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Abstract of Dissertation 

Aerosol Route Synthesis and Applications of Doped Nanostructured Materials 

by 

Manoranjan Sahu 

Doctor of Philosophy in Energy, Environmental and Chemical Engineering 

Washington University in St. Louis, 2011 

Professor Pratim Biswas, Chairperson 

  

Nanotechnology presents an attractive opportunity to address various challenges in air 

and water purification, energy, and other environment issues. Thus, the development of 

new nanoscale materials in low-cost scalable synthesis processes is important. 

Furthermore, the ability to independently manipulate the material properties as well as 

characterize the material at different steps along the synthesis route will aide in product 

optimization.  In addition, to ensure safe and sustainable development of nanotechnology 

applications, potential impacts need to be evaluated.  In this study, nanomaterial synthesis 

in a single-step gas phase reactor to continuously produce doped metal oxides was 

demonstrated.  Copper-doped TiO2 nanomaterial properties (composition, size, and 

crystal phase) were independently controlled based on nanoparticle formation and growth 

mechanisms dictated by process control parameters.  Copper dopant found to 

significantly affect TiO2 properties such as particle size, crystal phase, stability in the 

suspension, and absorption spectrum (shift from UV to visible light absorption).  The in-

situ charge distribution characterization of the synthesized nanomaterials was carried out 
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by integrating a tandem differential mobility analyzer (TDMA) set up with the flame 

reactor synthesis system.  Both singly- and doubly- charged nanoparticles were 

measured, with the charged fractions dependent on particle mobility and dopant 

concentration.  A theoretical calculation was conducted to evaluate the relative 

importance of the two charging mechanisms, diffusion and thermo-ionization, in the 

flame.  Nanoparticle exposure characterization was conducted during synthesis as a 

function of operating condition, product recovery and handling technique, and during 

maintenance of the reactors.  Strategies were then indentified to minimize the exposure 

risk. The nanoparticle exposure potential varied depending on the operating conditions 

such as precursor feed rate, working conditions of the fume hood, ventilation system, and 

distance from the reactors.  Nanoparticle exposure varied during product recovery and 

handling depending on the quantity of nanomaterial handled.  Most nanomaterial 

applications require nanomaterials to be in solution. Thus, the role of nanomaterial 

physio-chemical properties (size, crystal phase, dopant types and concentrations) on 

dispersion properties was investigated based on hydrodynamic size and surface charge.  

Dopant type and concentration were found to significantly affect iso-electric point (IEP)-

shifting the IEP to a high or lower pH value compared to pristine TiO2 based on the 

oxidation state of the dopant.  The microbial inactivation effectiveness of as-synthesized 

nanomaterials was investigated under different light irradiation conditions. Microbial 

inactivation was found to strongly depend on the light irradiation condition as well as on 

material properties such chemical composition, crystal phase, and particle size.  The 

potential interaction mechanisms of copper-doped TiO2 nanomaterial with microbes were 
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also explored.  The studies conducted as part of this dissertation addressed issues in 

nanomaterial synthesis, characterization and their potential environmental applications. 
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1.1. An overview: Nanotechnology 

Nanotechnolgy presents exciting approaches to overcome challenges in energy and the 

environmental sectors.  It is also expected to have a great impact in electronic and 

medical applications.  To fully realize the benefits of nanotechnology applications and to 

ensure their safe and sustainable development, potential impacts need to be evaluated.  

This dissertation addresses different challenges of nanoparticle technology, which are 

discussed in detail in the various chapters of this dissertation. 

 

 1.2. Background and Motivation  

Nanotechnolgy has significantly advanced in a wide range of applications, such as 

electronics, medicine, energy, the environment, and a variety of consumer products. 

Nanotechnology is expected to rise far beyond the current use, and is projected to be a 

market of $1 trillion by 2015 [1, 2] . Nanoparticles (at least one dimension ranging from a 

few to several hundred nanometers) are the building blocks for all applications and they 

have markedly different physico-chemical properties than their bulk counterpart.  

The determining factors for optimal application of nanomaterials are their size, 

shape, crystal phase, purity, doping species and concentration of dopant.  TiO2 is one 

example of a nanomaterial that has varied applications.  The anatase phase of TiO2 has 

higher photocatalytic activity than the rutile phase.  For photo-catalytic applications, TiO2 

particles ranging from 25 to 40 nm are desirable [3], whereas for paint and pigment 

applications, the rutile phase of TiO2 between 190-200 nm is preferable. Several studies 
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have reported that optimum loading of doping species increases photo-reactivity [4]. The 

electronic properties of nanomaterials also depend on the size of the particle [5, 6].  

The research work in this dissertation is mainly focused on titanium dioxide, a 

semiconducting material, widely used in a range of applications such as air and water 

purification, toxic metal capture, CO2 photo-reduction, destruction of bacteria and viruses, 

self cleaning building materials and photo-catalysis reactions.  TiO2 is one of the most widely 

used photo-catalyst because it is relatively safe, inexpensive and resists photo-corrosion. 

Despite the numerous applications of TiO2 nanomaterials, some of the property limitations 

need to be overcome before TiO2 can be used on a larger scale.  First, TiO2 requires near 

ultraviolet light energy (λ < 380 nm) for activation.  Second, the relatively low quantum 

efficiency of the catalyst is due to fast electron and hole pair recombination need to be 

overcome.  

Several approaches have been pursued to improve the material properties of TiO2 

including size optimization [7], compositional optimization to make suboxides [8], 

surface modification and doping [9-11].  Among these strategies, one promising approach 

is doping with foreign impurities to change the structure.  Reports suggest that dopant 

addition enhances photoreactions as well as modifies material properties such as size and 

crystal structure.  Dopant addition also shifts the absorption to the visible wavelengths by 

substituting Ti in the substitutional sites or in the interstitial sites. Dopant effects on 

properties of nanosized titania are not well understood.  In addition, synthesis methods 

for doped nanomaterials with independent control of composition, size, crystal phase, and 

morphology have not been demonstrated.  Cu-doped TiO2 nanomaterials are the main 
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focus in this research work, as these materials have shown promising results in improving 

photocatalytic efficiency and in solar energy applications [12]. Cu-doped TiO2 has also 

shown improved photocatalytic degradation [13-16], CO2 photoreduction [17-19], and 

improved gas sensing [20, 21]. 

One research challenge is developing a readily controllable process to synthesize 

a wide spectrum of stable, functional, highly pure nanomaterials with well controlled 

properties (size, composition, crystal phase, morphology, reactivity, etc.).  Developing 

and optimizing the synthesis process to produce large quantities of high quality materials 

in a low-cost scalable synthesis process requires a rigorous understanding of the 

underlying physical and chemical mechanisms.  The use of well designed experimental 

systems helps in the better understanding of the material processing parameters, and 

nanoparticle formation pathways.   

Several methods have been adopted for synthesis of pristine and doped 

nanomaterials. These methods include: sol gel [22-24], co-precipitation [25], mechanical 

alloying [15], hydrothermal [26], solvothermal, sonochemical, and photo reduction [14].  

Sol-gel techniques have been used by many researchers to synthesize pristine and doped 

materials. It involves multiple steps such hydrolysis, drying, pulverization, and 

calcinations [27]. Moreover, in all the aforementioned methods, it has been difficult to 

synthesize material on the nanoscale level, in a predictable and intentional way, while 

controlling for the desired size, shape, composition, and crystal phase. Furthermore, these 

synthesis processes require multiple steps for preparation and are time consuming.  
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Gas phase synthesis methods have an advantage over other methods because of its 

relative ease in controlling the particle size, crystallinity, homogeneity, and degree of 

agglomeration [28]. Also gas phase synthesis processes are continuous, while liquid 

phase synthesis and mechanical alloying are batch processes with a possible variation in 

material properties from batch to batch. Gas phase techniques adopted for synthesizing 

nanomaterials include furnace aerosol reactor [29, 30], plasma reactors, laser ablation, 

flame aerosol reactor [31-33]. Although several synthesis methods have been 

demonstrated, the potential factors affecting the nanoparticle properties during the 

production process of both pristine and doped nanomaterials are still not fully 

understood. Flame aerosol reactors (FLAR) have been widely used to synthesize 

nanomaterials [31, 32] and also used to prepare nanostructured film for solar energy 

applications [33, 34]. Flame synthesis process achieves the desired properties of the 

nanomaterials in a single-step unlike the sol gel process. Also unlike other processes, 

doped particles from a FLAR can be expected to be uniformly distributed due to excellent 

mixing of the precursor vapors at the molecular level. Moreover, the aerosol reactor can 

be scaled up to synthesize large quantities of nanomaterials with controlled 

characteristics [35, 36]. A systematic study of the synthesis of pristine and doped 

nanomaterials in the FLAR would require a thorough understanding of the role of 

different process parameters such as feed rate, reaction environment, residence time, and 

doping concentration, in controlling the different physical and chemical properties of the 

nanomaterials, which is investigated in this dissertation.  
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During the high temperature synthesis, particles are charged by ions generated 

through chemi-ionization process, by diffusion as well as thermionic charging [32, 37-

39].  Particle charging may depend on factors such as flame temperature, flame structure, 

mixing of the reactants, and material properties such as particle size, crystal structure, and 

composition. There is a need to investigate the charging characteristics of particles during 

the synthesis, as charge on particles strongly affect the coagulation process, influences 

the particle motion, and deposition pattern on substrate [40, 41].  Apart from influencing 

the particle properties, charge on particles affects sampling, transport, and capture [39, 

42].  Magnitude of charge significantly affect the inhaled aerosol deposition in the lungs 

[43]. It is of practical importance to study particle charge effect on the relationship 

between nanoparticle exposure and lung uptake. Well designed charge characterization 

methodologies to measure the magnitude of charge and key parameters that govern the 

charging mechanisms need to be explored at different flame operating conditions.  A 

detailed understanding of nanoparticle charge will help in accurately assess the role of 

charge in particle synthesis, fabricating nano-devices, measurement, and control of such 

particles in both fundamental and applied nanotechnology research 

During synthesis in gas phase reactors, particle leakage and dispersion into the 

work environment may occur, exposing workers to the potentially harmful effects of 

these fugitive particles. Due their small size and large surface area, nanoparticles may 

penetrate the epithelial cells, enter the blood stream and can even move to the brain 

through the olfactory nerves, adversely affecting health [44]. A strong dose-response 

relationship was observed between particle concentration and pulmonary inflammatory 
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responses [45]. Many studies have reported that potential toxic effects also depend on the 

particle size, crystal phase composition, and chemical composition [46].  Such concerns 

have resulted in many groups raising issues of “safe nanotechnology”, and prompted 

strategies to address health and safety aspects simultaneously with the adaptation of 

nanotechnology [9, 47, 48]. Well designed exposure assessment studies are needed for a 

better understanding of the health effects caused by exposure to nanoparticles, and cost 

effective control measures are to reduce exposure. The exposure characterization during 

different stages of the processing of the materials will provide guidelines to minimize the 

exposure risks that arise. 

 In parallel, accurately characterizing nanomaterials at different steps upon 

application, and fundamentally exploring the physical and chemical principle that 

determine the functionality need to be carefully considered. Changes in nanomaterial 

properties under different application conditions will play a crucial role in determining 

their performance. For example, when either released to the environment or applied as a 

solution, nanoparticles tend to agglomerate.  Their surface is also modified by factors 

such as their size, shape, crystal structure, and functionalization and by environmental 

parameters such as pH and ionic strength [49-51]. A detailed characterization of 

nanoparticles dispersed in aqueous suspension and the factors affecting the dispersion 

behavior is critical in understanding their toxicological and photo-catalytic applications, 

and their environmental fate and transport behavior. Therefore, characterization methods 

and testing protocols must be developed to continually improve our fundamental 
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understanding of the structure-function relationships during different stages of 

nanomaterials application (e.g. as produced, as administered).  

In addition, doped nanomaterial properties must be correlated with their 

application for optimal design of the materials, which is lacking for doped TiO2 materials 

due to the unavailability of nanostructured materials with precisely controlled properties. 

Based on the above understanding, tailoring and exploiting the material properties for 

enhanced performance are essential. In this work, as-synthesized Cu-doped TiO2 

nanomaterials were applied to explore their potential anti-microbial activity and their 

interaction mechanisms with microbes.  

 

1.3. Objectives 

The goals, research approach, and applications explored in this study are shown in Figure 

1-1.  This study develops a thorough understanding of the formation of nanostructured 

materials with independently controlled properties. It characterizes the nanomaterials in 

depth at the different stages of their applications. Finally, it correlates their material  

properties with microbial inactivation potential and investigates interaction mechanisms.  

This dissertation focuses on the synthesis of TiO2 and Cu-doped TiO2 nanomaterials. A 

rigorous characterization methodology is adopted along with in-situ exposure 

characterization to simulate real life exposure scenarios of nanoparticles. The specific 

objectives are given below: 
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Figure 1- 1: Overview of research conducted in the dissertation 

1) Process development for doped TiO2 nanomaterial synthesis using a flame aerosol 

reactor (FLAR). It involves studying nanoparticles formation mechanisms and the  

influence of dopant on TiO2 nanomaterial properties. The focus is on processing 

Cu-doped TiO2 nanomaterials. 
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2) Synthesis of nanoparticles with independently controlled material properties such 

as composition, size, crystal phase, and morphology. This synthesis is based on an 

understanding of the key process parameters and nanoparticle formation 

mechanisms. 

3) Development of an in-situ characterization methodology for measuring the charge 

distribution of the flame synthesized nanoparticles and understanding the 

charging mechanisms at different flame operating conditions. 

4) Development of an exposure characterization methodology and quantification of 

exposure to nanoparticles during synthesis, during maintenance in gas phase 

reactors, and during product recovery and handling under different scenarios. 

5) Characterization of the nanoparticles dispersion properties in water under 

different environmental conditions and for different physio-chemical properties. 

6) Demonstration of the application of Cu-doped TiO2 material for microbial 

inactivation. Exploration of potential interaction mechanisms, and their 

correlation with physio-chemical properties. 

 

In summary, this dissertation addresses different research needs in nanomaterial 

synthesis, characterization, aggregation behavior in suspension and application for 

microbial inactivation. More details about the knowledge gaps and research approaches 

are given in the individual chapters. 
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1.4. Dissertation Layout 

TiO2 based nanomaterials are widely used as they are cheap and stable in adverse 

environmental conditions.  These semiconductor metal oxides are produced in tons for 

various applications. Methodologies to synthesize well controlled Cu-doped TiO2 

nanomaterials are demonstrated in a single-step gas phase reactor. Detailed in-situ charge 

characterization and exposure characterization were conducted during various operations 

during synthesis. Several approaches were adopted for post synthesis characterization of 

nanoparticle to relate their application performance with properties. The studies 

performed as part of this dissertation were aimed to address questions on the synthesis, 

characterization, and application of doped TiO2 nanomaterials. An overview of 

nanotechnology applications and challeneges are discussed in Chapter-1 followed by a 

detailed understanding of the nanomaterial synthesis in a single-step flame aerosol 

reactor in Chapter-2. In addition to synthesis, a detailed in-situ characterization 

methodology (Chapter-3) was undertaken to measure the charge distribution 

characteristics and nanoparticle exposure (Chapter-4) during different operating 

conditions in flame aerosol reactor. Post synthesis characterization of nanoparticle 

suspension was carried out in DI water to understand the surface charge and 

agglomeration behavior (Chaper-5). The as-synthesized doped nanomaterials were 

applied for microbial inactivation and relationship with physio-chemical properties of 

nanomaterials were established (Chapter-6, 7). A detailed summary of each chapter is 

discussed as below. 
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Chapter 2 discusses the synthesis of doped TiO2 nanomaterials in a single-step 

process. A detailed investigation of the particle formation mechanisms and 

characterization were undertaken that allowed understanding the dopant effect on TiO2 

material properties such as size, crystal phase composition, stability in suspension and 

optical absorption. This flame synthesis method was also used to make V-doped TiO2 

material. The effect of annealing conditions on Cu-doped TiO2 nanomaterial properties 

such as size, crystal phase, and absorption was also investigated. 

Chapter 3 addresses the charge distribution of flame synthesized nanoparticles, 

and establishes a fundamental understanding of the two important charging mechanisms 

that interplay during the flame synthesis process (diffusion charging and thermo-

ionization charging). The charge carried by nanoparticles during synthesis is important 

for nanoparticle transport, sampling, and deposition to make nanodevices. Different size 

particles that carry charges of both the polarities (positive and negative) in flame 

synthesis conditions are explored by using a differential mobility analyzer (DMA) and a 

tandem differential mobility analyzer (TDMA). Numerical calculations were done to 

identify the dominant charging mechanism at different flame operating parameters.  This 

nanoparticle charging understanding can be extended to develop better charging to 

capture ultrafine aerosols. 

Exposure assessment of nanoparticles is very important in the different life cycle 

stages of the material. During generation and production, nanoparticles can enter the 

working environment and pose health hazards after long term exposure. Chapter 4 

presents exposure characterization methodologies and discusses the quantification of 
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exposure during production, product handling and recovery, and during the maintenance 

of gas phase reactors. The results from this study provide guidelines to minimize 

exposure during operation of reactors during synthesis and in other operations. 

The aggregation potential and surface charge of doped nanoparticles in a liquid 

suspension are discussed in Chapter 5.  Most nanomaterials are dispersed in liquid 

suspension before application. However, the nanomaterials tend to agglomerate based on 

altered surface charge, which finally influences their performance.  The agglomeration 

and state of the material in suspension depend on environmental factors such as pH, ionic 

strength, etc. and on physio-chemical parameters such as size, crystal phase and 

composition, and dopant types and concentrations.  The aggregation behavior is 

discussed for three types of doped TiO2 nanomaterials: Cu-doped TiO2, V-doped TiO2 

and Pt-doped TiO2. 

