contradiction. �

10.3 Unweighted Maximum Flow Time using Work Steal-

ing

In this section, we consider a variation of work stealing, called steal-k-first work stealing

scheduler, the formal definition of which will be discussed later. Our goal is to show the

following theorem.

Theorem 84 The maximum unweighted flow time of the steal-k-first work stealing scheduler

with (k + 1 + (k + 2)ε) speed is O(1
ε2

max{OPT, lnn}) for any k ≥ 0 and any 0 < ε < 1
k+2

with high probability.

By scaling the constant ε using the constant k in Theorem 84, we can trivially get the

Corollary below.

Corollary 85 The maximum unweighted flow time of the steal-k-first work stealing scheduler

with (k + 1 + ε) speed is O(1
ε2

max{OPT, lnn}) for any k ≥ 0 and any 0 < ε < 1 with high

probability.

256

For a version of steal-k-first, namely admit-first, where the constant k = 0, we have the

following result.

Corollary 86 The maximum unweighted flow time of the admit-first work stealing scheduler

with (1 + ε) speed is O(1
ε2

max{OPT, lnn}) for any 0 < ε < 1 with high probability. In

particular, if OPT ≥ lnn, then the scheduler is (1 + ε)-speed O(1
ε2

)-competitive with high

probability.

Work Stealing for a Single Job.

The work stealing scheduler [33] is a distributed scheduler for scheduling a single parallel

program. It dispatches work dynamically, rather than statically. Scheduling is done in a

distributed manner, which results in scalability and lower overhead. Specifically, the runtime

system creates a worker thread for every available core. Each worker maintains a local double-

ended queue, called deque. When a worker generates new work (enables a ready node from

the job’s DAG), it pushes the work onto the bottom of its deque. When a worker finishes

its current node, it pops a ready node from the bottom of its deque. If the local deque is

empty, the worker becomes a thief and randomly picks a victim worker and tries to steal

work from the top of the victim’s deque. We assume that it takes a unit time step to steal

work between workers.

Note that most of the time, workers work off their own queues and don’t need to com-

municate with each other. Hence, this randomized work-stealing strategy is very effective

in practice and the amount of scheduling and synchronization overhead is small. There-

fore, work stealing is the default strategy used for executing parallel DAGs in many parallel

runtime systems such as Cilk Plus, TBB, X10, and PPL [33,41,89,134,147].

Theoretically, however, because of this randomized and distributed characteristic, work

stealing is not a strictly greedy strategy. However, work stealing provides strong probabilistic

257

guarantees of linear speedup for a single job. Researchers have shown that work-stealing is

provably efficient with high-probability when scheduling a single job [33].

Work Stealing for Multiple Jobs.

Though work stealing scheduler is designed for scheduling a single job, we can extend it to

scheduling multiple jobs in a straightforward way. In addition to the deque of each worker,

a global FIFO queue is dedicated for the arrival and admission of new jobs. When a new

job is released, it is inserted into the tail of the global queue. A worker will admit a job by

popping if from the head of the global queue in a FIFO order.

Under different admission strategies, workers could choose to steal work or admit a job

in different manners. In this chapter, we consider a strategy, namely steal-k-first work

stealing, in which each worker always tries to randomly steal first and only tries to admit

a new job if there are k consecutive unsuccessful steal attempts for some constant k ≥ 0.

Now we analyze the theoretical performance of steal-k-first and we present its empirical

performance in Section 10.5.

Intuitions for Proving Theorem 84.

As discussed in Section 11.1, to prove steal-k-first is competitive for maximum flow time, we

need to show that it does not fall far behind the optimal schedule. We assume for the sake

of contradiction that it does at some time t. Then we go back in time to a point t′ where

the algorithm was not far behind the optimal solution. This time is carefully defined by

recursively going back in time ensuring (1) that the algorithm is always doing a significant

amount of work during [t′, t] and (2) that we can actually find t′ while ensuring (1) is true.

After finding such a time t′, we are able to show that while the algorithm may fall far behind

the optimal schedule during [t′, t] due to not taking advantage of the parallelizability of jobs,

it eventually is able to do a large amount of work. With faster speed, it catches up and this

258

allows us to bound its performance. Before formally proving the theorem, we first show that

steal-k-first does not idle much when there are jobs to execute.

Idling Steps in Steal-k-First.

We define processor idling steps to be the aggregate number of time steps per processor

where the processor is not working on a job (and is stealing instead). WLOG, we assume that

each steal attempt takes 1 time step. To bound the idling time in steal-k-first’s schedule, we

first state a theorem from [33], which provides the bound on the time that a work stealing

scheduler spends on stealing during the execution of a single job.

Lemma 87 During the time interval [ei, ci] where ei and ci are the execution start time and

completion time of a job Ji respectively, the expected number of steal attempts is bounded by

32mPi where Pi is the critical-path length and m is the number of processors. Moreover, for

any δ > 0, the number of steal attempts is bounded by 64mPi + 16 ln(1/δ) with probability at

least 1− δ.

Although the Lemma above only applies to the case of a single job, by extending it we

can obtain a useful lemma for the case with n jobs. In the following lemma, let ei denote

the time that job Ji is admitted from the global queue by a processor. This is the first time

the job is started.

Lemma 88 For a time interval that lies between the start time ei and completion time ci of

a job Ji, with probability at least 1 − 1
n

, the number of processor idling steps is bounded by

64mPi + 32 ln(n) ≤ 64mOPT + 32 ln(n).

Proof. Consider Lemma 87 and choose δ = 1
n2 . The probability of any job Ji exceeding

the idling time bound 64mPi + 16 ln(n2) = 64mPi + 32 ln(n) during [ei, ci] is 1
n2 . This idling

time bound holds for any time interval that is between [ei, ci]. Union bounding over all n

jobs and subtracting from 1 yields the probability in the lemma.

259

W will use the following lemma to later bound the idling time due to steal attempts

between the arrival time ri and the start time ei of a job Ji.

Lemma 89 Under steal-k-first with a speed of s = k + 1 + (k + 2)ε, the number of idling

steps during a time interval [t′, t] that is contained in [ri, ei], the time between when a job

arrives and is removed from the global queue, is at most k
k+1

(k+ 1 + (k+ 2)ε)m(t− t′) + km.

Proof. Every time a processor has more than k steal attempts, the processor will do one

unit of work. Thus for any time interval of length (t−t′) there can be at most a s k
k+1

(t−t′)+k

steal attempts per processor. The lemma follows by aggregating over all processors.

Now we can bound the amount of work steal-k-first does. We say that a job Ji spans a

time interval [ta, ta−1], if its release time ri ≤ ta and its completion time ci ≥ ta−1.

Lemma 90 If a job spans a time interval [ta, ta−1], then steal-k-first work stealing with speed

k + 1 + (k + 2)ε does at least k+1+(k+2)ε
k+1

m(tb − ta)− (km + 64mOPT + 32 ln(n)) work with

probability at least 1− 1
n

.

Proof. By definition, [ta, ta−1] lies between [ri, ci]. From Lemma 89, the number of idling

steps during [ta, ei] is at most k
k+1

(k + 1 + (k + 2)ε)m(ei − ta) + km ≤ k
k+1

(k + 1 + (k +

2)ε)m(ta−1− ta) + km. From Lemma 88, the number of idling steps during [ei, tb] is at most

64mOPT + 32 ln(n) with probability at least 1− 1
n
.

Thus, during [ta, ta−1] the amount that work steal-k-first with speed k+ 1 + (k+ 2)ε does

is at least

(k + 1 + (k + 2)ε)m(ta−1 − ta)− (64mOPT + 32 ln(n))

−
(

k

k + 1
(k + 1 + (k + 2)ε)m(ta−1 − ta) + km

)
=
k + 1 + (k + 2)ε

k + 1
m(tb − ta)− (km+ 64mOPT + 32 ln(n))

with probability at least 1− 1
n
.

260

Ji

Job Jq active at riby WS

Ci - ri =	Fi

…
ri ei ci

Job	J0

t0 =	r0

ri – t0	> ε Fi

Job Ju released	in	[ri,	ci],	OPT	works	on	after	ci

Job	J1

t1 =	r1

t0 – t1> ε Fi

Job Jβ

tβ =	rβ

Job	Jβ	-1

tβ-1

tβ-1 – tβ> ε Fi

Job Jp releasedat t’,	OPT	finishedbefore tβ

tβ – t’ < ε Fi

t’

Figure 10.1: An example execution trace of work-stealing identifying jobs’ release and
completion times.

Time Intervals in Steal-k-First.

The main challenge in analyzing steal-k-first is that it is difficult to show that the remaining

processing time of jobs in its queue is comparable to that of OPT’s queue. Rather than

directly bounding the differences between the two queues as done in previous section, we will

construct a set of time intervals where steal-k-first must be busy most of the time. Using

the assumption that steal-k-first has resource augmentation, we will draw a contradiction

by showing that steal-k-first has completed a large amount of work which is even more than

the total amount of work available during a time interval.

From here on, our goal is to show that the steal-k-first with (k + 1 + (k + 2)ε)-speed

achieves a maximum flow time of O(1
ε2

max{OPT, ln(n)}) with high probability. To simplify

the proof, we rewrite the objective to eliminate the max and show instead that steal-k-first

achieves a maximum flow of 65
ε2

(OPT + ln(n) + k), k ≥ 0 is a constant and 0 < ε < 1
k+2

.

Let Ji be the job in steal-k-first’s schedule with the maximum flow time Fi. Recall that

ri and ci are the arrival and completion time of Ji, respectively. To show contradiction, we

assume that Fi ≥ 65
ε2

(OPT + ln(n) + k).

We will recursively define a set of time intervals

T = {[t′, tβ], [tβ, tβ−1], [tβ−1, tβ−2] . . . [t1, t0], [t0, ri], [ri, ci]}

where t′ ≤ tβ ≤ tβ−1 ≤ . . . ≤ t1 ≤ t0 ≤ ri ≤ ci. To illustrate the time intervals, Figure 10.1

shows an example execution trace of steal-k-first.

261

Let t0 be the arrival time of the earliest arriving job among the jobs that are not finished

by steal-k-first right before time ri. For instance, in Figure 10.1 there are two jobs (job J0

and job Jq) that are active right before ri. Among then, job J0 has the earliest arrival time,

so t0 is defined using it. If there are no jobs right before ri, let t0 = ri. Now we define further

intervals recursively. Given the time ta−1, we want to define ta. If ta−1 − ta ≤ εFi, then we

are done defining intervals; otherwise, we define ta as the arrival time of the earliest arriving

job among those that are not finished by steal-k-first right before time ta−1. We say that

a certain job Ja defines an interval [ta, ta−1], if it is the earliest arriving job unsatisfied by

steal-k-first right before ta−1 and ta is its arrival time.

Note that this process of defining intervals will always terminate. The procedure termi-

nates when ta−1−ta ≤ εFi, which must happen if one goes back to the first time a job arrives.

We let β denote the maximum value that a takes during this inductive definition. Hence,

[tβ, tβ−1] is the earliest time interval defined in this scheme. Moreover, the arrival time t′

of the earliest arriving job among those that are unfinished right before time tβ satisfies

t′ − tβ ≤ εFi. As in Figure 10.1, interval [t′, tβ] is the first such interval that has length less

than εFi.

Work Done by Steal-k-First.

We intend to show that steal-k-first does a lot of work during the interval [tβ, ci]. In fact,

we will show that if the assumption of Fi ≥ 65
ε2

(OPT + ln(n) + k) is true, then steal-k-first

would have done more work than the total work of all jobs that are active during [tβ, ci],

which is not possible and leads to a contradiction.

To do so, we partition [tβ, ci] into two sets of time intervals, specifically S1 = {[ta, ta−1], ∀ 0 <

a ≤ β} ∪ {[t0, ri]} during [tβ, ri], and S2 = {[ri, ci]}. We first show that for intervals in S1,

steal-k-first does more work than OPT.

262

Lemma 91 For any time interval [ta, ta−1] ∈ S1 during [tβ, ri], with probability at least 1− 1
n

the work that steal-k-first does is more than m(ta−1 − ta), which is as much as OPT does.

Proof. By definition, there is a job Ja which defines this time interval. Specifically, this

job spans the time interval. According to Lemma 90, we know that with probability 1 − 1
n

the amount of work steal-k-first does is at least k+1+(k+2)ε
k+1

m(ta−1 − ta)− (km+ 64mOPT +

32 ln(n)).

Recall that by assumption that Fi >
65
ε2

(OPT+ ln(n) + k) and by definition that (ta−1−

ta) > εFi, we have

(ta−1 − ta) > εFi >
65

ε
(OPT + ln(n) + k)

=
1

ε

1

m
(65km+ 65mOPT + 65m ln(n))

>
1

ε

1

m
(km+ 64mOPT + 32 ln(n))

Hence, (km+ 64mOPT + 32 ln(n)) < εm(ta−1 − ta)

Thus during any time interval [ta, ta−1] in S1, the work done by steal-k-first (with speed

k + 1 + (k + 2)ε) on jobs is at least:

k + 1 + (k + 2)ε

k + 1
m(ta−1 − ta)− (km+ 64mOPT + 32 ln(n))

> m(ta−1 − ta) +
(k + 2)ε

k + 1
m(ta−1 − ta)− εm(ta−1 − ta)

= m(ta−1 − ta) +
ε

k + 1
m(ta−1 − ta)

Clearly OPT with only 1 speed can only do at most m(ta−1 − ta) work during this time

interval.

We now show that for S2, steal-k-first does a lot of work too.

Lemma 92 During [ri, ci] ∈ S2, the amount of work that steal-k-first does on jobs is more

than mFi + εmFi +mOPT with probability 1− 1
n

.

263

Proof. Consider the work that steal-k-first does during [ri, ci]. By definition this interval

has a length of Fi and we know that Ji spans this interval. Directly applying Lemma 90, we

derive that with probability 1− 1
n

the amount of work done by steal-k-first during [ri, ci] is

at least

k + 1 + (k + 2)ε

k + 1
mFi − (km+ 64mOPT + 32 ln(n))

=mFi + εmFi +
ε

k + 1
mFi − (km+ 64mOPT + 32 ln(n))

By definition, 0 < ε < 1
k+2

, so 1
k+1

1
ε
> 1. Also recall that by assumption that Fi >

65
ε2

(OPT + ln(n) + k), we have

ε

k + 1
mFi >

m

k + 1

65

ε
(OPT + ln(n) + k)

>65m(OPT + ln(n) + k)

>(km+ 64mOPT + 32 ln(n)) +mOPT

Hence, ε
k+1

mFi− (km+ 64mOPT+ 32 ln(n)) > mOPT. Therefore, the amount of work

done by steal-k-first during [ri, ci] is more than mFi+ εmFi+mOPT with probability 1− 1
n
.

We need one more critical argument to complete the analysis. The reason we defined

these time intervals inductively is to identify the jobs that are active under steal-k-first

during [tβ, ci]. The total volume of these jobs is bounded by the work that OPT can finish.

However, just showing that steal-k-first does more work than OPT during [tβ, ci] will not

suffice, as OPT could have done part of this work either before tβ or after ci. As shown in

Figure 10.1, the two jobs (job Jp and job Ju) in dotted shade are executed by steal-k-first

during [tβ, ci], while OPT finished job Jp before tβ and started working on job Ju after ci.

The next lemma bounds the maximum amount of work that are available for steal-k-first to

work on during [tβ, ci].

264

Lemma 93 For jobs that are active under steal-k-first during [tβ, ci], their total amount of

work is at most m(ri − tβ) +m(εFi + OPT + Fi).

Proof. By definition, [tβ, ci] consists of time intervals of S1 during [tβ, ri] and time interval

of S2 = {[ri, ci]}. Also recall that the length of interval [ri, ci] is Fi. Hence, the total length

of [tβ, ci] is (ri − tβ) + Fi.

Moreover, by definition of tβ, the earliest arriving job that is unsatisfied by steal-k-first

just before time tβ must have arrived no earlier than time tβ − εFi. Thus, the jobs that are

active under steal-k-first during [tβ, ci] all arrived during [tβ − εFi, ci].

Further, all these jobs have an optimal maximum flow time no more than OPT under the

optimal scheduler. Therefore, OPT must be able to complete all of them by time ci+OPT.

Knowing that OPT can only work on these jobs during [tβ−εFi, ci+OPT], the total amount

of work of those jobs can have volume at most m(ri − tβ) +m(εFi + OPT + Fi).

Finally, we are ready to complete the proof.

Proof of Theorem 84. To prove the theorem, we consider the jobs that are active under

steal-k-first during [tβ, ci]. By Lemma 93, we know that the total amount of work of these

jobs, denoted as X, is bounded: X ≤ m(ri − tβ) + m(εFi + OPT + Fi). Note that these

jobs are the only ones available for steal-k-first to work on during [tβ, ci]. Therefore, during

[tβ, ci] steal-k-first cannot do more than X work even with speedup.

On the other hand, consider the minimum amount of work that steal-k-first must have

done during [tβ, ci], denoted as Y , assuming that Fi >
65
ε2

(OPT+ ln(n) + k) is true. We will

see that Y > X, which leads to a contradiction.

From Lemma 91, we know that during [tβ, ri] the amount of work steal-k-first does is

more than

m

(∑
0<a≤β

(ta−1 − ta) + (ri − t0)

)
= m(ri − tβ)

265

From Lemma 92, we know that during [ri, ci], steal-k-first does more than mFi + εmFi +

mOPT work. Thus, for interval [tβ, ci], we get Y > m(ri − tβ) +mFi + εmFi +mOPT.

Now we compare X and Y :

Y −X >m(ri − tβ) +mFi + εmFi +mOPT

−m(ri − tβ)−m(εFi + OPT + Fi) > 0

Hence, Y > X. In other words, if the assumption of Fi is true, during [ri, ci] steal-k-first

must have done more work than the total available work, which gives a contradiction.

Thus, we obtain the theorem. �

Discussion about Steal-k-First.

Note that for steal-k-first work stealing with k = 0, instead of steal first, this scheduler will

in fact admit all jobs from the global queue first. We denote this special case as admit-first.

From Theorem 84, we know that the theoretical performance of steal-k-first is better with

smaller constant k. Hence, admit-first has the best theoretical performance and is O(1
ε2

)-

competitive with high probability with 1 + ε speed, as it guarantees that a job’s execution

is not delayed by unnecessary random stealing.

However, as shown in Section 10.5 steal-k-first for a relatively large k performs better

than admit-first empirically. Intuitively, if there is any job available for stealing, then in

expectation m consecutive random steal attempts would be able to find the stealable work.

Thus, for k ≥ m, steal-k-first better approximates FIFO, which we know works well.

In contrast, in admit-first jobs could run sequentially when there are more than m un-

finished jobs. During these times, jobs at the end of the global queue take long time to be

admitted and they further take longer time to finish sequential execution in the worst case.

Hence, this could increase the maximum flow time of the system.

266

Moreover, steal-k-first requires a speed of more than (k+ 1) theoretically to be competi-

tive, mainly due to the worst case scenario where each job has a unit time of work but takes

k stealing steps to admit. However, in practice, jobs have much larger work and the constant

k steal attempts for admitting a job is negligible in practice.

10.4 Work Stealing Lower Bound for Maximum Flow

Time

In this section we give a lower bound for the work stealing algorithm. We show that in the

online setting, the scheduler when given any constant speed is Ω(log n) competitive. This

shows that our upper bound analysis of the algorithm is effectively tight.

