Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-93-23

1993-01-01

Asking Questions to Minimize Errors

Nader H. Bshouty, Sally A. Goldman, Thomas R. Hancock, and Sleiman Matar

A number of efficient learning algorithms achieve exact identification of an unknown function
from some clas using membership and equivalence queries. Using a standard transformation
such algorithms can easily be converted to on-line learning algorithms that use membership
queries. Under such a transformation the number of equivalence queries made by the query
algorithm directly corresponds to the number of mistakes made by the on-line algorithm. In this
paper we consider several of the natural classes known to be learnable in this setting, and
investigate the minimum number of equivalence queries with accompanying counterexamples
(or equivalently the minimum number of... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Bshouty, Nader H.; Goldman, Sally A.; Hancock, Thomas R.; and Matar, Sleiman, "Asking Questions to
Minimize Errors" Report Number: WUCS-93-23 (1993). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/311

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/311?utm_source=openscholarship.wustl.edu%2Fcse_research%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/311

Asking Questions to Minimize Errors

Nader H. Bshouty, Sally A. Goldman, Thomas R. Hancock, and Sleiman Matar

Complete Abstract:

A number of efficient learning algorithms achieve exact identification of an unknown function from some
clas using membership and equivalence queries. Using a standard transformation such algorithms can
easily be converted to on-line learning algorithms that use membership queries. Under such a
transformation the number of equivalence queries made by the query algorithm directly corresponds to
the number of mistakes made by the on-line algorithm. In this paper we consider several of the natural
classes known to be learnable in this setting, and investigate the minimum number of equivalence
queries with accompanying counterexamples (or equivalently the minimum number of mistakes in the on-
line model) that can be made by a learning algorithm that makes a polynomial nubmer of membership
queries and uses polynomial computation time. We are able both to reduce the nubmer of equivalence
queries used by the previous algorithms and often to prove matching lower bounds. As an example,
consider the class of DNF formulas over n variables with at most k = O(logn) terms. Previously, the
algorithm of Blum and Rudich [BR92] provided the best known upper bound of 2{raised to 09(k)}log(n) for
the minimum number of equivalence queries needed for exact identification. We greatly improve on this
upper bound showing that exactly k counterexamples are needed if the learning knows k a priori and
exactly k+1 counterexamples are needed if the learner does not know k a priori. This exactly matches
known lower bounds [BC92]. For many of our results we obtain a complete characterization of the
tradeoff between the number of membership and equivalence queries needed for exact identification. The
classes we consider here are monotone DNF formulas, Horn sentences, O(log(n))-term DNF formulas,
read-k sat-j DNF formulas, read-once formulas over various baes, and deterministic finite automats.

https://openscholarship.wustl.edu/cse_research/311?utm_source=openscholarship.wustl.edu%2Fcse_research%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/311?utm_source=openscholarship.wustl.edu%2Fcse_research%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages

Asking Questions to Minimize Errors

Nader H. Bshouty, Sally A. Goldman, Thomas R.
Hancock and Sleiman Matar

WUCS-93-23

September 1993

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130-4899

Asking Questions to Minimize Errors

Nader H. Bshouty Sally A. Goldman
Department of Computer Science Department of Computer Science
The University of Calgary Washington University
2500 University Drive N.'W. St. Louis, MO 63130
Calgary, Alberta, Canada T2N 1N4 sgOcs.wustl.edu
bshouty@cpsc.ucalgary.ca
Thomas R. Hancock Sleiman Matar
Siemens Corporate Research, Inc. Department of Computer Science
755 College Road East The University of Calgary
Princeton, NJ (08540 2500 University Drive N.W,
hancockQlearning.siemens.com Calgary, Alberta, Canada T2N 1N4

sleiman@cpsc.ucalgary.ca

September 8, 1993

Abstract

A number of efficient learning algorithms achieve exact identification of an unknown function
from some class using membership and equivalence queries. Using a standard transformation
such algorithms can easily be converted to on-line learning algorithms that use membership
queries. Under such a transformation the number of equivalence queries made by the query
algorithm directly corresponds to the number of mistakes made by the on-line algorithm. In
this paper we consider several of the natural classes known to be learnable in this setting, and
investigate the minimum number of equivalence queries with accompanying counterexamples
(or equivalently the minimum number of mistakes in the on-line model) that can be made by a
learning algorithm that makes a polynomial number of membership queries and uses polynomial
computation time. We are able both to reduce the number of equivalence queries used by the
previous algorithms and often to prove matching lower bounds. As an example, consider the
class of DNF formulas over n variables with at most £ = O(logn) terms. Previously, the
algorithm of Blum and Rudich [BR92] provided the best known upper bound of 29} logn for
the minimum number of equivalence queries needed for exact identification. We greatly improve
on this upper bound showing that exactly & counterexamples are needed if the learner knows k a
priori and exactly k+1 counterexamples are needed if the learner does not know k a priori. This
exactly matches known lower bounds [BC92]. For many of our results we obtain a complete
characterization of the tradeoff between the number of membership and equivalence queries
needed for exact identification. The classes we consider here are monotone DNF formulas, Horn
sentences, O(logn)-term DNF formulas, read-k sat-j DNF formulas, read-once formulas over
various bases, and deterministic finite automata.

1 Introduction

A very well studied formal learning model is the membership and equivalence query model developed
by Angluin [Ang88]. In this model the learner’s goal is to learn ezacily how an unknown target
function f, taken from some known representation class C, classifies all instances from the domain.
This goal is commonly referred to as ezact identification. The learner has available two types of
queries to find out about f: one is a membership query, in which the learner supplies an instance
2 from the domain and is told f(z). The other query provided is an equivalence query in which
the learner presents a candidate function A and either is told that A = f (in which case learning
is complete), or else is given a counterexample z for which hA{z) # f(z). There is a very close
relationship between this learning model and the on-line learning model [Lit88]. In the on-line
learning model the learning session is divided into a set of trials where in each trial the learner is
asked to make a prediction for some unknown instance « from the domain. After the prediction is
made, the learner is told whether the prediction is correct and is then able to use polynomial time
(and here a polynomial number of membership queries) before proceeding to the next trial. Using
a standard transformation [Ang88, Lit88] algorithms that use membership and equivalence queries
can easily be converted to on-line learning algorithms that use membership queries. Under such a
transformation the number of counterexamples provided to the learner in response to the learner’s
equivalence queries directly correspond to the number of mistakes made by the on-line algorithm.

In the membership and equivalence query model a number of interesting polynomial time algo-
rithms have been presented to learn target classes such as deterministic finite automata [Ang87b],
Horn sentences [AFP90], read-once formulas [AHK89, BHH92a, BHH92b], k-term DNF formu-
las [BR92], etc. It is easily shown that membership queries alone are not sufficient for efficient
learning of these classes, and Angluin has developed a technique of “approximate fingerprints” to
show that equivalence queries alone are also not enough [Ang80]. (In both cases the arguments are
information theoretic, and hold even when the computation time is unbounded.) Our research ex-
tends Angluin’s results to establish tight bounds on how many equivalence queries are required for a
number of these classes, Maass and Turdn have also studied upper and lower bounds on the number
of equivalence queries required for learning, both with and without membership queries [MT92].
However they do not restrict the learner to run in polynomial time, and they count only the total

number of queries rather than the individual number of queries of each type.

Previous work generally makes the assumption that both types of queries have an equivalent cost
to the learner (namely, constant cost). Thus there was no reason to favor one type of query over the
other. Often in reality, one type of query is significantly less expensive to implement. In particular,
we are interested in the learning problems in which membership queries are relatively inexpensive
to perform (i.e. a simple experiment that can be run by the learner) whereas equivalence queries
are expensive (i.e, require a “teacher”’s supervision to provide a counterexample). Furthermore, if
you view the complexity of the learning algorithm under the on-line learning model, then reducing

the number of equivalence queries directly corresponds to minimizing the number of prediction
mistakes.

The goal of our work is to establish tight bounds on how many equivalence queries are re-
quired when the learner is restricted to use a polynomial number of membership queries. Unless
otherwise stated, in all upper bounds we restrict the learner to use polynomial time and learn
with an algorithm whose output hypothesis comes from the concept class from which the target is
selected. However, all of our lower bounds place no restrictions on the computation time of the
learning algorithm and allow the learner to propose any hypothesis of its choice. In several cases
we have obtained a complete characterization of the tradeoff between the number of membership
and equivalence queries needed for exact identification. As an example of the type of results we
have obtained, consider the problem of learning a formula from the class of DNTF formulas over n
variables with at most & = O(log n) terms. Previously, the algorithm of Blum and Rudich [BR92]
provided the best known upper bound of 29() log n for the minimum number of equivalence queries
needed for exact identification. We greatly improve on this upper bound by giving an efficient algo-
rithm that requires at most & + 1 equivalence queries if k& is unknown to the learner and at most &
equivalence queries if the learner knows k in advance. This algorithm (as does Blum and Rudich’s)
uses equivalence queries from the class of arbitrary DNF formulas. Using a different technique
we have designed an efficient algorithm that uses only k-term DNF formulas for hypotheses and
has the same upper bound on the number of equivalence queries. However in this case we require
that £ = O(v/Iogn) in order to run in polynomial time. In addition, these equivalence query upper
bounds are tight, in the sense that any algorithm using a polynomial number of membership queries
(regardless of its computation time or hypothesis class) must use at least k + 1 equivalence queries

if & is unknown (and at least k& equivalence queries if & is known).

Table 1 summarizes our specific results for k-term DNF and the other classes that we consider

{these classes are defined in Section 3).

The remainder of this paper is organized as follows. In Section 2 we give additional motivation
for the need to reduce the number of equivalence queries used by a learning algorithm. Then, in
Section 3, we give the needed formal definitions. The technical details of the remaining sections are
for the most part independent, though Section 6 parallels and refers back to Section 5. In Section 4
we present a generalization of the halving algorithm that reduces the number of equivalence queries
required by making use of membership queries. This is the only positive result that we describe in
which the learner may use unbounded computation time. In addition, it uses hypothesis selected
from outside the given concept class. In Section 5 we give our results for learning k-term DNF
formulas. In Section 6 we give our results for the class of read-£ sat-j DNF formulas. In Section 7
we give our results for learning the class of monotone DNF formulas. Next, in Section 8, we present
results for learning Horn sentences. In Section 9 we present a technique to reduce the number
of equivalence queries needed by any concept class for which there already exists a polynomial
time learning algorithm that uses membership queries and justifying assignments. A previous

Representation
Class

Previous

Upper Bound

New

Upper Bound

Lower
Bound

k-term DNF (k=0(logn)*)

% not known 20" log n [BR92) E+1 k+ 1 [BC92]
k known k k [BC92]
Monotone DNF
m not known m + 1 [Ang88] m — (1) m — w(1)

n known

m known m—0 (%) m-— 0 (ﬁ%)
Read-k Sat-j DNF
m not known nO1) [AP92] m+ 1 m+1
m known m m §
Horn Sentences
m not known m{2n -+ 1) [AFP90]
m known O (T;gnf‘_i.—’ﬁom) t Q (Eﬁ%)
Read-once formulas
over V, A, - n [AHK89) 0 (%) 2 (25 [BCY2]
over By n [BHH92b] 0 (%) Q (i) [BCY?]
Arithmetic read-once
formulas for |F| = o(n/ log n) n [BHH92a] 0 (22) 0 (222]) [BCoz)
DFA with n states
n not known n [Ang87b, RS589) 0 (lo:n)

0 ()

*For k = O(+/log n} we can obtain this result using k-term DNF formulas as the hypotheses for the equivalence

queries. For the remaining cases, general DNF formulas are used for the equivalence queries.

"With unlimited computation. Furthermore, we note that both this upper bound and the matching lower bound

hold {or arbitrary DNT formulas.

!The hypothesis class is general DNF formulas.

§The lower bound holds for m < /5(k — 1)n/2.

Table 1: This table summarizes the numbers of equivalence queries in our results. All lower bounds
allow the learning algorithm to use unbounded computation time and to propose any hypothesis.
Unless stated otherwise, all upper bounds are for algorithms that use polynomial computation time
and use hypotheses from the given class. For the Boolean classes n is the number of variables and
m is the number of terms/clauses. For k-term DNF, k is the number of terms. Note that all upper
bounds for an unknown size parameter can be used when the size parameter is known. Likewise,
all lower bounds for a known size parameter apply when the size parameter is unknown.

reduction [BHHK91] shows that justifying assignments for n variables can be generated with n
equivalence queries (as long as the class being learned satisfies the technical condition of being
projection closed). We improve that transformation, somewhat surprisingly, to show that only
n/logn equivalence queries are required. This improvement decreases the number of equivalence
queries required to learn read-once formulas over certain bases [AHK89, BHH92b], arithmetic read-
once formulas [BHH92a] and non-monotone switch configurations [RS90], giving bounds that are
asymptotically tight, Next, in Section 10 we present our results for learning deterministic finite
state automaton (DFAs). Finally, we give some concluding remarks and discuss open problems.

2 Motivation

We now further describe our motivation for reducing the number of equivalence queries needed to
obtain exact identification. In this work we are able to reduce (sometimes quite dramatically) the
number of equivalence queries needed to obtain exact identification at the expense of increasing the
computation time and number of membership queries (although they remain polynomial). Clearly
being able to prove tight bounds on the number of equivalence queries needed for exact identification
is of great theoretical interest. We now argue that is also of practical interest.