Nanomaterial applications depend mainly on size, composition, crystal phase and 

morphology. Chapters 6, 7 delineate how the composition, crystal phase, and size of Cu-

doped TiO2 affect bacterial inactivation potential for both gram positive and gram 

negative environmental microorganisms under different light irradiation conditions.  

Doped nanoparticle interaction mechanisms are explored in detail along with the 

agglomeration behavior of the materials in suspension. This study demonstrates that 

doped nanomaterials can be effectively used as antibacterial agents for water and waste 

water treatment. Chapter 7 summarizes the major conclusions of this dissertation and 

discusses its future directions and broader implications. 
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The experimental set ups and supporting calculation are presented in Appendix-A. 

The exposure potential to ultrafine particles in the outdoor environment and their 

chemical compositions are discussed in Appendix-C. A detailed receptror modeling 

approach using both positive matric factolization (PMF) and UNMIX were undertaken to 

separate the emissions from gasoline vehile sources from diesel vehicle sources. Finally, 

Appendix-D summarizes my curriculum vitae at the time of completion of this 

dissertation.   
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2.1. Abstract 

Synthesis and characterization of long wavelength visible-light absorption Cu-doped 

TiO2 nanomaterials with well-controlled properties such as size, composition, 

morphology, and crystal phase have been demonstrated in a single-step flame aerosol 

reactor.  This has been feasible by a detailed understanding of the formation and growth 

of nanoparticles in the high temperature flame region.  The important process parameters 

controlled were: molar feed ratios of precursors, temperature, and residence time in the 

high temperature flame region.  The ability to vary the crystal phase of the doped 

nanomaterials while keeping the primary particle size constant has been demonstrated.   

Results indicate that increasing the copper dopant concentration promotes an anatase to 

rutile phase transformation, decreased crystalline nature and primary particle size, and 

better suspension stability.    Annealing the Cu-doped TiO2 nanoparticles increased the 

crystalline nature and changed the morphology from spherical to hexagonal structure.  

Measurements indicate a band gap narrowing by 0.8eV (2.51eV) was achieved at 15 wt% 

copper dopant concentration compared to pristine TiO2 (3.31eV) synthesized under the 

same flame conditions.  The change in the crystal phase, size, and band gap is attributed 

to replacement of titanium atoms by copper atoms in the TiO2 crystal. 

 

Key words: Nanomaterials, Cu-doped TiO2, Crystal structure, Band gap, Flame 

synthesis. 
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2.2. Introduction 

Nanosized TiO2 has been widely used because of its stability in aqueous environments 

and low production cost.  However, its light absorption range is limited to the ultraviolet 

(UV) spectrum of light due to its wide band gap (~3.2 eV).  To shift the absorption range 

to the visible spectrum, various approaches have been pursued in the past involving size 

optimization [1] , compositional variation to make sub-oxides [2] , surface modification 

[3], and doping [4, 5, 6] to modify the TiO2 structure.  Among these methods, tailoring 

the band structures by incorporating a dopant into the host nanomaterial is a promising 

approach [6, 7, 8].  Several studies have reported enhancement of absorbtion in the 

visible range and photocatalytic  activity on doping TiO2 by transition metal ions like Cu, 

Co, V, Fe, Nb and non metal like N, S, F [4, 5, 9, 10, 11].  However, a major challenge is 

to process low-cost, and stable doped nanomaterials with well controlled properties that 

can effectively absorb visible light. 

Recently, copper has been increasingly investigated as a dopant for titania [12].  

Copper oxide is a narrow band gap (cupric oxide- 1.4eV, cuprous oxide-2.2eV) material 

which has a high absorption coefficient, but suffers from UV induced photocorrosion 

[12].  However, copper oxide coupled with TiO2 has been demonstrated to be stable with 

improved photocatalytic degradation properties [9, 13, 14], effective CO2 photoreduction 

[15, 16], improved gas sensing and enhanced H2 production [17, 18].  It has been shown 

that Cu-doped TiO2 induces more toxicity compared to TiO2 [19].  Though a large 

number of studies on Cu-doped TiO2 nanomaterials have been reported, there is little 

information available on the effect of dopant concentration on TiO2 properties.  Dopants 
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can replace Ti in the substitutional sites or be incorporated in the interstitial sites.   In 

some cases they may segregate on the surface [21].   The creation of new energy states 

due to the incorporation of the dopant in the host TiO2  alters the particle properties, 

electronic structure, and light absorption properties.  These affect their functionality, and 

hence can be used in different applications [3, 8, 21, 22].  In summary, there is a need to 

synthesize Cu-doped nanomaterials with controlled properties (independently) which will 

help understand in detail the role of the dopant in altering TiO2 properties.  It is essential 

to have samples wherein one characteristic is varied, keeping the others the same.  For 

example, samples of varying crystal phases while maintaining the size the same will 

allow to establish the dependence of biological activity with the crystal phase.  

Studies have reported the preparation of various doped TiO2 nanmaterials by multi-

step liquid phase synthesis [5], gas phase spray pyrolysis, and flame synthesis methods 

[20, 23, 24].  Flame aerosol synthesis is a single-step process, and allows independent 

control of the material properties such as particle size, crystallinity, homogeneity, and 

degree of aggregation [25, 26].  At elevated temperatures encountered  in the flame 

synthesis  process, most dopants can diffuse rapidly [27] and be uniformly distributed due 

to excellent precursor vapor mixing at the molecular level [20, 21].   Furthermore,  flame 

aerosol processing is a scalable technique that is commercially used to manufacture large 

quantities of nanomaterials [28].   

The synthesis of Cu-doped TiO2 in a single-step flame aerosol process is reported in 

this paper.   A detailed characterization of the as-produced samples to understand the 

influence of process parameters on material properties is done.  The role of key process 
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parameters such as molar feed ratio of precursors and dopant concentration on TiO2 

nanomaterial properties such as size, composition, crystallinity, stability in suspension, 

and morphology are thoroughly investigated.  A method to control the crystal phase of 

the Cu-doped TiO2 nanomaterial has been discussed.  The effect of annealing temperature 

on crystal phase and microstructure of the Cu-doped TiO2 material is reported.  A 

formation mechanism of Cu-doped TiO2 nanomaterial in the flame aerosol reactor is 

elucidated. 

 

2.3. Experimental 

 

2.3.1. Nanomaterial synthesis 

Figure 1 shows the schematic diagram of the flame aerosol reactor system used for the 

synthesis of the Cu-doped TiO2 nanomaterials.  The main components of the flame 

aerosol reactor system are: a diffusion burner, a precursor feeding system, and a 

quenching and collection system.  The design details of the diffusion burner used for this 

study is given in Jiang et al [26].  Nitrogen was passed through titanium tetra-

ispopropoxide (TTIP) (99.7%, Aldrich) in a bubbler, and the saturated vapor was 

introduced into the central port of the burner.  The bubbler containing the liquid TTIP 

precursor was placed in an oil bath and was maintained at a temperature of 98οC.   The 

precursor delivery tube was maintained at a temperature of 210oC by a heating tape.  This 

avoided the condensation of the precursor TTIP vapor in the delivery tube.  Copper  
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Figure 2- 1: Schematic diagram of the FLAR experimental setup used to synthesize Cu- 
doped TiO2 nanoparticles 

 

 

nitrate trihydrate (99.5%, VWR) was used as the dopant precursor.  The dopant precursor 

solution was prepared by dissolving a known amount of copper nitrate in distilled water.  

A stainless steel collison nebulizer was used to generate fine spray droplets (less than 

2μm), which were then carried by nitrogen gas into the high temperature zone of the 

flame.  The doping percentage was varied by introducing different molar ratios of both 

the precursors. The overall doping concentration was varied from 0 to 15 wt%.   Methane 

and oxygen were introduced into the second and third ports of the burner respectively to 

create a diffusion flame zone.  The volumetric flow rates of N2 through the TTIP bubbler 

and the O2 were precisely controlled by mass flow controllers at 2 lpm and 7.5 lpm 
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respectively.  The methane flow rate was maintained at 1.8 lpm, and varied for few of the 

tests.  A 20 lpm flow of compressed air was supplied in a radial directon to the quenching 

ring for cooling.  The entrained air diluted the aerosol stream and suppressed particle 

growth.  The synthesized materials were collected using a glass microfiber filter paper 

(Whatman) for further characterization. 

 

2.3.2. Material characterization 

The size, morphology, and microstructure of the nanoparticles were determined by a 

transmission electron microscope (TEM) (Model: JEOL 2100F FE-(S) TEM) with an 

accelerating voltage of 200 kV and by a field emission scanning electron microscope 

(SEM) (Model: JEOL 7001LVF FE-SEM).  The elemental analysis of the doped 

nanomaterial was done using energy dispersive spectroscopy (EDS) analysis integrated 

with a SEM. In EDS analysis, the X-rays are generated in about few microns (~2µm) in 

depth of the sample. Phase structures of the material were determined using an X-ray 

diffractometer (XRD) with Cu Kα radiation (λ=1.5418 A) (Rigaku D-MAX/A9).  Zeta 

potential, an indicator of the stability of nanoparticles in suspensios, was measured by 

using a ZetaSizer Nano ZS (Malvern Instruments) dynamic light scattering instrument.  

Nanoparticles were dispersed in de-ionized water at a concentration of 30μg/ml and 

sonicated for 25 minutes using a bath sonicator (40 W, 50 kHz, 5 Fisher Scientific, 

Fairlawn, New Jersey) before zeta potential measurements. UV-visible absorption 

spectroscopy (Perkin Elmer Lambda 2S) was used to analyze the absorbance spectrum of 
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the nanomaterials over wavelengths ranging from 200 to 800 nm at room temperature.  

From the absorption spectrum, the band gap was estimated.  The absorption edge was 

estimated to be the point where the absorption was 30% of the maximum, corresponding 

to where 50% of the photons were absorbed.  This approach was used because of the 

difficulty in finding the linear region of the absorption spectrum according to 

conventional methods of band gap estimation [22]. 

 

2.3.3. Experimental test plan 

The list of experiments performed is outlined in Table 2-1.  The flow rates were 

Table 2- 1: Summary of the experimental test plan 

 
Test 
# 

Dopant 
Concentration 
(wt %) 

CH4 Objective 
(lpm) 

1 A 0 1.8  Study the influence of dopant 
concentration on TiO2 
material properties such as 
size, crystal phase, 
suspension stability, and 
light absorption. 

   B 0.5  
   C 1  
   D 3 
   E 5 
   F 15 
2 A 3 0.8 Study the effect of methane 

flow rate on size and crystal 
phase of the material. 

   B 1.2 
   C 1.5 
   D 1.8 
 
3 A 1 Annealing temperature-

400oC, 600oC 
Examine the effect of 
annealing on phase and 
microstructure characteristics 
of Cu-doped TiO2 
nanoparticles 

   B 15 
    Duration of annealing 

under air -4 hrs  
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controlled to maintain the same residence time in the high temperature flame (Test-1).  

TiO2 was synthesized under the same experimental conditions using only TTIP as the 

precursor (Test-1A). Addition of dopant influences nanomaterial properties such as size, 

crystal structure, stability in suspension, and optical properties.  The copper dopant 

concentration was varied from 0 to 15 wt% to process Cu-doped TiO2 nanomaterials 

(Test-1(B-F)) to investigate the impact on properties.  The copper dopant concentration 

was estimated based on the precursors feed rate to the flame.  The temperature - time 

history in the flame impacts the particle formation and growth rates.  This was varied by 

altering the methane flow rate from 0.8 to 1.8 lpm at a constant dopant level of 3wt% 

(Test-2).   Annealing of the 1 and 15 wt% Cu-doped TiO2 was conducted for 4 hrs at 

400oC and 600oC in an atmosphere of air to examine property alterations (Test-3).  

2.4. Results and Discussion 

Doping TiO2 with other atoms changes properties such as particle size, crystal structure, 

stability in suspension, and light absorption. The mechanism of Cu-doped TiO2 

nanoparticle formation in the flame aerosol reactor is discussed first. The effect of copper 

dopant on TiO2 particle properties are discussed followed by crystal structure control of 

the doped TiO2 nanomaterials.  Finally, microstructure changes of Cu-doped TiO2 are 

discussed under different annealing conditions. 

 2.4.1. Particle formation mechanism 

 
The proposed Cu-doped TiO2 particle formation mechanism is illustrated in Figure 2-2.  

This is similar to the pathways proposed by Basak [24] for multi-component 
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nanomaterial systems.  To understand the formation mechanism of the Cu-doped TiO2 

nanoparticles in the flame aerosol reactor, pristine TiO2 was synthesized first using TTIP 

only as the precursor.  TTIP decomposes to form TiO2 monomers, which then undergo 

subsequent growth by collision followed by sintering to form nanoparticles (Test-1A).  

For synthesizing Cu-doped TiO2 particles, both the TTIP and copper nitrate precursor are 

fed to the high temperature flame. The nanoparticle  properties such as size and 

composition  depend on the relative decomposition kinetics and molar feed ratios of the 

precursors (see Figure 2-2).  The decomposition rate of TTIP is given by, 

s-1 [29].  Since the kinetic data for copper nitrate 

precursor is not available, the decomposition rate reported for copper acetyl acetonate 

was assumed ( s-1) [30].  The two precursors form 

TiO2 (formed from TTIP molecular decomposition) and CuO (formed by decomposition 

of copper nitrate followed by evaporation) monomers at similar time instants as their 

decomposition rates are similar ((k1,Cu / k1,Ti~5, at 2200oC).  Depending on the molar feed 

ratio of the precursors, a variety of morphologies can be formed, ranging from particles 

consisting of only copper oxide, particles of only TiO2 and the particles of mixed TiO2 

and CuO.  At low copper concentrations (1-5 wt%), CuO monomers are readily 

incorporated into the higher concentration TiO2 clusters by a scavenging process.  This is 

similar to the phenomenon demonstrated by Wang et al [20].   Subsequent collisional 

growth and sintering result in a homogenous mix of Cu-doped TiO2 particles.  However, 

at higher Cu feed concentration (~15wt %), apart from the collision and sintering of the 

RTk a /)1005.7exp((1096.3 45 ×−×=

15.1exp((1002.3 7kb −×= )/)105 RT×
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   Figure 2- 2: Cu-doped TiO2 nanoparticles formation mechanism in a FLAR reactor (Top case represents TiO2 
 formation mechanism, Middle case is for low copper dopant concentration, and bottom case is for high dopant 
 concentration). 
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CuO monomers and TiO2 clusters, some of the CuO oxide monomers also condense 

onto the formed Cu-doped TiO2 particles.  The HR-TEM image of the synthesized 

15wt% Cu-TiO2 nanoparticles indicates regions of amorphous CuO on the particle 

surface.  The explanation of CuO monomer condensation on the particle surface is 

thus corroborated (Test-1F).  The nanomaterials synthesized at various dopant 

concentration were verified by single particle EDS analysis to be comprised of both 

copper and titania.  No particles were found consisting of only Ti or only copper 

species.  

2.4.2. Effect of copper dopant concentration on TiO2 properties 

2.4.2.1. Particle size analysis 

Figure 2-3 shows the TEM, HR-TEM images, and primary particle size distribution of 

1 wt% Cu-TiO2 (Test-1B) and 15 wt% Cu-TiO2 (Test-1F) samples. The particle size 

distribution was obtained by measuring the diameter of 200 particles from 

representative TEM images. As shown in the size distribution of these samples (see 

Figure 2-3), the particles were spherical and size decreased with increasing doping 

concentration.  The geometric mean primary particle size obtained at 1 wt% doping 

was ~47 nm compared to ~33 nm obtained at 15 wt% doping.  The peak broadening 

observed in XRD pattern (see Figure 2-4) also qualitatively explained the change in 

particle size and lattice expansion with doping.  The crystallite size was estimated 

from the XRD pattern obtained using Scherrer formula.  The crystallite size obtained 

at 1 wt% doping was 33 nm compared to 25 nm and 23 nm at 5 and 15 wt % doping 

concentration.  It is important to note that crystallite size estimation from XRD is 

different from the particle size observed from the microscopic analysis.  XRD 
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Figure 2- 3: TEM images  and particle size distribution of as synthesized Cu-doped TiO2 nanoparticles (a) 1 wt% Cu-TiO2 and (b) 15 
wt% Cu-TiO2 (Inset is the HR-TEM image of the crystal fringes) (Size distribution of particles is plotted by measuring 200 particles) 

(B)(A) 

(a)

(b) 

32 
 



measures the size of the small domains within the grains and one particle may consist of 

several crystallites based on the preparation methods [31].  The decreased particle size 

with increasing doping concentration is due to the inhibition of the grain growth.  As 

evident from the HR-TEM images of the 15wt% Cu-TiO2 (see Figure 2-3), an enhanced 

amorphous layer is observed on the surface.   The excess CuO monomers condense on to 

the existing Cu-doped TiO2 particles.  Thus, particle crystallinity decreases and also 

prevents grain growth.  Wang et al [20] observed an amorphous crystal structure  and 

decreased grain size with an increasing Fe2+/Ti4+ ratios consistent with our Cu-doped 

TiO2 materials.  Reduction in size was also observed when Li et al [3] synthesized Zn-

doped SnO2 nanomaterials.  Norris et al [27]  proposed a process called self purification 

by which dopants  diffuse from inside to the surface sites of TiO2 nanocrystals.  This 

change in particle size with doping concentration is fundamentally a very important 

phenomenon for electronic structure modification. These results indicate that the particle 

size of the Cu-doped TiO2 can be controlled by manipulating the dopant concentration in 

addition to the methods demonstrated by other researchers by controlling  the precursor 

feed concentration and residence time of the particle in the high temperature flame [26, 

32]. 