Lemma 94 Work stealing is Ω(log n)-competitive for maximum flow time in the online set-

ting when given any constant resource augmentation.

Proof. Let n be an input parameter and let the number of machines be m = log n. Let

s be a constant specifying the resource augmentation given to work stealing. The schedule

consists of n jobs, which are identical. A job consists of one task which is the predecessor of

m/10 independent tasks. Note that the total work of the job is m/10+1 and can be competed

by a 1 speed scheduler scheduler in 2 time steps. A single job is released at multiples of 2m

starting at time 0. Note that even if a job is executed sequentially, it will complete in only

m/10 + 1 time steps. Thus, these jobs do not have overlapping times where multiple jobs

are alive in any non-idling schedule.

Now fix any job and consider the probability that the job executes completely sequentially

by a work stealing scheduler. This occurs if every steal attempt fails to find the processor

holding the tasks for the job. In a single time step, the probability that m− 1 processors do

not successfully steal is (1− 1
m−1

)m−1 ≥ 1
2e

for sufficiently large m. The probability that all

processors fail to steal for m/10 time steps is greater than (1
2e

)m/10.

267

Now consider the expected number of jobs which execute sequentially by work stealing.

There are n = 2m jobs released. The expected number of jobs to execute sequentially is

2m(1
2e

)m/10 ≥ 1. Thus, the expected maximum flow time of work stealing with s speed is

m/10+1
s

= logn
s

. Knowing that the optimal solution has maximum flow time 2 and s = O(1),

the lemma follows.

10.5 Experimental Results for Unweighted Maximum

Flow Time

In this section we present the experimental results using realistic and synthetic workloads to

compare the performance of OPT and two work stealing strategies: (1) Admit-first where

workers preferentially admit jobs from the global queue and only steal if the queue is empty,

and (2) Steal-k-first where workers preferentially steal and only admit a new job if k steal

attempts fail (we use k = 16). Our experiments indicate that steal-k-first performs better

and is almost comparable to an optimal scheduler.

Setup: We conduct experiments on a server with dual eight-core Intel Xeon 2.4Ghz

processors with 64GB main memory. The server runs Linux version 3.13.0, with processor

throttling, sleeping, and hyper-threading disabled. The work-stealing algorithms are imple-

mented in Intel Thread Building Block (TBB) [134] version 4.3, a well-engineered popular

work-stealing runtime library. We extended TBB to schedule multiple jobs arriving online

by adding a global FIFO queue for admitting jobs and we implement both admit-first and

steal-k-first.

Since we do not know the optimal scheduler, we approximate it using a simulated sched-

uler by reducing a parallel scheduling problem to a sequential scheduling problem on a single

processor. In particular, for this lower bound, we assume that there is no preemption over-

head and that each job can get linear speedup (fully parallelizable). Thus, we can execute

268

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

800 1000 1200

M
ax

 fl
ow

 ti
m

e
(s

ec
)

QPS

Bing workload

OPT
steal-k-first
admit-first

(a) Bing workload

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

800 900 1000

M
ax

 fl
ow

 ti
m

e
(s

ec
)

QPS

Finance workload
OPT
steal-k-first
admit-first

(b) Finance workload

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

800 1000 1200

M
ax

 fl
ow

 ti
m

e
(s

ec
)

QPS

Log-normal workload
OPT
steal-k-first
admit-first

(c) Log-normal workload

Figure 10.2: Experimental results comparing the maximum flow time running on three
work distributions with three different load settings and scheduled using simulated
OPT, steal-k-first, and admit-first (from left to right). Note that the scale of the y-
axis for the figures differ. From all different settings, OPT has the smallest max flow
time, while admit-first has the largest max flow time.

each job one at a time assuming it is a sequential job with execution time equal to its W/m

where W is its total work. We then run all jobs using FIFO which is optimal in this set-

ting. When jobs are fully parallelizable, this reduces the problem to the case where there is

only one machine. In this setting, it is well known that FIFO is optimal for maximum flow

time [50]. Thus, this scheduler has the performance for maximum flow time that is at least

as good as any feasible scheduler, including the optimal schedule.

Workloads: We evaluate different strategies on work distributions from two real-world

applications shown in Figure 8.1 and additional synthetic workloads with log-normal dis-

tribution. Henceforth we shall refer to workload generated from the three distributions as

the Bing workload, the finance workload and the log-normal workload, respectively. For

each distribution, we select a set of queries-per-second, QPS, to generate workloads with

low (∼ 50%), medium (∼ 60%), and high (∼ 70%) machine utilization respectively, and

the inter-arrival time between jobs is generated by a Poisson process with a mean equal to

1/QPS. Each job contains CPU-intensive computation and is parallelized using parallel for

loops. 100, 000 jobs are used to obtain a single point in the experiments.

269

Figure 10.2 shows the experimental results comparing simulated OPT, steal-k-first and

admit-first under three different work distributions and three different load settings (i.e.,

query-per-second). The experiments indicate that, even though our results on OPT are lower

bounds on maximum flow time, steal-k-first performs comparably to OPT — matching our

intuition that it is a closer approximation for maximum flow time, as discussed at the end

of Section 10.3.

Recall that steal-k-first has worse theoretical performance than admit-first. However,

in practice, admit-first generally performs worse in terms of maximum flow time and the

performance difference increases as load increases (for instance, for Bing and log-normal

workloads with high utilization, admit first has twice the maximum flow). This matches our

intuition — at higher loads, admit-first executes jobs more or less sequentially, while steal-

first provides parallelism to already admitted jobs before admitting new jobs. Therefore

steal-first is closer to FIFO in that it tries to execute jobs that arrived earlier with more

parallelism. Therefore, in practice, steal-first is likely to be a good implementation for

schedulers that want to minimize maximum flow time without incurring the large overheads

of FIFO.

10.6 Maximum Weighted Flow Time using Biggest-

Weight-First

In this section, we consider the case where jobs have different importances. The goal of the

scheduler is to minimize maxi∈[n] wiFi, where wi is the weight of job Ji — this weight is

known to the scheduler when the job arrives and may not be correlated to the work of the

job. For the unweighted setting, wi = 1 for all jobs.

We present the algorithm Biggest-Weight-First (BWF), which is a scalable algorithm for

minimizing the maximum weighted flow time. BWF is defined as follows, which is similar to

270

FIFO except that priority is given to the jobs with the biggest weight. At any time t, BWF

orders the jobs in decreasing order by their weight, breaking ties arbitrarily. The algorithm

then assigns all of the ready nodes for the first job to some processor, then recursively does

the same for the next job in the list. This continues until all processors have been assigned

some node or there are no more ready nodes available. Like FIFO, BWF may have a choice

on which ready nodes of a job to schedule if the job has more ready nodes than the number

of processors which have not been assigned to a node when the job is considered. In this

case, we assume the scheduler chooses an arbitrary set of ready nodes.

Theorem 95 Biggest-Weight-First (BWF) is (1+ε) speed O(1
ε2

) competitive for minimizing

the maximum weighted flow for any ε > 0.

The reminder of this section is devoted to proving Theorem 95. For the rest of this

section, we assume that BWF is given (1 + 3ε)-speed for some constant 0 < ε < 1
3

and we

will show that BWF is 3
ε2

competitive. Fix any sequence of jobs and let OPT denote the

optimal schedule on this instance as well as the optimal maximum weighted flow time. Let

F ∗a be the flow time of a job Ja in OPT.

Let Ji be the job in BWF’s schedule with the maximum weighted flow time wiFi. For

the sake of contradiction, we assume that wiFi >
3
ε2
OPT. Since OPT = wiF

∗
i , Fi >

3
ε2
F ∗i ,

where F ∗i is the flow time of Ji in OPT. By comparing the weight wi of job Ji, any jobs

with weight at least wi are referred as heavy jobs, and any jobs with less weight than wi

are referred as light jobs.

Time Intervals in BWF

Similar to the time intervals specified in Section 10.3, we will inductively define a set of time

intervals

T = {[t′, tβ], [tβ, tβ−1], [tβ−1, tβ−2] . . . [t1, t0], [t0, ri], [ri, ci]}

where t′ ≤ tβ ≤ tβ−1 ≤ . . . ≤ t1 ≤ t0 ≤ ri ≤ ci.

271

Recall that ri and ci are the arrival and completion time of Ji, respectively. Consider

the heavy jobs that BWF is scheduling right before ri. Let t0 be the arrival time of the

earliest arriving one of those jobs. If there are no heavy jobs right before ri, let t0 = ri.

Now we define further intervals recursively. Given the times ta−1, we want to define ta. If

ta−1 − ta ≤ εFi, then we are done defining time intervals; otherwise, we define ta to be the

arrival time of the earliest arriving heavy job Ja that are unsatisfied under BWF right before

time ta−1. Again if there are no heavy jobs unsatisfied by BWF just before time ta−1 then let

ta = ta−1. We let β denote the maximum value that a takes during this inductive definition.

Hence, [tβ, tβ−1] is the earliest time interval defined in this scheme.

Note that this process of defining intervals is almost the same as in Section 10.3. The

only difference is that the job Ja, which defines the interval [ta, ta−1], is the earliest unfinished

heavy job under BWF. We only consider heavy jobs, because under BWF only heavy jobs

can preempt job Ji and other heavy jobs and any light jobs can only execute when all the

available nodes of all the active heavy jobs are already executing by some processors. Thus,

when analyzing the flow time of Ji and other heavy jobs, we can ignore the remaining light

jobs, since light jobs cannot in interfere the execution of heavy ones. Hence, the processor

idling steps in the remaining of this section is refering to the time steps where a processor is

not working on nodes corresponding to heavy jobs.

We begin the proof by showing that during all time intervals between [tβ, ri], BWF is

using most time steps to process nodes for heavy jobs.

Lemma 96 During any interval [ta, ta−1] where a ≤ k, the number of processor idling steps

(where a processor is not working on nodes corresponding to heavy jobs) is at most m ε2

3
Fi.

Proof. For the sake of contradiction, assume that this is not true. Then consider the job

that defines [ta, ta−1] and let this job be Ja. By definition this heavy job arrived at ta and

is still being processed at time ta−1. From BWF’s scheduling policy, every time step during

[ta, ta−1], where some processors find no nodes from heavy jobs to work on, all ready nodes

272

of Ja are being scheduled. Hence the processors are decreasing the remaining critical path

of Ja at these times by Proposition 80. Since the job is not finished until at ta−1, this job

must have a critical-path length Pa longer than Pa > ta−1 − ta > ε2

3
Fi. Also since Ja is a

heavy job and wa ≥ wi and by assumption wiFi >
3
ε2
OPT, its weighted flow time is at least

wa(ta−1 − ta) > wa
ε2

3
Fi ≥ wi

ε2

3
Fi >

ε2

3

3

ε2
OPT ≥ OPT

However, OPT cannot complete a job faster than its critical-path length, so F ∗a ≥ Pa.

Further, Ja’s weighted flow time under OPTis at most the maximum weighted flow time

OPT. We have

OPT ≥ waF
∗
a ≥ waPa > wa(ta−1 − ta) > OPT

This gives a contradiction.

Using the previous lemma, we bound the aggregate amount of work done by BWF on

heavy jobs during [tβ, ri].

Lemma 97 During [tβ, ri], the amount of work that BWF does on heavy jobs is more than

m(1 + 2ε)(ri − tβ).

Proof. From Lemma 96, we know that there are only m ε2

3
Fi processor idling steps where

a processor is not working on nodes corresponding to heavy jobs during any time interval

[ta, ta−1]. In addition, we know ta−1 − ta > εFi, since a ≤ β. Hence, the work done by BWF

(with 1 + 3ε speed) on heavy jobs during [ta, ta−1] is at least:

m(1 + 3ε)(ta−1 − ta)−m
ε2

3
Fi

>m(1 + 3ε)(ta−1 − ta)−m
ε

3
(ta−1 − ta)

>m(1 + 2ε)(ta−1 − ta)

273

Summing over all the intervals yields the lemma.

Similarly, we can bound the amount of work done by BWF on heavy jobs during [ri, ci].

Lemma 98 During [ri, ci], the amount of work that BWF does on heavy jobs is more than

m(1 + 2ε)Fi.

Proof. By assumption, F ∗ < ε2

3
Fi. Since OPT cannot finish a job in less time than its

critical-path length, job Ji has Pi ≤ F ∗i <
ε2

3
Fi. From Proposition 80, we can derive that the

number of processor idling steps where a processor is not working on heavy jobs is at most

mPi. Hence, the amount of work done by BWF during [ri, ci] is at least m(1+3ε)Fi−mPi >

m(1 + 3ε)Fi −m ε2

3
Fi > m(1 + 2ε)Fi, since ε < 1

3
.

Now we bounds the maximum amount of work that are available for BWF to work on

during [tβ, ci].

Lemma 99 For jobs that are active under BWF during [tβ, ci], their total amount of work

is at most m(ri − tβ) +m(1 + ε+ ε2

3
)Fi.

Proof. By definition, the total length of [tβ, ci] is (ri − tβ) + Fi. Moreover, by definition

of tβ, the earliest arriving heavy job that is unsatisfied BWF just before time tβ must have

arrived no earlier than time tβ−εFi. Thus, the heavy jobs that are active under BWF during

[tβ, ci] all arrived during [tβ − εFi, ci].

Furthermore, all these heavy jobs have an optimal maximum weighted flow time no more

than OPT under the optimal scheduler, i.e., OPT ≥ F ∗awa. By definition of a heavy job

wa ≥ wi and by assumption wiFi >
3
ε2
OPT, we have waFi ≥ wiFi >

3
ε2
OPT > 3

ε2
F ∗awa.

Thus, the flow time F ∗a of these heavy jobs under the optimal schedule is F ∗a <
ε2

3
Fi.

Therefore, OPT must be able to complete all of them by time ci + ε2

3
Fi. Knowing that

OPT can only work on these jobs during [tβ−εFi, ci+ ε2

3
Fi], the total amount of work of those

jobs can have volume at most m(ri− tβ +Fi) +m(εFi +
ε2

3
Fi) = m(ri− tβ) +m(1 + ε+ ε2

3
)Fi.

274

Finally, we are ready to complete the proof.

Proof of Theorem 95. To prove the theorem, we consider the heavy jobs that are active

under BWF during [tβ, ci]. By Lemma 99, we know that the total amount of work of these

jobs, denoted as X, is bounded: X ≤ m(ri− tβ) +m(1 + ε+ ε2

3
)Fi. Note that these jobs are

the only ones available for BWF to work on, so during [tβ, ci] BWF cannot do more than X

work even with speedup.

On the other hand, consider the minimum amount of work that BWF must have done

during [tβ, ci], denoted as Y , assuming that wiFi >
3
ε2
OPT is true. We will see that Y > X,

which leads to a contradiction.

From Lemma 97, we know that during [tβ, ri] the amount of work BWF does is more

than m(1 + 2ε)(ri− tβ) From Lemma 98, we know that during [ri, ci], BWF does more than

m(1 + 2ε)Fi work. Thus, for interval [tβ, ci], we get Y > m(ri − tβ) +m(1 + 2ε)Fi.

Now we compare X and Y and note that ε < 1
3
:

Y −X > m(ri − tβ) +m(1 + 2ε)Fi −m(ri − tβ)−m(1 + ε+
ε2

3
)Fi > 0

Hence, if the assumption of wiFi is true, then during [ri, ci] BWF must have done more

work than the total available work, which gives a contradiction. By scaling ε, we obtain the

theorem. �

Remarks: The result of weighted flow time can be applied to maximum stretch. In the

sequential setting, weighted flow time captures maximum stretch by setting the weight to be

the inverse of the processing time. In other words, the flow of a job is scaled by the inverse

of its processing time in the stretch objective for sequential jobs. However, stretch is not

well-defined for DAG jobs. In particular, should the flow time be scaled by the inverse of

the total work or the critical path length? Although there are two natural interpretations

of the stretch in the DAG setting, both of them can be still captured by weighted flow time.

Since BWF is (1+ε)-speed O(1
ε2

)-competitive for maximum weighted flow time and there are

275

strong lower bounds without speed augmentation, so this result can be viewed as essentially

the best positive theoretical result for maximum stretch.

276

Chapter 11

Scheduling Parallel Jobs Online to
Minimize Average Flow Time

Today, most hardware vendors have moved to manufacturing multicore machines and there

is increasing interest in enabling parallelism. Many languages and libraries, such as Cilk,

Cilk Plus [89], Intel’s Threading Building Blocks [134], OpenMP [125], X10 [147], have been

designed to allow programmers to write parallel programs. In addition, there has been

extensive research on provably good and practically efficient schedulers for these programs

in the case where a single job (program) is executing on the parallel machine [31–33].

In most of this research, the parallel job is modeled as a directed acyclic graph (DAG)

where each node of the DAG is a sequential sequence of instructions and each edge is a

dependence between nodes. A node is ready to be executed when all its predecessors have

been executed. For the case of a single job, schedulers such as a list scheduler [77] and

a work-stealing scheduler [33] are known to be asymptotically optimal with respect to the

makespan of the job.

In this chapter, we are interested in multiprogrammed environments where multiple DAG

jobs (say n jobs) share a single parallel machine with m processors, jobs arrive and leave

online, and the scheduling objective is to provide a quality of service guarantee. This problem

has been extensively studied for sequential (non-parallizable) jobs and several quality of

service metrics have been considered. The flow time of a job i is the amount of time job i

waits after it arrives until it is completed under some schedule. The most widely considered

objectives are minimizing the average flow time (or equivalently, the total flow time), the

maximum flow time and more generally, the `k-norms of flow time. In this chapter, we focus

277

on the average flow time objective, which optimizes the average quality of service; this is the

most popular objective considered in online scheduling theory.

As stated above, this problem has been widely considered for sequential jobs where each

job can be scheduled on only one processor at a time. In this case, when all m processors

are identical it is known that any algorithm is Ω(min{logP, log n/m})-competitive where P

is the ratio of the largest to smallest processing time of the jobs [109]. In the face of these

strong lower bounds, previous work has considered a resource augmentation analysis where

the algorithm is given extra speed over the adversary [93]. With resource augmentation,

several algorithms are known to be (1 + ε)-speed O(f(ε))-competitive for average flow time

where ε > 0 and some function f which depends only on ε [49]. Such an algorithm is known

as scalable and is the best positive result one can show for problems that have strong lower

bounds on the competitive ratio. In particular, several greedy algorithms are known to

be scalable including Shortest-Remaining-Processing-Time (SRPT) and Shortest-Job-First

(SJF) [27,40,74,149]. Similar results are also known in more general machine environments

[4, 45,86].

Parallel jobs have also been considered in this online multiprogrammed setting; however,

the parallelism model most widely considered is the arbitrary speed-up curve model. In the

speed-up curve model, each job i is associated with a sequence of phases. Phase j for job

i is denoted by a tuple (Wi,j,Γi,j(m
′)). The value Wi,j denotes the total work of the jth

phase of job i. The work for each phase must be processed in sequential order. Γi,j(m
′) is

a function that specifies the processing rate Wi,j when given 1 ≤ m′ ≤ m processors. It is

generally assumed that Γi,j(m
′) is a non-decreasing sublinear function. The speed-up curve

model was introduced by [63] and a scalable algorithm, denoted Latest-Arrival-Processor-

Sharing (LAPS) is known for the model [66]. This algorithm and its analysis have been very

influential in scheduling theory [12,46–48,65,73,80,81].

