Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-93-20

1993-01-01

Improving the Speed of A Distributed Checkpointing Algorithm

Sachin Garg and Kenneth F. Wong

This paper shows how Koo and Toueg's distributed checkpointing algorithm can be modified so
as to substantially reduce the average message volume. It attempts to avoid O(n{squared})
messages by using dependency knowledge to reduce the number of checkpoint request
messages. Lemmas on consistency and termination are also included.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Garg, Sachin and Wong, Kenneth F,, "Improving the Speed of A Distributed Checkpointing Algorithm"
Report Number: WUCS-93-20 (1993). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/308

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.


https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/308?utm_source=openscholarship.wustl.edu%2Fcse_research%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Improving the Speed of A Dis-
tributed Checkpointing Algorithm

Sachin Garg
Kenneth F. Wong

WUCS-93-20

April 1993

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis, MO 63130-4899






Improving the Speed of A Distibuted
Checkpointing Algorithm

Sachin Garg Kenneth F. Wong

sachin@wuccrc.wustl.edu kenw@wuccrc.wustl.edu

Computer and Communications Research Center
Washington University
One Brookings. Drive, Campus Box 1115
St. Louis, Missouri 63130

Presented at
Sixth International Conference on
Parallel and Distributed Systems

October 14-16, 1993
Louisville, Kentucky

Abstract

This paper shows how Koo and Toueg’s distributed checkpointing algorithm can be
modified so as to substantially reduce the average message volume. It attempts to
avoid O(n?) messages by using dependency knowledge to reduce the number of check-
point request messages. Lemmas on consistency and termination are also included.






Improving the Speed of A Distributed Checkpointing Algorithm*

Sachin Garg
sachin@wuccrc.wustl.edu

Kenneth F. Wong
kenw@wuccrec.wustl.edu

Computer and Communications Research Center
Washington University
One Brookings Drive, Campus Box 1115
St. Louis, Missouri 63130

Abstract

This paper shows how Koo and Toueg’s distributed
checkpointing algorithm can be modified so as to sub-
stantially reduce the average message volume. It at-
ternpts to avoid O(n?) messages by using dependency
knowledge to reduce the number of checkpoint request
messages. L.emmas on consistency and termination are
also included.

Key Words: Checkpointing, distributed systems,
fault-tolerance, performance.

1 Introduction

"The possibility of tackling very large, computation-
ally intensive problems by coupling large communities
of distributed processors through a high-speed network
is fast becoming a reality [7]. The computing sites may
consist of computational resources from several ven-
dors, and communication between sites may require
message transmission over long distances (thousands
of miles) through several intermediate hops. Clearly,
computing in this environment is much more precar-
ious and we can expect higher resource failure rates
than in a standard multiprocessor. Thus, a funda-
mental problem which must be addressed in this en-
vironment is that of providing effective computational
progress in the face of resource failures.

One approach to providing higher reliability is to
have each site periodically checkpoint (save its state)
onto stable storage. When a failure occurs, each site
can resume computing after it restores its system state
by reading the latest checkpoint from its checkpoint

*This research has been sponscred in part by funding from
the NSF under Grant CCR-9021041,

pl p2 p3
L. | |
P i |
ml m2 m3
| | N
q | [ AN
ql q2 failure

Figure 1: The Domino Effect

storage. However, this simple view of program re-
sumption can only work effectively if the checkpoint
is properly coordinated across the processor commu-
nity.

The most serious problem with uncoordinated
checkpointing is that many generations of checkpoints
may need to be stored in order to recover to a con-
sistent system state. In the worst case, the domino
effect occurs, forcing the system to roll back to the
very beginning of program execution [9].

Figure 1 is a time diagram that illustrates this situ-
ation for two processes p and ¢. In the time diagram,
each process is represented by a horizontal time line,
and each message from process p to process g is repre-
sented by an arrow from process p’s time line to pro-
cess ¢’s time line at the points when a message is sent
and received. A small vertical line that intersects a
single time line indicates a checkpoint. When a fail-
ure occurs at time point X, ¢ rolls back to g5, a state
of process g. But since ps indicates the reception of
message M3, process p depends on process ¢, and p
must roll back to ps. This dependence ripples back to
the initial checkpoints p; and ¢;. The problem is that
there is no checkpoint set {p;, g;} in Figure 1 which is
independent of each other.