As one example consider the situation in which the target function f measures some observable
consequence of the learner’s action. For example, Rivest and Schapire [RS89] motivate the problem
of learning an unknown DFA by the problem of a robot trying to learn to navigate in an environment
describable by a finite state machine. Here a membership query represents experimentation by the
robot, followed by an observation of its perceived state after executing the experiment. Thus, in this
context, membership queries can be made in an unsupervised manner by the learner interacting
with the environment. On the other hand, an equivalence query requires the intervention of a
teacher to provide a counterexample. For example, there are some states that the robot can reach
only through specific sequences of actions that it cannot hope to stumble on through its own
experimentation, and of which it must be told by a teacher. In such settings, minimizing the

number of equivalence queries allows the learner to minimize the supervision needed.

Another motivation comes from the goal of minimizing the number of prediction mistakes
in an on-line learning model. As we have mentioned, the model of learning with membership
and equivalence queries is essentially equivalent to the on-line learning model when the learner
is provided with membership queries [Ang88, Lit88]. The conversion of an algorithm A that uses
membership queries and equivalence queries to an on-line algorithm A’ works as follows. If algorithm
A wants to perform some internal computation or perform a membership query then algorithm A’
will perform the same task. If A wants to make an equivalence query with hypothesis &, then A’ can
Jjust use hypothesis & to make predictions. If hypothesis 4 is equivalent to the target no mistakes
will occur and the learning process is done. Otherwise, if algorithm A’ makes a prediction mistake

on instance x, then this instance can be passed to A as a counterexample. Thus, the number of

mistakes made by A’ is just one less than the total number of equivalence queries made by A.
Since the primary goal of an on-line learning algorithm is to reduce the number of mistakes, the
learner is willing to spend additional computation time and make additional membership queries
to reduce the number of mistakes. Thus minimizing the number of equivalence queries is equivalent

to minimizing prediction errors in an on-line learning model.

Another situation in which we would like to minimize equivalence queries is the case where the
“learning” algorithm is being used to interpolate a function that is in fact already known in some
sense (e.g. we have a black box oracle, a truth table, or a slow simulator whose performance we
hope to emulate) to obtain some desired representation (e.g. a read-once formula or equivalently
a circuit of fan-out 1). In this situation, membership queries may be readily implementable as
substitutions, yet implementing an equivalence query may be much more expensive (or perhaps for

some classes even intractable).

Clearly, there are some other situations in which it is not desirable to reduce equivalence queries
at the expense of performing more membership queries. For example in the classification learning
problem of fitting a function to data points, it is easy to implement an equivalence query (by testing
the hypothesis on the available data), whereas implementing membership queries is often extremely
difficult. Nevertheless, as we have discussed, there are many situations in which it is extremely

important to minimize the number of equivalence queries needed to obtain exact identification.

3 Definitions

We now formalize the model of learning from membership and equivalence queries [Ang87a]. The
learner must infer an unknown target concept f chosen from some known representation class C,
which is a set of representations of functions mapping some domain A into a range Y. We typically
parameterize C as C = [J,51 Cn, where C, is those elements of C that represent functions on n
inputs. For almost all classes studied here C is some subset of Boolean formulas, n is the number
of variables, X = {0,1}", and Y = {0,1}. For these classes, we assume that the n variables are
U1, V2,- .., Uy Where the value of v; is given by the i¢th bit of the instance. A literal is a variable v;
or its negation 4;. For instance z € X we use z; to denote the i** bit of z. Thus z; gives the value
for variable v;. A We shall also refer to the instances as assignments, since they can be viewed as

functions that assign a domain value to each variable.

A Boolean formula is said to be monotone if it contains no negations. A formula is in disjunctive
normal form (DNF) if it is written as the disjunction of monomials (or terms). In addition for the
classes of monotone DNF and Horn sentences we use v; - - - v to denote the term v; A---Avg. The
principal non-Boolean class considered here is the class of DFAs. In this case n is the number of
states in the target DFA, A’ consists of all strings from the given alphabet and Y is {0, 1}.

The learning criterion expected here is that of ezact identification which is achieved by the

learner if it can infer a concept that is logically equivalent to the target concept on all instances
in &. In addition we want the learning algorithm to be efficient. Namely, the running time
of the algorithm should be bounded above by a polynomial function of the size of the smallest
representation from C equivalent to f and of the dimension of the domain (i.e. n).}

Let f(z) = 1 denote that formula f is true for instance z € X and f(2) = 0 denote that A is
false for instance 2 € A'. The learner is provided with two types of queries with which to learn
about f. A membership query MQ(z) for @ € & returns “yes” if f(z) = 1 and returns “no” if
f(z)} = 0. An equivalence query, Equiv(h), takes a hypothesis & € C returns “yes” if h is logically
equivalent to f or returns a counterexample otherwise?. A positive counterezample z is one for
which f(z) = 1 but A(z) = 0. Likewise, a negative counterexample is one for which f(z) = 0 but
h(z) = 1.

If C is a representation class, we define £(C,¢) to be the minimum worst case number of
equivalence queries made by any polynomial time algorithm that uses at most ¢ membership queries
to identify C. (That is, an algorithm A that exactly identifies C and never makes more than ¢
membership queries when doing so, must make at least £ (C,¢) equivalence queries when run for
some target f € C. Furthermore there is some such A that achieves this bound when run on any
target from C.) Observe that this quantity typically decreases as ¢ increases. We let £ (C) denote
the minimum number of equivalence queries made by any polynomial time algorithm to identify C
(making a polynomial number of membership queries). Likewise, when the learner is not restricted
to use polynomial time we let £y (C, ¢) denote the minimum number of equivalence queries needed
to obtain exact identification when at most ¢ membership queries are made. Finally, £y (C) denotes
the number of equivalence queries needed to obtain exact identification using unlimited time when

a polynomial number of membership queries can be made.

Here is a summary of the representation classes we study in this paper.

k-term DNF This is the class of DNF formulas having at most k terms. Angluin gave a polynomial
time identification algorithm for the special case when & is constant [Ang87a], and Blum
and Rudich have since given a more efficient algorithm that runs in polynomial time for
t = O(logn) [BRY2].

Read-k Sat-j DNF A DNF formula is a read-k sat-j DNF formula if every variable appears at
most % times, and every assignment satisfies at most j terms in the formula. The class of

YThis measure of efficiency in terms of the encoding of the target function is what makes it necessary to define
learnability in terms of a class of representations rather than a class of functions. Different representation classes may
represent the same class of functions with varying efficiencies. For example DFA’s, which are a relatively inefficient
encoding of regular sets are learnable, whereas NFA’s, which represent the same set more efficiently and hence give

a potential learning algorithm a smaller time budget, are not.
20ften the notion of an equivalence query is generalized so that the learner can propose any polynomially evalu-

atable hypothesis. While almost all of our positive resulis apply for the more stringent definition we have given, the

negative results hold even under this more general model.

read-k sat-j DNT formulas was proved to be learnable by Aizenstein and Pitt [AP92]. Their

algorithm uses n®0*) equivalence queries.

Monotone DINF This is the class of monotone DNF formulas. These were proved to be efficiently
learnable by Valiant [Val84] and Angluin [Ang88]. We use m to denote the number of terms
in the target formula. A polynomial time learning algorithm can use time polynomial in »

and m.

Horn Sentences These are the conjunction of implications each of the form v ---;,, — v;. It
is easily shown that an algorithm for learning the class of Horn Sentences can be modified to
learn the class of DNF formulas in which at most one variable may appear negated per term.
Thus this class can be viewed as a generalization of the class of monotone DNF formulas.
Angluin, Frazier, and Pitt give a polynomial time algorithm to learn Horn sentences [AFP90)].
For this class m denotes the number of Horn clauses in the sentence, and a polynomial time

algorithm can use time polynomial in n and m.

Read-Once Formulas These are Boolean formulas in which each variable may appear just once
(ie. at a single leaf when the formula is expressed as a tree with operations on the inter-
nal nodes and variables at the leaves). Angluin, Hellerstein, and Karpinski give a poly-
nomial time exact identification algorithm for the formulas over the operators (or basis)
{V, A, =} [AHKS89], and Bshouty, Hancock, and Hellerstein have extended this to more com-
plicated sets of Boolean functions, including the set By of all functions on & or fewer inputs
(for an arbitrary constant k) [BHH92b]. Our results also apply for the class of non-monotone
switch configurations [RS590] and arithmetic read-once formulas over the basis of addition,
subtraction, multiplication and division over a field 7 [BHH92a].

DFAs These are deterministic finite automata representing regular langnages over some alphabet
%. These languages can be viewed as functions from £* to {0,1}, and an efficient exact
identification algorithm is due to Angluin [Ang87b] and has since been improved by Rivest
and Schapire [RS89]. Here we let n denote the number of states in the target automaton.

A variation that we explore here is whether the learner is given the size of the target represen-
tation before the learning session begins (i.e. for the Boolean classes is m known, and for DFAs
is n known?). For previous work aimed mainly at proving tractability, this is not an important
distinction, since a generic transformation generic transformation conversion from an algerithm
that knows the size of the target to one that does not [HKLW88]. However for our precise bounds
this difference can be important, and for some classes we obtain different results depending on
whether or not the size of the target is known a priori. This issue does not affect the asymptotic
results for DI'A’s, nor does it matter for read-once formulas (whose size is always O(n)). But for
monotone DNF it becomes significant in the case where m may be super-polynomial in n, and for

k-term DNF it turns out that an extra query is necessary and sufficient if & is unknown. For Horn

sentences the relationship is more complex.

In this paper log denotes the logarithm base 2, and In denotes the natural logarithm.

4 A Generalization of the Halving Algorithm

In this section we consider a generalization of the halving algorithm [BF72, Lit88] in which we can
reduce the number of equivalence queries required by allowing the learner to make membership
queries. In the section we do not bound the computation time of the learner, and the hypotheses
proposed need not come from C. However, the learner is still limited to make a polynomial number

of membership queries.

Theorem 1 For any concept class C and any ¢ > 2In|C|, £y (C,q) < I—@l——filgci%m.

Proof: For a set of concepts C and £ € {0,1} we define Cé(zp) = {f € C | f(zo) = &¢}. In
Figure 1 we give an algorithm to learn any class with unlimited computation time using at most
log|C|/ logﬁ membership queries and log|C|/log < equivalence queries for any 0 < a < 1/2.
In this algorithm, a membership query is performed if there exists an instance z € & for which
both CP(z) and C}(z) have cardinality at least a|C;|]. Thus, each membership query allows the
learner to eliminate at least @|C;] of the remaining concepts. If for all #z € & either C? or C} has
cardinality less than «|C;| then, just like in the standard halving algorithm, the learner uses the
majority vote hypothesis. However, instead of just being assured that half of the elements of C; are
eliminated, here, at least (1 —)|C;| concepts are eliminated. Thus it immediately follows that this
algorithm uses at most ¢ = log |C|/ log(1/(1 — &)) membership queries and at most log|C|/ log(1/a)

equivalence queries.

Using the standard inequality zloge < log (ﬁ) it follows that ¢ < g’ﬁ) ﬂ, which we rewrite

as @ < In|C|/q. Substituting this upper bound on « into the upper bound on equivalence queries

derived above gives the bound claimed for &y (C, g). O

d

For most of the classes we study, |C] is exponential, thus by setting ¢ = %Iﬂ (for d > 1) it
immediately follows that in such cases, we can reduce the number of equivalence queries to ﬁ%ﬁlm
from the log |C| of the halving algorithm, while still using only a polynomial number of membership
queries.

Observe that for Horn Sentences |C| = O((n 4 1)™2™"), and for arbitrary DNF formulas |C| =
O(3™"). Furthermore, for both classes it can be shown that |C| = 2(2°™") for some constant e.
To see this lower bound consider the class of monotone DNF formulas in which each term contains
exactly n/2 variables. For this class there are 1":,;2) possible terms, and all possible subsets of these
m terms represent logically distinct formulas. Thus we obtain the following corollary.

Gen-Halving(C, «)

Initialize Cy to C and z to C.
While [C;] > 1
If there exists z € & such that min {|C}(z)|, [C}(z)]} > «|Ci|
§ = MQ(z)
Ciy1 Cf (=)
Else
Forallze &
If |C} ()| > ICP(=)] then g(z) — 1
Else g(z) — 0
If Equiv(g) = “yes” then return g
Else Let z «— Equiv(g)
Cipr — € z)
Return C;

Figure 1: An generalization of the halving algorithm that uses membership queries to reduce the
number of equivalence queries.

Corollary 2 For C the class of Horn sentences or the class of DNF formulas,

mn
=0 —————— .
£u (€) (10gn+logm)
In Section 16 we show that both of these results are asymptotically tight, by giving a matching

lower bound for the class of Horn Sentences.

5 k-termm DNF Formulas

Bshouty and Cleve [BC92] prove that % equivalence queries are required to learn a k-term DNF
formula when the learner knows % a priori, and that £ + 1 queries are required when k is not known
in advance (the extra query comes because the algorithm does not know when to stop looking for

new terms). We now give algorithms that match these lower bounds.

In this section, we first present an algorithm for learning k-term DNF formulas in which the
running time and the number of membership queries are O (n(log n)O(I)QOU“)), which is polynomial
when k& = O(logn). In this algorithm the hypotheses for the equivalence queries are general DNF
formulas. The number of equivalence queries when % is known is k, and & + 1 otherwise. We then
present an algorithm that uses the same number of equivalence queries as above, but for which
the hypotheses are k-term DNF formulas. For this algorithm the running time and the number of
membership queries are n2°(**){log n)?¥), which is polynomial when & = O(v/Iog 7).

Blum-Rudich Alg

Let z be a positive example of f
Initialize h «— false.
Repeat
Call Produce-terms(z).
Add the terms generated by Produce-terms to k.
Repeat
Perform Equiv(h)
If answer “yes” then return k
Else let y be the counterexample
If f(y) =0, remove from £ all terms ¢ for which ¢(y) =1
Until f(y) =1
z—y
Until done

Figure 2: The deterministic version of the Blum-Rudich algorithm to learn k-terrn DNF formulas.

