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Abstract. Recently, Static Single Assignment Form and Sparse Eval-
uation Graphs have been advanced for the eflicient solution of program
optimization problems. Each method is provided with an initial set of
flow graph nodes that inherently affect a problem’s solution. Other rele-
vant nodes are those where potentially disparate solutions must combine.
Previously, these so-called ¢-nodes were found by computing the iterated
dominance frontiers of the initial set of nodes, a process that could take
worst case gquadratic time with respect to the input flow graph. In this
paper we present an almost-linear algorithm for determining exactly the
same set of ¢-nodes.

1 Motivation and Background

Static Single Assignment (SSA) form [9] and the more general Sparse Evaluation
Graphs (SEG) [6] have emerged as an efficient mechanism for solving compile-
time optimization problems via data flow analysis [18, 10, 3, 15, 7, 5]. Given
an input data flow framework, the SEG construction algorithm distills the flow
graph into a set of relevant nodes. These nodes are then interconnected with
edges suitable for evaluating data flow solutions. Similarly, SSA form identifies
and appropriately interconnects those variable references that are relevant to
solving certain data flow problems.

The SEG and SSA algorithms process and compute the following information:

Inpuis:
Flowgraph Gy with nodes A}, edges &, and root node Entxy. If (X,Y) €
&r, then we write X € Pred(Y) and Y € Suce(X). We assume Gy is
connected.
Depth-first numbering where dfn(X) is the number associated with X

1< dfn(X) <| Nyl



in a depth-first search of G;.% We call the associated depth-first spanning
tree DFST. Similarly, we define the inverse mapping

vertez(k) = X | dfn(X) =k

Dominator tree where idom(X) is the immediate dominator of flow graph
node X. We say that X dominates Y, written X > Y, if X appears on
every path from flow graph Entry to ¥'; domination is both reflexive
and transitive. We say that X strictly dominates Y, written X > Y, if
X>Y and X # Y. Each node X has a unique immediate dominaior
idom(X) such that

idom(X) > X and VW » X, W > idom(X)

Node idom(X) serves as the parent of X in a flow graph’s dominator tree.
(An example flow graph and its dominator tree are shown in Figure 1.)

Initial nodes: N, C N} is an initial subset of those nodes that must appear
in the sparse representation. For an SEG, such nodes represent non-
identity transference in a data flow framework. For SSA, such nodes
contain definitions of variables.

Outputs:
Sparse nodes N, which we compute as a property of each node:

T(X) <X EN,

¢-function nodes Ny C N, which we compute as a property of each node:
B(X) =+ X €Ny

Previous SEG and SSA coustruction algorithms operate as follows:

1. The algorithm precomputes the dominance frontier DF(X) for each node

X:
DRI X)={Z} (Y, 2)€&)(X>2Y and X $ 2}

In other words, X dominates a predecessor of Z without strictly dominating
Z. The dominance frontiers for the flow graph in Figure 1 are shown in
Figure 2.

2. The algorithm accepts My G N5.

3. The algorithm then computes the set of nodes deserving ¢-functions, My, as
the iterated dominance frontier of the initial set of nodes:

Ng = DF"'(NQ)

In our examplein Figures 1 and 2,if Vo = { D, W}, then Ny = {W, XY, Z }.

4. Steps 2 and 3 can be repeated to create a forest of (related) sparse eval-
uation graphs. In SSA form, these graphs are usually combined, with the
appropriate increase in detail and size with respect to M.

* Here, dfn{X) is assigned in order of nodes visited, starting with I; in [2), depth first
numbers are assigned starting from [ A7 | down to 1.



5. In SEG, appropriate edges are then placed between nodes in
No = No UN

In SSA, variables are appropriately renamed, such that each used is reached
by a single definition.

These two methods have one component in common, in name as well as fune-
tion: the determination of N, where potentially disparate information combines.
Consider a flow graph Gy with N nodes (set N;) and E edges (set &;) for a pro-
gram with V variables. While computing the so-called ¢-nodes is efficient in
practice [9],

1. Constructing a single SEG (i.e., one data flow framework) by the usual al-
gorithm [6] takes O(E + N?) time;

2. Where 2 data flow problem can be partitioned into V' disjoint frameworks [14],
constructing the associated V SEGs takes O(EV + N?) and 2(EV) time.