One approach to avolding this situation, is fo coor-



dinate the checkpoints so as to maintain at least one
set of consistent checkpoints at all times. These algo-
rithms are based on the Chandy-Lamport algorithm
[1], and they guarantee that each process need not roll-
back further than to the latest checkpoint [8, 9]. Most
of the algorithms that use low amounts of storage use
O(n?) messages, either intrinsically or as the interval
befween checkpoints gets large. We show how these
algorithms can be modified to avoid O(n?) messages.

This paper is organized as follows. Section 2 intro-
duces definitions and discusses related work., Section
3 discusses policies for maintaining consistent check-
point sets. Section 4 describes our algorithm. Section
5 compares the performance of our algorithm with that
of Koo and Toueg. Finally, Section 6 contains conclu-
sions and discusses future work.

2 Definitions and Related Work

We assume that there are N processors, each with
one process. The processes communicate with each
other through virtually lossless, FIFO channels. More-
over, they exhibit fail-stop behavior; i.e. no byzantine
failures can occur in the system. Failures are short-
lived so that it makes sense to wait for failures to be
repaired and the computation to resume from the lat-
est set of checkpoints. Each process periodically takes
a checkpoint of its state in coordination perhaps with
other processes. The coordination grarantees that the
latest checkpoints are consistent so that recovery in-
volves only restoring the state of each process from
these checkpoints.

A checkpoint setis a set of checkpoints, one per pro-
cess. A single process checkpoint forms a local state,
and a checkpoint set forms a global state of the system.
A checkpoint set is said to be consistent if the global
state does not contain a situation in which process p
receives a message m from process g that has not yet
been sent by ¢. In Figure 1, {ps, g2} is inconsistent
since mgz has been received by p, but not sent by q.
While {p;, ¢1} is consisten,.

An easy way to visually identify consistency and in-
consistency is to use a time diagram like Figure 1. A
recovery line is a line in the time diagram which inter-
sects each time line exactly once at a checkpoint [8].
‘The region to the right of the recovery line represents
the future, and the region to the left of the recovery
line represents the past relative to the recovery line. A
recovery line is consistent if no message crosses from
right to left; that is, no message is transmitted from
the future to the past. Messages that cross a recovery
line from left to right are cross-cut messages and can

be handled by the underlying message system which
gnarantees virtually lossless behavior. Upon a failure,
all cross-cut messages are treated as “lost” messages

[9].

All distributed checkpointing schemes resume com- -
putation from a consistent recovery line but take dif-
ferent approaches to finding a consistent one. These
differences arise from different assurnptions about:

1. the computation model,
2. the frequency of failures, and

3. the degree of process interaction between check-
point intervals.

For ‘example, database applications
use a transaction-oriented computation model. This
simplifies the solution to some degree. Much work has
been done on checkpointing and rollback-recovery in
transaction based systems [3, 4, 6]. Scientific com-
putations running on a distributed set of processors
use a computation model that can contain higher de-
grees of process interaction which imposes stringent
requirements on the checkpointing protocel. Such an
environment requires fast checkpointing and recovery
to maintain good computational progress.

Checkpointing schernes fall into two broad cate-
gories: synchronous (coordinated) and asynchronous
(uncoordinated). In the asynehronous approach, pro-
cesses take checkpoints independent of each other and
log messages (either incoming or outgoing) [2, 5, 12].
After a failure, processes affected by the failure must
exchange dependency information to locate a consis-
tent recovery line including the messages that must
be replayed. The message logging scheme is used to
prevent the occurrence of the domino effect.

In the synchronous approach the processes coordi-
nate among themselves while saving their respective
states to produce a globally consistent set of check-
points [1, 8, 9, 11, 13]. Afier a failure, processes sim-
ply rollback to the latest set of checkpoints since those
form a consistent recovery lne, Some of these algo-
rithms have also been concerned with checkpointing a
minimum number of processes to maintain consistency
(8, 9].