Our algorithms are based on the algorithm of Blum and Rudich [BR92], which we now briefly
summarize. The key processing of the Blum-Rudich algorithm can be encapsulated as a procedure
Produce-terms that when given a positive example z, produces ¢ = 20(")(10g n)o(l) terms, one
of which is in the target formula f3. Furthermore, this term is satisfied by z. This procedure runs
in time nc and uses at most nc membership queries, and no equivalence queries. The deterministic
version of their algorithm works as shown in Figure 2 where f = Ty VT3V -+ -V Tk, Their algorithm
uses 20(%} (log n)o(l) equivalence queries, mainly to produce the needed negative counterexamples.

Qur goal is to reduce this number to k£ + 1.

Observe that most of the equivalence queries used by the Blum and Rudich algorithm are used
to produce the needed negative counterexamples. We reduce this number to £ + 1 by simulating
the negative counterexamples. Suppose we call Produce-terms(z), for a positive counterexample
@, and let 7 = {T1,...,T.} be the terms returned. Our goal is to drop from 7 any term T that
does not imply f (i.e. is satisfied by some negative example for f). If we can achieve this, and
hence add to 4 only those terms that imply f, then when we next ask Equiv(k) we are guaranteed
to get a positive counterexample. Let T be a term (not equivalent to false) and let 2 be a DNF
formula. We define the projection hr of h as the DNF formula obtained by replacing every variable
v € T by 0 if it is negated and by 1 otherwise. We have the following lemmas:

Lemma 1 Let h be a DNF formula and Tp a term. Then Ty implies h iff hy, is a tautology (i.e.

equivalent {o true).

3Technically, the given statement just holds where f is some k-term DNF formula that is logically equivalent to

the target.

10

Our O(logn)-term DNF Algorithm

Let = be a positive example of f
Initialize i + false.
Repeat
Call Produce-terms(z}, and let 7 = {T1,...,T,} the terms returned.
Add to h those terms in 7 that imply f.
Perform Equiv(h)
If the answer is “yes” then we are done.
Else let z be the (positive) counterexample returned.
Until done.

Figure 3: Our refinement to Blum-Rudich Algorithm.

An (n,k)—universal set is a set of Boolean n-tuples {b1,...,6;} C {0,1}" such that every
subset of k& bit positions (or variables, in our context) assumes all of its 2% possible assignments
in the b;’s. Naor and Naor [NN90] give an explicit construction of an (n, k)—universal set of size
t = O(k2%*log n).

Lemma 2 Let S be an (n, k)-universal set, and let f be a k-terrn DNF formula. Then f is a
tautology if and only if f(a) =1 for alla € §.

The proofs of these lemmas are trivial and thus are omitted here. Thus, to remove the terms in
T that do not imply f, we simply use the (n, k)-universal set to check if a term T implies f. Qur
algorithm is described in more detail in Figure 3. Observe that the number of membership queries
needed to remove such terms is just O(k2% logn) — the size of the universal set.

Since each iteration of our algorithm & implies f, after & calls to Produce-terms & will contain
all terms of f, therefore f implies &, so h = f. If & is known then there is no need for the (k + 1)st
equivalence query. So the number of equivalence queries is & + 1 if £ is not known, and k if it
is known. The number of membership queries is O (n(log n)o(l)QO“")) . Thus we have proved the

following theorem.

Theorem 3 There is a polynomial time algorithm that ezactly identifies an unknown k-term DNF
formula using O (n(log n)o(l)QO(")) membership queries and k equivalence queries whose hypotheses
may be arbitrary DNF formulas (or k + 1 queries, if k is not given as an input to the algorithm).

Now we present an alternate algorithm that in addition to reducing the number of equivalence
queries to k 4+ 1 (or k, if & is known a priori), also makes these queries on hpyotheses that are
k-term DNF formulas (versus arbitrary DNF formulas). We first describe a parallel version of our

11

algorithm in which there are k + 1 parallel rounds of equivalence queries, but the total number of
queries is ¢©®), where ¢ = QO(k)(log 7)°), We then show how to make the algorithm sequential
in such a way to reduce the number of equivalence queries to & + 1 (by reducing the number of

equivalence queries in each round to 1}.

5.1 A Parallel Greedy Algorithm

We begin with an informal description of our paralle] algorithm. Let z be a positive example of f.
If we call Produce-terms(z) we get ¢ terms 7() = {Tl(l), .. .,Tc(l)}, one of which is guaranteed
to be a term in f (without loss of generality say 77). We now continue performing the following
step in parallel on all these terms. For each T € 7() make the equivalence query Equiv(T). If
the counterexample z is negative then T is a “bad” term and thus we can quit working on it.
Otherwise (so f(z) = 1), call Produce-terms(z) to get another ¢ terms, 7(%) = {Tl(z), T,
one of which is guaranteed to be a term in f. Furthermore, since Ty € 7(), it follows that some
other term from f (say T3) is in 702

We now work in parallel on all formulas of the form T!-(l) v TJ-(Z) for 1 € 4,7 € ¢ making an
equivalence query for each one. As before, if the counterexample is negative we stop working on
that formula. Otherwise we give the counterexample as input to Produce-terms and get another
¢ terms one of which is a new term in f. After & such parallel phases we will have a set of k-term
DNF formulas, one of which is the target formula. Finally, we use equivalence queries to find which
formula is the target. Thus in summary, there are % phases and in phase ¢ there are at most ¢
i-term DNF formulas, one of which contains ¢ terms from f. In addition, note that we get these
formulas independently, in the sense that getting some i-term DNF formula does not depend on

getting other i-term DNF formulas.

We now analyze the complexity of this parallel algorithm. The total number of DNF formu-
las produced in the % phases (and thus the total number of equivalence queries made) is at most
¥ ¢t < ¢P®), The number of membership queries is nc®(¥)129*)(log 2)°(), Thus the above algo-
rithm learns k-term DNF formulas in Angluin’s restricted model (where each hypothesis comes from
the class being learned, k-term DNT') in sequential time ncC()120() (log n)o(”:nQO(k?)(Iog n)Ok),

5.2 Reducing the Number of Equivalence Queries

The idea for reducing the number of equivalence queries is the following. Suppose we have two
i-term DNT formulas h and &', and we want to run an equivalence query for both. Instead, we
test whether h = A’. If this is the case then we can drop one of them. Otherwise, we find an
assignment y for which (without loss of generality) A(y) = 0 and A'(y) = 1. We then perform a
membership query to see if y is a negative or positive example. If y is a negative example then A’
can be discarded and we ask an equivalence query with h. Otherwise y is a positive counterexample

for h and we perform an equivalence query for A’.

12

Using this idea we reduce the number of equivalence queries in phase i from ¢* to 1 (the last i-
term DNF formula has no other i-term DNF formula to be compared with, so we ask an equivalence
query with it)., On the other hand, the number of membership queries is increased by c—1.Ifkis
known then there is no need to ask an equivalence query in the kth phase, because the formula to
pass the last test is guaranteed to be the target formula. Otherwise, we need an equivalence query
for the kth phase as well, and then the number of equivalence queries is k+1.

All that remains now is to give an algorithm that tests whether two k-term DNF formulas are

equivalent. We shall use the following lemma in addition to Lemmas 1 and 2.

Lemma 3 Leth=T1V VT and b’ = T{V ---V T}, be DNF formulas. Then h = h' iff T; = I’
and T} = h, foreach 1 <i<jaend1 <4 < 5

The proof of this lemma is trivial and thus is omitfed here. By Lemma 1 we reduce the problem
of testing these implications (or finding a counterexample) to that of testing tautology for a k-
term DNF formula. As above in Lemma 2, this is efficiently done by checking the elements of an

(n, k)-universal set.

Theorem 4 There is an algorithm {hat exactly identifies an unknown k-term DNF formula using
1200 (log n)O®) membership queries, nQO("j)(Iog n)OW) time, and k equivalence queries (or k+1,

if k i3 not given as an input to the algorithm).

6 Read-%t Sat-;j DNF formulas

A DNF formula is read-k if every variable appears in it at most &k times, and it is sai-7 if every
assignment satisfies at most j terms in it. The class of read-% sat-j DNF formulas was proven to be
learnable by Aizenstein and Pitt [AP92]. The running time of their algorithm is O(n*7+27+2) and
the algorithm uses at most k(n/*? 4 n/*!) membership queries and at most kn?+i+1 equivalence

queries.

In Section 6.1 we show how to modify the Aizenstein and Pitt algorithm to decrease the number
of equivalence queries to m (the number of terms in the target formula) when m is given a priori to
the learner, or to vn + 1 if m is not known. Both the running time and the number of membership
queries in our algorithm are n®%4), In Section 6.2 we show that the number of terms in a read-k
sat-j DNF formula is bounded above by 4,/7k(k — 1)n, for k£ > 1, and by j for £ = 1. In Section 6.3
we present a lower bound on the number of equivalence queries needed to learn read-k sat-j DNF

formulas. The lower bound is m (or m + 1, if m is not a priori) for m < /j(k - 1)n/2 and
k> 1, and it is 7 (or 4+ 1, if j is unknown a priori) for £ = 1. The first lower bound holds for

7k = o(n/(log n)?), and the second holds for j = o(n/logn).
Let Read-k Sat-j DNF,, represent the class of read-% sat-j DNF formulas on n variables, and
let Read-k Sat-j DNF, ,, be the subclass of those formulas that have at most m terms.

13

6.1 An Upper Bound for Read-% Sat-; DNF Formulas

The algorithm of Aizenstein and Pitt [AP92] shares the same high level structure as the Blum
and Rudich algorithm to learn k-term DNF formulas, shown in Figure 2. Recall that the main
processing of that algorithm is encapsulated in a subroutine Produce-terms that takes a positive
example # and produces a set of terms, one of which is in the target formula f and is satisfied by z.
For this version of Produce-terms, the set of terms returned is of size n®4), and the dominant
use of equivalence queries is to provide negative examples that eliminate incorrect terms. As with
the k-term DNF algorithm, we eliminate the need for such equivalence queries by showing that
polynomial time computation and membership queries can defect whether a term indeed implies
the target formula (in the sense that only positive examples can satisfy the term). Since each call
to Produce-terms returns a set of terms that includes one from the target formula not present
in the previous hypothesis, it follows that the algorithm needs only m positive counterexamples.
Thus by removing the need for negative examples we prove our bound (if m is not known a priori

the algorithm needs an additional final query to detect equivalence before termination).

We first present some definitions from Aizenstein and Pitt. A term is almost satisfied by an
assignment ¢ with respect lo a literal v if v is the only literal in T that is assigned 0 by z. We
denote the assignment z with literal v fixed to 0 (respectively, 1) as z,.-¢ (respectively, 2y1). The
sensitive set of = is defined by sensitive(z) = {literal v | z assigns 1 to » and f(z) # f(zy—0)}-
Thus, if v € sensitive(z), flipping v in = changes the value of f. An instance z is said to be an
t-variant of an instance y if the number of bits on which = and y disagree is at most 7. For a term
T, let lits(T") denote the set of literals in T

Thus we need just show how to determine whether a term T logically implies an unknown
read-k sat-j DNF formula f (denoted T' = f). Given a term T and a DNF formula f, we define
the projection fr to be the formula obtained from f by replacing every literal that appears in T
by the constant 1 and every literal whose complement appears by the constant 0.

Let T be a term and let f be the target read-k sat-j DNF formula. By Lemma 1, T = fif and
only if fr is a tautology. We now show a series of lemmas that lead up to a result showing that we
can efficient test whether fr is a tautology using membership queries (without knowing f).

Lemma 4 Let f be a read-k sal-j DNF formula and let T be a term. Then fr is a read-k sai-j
DNF formula,

Proof: Since fr is formed from f by deleting terms and literals, clearly if is read-k. For an example
z, let 7 be the example obtained by setting all literals that appear in 7" so that they are satisfied
We prove that fr is read-j by observing that if 2 satisfies 7/ > j terms in fr, then zr satisfies 3’

corresponding terms in f, which is a contradiction. a

Thus, equivalence testing is reduced to testing via membership queries whether a read-k sat-§
DNF formula is a tautology. Before showing how this is done, we first give two preliminary results

14

(the first restates Lemma 7 of Aizenstein and Pitt).

Lemma 5 ([AP92]) Let 2 be an example sotisfying a read-k sat-j DNF formula f. There are at
most 2kj literals v for which there is a term in f almost satisfled by x with respect to 7.

The following analogous lemma covers the case when z falsifies £,

Lemma 6 Let 2 be any assignment falsifying a read-k sat-j DNF formula f. There are at most
2(k + 1)7 literals v for which there is a term in f almost satisfied by » with respect to .

Proof: Let T be the term that is satisfied by example 2 and no other instances (i.e. T contains
literal v; if 2; = 1 and literal %; if z; = 0). Now let f' = f v 7. Note that f is read-(k + 1) since
f is read-k and by adding T we added one occurrence for every variable. Also note that f’ is sat-7
(since none of the examples that satisfy any terms in f satisfy 7', and vice versa). Now z is a
positive example for f', so Lemma 5 states that there exist at most 2(k + 1)7 literals » for which
there is a term in f/ that is almost satisfied by z with respect to #. Since every term in f is also

in f/, the lemma follows. m

We now state the result that allows efficient tautology testing on read-k sat-7 formulas.

Theorem 5 Let f be a read-k sat-j DNF formula and let ¢ be any assignment. Then f is a
tautology iff f(z") =1 for every 2(k + 1)j-variant 2’ of x.

Proof: We consider the two directions of the claim.