While the speed-up curve model is a theoretically elegant model, most languages and

libraries generate parallel programs that are more accurately modeled using DAGs. The

278

work of [136] consider a hybrid of the DAG model and the speed-up curve setting where

each node in the DAG has a speed-up curve. They show a (2 + ε)-speed O(κ
ε
)-competitive

algorithm for any ε > 0 where κ is the maximum number of independent tasks in a job’s DAG.

Previous work leaves many open questions. In particular, does there exist online scalable

algorithms for average flow time as in the arbitrary speed-up curve setting? Further, is there

an algorithm whose competitive ratio does not depend on κ?

Challenges with the DAG model:

• Interestingly, the speed-up curve and the DAG models appear to be incomparable. In

particular, for the speed-up curve model, the instantaneous parallelism (the number

of processors a job can use effectively at a particular instant) depends only on the

phase the job is in, which in turn depends only on how much work of the job has been

completed. In contrast, for the DAG model, the instantaneous parallelism depends also

on which particular nodes have been processed so far. Since there are many possible

ways to do the same amount of work, the instantaneous parallelism at a particular

instant depends on the previous schedule. Since the DAG is unknown in advance, it

is impossible to compute the best possible schedule that leads to best possible future

parallelizability. 12

• One of the goals of this chapter is to design a greedy algorithm for DAG jobs. Inter-

estingly, this presents unique challenges. In Section 11.3.2, we show a counterintuitive

result for the DAG model. We construct an example showing that a greedy scheduling

algorithm may actually fall behind in the total aggregate amount of work processed

when compared to the same algorithm with less resource augmentation. Note that this

can never happen for sequential jobs. This occurs for DAG jobs due to the dependences

12The speed-up curve model also cannot be simulated using the DAG model. In the speed-up curve model
one could have a speed-up curve of the form Γ(m′) =

√
m′. In this case, a job is processed at a rate of

√
m′

when given 1 ≤ m′ ≤ m processors. In the DAG setting, a job’s parallelizability is linear up to the number
of nodes ready to be scheduled and thus it is unclear how to simulate this speed-up curve.

279

— by processing jobs faster, the scheduler later may not be able to efficiently pack the

tasks of different jobs on the processors as it did in the slower schedule, due to the

DAG structures of jobs. The example shows that standard scheduling techniques are

not directly applicable to the DAG model, as typically the faster schedule never falls

behind the slower schedule.

• A widely used analysis technique for bounding the total flow time, is the fractional

flow time technique. Fractional flow time is an alternative objective function for which

competitiveness is typically easier to prove. In addition, one can usually easily convert

an algorithm that is competitive for fractional flow time to one that is competitive

for average flow time by speeding up the algorithm by a small factor. Unfortunately,

there are several hurdles for this technique in the DAG setting. In particular, it is not

immediately clear how to define the fractional objective and, further, since an algorithm

may still fall behind by using extra speed in the DAG setting, it is not obvious how to

convert an algorithm that is competitive for fractional flow to one that is competitive

for average flow time.

Results: We consider minimizing average flow time in the DAG scheduling model. The

most natural algorithm to consider for average flow time in the DAG model is LAPS, since

this algorithm is known to work well in the speed-up curve model. However, LAPS is

a generalization of Round Robin and [136] showed that in the hybrid model, where jobs

consist of a DAG and every node has it own speed-up curve, Round Robin like algorithms

must have a competitive ratio that depends on log κ even if they are given any O(1) speed

augmentation. We are able to show that this hybrid model is strictly harder than the DAG

model and that LAPS is a scalable algorithm in the DAG model.

Theorem 100 LAPS is (1+ε)-speed O(1
ε3

)-competitive for minimizing the average flow time

in the DAG model.

The result of LAPS also implies the following bound for Round Robin.

280

Corollary 101 Round Robin is (2 + ε)-speed O(1)-competitive for any fixed ε > 0 for min-

imizing the average flow time in the DAG model.

LAPS is a nonclairvoyant algorithm in the sense that it schedules jobs without knowing

the processing time of jobs or nodes until they have been completed. Theoretically, LAPS

is a natural algorithm to consider. On the other hand, LAPS is a challenging algorithm

to implement. In particular, LAPS requires a set of jobs to receive equal processing time,

which is hard to achieve in practice with low overheads. More importantly, LAPS has another

disadvantage that it is parameterized. The algorithm effectively splits the processors evenly

amongst the ε fraction of the latest arriving jobs. This ε is the same constant used in the

resource augmentation. In practice, it is unclear how to set ε. Theoretically, this type of

algorithm is known as existentially scalable. That is, for each possible speed (1 + ε) there

exists a constant to input to the algorithm which makes it O(1)-competitive for any fixed

ε > 0. Note that in the speed-up curve model it is an intriguing open question whether an

algorithm exists which is universally scalable. That is, the algorithm is O(1)-competitive

given any speed (1 + ε) without knowledge of ε.

In practice, the most widely used algorithms are simple greedy algorithms. They are easy

to implement and features can be added to them to ensure low overhead from preemptions.

Unfortunately, it is not clear how to adapt known greedy algorithms to the parallel scheduling

environments. None are known to perform well for the speed-up curve settings. In this work,

we consider a natural adaptation of Shortest-Job-First (SJF) to the DAG model and show

the following theorem.

Theorem 102 SJF is (2 + ε)-speed O(1
ε4

)-competitive for average flow time in the DAG

model for any ε > 0.

To prove the theorem, we extend the definition of fractional flow time to the DAG model.

As mentioned, it is not obvious how to convert an algorithm that is competitive for fractional

281

flow to one that is competitive for total flow time. We give an analysis of such a conversion

to the DAG model, but this is perhaps the most challenging part of the analysis and it is

where we lose the factor of 2 speed.

This is the first greedy algorithm shown to perform well for parallel jobs in the online

setting. The algorithm is simple and natural and could be used in practice. Unfortunately,

we were unable to show it is a scalable algorithm. However, we hope our analysis techniques

can be useful to resolving whether there exists universally scalable algorithms for scheduling

parallel jobs.

11.1 Preliminaries

In the problem considered, there are n jobs that arrive over time that are to be scheduled

on m identical processors. Each job i has an arrival time ri and is represented as a Directed-

Acyclic-Graph (DAG). A node in the DAG is ready to execute, if all its predecessors have

completed. We assume the scheduler knows the ready nodes for a job at a point in time, but

does not know the DAG structure a priori. Any set of ready nodes can be processed at once,

but each processor can only execute one node at a time. A DAG job can be represented

with two important parameters. The total work Wi is the sum of the processing time of the

nodes in job i’s DAG. The critical-path length Ci is the length of the longest path in job i’s

DAG, where the length of the path is the sum of the processing time of nodes on the path.

We now state two straightforward observations regarding work and critical-path length.

Observation 103 If a job i has all of its n ready nodes being executed by a schedule with

speed s on m cores, where n ≤ m, then the remaining critical-path length of i decreases at a

rate of s. In other words, at each time step where not all m processors are executing jobs,

all ready nodes of all unfinished jobs are being executed; hence, the remaining critical-path

length of each unfinished job reduces by s.

282

Observation 104 Any job i takes at least max{Wi

m
, Ci} time to complete in any schedule

with unite speed, including OPT.

Throughout the chapter we will use A to specify the algorithm being considered unless

otherwise noted. We let WA
i (t) denote the remaining processing time of all the nodes in job

i’s DAG at time t in A’s schedule. Let CA
i (t) be the remaining length of the longest path in

i’s DAG where each node contributes its remaining processing time in job A’s schedule at

time t. Let A(t) denote the set of jobs which are released and unsatisfied in A’s schedule at

time t. In the above, we replace A with O to denote the same quantity in some fixed optimal

solution. Note that
∫∞
t=0
|A(t)| is exactly the total flow time, the objective we consider.

Finally, let W i(t) = min{Wi −WO
i (t),WA

i (t)}. We overload notation and let OPT refer to

both the optimal solution’s schedule and its final objective.

Potential Function Analysis: Throughout this chapter we will utilize the potential func-

tion framework, also known as amortized analysis. See [88] for a survey on the technique.

For this technique, one defines a potential function Φ(t) which depends on the state of the

algorithm being considered and the optimal solution at time t. Let Ga(t) denote the current

cost of the algorithm at time t. This is the total waiting time of all the arrived jobs up to

time t if the objective is total flow time. Similarly let Go(t) denote the current cost of the

optimal solution up to time t. We note that dGa(t)
dt

is the change in the algorithm’s objective

at time t and this is equal to the number of unsatisfied jobs in the algorithm’s schedule at

time t, i.e. dGa(t)
dt

= |A(t)|. To bound the competitiveness of an algorithm, one shows the

following conditions about the potential function.

Boundary condition: Φ is zero before any job is released and Φ is non-negative after all

jobs are finished.

Completion condition: Summing over all job completions by the optimal solution and

the algorithm, Φ does not increase by more than β ·OPT for some β ≥ 0.

283

Arrival condition: Summing over all job arrivals, Φ does not increase by more than α ·

OPT for some α ≥ 0.

Running condition: At any time t when no job arrives or is completed,

dGa(t)

dt
+

dΦ(t)

dt
≤ c · dGo(t)

dt
(11.1)

Integrating these conditions over time one gets that Ga−Φ(0) + Φ(∞) ≤ (α+ β + c) ·OPT

by the boundary, arrival and completion conditions. This shows the algorithm is (α+β+ c)-

competitive

11.2 Algorithm: LAPS

In this section, we analyze the LAPS scheduling algorithm for the DAG model. LAPS is

a generalization of round robin. Round robin essentially splits the processing power evenly

among all jobs. In contrast, at each step, LAPS splits the processing power evenly among

the ε fraction of the jobs which arrived the latest. Note that LAPS is parametrized by the

constant ε, the same constant used for the resource augmentation.

Specifically, let A(t) denote the set of unsatisfied jobs in LAPS’s queue at time t. Let

0 < ε < 1
10

be some fixed constant. Let A′(t) contain the ε|A(t)| jobs from A(t) which arrived

the latest. Each job in A′(t) receives m
|A′(t)| processors. Each DAG job in A′(t) then assigns

an arbitrary set of m
|A′(t)| ready tasks on the processors it receives. If the job does not have

m
|A′(t)| ready tasks, it schedules as many tasks as possible and idles the remaining alloted

processors.

We assume that the LAPS is given 1 + 10ε resource augmentation. As mentioned in

Section 11.1, WA
i (t) and CA

i (t) denote the aggregate remaining work and critical-path length,

respectively, of job i at time t in the LAPS’s schedule. WO
i (t) is the aggregate remaining

work of job i in the optimal schedule at time t. Now we compare LAPS to the optimal

284

schedule. To do this, we define a variable Zi(t) := max{WA(t) −WO(t), 0} for each job i.

The variable Zi(t) is the total amount of work job i has fallen behind in the LAPS’s schedule

as compared to the optimal schedule at time t. Finally, we define ranki(t) =
∑

j∈A(t),rj≤ri 1

of job i to be the number of jobs in A(t) that arrived before job i, including itself. Without

loss of generality, we assume each job arrives at a distinct time.

Now we are ready to define our potential function.

Φ(t) =
10

ε

∑
i∈A(t)

(
1

m
ranki(t)Zi(t) +

100

ε2
CA
i (t)

)
The following proposition follows directly from the definition of the potential function.

Proposition 105 Φ(0) = Φ(∞) = 0.

We begin by showing the increase in the potential function is bounded by OPT over the

arrival and completion of all jobs.

Lemma 106 The potential function never increases due to job completion by the LAPS or

optimal schedule.

Proof. When the optimal schedule completes a job, it has no effect on the potential. When

the LAPS completes a job i at time t, a term is removed from the summation. Notice that

Zi(t) = 0 and CA
i (t) = 0, since the algorithm has completely processed the job. Thus the

removal of this term has no effect on the potential. The only other change is that rankj(t)

decreases by 1 for all jobs j ∈ A(t) where rj > ri. However, Zj(t) is always positive by

definition, so this can only decrease the potential.

Lemma 107 The potential function increases by at most O(1
ε3

)OPT over the arrival of the

jobs.

Proof. When job i arrives at time t, it does not effect the rank of any other job since

its arrival is after them. Further, by definition Zi(t) is 0 when job i arrives, since both

285

LAPS and OPT cannot have worked on job i yet at the time it arrives. Finally, the value

of CA
i (t) = Ci. The increase in the potential will be 1000

ε3
Ci. By summing over the arrival of

all jobs, the total increase is 1000
ε3

∑
i∈[n] Ci. We know that each job i must wait at least Ci

time units to be satisfied in OPT by Observation 122, so this is at most O(1
ε3

)OPT.

The remaining lemmas bound the change in the potential due to the processing of jobs

by OPT and LAPS. We first consider the change in the potential due to the OPT and LAPS

separately. Then we combine both changes and bound the aggregate change to be at most

−10|A(t)|+O(1
ε2

)|O(t)|.

Lemma 108 At any time t, the potential function increases by at most 10
ε
|A(t)| due to the

processing of jobs by OPT.

Proof. Notice that the variables CA
i (t) do not change due to OPT. The only change occurs

due to the optimal schedule decreasing Zi(t) for some jobs i. Let job i′ be the job in A(t)

which arrived the latest. In the worst case, the optimal schedule uses all m processors to

process job i′ to decrease Zi(t) at a rate of m. This is the worst case because the rank of

job i′ is the largest. The total increase in the change of the potential is then 10
ε

1
m
ranki′(t)m.

Knowing that ranki′(t) = |A(t)|, hence 10
ε

1
m
ranki′(t)m = 10

ε
|A(t)|.

Lemma 109 At any time t, the potential function increases by at most −10
ε

(1 + ε)|A(t)|+

O(1
ε2

)|O(t)| due the processing of jobs by LAPS.

Proof. Consider the set A′(t) of jobs LAPS processes at time t. We break the analysis

into two cases. In either case we show that the total change in the potential is a most

−10
ε

(1 + ε)|A(t)|+O(1
ε2

)|O(t)|.

Case 1: At least ε
10
|A′(t)| jobs in A′(t) have less than m

|A′(t)| ready nodes at time t. Let Ac(t)

be this set of jobs.

Since each of these jobs has less than m
|A′(t)| ready tasks at time t, then LAPS schedules

all available tasks for these jobs. Hence, LAPS decreases CA
i (t) at a rate of 1 + 10ε for each

286

job i ∈ Ac(t) since LAPS has 1 + 10ε resource augmentation. We denote the change in the

potential as C1. Therefore,

C1 = −1000

ε3
(1 + 10ε)|Ac(t)|

Note that |Ac(t)| ≥ ε
10
|A′(t)| and , we have

C1 ≤ −
100

ε2
(1 + 10ε)|A′(t)| ≤ −100

ε
(1 + 10ε)|A(t)|

Finally, because |A′(t)| = ε|A(t)|, we get

C1 ≤ −
10

ε
(1 + ε)|A(t)|+O(

1

ε2
)|O(t)|

Case 2: At least (1− ε
10

)|A′(t)| jobs in A′(t) have at least m
|A′(t)| nodes ready at time t. Let

Aw(t) be this set of jobs, so |Aw(t)| ≥ (1− ε
10

)|A′(t)|.

In this case, we ignore the decrease in the C variables and focus on the decrease in the Z

variables due to the algorithms processing. We further ignore the decrease in the Zi(t) for

jobs in Aw(t) ∩O(t).

Notice that for every job i in Aw(t) \O(t) it is the case that Zi(t) decreases at a rate of

(1 + 10ε) m
|A′(t)| . This is because: (1) each of these jobs is given m

|A′(t)| processors; (2) LAPS

has (1 + 10ε) resource augmentation; (3) OPT completed job i by time t, if job i is in

Aw(t) \O(t). Knowing this, we can bound the total change in the potential due to LAPS.

287

We will replace 1 + 10ε with k in some intermediate steps for ease of notation and we

denote the total change in the potential due to LAPS as C2.

C2 = −10

ε

∑
i∈Aw(t)\O(t)

1

m
ranki(t)

(1 + 10ε)m

|A′(t)|

= −10k

ε

∑
i∈Aw(t)\O(t)

ranki(t)
1

|A′(t)|

≤ −10k

ε

∑
i∈Aw(t)\O(t)

(1− ε)|A(t)| 1

|A′(t)|

Note that ranki(t) ≥ (1− ε)|A(t)| for i ∈ A′(t) and |A′(t)| = ε|A(t)|, we have

C2 ≤ −
10k

ε2

∑
i∈Aw(t)\O(t)

(1− ε) ≤ −10k

ε2

 ∑
i∈Aw(t)

(1− ε)−
∑
i∈O(t)

1


We can also derive |Aw(t)| ≥ (1− ε

10
)|A′(t)|. By replacing |A′(t)| with ε|A(t)|, we get

C2 ≤ −
10k

ε2

(1− ε

10
)
∑
i∈A′(t)

(1− ε)−
∑
i∈O(t)

1


≤ −10k

ε

(1− ε

10
)
∑
i∈A(t)

(1− ε)− 1

ε

∑
i∈O(t)

1


Finally, because ε < 1/10, we can derive

C2 ≤ −
10

ε
(1 + 10ε)(1− ε

10
)
∑
i∈A(t)

(1− ε) +O(
1

ε2
)|O(t)|

≤ −10

ε
(1 + ε)|A(t)|+O(

1

ε2
)|O(t)|

In either case the total change in the potential is at most −10
ε

(1 + ε)|A(t)|+O(1
ε2

)|O(t)|.

Lemma 110 Fix any time t. The total change in the potential is at most −10|A(t)| +

O(1
ε2

)|O(t)| due the processing of jobs by both algorithms.

288

Proof. Now we know from Lemma 108 the change due to OPT processing jobs is at most

10
ε
|A(t)|. Combining the change due to both algorithms in Lemma 108 and 109, we see that

the aggregate change in the potential is at most −10
ε

(1 + ε)|A(t)|+O(1
ε2

)|O(t)|+ 10
ε
|A(t)| ≤

−10|A(t)|+O(1
ε2

)|O(t)|.

Thus, by the potential function framework and combining Lemma 106, 107 and 110 and

Proposition 105 we have Theorem 100.

11.3 Algorithm: SJF

In this section we analyze a generalization of SJF to parallel DAG jobs. In this algorithm,

the jobs are sorted according to their original work and the smallest have the highest pri-

ority. The algorithm takes the highest priority job and assigns all of its ready nodes to

machines and then recursively considers the next highest priority job. This continues until

all machines have a node to execute or there are no more ready nodes. In the event that

a job being considered has more ready nodes than machines available, the algorithm choses

an arbitrary set of nodes to schedule on the remaining machines. At first glance, this might

be counterintuitive, since it doesn’t take the critical-path length into consideration at all;

one might think that we should give higher priority to jobs with longer critical-path length.

However, as the analysis shows, it turns out that prioritizing based on just work provides

good bounds.