Both asynchronous and synchronous algorithms
have their relative advantages and disadvantages.
Asynchronous schemes are, in effect, application trans-
parent (i.e., no coordination between checkpoint al-
gorithm and application) [12]. The basic assumption
is that failures will be rare, and therefore, the total
checkpoint time will be low and the expensive recov-
ery process will be used infrequently. This simplifies



the checkpointing process and keeps the checkpoint-
ing overhead low, but at the expense of complicating
the recovery process and consuming larger amounts of
disk storage. But the high recovery time makes such
schemes unsuitable for scientific computations.

In contrast, synchronous algorithms are relatively
complex and expensive since they require coordina-
tion between processes to determine the recovery
line. Storage is minimal since each process keeps at
most two checkpoints [9]. The recovery algorithm
is straightforward in the sense that it only involves
rolling back to the latest checkpoint. Inherent in the
algorithm is the assumption that processes can fail at
any time, and thus a consistent state must reside on
stable storage at all times. Qur algorithm is a modifi-
cation of a synchronous algorithm. But unlike most of
these algorithms, it attempts to avoid O(n?) behavior.

3 Policies

This section examines the policies that must be en-
forced to maintain consistent recovery lines. They
appear in various forms in the existing synchronous
checkpoint algorithms. Four questions are posed and
answered:

1. Which processes must be included in a new
checkpoint set; i.e., take checkpoints?

2. When can a process that is participating in a
new checkpoint continue normal processing?

3. If the checkpoint candidates are known, is the
order of the checkpoints important?

4. How should failures during the checkpoint pro-
cess be handled?

The pelicies below are stated assuming that that p
and ¢ are processes.
Policy #1 (checkpoint set): If p receives a message
m from ¢ and then takes a checkpoint, ¢ must take a
checkpoint if g sent m after its latest checkpoint.

This policy insures that the recovery line running
through the two checkpoints will be consistent. In Fig-
ure 2, the checkpoint set {ps, ¢} is inconsistent. But
policy #1 forces g to take checkpoint g2. Process p de-
pends on process ¢ in the interval < py, ps >. Process
p’s dependency graph is the transitive closure of this
depends on relation starting at process p’s checkpoint
and can be used to form a consistent recovery line.
The set of processes in the dependency graph forms
p’s dependency sel.

Figure 2: Policy #1

Policy #2 (resumption of normal processing):
If p takes a checkpoint, p can not send application
messages to any process ¢ in its dependency set that
has not taken a checkpoint sinee the last sending of ¢’s
message to p.

This policy guards against the situation where p
sends an application message to ¢ and g receives the
message m before it takes a checkpoint, leading to an
inconsistent recovery line. In a sense, this is just a
restatement of policy #1 since from ¢’s perspective, p
is in its dependency set and therefore p must take a
checkpoint after sending m.

But in its application, it implies that as soon as a
process begins a new set of checkpoints, the processes
participating in the checkpoints should not send out
messages to members of the checkpoint set until all
members have completed their checkpoints. If this pol-
icy were not followed, then policy #1 could result in a
ping ponging effect in which a checkpoint could force
the process sending a message after taking a check-
point to immediately take another checkpoint.

Another implication of policy #2 is that the check-

point algorithm should use a two-phase protocol in
which the first phase takes tentative checkpoints, and
the second phase commits (accepts) or undoes the
checkpoints. Once the checkpoints have been com-
mitted or undone, application message sending can
resume.
Policy #3 (checkpoint order): If p and ¢ are in
a checkpoint set, the order in which they take their
checkpoints is unimportant for consistency so long as
the other policies are followed.

Policies #1 and #2 guarantee that the recovery line
will be consistent. However, it is natural to perform
the checkpoints as the dependency graph is formed.
Furthermore, if we perform the checkpoints while the
dependency graph is formed, processes at the leaves of
the dependency graph can commit their checkpoints
immediately [8].