 

2.4.2.2. Crystal Phase 

The functionality of TiO2 nanomaterials for various applications depends on its crystal 

phase.  The anatase phase of TiO2 is preferred for photocataytic applications, whereas 

rutile phase is preferred for applications in pigments [1].  It is, therefore, necessary to 

understand the modifications in the crystal structure by incorporation of the dopants in 
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TiO2.  The XRD diffraction pattern of the Cu-doped TiO2 nanomaterials synthesized at 

various concentrations is shown in Figure 2-4.  The pristine and Cu-doped TiO2 

nanoparticles were prepared at the same flame conditions for comparison.  The pristine 

TiO2 was primarily anatase under the chosen processing conditions.  However, with 

increasing dopant concentration, the transformation from anatase to rutile phase occurred, 

as shown in Figure 2-4 (a) from the (110) rutile peak, consistent with other studies [18, 

33].  The anatase and rutile fraction were calculated according to the formula proposed 

by Spurr and Myers [34].  The pristine TiO2 had 1.2% rutile content, but with increasing 

doping concentration to 15 wt %, the rutile phase increased to 21.8% .  Even at high 

dopant concentration (15 wt %), no pure dopant related crystal phase was observed 

within the XRD detection limit.  The same anatase to rutile phase transformation was 

observed for synthesis of Cu-doped TiO2 by other methods [9, 35].   

The similarity in ionic radius  of Cu2+ (0.73oA)  to that  of  of Ti4+ (0.64oA) enable 

copper to substitutionally replaces Ti in the titanium lattice  in the flame environment, 

where particles are formed from the atomistic state.   In the high temperature flame 

synthesis of Cu-doped TiO2 nanomaterial, the copper dopant creates a higher number of 

defects inside the anatase phase, resulting in a faster formation and growth of a higher 

number of rutile nuclei[36].  At elevated temperatures, the substitution of Ti4+ by Cu2+ 

increases the oxygen vacancy concentration and decreases the free electron 

concentration.  The excess of oxygen vacancies created in the TiO2 crystal lattice is 

responsible for anatase to rutile phase transition [36, 37].  To satisfy the charge imbalance 

due to Ti4+ substitution by Cu2+, restructuring of the neighbouring atoms takes place 

resulting in contraction in c-axis of anatase crystal structure to transform to more 
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compact rutile structure [18].  Nair et al [36] found that a dopant with an oxidation state 

above 4+ will reduce the oxygen vacancy concentration in the titania lattice as an 

interstitial impurity.   Dopants with an oxidation state of 3+ or lower when placed in the 

titania lattice points create a charge-compensating anion vacancy [36] and cause a 

transformation to the rutile phase as also found in this study.  At higher dopant 

concentration (15wt %) amorphous phase was also observed on the surface as well as in 

the bulk.  The TEM and HR-TEM images 1 wt% and 15 wt% Cu-doped TiO2 

nanoparticles ( see Figure 2-3) shows that particles at lower doping concentrations are 

fully crystallized, and the crystal lattice spacing corresponds to the anatase phase of TiO2 

(0.331±.03 nm), where as the particle synthesized at 15 wt% copper concentration shows 

both crystalline and amorphous phases of the material.  The HR-TEM images confirm 

that Cu2+ doping retards the grain growth of TiO2 nanoparticles.  Similar results of 

decreasing crystalline nature of material were observed when Fe2+ and Zn2+ doped TiO2 

were synthesized [3, 20].  In a  similar doping study, Wang et al [20] found that  at higher 

Fe2+/Ti4+ ratios of  0.12, more rutile and amorphous crystal structure was observed, 

consistent with our Cu-doped TiO2 materials.   

    Figure 2-4(b) and Figure 2-4(c) represents the XRD spectra for (101) and (201) 

anatase peaks scanned at a very small steps of 0.004 degree for pristine and doped TiO2 

nanomaterials.  It is important to note that with increasing dopant concentration, 

broadening of the major anatase peaks (101) and (201) was observed, which indicates a 

decrease in crystallite size.  The shift in peak position to the right [8] with increasing 

dopant  concentration indicates that Cu2+ ions replaced some Ti4+ ions along with the 

lattice expansion. The results clearly indicate that addition of dopant alters the crystal  
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Figure 2- 4: (a) XRD spectra of as-prepared Cu-TiO2 nanoparticles with different doing 
concentrations (A-anatase, R-rutile) (b) Comparison of the XRD anatase peaks of Cu-TiO2 
nanoparticles: anatase (101) peaks and (c) anatase (201) peaks (Test-1) 
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phase of the host nanomaterial and the degree of phase transition depends on dopant 

types and their concentrations. 

 

2.4.2.4. Zeta potential and suspension stability 

The dispersion characteristics of nanoparticles in aqueous suspensions influence the fate 

and transport, catalytic reactivity in the environmental system as well as critical in 

understanding for toxicological applications [38, 39].  The stability of the synthesized 

Cu-doped TiO2 nanoparticles was analyzed through the measurement of zeta potential in 

aqueous system using de-ionized water suspension (Figure 2-5) and compared with pure 

TiO2 (Test-1A) and commercial CuO. When metal oxide nanoparticles are dispersed in  

 

 

 

 

 

 

 

 

 

 

  
       

 Figure 2- 5: Zeta potential measurements of Cu-doped TiO2 nanoparticles in water 
suspension. 
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water, the hydration of the nanoparticle surface followed by protonation and 

deprotonation of the surface groups from the oxide surface results in a surface charge.  

The effective surface charge on the particle depends on the isoelectric point (IEP) in the 

suspension [39, 40]. The zeta potential observed for pure  TiO2 particle was +3.4mV in 

the suspension, as the measured pH of the suspension was 5.06, which is less than the 

IEP of the TiO2( pH~6.0) and consistent with other studies [40]. However, for Cu-doped 

TiO2 nanoparticles, the zeta potential value decreased to -3.4mV and -25.6mV at 1 wt% 

(Test-1B) and 15wt% (Test-1F) copper dopant concentration.  The zeta potential 

measured for the commercial CuO was -27.3mV which is close to the zeta potential value 

observed for 15 wt% Cu-TiO2 samples (Test-1F).  The high surface charge on the 15wt% 

Cu-TiO2 indicates better stability of these particles over pristine TiO2 nanoparticles in 

aqueous suspension.  The higher zeta potential value and suspension stability of the 

doped nanoparticles compared to TiO2 is attributed to charge imbalance created due to 

substitution of  Ti4+ atoms by Cu2+ in the TiO2 structure resulting in a more negatively 

charged surface.  Furthermore, zeta potential values for 15 wt% Cu-TiO2 samples being 

similar to pure CuO supports the presence of a copper oxide layer on the outer surface of 

the particles.   

 

2.4.2.4. Light absorption properties 

The absorption spectra of the resulting Cu-doped TiO2 nanomaterials was determined by 

a diffusive reflectance spectroscopy measurement.  The absorption spectrum of Cu-doped 

TiO2 nanomaterials prepared at various dopant concentrations are shown in Figure 2-6.  

With increasing dopant concentration, an increased absorbance in the visible spectrum is  
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Figure 2- 6: (a) Normalized UV-visible absorption spectra measured by diffuse reflectance 
spectroscopy (b) Estimated band gap as a function of doping concentrations (Test-1). 
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observed.  The estimated Eg for pristine TiO2 was 3.31eV which is consistent with the 

reported value for anatase TiO2 [22].  With increasing dopant concentration, the band gap 

energy decreased and was estimated to be 2.51 eV at the highest dopant concentration of  

15 wt%.   This change of ~0.8 eV was due to the incorporation of Cu2+ ions into TiO2 

crystal structure, and CuO forming a layer on the particle surface. From an experimental 

and theoretical study of band structure estimation of metal oxides, The results are 

consistent with findings of Thimsen et al [22] that the band gap energy decreases with 

increasing Fe concentration in anatase based TiO2 materials.   

 Change in the optical absorption is due to the defect centers created by the 

substitution of Ti4+ by Cu2+ atoms in the TiO2 crystal lattice.  Earlier studies indicated that 

doping with aliovalent ions changes the local lattice symmetry and defect characteristics, 

which could change the absorption properties and the material properties. In Cu-

dopedTiO2, when copper ions are either located inside the bulk TiO2 or on the surface 

sites, a rearrangement of the neighbor atoms take place to compensate the charge 

deficiency, resulting in lattice deformation.  The lattice deformation affects the electronic 

structure causing the band gap shift [3].  Furthermore, small amounts of Cu2+ dopant in 

the lattice sites of TiO2 introduce oxygen vacancies due to the charge compensation 

effect [36, 41].  Increasing the copper doping concentration increases the oxygen 

vacancies and probably form a newly doubly occupied oxygen vacancy as discussed in Li 

et al [3].  Therefore absorption of the doped nanomaterial and band gap shift may be 

controlled by surface effects, doping-induced vacancies, and lattice strain.   It can be said 

that the copper modified TiO2 structure extends its absorption to the visible spectrum of 
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sun light (400-700nm) effectively.  Hence, these copper doped materials can be utilized 

for various visible-light photocatalytic applications, which have been demonstrated in 

several other studies [9, 18].  

 

2.4.3. Crystal phase control of Cu-doped TiO2 nanoparticle 

The functionality of the nanomaterials depends on their properties such as particle size, 

crystal phase, morphology, and agglomeration [38, 40].  A recent study by Braydich-

Stolle et al [42] showed that cyto-toxicity in the cells is both size and crystal structure 

dependent.  They demonstrated that mechanism of cell death varied with different crystal 

structure; the anatase phase of TiO2 being more toxic than the rutile phase.  To 

understand the role of crystal phase of the doped nanomaterials on its functionality, it is 

important to independently control the crystal phase without varying the other material 

properties such as size.   Previous studies have demonstrated that crystal phase of the 

TiO2 nanoparticle can be controlled by varying the temperature in the flame (changing 

the methane flow rates) and quenching rate downstream of the flame [25, 26].    A similar 

methodology was adopted to control the crystal phase of the Cu-doped TiO2 materials. 

The dopant concentration was kept constant at 3wt% and methane flow was varied from 

0.8 to 1.8 lpm (Test-2, Figure 2-7(a)).   The anatase phase varied from 39 % to 95%, 

when the methane flow was increased from 0.8 lpm to 1.2 lpm, whereas the primary 

particle sizes for all the cases were similar. The representative TEM micrographs and 

corresponding size distribution of the particles synthesized at 0.8 lpm and 1.8 lpm are 

shown in Figure 2-7(b-c).  The geometric mean size of 31.5 and 32.3 nm were nearly the 

same for the two flow rate conditions.  The size remained similar due to the balance  
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Figure 2-7: (a) XRD spectra at different methane flow rates (A-anatse, R-rutile) and particle 
size distribution at (b) 0.8 lpm (c) 1.2 lpm methane flow rates of as-prepared 3 wt% Cu-
TiO2 nanoparticles (Test-2). 
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between temperature profile and residence time in the flame at different methane flow 

rates. For a fixed flame operating parameters, increasing the methane flow rate increases 

the flame temperature but at the same time reduces the residence time in the flame.  For 

lower methane flow rate the temperature decreases and residence time increases.  It can 

be said that crystal phase of the Cu-doped TiO2 nanoparticles having similar primary 

particle size can be controlled by manipulating the temperature and time history of the 

nanoparticles in the high temperature zone.  These well controlled Cu-doped TiO2 

samples will be of significant importance in biological studies to elucidate the role of 

crystal phases without interferences from the other particle properties such as size. 

 

2.4.4. Effect of annealing on Cu-doped TiO2 nanoparticle properties 

The morphological and structural transformation of the doped nanoparticles plays 

important role in photocatalytic activity by modifying the surface chemistry, crystal and 

electronic structure [43].  Since both amorphous and crystalline phases were observed in 

HR-TEM images at higher dopant concentration, the as prepared Cu-doped TiO2 samples 

were annealed at different temperatures to investigate the effect on crystal structure and 

morphology.  The 1 wt% and 15 wt% Cu-doped TiO2 samples were annealed at 

temperatures of 400oC and 600oC for 6 hours.  No phase transformation was observed at 

400oC.   At 600oC, the transformation from anatase to rutile phase was observed as 

shown in Figure 2-8, which is consistent with other studies [18, 44].  The anatase weight 

fraction decreased from 75% to 21% for the 15 wt% Cu-doped TiO2 sample. However, 

the morphology of the particles changed from spherical to hexagonal structure for 

nanoparticles prepared at both the dopant concentrations.  The crystallite size increased  
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Figure 2- 8: TEM images of annealed Cu-doped TiO2 samples (a) 1 wt% Cu-TiO2 and (b) 
15 wt% Cu-TiO2 (Annealing temperature-600oC, Duration of annealing-4 hours) (Test-3).  

with annealing.  For 15 wt% Cu-doped TiO2 sample, the phase related to CuO was 

observed based on the peaks recorded at Bragg angle of 35.5o and 39o from the XRD 

pattern (Figure 2-8).  The amorphous CuO present in the outer layers were annealed to 

form the crystalline phase in the presence of air.  The HR-TEM images of samples 
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annealed at 600oC are shown in Figure 2-9.  The figure indicates that the annealed 1 wt% 

Cu-doped TiO2 particle was completely crystallized with no discontinuity in the crystal 

fringes as observed from HR-TEM images, similar to the as prepared 1 wt% Cu-doped 

TiO2 particles.  However, for the 15 wt% dopant sample, some amorphous regions were 

still detected as shown in Figure 2-9 (highlighted with the white squares).  More detailed 

investigations are needed to understand the effect of dopant concentration and reaction 

environments on morphology change during post synthesis treatment of the initially 

synthesized spherical particles.  The UV-vis measurements of absorption spectra of 1wt 

% and 15wt% Cu-doped TiO2 annealed samples are shown in Figure 2-10 and compared 

with the commercially available CuO nanoparticles.     
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Annealing of the 15 wt% Cu-TiO2 increased the absorption compared to the as prepared 

samples in the visible spectrum mainly because of enhanced crystalline CuO formation.  

It is clear from the results that post-synthesis annealing can alter the doped TiO2 

nanomaterial properties such as size, crystal structures as well as absorption properties, 

thus influencing eventual functionality and performance. 

 

2.5. Conclusions 

Cu-doped TiO2 nanoparticles were synthesized in a diffusion flame aerosol reactor and 

the properties were readily varied by controlling the processing conditions.   The increase 

in dopant concentration caused the transformation from anatase to rutile phase of TiO2 

due to replacement of Ti4+ by Cu2+ in the crystal structure of TiO2.  A decrease in primary 

particle size was also observed.  The doped nanomaterials exhibited better aqueous 

suspension stability compared to pristine TiO2 due to charge imbalance created.  The 

annealing of the doped samples resulted in the phase segregation and crystallization of 

CuO for the higher dopant concentration samples.    Spectroscopy measurements confirm 

a shift in the absorption to visible frequencies, due to crystal structure modification.   
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Chapter 3:  

In-Situ Charge Characterization of TiO2 and 

Cu-doped TiO2 Nanoparticles in a Flame 

Aerosol Reactor 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results presented here are adopted from a manuscript to be submitted to: 

Sahu, M, J. Park, and P. Biswas, In-Situ Charge Distribution Characterization of TiO2 
and Cu-doped TiO2 Nanoparticles in a Flame Aerosol Reactor, Journal of Nanoparticle 
Research, 2011.  



3.1. Abstract 

Charge distribution characteristics were investigated for nanoparticles synthesized in a 

diffusion flame aerosol reactor.  The nanoparticles considered were pristine TiO2 and Cu-

TiO2, with Cu dopant concentrations ranging from 1 to 5 wt%.  In-situ measurements 

were conducted by integrating a tandem differential mobility analyzer (TDMA) 

experimental setup with the flame aerosol reactor.  A charging model was used to 

identify the important parameters that govern the two charging mechanisms (diffusion 

and thermo-ionization) in the flame and their relative importance at different operating 

parameters.  The results indicate that TiO2 and Cu-TiO2 nanoparticles carry single as well 

as double unit charges.  The charged fraction depends strongly on particle size as well as 

on dopant concentration.  The charged fraction increased with increasing particle size and 

decreased with copper dopant concentration.  Measured charged fractions were similar 

for both the polarities at different mobility diameters.  Based on the flame operating 

parameters, the calculations indicate that diffusion charging is dominant in the flame, 

which is consistent with the experimental results. 

 

Keywords: Nanoparticles, Charge distribution, Flame synthesis, TiO2, Dopant, Cu-TiO2  
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3.2. Introduction 

Application of nanomaterials in various fields requires the development of a low-cost 

synthesis process to produce large quantities of high purity materials.  Flame aerosol 

synthesis is such a promising and scalable method.  This process has been used to 

synthesize nanoparticles with controlled characteristics, such as composition, size, and 

crystal phase (Jiang et al., 2007a; Sahu and Biswas, 2011; Thimsen and Biswas, 2007; 

Tiwari et al., 2008).  To control the physio-chemical properties of nanomaterials in these 

reactors, the process variables manipulated are precursor feed rate, time-temperature 

history, and quenching rate (Jiang et al., 2007a; Sahu and Biswas, 2011).  Vemury and 

Pratsinis (1996) demonstrated that manipulating the charge on particles by employing an 

electrical field can slow the coagulation of particles and reduce particle size. 