(=) This direction is trivial, for if f is a tautology then its value is 1 on every input.
(<) Suppose f in not a tautology. We will produce a 2(k + 1)j-variant of x that falsifies f.

Since f is not a tautology, there is an example y for which f(y) = 0. If y is a 2(k 4 1)j-variant
of z then we are done. So assume that y is not a 2(k 4 1)j-variant of z. Let

V(y) = {literal v | there is a term in f that is almost satisfied by y with respect to %},
D(z,y) = {literal v | 2 assigns 0 to v and y assigns 1 to it}.

By Lemma 6 we have that |V (y)| < 2(k+1)7, and by our assumption that y is not a 2(k+1);-variant
of ¢, |D(z,y)] > 2(k + 1)j. Therefore, there exists a literal v € D(xz,y) — V(y). Since y falsifies all
terms in f and since v € V' (y), the assignment 4 = y,o still falsifies f. Moreover, by Lemma 6,
we know that |V(y')| < 2(k + 1)7, and |D(z,y")| = [D(z,y)| — 1, since ¥’ and = both assign 0 to
v. If |D(z,9")| > 2(k + 1)j, we can repeat the same process: find a literal in v € D(=z,y') — V(¢),
flip it in 3’ to get a new assignment y” that falsifies f, and so on. This process can be repeated
until we get an assignment z' that falsifies f and for which [D(z,z")] < 2(k + 1)j. This 2’ is a
2(k + 1)j-variant of & (since |D{z,2")| < 2(k + 1)), and it falsifies f, so we are done. O

To summarize our algorithm to learn read-% sat-j DNF, we modify the processing of the main
loop to consider only those terms returned by Produce-terms that logically imply the target

15

formula. In order to test if a term T implies f, we check if fr{z') = 1 for every 2(k + 1)j-variant z’
of any assignment z (e.g. pick z to be all 0’s). The number of membership queries needed for every
test is (2(k11)j) < n2*¥+1)| Produce-terms is called m < kn times (m is the number of terms in
f), and every time it returns at most (2’;].) terms. Therefore, the number of additional membership
queries needed is at most n2(d+1)ip2ki = p4ki+2/ The additional running time is clearly n®*9),

Thus we have proved the following theorem.
Theorem 6 & (Read-k Sat-j DNF,) = m+1 and € (Read-k Sat-j DNF,) = m. for j, k constant.

This result is obtained using arbitrary DNF hypothesis. A trick analogous to that of the
previous section can be applied to get an algorithm that uses only read-k sat-j hypothesis, but the
algorithm will no longer be polynomial time in this case (since both the size of the set returned by
Produce-terms and the number of times that routine is called can grow at least linearly in =n).

6.2 Number of Terms in a Read-k Sat-j DNF Formula

A disjoiner between two terms T and 7" is a literal that appears positively in one of them but
negatively in the other. If a literal £ is a disjoiner between T and TV, then we say that [disjoins T
and 7'. Obviously, if there is a disjoiner between two terms, there cannot be an assignment that
satisfies both. Conversely, if there is no disjoiner between any two terms of a set S of terms, then
there is an assignment that satisfies all the terms in the set §.

Clearly in a read-Once sat-j DNF formula f there cannot be any disjoiners, since otherwise
some variable must appear twice. Therefore, there are at most 7 terms in f, since otherwise there
would be an assignment that satisfies all of them contradicting the fact that f is Sat-j. We thus

have proved the following theorem.
Theorem 7 The number of terms in a read-once sai-j DNF formula is al most j.

We now prove that for £ > 1, the number of terms in a read-kn sat-7 DNF formula is at most

4/5k(k - T)n.

Let Gy = (V, E} be the graph, induced by f, defined as follows. V is the set of terms in f,
and (u,v) € F, u # v, if and only if the terms u and v share some variable, An edge (u,v) € E is
labeled with the set of variables that is shared by = and v.

Lemma 7 Gy has the property that any j+ 1 distinet vertices in Gy contain a pair of vertices that

are connected by an edge.

Proof: Suppose the claim is not true. This means that there are j + 1 terms in f for which no
two share a variable. Therefore we can define an assignment that satisfies all of these j 4 1 terms,

contradicting the fact that f is Sat-j.]

16

We are interested in bounding from below the number of edges in Gy (i.e. [E]). For this purpose
we look at the complement graph of Gy, Gy = (V, £). Let K; denote the clique on 7 vertices.

Lemma 8 G; does not contain Kji1.

Proof: Suppose this is not true. That is, there is a set of vertices v;,...,v;,, that perform
K;+1. By definition of Gy, there is no edge in Gy between any two vertices among v;;, .. 3 Vijars
contradicting Lemma 7. O

We now upper bound ’EI, thus giving us a lower bound on | E|. A graph is ¢-partite if its vertices
can be partitioned into 7 subsets so that no edge has both ends in any one subset (we refer to the
subsets as partitions). A graph is complete i-partite if it is simple, i-partite and if every vertex
in any partition is connected to all vertices outside the partition. Let T;, denote the complete
i-pattite graph on p vertices in which each partition has either |p/¢} or [p/7] vertices. For a graph
G, we use ¢(G) to denote the number of edges in G.

We use the following standard lemmas. (For example see Theorem 7.9 and Exercise 1.2.9 from
Bondy and Murty [BM76].

Lemma 9 If @ graph G is simple and contains no K41, then €(G) < €(T}m), where m is the

number of vertices in G.
Lemma 10 €(T;n) = (5" + (7 - 1)(*1?) where b = |m/j].

We are ready now to find an upper bound on the number of edges in G;.

Lemma 11
m{m+ 2)(5-1)
27)

Proof: By Lemma 8, G 7 does not contain K;41, and thus by Lemmas 9 and 10 it follows that:

(m - gm/jJ) FG-1) (Lm/jgj + 1)
(m = [m/i[)m— [m/5] - 1) .. . \(m/i]+1)(m/5])
i=1) 5

[E| <

Z]

(FAN

= +

2
< (m — (m/j) +21)(m —(m/7) | (- 1)((7'71/3) zl)(m/.?)
m{m + 2.)(j - 1).

23

We now lower bound |E|.
Lemma 12

B > m(m-{33+2).

17

Proof: Since that the number of vertices in &y is m, and Gy is the complement graph of @;,
|E| + |E| = (%). Thus by applying Lemma 11, we obtain

m m(m +2)(j - 1)
5 2 (7)-mlmt
m(m — 3j+2)'

23
[
We now upper bound on |E], and then by applying the previous lemma, we can obtain an upper

bound on m.

Lemma 13 |E| < (g)n

Proof: Assume for contradiction that [F| (and thus the number of labels in the graph is greater
than (g)n Since there are n variables, by the pigeonhole principle we conclude that there is a
variable v that appears in more than (i;) labels. Let eg,...,e; be the edges whose labels contain v
(soi> (5)). Let G/(V’, E') the subgraph of G whose set of edges E' is ey, .. ., ¢, and a vertex u is
in V' if an only if u is an end of some edge in E’. Since any simple graph with & vertices, contains
at most (g) edges, it follows that the number of vertices in G’ is greater than k. Finally, since every
vertex in V' is adjacent to an edge in E’ and variable v appears in the labels of all edges in E’,
it follows that the number of vertices in V” is greater than k, so v appears in more than &k terms

contradicting the fact that f is read-&. O

Theorem 8 Let m be the number of terms in a read-k sat-j DNF formula f (k > 1), then m <
4\/3k(k - 1)n.

Proof: By Lemma 12, |E| > m(m;fjﬂ) > m(";;sﬂ. Combining this inequality with that from

Lemma 13 and solving for m yields:

9 3
< el 9., 3.
m < \/j (k 1)n+4j +357
< \/jk(k—l)n+§jkn+g\/jkn
: 9 . 3
< \/jk(k - n+ Z]L(L - n+ 5\/,‘]}6(}3 —1n

< 4Jik(k—1)n

where we use the fact that since a read-% formula over n variables has at most kn literals, § < kn,
and the observation that for k > 2, jkn < jk(k - 1)n.

6.3 Lower Bound on the Number of Equivalence Queries

We separate between two cases. The first case read-k sat-j DNF, when £ > 1, and the second case
is read-once Sat-j DNF.

18

6.3.1 The Case k> 1

We remind the reader that the variables over which the formulas are defined are vy,...,v,. We use
) to denote v;, and we use v} to denote %;. Thus v* is v;, if ¢; = 0 and is %; if ¢; = 1. If a variable
is negated then we say its sign is 1, otherwise its sign is 0. Also, recall that a disjoiner between
two terms is a variable that appears positively in one of them but negatively in the other.

We define a subclass C’ of read-k sat-j DNF formulas (4 > 1) and prove that the learner must
ask at least \/j(k — 1)n/2 equivalence queries to learn C’.

The Definition of the Target Class

Let s = [, /WE:TTJ’ and let m’ = 1+ (k—1)s. A formula f € C'isof the form f = fiVv f/ov---V fj,
where each subformula f; is a read-k sat-once DNF formula. Each variable must appear in only
one subformula, and each subformula has m' terms. To ensure f; is sat-once, every term in f;
must contain a literal that disjoins it from every other term in f;. We first describe f;. The other

subformulas are defined similarly over different sets of variables.

Every term T in f; has two parts: the necessary part and the new part. The necessary part
contains only the disjoiners. The new part contains s literals none of which appears in the new
part of any other term. Let T1,...,T,, be the terms in f;. We use II; to denote the new part of

term 7;. Namely,
is

Hi = /\ ?};j,
j=(i—1)s+1
for some c(_3)s45 € {0,1}, 5 = 1,...,s. Besides II;, T contains literals to disjoin it from
T1,...,Ti—1. The first literal in II; {i.e. ﬁff'_'f))s’i;) is used to disjoin T; from the next comsecu-
tive k& — 1 terms. Then we cannot use this variable anymore. In order to disjoin T; from the
following k& — 1 terms we use the second literal in II;, that is vfgi';));_‘;;, and then we use the third

literal, etc. For ease of notation we let II? denote the negation of the pth literal in II.

To summarize, the terms in f; are:

T1 = H1
T, = Al

Teey = MATG AT 5 ATl

T = MIATILATL_, AT, AT,
Trgr = IBATZATE , AT, ATIE A Ty
Tpr = IEATISA-- AT L AT,

19

Note that every literal in 77 appears in 77 and in £ — 1 other terms. So the number of terms,
m' = 1+ (k — 1)s. Note also that there is no assignment that can satisfy any two of the above
terms, because each two are disjoined by a disjoiner. Therefore, f; is indeed read-%4 sat-once.
Finally, observe that the number of variables appearing in f; is sm/.

The other subformulas { f3,..., f;) are defined like f; but with a distinct set of variables. More
specifically, fi is defined over the variables vy, ..., Vg, f2 is defined over the next consecutive sm’
variables, that is vsm/41,. .., Y2sm, etc.

Observe that since each subformula is Sat-Once, f = f1 V ---V f; is Sat-j. Also, since each
subformula is defined over a distinct set of variables, and since every one is read-k, it is the case

that f is read-%. Finally, the number of variables used in f is

2
ST R RS () e W A S
jom' = js+ jk—1)s* < 5 2j(k-—1)+3()(25(k—1) 2(k—1)+2

For k& > 2 it is true that D) yoa 4y < < =T < %, therefore the number of variables used in f is less
than n, so f is well-defined.

Observe also that the number of terms in f is
Y . - 3 3
m = jm' = j(1+ (k~1)s) = j (l+(k /3 (L) > j(k =1\ 57— (L = /3(k - 1)n/2.

Example: Letn =100, 1 =2 and k = 3. We have s = 3 and m' = 7. We show some formula
f=HhV f2in C' (for the mentioned parameters). The II's of f; are as follows.

II; = v 93, Iy = vavs¥s, I3 = Drugvy, Iy = viovn1v12,
Iy = B13014%15, s = vig¥1701s, and Il7 = B19D20va1.
Therefore, f; is:
=1L V 5illy V 51043 V vaBqv7lly V veB5v7010lls V vs¥sTstiovialls V vaveTsBiivistielly.

The subformula f, is defined over the variables vag,. .., v4.

The Adversary

The lower bound here holds when jk = o(n/(logn)?) and the number of terms in the target
formula is at most /j(k — 1)n/2. We establish this bound using the techniques of Bshouty and
Cleve [BC9O2].

Theorem 9 For jk = o(n/(logn)?), k > 1, and m < /5(k - 1)n/2,
Eu (Read-k Sat-j DNF,.,) > m
&y (Read-k Sat-j DNF,) > m+ 1.

20

Proof: We prove that the lower bound holds for the class C’ defined above, by showing that the
learner must ask at least m equivalence queries (or m + 1 if m is no known a priori). Note that if
m is less than the number of terms in the formulas in C’, we drop all the extra terms from each
formula.

Let f be the target formula in C’. The goal of the adversary is to ensure that each equivalence
query (accompanied with a polynomial number of membership query) only helps the learner to
know at most one term in f. If the number of terms in f is not known a priori, then the learner
does not know when it has all the terms and needs one additional equivalence query.

The learner’s task is to find the signs of the variables in each of the formula’s II’s. Once this
is done, the learner will be able to exactly identify the formula. Recall that the size of every II
is 8 = [\/:TE-:——;J Suppose the order of the literals in every II is fixed. A vector w € {0,1}* is
the sign vector of II if the ith bit of w gives the sign of the ith literal in II. As stated above, the
learner’s task is to learn the sign vectors of the IT’s.