3. If we bound the number of variable references per node by some constant,
then construction of SSA form takes O(EV + N?) and 2(E + V + N) time.

In comparing (2) to (3), note that SEG provides a “solution” for each edge in the
flow graph, while SSA form provides a “solution” only at a program’s variable
references.

Our algorithm for placing ¢-functions avoids the the computation of dom-
inance frontiers. In doing so, we reduce the time bound for (1) to O(Ea(E)),
where a() is the slowly-growing inverse-Ackermann function [8]. The time bound
for (2) is reduced to O(V x Ea(E)). If our algorithm places ¢-functions for SSA
form, then the time bound for (3) becomes O(V x Ea(E)) but 2(EV).

To summarize the above discussion, computation of dominance frontiers and
their use in placing ¢-functions can take O(EF + N?) time [9], although such
behavior is neither expected in general nor even possible for programs of certain
structure. An example flow graph that exhibits the aforementioned worst case
behavior is shown in Figure 1. The flow graph’s dominance frontiers are shown
in Figure 2. As this graph structure grows?, the size of dominance frontiers of
nodes along its left spine increases quadratically, while the size of the sparse data
flow graph or SSA form is certainly linear in size. It is this worst case behavior
brought on by precomputing the dominance frontiers that we wish to avoid.

Since one reason for introducing ¢-functions is to eliminate potentially quadratic
behavior when solving actual data flow problems, such worst case behavior dur-
ing SEG or 55A construction could be problematic. Clearly, avoiding such be-
havior necessitates placing ¢-functions without computing or using dominance
frontiers.

In this paper we present an algorithm that computes M, and Ny C N, from
the initially specified A,. Where previous algorithms begin with a set of nodes
N and use dominance frontiers (iteratively) to induct other nodes into A, our

* by repeating the ladder structure; the back edge is unnecessary and was added to
Hlustrate our algorithm



algorithm does the reverse: we visit nodes in an order that allows us to determine
conditions under which a given node must be in A,. Using a similar approach,
we can then determine Ny C N,.

In Section 2, we discuss a simple version of our algorithm and illustrate its
application to the flow graph in Figure 1. The algorithm’s correctness is shown in
Section 3. In Section 4, we discuss how balanced path-compression can be used to
make the algorithm more efficient; it is these techniques that allow us to achieve
our almost-linear time bound. Section 5 gives some preliminary experiments and
section 6 suggests future work.

In related work, Johnson and Pingali describe an algorithm to construct an
SSA-like representation [13] that takes @(EV) time. While their upper bound
is slightly better than ours, our approach is more general: we construct sparse
evaluation graphs for arbitrary data flow problems, while Johnson and Pingali
construct def-use structures specific to the solution of SSA-based optimization
problems such as constant propagation.

As we discuss further in Section 5, O() asymptotic bounds in this area are
deceptive, and one must take into account lower and expected bounds. The
usual dominance-frontier-based algorithm [9] is biased toward the average case,
in which linear behavior for constructing or consulting dominance frontiers is
expected. The algorithm we present in this paper, and the algorithm due to
Johnson and Pingali [13], are 2(EV), since each edge in the flow graph is ex-
amined for each variable.

We actually present two variations of the same algorithm in this paper. The
first “simple” algorithm is presented for expository reasons; the second algorithm
uses balanced path-compression to achieve our improved time bound. Prelimi-
nary experiments presented in Section 5 compare the simple algorithm presented
in Section 2 with the usual dominance frontier-based algorithm [9]. In fact, the
usual algorithm is often faster, and so these experiments do not suggest blindly
switching to the asymptotically faster algorithm. However, our algorithm does
exhibit the same linear behavior as the usual algorithm. Moreover, we have not
implemented the balanced path-compression presented in Section 4 which yields
our better bound. These experiments give some evidence that our algorithm can
yield comparable performance to the usual algorithm, while avoiding asymptot-
ically poor efficiency.

2 Algorithm

Definitionl, The equidominates of 2 node X are those nodes with the same
Iimmediate dominator as X :

equidom(X) = {Y | idom(Y) = idom(X) }
For example, in Figure 1,
equidom(A) = { A, VW, X,Y,Z}

More generally, the noun equidoménates refers to any such set of nodes.



Fig. 1. Flow graph and its dominator iree.

{W, X, Y, 7}
{X,Y, 2}
{¥,2}
{Z}
{W}
{£}
{W, Y}
{72}
{1}
{}

SRR EERREE

Fig. 2. Dominance frontiers for Figure 1.