Policy #4 (failures during checkpointing): A
new checkpoint set can not be committed until all of



the processes in the checkpoint set have taken their
checkpoints.

If a failure occurs before the processes have finished
checkpointing, the partial new recovery line when com-
bined with the existing recovery line will form an in-
consistent recovery line.

The Koo and Toueg algorithm uses these policies
in a two-phase-commit protocol. A process called the
inttiator (or coordinator) initiates the formation of a
new recovery line. The essential elements of the algo-
rithm for each process except the initiator are:

1. Phase I

(a) Upon receipt of a request to take a ten-
tative checkpoint (TCP), take a TCP if it
hasn’t already been done, determine the di-
rect dependents, and request that they take
a TCP.

(b) Wait for a success or failure reply from the
direct dependents.

(c) Reply to the TCP requester with a “willing
to checkpoint” message if a TCP has been
done and the dependents have sent “willing
to checkpoint” messages.

2. Phase 11

(a) Wait for a commit or undo request from a
parent process and carry out the request.

In this algorithm, the dependency graph is implic-
itly formed by the first step in phase [. Eventually, a
process executing the first step in phase I will either
have no dependents or will request a dependent pro-
cess to take a TCP that has already taken a TCP.
In the latter case, the process will not take another
TCP, but will immediately return a “willing to check-
point” to the requester. The algorithm degenerates
to O(n?) messages for large checkpoint intervals when
there is high connectivily between processes because
many processes will get TCP requests from multiple
processes. Our algorithm tries to avoid this case,

4 Our Algorithm

QOur algorithm attempts to eliminate the multiple
TCP requests that a process receives in the Koo and
Toueg algorithm in phase I and replaces the com-
mit/undo notification messages with a single broad-
cast in phase II. During the creation of the dependency
graph in phase I, partial knowledge of the dependency

graph is piggy backed on top of each TCP (tentative
checkpoint) message. For example, since the initiator
i knows that it will send TCP requests to its depen-
dents, it piggy backs this list of dependents on top of -
the TCP request that is sent to each of its dependents.
The initiator’s dependents now know which processes
will be taking TCPs. If & dependent has dependents
that are on this list, it need not send a TCP request
to those dependents.

In phase II, the commit/undo requests are sent to
the checkpoint participants using a single multicast
instead of following the structure of the dependency
graph. This avoids the inefficiencies that can result
from pathological dependency graphs (e.g., ring).

The checkpoint algorithm for the initiator ¢ and all
other processes p is shown in Figure 3. The notation
< &,¥,z > represents a message with the three com-
ponents , y, and z. The symbols D), Rgp ), and
5% denote quantities that are defined below. Their
appearance in the algorithm can be thought of as a
macro call to the definitions below.

Let N be the number of processes, and let ¢ be an
arbitrary process. Each message has a numeric label.
Each process g maintains two sets of message labels:
Rg), ke {1.N} and S,E_q), ke {l.N}. Rgf) is the last
message label that process ¢ received from process k.
Rg) is incremented each time ¢ receives a message
from k. S is the last message label that process
¢ sent to process k. .S',(f) is incremented each time g

sends a message to k. RE;I) and S,(D.Q) are reset to ( after
¢ takes a tentative checkpoint.

D) is the direct dependency set of process p. It is
the set of processes that have sent at least one message
to p since the last checkpoint; that is,

D®) = {¢|R{ > 0} )

(lines 11-i2) After the initiator takes a tentative
checkpoint, it sends messages to each process p in its
direct dependency set requesting it to take a tentative
checkpoint, and telling it the initiator’s dependents
and the number of messages that it received from pro-
cess p. (line i3} It then waits for a reply from each
dependent p about its willingness to checkpoint (w(r?)
and a set W) indicating the set of processes which
o knows to have taken a tentative checkpoint. The
initiator computes w(®), its willingness to commit to
the checkpoint. (lines i%) By definition it is willing
to commit if all of its direct dependents are willing
to checkpoint. (lines 16-i9) It then broadcasts the
decision to the processes in the set W), W) will
contain the set of all processes that took a tentative