Henceforth, we number the II’s of the target formula: IIy,...,[,,. Let P; C {0,1}* be the
set of sign vectors each of which is a candidate for being the sign vector of II;. In other words,
every vector in 7; is consistent with the adversary’s replies so far. At the beginning of the learning
session the learner does not know the sign of any variable in any If, so P; = {0,1}%, fori = 1,...,m.
For ¢ = [\/%}, the initial size P; is 2° which is superpolynomial in n, provided that jk =
o(n/(logn)?). Later we will show that every membership query decreases the size of every P; by at
most 1. These two facts imply that a polynomial number of membership queries cannot decrease
the size of any P; to 1. In other words, a polynomial number of membership queries does not suffice

to determine the vector sign of any II.

The adversary’s strategy in answering the membership and equivalence queries will be such that
after e equivalence queries the learner knows only IIy,...,II. but has gained no information about

Metq,..., . Let m; denote the sign vector of II;.

Let e be the number of equivalence queries that have been answered so far in the learning

session. The adversary maintains the following invariants:

1. For 1 < £ < e, P contains exactly one element (the sign vector of II;, as known to the
learner). In addition, P, 1 < £ < e does not change in the future (so the adversary remains

consistent).

2. For £ > e, |Py] is super-polynomial.
Let g(z) be the disjunction of the first (known) e terms in the target formula f.

Answering membership queries. Suppose the learner asks MQ(a). The adversary answers as

follows.

21

MQ1l: g(a)=1.
In this case, since g(a) = 1, it is the case that f(a) = 1, so the adversary answers 1. The
learner has gained no information by this reply.

MQ2: g{a)=0.
In this case the adversary answers 0, and updates the candidate sets Pey1,...,Pm as
follows. Recall that the length of the sign vector of each II is 8. Let b;, e < i < m be
the ith block of size s in a. Note that a satisfies some II; if and only if the sign vector of
II; is the complement vector of the block &;. Therefore, in order to ensure that « falsifies
all IT;, e < ¢ < m, we eliminate the complement of b; from P;. Thus, we eliminate at

most most one element from each P;, e < i < m.

Answering equivalence queries. For each equivalence query Equiv(h), the adversary answers

as follows,

EQ1: g # A, that is, there exists an assignment @ such that k(a) = 0 and g(a) = 1.
In this case the adversary returns “no” accompanied with the counterexample a. The
learner has gained no information because of this reply. (This case is similar to case
MQ1.)
In order to maintain the invariants, the adversary picks an arbitrary element 7 in Peys,

and updates P.yq to be exactly {r}.
EQ2: h # g, that is, there exists an assignment ¢ such that A{a) = 1 and g(e) = 0.

In this case the adversary answers “no” accompanied with @ as a counterexample. In
order to be consistent in future replies, the adversary updates the P;’s, e < i < m, as in
case MQ2.
In addition, in order to maintain the invariants, the adversary picks an arbitrary element
7 I Peg1, and updates Py to be exactly {r}.

EQ3: g=h.
In this case, the adversary discloses a new term as follows. The adversary picks some
element T € P.y1, and returns the answer “no” accompanied with the counterexample
a built in the following manner. The ith block, 1 < ¢ < e is chosen to be the (unique)
element in P;. The (e + 1)st block is 7, and the other blocks are fixed arbitrarily. The
adversary updates Peqyq1 by setting it to be the complement of #. Observe that, by the
way it was constructed, o falsifies g, so it falsifies h. However, the adversary disclosed
the (e 4+ 1)st term and it is satisfied by «, so it satisfies the target formula.

Observe that an equivalence query discloses exactly one term from the target formula, so the
first invariant is maintained. Observe also that as a result of a membership query or an equivalence
query, the size of every P;, e+ 1 < ¢ € m, decreases by at most 1. Since the initial size of every

P; is super-polynomial, and since the learner is allowed only a polynomial number of membership

22

queries (and of course equivalence queries) the size of P;, e + 1 < i < m, remain super-polynomial.

So, the second invariant is maintained as well. a

6.3.2 The Case k=1

By Theorem 7, the number of terms in a read-once sat-7 DNF formula is at most j terms. We
show a class C" of read-once sat-j DNF formulas, and show that the learner must ask at least j
equivalence queries in order to identify the target formula. This bounds holds for j = o(n/logn).

Definition of the Target Class C”

A formula f € C” contains exactly j terms, each of size § = [-’j J The ith term ¢;, 1 <1< 7, is

is

t; = /\ 'U;P,
p=(i—1)s+1
for some signs ¢(;_1)s41,- - Cise
Here, like in the previous lower bound, the learner’s task is to identify the sign vector of every
term. The adversary replies to the learner exactly like in the lower bound of the case & > 1. Note
that since j = o(n/logn), the initial size of every candidate set is 25 = 2l»/i] = 2(lo8n) which is

super polynomial as claimed above.

We thus have proved:

Theorem 10 For j = o(n/logn), &y (Read-Once Sat-j DNF,) is at least 7 if j is known a priori,

and is at least § + 1 olherwise.

7 Monotone DNF Formulas

In this section we let Monotone DNF, represent the class of monotone DNF formulas on n variables,
and we let Monotone DNF,, ., be the subset of those formulas that have at most m terms. A learning
algorithm is allowed time and membership queries polynomial in n» and m (though for the former

class m is not known to the learner a priori).

7.1 Lower Bounds

To prove lower bounds on the number of equivalence queries required to learn monotone DNF
formulas, we prove the following key lemma demonstrating a trade off between membership and
equivalence queries. The proof uses an adversary argument to show that for a certain subclass of
monotone DNF formulas, membership queries reveal relatively little information,

23

Lemma 14 £ (Monotone DNF, .n,q) > m — d for any 0 < d < n satisfying ([%J)d >qg4+m-—d.

Proof: For ease of exposition we consider the case where d divides n evenly. We prove the result
holds for the following subclass of monotone DNF formulas. The target formula includes the
following d terms that partition the variables into d blocks of size n/d (we call these the “fixed”

terms, since we give them to the learner in advance).

Tl = ’Ulvz...fv%
Ty = U2 41V8 42 V2n
Ta = vgdynp

The remaining terms 7 = {Tyq1,...,Tm} will each include all but one of the variables from each T}
with ¢ < d (so each such term contains n — d variables). All the monotone DNF formulas obtainable
in this fashion represent distinct functions. The task of the learner, then, is to decide whether each
of the possible (n/d)? terms of the specified form are in the target formula.

Fach time the learner makes a membership query on an instance z € A, the adversary replies:

f(2) 1 If satisfies one of T3, ..., Ty (or a previous query has stated f(z) = 1).
T =
0 Otherwise.

Thus when the adversary says f(x) = 1, the learner has obtained no new information. When the
learner is told f(z) = 0, then z can satisfy at most one potential choice for a term in 7, so the
learner’s only new information is that one particular term is not in f.

The target formula contains up to m — d initially unknown terms. The membership gueries
may eliminate up to g of the possible terms, but there are at least (n/d)¢ — ¢ > m — d remaining
terms about which the learner has no information. And m — d of these terms may appear in f in
any combination.

When the learner makes an equivalence query on some hypothesis ki, the oracle replies “no” if

it can return a counterexample of one of the following types:

1. f(z) =1, for an example z that satisfies T7 V - -- V Ty, but has h(z) = 0.

2. f(z) =0, for an example x that has two variables from some one of Ty,...,Ty set to 0, but
has h(z) = 1.

3. f(z) =0, for an example x that has exactly one variable from each of T1,...,Ty set to 0 but
has A(x) = 1 (and for which we haven’t already stated that f(z) = 1).

4. f(x) =1, for an example = that has exactly one variable from each of 71, ..., Ty set to 0 but
has h(z) = 0 (and for which we haven’t already stated that f(z) = 0).

24

In cases 1 and 2 the learner gains no new information. Case 3 is like the membership queries, where
our negative counterexample eliminates just one particular term. In case 4, the learner has been
able to discover a single new term from the target formula. Thus m — d equivalence queries are
required before the remaining terms of f can be discovered by the learner. a

We apply this lemma to prove lower bounds for both cases where m is known or unknown. We

first consider the case in which m is a known input parameter for the learner.

Theorem 11

logm + logn)

> _
E (MOT&OtOﬂC DNFn,m) = m 0 (logn — loglogm

Proof: To prove this consequence of Lemma 14, we pick d = §(ﬁm&) and let the number
of membership queries ¢ be an arbitrary polynomial function of rn and n. To apply the lemma
it suffices to show that for n sufficiently large, (%)d > poly(m,n). Taking the logarithms of both
sides, we get that the requirement is that d{logn — logd) > O(logn + logm). Il m is polynomial
in n then this will hold if d(logn —logd) > O(logn} which is true since d = w(1) and d = o(n).
Likewise if m is superpolynomial in n the given inequality holds. w]

In the case where the learning algorithm is not given an a priori upper bound on the number

of terms, we may prove a slightly stronger result.

Theorem 12 For any 0 < k, < n — w(logn) with lim,_, k, = oo, then for n sufficiently large
& (Monotone DNF,) > m—k,

Proof: Pick d = k,. If at any point after having made e equivalence queries the algorithm has made
a number of membership queries superpolynomial in n and e (answered by the strategy above),
the adversary decides there is only one more term in f, which means the algorithm has made
superpolynomial number of membership queries. Thus the algorithm can only ever make a number
of membership queries polynomial in n. The result follows since (n/k,)* grows superpolynomially.
a

7.2 Upper Bounds

In this section we describe an algorithmn that matches the above lower bounds. We begin by briefly
describing Angluin’s algorithm [Ang88] for learning a monotone DNF formula using at most m
equivalence queries. A prime implicant of a Boolean formula f is a conjunction ¢ (not containing
contradictory literals) such that ¢ implies f, but no proper subset of ¢ implies f. For general DNF
formulas the number of prime implicants may be exponentially larger than the number of terms.
But for monotone DNF formulas, the number of prime implicants is bounded above by the number
of terms in the formula. Furthermore the prime implicants of a monotone function include no

negated variables.

25

Learn-Monotone-DNF(n, k)

Initialize the formula & to have no terms (i.e. be everywhere false).
Repeat
Find a positive counterexample 2 as follows.
If h contains at most & terms, then search exhaustively for an = with
at most £ bits set to 0 such that A{z) =0 and f(z) = 1.
(Return h if none is found.)
Otherwise (h contains more than & terms),
Set z to Equiv(h) (or return A if the answer is “yes”).
Greedily flip as many bits as possible to 0 in 2, while preserving f(z) = 1.
‘When no further changes are possible,
add the conjunction of variables still set to 1 in z as a new term for A.

Figure 4: An algorithm to learn monotone DNT with m — %k equivalence queries and
O (k (%)k + mnz) membership queries.

Given this observation, there is a fairly straightforward exact identification algorithm due to
Angluin [Ang88] (based on a previous PAC learning algorithm of Valiant [Val84]). We use each
equivalence query to find a new prime implicant. Our current hypothesis is the disjunction of all
known prime implicants (initially the always false hypothesis). Then each counterexample z can be
used to find a new prime implicant by walking it towards the all zeros example (using membership
queries to decide which variables should be set to 0). It is easy to see that the resulting example
will satisfy exactly the variables of some new prime implicant. This technique requires m + 1

equivalence queries and mn membership queries.

A simple optimization allows us to find the first prime implicant without making an equivalence
query. Monotonicity implies that if the target formula is not identically 0 then f(1,) =1 (1, is the
all 1’s example). This can be used to find the first term, reducing our equivalence query requirement
to m. That observation gives us the special case (for &£ = 0) of an algorithm we present in Figure 4.
This new algorithm can reduce the number of equivalenice queries by an arbitrary number k. This
savings is at a cost of time and membership queries exponential in %, but this will be enough to

show that our previous lower bounds are tight.

Theorem 13 There is an exact identification algorithm for monotone DNF formulas that takes as
input n and e non-negative integer k < m, and learns the target formula using m — k equivalence
queries and O (Is (%)k + mnz) time and membership queries.

Proof: This algorithm (shown in Figure 4) finds £ + 1 prime implicants of f before making any
equivalence queries. The key observation is that as long as we have discovered at most & prime

26

implicants, then if there is any counterexample there will be one that has only k variables set to
0 (and we can exhaustively test all possible such counterexamples, of which there are fewer than
(en/k)*). This is because any positive counterexample fails to satisfy our & prime implicants.
Given that such a counterexample exists, there is some set of k£ or fewer variables covering our
prime implicants that are set to 0 in the counterexample, and given that those variables are 0 in
some positive counterexample, the example that has only those variables set to 0 will still be both a
positive example and a counterexample. Thus for the first & terms, we use brute force enumeration
to find counterexamples. After this we use m—k equivalence queries to learn the remaining m—k—1

terms in the standard manner. 0

Based on this technique we prove two upper bounds for learning monotone DNF formulas. In
the case where m is not known, the learner needs m — @(1) equivalence queries. When m is known,
we prove that the number of queries is reduced to m — O(B?;%%%). Note that these bounds
differ only when m is superpolynomial in n. They both follow from Theorem 13 by substituting
the appropriate quantities for &.

Corollary 14 For any constant ¢ > 0, £ {Monotone DNF,) < m —¢.

Corollary 15 For any constant ¢ > 0, £ (Monotone DNF, ,) <m —¢ (%ﬁ‘l_ﬂlgﬁ%).

8 Horn Sentences (and DNF)

In this section we let Horn Sentence,, represent the set of Horn sentences over n variables, and we
let Horn Sentence,, ,, be the subset of those formulas that have at most m clauses. From corollary 2
we have an upper bound on the number of equivalence queries needed when computation time is
unlimited, but only a polynomial number of membership queries are allowed. In this section we show
a matching lower bound that shows that no fewer equivalence queries (modulo big-Oh notation)
will suffice unless there are a super-polynomial number of membership queries. The question of
whether this lower bound can be achieved by a computationally efficient algorithm remains open.