11.3.1 Analysis of SJF for Fractional Flow Time

We use fractional flow time to do this analysis. In this section, to avoid confusion, we refer

to total flow time as integral flow time — recall that a job contributes 1 to the objective

each time unit the job is alive and unsatisfied. In contrast, in fractional flow time, it con-

tributes the fraction of the work which remains for the job; that is, the goal is to minimize∑∞
t=0

∑
i∈A(t)

WA
i (t)

Wi
. Our analysis is structured as follows: We first compare the fractional

289

flow time of SJF (with resource augmentation) to the integral flow time of the optimal algo-

rithm. We then compare the integral flow time of SJF (with further resource augmentation)

to its fractional flow time.

We will utilize a potential function analysis and define the potential functions as follows.

Throughout the analysis we will assume without loss of generality that each job arrives at a

distinct time and has a unique amount of work.

Φ(t) =
1

ε

∑
j∈A(t)

CAj (t) +
1

εm

∑
j∈A(t)

W j(t)

Wj

∑
i | i∈A(t)∪O(t)

Wi≤Wj

WA
i (t)−WO

i (t)


Using this potential function, our goal is to show the following theorem.

Theorem 111 SJF is (1 + ε)-speed O(1
ε
)-competitive when SJF’s fractional flow time is

compared against the optimal schedule’s integral flow time.

Note that Φ(0) = Φ(∞) = 0, thus the boundary condition is true. We will now show the

arrival and completion conditions.

Lemma 112 The potential function increases by at most O(1
ε
OPT) due to the arrival and

completion of jobs.

Proof. First consider the arrival condition. Suppose job j′ arrives at a time t′, then in

the first term a new term is created, 1
ε
Cj′ . This is less than 1

ε
multiplied by the amount of

time this job must wait to be completed in an optimal schedule because Ci is a lower bound

on a job’s integral flow time, according to Observation 122. The change of Φ(t′) over all job

arrivals in the first term is at most 1
ε
OPT. Now consider the second term of Φ(t′) when j′

just arrives. The quantity W j′(t
′) = 0, because OPT has not worked on job j′ yet. Though

j′ is a new term in the outer summation of the second term, this term is 0. Finally, j′ may

appear as a new term in the inner summation for all jobs i ∈ A(t′) with Wi > Wj′ . However

then WA
j′ (t

′) −WO
j′ (t

′) = 0 because both algorithm and optimal schedule have yet to work

290

on j′. These are all the possible changes due to the arrival of job j′, therefore the arrival

condition holds.

Now consider when the optimal schedule completes some job j′ at time t′. The only effect

on the potential, is that a term may be removed from the inner summation of the second

term if j′ is no longer in A(t′) ∪ O(t′). This only happens if the job is also not in A(t′). If

the job is not in A(t′) then WA
j′ (t

′)−WO
j′ (t

′) = 0 and there is no change to the potential due

to the removal of the term.

Now consider when the algorithm completes some job j′ at time t′. Because the job

has completed, so CA
j′ (t
′) = 0 and W j′(t

′) = 0. Thus, removing terms from the either the

first summation or the outer summation of the second term has no effect on the potential.

However we may remove a job from the inner summation of the second term. Again, this

only occurs if j′ /∈ O(t′), which means that inner summation is 0. Therefore this does not

cause a change in the potential. Overall, there is no change in the potential due to jobs

being completed by either the algorithm or the optimal schedule.

Thus, we have shown the boundary conditions as well as the bounded the non-continuous

changes in Φ. It remains to show how the potential changes due to the algorithm and optimal

schedule processing jobs. These are the only remaining ways the potential may change. Fix

some time t. Our goal is to bound dΦ(t)
dt

.

Lemma 113 The total change in Φ at time t due to the optimal schedule processing jobs is

O(|O(t)|) + 1
ε

∑
i∈A(t)

WA
i (t)

Wi
.

Proof. Notice that the only changes that can occur due to the optimal schedule processing

some job j is due to the changes in WO
j (t) and W j(t), both of which are in the second term of

Φ(t). Fix some job j that OPT processes at time t and suppose that OPT uses m′j processors

to process job j. Consider the change in Φ(t) due to WO
j (t) decreasing. The change only

increases WA
j (t) −WO

j (t) in the inner summation only if job i in the outer summation has

Wi ≥ Wj. Each machine in OPT has 1 speed and all work values are distinct, so the change

291

is the following.

1

ε

m′j
m

W j(t)

Wj

+
1

ε

m′j
m

∑
i∈A(t)
Wi>Wj

W i(t)

Wi

The first term is the job j itself and the second is the other jobs effected. Since W i(t)
Wi
≤

WA
i (t)

Wi
by definition of W i(t), we have

1

ε

m′j
m

∑
i∈A(t)
Wi≥Wj

W i(t)

Wi

≤ 1

ε

m′j
m

∑
i∈A(t)
Wi≥Wj

WA
i (t)

Wi

Now consider the change induced in W j(t) by OPT’s processing. This variable could, in

the worst case, increase at a rate of m′j. This changes all of the inner summation terms where

Wi ≤ Wj. We omit the −WO
i (t) part of the inner summation, as this part only decreases

the potential. The change is then the following.

1

ε

m′j
m

WA
j (t)

Wj

+
1

ε

m′j
mWj

∑
i∈A(t)
Wi<Wj

WA
i (t)

By definition,
WA
j (t)

Wj
≤ 1. Additionally, in the summation we have Wi < Wj. Therefore

the overall change from processing job j is:

1

ε

m′j
m

+
1

ε

m′j
mWj

∑
i∈A(t)
Wi<Wj

WA
i (t) ≤ 1

ε

m′j
m

+
1

ε

m′j
m

∑
i∈A(t)
Wi<Wj

WA
i (t)

Wi

Let PO(t) be the set of jobs the optimal schedule processes at time t. Clearly, the optimal

schedule can use at most m processors at time t, i.e.
∑

j∈PO(t) m
′
j ≤ m. Knowing this, we

292

have the overall change is

∑
j∈PO(t)

1

ε

m′j
m

+
1

ε

m′j
m

∑
i∈A(t)

WA
i (t)

Wi

 ≤
1

ε
+

1

ε

∑
i∈A(t)

WA
i (t)

Wi


Finally we know that OPT must have at least one alive job if it processes some job.

Thus we charge the 2
ε

to OPT’s increase in its objective. This gives the lemma.

Now we consider the change in Φ(t) due to the algorithm processing jobs.

Lemma 114 The total change in Φ at time t due to the algorithm processing jobs is O(|O(t)|)−

(1 + ε)1
ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi
.

Proof. For any job j, we know that either the algorithm is processing jobs i ∈ A(t)

where Wi ≤ Wj using all m processors or the algorithm is decreasing the critical-path,

CA
j (t), at a rate of (1 + ε). This is because, the algorithm by definition has either has

assigned all processors to higher priority jobs or it is scheduling all available ready nodes

for job j by Observation 123. Suppose that the algorithm decreases the critical-path of j.

If this is the case then, this decreases CA
j (t) at a rate of −(1 + ε). Alternatively, say the

algorithm assigned all processors to jobs with higher priority than j. Then it is the case that∑
i | i∈A(t)∪O(t),Wi≤Wj

WA
i (t)−WO

i (t) decreases at a rate of −(1 + ε)m due to the algorithms

processing.

Consider all jobs i in the potential. The decreases in the potential function due to the

change in WA
i (t) and CA

i (t) over all jobs i the algorithm processes is at least the following,

−(1 + ε)

ε

∑
i∈A(t)

W i(t)

Wi

Consider the jobs in this summation, if i /∈ O(t) it is the case that W i(t) = WA
i (t). If

i ∈ O(t) then in the worst case W i(t) = 0. Nevertheless dropping all i ∈ O(t) the decrease

293

in the potential still

−(1 + ε)

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

The only other change that can occur is that the algorithm can cause W j(t) to decrease

for jobs j that the algorithm processes. When multiplied by −WO
i (t) this causes an increase

in the potential function. Say that the algorithm processes job j using m′j processors at time

t. Let PA(t) be the set of jobs the algorithm processes. In the worst case, W j(t) decreases

at a rate of (1 + ε)m′j for each job j ∈ PA(t). The change is at most,

(1 + ε)

mε

∑
j∈PA(t)

m′j
Wj

∑
i∈O(t)
Wi≤Wj

WO
i (t)

≤ 1 + ε

mε

∑
j∈PA(t)

m′j
∑
i∈O(t)
Wi≤Wj

1 [WO
i (t) ≤ Wi ≤ Wj]

≤ (1 + ε)

mε

∑
j∈PA(t)

m′j
∑
i∈O(t)

1

≤ (1 + ε)

ε

∑
i∈O(t)

1 [
∑

j∈PA(t) m
′
j ≤ m]

=
(1 + ε)

ε
|O(t)|

Thus, the lemma follows assuming that 0 < ε ≤ 1 is a constant.

Now we are ready to show SJF’s guarantees for fractional flow time.

Proof of Theorem 111.

The total change in the potential due to the algorithm and optimal schedule processing

jobs is the following from Lemmas 114 and 113. Note that we are summing over the terms,

some of which are negative due to decreasing the potential.

294

O(|O(t)|) +
1

ε

∑
i∈A(t)

WA
i (t)

Wi

− (1 + ε)

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

≤O(|O(t)|) +
1

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

+
1

ε

∑
i∈O(t)

WA
i (t)

Wi

− (1 + ε)
1

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

≤O(|O(t)|) +
1

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

+
1

ε

∑
i∈O(t)

1− (1 + ε)
1

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

≤O(|O(t)|) +
1

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

− (1 + ε)
1

ε

∑
i∈A(t)\O(t)

WA
i (t)

Wi

≤O(|O(t)|)−
∑

i∈A(t)\O(t)

WA
i (t)

Wi

Consider the second term. We know that

−
∑

i∈A(t)\O(t)

WA
i (t)

Wi

= −
∑
i∈A(t)

WA
i (t)

Wi

+
∑

i∈A(t)∩O(t)

WA
i (t)

Wi

≤ −
∑
i∈A(t)

WA
i (t)

Wi

+ |O(t)|

Thus, we have proved that the total change in the potential plus the increase in the

algorithm’s objective,
∑

i∈A(t)
WA
i (t)

Wi
, is bounded by O(1

ε
OPT). This completes the proof of

the continues change in the potential. The theorem follows by this, Lemma 112 and the

potential function framework. �

11.3.2 SJF Falls Behind with Resource Augmentation

Before we show how to convert the fractional flow time of SJF to its integral flow time and

how to prove the competitiveness for SJF, we first present the challenges in the proof.

In particular, we show that SJF can fall behind with more resource augmentation. This

is surprising because essentially the same scheduling algorithm is used, yet with speed aug-

mentation it is actually possible for the fast schedule to have performed less aggregate work

295

Figure 11.1: An example schedule of slow and fast SJF on 6 processors

than the slow schedule at some time t. This difficult arises specifically due to the intricacies

of the DAG model.

We consider two schedules: one slow schedule S with unit speed and one fast schedule F

with speed s for some fixed constant S. We will show that for a given speed augmentation s

and m processors, where 1 < s < 2− 2
m

, we can always construct a counterexample showing

that the fast schedule F falls behind the slow schedule S using two jobs J1 and J2.

First we shall give a concrete example where with 1.6 speed, F does less aggregate work

than S does at some time t. Then, the general example for any speed s < 2 − 2
m

will be

given. Intuitively, we show that the structure of J1 on the fast schedule forces J2 to be

executed entirely sequentially, this severely limits the amount of work that can be done on

J2 by the fast schedule. As both schedules complete J1, this directly shows that the fast

schedule completes less aggregate work.

296

Example for Speed 1.6 on 6 processors

In the concrete example, the fast schedule have 1.6 speed. Consider two jobs J1 and J2 as

given in the figure. J1 consists of a sequential chain of nodes of total length 16, followed by

5 chains of nodes all having total length 30 (i.e. a block of width 5 and length 30). Note

the construction of the DAG means that at time 10 the fast schedule will have finished the

entire chain, while the slow one will still have 6 nodes to do. J2 arrives at the absolute time

of 10 and consists of a block of width 5 with length 6, followed by a long sequential chain

of nodes. In this example, the length of this chain is 140. Note that the total work of J2 is

170, which is more than J1’s total work 166. Thus, J2 has lower priority under both slow

and fast SJF.

The time we consider to contradict the lemma is t = 46. By this point, both F and S

have finished J1, therefore it is sufficient to compare the amount of work done on J2. In the

slow schedule for the first 6 steps once J2 arrives, due to the fact that J1 can only utilize 1

processor, 30 nodes of J2 is finished. A further 30 nodes of J2 finishes for a total of 60 at

time t.

The fast schedule is of more interest. With 1.6 speed augmentation, effectively 16 nodes

can be finished in the time that the slow schedule requires to finish 10 nodes. Therefore,

when J2 arrives, the fast schedule has already finished the first chain and reached the highly

parallel portion of J1. As J1 has higher priority than J2, this forces J2 to be executed on

the only remaining processor sequentially. Hence, due to the length of the block in J1, the

first block (30 nodes) of J2 is executed completely sequentially. The rest of J2 is a chain and

has to run sequentially due to the structure of the DAG. Therefore, J2 is performed entirely

sequentially.

Now we compare the amount of work of J2 done by S and F during the time interval

[10, 46], which has length 36. Slow schedule with unit speed finishes 60 nodes of J2. Taking

the speed augmentation of 1.6 into account, F can sequentially execute 36∗1.6 = 57.6 nodes

297

Figure 11.2: An example schedule of slow and fast SJF for m processors.

of J2. Hence, less than 60 nodes of J2 finishes executing by F . This means that F has fallen

behind in comparison to S in terms of aggregate work at time t = 46.

General Case for Speed s on m processors

We now show the general case where a speed of 2− 2
m

is necessary. We assume that the fast

schedule is given some speed s = 1 + ε with the restriction that 0 < ε < 1 − 2
m

. Similar to

the concrete example, we construct the two jobs with J1 being a chain followed by a block

and J2 being almost the opposite but having larger work and lower priority. The key idea is

that for J1, the fast schedule must reach the highly parallel portion earlier, more precisely, at

the release time of J2. Note that for every node processed by the slow schedule in the initial

chain of J1, the fast schedule processes 1 + ε nodes, gaining ε nodes over the slow schedule.

298

Consider Figure 11.2, for similarity to the previous example we introduce a constant L.

In the previous example, we had L = 6. Let J1 begin with a chain of length L
ε

+L, followed

by a block of length (m− 1)L and parallelism (width) (m− 1). J2 will consist of a block of

length L with parallelism (m− 1) followed by a long chain of sufficient length such that J2

has more work and lower priority than J1. J2 arrives at exactly time L
ε
.

The time that will be examined is time t =
(
L
ε

+ L
)

+ (m− 1)L. Note that at this point

both the schedules have finished J1 and therefore it is sufficient to compare the amount of

work done on J2. In the slow schedule, J2 arrives when only 1 processors is used to execute

J1, as the highly parallel block has not been reached. Therefore, for the next L time steps a

total of (m− 1)L nodes of J2 are finished with parallelism m− 1. On the following (m− 1)L

steps, J1 occupies m− 1 processors, while J2 reaches its chain and is processed sequentially.

A total of 2L(m − 1) nodes of J2 are finished at time t. We also note that a total of mL

time steps have passed in the slow schedule between the arrival of J2 and time t.

From the construction of the initial chain of J1, the fast schedule completes all L
ε

+ L =

L
ε
(1 + ε) nodes of the strand by the time L

ε
that J2 arrives. Due to the higher priority of J1,

the parallel block of J1 take precedence over that of J2. Note that the parallel block of J1 has

a width of m− 1, which occupies all but one processor for as long as (m− 1)L steps. This

forces J2 to only execute sequentially on the remaining single processor for all its (m− 1)L

nodes of the parallel block in J2. When J1 finally completes and all m processors are free,

J2 reaches its sequential chain. Therefore, J2 is processed entirely sequentially in the fast

schedule.

The amount of time which passes between the arrival of J2 and t is just mL. Consider

the speed augmentation of the fast schedule and recall that ε < 1− 2
m

. The total number of

nodes of J2, that the fast processor can sequential execute between the arrival of J2 and t,

is mL(1 + ε) < mL(2 − 2
m

) = 2L(m − 1). Recall that the slow schedule performed exactly

2L(m− 1) nodes of J2 during the same time interval. Therefore, the fast schedule with 1 + ε

speed performs less total aggregate work at time t in comparison to the slow schedule.

299

Note that this example does not hold when ε ≥ 1 as the final calculation would result in

the fast processor finishing more nodes of J2.

11.3.3 From Fractional to Integral

We now compare the fractional flow time of SJF to its integral flow time and prove the

following lemma. Note that this lemma, combined with Lemma 111 proves Theorem 102.

Lemma 115 If SJF is s-speed c-competitive for fractional flow time then SJF is (2 + ε)s-

speed O(c
ε3

)-competitive for the integral flow time for any 0 < ε ≤ 1/2.

To show the Lemma 115, for the remaining portion of the section we will consider two

schedules created by SJF. One schedule has s speed and the other (2 + ε)s for some fixed

0 < ε ≤ 1/2 and some constant s. To avoid confusion, we use F to denote the fast schedule

and S to denote the slow schedule. Since both schedules are SJF, we assume that the tasks

for a job are given the same priority in both algorithms — this priority can be arbitrary.

To begin the proof, we first show that F has always processed as much work as S at any

time given a (2 + ε) factor more speed. It may seem obvious that a faster schedule should

do more work than the slower schedule. However, showing this is not straightforward in the

DAG model. In fact, in Section 11.3.2, we have already showed that if the faster schedule has

less than a (2− 2
m

) factor speed it will actually fall behind in total aggregate work compared

to the slow schedule in some instances. In other words, F does not always process as much

of each individual job as S at each point in time. This could cause F to later not achieve

as much parallelism as S. Here we will show that F does not fall behind S given a (2 + ε)

factor more speed.

First, we give some more notations. Let S(t) (F(t)) denote the queued jobs in S’s (F ’s)

schedule at time t, which have been released but not finished. Let W S
i (t) (W F

i (t)) and CS
i (t)

(CF
i (t)) denote the remaining work and remaining critical-path length, respectively, for job

i in S’s (F ’s) schedule at time t. The following lemma states that if we only focus on jobs

300

whose original processing time is less than some value ρ, it must be the case that F did

more total work on these jobs than S. This lemma is where we require the 2 speed in the

conversion from fractional to integral flow time.

Lemma 116 At all times t and for all ρ ≥ 0, it is the case that
∑

i∈F(t),Wi≤ρW
F
i (t) ≤∑

i∈S(t),Wi≤ρW
S
i (t).

Proof. For the sake of contradiction, say the lemma is not true and let t be the first time

it is false for some ρ. Then at this time t, there must be some job i where W S
i (t) < W F

i (t)

and Wi ≤ ρ.

At release time ri the lemma still holds, i.e.
∑

i∈F(ri),Wi≤ρW
F
i (ri) ≤

∑
i∈S(ri),Wi≤ρW

S
i (ri).