Our algorithm essentially partitions equidominates into blocks of nodes that
are in each other’s iterated dominance frontiers, but without the expense of
explicitly computing dorminance frontiers. The relevant portions of our algorithm
refer to Cnum(X), LL(X), or Map(X); these are paraphrases of a strongly-
connected component (SCC) algorithm [1], which we use to find (some) strongly-
connected components of the dominance frontier graph (in which an edge from Y
to Z implies Z € DF(Y')). While the details of Crum(X) and LL(X) are beyond
the scope of this paper [1], we note that Map(X) is the representative node for



Algorithm[1] Sparse graph node determination (simple)
NodeCount «— 0
foreach (X € Ny) do

T(X) ~ false
P(X) + false
Map(X) — X
od
Cnum «— 0
for n = N downto 1 do =
foreach ({ Z | dfn{idom(Z))=n}) do <=
if (Cnum(Z) = 0) then
call Visit(Z)
fi
od
od
<=
for n = N downto 1 do =
foreach ({ Z [ dfn(idom(Z))=n}) do «=
call Finish(7)
od
od
end

Function FindSnode(Y, P) : node
for (X =Y) repeat(X = idom(X)) do
if (Y(Map(X)) or (idom(X) = P)) then
return (Map(X))
fi

od
end

Fig. 3.

the SCC containing node X. Throughout this paper, “SCC” or “component”
refers to nodes associated in this manner.

Central to this algorithm is the function FindSnode(Y, P), which ascends the
dominator tree from node Y, searching for a sparse graph node below P. Qur
proof of algorithmic correctness (Section 3) relies on the nature of FindSnode()
rather than its actual implementation: the function always returns

X | ZeDFY(X), Z € Suce(Y), P> X>Y

We present a straightforward, albeit inefficient, version of FindSnode(Y, P) in
Figure 3. The correctness of our algorithin as presented in Section 3 is based



Procedure Visit(Z)
LL(Z) + Cnum(Z) — + +NodeCount

call push{Z) & [EI
foreach {(Y,Z) € £; | ¥ # idom(Z)) do <=
$ — FindSnode(Y, idom(Z)) <=
i (idom(s) # idom(Z)) then
call IncludeNode(Z) «=[9]
else
if (Cnum(s) =0) then
call Visit(s) «
LI{(Z) +— min(LL(Z), LL(s))
else

if ((Cnum(s) < Cnum(Z)) and OnStack(s)) then
LE(Z) « min(LL(Z)}, Cnum(s))

fi
fi
if (¥(s) and not OnSiack(s)) then <
call IncludeNode(Z) =
fi
fi
od
if (LL{Z) = Cnum(Z)) then
repeat <=
Q «— pop() &
Map(Q) +— Z
if (Q € Nx) then
call IncludeNode(Q) 4=
fi
if ((Q)) then
call IncludeNode(Z) =
fi
until (@ = 2)
fi
end
Fig. 4.

on the behavior of FindSnode(). To obtain our almost-linear time bound, we
modify our algorithm as discussed in Section 4.

The algorithm is shown in Figures 3, 4, and 5. We now illustrate the applica-
tion of the algorithm to the flow graph in Figure 1, assuming that A, = { B}.
Although the full proofs appear in Section 3, we mention here that:

Z € DF(X} = dfn(idom(X)) > dfn(idorn{Z))

By ensuring that nodes with higher depth first number have already been cor-



Procedure Include Node(X)
T(X) — true =
end

Procedure finish(Z)
foreach ((Y,2) € £ | Y # idom(Z)) do
8 — FindSnode(Y, idom(Z))
if (T(s)) then

B(Z} — true =
ft
od
if (XY(Map(Z))) then
call IncludeNode(Z) <=
fl
end
Fig.5.

rectly determined to be in A, the algorithm can correctly determine this prop-
erty for nodes of lower depth first number.

The loop at[1] begins with V (depth-first numbered 10 in Figure 1), but
since no nodes are dominated by V', no steps are taken by [2]; the same holds
for nodes W and D. When [1] considers C, loop [2] calls Visit with D. The loop
in Visit at [7] is empty, since the only predecessor of D immediately dominates
D. Thus, Map(D) is set to D in loop [13]. Loop [1] then considers in turn Z, Y,
and X, each of which dominates no node, so [2]is empty. When [1] considers B,
Visit is called on C, but since C’s only predecessor immediately dominates C,
no action is taken by [7], and Map(C) is set to C. When Visit is next called on
B, Map(B) is set to B; also, since B € N, step places B in N,.