8.1 Lower Bound

Suppose that for some ¢ > 0 there is an algorithm that learns the class of Horn sentences in time
less than (mn)°t. In this section we prove our lower bound by considering the following subclass
of Horn Sentences. Let d = [(e+ 1){logn +logm)] and ¢ = |»/2d|. Divide the 2dg variables
V1,...,Vadq into g blocks each of which contains 2d variables. Specifically, for 1 < i < ¢, block B;
will contain variables vyg(;_1)41,- - -, v24i- Given a vector z we use z{B;] to denote the portion of z

that corresponds to block B;. That is, z[B;] contains Za4(_1)41,- - - T2di-

27

For each of the g blocks of variables we will construct a Horn sentence in the following manner.

Let %1, ..., %24 be the 2d variables in block B;, We define?

d
P = /\ (Y25 -1Y2; — Y2j+1)mod2d) A (Y23 =1¥2; = Y(2j +2)mod2d)-
i=1

So for example if d = 3 we have

P = (y1y2 — ys)(ny2 — va) - - (wsys — y1)(UsYe — v2).

Observation 1 For 1 < i< q, 1 < j < d, P; has the property that if both variables in any pair
Y251, Y25 are 1 then it will be false unless all 2d variables are 1.

Let ${#9) ¢ {0,1}?% be the set of bit strings for which each consecutive disjoint pair consists of
a 1 and 0. That is: S = {(s1,...,5240) | (52_1,52;) is (0,1) or {1,0) for 1 < § < dg} . For any
vector s € S(49) define I(s) = {5 | 5; = 1}, and for each s € S let

R, = (/\ vj) —+ 0.
J€l(s)

Observation 2 For any x € {0,1}*% and s € §'%9), Ry(z) = 0 if and only if z; = 1 for all
J € I(s).

Finally, for s1,...,8, € S99, let Fy,, ;= PLA---APyARg A---A Ry, and let

C= {Fs;,...,s, | $1,...,8; are in 5(99) and are distinct }

Theorem 16 For m —n = Q(m), £ (HornSentences,) = § (m).
Proof: We prove that the above lower bound holds for the class € defined above. Since the number
of clauses in each P; is 2d, there are 2dg < n clauses in Py A+« A P, so fix t = m ~ 2dg. Since

mn
= — > - = jogn + logm
tg=(m~2dglg>(m—-n)g=Q (]ogn + log m) ’

the desired result will follow if the adversary can force the learner to make tg equivalence queries
before obtaining exact identification.

Let f be the target function. Observe that the learner knows Py A --- A F, before the learning
session begins. The goal of the adversary is to ensure that each equivalence query (combined with
a polynomial number of membership queries) will only help the learner to determine one block of
some s; (i.e. one of s;{B1],...s:[By]). Since there are tq such blocks, once this goal is achieved the

result will follow.

*Although P; is a formula defined over the 2d variables in block By, we use Pi(z) to denote P;(z[B:]).

28

For ease of exposition, we further divide sy,...s; each into ¢ blocks each containing 24 bits.
We denote these blocks by by,..., 04,0041, .., b1—1)qs P(s1—1)g+15 - - - » tg- The adversary’s strategy in
answering the membership and equivalence queries will be such that after e equivalence queries the
learner will know only b4, ...,b. but has gained no information about bey1,...,b;. We say that by

is known if £ < e and unknown if £ > e.

Let Dt(e) denote the values for by that are consistent with all examples seen by the learner after
e equivalence queries have been answered. During the proof we will often focus on the elements of
D{®) that are in block ¢ of some s;. Thus for 1 < i < g, let

DS.-)3{Dt(’e)u:(j—l)q—i-iforlgjgt},

Note that for all 7, D;-O) = 8@ and thus [Dg-o)[= 29 > (mn)°t! at the beginning of the learning
session.

Let e be the number of equivalence queries that have been answered so far in the learning

session. The adversary will maintain the following invariants.
1. Forl1<é<e, Dge) = {b;}. That is, b1,...,b. are known.

2. For1 < £y <3< e, Dgf) N Dg:) = @. That is, bq,..., b, are disjoint.

3. For £ > e, (D§e) U---u D..(f)) N Dge) = @. That is, b1,...,b are not included in the set of

candidates for bety, ..., by

4. For D1, Dy € DY) such that |Dy| > 1 and |Do| > 1, Dy = Dy. That is, all unknown values in

a given block have the same set of candidates remaining.

5. For any I, if nge)I = 1 then Dgw) = Dge) for w > e. That is, once b; is known D, does not

change.

6. Let Q. be the number of membership and equivalence queries asked by the learner up to (and
including) the eth equivalence query. Then

|D28)| > (mn)*t - Q, for £ > e.

Notice that since Q. < 2(mn)®, it follows that ID,(?E)I 2 (mn)¢ for £ > e. We now define the
strategy that will be used by the adversary to respond to the queries. Each query will enable the
learner to determine only one of the ¢ blocks by,...,b;, and further can eliminate at most one

element from each Dge) for £ > e. Thus adversary can force {g equivalence queries as desired.

After e equivalence queries have been answered, r = |e/q| is the largest j such that s; is
completely known, and p = e — gr is the index of the last known block within $,4;. Let I, be the

29

indices of the elements of s,41 that are known to be 1. Thatis I, = {j | § € I(sp41{Bi]) for 1 <

i < p.} Now let
2dg
R; = /\ v; | A /\ v — .
JEl, j=2dp+1

Thus R} contains all variables whose corresponding indices in s,y; are known to be 1 and all

variables corresponding to the unknown elements in s-.4.1.

Observation 3 The antecedent of R is a superset of the antecedent of R, and thus Rj{z) =0
implies that R, ,,(z) = 0.

Let ge(z) = Pi(z) A---A Py(2) A Ry (2) A+ A Ry (2) A Ri(z). Applying Observation 3 it follows
that for 1 < e < tg, if g.(z) = 0 then f(z) = 0.

Answering a Membership Query. For each membership query, MQ(a), the adversary responds

as follows.

Case MQ1: g.(a)=0.
In this case the adversary replies 0. Since g.(a) = 0 implies f(a) = 0 no information is
given to the learner by this answer.

Case MQ2: g.(a) = 1 and there exists « € {1,...,dg} such that (as:—1,a2:) = (0,0).
In this case the adversary returns 1. Since (@2;—1, ag;} = (0,0) it follows that R,(a) =1
for any s, and thus no information is given to the learner by this answer.

Case MQ3: g.(a)=1and for all 7 € {1,...,dq}, (azi—1,a2:) # (0,0).
Since P;(a[B;]) = 1 for all blocks 7, by Observation 1 we know that a[B;] is either all
1’s or an element of S@. If af B;] contained all 1s for 1 < 7 < ¢, it would follow that
R:(a) = 0. Thus, there exists an 4o such that a[B;,] € S(@. The adversary returns 1
and removes a[B;] from the set of candidates for all blocks b, that are not known and
correspond to B;,. That is for all D € Dgﬁl such that |D| > 1, update D « D\ a[B;,].
Note that after this update if each unknown r; is selected from its associated D then we

are assured that ge(z) = 1 for all vectors .

Answering a Equivalence Query. Foreach equivalence query, Equiv(h), the adversary responds

as follows.

Case EQ1: There exists a vector a such that A(a) = 1 and g.(a) = 0.
The adversary will handle this situation just as it did in Case MQ1 where the learner
asked the membership query MQ(a) for which g.(a) = 0. Finally, to maintain the
invariants, the adversary selects an arbitrary u € Dgi)l and sets Dg:_"il) — u. Let
p=e—gq|e/q]. For each Dge) € ’Dg such that [Df,e)l > 1, the adversary sets Dgeﬂ) —

Dge) \ {z}. Also e is incremented in all other D,(:,e).

30

Case EQ2: There exists a vector a such that A(a) = 0 and g.(a) = 1.
The adversary will handle this situation just as it did in Cases MQ2 and MQ3 where
the learner asked the membership query MQ(a) for which g.(a) = 1. As in Case EQI,
the adversary then updates the candidate sets to maintain the invariants.

Case EQ3: h = g..
In this case we will take advantage of the fact for all £, DEG) satisfles the invariants.
Observe that all updates made in the above cases preserve these invariants. By invariant
4 it follows that for all Dy, D, € DJ(;: for which |Dy| > 1 and |Dy| > 1, Dy = Dy where
p is the block number of &,. That is, b, corresponds to $,41[B,] where r = |efq].
For any such D € 'Dgz for which [D| > 1 select some v € D and set s,41{B,] = u.
Consider the example z in which z[B;] = 134 for ¢ # p and z[B,] = u. By Invariant 3,
u g Dg-e) for j < e, and thus it follows that A(z) = 1. Since R;,;(z) = 0 it follows that
ge+1(z) = 0 and thus 2 can be returned as the counterexample. Finally, as in Case EQ1,
the adversary updates the candidate sets to maintain the invariants.

9 Read-Once Formulas Over Various Bases

In this section we prove an upper bound on the number of equivalence queries needed to identify
read-once formulas. This is achieved as a consequence of a more general result, showing that an
algorithm that makes use of equivalence queries only to generate justifying assignments (defined
below) needs to make only O(n/logn) queries. This is an improvement from a previous technique
that uses n queries [AHK89, BHHK91], and immediately gives us improved upper bounds for various
classes of read-once formulas and non-monotone switch configurations. These upper bounds are
tight from the work of Bshouty and Cleve [BC92].

In this section we consider the following classes of read-once formulas. Let ROF,(B) denote the
set of read once-formulas whose gates are labeled with functions from B (the “basis”). We let By
denote the basis of all boolean functions over & inputs, for a constant k. Let Switch Configurations,
denote the set of n element switch configurations (in the general non-monotone case where the sign
of each switch is not known a priori). Let AROF%T)(+, X,/,—) denote the class of n variable
arithmetic read-once formulas over the basis of addition, subtraction, multiplication, and division
a the field F (for this non-Boolean class, the inputs are variables or constants from F, and the
output is a value in F U {c0,0/0}).

It follows from the work of Bshouty and Cleve [BC92| that

n
€ (ROFL(AND,OR, NOT)) = Q(logn)

31

£ (ROF.(Bx))

" (i)
log n
n

& (Switch Configurations,) = € (1og n)

nlog |F
& (AROF;’T)(-{-, X,/,-—)) = Q (—EE—LTI) , when [F] = o(n/logn).

9.1 Generating Justifying Assignments With O(n/logn) Equivalence Queries

We now describe a technique of generating justifying assignments with O(n/logn) equivalence
queries that can then be used to get algorithms that match the above lower bounds. We start with
few definitions. A class C is closed under zero projection if for any function f € C, fixing some
variables of f to 0 produces a function still in C. A justifying assignment for an input variable is an
instance whose classification changes if the value of the variable is changed. Among other things,
the justifying assignment is a witness to the fact that the given variable is relevant.

m

Define the vector I, to be (I,...,!) where ! € {0,1,+}. For an input vector z = (%1,...,2,) and
a set of variables V' = {v;,...,v;,}, we denote 2(V) = (z;,...,2;,) (i.e. the input vector in the
lower dimensional space induced by the variables V). A partial assignment is an input setting that
assigns x to some of the variables (to indicate the variable is unassigned). For a partial assignment
p and an assignment a, we will denote by pla the assignment that replaces the stars of p with
the corresponding values in a. For a partial assignment p and a Boolean function f we define
fp(a) = f(pla). For an assignment @ and a variable v the assignment & = a_, is the assignment
that satisfies b(v) = —a(v) and b(v’) = a{v’) for any variable v' # ».

Given two assignments a and b such that f(a) # f(b), the procedure Walk a towards b is a
procedure that continues to flip bits in @ that are different from b, while keeping f(a) # f(b).
The procedure generates a new assignment o’ such that for any variable v, if a’(v) # b(v) then
flal,) # f(d).

We now describe that standard transformation to produce a set of justifying assignments using
n equivalence queries. Suppose we have justifying assignments for some subset ¥ of the variables
(initially empty), and suppose those justifying assignments all agree on setting the variables in V\Y
to 0. Then if p is the partial assignment that sets to « all variables in Y and to 0 all variables in
V\Y, we can use the membership and justifying assignment algorithm for C to learn a hypothesis
h equivalent to f, (the condition that C is closed under zero projections implies that f, is in C).
We make an equivalence query on h. If we get a counterexample y then A(y) = fo(¥) # f(¥), and
we can use Walk y towards p|y to find a justifying assignment for one or more new variables. We

then repeat with a p that assigns values to strictly fewer variables, and when p = %, we are done.

We now present an improved transformation that finds at least (log n) new variables with each

equivalence query. Recall that an (n, k)—universal set is a set {b3,...,8;} C {0,1}" such that every

32

subset of k variables assumes all of its 2¥ possible assignments in the b;’s.

Theorem 17 Let C be a class that is closed under zero projections If C is learnable in polynomial
time from M(n) membership queries, given justifying assignments for all the relevant variables,
then for any ¢ > 0 there is a ¢ = O(n}**M(n) + n®) such that

£(Cq <

n
[(e/4)logn]”

Proof: The algorithm for this reduction is shown in Figure 5. As before, there is a main loop where
each iteration begins by running the membership query and justifying assignment subroutine to
learn an h = f, for the p that assigns 0 to the variables in V'\Y, using known justifying assignments
for the variables in ¥. But before we ask the equivalence query A = f, we also learn a family of
fp;’s determined by an (n, [(¢/4)logn|)-universal set of size ¢ < n°. We define f,, (forz =1 to 1) to
be the partial assignment that sets the variables in V'\'Y as in the ¢’th element of the universal set.
In other words, every possible assignment of values to some subset of |(e/4)logn] variables from
V \Y is realized by some f,,. To learn each f;;, we test whether fp(z) = fp,(x) for all justifying
assignments in A and for all the membership queries made by the justifying assignment algorithm
when learning f,. If this is the case then that algorithm outputs the same hypothesis for both
target functions, and the correctness of the algorithm implies that f, = f,,. If however we find
some fp(2) # fp,(z) this implies (by definition) that f(p{z) # f(pilz), and since those examples
agree on all variables in Y, using Walk we can find a new justifying assignment without making

any equivalence queries.