Studies reported that during the high temperature synthesis, particles are charged 

by diffusion as well as thermionic charging, by ions generated through the chemi-

ionization process (Burtscher, 1992; Jiang et al., 2007b; Karasev et al., 2004; Kim et al., 

2005; Sorokin and Arnold, 2004; Starik et al., 2008).  Particle charging in flames may 

depend on many factors, such as temperature, structure, particle size, and material 

properties.  For instance, particles synthesized in a premixed reactor are singly charged 

(Jiang, 2008; Sgro et al., 2010), whereas other studies have demonstrated that particles 

synthesized in diffusion flame reactors are singly as well as multiply charged (Ahn et al., 

2001; Kim et al., 2005).  Studies have reported that incorporation of dopant into TiO2 

structure alters the host material properties, such as size, crystal structure, light 

absorption, and dielectric constant (Mardare and Rusu, 2004; Sahu and Biswas, 2011; 

Wang et al., 2001; Xie et al., 2010).  The altered material properties due to dopant 
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addition may lead to different charging behavior during flame synthesis, which has not 

been well understood.  The relevance of the two important charging mechanisms in the 

flame, diffusion and thermo-ionization, has also not been studied in detail.   

The charge on particles can affect growth dynamics during flame synthesis.  It 

may also influence the morphology and aggregate restructuring to form different 

structures (Onischuk et al., 2003).  Apart from influencing the properties, the charge on 

particles affects sampling, transport, and the deposition pattern in nanodevice fabrications 

(Kim et al., 2006; Modesto-Lopez et al., 2010).  The charging behavior of particles has 

been utilized for aerosol instrumentation as well for effective particle capture (Chen et 

al., 1999; Kulkarni et al., 2002).   A study by Sahu and Biswas (2010) found that 

nanoparticles’ exposure potential during flame synthesis varies depending on operating 

scenarios.  The charge on particles significantly affects inhaled particle deposition in the 

lungs (Vincent, 1985).  In summary, there is a need to systematically study the charge 

distributions of flame synthesized nanoparticles and identify the important parameters 

that influence the charging characteristics.  A detailed understanding of charge behavior 

will help to assess the role of charge in fabricating nano-devices, making aerosol 

measurements, and controlling particles in both fundamental and applied nanotechnology 

research.    

Few studies have been conducted to understand the charging behavior.  Ahn et al 

(2001) and Kim et al (2005) measured the charge distribution of SiO2 and soot particles 

in a diffusion flame aerosol reactor.  They reported that particles are singly as well as 

multiply charged.  However, the charge characteristics of TiO2 and doped TiO2 

nanoparticles synthesized in a diffusion flame have not been fully explored.  TiO2 based 
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nanoparticles have wide scale applications in energy, environmental, and other sectors 

(Almquist and Biswas, 2002; An et al., 2010; Asahi et al., 2001; Dhumal et al., 2009).  

Several techniques, such as differential mobility analysis (DMA) as well as tandem 

differential mobility analysis (TDMA) have been used to analyze the charge fraction of 

particles (Jiang, 2008; Kim et al., 2005). 

In this study, in-situ charge distribution characteristics have been investigated for 

industrially relevant TiO2 and Cu-doped TiO2 nanoparticles synthesized in a diffusion 

flame aerosol reactor.  To measure the charge distribution, a TDMA measurement system 

was integrated with the flame reactor.  The effect of copper dopant concentration on 

nanoparticle charged fraction was investigated.  Key parameters that govern the two 

charging mechanisms and calculation to illustrate the relative importance of each 

charging mechanisms at different flame operating conditions were identified and was 

determined in the flame.  

 

3.3. Materials and Methods 

3.3.1. Nanoparticle Synthesis  

A schematic diagram of the experimental system used is shown in Figure 3-1.   The 

system consisted of a diffusion flame reactor for nanoparticle synthesis integrated with a 

tandem differential mobility analyzer (TDMA) setup for in-situ charge characterization.  

The design details and description of the diffusion burner used for TiO2 and Cu-doped 

TiO2 synthesis are discussed in Sahu and Biswas (2011) and Jiang et al (2007a).  Oxygen 

and methane were used to obtain the flame, and the flow rates were maintained at 



 

  
    

Figure 3- 1: Flame Aerosol synthesis syntem and tandem differential analyzer (TDMA) setup for charge distribution 
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1.8 lpm and 8 lpm.  Titanium tetra-isopropoxide (TTIP, 97%, Aldrich) was the precursor 

for titanium dioxide and copper nitrate was the precursor for the copper dopant.  The 

TTIP feed rate was maintained by passing 2 lpm of N2 through a bubbler placed in an oil 

bath kept at 98oC.   Copper nitrate was dissolved in DI water, atomized by a stainless 

steel nebulizer, and was introduced to the high temperature flame in the form of fine 

droplets.  Dopant concentration was varied from 1 to 5 wt% by changing the copper 

nitrate concentration in the aqueous solution.  The dopant concentration was estimated 

based on the precursor feed rates to the flame.  An air flow of 25 lpm was introduced 

through the quenching ring, which was fixed at a height of 10 cm. More detailed 

information on Cu-doped TiO2 nanoparticle synthesis, including formation, growth, and 

characteristics, can be found in Sahu and Biswas (2011).   

 

3.3.2. Charge Distribution Measurement  

A schematic diagram of the TDMA setup integrated with the nanoparticle synthesis 

system is shown in Figure 3-1.   The system consisted of two differential mobility 

analyzers (DMA) in series and a condensation particle counter (CPC) downstream to 

count the particles.  Total particle concentrations were measured by a condensation 

particle counter (CPC) (TSI model 3022a).  Size distributions were measured by a 

scanning mobility particle sizer (SMPS) (TSI Model 3080) coupled with a CPC (TSI 

model 3076).  The system was operated at 6 lpm sheath flow and 0.3 lpm aerosol inlet 

flow.  In the TDMA system, to classify particles of equivalent mobility, the central 

electrode of DMA-1 was operated at a fixed voltage.  Then the particles classified by 

DMA-1 were passed through the neutralizer, which had a bi-polar radioactive ionizing 
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source. The particles were subsequently passed through DMA-2 and CPC, and scanned 

over different voltage ranges to give the particle size distributions.  To remove the 

charged particles, a charged particle remover (CPR), operated at -2kV was placed in line 

before particles entered the DMA system.   Nanoparticles were sampled through a 

sampling tube and diluted prior to measurements. 

3.3.3. Experimental Plan 

The experiments performed are listed in Table 3-1.  First, the total particle concentration 

was measured using only the CPC, bypassing the DMA.  Then the CPR was operated (-2 

kV) to capture all the nascent charged particles.  Based on the particle concentrations 

measured, the charged particle fractions were calculated (Test-1).  

 

 

 

 

 

 

 

 

 

 

 

 

Table 3- 1: Experimental test plan 

Test 
# 

Objective System used/Procedure 
description 

Parameters 
measured/ 
Experimental 
technique 

1    Study the overall charged 
fraction of particles in the 
flame  

FLAR 
Particle 
concentration, 
size 
distribution, 
DMA, CPC 

TTIP/N2-2 lpm  
CH4-1.8 lpm 

2  O2
CuNO3/N2

-8 lpm  
 =2.3 lpm 

 
Dopant Concentration 
(wt%): 

Examine the charged 
particle fraction 
corresponding to different 
sizes 

3  
 
0 (TiO2) 
1 

Examine the fraction of 
single as well multiple 
charges corresponding to 
different sizes 

Particle 
concentration, 
Size 
distribution, 
TDMA, CPC 

 

3 
5 

Abbreviations: FLAR: flame aerosol reactor; lpm: liter per minute; TTIP: Titanium tetra-isopropoxide;  
DMA: Differential mobility analyzer; CPC: Condensation particle counter; TDMA: Tandem differential  
mobility analyzer.  All the particles were synthesized in a diffusion flame aerosol reactor 
 (Jiang et al., 2007a; Sahu and Biswas, 2011; Tiwari et al., 2008). 
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 The same experiment (Test-1) was repeated by passing the particles through the 

DMA followed by a CPC.  The total particles sampled from the flame were passed 

through the neutralizer before entering the DMA and classified according to their 

electrical mobility to obtain the size distributions.  Then the CPR was employed before 

the neutralizer to capture all charged particles.  The uncharged particles were then passed 

through the neutralizer and subsequently through the DMA and CPC to measure the size 

distributions.  The charged particle fraction as a function of mobility diameter was 

calculated.  For a specific mobility diameter, the particle concentration with the CPR was 

compared to the concentration without the CPR before the DMA (Test-2).  This ratio was 

then subtracted from 1 to obtain the charged particle fractions. 

  The TDMA system was employed to determine the fraction of singly as well as 

multiply charged particles (Test-3).  To measure the fraction of positively charged 

particles, synthesized particles of both polarities were introduced into the DMA-1.  Since 

the DMA-1 central electrode was operated at negative voltages, positively charged 

particles of equivalent mobility were classified at a fixed voltage.  The classified particles 

having equivalent electrical mobility were a mixture of smaller sizes carrying single 

charges as well as larger sizes carrying multiple charges.  Then the particles were 

irradiated with bipolar radioactive ions in the neutralizer to bring them into a steady 

charge distribution (where most of the particles carry either a single positive or negative 

charge or a zero charge).  These particles were then passed through DMA-2 and CPC to 

measure the size distributions.  Particles that were initially multiply charged were 

reduced to a single charge and classified in DMA-2.   From the measured size distribution 

in DMA-2, the fraction of particles with a single positive charge was calculated by taking 
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the ratio of particle concentrations at that particular mobility with respect to the total 

concentration of particles measured at that mobility diameter in Test 2.   

For determining the doubly charged particle fractions, the voltage on the DMA-1 

central electrode was changed to select an electrical mobility corresponding to a doubly 

charged particle having same diameter.  Then the particles were passed through the 

neutralizer and scanned through different voltages in DMA-2 to measure the size 

distributions.  The concentration of doubly charged particles with that mobility diameter 

and fraction was evaluated as in the previous calculation.  To determine the double 

charged fraction as a function of mobility diameter, the same experiments were repeated 

for different mobility diameters.  

For determining the negatively charged particles, the voltage of the DMA-

1central electrode was switched to positive, and negatively charged particle fractions 

were obtained in the manner already described.  To determine the effect of doping on 

charged fractions, charge distribution was measured for both TiO2 and Cu-doped TiO2 

particles (Test-4). 

3.4. Results and Discussion 

The charge distribution measurements of the particles are presented first, followed by a 

discussion of the importance of the two charging mechanisms at different flame operating 

parameters. 

3.4.1. Charge Distribution and Effect of Dopant  

The total charged fraction by number of TiO2 particles was (50±5) % (Test-1).  A 

decreased charged fraction was observed with increasing copper dopant concentrations.  
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The size distributions of nanoparticles obtained for TiO2 and Cu-doped TiO2 are shown 

in Figure 3-2.  The size distributions were similar for all the cases, with a geometric mean 

particle size of approximately ~ 43 nm.  Similar size distributions were observed for all 

the cases because the dopant concentration was not high enough to cause much variation.  

However, with high dopant concentration (>10 wt%) the primary particle size was 

altered, and this may lead to changes in particle size distributions (Sahu and Biswas, 

2011; Wang et al., 2001).  The size distributions of uncharged particles are shown in 

Figure 3-2 (Test-2). The results indicate that charged particle fraction increased from 

21% at 20 nm mobility diameter to 79% at 75 nm mobility diameter for pristine TiO2.  

The same increased charged fraction was observed for Cu-TiO2 particles with increasing 

size.  However, the charged particle fractions of Cu-doped TiO2 were lower than for 

pristine TiO2.  The increase in charged particle fraction with increasing size is mainly 

attributed to the higher surface area available for the ions and electrons to attach.  This 

result is consistent with our theoretical calculations that the attachment co-efficient 

increased with increased particle size, and is also consistent with other studies (Jiang et 

al., 2007b; Kim et al., 2006).  

 To investigate the singly as well as multiply charged particle fractions, a TDMA 

experiment was conducted at different electrical mobility diameters as described earlier 

(Test-3).  The TDMA measurement for 1 wt% Cu-TiO2 is shown in Figure S-1.  The 

mobility diameters selected in DMA-1 were 25 nm, 40 nm, 60 nm, and 75 nm.  The 

results shown in Figure S-1 indicate that particles passing through DMA-1 and having  
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Figure 3- 2: (A) Size distributions of the total and uncharged particles from the flame (B) 
Fraction of charged TiO2 and Cu-doped TiO2 nanoparticles as a function of mobility diameter 
(Test-2). 
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same electrical mobility were classified as particles carrying a single unit of charge in the 

second DMA after effective neutralization.  For instance, when the selected electrical 

mobility was fixed corresponding to a 40 nm particle size carrying +1 unit of charge 

(1.45E-07 m2/volt.sec), both 40 nm particles carrying +1 unit of charge and 58 nm 

particles carrying +2 units of charge were separated in DMA-1 as their electrical 

nobilities were the same.  After passing these particles through the neutralizer, most of 

the particles were classified in DMA-2 as having only a single unit of charge.   The 

results shown in Figure S-2 confirm that particles synthesized from a diffusion flame 

carry single as well as multiple charges.  

 The fractions of +1 and +2 charges corresponding to different mobility diameters 

are shown in Figure 3-3.  As shown in Figure3-3, the charging fraction of +1 as well as 

+2 charges increased with increasing mobility diameter.  However, the fractions of +2 

charges were relatively less compared to the fraction of +1 charges, which is consistent 

with reported studies for other materials (Ahn et al., 2001; Kim et al., 2005).  The 

attachment co-efficient of ions leading to  particles carrying +1 charges is higher than for  

particles carrying multiple charges, which verifies that most of the particles will likely be 

singly charged in the flame.  The results indicate that Cu-TiO2 particle fractions carrying 

both +1 and+2 charges were comparatively less than for TiO2 and decreased with 

increasing dopant concentration. The change in charge fraction is attributed to the 

dielectric constant change of the TiO2 nanoparticles by the incorporation of the copper 

dopant into TiO2 structure.  The dielectric properties strongly depend on the state of the  
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 Figure 3- 3: Fraction of elementary charges carried by TiO2 and Cu-doped   TiO2 
nanoparticles for different mobility diameters (A) 25 nm (B) 40 nm (C) 60 nm (Test-2-
3).   

  

atoms in the crystal structure, as well as on crystal defects (Jian-Bo and Xiao-Peng, 

2001).   Sahu and Biswas (2011) demonstrated that with the addition of copper dopant to  

TiO2, the defects generated promoted anatase to rutile crystal phase transition.  They also 

observed distortion in the crystal structure, which shifted the diffraction peak of TiO2.  

Mardare and Rusu (2004) and Xie et al (2010) demonstrated that doping increases the 

dielectric constant of TiO2, due to structural differences.  In the study reported here, the 

dielectric constant of Cu-TiO2 particles most likely increased with increasing dopant 

concentration, which resulted in increasing bipolar coagulation that reduced the charged 

fraction.  Bi-polar coagulation in a high temperature flame can be understood by 
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understanding its characteristic time, given by (Eliasson and Egli, 1991; Kim et al., 

2006), 
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where kij is the collision co-efficient, E is the electric field strength of a particle, ri and rj 

are particle radii, and εr is the relative dielectric constant.  The equation indicates that 

increasing dielectric constant ( ) enhances the bipolar coagulation rate by reducing .  

Therefore the increased dielectric constant due to copper doping may have reduced the 

charged particle fraction.  The reduction in the charged fraction can be attributed to 

neutralization of particles as a result of both ion/electron impact and bipolar coagulation 

mechanisms.  However, a more detailed understanding of the dielectric constant change 

with copper dopant is essential for a more quantitative explanation of the increasing 

bipolar collision rate, which is beyond the scope of this study. 

rε cτ

 The same experiments were repeated for determining the negatively charged 

particle fraction by changing the central electrode potential of DMA-1 to positive.  The 

measured negatively charged -1 and -2 fractions are shown in Figure 3-3.  The fraction of 

negatively charged particles increases with increasing particle diameter, and fewer 

particles carry -2 charges than -1 charge.  This charging behavior is similar to that of 

positively charged particles.  Comparing the fraction of positively charged and negatively 

charged particles, no significant difference is observed.  However, in both the cases a 
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decreased charged fraction was observed for Cu-doped TiO2 nanoparticles, which was 

attributed to the increased dielectric constant of the copper doped nanoparticles. 

The results indicate that diffusion flame synthesized nanoparticles may carry 

single as well as multiple charges, and the fraction of charges can vary depending on the 

material properties and other operating parameters in the flame, such as temperature and 

concentration of ions.  

3.4.2. Charging Parameters and Identification of Charging Mechanism 

Nanoparticles in a high temperature flame can be charged by both diffusion charging and 

thermo-ionization charging (Jiang et al., 2007b; Kim et al., 2005; Sorokin and Arnold, 

2004; Starik et al., 2008).  In diffusion charging, particles are charged by Brownian 

collision with the positive as well as negative ions generated in the lower part of the 

flame. Charging depends on the number concentration of ions ( ) and the probability 

that ions attach to the particle, represented as the ion attachment coefficient,  

The attachment co-efficient of ions to the particle with a volume v and charge q 

is given by (Jiang et al., 2007b) 
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where is the potential energy at distance r from the particle with radius a, v is the 

particle volume, q is the number of charges carried by the particle, are the thermal 

velocities of positive and negative ions, are the diffusion coefficients of positive and 
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negative ions, kB is Boltzmann’s constant, T is the temperature of the system, and y is a 

dimensionless integration variable ranging from 0 to δ/a . δ  is the limiting sphere radius 

and is given by (Fuchs, 1963; Jiang et al., 2007b; Liu and Pui, 1977) 

 

          (6) 

 

Thermo-ionization charging depends on thermal radiation and the work function 

of the material synthesized in the flame.  When thermal radiation exceeds the work 

function of a material, electrons are emitted, a phenomena which strongly depends on 

material properties as well as temperature.  The thermo-ionization yield co-efficient, 

based on the flow of electrons from the heated surface, is given by the Richardson and 

Dushman equation (Dushman, 1923) for a particle of volume v, carrying a charge q, as 

        (7) 

 

where ),( qvφ is the work function of the material, T is the temperature, A is a material 

dependent constant, and a is the particle diameter. The work function that must be 

overcome for an electron to escape is given by, 

         (8) 

where ∞φ is the work function for the plane surface of the material. 