When [1] considers E, suppose loop [2] considers the nodes immediately dom-
inated by E in order A, Y, W, X, V, and Z (although some of these will already
have been processed by recursive calls to Visit). When Visit works on A, no steps
of | 7] are taken, and Map(A) becomes A. When Visit works on Y, FindSnode
will be called on C and X.

— For C, FindSnode returns B; since B and Y are not equidominates, Y is
placed in A, by [9]

— For X, FindSnode returns X; since X and Y are equidominates, Visit is
called recursively on X. In this invocation, loop [7] considers nodes B and
W.

o For B, FindSnode returns B, so X is placed in A,.

s For W, FindSnode returns W, so Visit is called recursively on W. In
this invocation, loop [7] considers nodes A, V, and X.

* For A, FindSnode returns A. Since that node has already been vis-
ited, and since A is not in N, nothing happens to W because of



A.
* For V', FindSnode returns V'; Visit is then called recursively for V,
where Map(V) becomes V.
* For X, FindSnode returns X, which is already on stack, so nothing
happens. In particular, Map(X) is not set.
Now, Map(W) and Map(X) are both set to W. Since X € N,, W is
placed in N,.

When loop [2] considers W, X, and V, each has already been visited. When
Visit is called for Z, nodes 2 and ¥ are considered by [7].

— For D, FindSnode returns B, so Z is placed in N,.
— For Y, FindSnode returns Y, which has already been visited.

In contrast, previous methods [9, 6] would not only have constructed all dom-
inance frontier sets in Figure 2, which are asymptotically quadratic in size, but
would also have iterated through the dominance frontier sets of all nodes put on
the worklist, namely { B, B, VW, XY, Z }.

3 Correctness

We begin with some preliminary lemmas.
Lemma 2.
(Y, Z2)e &y = idom(Z) > Y
Proof: Suppose not. Then there exists a path
P:Root 5Y

that does not contain idom(Z). If path P is extended by an edge (Y, Z), then
we obtain a path to Z that doesn’t contain idom(Z). Thus, (Y,Z) ¢ &
a

Corollary 3.
(Y, Z) € & and Y # idom(Z) —>
dfn(idom(Z)) < dfn(idom(Y)) < dfn(Y)
Corollary 4.
(Y,2)€ & and Y # idom(Z) =
idom(Z) > idom(Y)» Y

Lemama 5. If X is an ancestor of idom(Z) in the depth-first spanning tree DFST
of Gy, and idom(Z) > Y, then

X»Y = X>Z2



Proof: Suppose not. Then there exists a path
Root % idom(2) + 2

that excludes X. Since idom(Z) » Y, there is a path of DFST edges from
idom(Z) to Y that excludes X. Thus, X cannot dominate Y.
o

Theorem 6. If X is an ancestor of idorn(Z) in the depth-first spanning tree
DFST of Gy, then Z cannot be in the dominance frontier of X.

Proof: Suppose Z € DF(X). Then 3(Y, Z) € & such that X > Y and X % Z.
It cannot be the case that idom(Z) =7, since if so X » Y = idom(Z) » Z, a
contradiction. Therefore, idom(Z) # Y. By Corollary 4, idom(Z) > idomn(Y') >
Y. By Lemmab, X > Y = X » Z. But since X » Y, we have X » Z, a
contradiction. Hence Z ¢ DF(X).

8

Theorem 7.
Z € DF(X) = dfn(X) > dfn(idom(Z))
Proof: Suppose df n(X) < dfn(idom(Z)). In the DFST of Gy, either
1. X is an ancestor of idom(Z). By Theorem 6,
Z ¢ DF(X)

or

2. X isto the “left of” idom(Z). Suppose there existed somenode Y € Preds(Z)
dominated by X. Since Y must be a descendant of X in DFST, Y is also to
the left of idom(Z), and therefore Y is to the left of Z. But Z cannot have
a predecessor to its left in DFST. Therefore Z ¢ DF(X).

O
Theorem 8.