At the initiator ¢

i1 Take a tentative checkpoint (TCP);

i2 send <TCP request,D() U{z’},Rg,')> top € D_(");
i3 wait for reply < o(P), W(P) > from all p € Dlé;

i4 let WO =) WO '
i5 let wA®) = true if WP} = true for all p € DU,
i if i) = frue then

i7 Broadcast <commit> to all p € Wi

i8 else

i9 Broadcast <undo> to all p € W{i;

At each other process p:

Upon receipt of message <request TCP,K(pP)",R;pP)>
from process pp:

pl i1 8% > RPP £ 0 then

P2 1(31:.1%5,p =S,(1p)=0,1$qSN;

p3 Take a tentative checkpoint;

pd let T(P} = D(P) . F(pp}s,

p5 let K(rP}* = glery* y Dl@),

pb if 7€P) # ¢ then

p7 send <request TCP, K{r}* Rgp)> to all g € T(P);
P8 wait for reply < wi®, W2 > from all 4 € T(P);
P9 Jet W(P) = (qum) W(q)) U {p}

plo else

pll w®) = {p};

p12  let ofP) = true if w{? = true for all g € 77,
pl3 send < w(P), W) > to 7P

Upon receipt of message <comunit> or <undo>:

pl4d if commit then

pls Commit TCP;
plé else
pl7 Undo FCP;

Figure 3: Checkpoint Algorithm

checkpoint.

(lines pl-p3)The other processes respond to ten-
tative checkpoint (TCP) requests. Each process p that
is asked to participate in the checkpointing will get a
TCP request indicating K(#P)* (which processes are
known by the requesting process pp (parent process)

to be getting TCP requests) and Rf(,p ?) | the number
of messages that pp received from p. If a process has
already taken a tentative checkpoint but has not com-
mitied if, the message counters will be 0 resulting in
process p replying that it is willing to checkpoint. Qth-
erwise, process p will reset its message counters and
take a tentative checkpoint. (line p4) After the ten-
tative checkpoint, process p computes T®), the sub-
set of its direct dependency set that it thinks has not
taken a tentative checkpoint. Process pp, process p’s
parent, has sent process p, K®P)>* the set of processes
that pp knows will receive TCP requests. Process p
does not need to send another TCP request to these
processes. (lines p6-p13) Whether 7®) is empty or

not, process p computes WP, the set of processes that
replies to process pp with this set and its decision on
its willingness to commit the checkpoin.

(lines p14-p17) In phase II, each process p that
replied with a willingness to commit the tentative
checkpoint receives the decision and either commits
or undoes the tentative checkpoint.

5 Performance Evaluation

We compare the performance of our algorithm with
Koo’s algorithm. In order to provide an estimate of
the overhead involved in the two algorithms, we sim-
ulated both algorithms and measured the number of
messages for a wide range of checkpoint intervals and
computation configurations. Simple analytic results
are also presented for one configuration which captures
the dynamics of the two checkpoint algorithms.

The simulated system has N processors, each comn-
taining one process. In each simulation run, the mes-
sage pattern generated by each process p is uniformly
distributed over a set of processes F}, called the fanout
set of process p. A new set Fj, is chosen randomly from
the IV processes for each run. The fanout of process p
is fp, the cardinality of F;,. Tor large checkpoint inter-
vals, processes with a large fanout will send messages
to a large number of processes; while processes with a
small fanout are restricted to sending messages to only
a small number of processes. The fanout in combina-
tion with the size of the checkpoint interval controls
the connectivity of the dependency graph.

Bach process generates messages randomly (at ex-
ponentially distributed time intervals) with identical
mean intermessage times. The receiver process is de-
termined by picking uniformly among the members of
the fanout set. QOur results in this section are based

‘on fixed checkpoint intervals, However, the results for

Poisson checkpoint intervals are statistically no differ-
ent.

The checkpoint coordinator is also chosen randomly
from the N processes. The mean number of messages
generated by each process in a checkpoint interval m
is the ratio of the checkpoint interval and the mean
intermessage time.