Let V be the total volume of original work for jobs of size at most ρ which arrives during

[ri, t]. Note that S can do at most ms(t−ri) work during [ri, t] with speed s on m processors,

we know that at time t

∑
i∈S(t),Wi≤ρ

W S
i (t) ≥

∑
i∈S(ri),Wi≤ρ

(W S
i (ri) + V −ms(t− ri))

Consider the time interval [ri, t]. Notice that it must be the case that t − ri ≥ (Ci −

CS
i (t))/s, since the schedule S has decreased the critical-path of job i by Ci − CS

i (t) with a

speed of s. Further, knowing that both of the schedules execute the nodes of a particular

job in the same priority order for either schedule, then CS
i (t) ≤ CF

i (t). Therefore, we have

t− ri ≥ (Ci − CS
i (t))/s ≥ (Ci − CF

i (t))/s (11.2)

Now consider the amount of work done by F during [ri, t]. Note that for at most a
Ci−CFi (t)

s(2+ε)

amount of time during [ri, t] the schedule F have some processors idling and not executing

nodes of jobs with Wi ≤ ρ. Otherwise, by Observation 123 F would have decreased the

critical-path of job i during these non-busy time steps by strictly more than
Ci−CFi (t)

s(2+ε)
·s(2+ε) =

Ci−CF
i (t). Then the remaining critical-path of job i at time t in F would then be less than

301

CF
i (t), contradicting the definition of CF

i (t). Thus, F processes a total volume of at least

(2 + ε)ms(t − ri − Ci−CFi (t)

s(2+ε)
) on jobs with original size at most ρ during [ri, t]. Hence the

following. (Here have omitted the repeated indices on some sums for brevity, and invoked

equation 11.2 for one of the steps).

∑
i∈F(t),Wi≤ρ

WF
i (t) ≤

∑
−
WF
i (ri) + V − (2 + ε)s(t− ri −

Ci − CFi (t)

s(2 + ε)
)

≤
∑
−
WF
i (ri) + V − (2 + ε)s(t− ri −

t− ri
(2 + ε)

) =
∑
−
WF
i (ri) + V − (1 + ε)s(t− ri)

≤
∑

i∈S(ri),Wi≤ρ

WS
i (ri) + V − s(t− ri) =

∑
i∈S(t),Wi≤ρ

WS
i (t)

This contradicts the definition of t.

Let tSi,ε denote the latest time t in S’s schedule where
WS
i (t)

Wi
≥ ε. For the fractional

flow time objective, job i always pays a cost of at least ε at each time during [ri, t
S
i,ε] in S’s

schedule. Let fSi,ε = tSi,ε − ri. It must be the case that job i’s fractional flow time is greater

than εfSi,ε in S. For integral flow time we know that a job pays a cost of 1 each time unit it is

unsatisfied. Thus, if the integral flow time of job i in F is bounded by fSi,ε we can charge this

job’s integral cost in F to the job’s fractional cost in S. Also, according to Observation 122,

for integral flow time the optimal schedule of speed 1 must make job i wait Ci time steps.

Thus, if job i’s flow time is bounded by Ci in F then we can charge job i’s integral flow

time in F directly to the optimal schedule. These two ideas are formalized in the following

lemma.

For any schedule A, we let IntCost(A) denote the integral cost of A and FracCost(A)

denote the fractional flow time of A. Finally, we let OPTI denote the optimal schedule for

integral flow time.

302

Lemma 117 Let EF (t) be the set of jobs i ∈ F(t) such that t ≤ ri+
10
ε2

(max{fSi,ε, Ci}). Con-

sider the quantity
∑∞

t=0 |EF (t)|, which is the contribution to the total integral flow at time t

from jobs in EF (t). It is the case that
∑∞

t=0 |EF (t)| ≤ O(1
ε3

)(FracCost(S)+IntCost(OPTI)).

Proof. Case 1: Consider a job i with fSi,ε = max{fSi,ε, Ci}. In this case, job i can only be

in EF (t) during [ri, ri + 10
ε2
fSi,ε]. The total integral flow time that job i in F can accumulate

during this interval is at most 10
ε2
fSi,ε. By definition of fSi,ε, job i’s fractional flow in S is at

least εfSi,ε. Hence, the total integral flow time of all jobs in F where fSi,ε = max{fSi,ε, Ci}

during times where they are in EF (t) is at most O(1
ε3

)FracCost(S).

Case 2: Consider a job i, with Ci = max{fSi,ε, Ci}. The integral flow time in OPTI for

job i is at least Ci by definition of the critical-path. Thus, we bound the integral flow time

of all such jobs in F while they are in EF (t) by O(1
ε2

)IntCost(OPTI).

Intuitively, we think of the jobs in EF (t) as jobs which are early at time t. Let LF (t) =

F(t) \ EF (t) be the set of late jobs at time t. The remaining portion of the proof focuses

on bounding the integral flow time of jobs in F ’s schedule at times when they are in LF (t).

We will prove that O(1
ε
)
∑

i∈S(t)
WS
i (t)

Wi
≥ |LF (t)| at all times t. That is, the total fractional

weight of jobs in S is greater than the number of late jobs in L at all times t. Thus, we

can charge the integral flow time of jobs in LF (t) to the fractional flow time of S’s schedule.

This will complete the proof.

To prove this, we will show the following structural lemma about S and F . Let S=h(t)

(F=h(t)) denote the remaining jobs i in S’s (F ’s) schedule at time t whose original work

satisfies 2h−1 ≤ Wi < 2h for some integer h ≥ 1. Let W S
=h(t) =

∑
i∈S(t),2h−1≤Wi<2hW

S
i (t)

(W F
=h(t) =

∑
i∈F(t),2h−1≤Wi<2hW

F
i (t)) denote the remaining work in S’s (F ’s) schedule at

time t for jobs i whose original work satisfies 2h−1 ≤ Wi < 2h for some h ≥ 1. We will say

job i is in class h, if 2h−1 ≤ Wi < 2h.

Lemma 118 At all times t and for all h ≥ 1, |F=h(t) ∩ LF (t)| ≤ 10
ε

1
2h

∑h
h′=1 W

S
=h′(t).

303

Before we prove this lemma, we show how it can be used to bound the number of jobs

in LF (t) in terms of the fractional weight of jobs in S(t).

Lemma 119 At all times t,

O(
1

ε
)
∑
i∈S(t)

W S
i (t)

Wi

≥ |LF (t)|

Proof. Notice that |LF (t)| =
∑∞

h=1 |F=h(t) ∩ LF (t)|. Using Lemma 118 we have the

following.

|LF (t)| =
∞∑
h=1

|F=h(t) ∩ LF (t)| ≤
∞∑
h=1

10

ε

h∑
h′=1

1

2h
W S

=h′(t) [By Lemma 118]

=
∞∑
h=1

10

ε

h∑
h′=1

(
1

2h′
W S

=h′(t))
1

2h−h′
=

10

ε

∞∑
h′=1

(
1

2h′
W S

=h′(t))
∞∑
h=h′

1

2h−h′

≤ 20

ε

∞∑
h′=1

1

2h′
W S

=h′(t) ≤
20

ε

∑
i∈S(t)

W S
i (t)

Wi

[2h
′−1 ≤ Wi < 2h

′
if i in class h′]

The previous lemma with Lemma 117 implies Lemma 115. All that remains is to prove

Lemma 118.

Proof of Lemma 118.

Assume for the sake of contradiction the lemma is not true. Let t be the earliest time

the lemma is false for some class h, i.e. |F=h(t) ∩ LF (t)| > 10
ε

∑
i∈S(t),Wi≤2h

1
2h
W S
i (t).

Let j∗ denote the job in LF (t) which arrived the earliest and j∗ is of some class h′ ≤ h.

By definition of LF (t), this implies that S processed at least (1− ε)Wi for each job i ∈ LF (t)

where Wi ≤ 2h by time t. Since S has m processors of speed s, this means t − rj∗ ≥
1
sm

∑
i∈LF (t),Wi≤2h(1− ε)Wi.

Consider the interval [rj∗ , t]. We first make several observations about the length of this

time interval. We know that t− rj∗ ≥ 10
ε2
Cj∗ since j∗ ∈ LF (t). We further know that during

304

[rj∗ , t] there can be at most Cj∗ time steps where F is not using all m processors to execute

nodes for jobs which are in a class at most h. Otherwise job J∗ would have finished all its

Cj∗ critical-path length by time t using Observation 123 and thus have been completed by

t, a contradiction.

Now our goal is to bound the total work S and F can process for jobs in classes h or

less during [rj∗ , t]. The schedule S can process at most sm(t− rj∗) work on jobs of class at

most h during [rj∗ , t] since it has m machines of speed s. The schedule F processes at least

(2 + ε)sm(t− rj∗ −Cj∗) work on jobs of class at most h by the observations above. Knowing

that t− rj∗ ≥ 10
ε2
Cj∗ , we see that (2 + ε)sm(t− rj∗ − Cj∗) ≥ (2 + ε)(1− ε2

10
)sm(t− rj∗).

We will use these arguments to bound the total volume of work in S at time t to draw

a contradiction. Let V denote the total original processing time of jobs which are of class

at most h that arrive during [rj∗ , t]. By Lemma 116, we have
∑

i∈F(rj∗),Wi≤2hW
F
i (rj∗) ≤∑

i∈S(rj∗),Wi≤2hW
S
i (rj∗). Thus,

∑
i∈S(t),Wi≤2h

W S
i (t)−

∑
i∈F(t),Wi≤2h

W F
i (t)

≥

 ∑
i∈S(rj∗)

Wi≤2h

W S
i (rj∗) + V − sm(t− rj∗)

 −

 ∑
i∈F(rj∗)

Wi≤2h

W F
i (rj∗) + V − (2 + ε)(1− ε2

10
)sm(t− rj∗)


≥ (−sm(t− rj∗))−

(
−(2 + ε)(1− ε2

10
)sm(t− rj∗)

)
[Lemma 116]

≥ 1 + ε

2
sm(t− rj∗) [ε ≤ 1/2]

305

This implies that ∑
i∈S(t),Wi≤2h

W S
i (t) ≥ 1 + ε

2
sm(t− rj∗)

We also know that

t− rj∗ ≥
1

sm

∑
i∈LF (t),Wi≤2h

(1− ε)Wi

With ε ≤ 1/2 this means that

∑
i∈S(t),Wi≤2h

W S
i (t) ≥ 1 + ε

2

∑
i∈LF (t),Wi≤2h

(1− ε)Wi ≥
ε

4

∑
i∈LF (t),Wi≤2h

Wi

Knowing that jobs of class h have size at most 2h and
∑

i∈S(t),Wi≤2hW
S
i (t) ≥ ε

4

∑
i∈LF (t),Wi≤2hWi,

we complete the proof:

|F=h(t) ∩ LF (t)| =
∑

i∈LF (t)

2h−1≤Wi<2h

1 ≤ 2
∑

i∈LF (t)

2h−1≤Wi<2h

Wi

2h
≤ 10

ε

∑
i∈S(t),Wi≤2h

1

2h
W S
i (t)

This contradicts the definition of time t and thus we have proven the lemma. �

306

Chapter 12

A Distributed Scheduler for
Minimizing Average Flow Time of
Parallel Jobs

In many application environments such as clouds, grids and shard servers, clients send jobs

to be processed on a server. The server has a scheduler that decides which jobs should be

processed first. The goal of the scheduling policy is to both use the server resources efficiently

and to provide a good quality of service to the client jobs. In this chapter, we consider the

commonly used quality metric of average flow time. The flow time (latency) of a job is

the amount of time between the job’s arrival at the server and its completion. Minimizing

average flow time optimizes the average quality of service provided to all jobs in the system.

For sequential programs that can only utilize one core at a time, minimizing average flow

time has been studied extensively [27, 40, 49, 74, 149]. However, most machines now consist

of multiple cores and the parallelism of machines is expected to increase. In addition, there

is growing interest in parallelizing applications, so that individual jobs may themselves have

internal parallelism and can execute on multiple cores on a server at the same time to shorten

its processing time.

Programs written in parallel languages can often be abstractly represented as a directed

acyclic graph (DAG) where each node of the DAG is a sequence of instructions and each edge

is a dependence between nodes. A node is ready to be executed when all its predecessors

have been executed — the parallelism is denoted by multiple nodes being ready at the same

time. In this model, the problem of scheduling a single parallel job on m processors has

been studied extensively in prior work. In earliest work, it was shown that list scheduling

307

is 2 − 2
m

competitive for makespan — the total completion time of the single job. This

theoretical result has influenced the design of efficient schedulers which are currently used

in practice. The work-stealing [33] scheduler is known to be asymptotically optimal with

respect to makespan while also being practically efficient in having low overhead [32] and

minimizing cache misses [1]. Work-stealing is currently one of the most popular schedulers

in practice and is part of the runtime systems of many parallel languages and libraries. The

practical success of work-stealing scheduler indicates that theoretical work can be enormously

influential in designing schedulers that are good in practice.

Most of the theoretical and practical work on work-stealing has focused on single job

scheduling. For designing schedulers for the client-server model described above, we must

consider multiprogrammed environments where multiple parallel jobs (say n) share a machine

with m processors. In addition, these jobs arrive online where the scheduler is only aware of

the job when it arrives. In this setting, the scheduler must know how to allocate resources

to the jobs in order to achieve a target goal, which often is optimizing an objective over all

of the jobs. Interestingly, there has been little work on scheduling parallelizable DAG jobs

in multiprogrammed environments in the online setting.

As mentioned above, the most popular objective considered when jobs arrive over time

is average flow time: Formally, if the completion (finish) time of job Ji is fi and its release

(arrival) time is ri, then the flow time of job Ji is fi − ri. The average flow time objective

focuses on minimizing
∑

i(fi − ri).

It turns out that average flow time objective is difficult to optimize even for sequential

jobs. It is known that any online algorithm is Ω(min{logP, log n/m})-competitive where

P is the ratio of the largest to smallest processing time of the jobs [109]. Due to this

strong lower bound, previous work has focused on using a resource augmentation analysis to

differentiate between algorithms. In resource augmentation analysis, the algorithm is given

faster processors over adversary [93]. Using resource augmentation, several (1 + ε)-speed

O(f(ε))-competitive for average flow time are known where ε > 0 and the function f which

308

depends only on ε. This is regarded as the best positive theoretical result that can be shown

for problems which has strong lower bounds on their competitive ratio. The first such result

was shown in [49] and several other algorithms have been shown to have similar guarantees

for sequential jobs [27,40,74,149].

Chapter 11 introduced the first theoretical results on average flow time for scheduling

multiple DAG jobs. This work showed that the algorithm LAPS, an algorithm that general-

izes round robin, is (1 + ε)-speed O(1
ε3

)-competitive and a greedy algorithm called smallest

work first (SWF) is (2+ε)-speed O(1
ε4

)-competitive. Therefore, LAPS provides the best pos-

sible theoretical result for these jobs. However, the problem is far from being well-studied

and there remains work to be done. In particular, from a practical standpoint, both algo-

rithms have serious drawbacks that prevent them from being implemented and used in a real

system. First, both of the algorithms have an arbitrary and unbounded (in terms of n and

m) number of preemptions13. Second, both algorithms require a centralized global scheduler

that has the knowledge of all alive jobs, processor assignments for each job, and all ready

nodes for each job. Finally, SWF is a clairvoyant algorithm that requires the knowledge of

the work (processing time of the job on 1 processor) of each job when the job arrives in

order to prioritize jobs for scheduling. Although LAPS is non-clairvoyant, it has another

disadvantage that it is parameterized. The constant ε in the resource augmentation is also

used in scheduling to decide processor allocation (evenly distributed amongst the ε fraction

of the latest arriving jobs). These drawbacks mean that implementations of these algorithms

are likely to have significant overheads and are unlikely to be practical in real systems.

In this chapter, our goal is to design a practically efficient scheduler that has strong

theoretical guarantees. Our goal is inspired by the work-stealing algorithm that provides

theoretically good performance (for a single job) and is efficient in practice since it has

very low scheduling overheads. In work stealing, each processor has a local work-queue.

When a processor generates more work, it places the work on its own queue. When it needs

13Preemption in this context means a processor switches between two jobs that have not yet completed

309

more work, it takes work from its local queue. If the local queue is empty, the worker

randomly picks a victim processor and steals work from its queue. The critical properties

of this algorithm that enable it in having low overheads are the following: (1) Distributed

decision making: no centralized scheduler distributes work to processors leading to small

synchronization overhead. (2) Local work queues: Processors only take work from others

when they have no work to do — therefore there is low communication and preemption

overhead.

Ideally one could have a similar algorithm for scheduling multiple DAG jobs online.

Unfortunately, the work-stealing algorithm does not naturally extend to the multiple job

setting. In particular, since the algorithm does not preempt jobs, it can easily be shown

to perform poorly for average flow time. For example, consider the case where m big fully

parallel jobs arrive. Once these jobs are scheduled and occupy the processors then n small

jobs arrive, which are blocked until the assigned big jobs complete. In contrast, the ideal

scheduler will schedule the small jobs first, but work-stealing will finish the large jobs before

scheduling any of the small jobs, thereby getting a much larger average flow time than the

optimal scheduler. Therefore, one must tolerate some preemptions to optimize over average

flow. However, our goal is to make most of the decisions in a distributed fashion and have a

bounded small number of preemptions.

Results: In this chapter, we introduce a new scheduling algorithm, Distributed Random

Equi-Partition (DREP). The algorithm is very simple. When a new job arrives, each

processor decides to allocate itself to the new job with probability 1/nt, where nt is the

number of incomplete jobs at time t. Then each processor that decides to work on the

new job executes a ready node for this job if there is one available. Thus, preemption only

happens when a new job arrives. The DREP algorithm is a distributed protocol, has a small

number of preemptions, and is non-clairvoyant. A non-clairvoyant algorithm requires no

310

information regarding the unrevealed portions of the job’s DAG. That is, the algorithm is

oblivious to the structure of a job’s DAG.

We show the following theorem about the DREP.

Theorem 120 DREP is (2 + ε)-speed O(1
ε3

)-competitive for minimizing average flow time

in expectation for parallelizable DAG jobs on m identical processors for all fixed ε > 0.

The two largest improvements on previous results for average flow time in the DAG

model are that this algorithm is distributed and that it minimizes preemptions. Previous

algorithms required a scheduler to have global coordination. Additionally, the previous

algorithms required a number of preemptions unbounded in terms of m and n. We show

the following about the number of preemptions regarding DREP. Importantly, the algorithm

only preempts a job when a new job arrives.

Theorem 121 Using the DREP scheduling policy requires processors to switch between un-

satisfied jobs at most O(mn) times over the entire schedule. Further, if jobs are sequential,

the total expected number of preemptions is O(n).

The total number of preemptions for DREP is at most O(mn) for parallel jobs and

O(n) if all jobs are sequential. For sequential jobs, this matches the best known results for

clairvoyant algorithms which require complete knowledge of a job’s structure [49]. As far as

we are aware, our result is the first for a non-clairvoyant algorithm having guarantees on the

number of preemptions and on average flow time simultaneously (even for sequential jobs).

The closest result is that for Shortest-Elapsed-Time-First for sequential jobs which is known

to be (1 + ε)-speed O(1)-competitive for average flow time on identical processors [13, 93].

This algorithm is an idealized version of the Unix scheduler. The Unix scheduler provides

practical methods to ensure the algorithm uses O(n log n) preemptions.

The practical improvements of the algorithm are slightly offset by having worse speed

augmentation than what is known for LAPS in theory, but we believe that this our work is

the first theoretical result which could realistically be implemented and used in systems.