The relative importance of the two charging mechanisms can be examined by two 
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ionization yield coefficients for different ion concentrations ( )at different ±
ionN

,)1
3

)1)()1
5

)1(
)(

a 325

2 ⎥
⎦⎣

++
+

= ±
±±±

± ion
ionionion

ionλ
δ )/((2//((/ 2

53 ⎤
⎢
⎡

+
+

−
+

a
aaa

λ
λλλ

1
15

,4),( exp),(
2

2

e
a

Tk
qvATqv

B

πφγ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=+

,
48

5
4

)1(),(
0

2

0

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
+= ∞ a

e
a

qeqv
πεπε

φφ

69 
 



temperatures. Using the parameters for TiO2 nanoparticles listed in Table 3-2, the 

attachment co-efficient and the thermo-ionization yield co-efficient were calculated. 

       

  Table 3- 2: Parameters used for modeling 

 

 

 

 

 

 

 

 

 

  
Parameters Values 

 
Temperature (T) 2000 K 

1.602×10-19 C Elementary Charge (e) 

Permittivity of air (ε0) 8.854×10-12 C2/N/m2 

1.1×10-12 m2/V/s Positive ion mobility ( ) ±
ionZ

150 amu ( 1amu=1.661×10-27 kg) Positive ion mass ( ) ±
ionm

Dielectric constant for TiO2 (εp) 88 

6.7 eV (8.20×10-19 J) Work function for TiO2 (Φp) 

120 amp/cm2deg2 Empirical constant (A) 

 

Figure 3-4 illustrates the variation of both coefficients with particle diameter.  For 

diffusion charging, the attachment coefficient increases with particle diameter as more 

surface area is available for the attachment of ions.  Particles less than 10 nm in size 

cannot be multiply charged by diffusion charging, as the attachment co-efficient of 

particles carrying multiple charges is zero.  Particles smaller than 7 nm will not carry any 

charge, as the attachment coefficient is zero. Experimental charge measurements also 

confirmed that particles less than 7 nm carry no charge. Due to the electrostatic repulsive 

force between particles and ions, the attachment co-efficient  decreases with particles 

carrying +1 and +2 charges compared to particles carrying zero charge, which is 

consistent with the reported values (Jiang et al., 2007b). Figure 3-4 (B) illustrates the 

70 
 



thermo-ionic yield coefficient variation with particle size at a temperature of 2200 K, 

which is the usual temperature in our flame system.  As shown particles smaller than 20 

nm cannot be charged by thermo-ionization in the flame, whereas particles smaller than 

 

 

 
       

      
  

Figure 3- 4: (A) Diffusion charging co-efficient and (B) Thermionic yield 
co- efficient as function of particle size 
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25 nm cannot be multiply charged.  However, the yield coefficient increases 

monotonically with size.  It is important to note that the yield coefficient is strongly 

dependent on the work function of the material and the thermo-ionization constant, which 

was assumed to have a value of 120 amp/cm2deg2 (Dushman, 1923).  A few studies have 

reported that these parameters may change for different materials (Hensley, 1961; Koeck 

et al., 2009).  Dushman (1923) value was used for the calculation in this study as no 

values are available for TiO2 nanomaterials in the literature. 

The relative importance of the two chargin mechanisms (diffusion and thermo-

ionization) was determined by the dimensionless ratio of both parameters (the ion 

attachment co-efficient and thermo-ionic yield coefficient) at different flame operating 

conditions.  The concentration of positive ions considered in this analysis was 1012 

ions/cm3, the range of ion concentration in a flame (Kim et al., 2005).  The thermo-

ionization yield co-efficient was calculated for a range of temperatures (1700 to 2500 K).  

The dimensionless ratio is illustrated in Figure 3-5 for different particle sizes.  The results 

indicate that above 2500 K thermo-ionization charging is dominant for particle sizes 

above 10 nm.  However, below 10 nm, particles are charged only by diffusion charging, 

as the thermo-ionization yield co-efficient is zero in this size range.  For temperatures 

below 2500 K, diffusion charging is the dominant mechanism.  The experimental results 

suggest that the fractions of positive and negative charged particles are similar, which is 

consistent with our calculation.  The result suggests that by controlling the important 
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process parameters (temperatures, ion concentrations) the charging mechanism can be 

manipulated. 
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Figure 3-5: Identification of dominant regimes for diffusion charging and thermionic 

charging in the flame synthesis of nanoparticles (Region above the dotted line is  diffusion 

charging dominant, below it is thermionic charging dominant). 

 3.5. Conclusions 

In-situ charge distribution for TiO2 and Cu-doped TiO2 nanoparticles was measured using 

a TDMA system integrated with a flame synthesis system.  The results indicate that 

particles synthesized by a diffusion flame reactor carry single as well as multiple charges. 

The charge distribution depends on the mobility diameter and material properties: Cu-
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doped TiO2 had a smaller charged fraction than TiO2 particles.  Fractions of positive as 

well as negatively charged particles were similar, suggesting that diffusion charging is 

the dominant mechanism in the diffusion flame reactor. A theoretical calculation based 

on the attachment co-efficient of ions to particles and on the thermo-ionization yield co-

efficient suggests that particles smaller than 10 nm are mostly charged by diffusion 

charging. The thermo-ionization mechanism is dominant for flame temperatures over 

2500 K.  In our flame reactor (~2200 K) for synthesis of TiO2 and Cu-TiO2, diffusion is 

the dominant charging process.  This detailed understanding of the charging behavior 

during synthesis can be helpful for effective sampling and capture, and can help in 

controlling material properties during the synthesis process. 
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 3.7. Supporting Information 

       
   

Figure S-1. Conceptual description of charge distribution characterization by TDMA size distribution measurement 
(Modified  from Kim et al., 2005) 
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Figure S-2. Size distribution measurement from the flame aerosol reactor by 

TDMA at different mobility diameters (A) 25 nm (B) 40 nm (C) 60 nm (Test-2-3). 
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Chapter 4:  

Size Distributions of Aerosols in an Indoor 

Environment with Engineered Nanoparticle 

Synthesis Reactors Operating Under 

Different Scenarios 
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4.1. Abstract 

Size distributions of nanoparticles in the vicinity of synthesis reactors will provide 

guidelines for safe operation and protection of workers.  Nanoparticle concentrations and 

size distributions were measured in a research academic laboratory environment with two 

different types of gas phase synthesis reactors under a variety of operating conditions.  

The variation of total particle number concentration and size distributions on the distance 

from the reactor, off design state of the fume hood, powder handling during recovery and 

maintenance of reactors are established.  Significant increases in number concentrations 

were observed at all the locations during off design conditions (i.e. failure of the exhaust 

system).  Clearance of nanoparticles from the work environment was longer under off 

design conditions (20 minutes) compared to that under normal hood operating conditions 

(4 to 6 minutes).  While lower particle number concentrations are observed during 

operation of furnace aerosol reactors in comparison to flame aerosol reactors, the 

handling, processing and maintenance operations result in elevated concentrations in the 

work area. 

 

Key words: Nanoparticles, exposure, gas phase synthesis, size distribution, particle 

concentration 
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4.2. Introduction 

Engineered nanoparticles are building blocks for nanotechnology applications and are 

finding use in a variety of sectors such as electronics, medicine, energy, environment and 

many consumer products.  Production of engineered nanomaterials with controlled sizes 

and structures are expected to increase due to their wide scale applicability ( Maynard 

and Kuempel 2005).  A recent database of nanotechnology products maintained by the 

Woodrow Wilson International Center for Scholars established that there are more than 

600 consumer products that have nanomaterial constituents (Clarence 2008).  Hence, 

there is significant interest in ensuring that nanomaterials are safe, and do not have any 

adverse consequences to the environment and human health (DOE 2007; NIOSH 2002; 

2007).  Many studies to establish the toxicity of nanoparticles are being conducted 

(Limbach et al., 2007; Nel et al., 2006; Oberdorster et al., 2005; Sayes et al., 2007, Jiang 

et al., 2008).  For exposure measurement biologically relevant dose metrics such as 

number concentration, mass concentration, and surface area concentration should be 

considered for personal exposure to workers (Jiang, et al. 2008).   To holistically ensure 

the environmental health and safety of nanomaterials, several steps as illustrated in 

Figure 4-1 have to be evaluated.  The issue of safe nanotechnology requires a very 

comprehensive study ranging from exposure assessment, determination of metrics, 

toxicological and epidemiological studies, and life cycle analysis.  

As outlined in Figure 4-1, exposure to nanoparticles can occur in a variety of 

different steps in the life cycle.  An important aspect is the assessment of potential 

exposure to nanoparticles in the occupational environment where they are produced, and 

the adoption of control technologies and risk management practices.  Unlike other  
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                       Figure 4- 1: Exposure pathway to naoparticles during the product lifecycle 

occupational environments, only a limited set of guidelines have been proposed and are 

available (e.g., NIOSH 2007).  While there have been several studies to examine 

workplace aerosol concentrations in welding and other high temperature operations 

(Biswas and Wu 2005; Iyiegbuniwe et al., 2007; Lee et al., 2007; Vincent and Clement 

2000), very limited information is available in workplaces where engineered 

nanomaterials are synthesized, especially of any potential risks to health which might 

arise during their manufacture, use and disposal.  Maynard et al. (2004) investigated the 

exposure and nature of aerosols in a laboratory and a field study during handling of 

unrefined single walled carbon nanotube (SWCNT) material.  In their laboratory study  
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they found that fine particles were released into the environment when agitated, whereas 

in the field study airborne particle concentrations observed were not high.  Tsai et al. 

(2009) studied the airborne exposure associated with the manual handling of 

nanoalumina and nanosilver in different fume hoods.  Their study showed that the extent 

of exposure to nanoparticles during manual handling of nanomaterials depended on the 

quantity, type, handling methods and the different conditions in the fume hood.  In 

another study Tsai et al. (2008) also studied the exposure during production of 

nanocomposites by compounding of the nanoparticles and polymer in a twin screw 

extruder.  They demonstrated that quantity of nanoparticles release into air depends on 

the loading condition of the alumina and the polymer in the feeding system and the 

phases of operation of the twin screw feeder during the compounding process.  The 

NIOSH guidelines report indicates that the development of a well designed exposure 

assessment study is needed for better understanding of the health effects caused due to 

exposure to nanoparticles, and to determine cost effective control measures to reduce 

exposure and improving baseline data for occupational settings.  

Due to the continued development of new nanomaterials with different 

functionalities, these materials are being synthesized in a number of smaller scale 

research laboratories or small businesses, in lower volume production amounts compared 

to the large powder manufacturing industry.  Academic research laboratories are an ideal 

first step to conduct evaluation studies as much of the early work producing nanoparticles 

is done therein.  Changes in operating scenarios in academic laboratories under controlled 

conditions could also be readily done to evaluate the impacts on exposure.  There are a 

few reports of laboratory studies on potential exposure on handling of nanomaterials 
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(Tsai et al., 2009; Maynard et al., 2004) and fewer on resulting size distributions during 

synthesis (Park et al., 2009; Demou et al., 2008) .  A careful examination of the 

distribution of nanoparticle aerosols in the vicinity of gas-phase particle synthesis 

reactors has not been conducted.  The Flame Aerosol Reactor (FLAR) and Furnace 

Aerosol Reactor (FUAR) are two commonly used aerosol synthesis methods for 

nanomaterials (Basak et al., 2007; Namiki et al., 2005, Jiang et al., 2007; Thimsen and 

Biswas 2007).    In this paper, the results of a study of nanoparticle concentrations and 

size distributions under different scenarios in an academic research laboratory where 

multiple synthesis reactors are operational are reported.  The emphasis is on the use of 

gas phase reactors, as they are scalable processes that are commonly used in industry.  

The size distributions and total concentrations of nanoparticles in the laboratory working 

environment measured by real time aerosol instruments under different operating 

scenarios of synthesis, product handling, recovery and maintenance are reported.  

Different scenarios to mimic potential off design operating conditions of the fume hoods 

were considered to establish the exposure levels.  The morphology and chemical 

composition of the collected aerosols during synthesis are also presented. 

 

4.3. Experimental 

An academic research laboratory with several gas phase nanoparticle synthesis reactors 

was selected for this study.  While the reactors are all placed in hoods and extreme 

precautionary principles are adopted, the setting offers a test site for study and evaluation, 

especially under off-design conditions.  
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4.3.1. Test Site 

Two gas phase synthesis processes for nanomaterials, a FLAR and FUAR were examined 

in this study in a typical research laboratory environment.  These reactors are located in a 

120 m2 (12 m ×10 m) research laboratory, with three laboratory fume hoods of dimension 

1.5m L × 0.9m W × 2.28m H with hood face velocity of 0.5 m/sec.  The layout of the 

laboratory test site with the gas phase reactors is shown in the Figure 4-2 (A).  Such an 

environment is reflective of a small business with reactors that are used for production of 

nanomaterials during initial phases of development.  The description of the two gas phase 

synthesis processes and characterization techniques of the particles are described in detail 

in the following sections. 

4.3.2. Gas Phase Reactors  

High temperature processes are used in gas phase reactors wherein precursors are 

oxidized to produce the desired product vapor, followed by their nucleation to form 

nanoparticles. The nanoparticles further grow by simultaneous condensation and 

coagulation mechanisms 

4.3.2.1. Flame aerosol reactor (FLAR) synthesis process 

In the flame synthesis process, nanoparticles are generated by high temperature 

decomposition of precursors.  In this study, the FLAR system was used to produce 

nanoparticles and deposit them to create nanostructured films for different solar energy 

applications (Thimsen and Biswas 2007).   Titanium tetra-isopropoxide (TTIP, Aldrich, 

97% purity) was used as the precursor for the production of the nanoparticles in a 

methane-oxygen flame by thermal oxidation.  The temperature of the bubbler was 
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maintained at 37 o C.  The methane flow rate was 0.9 lpm (liters per minute at STP) and 

the oxygen flow rate was fixed at 2.7 lpm; with a resultant flame temperature of 2200 0C.  

The FLAR was operated at two different feed rates of the TTIP precursor, keeping all 

other parameters constant though out the operation.  

 

4.3.2.2. Furnace aerosol reactor (FUAR) synthesis process  

Titanium dioxide nanoparticles to be used for environmental applications were produced 

by thermal oxidation of TTIP precursor in the furnace aerosol reactor (Namiki et al., 

2005) .  The precursor vapor was carried by N2 gas into the FUAR and was decomposed 

at different temperatures (500-1200 o C) to obtain the desired characteristics of particles.  

The exhaust gases from the reactor were cooled to room temperature and an electrostatic 

precipitator (ESP) operated at + 10 kV was used to collect the synthesized particles.  

Additional details of the experimental setup and the synthesis process is given in Namiki 

et al. (2005) and Basak et al. (2007). 

 

4.3.3. Particle measurement and characterization  

Total particle concentrations were measured by Condensation Particle Counters (CPC) 

(TSI model 3022a and 3025).  Size distributions were measured by two Scanning 

Mobility Particle Sizer (SMPS) systems consisting of an electrostatic classifier (TSI 

Model 3080) with a differential mobility analyzer (LDMA; TSI 3081) coupled with 

condensation particle counters (TSI model 3022a and 3025).  The system was operated at 

6 lpm of sheath flow rate and 0.3 lpm of aerosol inlet flow rate.  
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Particles were collected on electron microscope grids using a vacuum pump (100 

lpm capacity) during the synthesis process in the FLAR inside the hood under the same 

operating conditions that were used for the particle concentration and size distribution 

characterization. The collected particles were analyzed by Scanning Electron Microscopy 

(SEM, Model Hitachi S4500) coupled with energy dispersive X-ray (EDX) for size, 

shape, morphology and elemental composition. 

4.3.4. Test plan 

The total particle number concentrations and size distributions were independently 

measured in the laboratory environment under different operating scenarios (reactor type, 

distance from reactor, hood fan ON and OFF, hood door OPEN and CLOSED, precursor 

feed rates). The experimental plan and test conditions are summarized in Table 4-1.    

Table 4-1: Summary of test plan for the study 

 
 
 
 
 
 

 

 

 

 

 

 

Reactor Measurement Location Operating Conditions Test 
# Hood 

Fan 
Hood 
Door 

Precursor 
Feed Rate 

ON OPEN Normal 1 FLAR L1, L2, L3  (Figure 2) 
  Low 

L1- Inside the hood ON CLOSED Normal 2 
L2- Breathing zone  
L3- 2m away from the hood OFF OPEN Normal 3 

 
OFF OPEN Normal 4 L2 (at various times upto 30 

min; followed by turning fan 
ON to determine clearance 
time) 
 

Maintenance/ setup of the rector,  
product recovery  and handling 

5 FUAR P1, P2, P3 (Figure 2) 
 
P1-Precursor feed location 
P2- Middle of the reactor 
P3-ESP location 
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Test 1 establishes the  influence of distance (L1: inside the hood at 0.6 m from the flame 

and 0.3 m height from base of fume hood; L2: breathing zone; just outside the hood near 

the mouth and nostrils of a typical worker at a height where most likely inhalation 

exposure would occur; and L3: outside the hood at a distance of 2 m away from the flame 

and 1 m height from the floor of the laboratory; see Figure 4-2) from the nanoparticle 

source  on concentration and size distribution characteristics, for a normal operating 

condition (Hood fan ON, Hood Door OPEN).   The measurements are taken for two 

different precursor feed rates (normal – 2 lpm flow rate through bubbler; low – 0.3 lpm 

flow rate through bubbler), reflecting different nanoparticle production rates.  Test 2 is 

similar to Test 1, except that the hood door is in the CLOSED position.  Test 3 represents 

an off design condition (hood fan OFF - turned off inadvertently or due to a failure), and 

measurements are conducted at the three locations for a normal feed rate condition.  Test 

4 represents a temporal variation of the size distribution characteristics at the breathing 

zone (location L2).  Also, reported are estimations of clearance time representative of 

time required for concentrations to return to background levels.  