Z € DF(X) =% idom(Z) > X
Proof: Suppose not. Then either

1. idom(Z) = X, which implies Z ¢ DF(X); or,
2. idom(Z) # X and idom(Z) > X. Consider then the path

P:Root L X

that doesn’t contain idom(Z). If Z € DF(X), then we can extend path P
to

Q:RootHX LY >z
such that X' > Y and X »Z. With X > Y, we can construct @ such that
edges between X and Y are DFST edges. Since idom(Z) doesn’t occur on
path P, idom(Z) must occur on path @ after node X and before node Z.
Thus, X is a DFST ancestor of idom(Z). By Theorem 6, Z € DF(X).



R

Corollary 9.
Z € DF(X) = dfn(idom(X)) > dfn(idom(Z))

The following lemmas which formalize those properties of our algorithm that
participate in our correctness proof. We omit proofs that directly follow from
inspection of our algorithm.

Lemma10. Visit is called exactly once for each node in Flowgraph.

Lemma1l. During all calls to Visit, each node is pushed and popped exactly
once.

Proof: By Lemma 10, Visii(Z) is invoked exactly once, and on this call Z is
pushed exactly once. We need to show that Z is popped exactly once. If Z =
Map(Z), then Z is popped by the invocation of Visit in which Z was pushed.
Otherwise, Z belongs to a strongly-connected component represented by H,
H # Z, in which case Z is popped by the iteration in which H is pushed.

Lemma1l2.
Y = Map(X) = idom(Y') = idom(X)

Proof: Since initially X = Map(X), the lemma holds at the start of the algo-
rithm. Otherwise, Map(X) is only set during the loop at step [13], when equidom-
inates are popped off the stack. In this case, we have idom(Map(X)) = idom(X).
]

Lemma13. At step [12], node s (referenced at step has already been pushed
and popped.

Proof: By the predicate of step [11], node s cannot be on stack at step [12]. Thus,
s either hasn’t been pushed yet, or else s has been pushed and popped. If s
hasn’t been pushed then Cnum(s) = 0, but then step would have pushed s
before step is reached. Therefore, s has been pushed and popped.

]

Corollary 14. Any invocation of IncludeNode(s) must already have occurred

at step [12].

Lemmal5.
OnStack(X) and OnStack(Y') => idom(X) = idom(Y’)
Lemma16. At step [8], FindSnode() returns
s |s= Map(S), Z € DF(S)



Proof: Follows from inspection of FiindSnede() and the definition of dominance
frontiers. O

LemmalT.
Map(X)=Map(Y) =Y € DF*(X) or X =Y

Proof: Follows from initialization (Map(X) = X), Lemma 16, and the observa-
tion that Map(X) represents the strongly-connected component containing X.
[}

Corollary 18.
sEN, <> Map(s) € N,
Theorem 19. As of step [3],
T(Map(X)) <= Map(X) e N,
Proof:
== We actually prove a stronger result:
T(X)=> X €N,
To accommodate the iteration of step [1], we prove the induction hypothesis
ITHA(n) = (dfn(idom(X)) = n) AT(X) = X e N,

by backward induction on n (following the progression of our algorithm),

noting that T(X) can only be set in procedure Visit(Z) when idom(Z) =

idom(X).

Base case: Node vertez(N) is childless in its depth-first spanning tree, and
so cannot immediately dominate any node. With loop at step [2] empty,
this case is trivially satisfied.

Inductive step: Consider those steps that potentially set

Y(X) |dfn(idom(X)) =n
Step[9k With idom(s) # idom(Z), step [8] must have returned
5| T(s),s = Map(5),Z € DF(S)
From Lemma 16 we obtain
Z € DF*(s)

From Lemma 12 and with idom(s} # idom(Z), Corollary 9 implies

dfn(idom(s)) > dfn(idom(Z2)}
Applying IHao(k) [N 2 k2 n+1,

T(s) = s €N,

Thus, ZeN
€ No



Steps[12], [15], and [16]: Each of these steps determines 7'(X) by con-
sulting nodes whose immediate dominator is idom(X). Fach node in
the set

{X | dfn(idom(X)) =n}

gets pushed and popped exactly once (by steps [6] and [14]). We name
such nodes

{1:1,932,...,3’:'1’,}

according to the order in which they emerge from the stack: node
is the first such node popped, node z; is popped before node 41,
and node z; is the last such node popped. Accordingly, we define
the predicate

L
Popped(k) = /\ Onstack(z;)
i=k+1
which is true when exactly & such nodes have been popped. We now
prove the following induction hypothesis:

IHg(n) = (Popped(n)) AT(X) = X € N,

Base case: Prior to popping @1, Lemma 15 ensures that steps
and cannot affect any of the z;. By Lemma 13, step re-
quires 5 to be an already popped z;, so step cannot affect
any of the z;.