311

Other Related Work: Besides the work written above, there has been other work regarding

scheduling parallelizable jobs. Much previous work in this domain has considered a different

model of parallelizability known as the arbitrary speed-up curves model [64]. In this model,

each job i is processed in phases sequentially. During the jth phase for job i the job is

associated with a speed-up function Γi,j(m
′) specifying the rate at which the job is processed

when given m′ processors. Typically it is assumed that Γi,j is a non-decreasing concave

function; although there is some exceptions to this [62]. There have been great strides

in understanding this model and (1 + ε)-speed O(1)-competitive algorithms are known for

average flow time [66], the `k-norms of flow time [65,80], and flow time plus energy [47] and

results are known for maximum flow time [131]. The work of [136] considers a hybrid of the

DAG model and the speed-up curves setting.

While the speed-up curve model has been extensively studied, the model is a idealized

theoretical model. As argued in Chapter 11, the DAG model is the model of parallelizability

that most closest corresponds to jobs generated by parallel programs from most languages

and libraries. It is also argued there that the results for the two models can not be directly

translated and no model subsumes the other directly.

12.1 Preliminaries

We consider the problem of scheduling n total jobs that arrive online and must be scheduled

on m identical processors. Each job is in the form of a Directed-Acyclic-Graph (DAG). In

a DAG, a node is ready to be executed if all of its predecessors have been completed. Note

that a node in the DAG may only be executed by one processor at a time. For a given

job i, there are two important parameters. First the job has a total amount of work, Wi,

which is the sum of the processing times of all the nodes in the job’s DAG. Furthermore, the

job’s critical-path length Ci is the length of the longest path through its DAG, where the

312

length is defined to be the sum of the processing times of the nodes along that path. There

are two notable observations which involve these parameters.

Observation 122 Any job Ji takes at least max{Wi

m
, Ci} time to complete in any schedule

with unit speed.

Observation 123 If a job Ji has all of its r ready nodes being executed by a schedule with

speed s on m cores, where r ≤ m, then the remaining critical-path length of i decreases at a

rate of s.

In this chapter, we will specify the algorithm DREP we introduce using A when using

indices. Let WA
i (t) refer to sum of the remaining processing times of all nodes in job Ji’s

DAG in A’s schedule at time t. Let CA
i (t) refer to the remaining critical-path length for

job i in A’s schedule at time t, that is, the longest remaining path. Let A(t) denote the set

of jobs in A’s schedule which have arrived and remain unfinished at time t. In all of the

notations above, we replace the index A with O when refering to the same quantity in the

optimal schedule. We overload notation and let OPT refer to both the final objective of the

optimal schedule and the schedule itself.

Potential Function Analysis: Throughout this chapter we will utilize the potential func-

tion framework, also known as amortized analysis. For this technique, one defines a potential

function Φ(t) which depends on the state of the algorithm being considered and the optimal

solution at time t. Let Ga(t) denote the current cost of the algorithm at time t. This is

the total waiting time of all the arrived jobs up to time t if the objective is total flow time.

Similarly let Go(t) denote the current cost of the optimal solution up to time t. We note that

dGa(t)
dt

is the change in the algorithm’s objective at time t and this is equal to the number

of unsatisfied jobs in the algorithm’s schedule at time t, i.e. dGa(t)
dt

= |A(t)|. To bound

the competitiveness of an algorithm, one shows the following conditions about the potential

function.

313

Boundary condition: Φ is zero before any job is released and Φ is non-negative after all

jobs are finished.

Completion condition: Summing over all job completions by the optimal solution and

the algorithm, Φ does not increase by more than β ·OPT for some β ≥ 0.

Arrival condition: Summing over all job arrivals, Φ does not increase by more than α ·

OPT for some α ≥ 0.

Running condition: At any time t when no job arrives or is completed,

dGa(t)

dt
+

dΦ(t)

dt
≤ c · dGo(t)

dt
(12.1)

Integrating these conditions over time one gets that Ga−Φ(0) + Φ(∞) ≤ (α+ β + c) ·OPT

by the boundary, arrival and completion conditions. This shows the algorithm is (α+β+ c)-

competitive

12.2 DREP: A New Sequential Algorithm

We first introduce our algorithm Distributed Random Equi-Partition (DREP) when jobs

are sequential. The algorithm is a randomized distributed scheduling algorithm, which es-

sentially distributes processors evenly in a randomized manner. The algorithm re-assigns

processors to jobs only when a job arrives or completes.

When a new job arrives, there are two cases in how processors are re-distributed to the

new job. If there are one or more free processors then one such processor takes the new

job. Otherwise, if all processors are busy, then each processor switches to the new job with

probability 1
|A(t)| (breaking ties arbitrarily to give the job to at most one processor), where

|A(t)| is the number of alive jobs at the moment. Jobs that are not taken by any processor

are stored in a queue. A job Jj may be on this queue for two reasons: (1) Jj was not assigned

314

to a processor on arrival (no processor happened to switch to it); or (2) Jj was executing

on some processor and that processor preempted Jj and switched to working on another job

that arrived later. When a job is completed, the processor assigned to the job chooses a job

to work on uniformly at random from the queue of jobs.

One important consideration for a practical scheduling algorithm is the number of pre-

emptions caused by the schedule. Notice that the only time that there are preemptions of

jobs is when a job arrives. It is easy to see that the total number of preemptions is O(n)

in expectation implying the second part of Theorem 121. This is because either there is

a processor that is free to take the new job and no preemption occurs. Otherwise, there

are at least m jobs being processed and the probability an individual processor preempts is

1
|A(t| ≤

1
m

. Over all processors, at most 1 preempts in expectation per job arrival.

This algorithm’s theoretical guarantees for average flow time are subsumed by the analysis

for the case where jobs are parallelizable, which can be found in the next section. We note

that this is the first non-clairvoyant algorithm, even on a single machine, in the sequential

setting to use O(n) preemptions and be competitive for average flow time.

Observation 124 DREP performs O(n) preemptions in expectation when jobs are sequen-

tial.

12.3 DREP: A New Parallel Algorithm and Analysis

In this section our goal is to prove the main Theorem 120 for DREP. We will first describe

the scheduling algorithm of DREP for parallel jobs, then show how DREP maintains the

probability of a processor working on a job, and finally prove the theorem via potential

function. From this point on, we assume that our algorithm is given (2 + 2ε) speed for

positive constant ε < 1
2
.

315

12.3.1 DREP Algorithm for Parallel Jobs

First we introduce Distributed Random Equi-Partition (DREP) when scheduling jobs that

are parallelizable. Like the sequential setting, the algorithm distributes processors in a

randomized manner except now more than one processor can be assigned to a single job.

The algorithm assigns (or re-assigns) processors to jobs only when a job arrives or completes.

When a new job arrives, each processor switches to the new job with probability 1
|A(t)| .

Jobs are allowed to have more than one processor assigned to them. Jobs not assigned to

processors are stored in a queue. When a job is completed, all processors assigned to the job

choose an unsatisfied job to work on uniformly at random (in the queue or currently being

processed).

Processors work on the available ready nodes for the job they are assigned to using any

work-conserving scheduler. Note that there may be more processors assigned to a job than

the number of ready nodes in that job. In such a case, the extra processors may simply idle

until more ready nodes become available.

The algorithm requires neither the information about the overall structure of the DAG

for a job nor the knowledge of the total work of a job. Notice that on each processor a

preemption of jobs only happen when a new job arrives. Therefore, it is easy to see that the

total number of preemptions is O(mn) implying the first part of Theorem 121.

Observation 125 DREP performs O(mn) preemptions in expectation when jobs are paral-

lelizable.

12.3.2 Probability of Working on a Job under DREP

Before we prove the competitive ratio of DREP, we first give a lemma about the probability

that a processor is working on a specific job, followed by a corollary.

Lemma 126 For any alive job Jj and a processor i the probability that processor i is working

on job Jj is 1
|A(t)| .

316

Proof. We prove the lemma inductively on the arrival and completion of jobs. Fix any

time t and let n′ = |A(t)| be the current number of alive jobs in the algorithm just before

time t.

First consider the arrivals of jobs. Initially, when there are no jobs the lemma statement

is vacuously true. Say that at this time a new job Jn′+1 arrives. The probability of any

processor switching to this job Jn′+1 is 1
n′+1

since there are now n′ + 1 jobs alive. Now

consider any job Jj that was alive before the new job arrived. By the inductive hypothesis

processor i is working on Jj with probability 1
n′

just before job Jn′+1’s arrival. A processor

which was working on Jj has a probability of (1− 1
n′+1

) of not switching to the newly arrived

job. Therefore, the overall probability of the processor continues working on Jj is then

1
n′

(1− 1
n′+1

) = 1
n′+1

, the desired probability.

For the second case, say that a job Jj′ is completed at time t. Suppose a processor i

becomes free after a job finishes. In the algorithm, the processor chooses a new job to work

on at random. This precisely gives a probability of 1
n′−1

chance to process any job, the

desired probability. The lemma holds for any alive job and any processor i that became free.

Alternatively, consider a processor i not working on the job completed. Let i → j be the

event that processor i is working on job Jj just before time t and i 9 j be the event it is

not. This processor is working on any alive Jj with probability

Pr[i→ j | i9 j′] = Pr[i→ j and i9 j′]/Pr[i9 j′]

Inductively, we have Pr[i9 j′] = 1− 1
n′

and Pr[i→ j and i9 j′] = Pr[i→ j] = 1
n′

.

Thus, Pr[i→ j | i9 j′] = 1
n′−1

.

Using lemma 126 and the fact that there are a total of m processors, we can show the

following lemma using the definition of expected value.

Corollary 127 For any alive job Jj at any time t, the expected number of processors it is

assigned is m
|A(t)| .

317

12.3.3 Potential Function Analysis for DREP

We analyze this algorithm using potential functions. Let Zi(t) := max{WA(t) −WO(t), 0}

for each job Ji. The variable Zi(t) is the total amount of work job Ji has fallen behind in

algorithm at time t as compared to the optimal solution (the lag of i). Further, let CA
i (t) be

the remaining critical path length for job Ji in the algorithm’s schedule.

Define ranki(t) =
∑

j∈A(t),rj≤ri 1 of job Ji to be the number of jobs in A(t) that arrived

before job Ji.

The potential function we use is given here. Note that it is a summation over all jobs in

the algorithm’s queue.

Φ(t) =
10

ε

∑
i∈A(t)

(
1

m
ranki(t)Zi(t) +

10

ε2
CA
i (t)

)
We will show the arrival and completion conditions, followed by the running condition.

Lemma 128 The completion of jobs by either the algorithm or the optimal schedule do not

increase the potential.

Proof. Consider when the algorithm completes a job Jj at time t. First look at its

contribution to its own term in the summation. Note that when j is completed, by definition

both CA
j (t) and Zj(t) are zero because j must not have any work remaining. Therefore,

removing this term in the summation has no effect on the potential. Now look at the job’s

contribution to the terms for other jobs in the summation. The only effect of removing j

is that the rank of jobs which arrived after it are decreased. Therefore, this decreases the

potential as all terms are positive. Hence, in either case, the potential does not increase.

Lemma 129 The arrival of all jobs increases the potential function by at most O(1
ε3

)OPT.

Proof. Let i be a job that arrives at some time t. The arrival of a job does not change the

rank of any previous jobs, therefore, its only effect is the addition of a term in the potential

318

for itself. Examine the corresponding term of the potential. Since neither the algorithm nor

the optimal schedule have worked on this job yet, Zi(t) = 0.

Job i has a critical path length of Ci. Therefore, the change in the potential is (10
ε

)10
ε2
Ci.

However, recall that Ci is a lower bound on the flow time of job Ji. Therefore, calculating

the total over all jobs, the change in potential is bounded by O(1
ε3

)OPT.

Now we must show that the running condition holds. Recall that the running condition

involves the instantaneous change at any moment in time. We bound this for each fixed

time. Consider any time t. We first show the change in the potential function Φ(t) due to

the processing of OPT.

Lemma 130 The optimal schedule’s processing of jobs at t increases the potential function

by at most 10
ε
|A(t)|.

Proof. The optimal schedule’s processing only changes the first term of any item in the

summation of the potential, since CA
i (t) only depends on the algorithm. The first term for

any job is a product of the rank and work remaining of the job. Therefore, the increase in

potential is maximized if OPT were to use all m processors to work on the job with maximum

rank. Note that the maximum rank is exactly equal to the number of jobs remaining in A(t).

Therefore, the increase in potential is no more than m10
ε

1
m
|A(t)| = 10

ε
|A(t)|.

Now we are ready to show the running condition.

Lemma 131 In expectation, at any time t the running condition holds as following.

dGa(t)

dt
+

dΦ(t)

dt
≤ O(

1

ε2
) · dGo(t)

dt

At time t, consider the set of jobs alive in the algorithm and fix this set to be A(t).

Though A(t) is a random variable dependent on the processing of the algorithm, we will

show that the running condition holds for any set A(t). If we do so, then by the definition

319

of expected value we have shown that in expectation the running condition holds. We fix a

set A(t) for the analysis and break this analysis into two cases.

In the first case, there are a few jobs which possess a small amount of ready nodes.

Lemma 132 Suppose that there are at least ε
10
|A(t)| jobs for which the number of ready

nodes is no more than m
|A(t)| , then the running condition is satisfied in expectation.

Proof. Let the set of such jobs with the required number of ready nodes be S. In this case,

because of Corollary 127 we know that all ready nodes of these jobs are being scheduled

in expectation. From Observation 123, the critical path length CA
i (t) of this job is being

decreased at a rate of (2 + 2ε) which changes the potential. Therefore, due to the processing

of the algorithm, the expected change in potential at least the following:

E
[
dΦ(t)

dt

]
≤ −10

ε

∑
i∈S

(
10

ε2
dCA

i (t)

dt

)
≤ −10

ε

∑
i∈S

(
10

ε2
(2 + 2ε)

)
≤ −10

ε

ε

10
|A(t)|10

ε2
(2 + 2ε) ≤ −10

ε2
(2 + 2ε)|A(t)|

≤ −20

ε
|A(t)|

Combining this with the Lemma 130 we see that the change of the potential in expectation

is at most −10
ε
|A(t)|. Therefore, in expectation the running condition is satisfied (since

dGa(t)
dt

= |A(t)|).

Now it remains to show the other case. But first, we make the following useful claim.

Claim 133 At time t, if |O(t)| ≥ ε
10
|A(t)|, then the running condition is satisfied. In other

words, if there are at least ε
10
|A(t)| jobs alive in the optimal schedule at time t, the running

condition is satisfied.

Proof. Note that the algorithm cannot increase the potential function due to its process-

ing since it may only decrease the remaining critical path length or work on jobs. Now,

suppose |O(t)| ≥ ε
10

, we will ignore the algorithm’s impact on the potential. We combine

320

this condition and Lemma 130 to examine the running condition.

dGa(t)

dt
+

dΦ(t)

dt
≤ |A(t)|+ 10

ε
|A(t)| ≤ (1 +

10

ε
)|10

ε
|O(t)|

≤ O(
1

ε2
)|O(t)| ≤ O(

1

ε2
)
dGo(t)

dt

This claim effectively restricts the number of alive jobs in the optimal schedule. Now we

can prove the second case, in which most jobs have a large amount of ready nodes.

Lemma 134 Suppose that there are at least (1 − ε
10

)|A(t)| jobs for which there are more

ready nodes than m
|A(t)| , then the running condition is satisfied in expectation.

Proof. In this case, let all jobs which satisfy the ready nodes condition be the set S, note

that |S| ≥ (1− ε
10

)|A(t)|. Note that if there are many jobs in |O(t)| the proof is done due to

claim 133. Therefore, we assume that the optimal schedule has less than ε
10
|A(t)| jobs alive.

Let SA be the set of jobs in S which are in |A(t)| but not |O(t). Since there is a bound on the

number of jobs in |O(t)|, we can show that |SA| ≥ |S| − ε
10
|A(t)| ≥ (1 − ε

5
)|A(t)|. For each

job Ji in SA, the algorithm’s processing affects the Zi(t) term in the potential function. Note

that since |A(t)| is fixed, the rank of each such job is fixed. Therefore we may bound the

expected change in potential due to the effects on the Z terms. Recall that in expectation,

each job receives m
|A(t)| processors (Corollary 127).

E
[
dΦa(t)

dt

]
≤ −10

ε

∑
i∈SA

(
1

m
ranki(t)E

[
dZi(t)

dt

])
≤ −10

ε

∑
i∈SA

(
1

m
ranki(t)

m

|A(t)|
(2 + 2ε)

)
≤ −20 + 20ε

ε|A(t)|
∑
i∈SA

ranki(t)

321

Here in the worst case, the jobs alive in SA have the lowest rank, therefore we can switch

the summation to a summation of ranks.

E
[
dΦa(t)

dt

]
≤ −20 + 20ε

ε|A(t)|

(1− ε
5

)|A(t)|∑
i=1

i ≤ −20 + 20ε

ε|A(t)|
(1− ε

5
)2|A(t)|2

2

≤ −1

ε
|A(t)|

(
(10 + 10ε)(1− ε

5
)2
)
≤ −1

ε
|A(t)|(1 + 3ε) [ε ≤ 1

2
]

This is the expected change in potential. Note that from Lemma 130 we know that the

optimal schedule changes the potential by 1
ε
|A(t)|. Therefore, the total change in potential

is −3|A(t)|. This means that for the running condition we have the following in aggregate

over the algorithm and optimal solutions processing jobs:

E
[
dGa(t)

dt
+

dΦ(t)

dt

]
≤ |A(t)| − 3|A(t)| ≤ 0

This means that the running condition is satisfied in expectation for this case.

Proof of 131. By Lemmas 132 and 134, we have shown the running condition is satisfied

for any given set A(t) in expectation. This result is conditioned on a given set A(t). To show

that the running condition holds in expectation, it is necessary to invoke the definition of

expected value. However in this case all the outcomes are the same. Therefore, the running

condition holds in expectation at any time t and the lemma is proved. �

Since we have proved the completion, arrival, and running conditions. Theorem 120

directly follows due to the potential function framework. Note that the competitive ratio is

O(1
ε3

) +O(1
ε2

) = O(1
ε3

).

322

Chapter 13

Conclusion

Today, all computing platforms, from cellphones to desktops to clouds, are parallel ma-

chines. In addition, the imperatives to reduce power consumptions as well as assembly and

production costs are pushing system deployment toward combining multiple applications

onto a common platform. Examples span from clouds where multiple clients submit their

applications to consolidated Electronic Control Units on modern cars that host multiple

applications with diverse functionalities from brake control to infotainment. As this inte-

gration continues, we face challenges in designing platforms which can provide appropriate

guarantees to each latency-critical application while preserving scalability. Hence, this the-

sis focuses on developing theoretical foundations and practical implementations to increase

the efficiency of parallel computing platforms, with a particular focus on systems that have

latency-critical applications.

In scheduling latency-critical jobs on multicore systems, this thesis focuses on jobs which

require parallelism. While researchers have looked at how to schedule multiple sequential

jobs with various kinds of latency-related constraints, there has been little research on how to

schedule multiple parallel jobs. However, with increasingly complex functionalities, todays

applications must exploit internal parallelism and utilize multiple cores at the same time, in

order to complete their growing computational demands within stringent timing constraints.

Part I considers static real-time systems where the arrival patterns and computational

demands of jobs are known in advance and modeled as reoccurring real-time tasks; and the

temporal correctness (i.e., schedulability) of tasks must be guaranteed prior to the execution.