In each simulation run, a single random message
graph is generated and multiple checkpoint intervals
are simulated to obtain average values for the number
of messages required to complete the checkpoint. Fig-
ure 4 shows the results of our simulations for N = 16
processes, fanouts of 4, 8, 12, and 15, and mean num-



M, Total # overhead magsages

800 : 7 ; ' T '
=15
700 - |
800 - =12 ]
s00 | e KOO'S algorithm N
our algosithm
a0 | = ]
a0 ]
w00 | 1x4 A
=8
- 55
\kw fx 15
I " L -

60 90 120 180
m, # Messages per process

Figure 4: Comparison of Checkpoint Message Volumes

ber of messages sent by each process in a checkpoint
interval varied from 1 to 150.

The message volume for Koo’s algorithm behaves as
expected when the fanout is f = N — 1 = 15 and the
checkpoint interval is large. The number of messages
should be 720 = 3(15) + 3(15)(15) since all processes
(including the coordinator) will have received a mes-
sage from all other processes with high probability.
In Koo’s algorithm a process sends out three types of
checkpoint messages: 1) take a tentative checkpoint,
2) willing to checkpoint, and 3) commit or undo the
tentative checkpoint. The coordinator will send or
receive 15 sets of messages, one per process. These
processes in turn will each send or receive 15 sets of
messages.

In general, for f = N — 1 and for a checkpoint
interval in which each process has sent out m messages,
each process p will receive at least one message from
process ¢ with probability

Pr=(1-(1-1/(v-1))7) (2)

If we assume the dependency graph is a two level tree,
the mean checkpoint message volume M is

M =3(N —1)P, +3((N — 1)7,)? (3

since the fanout of each process is N — 1. The term
3(N —1)P; is the message volume associated with the
coordinator since each process has a fanout of (¥ —1)
and sends at least one message to the coordinator with
probability P;. The term 3((N —1)P;)? is the message

volume associated with the processes in the coordina-
tor’s dependency set and can be derived through a
symmetry argument.

For a large checkpoint interval (and therefore large
number of messages m), Py is near 1. It is clear that
when the fanout is N —1 the message volume is O(N?)
for large checkpoint intervals. But as the checkpoint
interval decreases, P; will also decrease. As the fanout
f decreases, so will the message volume because of the
decreasing probability of each process sending a mes-
sage to a particular process. For an arbifrary fanout
f, the message volume looks like it is O(f?) for large
checkpoint intervals. Large message volumes occur in
Koo’s algorithm because of processes receiving multi-
ple TCP messages.

Our algorithm, on the other hand, attempts to
avold this situation by sending information to pro-
cesses informing them of other processes that will be or
have already been asked to take a tentative checkpoint.
If the coordinator has received messages from a large
fraction of the processes (a large fanout), it can tell the
processes in its dependency set which processes will be
asked to take a tentative checkpoint. These processes
can be excluded from consideration by the processes
in the coordinator’s dependency set. These exclusions
continue down the dependency graph.

The behavior of the overhead message volume seems
appropriate for fanouts that are 8 or less since the mes-
sage volume curves should look like scaled down ver-
sions of those for Koo’s algorithm. Buf as the fanout
increases past 8, the total message volume actually be-
gins to decrease as the number of messages generated
by each process increases.

For example, Figure 4 indicates that when the
fanout is 15 (direct connectivity to all processes), the
message volume begins to decrease when the mumber
of messages generated by each process is around 15 or
20 messages. As the number of messages generated
continues to increase, the limiting message volume ap-
proaches approximately 45. But this corresponds to
the coordinator sending/receiving 3 messages to/from
each of the other 15 processes.

A simple model explains this behavior for f = 15.
The checkpoint message volume consists of approxi-
mately three components: 1) the messages associated
with the coordinator in phase I, 2) the messages asso-
ciated with processes in the coordinator’s dependency -
set in phase I, and 3) the commit/undo messages in
phase II.