Inductive step: We now prove IHg(n).

Step By Lemma 13, s has already been pushed and popped.
By Corollary 14, and assuming

IHp(k) |1<k<n—1

we obtain
sEN,
Z € DF*(s)
Thus,
ZeEN,
Step By definition,
QEN, = QEN,

Step [16] Two cases:

@ # Z: This statement cannot affect 7°(Q), whose member-
ship in A, is then covered by the other cases in this proof.
From Lemma 17, Z € DF+(QQ), and so Z € A,.

@ = Z: This statement becomes tautologous.



<= To prove
Map(Y) € No = T(Map(Y))

it is sufficient to show
Y € Map(N,) = T(Y)
We formalize iterative dominance frontiers by:
DFO(Ne) = Map(No)
DF (Na) = Map(DF(DFYNL)))
so that -
UDF (Na) = Map(Ny)

=0

We now prove the following induction hypothesis:
IHe(n) =Y € DF*(N,) = T (Y)

Base case: Every node in the flow graph is pushed and popped by steps [6]

and [14] At step [15],

At step [16],
Y € Map(Ny) = T(Y)

where Y = Map(y).
Inductive step: We now prove IH¢(n) assuming IHo(n — 1). Consider

any
Y € DFM(Ny)y,n>0
Since
Y € Map(DF(DF* (Na)(Na)))
we have
Y = Map(y) | y € DF(X), X € DF*1(No)
By Lemma 12

idom(Y') = idom(y)
and so Corollary 9 can be extended to:

y € DF(X) =
dfn{idom(X)) 2 dfn(idom(Y))

We show that Visit(y) will set 7(Y) true. By IHg(n — 1), we have

T(X) true. Since X € DF "1 (N,), the call to FindSnode() at step

will return X . There are two cases:

dfn(idom(Y)) < dfn(idom(X)): Step [9]sets T(y) true. When y is popped
at step [14], step [16] sets 7'(Y) true.

dfn(idom(Y)} = dfn(idom(X)): Two cases:



X #£7Y: Step[12] sets 7'(y) true. When y is popped at step [14],

step [16] sets 7(Y) true.
X =Y then T{X) = T(Y).

(.

Theorem 20. After the call to finish,
D(Z) > Z € Ny
Proof:
P(Z) <=3, 2) €& |
Y # idom(Z),
s = FindSnode(Y, idom(2)),
sEN,
by construction in finish() and Theorem 19. But this holds
<> Z € DFt(s),s € N,
by construction in FindSnode(), and this holds
= ZeN;
by definition of M. O

Theorem 21. After calls to finish(),
X)) XeN,

Proof:
X € Ny <= Map(z) € N,

(by Corollary 18). But
Map(z) € No =T (Map(X))
(by Theorem 19). But in finish,
Y(Map(X)) = T'(X)

4 Complexity

In this section, we first show that our algorithm is O(N + E + T), where N is
the number of nodes and E the number of edges in the input flowgraph, and
T is the total time for all calls to FindSnode. Unfortunately, T is not linear
using FindSnode as written. We then provide a faster version of our algorithm
and show that our correctness results still hold. In our faster algorithm, T is
O(E«(E)), obtaining our desired almost-linear complexity bound.



4.1 Analysis of Initial Algorithm

Theorem 22. The algorithm of Figure 3 is O(N + E + T), where N is the
number of nodes and E the number of edges in the input flowgraph, and T is
the total time for all calls to FindSnode.

Proof: The algorithm consists of

— an initialization phase,
— a phase where V'isit is called recursively once for each node, and
~ a call to finish.