 There maybe potential risks of exposure during handling of synthesized 

nanoparticles during recovery and processing or packing, and maintenance or cleaning of 

the gas phase reactors.  Product recovery involves mechanical removal of particles from 

collecting substrates.  The level of exposure to nanoparticles during reactor 
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 Figure 4- 2: Illustration of the sampling site and sampling locations for the gas phase reactors in the 

research laboratory with FLAR and FUAR, (B) Photographs of the synthesis system with sampling 

locations FLAR (Left) and FUAR (Right) (The third sampling location is 2m away from the hood in 

FLAR system and is not shown) 
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maintenance/setup, product handling and recovery were measured (Test 5).  Background 

measurements were taken before the start of the synthesis process and other operations to 

determine the nanoparticle concentration level in the laboratory under normal conditions.  

 

4.4. Results and Discussion 

The measurement results during the synthesis process in both the reactors for different 

operational conditions are discussed first followed by maintenance/setup and product 

handling and recovery.  

4.4.1. Particle concentration and size distribution during FLAR synthesis 

4.4.1.1. FLAR system with hood operational 

The nanoparticle size distributions during the synthesis process at different distances 

from the source of generation with the hood fan ON and door open condition (Test 1, 

Table 4-1) is shown in Figure 4-3.  The total number concentration of the particles at L1 

inside the hood was 4.03×105 particles cm-3 with a mean size of 32 nm; whereas the 

background concentration was 3.33×103 particles cm-3 with mean size of 48 nm.  The 

concentration at the breathing zone (L2) was 1.06×104 particles cm-3 with a mean size of 

30.8 nm.  The operational hood (fan ON) is effective in reducing the concentration at the 

breathing zone even though the hood door is OPEN.  However, the mean size is closer to 

that measured near the flame reactor and the number concentration is slightly higher than 

the background; indicating that a few particles are being transported from the flame 

reactor to near the breathing zone.  Tsai et al. (2009) have showed that a complicated 

turbulent flow pattern exists around the bottom edge of the sash door sill where 
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contamination leakage is highest in a conventional hood.  It is evident that nanoparticle 

release from the hood must be dependent on the vertical eddy, external cross draft, 

position of the sash and worker activities.  The concentration observed at 2 m away from  
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Figure 4- 3: Particle size distributions measured at different distances from the flame in a 
FLAR system for hood fan ON with door OPEN conditions (Test-1): -Background, -Inside 
the hood (L1), -Breathing zone (L2),  -2m away(L3) (Also shown is the size distribution 
inside the hood (L1) for a lower precursor feed rate:   - 0.3 lpm flow rate through the bubbler). 

the synthesis zone (location L3) was 6.77×103 particles cm-3 with a mean size of ~54 nm 

(closer to background values). The change in concentration and mean size with distance 

away from the synthesis zone is due to growth by coagulation and dilution due to the 
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complex flow patterns.   The observed result is consistent with those observed by Lee et 

al. (2007) in a welding aerosol study that the concentration decreases away from the zone 

of production with an increase in mean size. Also shown in Figure 4-3 is the size 

distribution inside the hood (location L1) for a lower precursor feed rate (flow rate 

through the precursor bubbler of 0.3 lpm, compared to a baseline value of 2 lpm) keeping 

all other operating conditions in the reactor the same.  As expected, the lower precursor 

feed rate resulted in a lower total particle concentration in the hood.  The mean size was 

lower due to the reduced growth rates (due to lower number concentrations) by 

collisional mechanisms. 

Size distribution measurements were also done with the hood door CLOSED 

(Test 2), with other conditions similar as Test 1.  The results at location L1 inside the 

hood were identical to the Test 1 conditions with the hood door OPEN.  However, the 

measurements in the breathing zone (L2) and 2m away (L3) were identical to background 

values, indicating the hood was not leaking.  While the hood door CLOSED maybe a 

preferred mode of operation, it should be noted that the operator has to often leave the 

hood door OPEN for attending to the FLAR system. Our results indicate that the workers 

near an operating flame reactor inside an operational hood should wear respiratory 

protection as a precautionary principle.   

 

4.4.1.2. FLAR system under off design hood condition 

The measurements under off design conditions (Test 3 and 4) correspond to a hood fan 

OFF condition which may happen advertently (turned off by the worker) or inadvertently 

(due to a failure).  Figure 4-4 shows the particle size distributions during off design 
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conditions of the hood at different distances during synthesis process.  The concentration 

observed during synthesis process at all the three locations (L1, L2 and L3) were 

identical at ~1.5×105 particles cm-3, much higher than the background condition.  The  
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Figure 4- 4: Particle size distributions measured at different distances from the flame in a 
FLAR system for hood fan OFF with door OPEN conditions (Test-3):  - Background, -
Inside the hood (L1), - Breathing zone (L2), -2m away (L3). 

mean particle sizes were 62 nm, 56 nm and 55 nm inside the hood, breathing zone, and 2 

m away from the hood, respectively.  The mean size is higher as the particles are not 

being cleared off, and continue growing by coagulation in the confined space of the hood.  

The particles also disperse in regions of the vicinity of the hood.    It clearly indicates that 
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without a proper exhaust system the nanoparticles spread throughout the working 

environment, and potential for exposure to the worker is significant.   

An important aspect in nanomaterial production facilities is the clearance time.  

Under normal operating conditions (as in Test 1), this is important as the worker has to 

access the collected nanomaterials inside the hood.  Similarly, under off-design 

conditions (Test 3), strategies to clear the work environment of nanoparticles have to be 

established.  The size distributions and particle concentrations after the conclusion of the 

synthesis process under exhaust fan OFF conditions are shown in Figure 4-5.  With the 

hood fan OFF, there is no significant change in the size distribution, with only a very 

slight shift to larger sizes.   The total number concentration also decreases very slightly 

up to 30 minutes after the synthesis process was stopped. Under the hood fan OFF 

conditions, the slight decrease in total particle number concentration and increase in 

mean size can be attributed to a slow coagulation process.   The characteristic time for 

coagulation of titanium dioxide particles with a diameter of 60 nm and particle 

concentration of ~1.5×105 is on the order of 106 hours. 

Convective currents in the laboratory are not sufficiently large to clear the 

nanoparticles from the breathing zone over a 30 minute period.   On turning on the hood 

fan (at time = 30 min, Figure 4-5b), the total number concentrations start decreasing and 

reach background levels 20 minutes after the fan was turned ON.  Though the breathing 

zone is just outside the hood, on turning the hood fan ON, it generates convective 

currents that help clear out the aerosols from the breathing zone.  Workers should 

therefore not turn the hood fan OFF after synthesis is completed, but leave the fan ON 

during powder collection and system maintenance.   
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Figure 4- 5: (A) Measured particle size distributions in breathing zone (L2) at four different 
times after the conclusion of the FLAR synthesis process with hood fan OFF with door 
OPEN conditions (    10 min        15 min         25 min        30 min) (B) Total particle number 
concentration variation in breathing zone (L2) after the conclusion of the FLAR synthesis 
process with hood fan off with door open conditions.

(A) 

(B) 

Hood fan 
ON 

Synthesis process 
stopped

Increasing Time 
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It is interesting to also note that for the same operating conditions of the reactor in 

a hood operational condition (fan ON), the particle concentration reached the background 

level in a shorter duration of 4 to 6 minutes after the end of the synthesis process in 

FLAR.  If the hood fan is ON during the synthesis process, the nanoparticle 

concentrations reach elevated levels only near the source (at L1, but not high at other 

locations as observed earlier in Figure 4-3,  due to continued clearance during operation).  

Thus, on conclusion of the synthesis process, the clearance time in the hood with the fan 

ON is a much shorter duration.  

4.4.2. Morphology and composition of the nanoparticles 

Health effects associated with nanoparticle are dependent on the specific particle, its 

morphology, surface, composition and size. For example, a study by Oberodorster et al. 

(1994) showed that TiO2 particles of the same aerodynamic size, but one made up on 

agglomerates of smaller primary particles in comparison to another made of larger TiO2 

particles will have a greater biological response.    Figure 4-6 shows the size, shape and 

morphology of the particles collected inside the hood during the FLAR synthesis process 

at 2 lpm flow rate through the bubbler.   The SEM image indicates that particles are 

spherical in shape with primary particle size less than 40 nm, which is consistent with the 

mean particle size measured with the SMPS.  Some chain-like structures were also 

observed indicating that some of the particles were agglomerated, probably due to the 

high concentrations in the collection zone.  The energy dispersive X-ray (EDX) analysis 

coupled with the SEM indicated that the major composition is Ti, which confirms that the 

particles measured are from the flame synthesis process. 
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 Figure 4- 6: SEM images of particles collected on electron microscope grids during 
 FLAR synthesis 

 

4.4.3. FUAR System: Various Operations 

The FUAR is a closed system, and during the synthesis process the particle size 

distributions were similar at all the locations as the background.  The concentrations and 

size distributions characteristics observed during the synthesis suggest that the chances of 

exposure to nanoparticles are lower unless there is a leak from the furnace system.  In the 

furnace reactor system, the aerosol formation occurred inside the tubular system enclosed 

in a closed electrical furnace.  The particles were collected with an online ESP (also a 

closed system), thus minimizing potential exposure.  

Though FUAR systems are closed, and do not result in elevated concentrations 

during synthesis, there could be potential exposure to nanoparticles during handling in 

recovery operations, and during maintenance of the reactors (Test 5).  Figure 4-7 (A) 

shows the particle size distribution measured during maintenance/set up (i.e. replacing 

and cleaning of the tubes used for the systems, changing of precursor, cleaning of the 

ESP) of the FUAR.    
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Figure 4-7: (A) Particle size distributions measured at different locations in a FUAR 
system during maintenance (Test-5): - Background, -Precursor feed location (P1),  - 
Middle of reactor (P2), -ESP location (P3). (B) Particle concentration variation 
measured during product handling and recovery. 
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recovery 
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The concentration of particles was ~1.3×106 particles cm-3 and ~1×106 particles cm-3   

near the precursor feed location (P1) and middle of the reactor (P2) respectively, 

compared to 4.5×103 particles cm-3 in ESP location.  The mean particle sizes observed 

were 34.5 nm, 38.1 nm, 36.7 nm at the precursor feed location, middle of the reactor, and 

ESP location respectively.  A possible reason for the higher particle concentration near 

precursor feed location and middle of the reactor could be due to the volatile nature of the 

precursor used for the synthesis in FUAR, some of which escapes into the environment 

during clean up operations, followed by reaction in the ambient environment to form 

nanoparticles.  The particle number concentration decreased after the precursor was 

removed and other maintenance processes were finished (Figure 4-7 b).  The spatial 

variation during the cleanup process is also a function of the convective patterns in the 

laboratory environment, and thus specific to the system for which the measurements were 

done.   

After the nanoparticles are synthesized in gas phase reactors, particles are 

recovered mechanically from the collecting filters or ESP.  Particle concentrations and 

size distributions were measured during product recovery, handling and weighing of the 

nanoparticles (Test-5).  No significant concentration increase and size distribution change 

was observed at the breathing zone when 2 gm of nanomaterials were handled.  To 

simulate handling of a large quantity of nanomaterial, a similar experiment was 

conducted with 25 gm of 25nm titanium dioxide.  Increased particle concentration 

(1.04×104 particle cm-3 compared to background average concentration of 3.02×103 

particles cm-3 ) at the breathing zone was observed during product recovery and during 

transferring of nanomaterials with a spatula from the ESP to a plastic container box.  
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From the size distribution measurement, mean size of the particle observed was 29 nm 

during this product handling and recovery process, which is similar to the size of the 

particle collected from the ESP.   After 10 minutes of conclusion of the recovery process, 

the concentration reached background levels.  While the results in this study indicated 

that chances of exposure increase if larger amounts are handled; Tsai et al. (2009) found 

that manual handling of 15 gm of nano alumina in the conventional hood did not increase 

the particle concentration at the breathing zone significantly compared to handling of 100 

gm of nano alumina particles.  Thus, systems should be designed appropriately for 

convective clearance depending on the amounts of nanomaterials being handled. 

 

4.5. Conclusions 

The study established size distributions of aerosols in the vicinity of flame and furnace 

aerosol reactors producing nanomaterials under a variety of operational conditions.  

Caution has to be exercised with flame aerosol reactors, and hood conditions have to be 

carefully maintained.  Concentrations inside the hood near the flame reactor are 

significantly higher during the synthesis process even under normal hood operational 

conditions.  If the door of the hood is open with it fully operational, slightly elevated 

concentrations were measured near the breathing zone.  It is therefore recommended that 

workers wear appropriate respiratory protection devices when operating flame aerosol 

reactors even if they are inside fully functional fume hoods.   After the synthesis process 

was stopped, it took about 4 to 6 minutes to clear the nanoparticles from the work 

environment in the vicinity of the hood, and bring it down to background levels.   
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 If the hood is not operational with the fan OFF, the potential for exposure is 

significantly higher.  The concentration outside the hood also increases to levels observed 

near the flame reactor inside the hood.  The nanoparticle aerosol occupies a larger 

volume of space, and do not clear out readily as there are no strong convective currents in 

the vicinity of the hood in the fan OFF condition.  Furthermore, even on turning on the 

fan after synthesis is stopped, the clearance time is significantly greater (~ 20 minutes) as 

a larger volume of air is at the higher concentrations (in contrast to when the hood fan 

was ON).   

 Furnace reactors are closed systems, and if designed and operated correctly have a 

lower chance of worker exposure.  However, caution has to be exercised during 

collection and handlings of the powder as the resultant concentrations are higher than of 

background levels.   

 While general guidelines and quantitative observations (size distributions, 

clearance times) have been reported in the study, they are specific to the system studied.  

A more generalized estimation and applicability to nanoparticle production facilities 

would require a more detailed representation of flow patterns and other operational 

conditions. 
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5.1. Abstract 

 
Nanomaterial suspensions with different dopant types and compositions were 

investigated to examine their effects on agglomeration through the measurement of 

hydrodynamic diameter (HD), surface charge, and isoelectric point (IEP).  Four different 

types of nanoparticles, all synthesized by a flame aerosol reactor, were considered for the 

analysis.  The nanoparticles considered were pristine TiO2, Cu-TiO2, V-TiO2, and Pt-TiO2 

with dopant concentrations ranging from 1 to 6 wt%.  Measurements were conducted 

over a broad range of pH (3-11) and ionic strengths (0.001-0.1M) to understand the roles 

of pH and ionic strength (IS) on dispersion characteristics.  Calculations were made using 

the classical DLVO theory to explain the agglomeration behavior.  The results indicate 

that dopant addition can change surface charge, hydrodynamic diameter, and shift the IEP 

to higher or lower pH than pristine TiO2, depending on the type of dopant and 

composition. Vanadium and platinum doping shifted the IEP to lower pH values, whereas 

copper doping shifted it to higher pH values.  For each of the nanoparticles considered, 

pH and IS were found to have significant effects on the surface charge and HD, which 

were also verified by calculation from DLVO theory. 

 

Keywords: Doped nanoparticle, Surface charge, Hydrodynamic diameter, Isoelectric 

point, DLVO theory. 
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5.2. Introduction 

 
Engineered nanoparticles are building blocks for nanotechnology applications, and are 

widely used in electronics, medicine, energy and environmental applications, and in a 

variety of consumer products (Clarence, 2008).  Applications of these nanomaterials are 

expected to expand beyond the current use and have also prompted concern about the 

potential adverse impact on human health and environmental systems (Grassian et al., 

2007; Maynard et al., 2006; Nel et al., 2006).  TiO2 is a promising nanomaterial used 

extensively in variety of applications (Almquist and Biswas, 2002; An et al., 2010; Asahi 

and Morikawa, 2007; Hoffmann et al., 1995; Tiwari et al., 2008), and many functional 

doped nanomaterials are also under development (Asahi et al., 2001).   As these materials 

continue to develop and become used extensively, their impacts on human health and the 

environment are yet to be fully explored.  Many toxicological studies are underway to 

evaluate the toxic potentials of both pristine and doped TiO2 nanomaterials.   A few 

studies have already reported that TiO2 nanoparticles can cause potential adverse impact 

on human health and biological systems (Oberdorster et al., 2005; Wu et al., 2010).   

However, their applications and potential adverse impact depend on their physical and 

chemical properties such as size, shape, crystal phase, doping species, and concentration 

of dopant (Jiang et al., 2008; Nel et al., 2006; Tiwari et al., 2008).  