M OF) + 20, Fs + (Fy + F) (4)

Fi(2Fs+ 3)+ Fy (5)



where F1 = (N — 1)P1, Fg = ((N - 1) - Fl)Pl, and
P is defined above. The first term 25} is the number
of messages associated with the coordinator in phase
I and is identical to the estimate for Koo’s algorithm.
The second term 2F) F is the number of messages as-
sociated with the next level in the dependency graph.
It differs from the term for Koo’s algorithm in that 7,
has replaced F;. But F3 is the number of processes
that have not been notified by the coordinator to take
a tentative checkpoint, but will be notified at the sec-
ond level of the dependency graph. The expression for
M reduces to 3(N — 1) for a large checkpoint interval
since P1 approaches 1 and Fy approaches 0.

For fanouts less than N — 1, information on the en-
tire dependency set is not available to the coordinator
leading to less of a reduction in the number of redun-
dant messages. For a small enough fanout or a very
small checkpoint interval, our algorithm degenerates
to Koo’s algorithm.

6 Conclusions and Future Research

We have shown how a synchronous, distributed
checkpoint algorithm like Koo and Toueg’s can be
modified to substantially reduce the checkpoint mes-
sage volume. In one configuration, the message vol-
ume is reduced to O{n). The savings are obtained by
avolding most multiple tentative checkpoint requests
to the same process. Simulations indicate this reduc-
tion and some simple analytic models agree with this
conclusion. However, this message count savings is
at the cost of some increased cost in message lengths
because of the need for sending partial dependency
information to the processes.

We are now studying the effect of these modifica-
tions on other performance measures, For example,
we are interested in the effect of the computational
progress of the application. A small number of mes-
sages that can not be transmitted with some ‘degree of
parallelisin can be as bad a large volume of messages
that can be transmitted in a parallel fashion.

Appendix (Proofs)

A proof that the our algorithm produces consistent
checkpoints and that it will terminate is given below.

m(snd)

p o
EVENTS:
o TCP
q ¢ % PCP

m(rcv) ~

Figure 5: Inconsistent Checkpoint

A Consistency of Checkpoints

Lemma 1 : The nth set of checkpoints taken accord-
ing to our algorithm is consistent.

Proof: By Induction on n

Let H(n) be the hypothesis that the nth set is consis-

‘tent. Let H(0) be the base case.

Base Case H(0): The starting checkpoint set is con-
sistent since no computation has been performed by
the application.

Inductive Step:

Proof (By contradiction): Assume that the set of
checkpoints generated by the nth run of the algorithm
is inconsistent. Then there exists & message m sent
from process p after it made the tentative checkpoint
permanent and received by process ¢ before g took
its tentative checkpoint. Although inconsistency can
happen if the message from p is sent after it took the
TCP but before committing, that situation is elimi-
nated since the algorithm does not allow any applica-
tion messages to be sent until the checkpoint is either
committed or undoene,

We can determine the order of events in the sys-
tem as follows. The sending of the message m
(m(snd)) happened in p after committing the check-
point (PCP,). The receiving of m (m(rcv)) happened
in ¢ before the tentative checkpoint TC'F,. Since the
sending of a message occurs before reception of the
message [10], m(snd) happened before mn(rev). This
implies that PC'P, happened before TCF,. This is a
contradiction. If p and g take tentative checkpoints,
the TCPs cannot be committed or undone by p and
¢ until they are notified by the coordinator. More-
over, the coordinator can not send notification until it
receives replies from all the processes that took a ten-
tative checkpoint. Hence, p could not have committed
its tentative checkpoint unless ¢ had also taken a ten-
tative checkpoint.

By the induction hypothesis, H{n) holds for all n.



B No Lockout

The “Ne Lockoui” property ensures that no dead-

lock can occur in the execution of the checkpointing
algorithm. In our case, if the algorithm eventually
terminates, the no lockout property is preserved.
Lemma 2 : The Algorithm preserves the “No Lock-
out” property.
Proof: We show that each process p taking part in
the checkpoeinfing eventually terminates its execution,
and hence the algorithm eventually terminates (when
all processes have terminated).