Now we argue that if all f;,’s are equivalent to f,, and we make an equivalence query on h, then
we shall be able to find Q(logn) new justifying assignments from the counterexample. We start
by walking our counterexample y towards p|y, to give us at least one new justifying assignment.
After this walk we will have y’ for which f(y) # f,(¥'), and ¥’ is a justifying assignment for all
the variables Y3 C V' \'Y on which ¥ differs from ply'. If |Y1| > [(¢/4)logn], we are done. If
not, then there is some p; that agrees with ¢’ on all the variables in ¥;. But we know f,, = f,,
so f(y') # fp:(¥'). We now Walk 3’ towards p;|y’, and we are gnaranteed that we find justifying
assignments for varjables in V' \ (Y U Y7). Call these variables ¥5. If [Yh] + |Y2] 2 |(¢/4)logn],
again, we are done. If not we can repeat with a different p; that agrees with 3’ on Y7 U Y3, and so
on. The bounds in the statement of the theorem follow from straightforward analysis. |

Applying the above technique to previous algorithms [AHK89, BHH92a, BHHK91, RS90] we

obtain the following result.

Corollary 18 The guantities £ (ROF,(AND,OR,NOT)), £(ROF,{(By)), and
& (Switeh Configurations,) are all O(n/logn).

In all these cases the transformation adds a factor of O(n'*¢) membership queries and running

time to the original algorithm and saves a factor of [(¢/4}logn| equivalence queries.

33

Find-JA-Loop(n)

Initialize p=0,, Y =0, A = 0. Let {b1,...,b:} be a (n, |(¢/4) logn])-universal set of size t < n¢.
Repeat
Learn a hypothesis A = f, (using membership queries and the justifying assignments
A for the relevant variables Y).
For i = 1 to ¢t define the partial assignment p; as follows

* vy EeEY
(bi); Otherwise.

Test each fp; on all justifying assignments in A and on all the membership queries
made by the algorithm to learn fp.
If on some point z, some f;,(z) # fo(z)
Walk p;|z towards p|z to find one or more new justifying assignments.
Update ¥ and A, and iterate (having made no equivalence queries).
Otherwise, continue (all f,, = fp).
Perform Equiv(k)
If the answer is “yes”, output h and halt.
Otherwise let y be the counierexample.
Repeat till this loop has added Ij log nJ new variables to ¥V
Pick an ¢ for which p; and y agree on all the new variables added so far
(we know f(y) # R(y) = fo(¥) = fp:(¥))
Walk y towards p;|y to find new justifying assignments. Update ¥ and A.

(pi); =

Figure 5: An algorithm to use only n/logn equivalence queries to generate justifying assignments.

34

9.2 Arithmetic Read-once Formulas

We now consider the class of arithmetic read-once formulas AROFY {+,%,/,=). There is a poly-
nomial time identification algorithm for this class that uses membership queries and n equivalence
queries [BHH92a]. When the size of the field F is at least 2n + 5 then the algorithm does not use
equivalence queries at all (however, the algorithm is randomized in this case). The lower bound, es-
tablished by Bshouty and Cleve [BC92], of Q(nlog|F|/logn) on the number of equivalence queries
holds when the size of F is o(n/logn). It is an open problem whether equivalence queries are
essential when the size of F falls in the gap between ©@(n) and O(n/logn). The tight bound on
the number of equivalence queries proved here is when the size of F is o(n/logn). The algorithm
uses equivalence queries only to generate justifying assignments, but it is not immediately obvious
that we can apply our techniques because of the difficulty of non-boolean variables.

We need to make only a slight change in our algorithm Find-JA-Loop to make it work for
arithmetic read-once formulas. We want the universal set generated in the first step in the algorithm
to be over all values in F. That is, every subset of k& variables assumes all its |F fk values in the
universal set. Having made this change, the algorithm Find-JA-Loop learns the target arithmetic
read-once formula.

Instead of dealing with a universal set that contains values from F, we work with a universal
set that contains only 0’s and 1’s, in which the values of F are represented in binary. Since we want
the universal set to contain all values in F, we need log | F| bits to represent every value. We look at
the columns of the set as being divided into blocks of log || columns each, each block corresponds
to a value in 7. The number of columns needed in the universal set is therefore nlog|F|. We
want that every subset of size & of the variables assumes all its possible field values, so we require
that every klog|F| columns in the universal set assume all the possible (binary) values. Thus, the

universal set needed is an (nlog|F|, klog |F|)—universal set, and its size is
2% 1ogl%| 1og(n log |).
We want this quantity to be polynomial in n, so:
2%1gl7l log(nlog | F]) < n°,

for some constant ¢. Taking the logarithm of both size, and canceling small terms, we get that k

must satisfy:
clogn

= log |F{
Using this k, every iteration of the Find-JA-Loop finds justifying assignments for k& new variables.
The number of iterations (or, equivalently, the number of equivalence queries) is at most

n _ nlog|F]|

k clogn ’

35

which matches the lower bound.

One last remark is that after building the (nlog|F|,klog|[F|}~universal set, we go over the
set, translating the strings in every block to values of F (this would make the rest of the algorithm

cleaner).

Corollary 19 For any field F, £ (AROI*{E)(—}-, X, /, —)) 15 O(nlog|F|/logn).

10 Deterministic Finite State Automata

In this section we present asymptotically tight bounds on the number of equivalence queries needed
to learn DFAs. Let n denote the number of states in 2 minimum-state DFA that represents the
target regular language U, and let & = |Z|. For 81,82 € X, we denote the concatenation of s; and
s3 by 37 - 85. To distinguish between the situations in which n is known or unknown to the learner,
let DF A,y denote the case when n is known and DF Ay, denote the case in which n is not known.

Given that there is a polynomial time algorithm that can determine if two DFAs are equivalent
and in addition outputs a minimum length counterexample if they are not equivalent, it seems
reasonable to assume that the equivalence oracle uses such an example. Thus the results presented
here all assume that the counterexamples returned by the equivalence oracle have length at most n.
These results can easily be generalized to have the complexity depend on the length of the longest
counterexample received by the learner.

10.1 Lower Bound

In this section we present our lower bound, This lower bound holds even when there is no restriction
on the time or hypothesis class used by the algorithm and the learner knows n a priori.

Theorem 20 For any constant ¢ > 1, E(DFA,x,n°—1) > l_ n_2 J

clog, n

Proof: Let L be an arbitrary string of n—2 elements from X. We let L[7] denote the ith element of L.
For ease of exposition when defining the transition function, let L[n— 1] denote some special symbol
that is not in ¥. Let A C {1,2,..., [cﬂ)g:n-l }. The adversary will select L and A as the learning
session progresses. The target regular language, U, is defined by the following n-state DFA. The
stateset, @ = {0,...,n—1}, theinitial state g = 1, accepting state set F' = {i(clog, n)+1|i € 4},

and the transition function & is defined as:

6(0,0) = 0, forall o € X (so state 0 is a dead state)
8(g,0) = 0, forall g€ @ and o # L[q]
6(g,0) = g+ 1forall g €@ and o = Liq].

The adversary will respond “no” to every membership query asked by the learner. We now describe
how the adversary can respond to the ith equivalence query, h;. Observe that since the learner

36

makes less than n® membership queries, there exist some string L; from X* of length clog; n that
does not appear in the ith set of clog, n positions of any strings given to the membership oracle.
The adversary then uses L; as the ith block of ¢log;, n characters of L. Finally, we want to classify
the string Ly - Ly---L; so that it is a counterexample to h;. Observe that the target DFA is
designed so that on input L;---L;, it ends in state ¢; = 1 + i(clog, n). Thus the adversary can
just place 7 into A if and only if h; does not accept Ly - -+ L;. Then Ly -+ L; can be returned as the

counterexample to the equivalence query.

n—2
clogy n

The above argument can be applied as long as ¢ < l_ J, giving the stated lower bound. O

10.2 TUpper Bound

We now provide an efficient algorithm that matches the lower bound of the previous section. For
the upper bound we use a modification of Schapire’s algorithm [Sc91] which is itself a modification
of Angluin’s original algorithm [Ang87b].

For z € £*, we define y(z) = 1 if and only if 2 € U. An observation table [Ang87b], denoted
by (S, E,T), records the value of y(z) for z € (SU S -Z)- E . We denote the row of table (5, E,T)
labeled by s € SU S + & by row(s). We say that (5, E,T) is closed if for all s’ € 5+ X, there exists
an s € § such that row(s') = row(s). We say that (9, E,T) is consistent if whenever s1,5; € §
satisfy row(s;) = row(sz), then for all ¢ € X, row(s; - a) = row(s; - a). Given a closed, consistent
observation table (S, F,T), we define M(S5,E,T) as the DFA over alphabet ¥, with state set
Q = {row(s): s € S}, initial state go = row()), accepting state set F = {row(s): s € 5,7(s) = 1}
and transition function §(row(s),a) = row(s-a). Angluin has shown that M (S, E,T) is a well
defined minimum-state DFA that correctly classifies all strings represented in (S, F,T'). Finally,
for DFA M and string = € £*, we define yps(z) = 1 if and only if & is accepted by M.

We now describe our algorithm. Initially S and E are initialized to the set {A}. Using mem-
bership queries the learner fills in the entries of 7' to make it closed. {We never place s1,32 € S
for which row(s;) = row(sz), and thus our table is always consistent.) Then, from (5, E,T), the
DFA M = M(S, E,T)is constructed. Unlike in previous work, our algorithm now “experiments”
with M to see if a counterexample can be found. More specifically, let 7 contain the set of all
strings from X* of length at most (¢ — 2)log, n. Our algorithm searches for a counterexample to
M by simulating the execution of each string from 7 starting at each state in A with the hope of
reaching two different states of M. When no counterexample is found by this procedure then an
equivalence query is made. We then use Schapire’s procedure to find an experiment e from which
we can construct a set of at least (¢ — 2) log, n experiments, each of which causes a new state to be
added to S in order to re-establish closure. We now present an algorithm that assumes the learner

knows n and then describe how to handle the case in which n is not known.

Theorem 21 Let U be the unknown regular language over & that can be represented by an n-state

37

New-Learn-DFA (n, I)

Initialize S and E to {A}.
Construct the initial observation table (S, E,T)
Repeat
While (5, E,T) is not closed
Find sp € S, a € E such that row(sp - a) 3 row(s) foraill s € S
Add sp-ato S
Extend T to (SU S - X) - F using membership queries
Let M = M(S, E,T)

If there exists some s € S,t € 7, and e € E such that vpr(s-t-e) # MQ(s-t-¢)
Let 2 +—s-t-¢

Else if EQUIV(M) returns “no”
Let 2 be the counterexample returned

Else exit the loop

Apply Schapire’s procedure to z (making < lg|z[MQs) to find experiment e where
for ap € ¥ and sg, 51 € S with row(s)) = row(sg - ag), but v(s1 - €) # y(s0 - ao - €)
For each loop that exists when simulating A on e from state sg - ag
Let z + string obtained by removing the loop from e
If y{s1 - x) # v(s0 -ag - x) then e — z

Let the resulting string be represented by a; ---a- for ¢; €
fQm(so-ao-ar--a:) £ Qusy-ar--g)for1<ig<r—1
Let £ be the smallest 7 for which this occurs
Find ¢ € E such that v(so-ao-a:---a¢-€') # y(s1-a; -+ ag-¢€')
(So ¢’ distinguishes state s - ag - a1 - - -a¢ from state s1 - ay - - ag)
Else Let £ — r
Let ¢/ — A

For1<i<é
Add experiment a; - --a¢ - e’ to E
Until answer is “yes” from equivalence query.

Figure 6: An algorithm to learn a DFA with at most (n — 1)/(clog; n) equivalence queries when n
is known a priori.

38

DFA, letk = |2, and let e > 2+ %g—% be some constant. Then

£ (DFAn,g, k—f—l(nc +n?)+nlg n) < {m]
Proof: Let T contain the set of all strings from £* of length at most (¢ —2)log, ». For any z € ¥*,
we let Qar(z) denote the state reached in DFA M when executing z from the initial state of M.
Our algorithm is shown in Figure 6. Observe that, as in Schapire’s algorithm, the observation
table is always consistent since a new state is added to S only when there is evidence (namely, an
experiment in E) that it is distinct from all other states in S. Furthermore, observe that S is prefix
closed and F is suffix closed. We now restate the following theorem from Angluin [Ang87b].

Theorem 22 If (5,E,T) is a closed, consistent observation table, then the acceptor M{S,E,T) is
consistent with the finite funcltion T. Any olher acceplor consistent with T but inequivalent to
M(S,E,T) must have more stales.

Thus it follows that once |§| = n, our algorithm will halt outputting an n-state DFA recognizing
U. Below we argue that whenever the learner receives a counterexample from the equivalence oracle,
at least (¢—2)log, » new (and distinct) states are added to S in the process of re-establishing closure.
Thus, since initially |§| = 1, after at most [ﬁ;] counterexamples are received M (S, E,T)
will exactly identify the target.