Most nanomaterial applications and toxicity studies require nanoparticles to be 

dispersed in different aqueous media.  There is a tendency for such nanoparticles to form 

large agglomerates with altered surface charges depending on a number of factors such as 

size, shape, crystal structure, functionalization of the nanoparticle, and environmental 

parameters such as pH, and ionic strength (Grassian et al., 2007; Jiang et al., 2009; 
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Mukherjee and Weaver, 2010; Suttiponparnit et al., 2010).  In addition to the above 

mentioned factors, the addition of dopants may influence the suspension properties such 

as agglomeration behavior of particles as their addition will alter the net surface charge 

on the particle.  Addition of dopant changes the structure of TiO2 and increases the 

absorption in the visible spectrum and also, the activity by decreasing the electron and 

hole pair recombination in case of photo-catalysis reactions.  According to the model 

proposed by Tanabe et al (1974) charge imbalance created on the host material depends 

on  each individual bond to the dopant cation.  The model assumes, when the dopant 

oxide’s cation such as Cu2+ in case of CuO enters the lattice of its host oxide and retains 

its original coordination number.  As the dopant is bonded to the oxygen atoms with a 

new coordination, a charge imbalance is created (Tanabe et al., 1974).  Brönsted sites 

(extra protons) are expected to form when the charge imbalance is negative and Lewis 

sites are expected to form when the charge is positive.  The stability of the nanoparticles 

in suspension will thus depend on types of dopant and dopant concentration.  Sahu and 

Biswas (2010) found that addition of copper dopant to TiO2 structure increases the 

nanoparticle stability compared to pristine TiO2 particles and attributed to charge 

imbalance created due to replacement of Ti atoms by copper atoms in the TiO2 structure.  

The modification in the properties of TiO2 nanoparticles in the aqueous suspension 

influences the fate and transport in the environmental system, catalytic reactivity and 

contamination treatment efficiency (Gilbert et al., 2009; Gun'ko et al., 2001; Guzman et 

al., 2006; Mukherjee and Weaver, 2010; Waychunas et al., 2005; Zeng et al., 2009).  

Several studies have demonstrated effective bacterial inactivation potential of nano sized 

TiO2 suspensions for E-coli bacteria and found that concentration and size of the particles 
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in the suspensions are very important parameters (Byrne et al., 2011; Liu and Yang, 

2003; Zhang et al., 2010). The form of TiO2 nanoparticles to which microorganisms are 

exposed also influences their toxicity and also is a determining factor for the response of 

cells (Long et al., 2006; Wu et al., 2010).  In summary, a detailed characterization of 

nanoparticles dispersed in aqueous suspension and the factors affecting the dispersion 

behavior is critical in understanding their toxicological and environmental fate and 

behavior. Few studies have reported the dispersion behavior of TiO2   nanoparticles and 

found that particle size, crystal phase, surface area, and sonication time affect the 

dispersion properties (Jiang et al., 2009; Suttiponparnit et al., 2010).  Suttiponparnit et al 

(2010) found that the isoelectric point (IEP) depends on primary particle size but is 

insensitive to crystal structure variation. However, the dispersion behavior of metal 

doped TiO2 nanoparticles and the effect of dopants on the surface charge and isoelectric 

point has not been well investigated and understood. 

In this study, the influence of dopant type and concentration on TiO2 dispersion 

behavior has been investigated.  The dispersion behavior was studied by measuring the 

agglomerate size and zeta potential under various environmental conditions.  Three 

different dopants considered for this study were copper, vanadium, and platinum.  The 

concentration of the dopant was varied (1-6 wt %) keeping the primary particle size and 

crystal structure similar. All particles were synthesized in a diffusion flame aerosol 

reactor. Pristine TiO2 of similar size and crystal structure were also investigated for 

comparison.  The effect of ionic strength was investigated for copper doped TiO2 

particles.  DLVO theory was used to calculate the potential energy of interaction to verify 

the agglomeration behavior of the nanoparticles. 
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5.3. Materials and Methods 

5.3.1. Doped TiO2 Nanoparticle Synthesis and Characterization 

 
A flame aerosol reactor with a three port co-flow diffusion burner was used to synthesize 

pristine and doped TiO2 nanoparticles.  The design details of the diffusion flame reactor 

used for synthesizing the nanoparticles can be found in Jiang et al (2007).  Titanium tetra-

isopropoxide (TTIP, 97%, Aldrich) was used as the precursor for titanium dioxide 

synthesis.  Copper (II) 2-ethyl-hexanoate (Aldrich), vanadyl tri-isopropoxide (95-98%, 

Alfa Aesar) and platinum acetyl acetonate (Pt(acac)2, 97%, Aldrich) were used as the 

precursors for copper, vanadium, and platinum doping, respectively.  The Pt(acac)2 

precursor was dissolved in xylene and acetonitrile in a volume ratio of 2:1, whereas the 

copper precursor was dissolved in xylene alone.  The dopant precursor solution was 

atomized by a stainless steel nebulizer and introduced in the form of fine droplets to the 

high temperature flame through the second port of the diffusion burner.  Vanadium 

precursor vapor was introduced through the central port along with the TTIP vapor for V-

TiO2 nanoparticle synthesis.  Nanoparticles with different dopant loading concentrations 

were synthesized by changing the molar feed ratio of precursors.  For platinum and 

copper doping, the dopant precursor salt concentration was varied in the solvent to 

control the doping level; whereas the temperature of the bubbler (where the vanadium 

dopant precursor was placed) was controlled to vary the feed rate of vanadium precursor.  

Nitrogen gas at 2 lpm (liters per minute) was bubbled through TTIP in a bubbler 

maintained at 98 °C.  Oxygen and methane flow rates were maintained at 7 and 1.6 lpm, 

respectively to set up the flame.  Nanoparticle properties such as size, crystallinity, and 

morphology were controlled by controlling the residence and temperature time history in 
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the combustion zone. Further details about these doped nanoparticle synthesis can be 

found in Tiwari et al (2008) and Sahu and Biswas (2010). 

Particle sizes and morphology were characterized by scanning and transmission 

electron microscopes (SEM: JEOL 7001LVF, Japan; TEM: JEOL 2100F, Japan). SEM 

coupled with energy dispersive spectroscopy (EDS) was used to analyze the presence of 

dopant in the nanoparticles. Crystal structures of the synthesized materials were verified 

using an X-ray diffractometer (XRD, Rigaku D-MAX/A9, Japan). Table 4-1 lists the 

characteristics of the nanomaterials synthesized and used in this study. 

5.3.2. Dynamic Light Scattering (DLS) Characterization  

 
A ZetaSizer Nano ZS (Malvern Instruments) dynamic light scattering instrument was 

used to measure the hydrodynamic diameter and zeta potential of the nanoparticle 

suspensions.  The fluctuations in the light intensity due to Brownian motion of the 

nanoparticles in the liquid suspensions were used to determine the intensity weighted 

average translational diffusion coefficients.  The average hydrodynamic diameter is 

estimated from the diffusion coefficient using the Stokes-Einstein equation

, where kB is the Boltzmann constant (J·K-1), T is the absolute 

temperature (K), and μ is the viscosity of the medium (kg·m-1·s-1).  This instrument could 

measure nanoparticle aggregation sizes over a wide range (2 nm to 6 µm). 

/6π6πTkHD B=

The electrophoretic mobility of the nanoparticle in the liquid suspension was 

measured and zeta potential was determined from the electrophoretic mobility by using 

the Smoluchowski equation ζ = μU/ε, where ε is the electric permittivity of the medium 

(C2·N-1·m-2).  All the measurements were conducted at a temperature of 25oC, which was 
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automatically controlled by the instrument.   To check the reproducibility of the results, 

five measurements were taken for each sample and average values of the measurements 

are reported here.  

5.3.3. DLVO Prediction of Nanoparticle Agglomeration 

 
The agglomeration behavior of the nanoparticle suspensions can be understood by 

estimating the potential energy of interaction between particles.  The two important 

forces which govern the agglomeration in the suspensions are the van der Waals 

attractive force and the electrostatic repulsive force.  The interaction potential energy due 

to the van der Waals attraction force is given by the expression:  
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where A is the Hamaker constant, a is the particle radius and s is the separation distance 

between the particle surfaces (Garcia-Garcia et al., 2006).  The Hamaker constant 

indicates the strength of mutual attraction between two colloidal particles and depends on 

material properties, and  was 4 ×10-20 J for TiO2 (Zhang, 2006).  The equation used for 

calculating potential energy between particles due to electrical repulsion (ka > 10) was: 
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where εε0  is the dielectric permittivity of the medium, ζ is the potential at the surface of 

the particle and k is the Debye length and is evaluated as:  
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where kB is Boltzmann constant, Na is Avogadro’s constant, 0ε is the permittivity of 

vacuum, ε is the dielectric constant, and Mi is the molarity.  The total potential energy is 

calculated as .  The limitation associated with calculating the potential 

energy using this above expression is that other forces, such as hydration and  Born 

forces, are not taken into account (Garcia-Garcia et al., 2006).  The particle considered 

for calculation was of single size and equal to the primary mean particle size.  Due to 

these assumptions, this DLVO calculation was used to qualitatively compare the effect of 

pH and ionic strength on dispersion behavior of the nanoparticles. 

VrVaVt +=

 

5.3.4. Experimental Test Plan 

Table 5-1 outlines the experiments performed in this study.  Doped TiO2 nanoparticles of 

spherical shape, with controlled properties such as primary particle size (~40±10 nm) and 

crystalline phase (anatase) were synthesized in a flame aerosol reactor by controlling the 

key process parameters such as molar feed ratios of precursors, temperature, and time 

history in the flame (Test-1).  For zeta potential and hydrodynamic size measurements, 

nanoparticles were dispersed in solution at a concentration of  50 μg/ml for all the cases 

considered and sonicated for 20 minutes using a bath sonicator (40 W, 50 kHz, 5 Fisher 

Scientific, Fairlawn, New Jersey) before all  measurements. The aggregation behavior of 

the doped nanomaterials dispersed in de-ionized water (DI) was studied first without 

adjusting the ionic strength and pH of the solutions. Since pH influences the surface 

charge and nanoparticle aggregation properties (Jiang et al., 2009), its effect was  
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Table 5-1: Summary of experiments performed in this study 

 
Test 
# 

Objective Samples System used/ Parameter values/ 
Procedure description Experimental 

technique 
1 Characterization: FLAR Synthesis and 

characterization of 
nanoparticles  

Pristine TiO2 
TEM; SEM/EDS; 
XRD.  

TTIP/N2-2 lpm  1-3 wt% Cu-TiO2 
CH4-1.6 lpm 1-6 wt% V-TiO2 

 O2-7 lpm  1-3 wt% Pt-TiO2 
Pt, Cu, V dopant Size=40±10 nm 
Concentration-1-6 wt % Phase-Anatase 

 
2 Zeta potential, 

Hydrodynamic 
diameter 

  pH effect on doped 
nanoparticle 
dispersion 
characteristics 

  
Concentration: 50 μg/ml Dopant types: 
pH values was changed  
from 2 -11  by adding HCl 
or NaOH;  

Cu, V, Pt 
Dopant 
Concentration 
range 

 
3 Dopant type and 

concentration effect 
on dispersion 
characteristics 

Zeta potential, 
Hydrodynamic 
diameter, IEP 

IS-0.001M 
1-6 wt % 

 
4 Zeta potential, 

Hydrodynamic 
diameter 

Concentration: 50 μg/ml Influence of ionic 
strength on 
dispersion 
characteristics 

 
Ionic strength was varied 
from 0.001 M to 0.1 M. 
pH maintained at 4. 

1-3 wt% Cu-TiO2 
 

 
*Abbreviations: FLAR: flame aerosol reactor; lpm: liter per minute; TTIP: Titanium tetra-isopropoxide; 
TEM: Transmission electronic microscope; SEM: scanning electronic microscope; EDS: energy 
 dispersive spectroscope; XRD: X-ray diffraction; 

 

investigated by adjusting the pH from 3 to 11 by addition of HCl and NaOH (Test-2).  

The ionic strength was kept constant at 0.001M by addition of NaCl.  The pH effect was 

studied for all the doped nanoparticles considered in this study, along with pristine TiO2 

for comparison.  The influence of different dopant types and dopant concentrations on 

nanoparticle agglomeration size and surface charge was investigated using Pt-TiO2, Cu-
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TiO2, and V-TiO2 nanoparticles by varying the dopant concentrations (Test-3).  The 

dopant concentration was varied from 1 to 3 wt% for Cu- and Pt- TiO2 and from 1 to 6 

wt% for V-TiO2 nanoparticles.  Ionic strength is a function of number of potential 

determining ions (PDI) present in the solutions, which suppresses the electrostatic diffuse 

layer and affects the agglomeration behavior of the nanoparticle suspensions.  The effect 

of ionic strength was examined for Cu-doped TiO2 nanoparticles by varying the ionic 

strength from 0.001 to 0.1 M, while keeping the pH constant at 4 (Test-4) and the 

agglomeration behavior is described by DLVO calculation.   

 

5.4. Results and Discussion 

Metal doping changes the physicochemical properties such as crystal structure, particle 

size, morphology and specific surface area of TiO2, all of which are important factors for 

toxicity investigation and photocatalytic activity of TiO2 and also affect the state of 

dispersion.  The doped nanomaterial synthesis characterization results are presented first 

followed by dispersion characterization in the liquid suspension under various 

environmental conditions. 

5.4.1. Doped TiO2 Nanomaterial Synthesis  

 
The XRD spectra of the flame synthesized doped TiO2 nanomaterials are shown in Figure 

5-1. The nanomaterials prepared were primarily of anatase crystalline phase, as evident 

from the anatase (101) and rutile (101) peaks that were used for calculating the crystal 

phase composition.  This phase was achieved by manipulating the process parameters in 

the flame aerosol reactor.   The dopant level used for this study was varied from 1 to 3 
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wt% for copper and platinum dopants, and from 1 to 6 wt% for vanadium dopant.  

However, with increasing dopant concentrations, a small amount of phase transition from  

anatase to rutile phase was observed for copper and vanadium doped TiO2, whereas little 

phase transformation from rutile to anatase was observed for platinum doping.  The phase 

composition was altered (less than 10 % change) for all the cases based on the crystal 

phase composition calculation from XRD diffraction pattern.  No characteristic peaks 

attributed to oxides of the dopant metal were found in the XRD patterns, implying that 

either Cu or V ions were incorporated into the crystal lattice of TiO2.  The similarity in the 

Cu, V and Ti ionic radius (0.73 Å for Cu (Hsiang and Liu, 2009), 0.68 Å for V (Cho and 

Biswas, 2006) and 0.68 Å for Ti) allows the interstitial incorporation of the dopant into 

the titania network.  The effect of dopant concentration on TiO2 crystal structure is 

described further elsewhere (Sahu and Biswas, 2010; Tiwari et al., 2008; Wang et al., 

2001). The details about Pt-TiO2 particles are discussed in Tiwari et al (2008).  TEM 

micrographs of the doped nanoparticles used for this study are shown in Figure 5-2.  The 

average particle size of all the doped TiO2 particles was calculated to be 40±10 nm. The 

particles synthesized were very similar in size as the doping concentration was low 

enough that it did not change the primary particle size significantly.  However, increased 

doping concentration can change the particle size, depending on the type and 

concentration of dopant (Sahu and Biswas, 2010).  (Suttiponparnit et al., 2010) 

demonstrated that the agglomeration behavior and surface potential change with a change 

in primary particle size.  In this work, the particles sizes were kept similar to avoid 

interference due to variation in particle size and also to directly compare with the pristine 

TiO2. 
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Figure 5-1: XRD patterns of synthesized nanoparticles used in this study (a) TiO2, (b) 

1wt% Cu-TiO2, (c) 3wt% Cu-TiO2, (d) 1wt% V- TiO2, (e) 3 wt% V-TiO2, and (f) 6 wt% 

V-TiO2.  The inset is an enlargement of the anatase (1 0 1) peaks for these samples. 

Details about the diffraction pattern of Pt-TiO2 is discussed in the previous publication [9]) 
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 Figure 5- 2: Transmission electron micrographs (TEM) of representative 
samples (a) TiO2 (b) Cu-TiO2 (c) V-TiO2 (Details about the Pt-TiO2 size is 
discussed in Tiwari et al [9])  
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5.4.2. Dispersion Characterization  

 
Nanoparticles dispersion behavior is characterized based on the zeta potential and 

hydrodynamic size in the suspension.  These two important parameters in liquid 

suspensions are interrelated and significantly influence the nanoparticle aggregation and 

transport behavior in environmental systems (Jiang et al., 2009).  Surface potential is 

mainly developed by surface ionization on the metal oxide surface and adsorption of ions 

from the electrolyte on the particle surface.  When metal oxide nanoparticles are 

dispersed in water , because of the reactivity of the defective surface structure,  the OH- 

ion is attached to the oxygen vacancies present in the crystal structure, and the H+ ion is 

attached to the lattice O- ion to form OH- ion on the metal oxide surface (Nowotny et al., 

2006).  Apart from the potential determining ions (PDI) present in the solutions (H+, OH- 

in metal oxides), the concentration and type of electrolyte also affects the potential 

developed at the particle surface and the agglomeration size (Jiang et al., 2009; 

Suttiponparnit et al., 2010).  

 

5.4.2.1. Effect of pH on Surface Charge and Hydrodynamic Size 

 
When TiO2 is dispersed in water, the first step is the hydration of the TiO2 surface 

followed by protonation and deprotonation of the surface groups from the metal oxide 

surface (Carre et al., 1992; Gun'ko et al., 1998). 

TiO2 + H2O  TiIV-OH + H+                                                        (4) →

TiIV-OH + H+   TiOH2
+               (pH < pH (IEP)                       (5) →
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TiIV-OH  Ti-O- + H+                  (pH > pH (IEP))                      (6) →

 When doped TiO2 is dispersed in water the hydration reaction can be written in the 

similar fashion to the reaction demonstrated by (Gun'ko et al., 1998) for mixed oxides.  