When a process p receives a TCP request, it takes
a tentative checkpoint if it has not already done so.
In which case, S.gp )= 0,1<g< N (explicitly done
by the algorithm) and hence can not accept any more
requests for a tentative checkpoint. Clearly, if it had
already taken a tentative checkpoint, it sends the reply
and terminates. Ifit takes a tentative checkpoint, then
two cases arise.

Case 1 (TP} = ¢ }: It has no dependents that won’t
get a TCP request from some other process. Process
p does not wait for any replies. It sends its reply to
process pp, the process that sent it the TCP request
and terminates.

Case 2 (T™) #£ ¢): In this case, process p has to
wait for replies from all processes ¢ € T"). Each pro-
cess ¢ will be in one of the above cases. Case 2 is
the only case that can cause a potential problem. Bus
it is a problem only when a process attempts to take
more than one tentative checkpoint. This case is pre-
vented by resefting the message counters after taking
a tentative checkpoint thereby forcing the process to
return a willingness to commit without taking another
tentative checkpoint.

Thus, each process eventually terminates execution
of the checkpointing algorithm and hence preserves the
“No Lockout” property.

References

{1] X.M. Chandy and L. Lamport, “Distribuied snap-
shots: determining global states of a distributed
system?”, ACM Trans. Comput. Syst., vol. 3, no.1,
pp. 63-75, Feb. 1985,

[2] E.N. Elnozahy and W. Zwaenepoel, “Manetho:
transparent rollback-recovery with low overhead,
limited rollback, and fast oulput commit”, IEEE
Trans. Comput., vol. 41, no. 5, May 1992.

[3] M. Fischer, N. Griffeth, and N. Lynch, “Global
states of a distributed system”, IEEE Trans. Soft-
ware Eng., vol. SE-85, pp. 198-202, May 1982.

[4] Jim Gray, et. al., “The recovery manager of the
System R database manager”, ACM Comp. Sur-
veys, vol. 13, no. 2, pp. 223-242, June 1981.

[5] D. B. Johnson and Willy Zwaenepoel, “Sender
based message logging”, in Proc. 1Tth IEEE
Symp. on Fault Tolerant Computing, pp. 14-19,
June 1987,

[6] T.Joseph and K. Birman, “Low cost management
of replicated data in fauli-iolerant distribuied sys-
tems”, ACM Trans. Comput. Sys., vol. 4, no. 1,
pp. 54-70, Feb. 1986."

[7] Alan H. Karp, Ken Miura, and Horst Simon,
“1992 Gordon Bell Prize Winners”, IEEE Com-
puter, vol. 26, no. 1, pp. 77-82, Jan. 1993.

{8] Junguk L. Kim and Taesoon Park, “An efficient
protocol for checkpointing recovery in distibuted
systems”, to appear in IEEE Trans. Parallel and
Distr. Syst.

[9] Richard Koo and Sam Toueg, “Checkpointing and
rollback-recovery for disiribute systems”, IEER
Trans. Software Eng. vol. SE-13, no. 1, pp. 23-
31, Jan. 1987.

[10) Leslie Lamport, “Time, clocks, and ordering of
events in a distribufed system”, Comm. ACM, vol.
21, no. 7, pp. h58-565, July 1978.

[11] Kai Li, J. F. Naughton, J. S. Plank, “An ef
ficient checkpointing method for multicomputers
with wormhole routing”, Intl. Jrnl. Parallel Proc.,
June 1992.

[12] R. E. Strom and S. Yemini, “Optimistic recov-
ery in distributed systems”, ACM Trans. Comput.
Syst., vol. 3, no. 3, pp. 204-226, Aug. 1985,

[13] Yuval Tamir and C. H. Sequin, “Error recovery
in mullicomputers using global checkpoinis®, Intl.
Conf. Parallel Proc., pp. 32-41, Aug. 21-24 1084..



	Improving the Speed of A Distributed Checkpointing Algorithm
	Recommended Citation

	tmp.1439928365.pdf.k8bb2