For this type of systems, the thesis first analyzed the classic GEDF and GRM schedulers

for parallel tasks, and proved an upper and lower bound of 2.6 for capacity augmentation of

323

GEDF and an upper bound of 3.7 for GRM. The thesis then proposed a novel scheduling

paradigm, called federated scheduling, that assigns dedicated cores to each parallel task

and calculates the best core allocation. Interestingly, despite the fact that a task is only

allowed to execute on a limited number of cores instead of all the cores like GEDF, federated

scheduling has the optimal capacity bound of 2. Moreover, it has better locality and lower

overheads in practice. The thesis further considers the static real-time systems that have

multiple criticality levels or only requires meeting soft deadlines, and generalize the federated

paradigm to these systems.

Part II focuses on online system with latency-critical applications. In many application

environments such as clouds, grids and shared servers, clients send jobs to be processed on

a server and the server scheduler decides when to process them. The goal of the scheduler

is both to use the resources efficiently and to provide a good quality of service to jobs.

In these systems, jobs arrive over time and the scheduler does not know the existence of

jobs until they arrive. Instead of guaranteeing schedulability prior to execution (which

would be impossible), online schedulers try to optimize some application-specific performance

objectives. Therefore, the thesis considers different objectives, including minimizing average

latency, maximum latency, number of jobs missing their individual deadlines and number

of jobs missing a target latency. For each objective, the thesis proposed corresponding

schedulers that are provably good and practically efficient.

By developing new scheduling strategies, analysis tools, and practical platform design

techniques, this thesis shows that via appropriately leveraging the internal parallelism of

latency-critical applications, static and online real-time systems are able to exploit the un-

tapped efficiencies in the multicore platforms to drastically improve the quality of service

guarantees of applications with increasing computational demands.

324

References

[1] Umut A Acar, Guy E Blelloch, and Robert D Blumofe. The data locality of work
stealing. In 12th ACM symposium on Parallel algorithms and architectures (SPAA),
pages 1–12, 2000.

[2] Kunal Agrawal, Charles E Leiserson, Yuxiong He, and Wen Jing Hsu. Adaptive work-
stealing with parallelism feedback. ACM Transactions on Computer Systems (TOCS),
26(3):7, 2008.

[3] Christoph Ambühl and Monaldo Mastrolilli. On-line scheduling to minimize max flow
time: an optimal preemptive algorithm. Oper. Res. Lett., 33(6):597–602, 2005.

[4] S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted flow-
time explained by dual fitting. In ACM-SIAM Symposium on Discrete Algorithms
SODA, pages 1228–1241, 2012.

[5] Björn Andersson, Sanjoy Baruah, and Jan Jonsson. Static-priority scheduling on mul-
tiprocessors. In 22nd IEEE Real-Time Systems Symposium (RTSS), pages 193–202,
2001.

[6] Björn Andersson and Dionisio de Niz. Analyzing global-edf for multiprocessor schedul-
ing of parallel tasks. Principles of Distributed Systems, pages 16–30, 2012.

[7] Björn Andersson and Jan Jonsson. The utilization bounds of partitioned and pfair
static-priority scheduling on multiprocessors are 50%. In 15th Euromicro Conference
on Real-Time Systems (ECRTS), pages 33–40, 2003.

[8] Nimar S Arora, Robert D Blumofe, and C Greg Plaxton. Thread scheduling for mul-
tiprogrammed multiprocessors. Theory of Computing Systems, 34(2):115–144, 2001.

[9] Philip Axer, Sophie Quinton, Moritz Neukirchner, Rolf Ernst, Bjorn Dobel, and Her-
mann Hartig. Response-time analysis of parallel fork-join workloads with real-time
constraints. In Real-Time Systems (ECRTS), 25th Euromicro Conference on, pages
215–224, 2013.

[10] Theodore P Baker and Sanjoy K Baruah. Sustainable multiprocessor scheduling of
sporadic task systems. In 21st Euromicro Conference on Real-Time Systems (ECRTS),
pages 141–150, 2009.

[11] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Competitive algorithms for due date
scheduling. Algorithmica, 59(4):569–582, 2011.

[12] Nikhil Bansal, Ravishankar Krishnaswamy, and Viswanath Nagarajan. Better scalable
algorithms for broadcast scheduling. ACM Transactions on Algorithms, 11:3:1–3:24,
2014.

325

[13] Neal Barcelo, Sungjin Im, Benjamin Moseley, and Kirk Pruhs. Shortest-elapsed-time-
first on a multiprocessor. In Design and Analysis of Algorithms - 1st Mediterranean
Conference on Algorithms (MedAlg), pages 82–92, 2012.

[14] Sanjoy Baruah. Optimal utilization bounds for the fixed-priority scheduling of peri-
odic task systems on identical multiprocessors. Computers, IEEE Transactions on,
53(6):781–784, 2004.

[15] Sanjoy Baruah. Certification-cognizant scheduling of tasks with pessimistic frequency
specification. In IEEE International Symposium on Industrial Embedded Systems
(SIES), pages 31–38, 2012.

[16] Sanjoy Baruah. Semantics-preserving implementation of multirate mixed-criticality
synchronous programs. In 20th International Conference on Real-Time and Network
Systems (RTNS), pages 11–19, 2012.

[17] Sanjoy Baruah and Theodore Baker. Schedulability analysis of global edf. Real-Time
Systems, 38(3):223–235, 2008.

[18] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan Li, Alberto
Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. The preemptive
uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task systems.
In Real-Time Systems (ECRTS), 24th Euromicro Conference on, pages 145–154, 2012.

[19] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Sebastian
Stiller. Improved multiprocessor global schedulability analysis. Real-Time Systems,
46(1):3–24, 2010.

[20] Sanjoy Baruah, Alan Burns, and Robert Davis. Response-time analysis for mixed
criticality systems. In 32nd IEEE Real-Time Systems Symposium (RTSS), pages 34–
43, 2011.

[21] Sanjoy Baruah, Bipasa Chattopadhyay, Haohan Li, and Insik Shin. Mixed-criticality
scheduling on multiprocessors. Real-Time Systems, 50(1):142–177, 2014.

[22] Sanjoy Baruah, Haohan Li, and Leen Stougie. Towards the design of certifiable mixed-
criticality systems. In 16th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), pages 13–22, 2010.

[23] Sanjoy K Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Leen Stougie,
and Andreas Wiese. A generalized parallel task model for recurrent real-time processes.
In 33rd IEEE Real-Time Systems Symposium (RTSS), pages 63–72, 2012.

[24] Sanjoy K. Baruah, Gilad Koren, Decao Mao, Bhubaneswar Mishra, Arvind Raghu-
nathan, Louis E. Rosier, Dennis Shasha, and Fuxing Wang. On the competitiveness
of on-line real-time task scheduling. Real-Time Systems, 4(2):125–144, 1992.

326

[25] Sanjoy K. Baruah, Gilad Koren, Bhubaneswar Mishra, Arvind Raghunathan, Louis E.
Rosier, and Dennis Shasha. On-line scheduling in the presence of overload. In Sympo-
sium on Foundations of Computer Science, pages 100–110, 1991.

[26] Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. In 11th IEEE Real-Time Systems
Symposium (RTSS), pages 182–190, 1990.

[27] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, and Kirk Pruhs.
Online weighted flow time and deadline scheduling. Journal of Discrete Algorithms,
4(3):339–352, 2006.

[28] Michael A. Bender, Soumen Chakrabarti, and S. Muthukrishnan. Flow and stretch
metrics for scheduling continuous job streams. In SODA ’98, pages 270–279, 1998.

[29] Marko Bertogna and Sanjoy Baruah. Tests for global edf schedulability analysis. Jour-
nal of systems architecture, 57(5):487–497, 2011.

[30] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Schedulability analysis of
global scheduling algorithms on multiprocessor platforms. Parallel and Distributed
Systems, IEEE Transactions on, 20(4):553–566, 2009.

[31] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. Provably efficient scheduling
for languages with fine-grained parallelism. Journal of the ACM, 46(2):281–321, 1999.

[32] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson,
Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
Journal of parallel and distributed computing, 37(1):55–69, 1996.

[33] Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations
by work stealing. Journal of the ACM, 46(5):720–748, 1999.

[34] Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, and Andreas
Wiese. Feasibility analysis in the sporadic dag task model. In 25th Euromicro Confer-
ence on Real-Time Systems (ECRTS), pages 225–233, 2013.

[35] Sem C Borst, Onno J Boxma, Rudesindo Núñez-Queija, and AP Zwart. The impact of
the service discipline on delay asymptotics. Performance Evaluation, 54(2):175–206,
2003.

[36] Björn B. Brandenburg and James H. Anderson. On the implementation of global real-
time schedulers. In 30th IEEE Real-Time Systems Symposium (RTSS), pages 214–224,
2009.

[37] Björn B Brandenburg, John M Calandrino, and James H Anderson. On the scalability
of real-time scheduling algorithms on multicore platforms: A case study. In IEEE
Real-Time Systems Symposium (RTSS), pages 157–169, 2008.

327

[38] Mark Broadie and Paul Glasserman. Estimating security price derivatives using sim-
ulation. Manage. Sci., 42:269–285, 1996.

[39] Alan Burns and Rob Davis. Mixed criticality systems: A review. Department of
Computer Science, University of York, Tech. Rep, 2016.

[40] Carl Bussema and Eric Torng. Greedy multiprocessor server scheduling. Operations
research letters, 34(4):451–458, 2006.

[41] Colin Campbell and Ade Miller. A Parallel Programming with Microsoft Visual C++:
Design Patterns for Decomposition and Coordination on Multicore Architectures. Mi-
crosoft Press, 2011.

[42] Felipe Cerqueira and Björn B Brandenburg. A comparison of scheduling latency in
linux, preempt-rt, and litmusrt. pages 19–29, 2013.

[43] Felipe Cerqueira, Manohar Vanga, and Björn B Brandenburg. Scaling global schedul-
ing with massage passing. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), IEEE 20th, pages 263–274, 2014.

[44] Felipe Cerqueira, Manohar Vanga, and Bjorn B Brandenburg. Scaling global scheduling
with message passing. In IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 263–274, 2014.

[45] J. S. Chadha, N. Garg, A. Kumar, and V. N. Muralidhara. A competitive algorithm
for minimizing weighted flow time on unrelated machines with speed augmentation. In
STOC, 2009.

[46] Ho-Leung Chan, Jeff Edmonds, Tak Wah Lam, Lap-Kei Lee, Alberto Marchetti-
Spaccamela, and Kirk Pruhs. Nonclairvoyant speed scaling for flow and energy. In
STACS, pages 255–264, 2009.

[47] Ho-Leung Chan, Jeff Edmonds, and Kirk Pruhs. Speed scaling of processes with
arbitrary speedup curves on a multiprocessor. Theory Comput. Syst., 49:817–833,
2011.

[48] Sze-Hang Chan, Tak Wah Lam, and Lap-Kei Lee. Non-clairvoyant speed scaling for
weighted flow time. In ESA (1), pages 23–35, 2010.

[49] Chandra Chekuri, Ashish Goel, Sanjeev Khanna, and Amit Kumar. Multi-processor
scheduling to minimize flow time with epsilon resource augmentationn. In STOC,
pages 363–372, 2004.

[50] Chandra Chekuri, Sungjin Im, and Benjamin Moseley. Online scheduling to minimize
maximum response time and maximum delay factor. Theory of Computing, 8(1):165–
195, 2012.

328

[51] Hoon Sung Chwa, Jinkyu Lee, Kieu-My Phan, Arvind Easwaran, and Insik Shin.
Global edf schedulability analysis for synchronous parallel tasks on multicore platforms.
In Real-Time Systems (ECRTS), 25th Euromicro Conference on, pages 25–34, 2013.

[52] Sébastien Collette, Liliana Cucu, and Joël Goossens. Integrating job parallelism in
real-time scheduling theory. Information Processing Letters, 106(5):180–187, 2008.

[53] G. Cortazar, M. Gravet, and J. Urzua. The valuation of multidimensional american real
options using the lsm simulation method. Comp. and Operations Research., 35(1):113–
129, 2008.

[54] Robert I Davis and Alan Burns. A survey of hard real-time scheduling for multipro-
cessor systems. ACM Computing Surveys, 43(4):35, 2011.

[55] Dionisio de Niz and Linh TX Phan. Partitioned scheduling of multi-modal mixed-
criticality real-time systems on multiprocessor platforms. In 20th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 111–122, 2014.

[56] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the ACM,
56(2):74–80, 2013.

[57] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: Amazon’s highly available key-value store. In ACM Sympo-
sium on Operating Systems Principles (SOSP), pages 205–220, 2007.

[58] Umamaheswari C Devi. Soft real-time scheduling on multiprocessors. PhD thesis,
University of North Carolina at Chapel Hill, 2006.

[59] UmaMaheswari C Devi and James H Anderson. Tardiness bounds under global edf
scheduling on a multiprocessor. Real-Time Systems, 38(2):133–189, 2008.

[60] José Luis Dı́az, Daniel F Garćıa, Kanghee Kim, Chang-Gun Lee, Lucia Lo Bello,
José Maŕıa López, Sang Lyul Min, and Orazio Mirabella. Stochastic analysis of periodic
real-time systems. In 23rd IEEE Real-Time Systems Symposium (RTSS), pages 289–
300, 2002.

[61] Arvind Easwaran. Demand-based scheduling of mixed-criticality sporadic tasks on one
processor. In 34th IEEE Real-Time Systems Symposium (RTSS), pages 78–87, 2013.

[62] Roozbeh Ebrahimi, Samuel McCauley, and Benjamin Moseley. Scheduling parallel
jobs online with convex and concave parallelizability. In Approximation and Online
Algorithms - 13th International Workshop (WAOA), pages 183–195, 2015.

[63] Jeff Edmonds. Scheduling in the dark. Theor. Comput. Sci., 235(1):109–141, 2000.
Preliminary version in STOC 1999.

329

[64] Jeff Edmonds, Donald D Chinn, Tim Brecht, and Xiaotie Deng. Non-clairvoyant mul-
tiprocessor scheduling of jobs with changing execution characteristics. J. Scheduling,
6(3):231–250, 2003.

[65] Jeff Edmonds, Sungjin Im, and Benjamin Moseley. Online scalable scheduling for the
`k-norms of flow time without conservation of work. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2011.

[66] Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes with arbitrary speedup
curves. ACM Transactions on Algorithms, 8:28, 2012.

[67] Pontus Ekberg and Wang Yi. Bounding and shaping the demand of generalized mixed-
criticality sporadic task systems. Real-time systems, 50(1):48–86, 2014.

[68] Jeremy Erickson, U Devi, and Sanjoy Baruah. Improved tardiness bounds for global
edf. In Real-Time Systems (ECRTS), 22nd Euromicro Conference on, pages 14–23,
2010.

[69] Jeremy P Erickson, James H Anderson, and Bryan C Ward. Fair lateness scheduling:
Reducing maximum lateness in g-edf-like scheduling. Real-Time Systems, 50(1):5–47,
2014.

[70] David Ferry, Gregory Bunting, Amin Maghareh, Arun Prakash, Shirley Dyke, Kunal
Agrawal, Christopher Gill, and Chenyang Lu. Real-time system support for hybrid
structural simulation. In 14th International Conference on Embedded Software (EM-
SOFT), page 25, 2014.

[71] David Ferry, Jing Li, Mahesh Mahadevan, Kunal Agrawal, Christopher Gill, and
Chenyang Lu. A real-time scheduling service for parallel tasks. In 19th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS), pages 261–272,
2013.

[72] Nathan Fisher, Sanjoy Baruah, and Theodore P Baker. The partitioned scheduling of
sporadic tasks according to static-priorities. In 18th Euromicro Conference on Real-
Time Systems (ECRTS), pages 10–pp, 2006.

[73] Kyle Fox, Sungjin Im, and Benjamin Moseley. Energy efficient scheduling of paralleliz-
able jobs. In ACM-SIAM symposium on Discrete algorithms (SODA), pages 948–957,
2013.

[74] Kyle Fox and Benjamin Moseley. Online scheduling on identical machines using srpt.
In SODA, pages 120–128, 2011.

[75] Matteo Frigo, Charles E Leiserson, and Keith H Randall. The implementation of the
cilk-5 multithreaded language. In ACM Sigplan Notices, volume 33, pages 212–223.
ACM, 1998.

330

[76] Joël Goossens, Shelby Funk, and Sanjoy Baruah. Priority-driven scheduling of periodic
task systems on multiprocessors. Real-time systems, 25(2-3):187–205, 2003.

[77] Ronald L Graham. Bounds for certain multiprocessing anomalies. Bell System Tech-
nical Journal, 45(9):1563–1581, 1966.

[78] Xiaozhe Gu, Arvind Easwaran, Kieu-My Phan, and Insik Shin. Resource efficient
isolation mechanisms in mixed-criticality scheduling. In Real-Time Systems (ECRTS),
27th Euromicro Conference on, pages 13–24, 2015.

[79] Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. Effective and efficient schedul-
ing of certifiable mixed-criticality sporadic task systems. In 32nd IEEE Real-Time
Systems Symposium (RTSS), pages 13–23, 2011.

[80] Anupam Gupta, Sungjin Im, Ravishankar Krishnaswamy, Benjamin Moseley, and Kirk
Pruhs. Scheduling jobs with varying parallelizability to reduce variance. In Symposium
on Parallel Algorithms and Architectures (SPAA), pages 11–20, 2010.

[81] Anupam Gupta, Sungjin Im, Ravishankar Krishnaswamy, Benjamin Moseley, and Kirk
Pruhs. Scheduling heterogeneous processors isn’t as easy as you think. In ACM-SIAM
symposium on Discrete algorithms (SODA), pages 1242–1253, 2012.

[82] Md E Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety, Ricardo Bianchini, and
Kathryn S McKinley. Few-to-many: Incremental parallelism for reducing tail latency
in interactive services. In ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 161–175, 2015.

[83] Y. He, S. Elnikety, J. Larus, and C. Yan. Zeta: Scheduling interactive services with
partial execution. In ACM Symposium on Cloud Computing (SOCC), page 12, 2012.

[84] Yuxiong He, Wen-Jing Hsu, and Charles E Leiserson. Provably efficient online non-
clairvoyant adaptive scheduling. Parallel and Distributed Systems, IEEE Transactions
on (TPDS), 19(9):1263–1279, 2008.

[85] Yuxiong He, Charles E Leiserson, and William M Leiserson. The cilkview scalability
analyzer. In 22nd ACM symposium on Parallelism in algorithms and architectures
(SPAA), pages 145–156, 2010.

[86] Sungjin Im and Benjamin Moseley. Online scalable algorithm for minimizing lk-norms
of weighted flow time on unrelated machines. In Proceedings of the 22nd ACM-SIAM
Symposium on Discrete Algorithms SODA, 2011, pages 95–108, 2011.

[87] Sungjin Im and Benjamin Moseley. General profit scheduling and the power of mi-
gration on heterogeneous machines. In Symposium on Parallelism in Algorithms and
Architectures, 2016.

[88] Sungjin Im, Benjamin Moseley, and Kirk Pruhs. A tutorial on amortized local com-
petitiveness in online scheduling. SIGACT News, 42(2):83–97, 2011.

331

[89] Intel. Intel CilkPlus v1.2, Sep 2013. https://www.cilkplus.org/sites/default/

files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm.

[90] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai Menache, Mikhail Rybalkin,
and Chenyu Yan. Speeding up distributed request-response workflows. In ACM SIG-
COMM Computer Communication Review, volume 43, pages 219–230, 2013.