We analyze the complexity of each of these phases. The initialization phase is
O(N). For each call Visit(Z), there is a constant amount of work not inside any
loop, the loop starting at step {7| over predecessor edges into Z, and the loop
starting at step where the contents of the stack are popped. The constant
amount of work can be ignored in determining the bound. Consider the loop
starting at step [7]. Since Visit is called only once for each node, over all calls
to Visit, this loop is executed O(F) times. Thus over all calls to Visit, the loop
will execute at most O(E) calls to FindSnode in step [8], and O(E) other work.
For the last loop starting at step in Visit, all nodes are pushed and popped
exactly once, so this loop is O(N). Finally, consider the call to finish. It consists
of O(E) work plus at most O(E) calls to FindSnode. Summing all of this work,
we obtain the desired result. O

We now analyze the asymptotic behavior of the function FindSnode(Y, P)
as shown in Figure 3. Each invocation could require visiting each node on a
dominator tree path from Entry to Y. The cost of applying FindSnode() to
each of N flow graph nodes is then O(N?). As such, the overall asymptotic
behavior of the simple version of our algorithm is O(E x N).

4.2 PFaster Algorithm

Using a path-compression result due to Tarjan [17], we rewrite certain parts
of our algorithm (shown in Figures 6 and 7) to use the instructions:

Eval(Y'): Using the links established by the Link() instruction, Eval() ascends
the dominator tree from Y, returning the node of maximum label. The label
initially associated with each node X is —dfn(X); the link of each node is
initially L.

Link(Y,idom(Y)): sets link(Y) = idom(Y). Any Ewval() search that includes
node ¥ now also includes the immediate dominator of Y.

Update(X,dfn(X)): changes the label associated with X to dfn(X). This in-
struction is issued when node X becomes included in set Af,.

The path-compressing version of algorithm is obtained as follows:

1. We initialize the path-compression at steps [20] and [24].



Procedure Initialize
NodeCount +— 0
foreach (X € Ny) do
T(X) +«- false
P(X) o false
Map(X)— X
od
foreach (X € Nj) do <
ink(X) — L
Label(X) — —dfn(X)
od
Cnum «— 0
end
Procedure IncludeNode(X)
T(X) — true
call Update( X, dfn(X)) <«
end

Fig. 6.

2. Links are inserted to extend the Eval() search at steps [22] and [25).
3. Path information is updated whenever a node X is added to the sparse

graph, at step [21].
4. We redefine function FindSnode() by:
Function FindSnode(Y, P) : node
return (Map(Eval(Y))) <=
end

We must now show:

1. We use the above instructions in a manner consistent with their defini-
tion {17]: operations Link() and Update() are applied to nodes at the end of
a “link-path”.

Lemma 23. At steps[23] and [26], link(Z) = L prior to invoking Link().

Proof: Steps [20] and [24] initialize link(X) = L for each node X € A;. Since
each node Z has a unique immediate dominator in idom(Z), and a unique
map representative in Map(Z), and since n is a strictly decreasing sequence
at steps [22] and [25], link(Z) = L just prior to applying Link() at steps
and [26]. O

Lemma 24, When Update(X,dfn(X)) is invoked at step [21], link(X) = L.



call Initialize
for n = N downto 1 do
foreach {{ Z | dfn(idom(Z)}=n}) do
if (Cnum(Z) = 0) then
call Visit(Z)

i
od
foreach ({ Z | dfn(idom(Z))=n}) do <=
if (Z = Map(Z)} then =
eall Link(Z,idom(Z))
else
call Link(Z, Map(Z))
fi
od
od
foreach (X € M) do =
link(X) — L
Label(X) «- — dfn{X)
od

for n = N downto 1 do
foreach ({ Z | dfn(idom(Z))=n}) do
call Finish{Z)

od
foreach ({ Z | dfn(idom(Z))=n}) do <=
if (Z = Mep(Z)) then =
call Link(Z, idom(Z))
else
call Link(Z, May(Z))
fi
od
od
Fig.7.

Proof: The procedure IncludeNode() is invoked only from Visit(), which
processes only equidominates. Since step has not yet executed for any
node considered by Visit(), each such node has L for its link. O

2. Use of these instructions does not change the output of our algorithm.

Lemma25. As invoked during the course of their respective algorithms,
each implementation of FindSnode(Y, P) returns the same answers.

Proof:



— By inspection, FindSnode(Y, P) of Figure 3 begins at node ¥ and con-
siders each ancestor X of Y, up to but excluding node P. As each node
X is considered, the function returns Map(X) if Map(X) is already in-
cluded in the sparse graph. If no Map(X) is already in the sparse graph,
then the function returns Map(X), where X is ancestor of ¥ just prior
to P.