We now argue by contradiction that, whenever a counterexample provided by the equivalence
oracle is processed, £ > (¢ — 2)log, n. Suppose that for ¢ = ay---as, we have that |o}] < (¢ —
2)log;. n—1. By the definition of £, we have that Qas(s0-@o-0) # Qar(s1-0). And by the construction
of the observation table, there must be an experiment &’ € F for which y(sg-ag-c-¢') # v(s1-0-¢).
Since the state sg - ag - o (respectively, s; - ¢) is reachable from sy (respectively, s;) with at most
(¢ — 2)log, n steps, during the simulation the learner would have considered both s-o - ¢ and
s’ - ag-o - ¢, thus finding its own counterexample. This contradicts the fact that an equivalence
query was made, and thus £ > (¢ - 2) logy, n.

Next we argue inductively that at least £ new (and thus distinct) states are added to § to re-
establish closure. Let s; = Qar(s1-a1---a;-1) and s = Que(So-ag-ay---a;.1) for 1 < i < £ Also,
we use o; to denote the experiment a; - --a; - ¢’. We use (Sp, Ep, T) to denote the observation table
used to generate the automaton M used for the equivalence query, and (5;, E;, T) to denote the
observation table where E; = EgU{o1UcsU- - -Uo;}. We shall use row; when referring to observation
table (5, E;, T'). Since § is prefix-closed, observe that if Qps{si,) = Qar(si,) = -+ = Qu(s;,) for
i1 < i3 < --- < 4, then s;; € Sp. For ease of exposition, whenever we say that Qar(s:) # Qar(s;)
for 1 < 5 <{, we implicitly mean that ¢ # j.

We use the following observations:
1. For 1 i< £, Qusi) = Qar(sh).

39

2. If Qus(si) # Qar(s;) then there exists an experiment e € Ey, such that y(s; - e) # v(s; -).
3. For 1 1< 8- 1,9(8; " @i » 0ig1) # V(Sig1 - Tie1)-
4. Yor 1 <i< {4, st & 5.

The first observation follows directly from the selection of £. The second observation follows
from the fact that if Qar(s;) # @ar(s;) then rowg(s;) # rowg(s;). The third observation follows
from the fact that y(si-a;-oip1) =y(so-ag-a1---ae-0) # y(s1-ay---ag-0) = ¥(8i41 - 7341) for
1 €£¢ < £—1. Finally, the fourth observation follows from the fact that Sy is prefix-closed and
S0 - ag = s§ € So.

We prove the following inductively for 1 < ¢ < £:

1. For 1 €£j <1, |8~ S > 1.

2. There exists an ¢’ € S; such that Qar(e") = Qar(s}) and (st - 0;) = y(¢' - 7).

3. Likewise, there exists an ¢ € 5; such that Qar(w) = Qar(s;:) and v(s; - 1) = ¥(0 - 03).

For the base case, observe that in re-establishing closure the experiment o will cause] = sp-aq
to be added to S yielding the observation table, (51, F1, 7). (The second two parts of the inductive
hypothesis trivially hold since s; and s{ are in S;.) We now assume that the inductive hypothesis
holds for 1 €4 < £ — 1, and prove that it holds for ¢ + 1. We consider the following two cases:

Case 1: Qu(siq1) # Qum(s;) for j < i + 1. Let ¢’ € 5; be such that Qar(¢') = Qar(s!) and
v(si-0;) = (¢’ - 57). Since Gar(s} - a;) = siy1, it follows from the inductive hypothesis that
Qum(¥ - a;) = siz1. From Observation 2, it immediately follows that since Qar(¢’ - ;) =
Qm(si41), row; (¢ - a;) # row;(s) for any s € S; except s;11. Thus we need just show that
row;1{¢’ - a;) # row;41(8i41). This follows immediately from the fact that y(¢' - a; - 0;41) #
Y(8iy1 - 0i41). Thus the new state ¢’ - q; is added to S; yielding Sis;. Since s;11 € Sit1, the
last part of the inductive hypothesis hold.

Case 2: Qp(sit1) = s;. Let ¢ € 5; be such that Qu{w) = Qar(s;) and v(s5 - 0;) = (¢ - 03),
and let ¢’ € S; be such that Qu(¢") = Qu(sj) and (s} - 03) = (¢’ - 03). Asin Case 1, it
is easily shown that row;(y’ - a;) # row;(s) for any s € S; such that Qar(s- a;) # s;. Thus
we need just show that row;yi(s;y1) (or row;yi(sl,;)) is distinct from both row;41(yp) and
rowit1(¢"). Recall that y(siq1 - 0ip1) # 7(styy - 0ig1). Since the loop a; - -a; could not be
removed, it follows that y(s; - giy1) = ¥(s} - 0iy1). We consider the following two subcases.

Case: 2a: v(¢' 0i31) = 7(¢-0i41) = 7(sit1 - 0i41). Thus, it follows that o;11 distinguishes
si41 from both ¢ and ¢'. That is, 7(sly; - 0ig1) # Y(@ - 0ip1) and y(sly, - 6i41) #
¥(¢' - oi41). Thus it follows that ¢’ - a; will be placed in $;y,. Furthermore, since
Y(Sit1-0it1) = Y{@-0i41), there exists a ¢” € S;yy such that y(siy1-0i41) = 7(©" 0i41).

40

Case: 2b: (¢’ o:11) = 7(9 - 0i31) = 7(8}4y - @i41)- Thus, it follows that ;4 distinguishes
si41 from both ¢ and ¢’. The rest of this argument is analogous to Case 2a.

Thus, once S; has been reached, we have that |5 — Sp| > £ proving that after obtaining closure,

| 5] has increased by at least £ from the point at which the equivalence query was made.

To obtain the desired bound on the number of membership queries observe that |S| < n and
|E| € n. Furthermore, since no entries are ever removed from the observation table, the total
number of membership queries used to fill in the observation table and do the needed exploration
is at most n2 + n?|r| where |r| = SR = Z=(n®"? - 1). In addition, at most lgn
membership queries are used by Schapire’s procedure after receiving each counterexample, and at
most n membership queries are used at each iteration when trying to remove loops. The stated
bound follows from algebra and the observation that 1/{(c—2) <lgn/lgk. O

We now show how the algorithm given in Figure 6 can be modified to work when the number
of states, n, in the target DFA is not provided to the learner.

Theorem 23 Let U be the unknown regular language over ¥ that can be represented by an n state
DFA, let k = |3, and let ¢ > 2+ 255 be some constant. Then

logn
Qng)-i-[2(n—-1)]
lgn (c—2)logpm |

£ (DFAs,0(n) < v (1-

Proof: The learner uses the algorithm of Figure 6 except that instead of having 7 contain all strings
of length (¢ — 2)logy n, we replace it by a set 7' that contains all strings of length (¢ — 2)log; w
where w is the maximum of £ and the number of states in the previously conjectured DFA. Then

just replace 7 by 7/ in New-Learn-DFA.

Now clearly each of the first 1/n equivalence queries enables the learner to find at least ¢ — 2
new states of the target since every string in 7 is of length at least ¢ — 2. For the remaining portion
of the algorithm w > /n thus each additional equivalence query enables the learner to find at least
g%llog,;c n new states of the target. Thus the number of equivalence queries used by the learner

2n— 1~ (c~2)/n) 2lgk 2(n—1)
ﬁ+[(e —2)log,n -l S\/ﬁ(l- lgn)+[(c—2)logkn]'

is at most

11 Concluding Remarks

This work has established some sharp bounds for a variety of the most basic classes for which
exact identification algorithms are known. It is perhaps surprising that we had such success in
proving matching lower and upper bounds, particularly since the lower bounds hold under the most

41

favorable conditions for learning (arbitrary hypotheses and superpolynomial time), while the upper
bounds, in general, hold under the most restrictive (hypotheses must be in the class to be learned,
polynomial time is required). The one exception to these sharp bounds is for Horn sentences where
it remains an open problem whether our tight upper bound given unlimited computation can be

achieved by a polynomial time algorithm.

Other open problems include applying these techniques to find tight bounds for other classes for
which polynomial time exact identification algorithms are known, such as decision trees [Bsh93],
and read-twice DNT formulas [AP91, Han91, PR93].

Another interesting problem is how the use of membership queries can reduce the number of
equivalence queries needed to learn classes that can in fact be learned with equivalence queries alone,
such as £-DNT, For k-DNT, Littlestone’s algorithm uses O(k€logn) equivalence queries where £ is
the number of terms [Lit88]. A lower bound is nlogn. The gap is still open, even with using mem-

bership queries (though if £ is known, our generalized halving algorithm uses O (m%ﬂ)
queries).

Acknowledgments

We thank Tino Tamon for many useful discussions., Nader Bshouty and Sleiman Matar are sup-
ported in part by the NSERC of Canada. Sally Goldman is supported in part NSF grant CCR-
91110108. This work was begun while Tom Hancock was at Harvard University, supported by ONR,
grant N00014-85-K-0445 and NSF grant NSF-CCR-89-02500.

References

[AFP90] Dana Angluin, Michael Frazier, and Leonard Pitt. Learning conjunctions of horn
clauses. In §1st Annual Symposium on Foundations of Computer Science, pages 186—
192, October 1990,

[AFP92] Dana Angluin, Michael Frazier, and Leonard Pitt. Learning conjunctions of horn
clauses. Machine Learning, 9:147-164, 1992. Special Issue for COLT 90.

[AHK89] Dana Angluin, Lisa Hellerstein, and Marek Karpinski. Learning read-once formulas
with queries. Technical Report UCB/CSD 89/528, University of California Berkeley
Computer Science Division, 1989.

[Ang87a] Dana Angluin. Learning k-term DNF formulas using queries and counterexamples.
Technical Report YALEU/DCS/RR-559, Yale University, August 1987.

[Ang87b] Dana Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75:87-106, November 1987.

[Ang88] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, 1988.

42

[Ang90}

[APO1]

[AP92]

[BC92]

[BF72]

[BHHY2a]

[BHH92b]

[BHHKY1]

[BM76]

[BRY2]

[Bshg3]
[Han91]

[HKLWSS]

[Lit88]

Dana Angluin. Negative results for equivalence queries. Machine Learning, 5:121-150,
1990.

Howard Aizenstein and Leonard Pitt. Exact learning of read-twice DNF formulas. In
32nd Annual Symposium on Foundations of Computer Science, pages 170-179, October
1991.

Howard Aizenstein and Leonard Pitt. Exact learning of read-k disjoint DNF and not-so-
disjoint DNF. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, pages 71-76, July 1992.

Nader H. Bshouty and Richard Cleve. On the exact learning of formulas in parallel.
In 33rd Annual Symposium on Foundations of Computer Science, pages 1-15, October
1992.

IAn Barzdin and Risigs Freivald. On the prediction of general recursive functions.
Soviet Mathematics Doklady, 13:1224-1228, 1972.

Nader H. Bshouty, Thomas R. Hancock, and Lisa Hellerstein. Learning arithmetic
read-once formulas. In Proceedings of the Twenty Fourth Annual ACM Symposium on
Theory of Computing, pages 370-381, May 1992.

Nader I. Bshouty, Thomas R. Hancock, and Lisa Hellerstein. Learning Boolean read-
once formulas with arbitrary symmetric and constant fan-in gates. In Proceedings of
the Fifth Annual Workshop on Computational Learning Theory, pages 1-15, August
1992. To appear, Journal of Compuier and Systems Sciences.

Nader H. Bshouty, Thomas R. Hancock, Lisa Hellerstein, and Marek Karpinski. Learn-
ing Boolean read-once formulas with arbitrary symmetric and constant fan-in gates.
Technical Report TR-92-020, International Computer Science Institute, 1991. To ap-
pear, Computational Complezity.

John A. Bondy and U. 5. R. Murty. Graph theory with applications. Macmillan, London,
1977, ¢1976.

Avrim Blum and Steven Rudich. Fast learning of k-term DNF formulas with queries. In
Proceedings of the Twenty Fourth Annual ACM Symposium on Theory of Computing,
pages 382-389, May 1992.

Nader H. Bshouty. Exact learning. Unpublished manuscript, 1993.

Thomas R. Hancock. Learning 2 DNF formulas and kg decision trees. In Proceedings
of the Fourth Annual Workshop on Computalional Learning Theory, pages 199209,
August 1991.

David Haussler, Michael Kearns, Nick Littlestone, and Manfred K. Warmuth. Equiv-
alence of models for polynomial learnability. In Proceedings of the 1988 Workshop on
Computational Learning Theory, pages 42-55. Morgan Kaufmann, August 1988.

Nick Littlestone. Learning when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2:285-318, 1988.

43

[MT92]

[NN9O]

[PR93]

[RS89]

[RS90]

[Sco1]

[Valgd]

Wolfgang Maass and Gydrgy Turdn. Lower bound methods and separation results for
on-line learning models. Machine Learning, 9:107—145, 1992,

Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. In Proceedings of the Twenty Second Annual ACM Symposium on Theory
of Computing, pages 213-223, May 1990.

Krishnan Pillapakkamnatt and Vijay Raghavan. Read-Twice DNF Formulas are Prop-
erly Learnable (Revised). Technical Report TR-CS-93-59, Department of Computer
Science, Vanderbilt University.

Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing
sequences. In Proceedings of the Twenty First Annual ACM Symposium on Theory of
Computing, pages 411-420, May 1989.

Vijay Ragavan and Stephen R. Schach. Learning switch configurations. In Proceed-
ings of the 1990 Workshop on Computational Learning Theory, pages 38-51. Morgan
Kaufmann, August 1990.

Robert E. Schapire. The Design and Analysis of Efficient Learning Algorithms. MIT
Press, Cambridge, Massachusetts, 1991.

Leslie Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134—
1142, November 1084.

44

	Asking Questions to Minimize Errors
	Recommended Citation
	Asking Questions to Minimize Errors

	tmp.1439928365.pdf.ahSsp