[91] Myeongjae Jeon, Yuxiong He, Sameh Elnikety, Alan L Cox, and Scott Rixner. Adaptive
parallelism for web search. In ACM European Conference on Computer Systems, pages
155–168, 2013.

[92] Bala Kalyanasundaram and Kirk Pruhs. Fault-tolerant real-time scheduling. Algorith-
mica, 28(1):125–144, 2000.

[93] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J. ACM,
47(4):617–643, 2000.

[94] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G. Wei, and
David Brooks. Profiling a warehouse-scale computer. In ACM SIGARCH International
Conference on Computer Architecture (ISCA), pages 158–169, 2015.

[95] Shinpei Kato and Yutaka Ishikawa. Gang edf scheduling of parallel task systems. In
30th IEEE Real-Time Systems Symposium (RTSS), pages 459–468, 2009.

[96] Junsung Kim, Hyoseung Kim, Karthik Lakshmanan, and Ragunathan Raj Rajkumar.
Parallel scheduling for cyber-physical systems: Analysis and case study on a self-
driving car. In 4th International Conference on Cyber-Physical Systems (ICCPS),
pages 31–40, 2013.

[97] Saehoon Kim, Yuxiong He, Seung-Won Hwang, Sameh Elnikety, and Seungjin Choi.
Delayed-Dynamic-Selective (DDS) prediction for reducing extreme tail latency in web
search. In ACM International Conference on Web Search and Data Mining (WSDM),
2015.

[98] JFC Kingman. Inequalities in the theory of queues. Journal of the Royal Statistical
Society. Series B (Methodological), pages 102–110, 1970.

[99] Leonard Kleinrock. Time-shared systems: A theoretical treatment. Journal of the
ACM (JACM), 14(2):242–261, 1967.

[100] Gilad Koren and Dennis Shasha. MOCA: A multiprocessor on-line competitive algo-
rithm for real-time system scheduling. Theor. Comput. Sci., 128(1&2):75–97, 1994.

[101] Gilad Koren and Dennis Shasha. Dover: An optimal on-line scheduling algorithm for
overloaded uniprocessor real-time systems. SIAM J. Comput., 24(2):318–339, 1995.

[102] Karthik Lakshmanan, Dionisio de Niz, and Ragunathan Rajkumar. Mixed-criticality
task synchronization in zero-slack scheduling. In 17th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 47–56, 2011.

332

https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm

[103] Karthik Lakshmanan, Shinpei Kato, and Ragunathan Rajkumar. Scheduling parallel
real-time tasks on multi-core processors. In 31st IEEE Real-Time Systems Symposium
(RTSS), pages 259–268, 2010.

[104] Doug Lea. A Java fork/join framework. In ACM 2000 Conference on Java Grande,
pages 36–43, 2000.

[105] Jinkyu Lee and Kang G Shin. Controlling preemption for better schedulability in
multi-core systems. In 33rd IEEE Real-Time Systems Symposium (RTSS), pages 29–
38, 2012.

[106] Wan Yeon Lee and LEE Heejo. Optimal scheduling for real-time parallel tasks. IEICE
transactions on information and systems, 89(6):1962–1966, 2006.

[107] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of a task parallel
library. In Acm Sigplan Notices, volume 44, pages 227–242, 2009.

[108] Juri Lelli, Giuseppe Lipari, Dario Faggioli, and Tommaso Cucinotta. An efficient
and scalable implementation of global edf in linux. In 7th International Workshop on
Operating Systems Platforms for Embedded Real-Time Applications (OSPERT), pages
6–15, 2011.

[109] Stefano Leonardi and Danny Raz. Approximating total flow time on parallel machines.
Journal of Computer and Systems Sciences, 73(6):875–891, 2007.

[110] Hennadiy Leontyev and James H Anderson. Generalized tardiness bounds for global
multiprocessor scheduling. Real-Time Systems, 44(1-3):26–71, 2010.

[111] J. Li, Jian-Jia Chen, K. Agrawal, C.Lu, C.D. Gill, and Abusayeed Saifullah. Analysis
of federated and global scheduling for parallel real-time tasks. In Real-Time Systems
(ECRTS), 26th Euromicro Conference on, pages 85–96, 2014.

[112] Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Analysis of global edf for
parallel tasks. In Real-Time Systems (ECRTS), 25th Euromicro Conference on, pages
3–13, 2013.

[113] Jing Li, Zheng Luo, David Ferry, Kunal Agrawal, Christopher Gill, and Chenyang Lu.
Global edf scheduling for parallel real-time tasks. Real-Time Systems, 51(4):395–439,
2015.

[114] Cong Liu and James Anderson. Supporting soft real-time parallel applications on mul-
ticore processors. In Embedded and Real-Time Computing Systems and Applications
(RTCSA), IEEE 18th International Conference on, pages 114–123, 2012.

[115] Guangdong Liu, Ying Lu, Shige Wang, and Zonghua Gu. Partitioned multiprocessor
scheduling of mixed-criticality parallel jobs. In Embedded and Real-Time Computing
Systems and Applications (RTCSA), IEEE 20th International Conference on, pages
1–10, 2014.

333

[116] José Maŕıa López, José Luis Dı́az, Joaqúın Entrialgo, and Daniel Garćıa. Stochastic
analysis of real-time systems under preemptive priority-driven scheduling. Real-Time
Systems, 40(2):180–207, 2008.

[117] José Maŕıa López, José Luis Dı́az, and Daniel F Garćıa. Utilization bounds for edf
scheduling on real-time multiprocessor systems. Real-Time Systems, 28(1):39–68, 2004.

[118] Jacob R. Lorch and Alan Jay Smith. Improving dynamic voltage scaling algorithms
with PACE. In ACM International Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS), pages 50–61, 2001.

[119] Brendan Lucier, Ishai Menache, Joseph Naor, and Jonathan Yaniv. Efficient online
scheduling for deadline-sensitive jobs: extended abstract. In SPAA ’13, pages 305–314,
2013.

[120] Amin Maghareh, Shirley Dyke, Arun Prakash, Gregory Bunting, and Payton Lindsay.
Evaluating modeling choices in the implementation of real-time hybrid simulation.
EMI/PMC, 2012.

[121] G Manimaran, C Siva Ram Murthy, and Krithi Ramamritham. A new approach
for scheduling of parallelizable tasks in real-time multiprocessor systems. Real-Time
Systems, 15(1):39–60, 1998.

[122] Alex F Mills and James H Anderson. A stochastic framework for multiprocessor soft
real-time scheduling. In 16th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), pages 311–320, 2010.

[123] Geoffrey Nelissen, Vandy Berten, Joël Goossens, and Dragomir Milojevic. Techniques
optimizing the number of processors to schedule multi-threaded tasks. In 24th Eu-
romicro Conference on Real-Time Systems (ECRTS), pages 321–330, 2012.

[124] Lúıs Nogueira and Luis Miguel Pinho. Server-based scheduling of parallel real-time
tasks. In 10th ACM international conference on Embedded software (EMSOFT), pages
73–82, 2012.

[125] OpenMP. OpenMP Application Program Interface v4.0, July 2013. http://http:

//www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

[126] Luigi Palopoli, Daniele Fontanelli, Nicola Manica, and Luca Abeni. An analytical
bound for probabilistic deadlines. In Real-Time Systems (ECRTS), 24th Euromicro
Conference on, pages 179–188, 2012.

[127] Miloš Panić, Eduardo Quiñones, Pavel G Zaykov, Carles Hernandez, Jaume Abella,
and Francisco J Cazorla. Parallel many-core avionics systems. In 14th International
Conference on Embedded Software (EMSOFT), page 26, 2014.

[128] Risat Mahmud Pathan. Schedulability analysis of mixed-criticality systems on mul-
tiprocessors. In Real-Time Systems (ECRTS), 24th Euromicro Conference on, pages
309–320, 2012.

334

http://http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

[129] Rodolfo Pellizzoni, Patrick Meredith, Min-Young Nam, Mu Sun, Marco Caccamo, and
Lui Sha. Handling mixed-criticality in soc-based real-time embedded systems. In
7th ACM international conference on Embedded software (EMSOFT), pages 235–244,
2009.

[130] Cynthia A Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical
scheduling via resource augmentation. In ACM symposium on Theory of computing,
pages 140–149, 1997.

[131] Kirk Pruhs, Julien Robert, and Nicolas Schabanel. Minimizing maximum flowtime of
jobs with arbitrary parallelizability. In Approximation and Online Algorithms - 8th
International Workshop, (WAOA), pages 237–248, 2010.

[132] Kirk Pruhs and Clifford Stein. How to schedule when you have to buy your en-
ergy. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, 13th International Workshop, APPROX 2010, and 14th International
Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings, pages
352–365, 2010.

[133] Arun Raman, Hanjun Kim, Taewook Oh, Jae W Lee, and David I August. Parallelism
orchestration using DoPE: The degree of parallelism executive. In ACM Conference on
Programming Language Design and Implementation (PLDI), volume 46, pages 26–37,
2011.

[134] James Reinders. Intel threading building blocks: outfitting C++ for multi-core processor
parallelism. O’Reilly Media, 2010.

[135] Shaolei Ren, Yuxiong He, Sameh Elnikety, and Kathryn S McKinley. Exploiting pro-
cessor heterogeneity in interactive services. In 10th International Conference on Au-
tonomic Computing (ICAC), pages 45–58, 2013.

[136] Julien Robert and Nicolas Schabanel. Non-clairvoyant scheduling with precedence
constraints. In 19th ACM-SIAM symposium on Discrete algorithms (SODA), pages
491–500, 2008.

[137] Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and Chris
Gill. Parallel real-time scheduling of dags. IEEE Transactions on Parallel and Dis-
tributed Systems, 25(12):3242–3252, 2014.

[138] Abusayeed Saifullah, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill.
Multi-core real-time scheduling for generalized parallel task models. Real-Time Sys-
tems, 49(4):404–435, 2013.

[139] Tao B Schardl, Bradley C Kuszmaul, I Lee, William M Leiserson, Charles E Leiserson,
et al. The cilkprof scalability profiler. In 27th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 89–100, 2015.

335

[140] Bianca Schroeder and Mor Harchol-Balter. Web servers under overload: How schedul-
ing can help. ACM Trans. Internet Technol., 6(1):20–52, 2006.

[141] Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202–208, 1985.

[142] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. Mixed critical
earliest deadline first. In Real-Time Systems (ECRTS), 25th Euromicro Conference
on, pages 93–102, 2013.

[143] Anand Srinivasan and James H Anderson. Efficient scheduling of soft real-time applica-
tions on multiprocessors. In Real-Time Systems (ECRTS), 15th Euromicro Conference
on, pages 51–59, 2003.

[144] Anand Srinivasan and Sanjoy Baruah. Deadline-based scheduling of periodic task
systems on multiprocessors. Information Processing Letters, 84(2):93–98, 2002.

[145] Hang Su, Nan Guan, and Dakai Zhu. Service guarantee exploration for mixed-criticality
systems. In Embedded and Real-Time Computing Systems and Applications (RTCSA),
IEEE 20th International Conference on, pages 1–10, 2014.

[146] Ola Svensson. Conditional hardness of precedence constrained scheduling on identical
machines. In Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 745–754, 2010.

[147] Olivier Tardieu, Haichuan Wang, and Haibo Lin. A work-stealing scheduler for x10’s
task parallelism with suspension. In ACM Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2012.

[148] Marc Tchiboukdjian, Nicolas Gast, Denis Trystram, Jean-Louis Roch, and Julien
Bernard. A tighter analysis of work stealing. Algorithms and Computation, pages
291–302, 2010.

[149] Eric Torng and Jason McCullough. Srpt optimally utilizes faster machines to minimize
flow time. ACM Transactions on Algorithms, 5(1), 2008.

[150] Steve Vestal. Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In 28th IEEE Real-Time Systems Symposium (RTSS),
pages 239–243, 2007.

[151] Qi Wang and Gabriel Parmer. Fjos: Practical, predictable, and efficient system support
for fork/join parallelism. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), IEEE 20th, pages 25–36, 2014.

[152] Adam Wierman and Bert Zwart. Is tail-optimal scheduling possible? Operations
research, 60(5):1249–1257, 2012.

[153] Gerhard J. Woeginger. On-line scheduling of jobs with fixed start and end times.
Theor. Comput. Sci., 130(1):5–16, 1994.

336

[154] Thomas Y. Yeh, Petros Faloutsos, and Glenn Reinman. Enabling real-time physics
simulation in future interactive entertainment. In ACM SIGGRAPH Symposium on
Videogames, Sandbox ’06, pages 71–81, 2006.

[155] Jeonghee Yi, Farzin Maghoul, and Jan Pedersen. Deciphering mobile search patterns:
A study of Yahoo! mobile search queries. In ACM International Conference on World
Wide Web (WWW), pages 257–266, 2008.

[156] Zircon Computing. Parallelizing a computationally intensive financial R application
with zircon technology. In IEEE CloudCom, 2010.

337

	Parallel Real-Time Scheduling for Latency-Critical Applications
	Recommended Citation

	List of Tables
	List of Figures
	Acknowledgments
	Abstract
	Chapter 1: Introduction
	Systems with Latency-Critical Applications
	Parallel Scheduling for Applications
	Thesis Statement
	Thesis Contributions

	Chapter 2: Preliminaries and Notation
	Parallel Job Model
	Scheduling Parallel Jobs
	Centralized Greedy Schedulers
	Randomized Work-Stealing Schedulers

	Parallel Languages and Runtime Systems
	Classic Static Real-Time System Model
	Classic Online Scheduling Model

	Part I Static Real-Time Systems for Parallel Tasks with Deadlines
	Chapter 3: Global Scheduling for Parallel Real-Time Tasks
	Related Work on Hard Real-Time Systems
	Canonical Form of a DAG Task
	Capacity Augmentation Bound of Global EDF
	Upper Bound on Capacity Augmentation of GEDF
	Lower Bound on Capacity Augmentation of GEDF

	Capacity Augmentation of Global RM
	Parallel GEDF Platform
	Background
	PGEDF Programming Interface
	PGEDF Operation

	Chapter 4: Federated Scheduling for Parallel Real-Time Tasks
	Federated Scheduling Algorithm
	Capacity Augmentation Bound of 2 for Federated Scheduling
	Lower Bound on Capacity Augmentation of Any Scheduler for Parallel Tasks
	Practical Considerations
	Implementation of a Federated Scheduling Platform
	Empirical Comparison Between PGEDF and RTCG
	Task Generation
	Baseline Platform
	Experimental Results

	Chapter 5: Mixed-Criticality Federated Scheduling
	System Model and Background
	Mixed-Criticality Parallel Real-Time Tasks Model
	System Model for Dual-Criticality System
	Schedulability Conditions for Dual-Criticality Systems
	Dual-Criticality Capacity Augmentation Bound
	Background

	Related Work on Mixed-Criticality Scheduling
	Scheduling Dual-Criticality High-Utilization Tasks
	Mapping Algorithm
	Schedulability Conditions of MCFS
	MCFS Runtime Execution

	Proof of Correctness and Capacity Augmentation Bound
	LH tasks under MCFS
	HVH tasks under MCFS
	HMH tasks under MCFS
	Proof of Correctness
	Proof of Capacity Augmentation Bound 2+2
	Lower Bound on Capacity Augmentation for High-Utilization Tasks

	MCFS for Multi-Criticality Systems
	Multi-Criticality System Model
	Multi-Criticality MCFS Algorithm and Bound

	Improve MCFS Algorithm for High-Utilization Tasks
	General Case for Dual-Criticality MCFS
	Implementation of a MCFS Runtime System
	Numerical Evaluation
	Empirical Evaluation

	Chapter 6: Federated Scheduling for Stochastic Parallel Real-time Tasks
	Related Work on Soft Real-Time Scheduling
	System Model for Stochastic Parallel Real-Time Tasks
	Stochastic Federated Scheduling Guarantees Bounded Tardiness
	Stochastic Federated Scheduling Strategy
	Mapping Algorithms Guarantee Bounded Tardiness
	Calculating Expected Tardiness
	A Mapping Algorithm for Stochastic Federated Scheduling
	BASIC Federated Mapping Algorithm
	FAIR Federated Mapping Algorithm
	ILP-Based Federated Mapping Algorithm

	Stochastic Capacity Augmentation of 2 for Stochastic Federated Scheduling
	Stochastic Capacity Augmentation Bound for BASIC
	Stochastic Capacity Augmentation Bound for FAIR

	Numerical Evaluation
	Task Sets Generation and Experimental Setup
	Experiment Results

	Chapter 7: Work Stealing for Large Scale Soft Real-time Systems
	The Case for Randomized Work Stealing for Soft Real-Time Tasks
	Scalability Comparison
	Tightness of Randomized Work Stealing in Practice

	Adaptation to Federated Scheduling using Work Stealing
	Federated Scheduling for Parallel Real-Time Tasks
	Incorporating Work Stealing Overhead into Federated Scheduling

	RTWS Platform
	Platform Evaluation
	Benchmark Task Sets Generation
	Evaluation Results

	Part II Online Systems with Parallel Latency-Critical Jobs
	Chapter 8: Scheduling Parallel Jobs Online to Meet Target Latency
	Background and Terminology
	Terminology
	Characteristics of Interactive Services

	Intuitions for Tail-Control
	Tail-Control Scheduler
	The Threshold-Calculation Algorithm
	Extending Work-Stealing with Tail-Control

	Experimental Evaluation
	Different Work Distributions
	Different Arrival Distributions
	Request with Sub-Linear Speedup
	Inaccurate Input Work Distribution
	Increased System Capacity
	Comparison with Additional Algorithms
	The Inner Workings of Tail-Control

	Chapter 9: Scheduling Parallel Jobs Online to Maximize Profit
	Preliminaries
	Maximizing Profit of Jobs with Deadlines
	Scheduler S for Maximizing Profit of Jobs with Deadlines
	Properties of the Scheduler S
	Bounding the Profit of Jobs Completed by S
	Bounding the Profit of Jobs Completed by OPT

	Maximizing Profit of Jobs with General Profit Functions
	Scheduler S' for Maximizing General Profit
	Properties of the Scheduler S'
	Bounding the Profit of Jobs Completed by S'
	Bounding the Profit of Jobs Completed by OPT

	Lower Bound Examples

	Chapter 10: Scheduling Parallel Jobs Online to Minimize Max Flow Time
	Preliminaries
	Unweighted Maximum Flow Time using FIFO
	Unweighted Maximum Flow Time using Work Stealing
	Work Stealing Lower Bound for Maximum Flow Time
	Experimental Results for Unweighted Maximum Flow Time
	Maximum Weighted Flow Time using Biggest-Weight-First

	Chapter 11: Scheduling Parallel Jobs Online to Minimize Average Flow Time
	Preliminaries
	Algorithm: LAPS
	Algorithm: SJF
	Analysis of SJF for Fractional Flow Time
	SJF Falls Behind with Resource Augmentation
	From Fractional to Integral

	Chapter 12: A Distributed Scheduler for Minimizing Average Flow Time
	Preliminaries
	DREP: A New Sequential Algorithm
	DREP: A New Parallel Algorithm and Analysis
	DREP Algorithm for Parallel Jobs
	Probability of Working on a Job under DREP
	Potential Function Analysis for DREP

	Chapter 13: Conclusion
	References