— We now argue that FindSnode(Y, P) at [27]simulates exactly this behav-
ior. First, notice that the path of links established at steps [23] and
link each node X to Map(X) if X # Map(X), and otherwise link each
node X to idom(X). Thus, strongly connected nodes are linked to their
representative member, while that member is linked to its dominator.
Each node X’s label begins as —dfn(X), but can be changed by step
to be dfn(X). There are two cases to consider:

(2) If Map(X) is in the sparse graph, for any node X between ¥ and P
(excluding P), then there is a link path to that node and its label
has been changed to dfn(Map(X)). Eval(Y) returns the node of
maximum label on the link path from ¥, up to but excluding node
P, since P has not been linked in yet. Since any node is depth-first
numbered higher than its immediate dominator, Eval(Y) returns
some node in the strongly-connected component closest to ¥ whose
representative node is already in the sparse graph. Applying Map()
once again ensures that the representative node is returned.

(b) If no node on the link path is included in the sparse graph, then
each such node must be labeled by its negative depth-first number.
Thus, when Eval(Y') returns the node of maximum label, this will
be the node of minimum negative label, which will be some node in
the strongly-connected component containing the ancestor of Y just
below P. Applying M ap() once again ensures that the representative
node is returned.

a

Theorem 26. QOur faster algorithm takes O(Ea(F)) time.

Proof: Follows from O(E) calls to FindSnode(), Theorem 22, and Tarjan’s re-
sult {17]). O

5 Preliminary Experiments

Although we have described flow graphs where the worst case, quadratic be-
havior of the standard algorithms does occur, previous experiments [9] have
indicated this behavior is not expected in practice on real programs. We per-
formed an experiment, wherein ¢-functions were placed (toward construction of
SSA form) in 139 Fortran procedures taken from the Perfect [4] (Ocean, Spice,
QCD) benchmark suite and from the Eispack [16] and Linpack [12] subroutine
library. In Figure 8 we compare the speed of our simple (i.e., without balanced



path-compression) but asymptotically faster algorithm given in Section 2 with
the speed of the usual algorithm [9]; these execution times were obtained on a
SparcStation 10, and they represent only the time necessary to compute the
location of ¢-functions.

10— *
0.8—
*
0.6~
*
= *
0.4 : .
02+ § :g# *
* * *
0.003— * * * * *
) Ay ey S B B
3 23 43 63 83 103 123 143 163 183

Fig. 8. Speedup of our algorithm vs. execution time (in milliseconds) of usual ¢-placing
algorithm

Most of the runs show that the execution time of our algorithm is linear (with
a small constant) in the execution time of the usual algorithm, and so can be ex-
pected to also exhibit linear behavior in practice on the same programs. Because
each of these runs took under 1 second, both algorithms are fast on this collec-
tion of programs, We have not implemented the balanced path-compression, and
50 these experiments did not reflect any improvements that might be gained by
this theoretically more efficient algorithm.

Though not represented in Figure 8, we also experimented with a series of
increasingly taller “ladder” graphs of the form shown in Figure 1, where worst-
case behavior is expected. Our algorithm demonstrated better performance when
these ladder graphs had 10 or more rungs, though smaller graphs take scant
execution time anyway. Our algorithm is twice as fast as the usual algorithm
for a ladder graph of 75 rungs, taking 20 milliseconds while the usual algorithm
took 40 milliseconds.

In summary, comparison of our simple algorithm to the usual algorithm shows

— linear performance for the same cases as the usual algorithm, although our
median test case exhibited performance degradation of a factor of 3;

- a factor of 2 befter performance for some artificially generated cases.

Thus, preliminary evidence indicates comparable expected performance using
our simple algorithm.



6 Conclusions and Future Work

In this paper we have shown how to eliminate the potentially costly step of com-
puting dominance frontiers when constructing Sparse Evaluation Graphs or SSA
form. By directly determining the conditions under which a node is a ¢-node,
rather than by iterating through the dominance frontiers, we obtain a worst case
almost-linear bound for constructing SEG’s and a worst case almost-quadratic
bound for constructing SSA form. In both cases, we have eliminated the Q(N?)
behavior associated with computing and using dominance frontiers. We have also
given preliminary experimental evidence that our simple algorithm’s behavior,
though slower in many cases, is comparable in practice to the usual algorithm.
Future work will incorporate balanced path-compression into our simple al-
gorithm, and compare the results on real and artificially generated cases.
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