Ti-O-M2 + H2O→Ti-OH-O(H)-M2   (M2 = Cu, V, Pt)                  (7) 

Ti-O(H)-M2   Ti-O--M2 + H+      (pH > pH (IEP))                     (8)      →

Ti-O(H)-M2   Ti-OH2
+-M2 + H+      (pH < pH (IEP))                 (9) →

The equation indicates that when water molecules are adsorbed on metal oxide surface, 

one terminal Ti-OH group and one bridging group Ti-O(H)-M2 can be formed, which 

depends on the type of dopant, defects on the surface, and other phases in the matrix of 

the complex oxide (Gun'ko et al., 1999).  The pH value at which surface charge is equal 

to zero is called the iso-electric point.  

The effect of pH on dispersion characteristics is shown in Figure (5-3 to 5-5) for 

both pristine and doped TiO2 nanoparticles at an ionic strength (IS) of 0.001M.   The IEP 

for pristine anatase TiO2 was found to be 5.1, which is consistent with the value reported 

by (Suttiponparnit et al., 2010).  However, the IEP of TiO2 nanoparticles was altered by 

adding different dopants.   The IEP was found to be 5.9 and 6.6 for 1 and 3 wt% Cu-TiO2 

particles, 3.6 and 2.2 for 1 and 3 wt% V-TiO2 particles, and varied from 4.4 to 3.5 when 

Pt dopant concentration increased from 1 to 3 wt%.  The change in IEP with dopant type 

and concentration will be discussed in the following section.   All the particles considered 

in this study initially had a negative charge surface (as found from the zeta potential 

measurements), except for the Cu-TiO2, which carried positive charge on the surface of 

the particles when dispersed in DI water.   The pH decreased in all metal doped TiO2 

nanoparticles compared to that of TiO2.  The pH was slightly decreased to 5.4−5.5 for 
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Cu-TiO2 compared to that of TiO2 (pH = 6.0).  However, for V-TiO2 and Pt-TiO2 

addition increased the acidity having pH range about 5.5−4.8 and 5-4.4.  These results 

suggested that the surfaces of Cu−TiO2, which included the metals of lower oxidation 

state than Ti4+, slightly attracted the OH¯ ions, while the surfaces of V−TiO2 and Pt-TiO2 

, which included the metals of higher oxidation state than Ti4+, more strongly attracted 

the OH¯ ions in water.  In general, for all cases as the pH values became lower than the 

IEP of the nanoparticles, the magnitude of the zeta potential became more positive, and at 

increasingly higher pH values the observed zeta potentials became more negative. 

The measurements show that pH has a significant influence on the surface charge 

of the particles, which affects their agglomeration behavior.  As discussed earlier, 

agglomeration is mainly influenced by the van der Waals force and the electrostatic 

repulsive force due to surface charging.  The zeta potential value on the particle surface is 

an indication of the magnitude of the electrostatic forces.   The hydrodynamic diameter 

estimated from the DLS measurements indicates that HD increased from ~200 nm at a 

pH of 3 to ~1928 nm at a pH of 5.1, which is close to the IEP of pristine TiO2 in this 

study (5.1), and decreased as it move further from the IEP in either direction.  The 

increased HD close to IEP (surface charge zero) shows that the van der Waals attraction 

force is dominant at this pH, compared to the electrostatic repulsion force.  From the 

DLVO prediction of total potential energy (Figures 5-3-5-5) at different pH, the net 

repulsive energy barrier near the IEP is much less, and therefore promotes fast 

agglomeration and results in larger HD for all the cases, which is consistent with other 

studies (Jiang et al., 2009; Suttiponparnit et al., 2010).  However at lower and higher pH 

beyond the IEP, the net increase in the electrostatic repulsive barrier prevents the 
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agglomeration.  The same phenomenon of larger HD was observed for copper, vanadium, 

and platinum doped TiO2 nanoparticles at pH values close to their respective IEP.  The 

experimental result and DLVO calculations suggest that the stability and agglomeration 

of nanoparticles in suspension is related to the magnitude of the repulsive electrostatic 

energy. 

 

5.4.2.2. Effect of Dopant Types on IEP 

When a dopant is added, the crystal structure of the TiO2 changes depending on the 

dopant type and concentration (Li et al., 2003; Sahu and Biswas, 2010).  The addition of 

dopant forms incompletely O-coordinated Ti atoms and incompletely O-coordinated 

dopant atoms, and thus causes distortion in the crystal structure.  Doping changes the 

structural features on the surface of TiO2 and causes the surface acidity and surface 

charge variation on mixed oxide surfaces when dispersed in water as described in 

equation (7) and (8). 

The zeta potential measurements suggested that the surface charge of Cu-TiO2 

was positive due to more H+ ions on the surface compared to pristine TiO2.  The IEP 

shifted to higher pH values of 5.9 and 6.6 at 1 and 3 wt% copper doping (Figure 5-3). A 

similar shift in IEP trend was observed by Ko et al (2005) for an Al-TiO2 nanoparticle 

dispersion.  The IEP shift is attributed to surface modification caused by copper doping 

into TiO2 crystal structure, which promotes rutile phase transformation from anatase and 

distorts the structure.  When Cu2+ replaces some of the Ti4+ atoms in the TiO2 

nanoparticles, anion vacancies are created and the surface of the particles becomes more 

negatively charged.  The charge imbalance was calculated following the procedure  
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adopted by Tanabe et al (1974).  Copper is 4−fold coordinated (Aniya and Shimojo,  

2006) with each oxygen atom bonded to two copper atoms.  Titania is octahedrally  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5- 3: pH and Cu-dopant effects on TiO2 nanoparticles (a) Zeta potential and (b) 
Average hydrodynamic diameter (Ionic strength=0.001 M NaCl) (c) DLVO prediction of 
pH (IS-0.001M) effect on 1wt % Cu-TiO2 nanoparticle interaction potential. 
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adopted by Tanabe et al (1974).  Copper is 4−fold coordinated (Aniya and Shimojo, 

2006) with each oxygen atom bonded to two copper atoms.  Titania is octahedrally 

coordinated with each oxygen bonded to three titanium atoms.  coordinated with each 

oxygen bonded to three titanium atoms.  Since the Cu2+ ions (ionic radius is 0.73 Å) 

similar radius with Ti4+ (ionic radius is 0.68 Å), the Ti4+ could be substituted by Cu2+ and 

Ti−O−Cu bonds could be formed.   
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Figure 5- 4: Illustration of model structure and charge balance calculation by using 
Tanabe’s model (Tanabe et al., 1974) to describe the surface acidity behavior of binary 
metal oxides (a) copper doped TiO2 and (b) vanadium doped TiO2. 
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When a copper atom enters a titanium lattice, the two valence electrons on Copper atom 

(two positive charges) are distributed to four bonds, while the two negative charges of 

oxygen atom are distributed to three bonds.  The difference in charge for one bond is 

+1/2 − 2/3 = −1/6, and for all the bonds the valence unit imbalance of −1/6 × 4 = −2/3.   

In this case the imbalance is negative, the Brönsted acidity is assumed to appear.  The 

fact that adding more the copper created Brönsted sites may be attributed to explain the 

IEP of Cu−doped TiO2 nanoparticles is higher than the TiO2.   

In the case of V-TiO2 nanoparticles, vanadium substitution decreased the IEP 

(Figure 5-4).   The values of the IEP were 3.6 and 2.2 for 1 and 3 wt% V-TiO2 particles. 

The zeta potential and shift in IEP indicate more hydroxyl groups are absorbed to the 

TiO2 surface.   The observed trend is consistent with reported values for V-TiO2   and for 

W-TiO2 (Sene et al., 2003).  Vanadium is 5−fold coordinated (Giuli et al., 2004) with 

each oxygen atom bonded to five vanadium atoms.  Since the V5+ ions (ionic radius is 

0.68 Å) are similar radius with Ti4+ (ionic radius is 0.68 Å), the Ti4+ could be substituted 

to V5+ and Ti−O−V bonds could be formed.  For vanadium atom enters a titanium lattice, 

the five positive charges of the vanadium atom are distributed to five bonds, while the 

two negative charges of oxygen atom are distributed to three bonds.  The charge 

difference for each bond is +1 − 2/3 = +1/3, and for all the bonds the valence unit 

imbalance of +1/3 × 4 = +4/3.  In this case, the Lewis acidity is assumed to appear upon 

the presence of an excess of positive charge on the vanadium doped TiO2 which is 

consistent with the measured data and with those reported in other studies (Gervasini et 

al., 2004) .   
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to V5+ and Ti−O−V bonds could be formed.  For vanadium atom enters a titanium lattice, 

the five positive charges of the vanadium atom are distributed to five bonds, while the 

two negative charges of oxygen atom are distributed to three bonds.  The charge  

 

 

 

 
 

Figure 5- 5: pH and V-dopant effects on TiO2 nanoparticles (a) Zeta potential and (b) 
Average hydrodynamic diameter (Ionic strength=0.001 M NaCl) ) (c) DLVO prediction of 
pH (IS-0.001M) effect on 1wt % V-TiO2 nanoparticle interaction potential. 

127 
 



 

the presence of an excess of positive charge on the vanadium doped TiO2 which is  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Figure 5- 6: pH and Pt-dopant effects on TiO2 nanoparticles (a) Zeta potential and   
(b) Average hydrodynamic diameter (Ionic strength=0.001 M NaCl)) (c) DLVO 
prediction of pH (IS-0.001M) effect on 1wt % Pt-TiO2 nanoparticle interaction 
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The effect of Pt doping on zeta potential, IEP and HD is shown in Figure 5.  The 

IEP decreased from 4.4 to 3.5 when the Pt doping concentration increased from 1 to 3 

wt%.  The variation in IEP is due to the change in crystal structure and surface properties. 

However, the coordination number of platinum is not available in the literature and the 

charge balance could not be calculated.  However, the change in IEP of Pt-TiO2 is due to 

the higher oxidation state of Pt compared to Ti. Therefore more positive surface charge 

exists on Pt-TiO2 and caused more Lewis acidity sites similar to the case of V-TiO2 

particles and changed the IEP.  

 The variation in IEP is due to the change in crystal structure and surface. In other 

words, pH controls particle’ surface charge and controls the HD through electrostatic 

repulsive forces.  At IEP, the HD size observed for Cu-TiO2 particles was lower 

compared to vanadium and platinum doped TiO2 particles.  DLVO calculation predicted 

that more energy is needed to overcome the electrostatic repulsive barrier for Cu-TiO2 

particles compared to the other two doped cases, which is consistent with our 

experimental results (Figures 5-3-5-5). Additionally, change in Hamakar constant 

(mutual attraction between two colloidal particles) due to addition of dopants may have 

caused different HD for different dopants.  As pH increased, the charge built up on the 

surface of the particle, and the repulsive force became strong enough to reduce the HD.  

There is one remaining consideration, which, however, is beyond the scope of this study, 

some metallic ions may dissolve into the solution, which would increase the surface 

charge density and may change the double layer thickness and interaction between the 

nanoparticles. This possibility needs further investigation. The results indicate that 
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depending on the dopant types, dopant oxidation state, and concentrations, the surface 

charge can be altered and can affect the dispersion behavior of the doped nanomaterials. 

4.2.3. Effect of Ionic Strength 

The effect of ionic strength on zeta potential and HD size is shown in Figure 5-6 for Cu-

TiO2 particles.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 
 

 
Figure 5- 7: (a) Ionic strength effect on Cu-TiO2 nanoparticles zeta potential and 
hydrodynamic diameter (pH=4.0) (b) DLVO prediction of IS effect on Cu-TiO2 
nanoparticle interaction potential.
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The zeta potential decreased from 34.3 to 25.7 mV for 1 wt% Cu-TiO2 and from 28.3 to 

16.9 mV for 3 wt% Cu-TiO2 respectively, when ionic strength increased from 0.001M to 

0.1M.  As discussed earlier, the HD related to the zeta potential, the HD increased with 

decreased in zeta potential.  However, there was no straightforward relationship between 

zeta potential and HD.  The results are consistent with the observed increased in HD with 

increasing IS with other reported study (Jiang et al., 2009; Suttiponparnit et al., 2010). 

The decreased zeta potential and increased HD with increasing ionic strength can be 

explained by the change in Debye length (1/k), which affects the electrostatic repulsive 

force. The calculated Debye length from equation (3) increased from 0.104 to 1.04 nm by 

changing the IS from 0.001 M to 0.1 M.  The increase in Debye length (i.e. decreasing 

double layer thickness) and decreased zeta potential at higher IS increased the HD.  The 

total potential energy calculated from classical DLVO theory is shown in Figure 5-6(b) at 

different ionic strengths.  Calculations indicate that the potential energy barrier for 

agglomeration decreased as the ionic strength increased from 0.001 M to 0.1 M, which 

further explains the higher HD observed at higher IS. 

 

5.5. Conclusions 

 
The dispersion behavior of doped TiO2 nanoparticles in water was investigated by using 

different types of dopants (Cu, V, and Pt).  Dopant type and concentration affected the 

zeta potential and shifted the IEP by changing the surface actives sites, which is mainly 

attributed to the dopant oxidation state, distortion caused in the crystal structure and 

charge imbalance created by the incorporating dopant onto host TiO2 nanoparticles. This 

study indicated that dopant with oxidation state above that of Ti shift the IEP of TiO2 to 
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lower pH values and, where as for dopant with oxidation state below shifted the IEP to 

higher pH value.  The agglomeration behavior of nanoparticles in the suspension was 

found to vary depending on solution pH, ionic strength and dopant types.  Potential 

energy calculation from DLVO theory was consistent with the experimental results and 

supported the findings. The study results have important implications for studies on 

toxicity and contamination treatment, nanoparticles transport in the environment, as 

potential toxicity and transport behavior depends strongly on whether nanoparticles are in 

aggregated or dispersed state and factors that control the aggregation behavior of 

nanoparticles. The state of dispersion including physicochemical properties of 

nanoparticles, pH and ionic strength should be carefully studied before application of 

doped nanomaterials. 

 

5.6. Nomenclature 

 Rh Average hydrodynamic diameter (nm) 
IEP Iso-electric point 
HD Hydrodynamic diameter (nm) 
D Diffusion coefficient(m2s-1) 
kB Boltzmann constant (J.K-1) 
µ Viscosity of medium (kg.m-1.s-1) 
ζ 
U 

Zeta potential (mV) 
Electophoretic mobility(m2V-1s-1) 

T Temperature (K) 
Ε Electrical permittivity of medium (C2.N-1.m-2) 
A Hamakar constant (J) 
Na Avogadro’s constant 
Mi Molarity (M) 
A Particle radius (nm) 
S Separation distance between particle surfaces (nm) 
Va Potential energy due  to van der Waals attraction force 
Vr Potential energy between particles due to electrical repulsion 
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Chapter 6:  

Bacterial Responses to Cu-doped 

TiO2 Nanoparticles 
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6.1. Abstract 

The toxicity of Cu-doped TiO2 nanoparticles (NPs) of 40 nm size, synthesized by a flame 

aerosol reactor, on Mycobacterium smegmatis (pathogenic bacteria) and Shewanella 

oneidensis MR-1 (environmental bacteria) has been studied. Pristine TiO2 NPs did not 

affect the growth of the two species, while Cu-doped TiO2 NPs significantly reduced 

Mycobacterium smegmatis growth. The Cu-doped TiO2 NPs was also able to suppress 

certain key enzyme functions (such as NADPH production).  The Cu-doped TiO2 NPs 

were found not to penetrate into the cell or physically damage the cellular structure.  

Their toxicity was mainly mediated by released ionic copper from the NPs. The dissolved 

copper (ionic copper) was associated (or concentrated) on negatively charged NP surface 

and thus its cellular toxicity was significantly enhanced.  The inhibitory effect from ionic 

copper on NPs was removed in the presence of EDTA in the culture medium. On the 

other hand, S. oneidensis MR-1 was able to reduce ionic copper and absorb Cu-doped 

TiO2 NPs on the cell surface, thus remediating toxic NPs from the culture medium during 

its growth.   

 

Key words: Mycobacterium smegmatis, Shewanella oneidensis MR-1, EDTA, ionic 

copper, NADPH, remediate 
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6.2. Introduction 

Due to the significant potential of nanotechnology and wide scale applications, there is 

now an understanding that nanomaterials should have minimal environmental and toxic 

side effects.  An upfront evaluation of nanomaterials in this regard will not only help 

ensure safety of nanotechnological applications, but also help design materials that have 

minimal adverse effects, and retain their functionality.[1, 2] Agencies have also evaluated 

and proposed strategies for research in this area.[3] Titanium dioxide (TiO2) is considered 

to be an inert material and has therefore been widely used in many industrial applications 

as a pigmentary material.[4] In recent years, it has also been used as a photocatalyst, and 

many applications have been proposed especially for the anatase crystal phase 

nanomaterial.[5, 6, 7, 8] To evaluate if nanostructured titanium dioxide would have enhanced 

adverse biological impacts, many researchers have conducted studies with these 

materials.[9, 10, 11]  The reports in the literature are conflicting in the trends, however, it is 

apparent that titanium dioxide is a low toxicity material.  Jiang et al. performed very 

detailed studies using a range of nanometer sized titanium dioxide particles and found a 

clear set of trends and metrics that were important.[12] They reported that the reactive 

oxygen species (ROS) production followed a S-shaped curve dependence on particle size.  

They also used their samples to establish effects of crystal phase.  

To enhance the functional properties and applicability of titanium dioxide, doped 

versions of the materials are being synthesized.  Enhanced light activation by visible 

frequencies and increased catalytic activity have been demonstrated.[ 13, 14, 15]  Cu-doped 

TiO2 is also being considered for light harvesting applications and has potential for wide 

scale use in the solar energy sector.[16, 17] On the other hand, Karlsson and co-researchers 
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pointed out that CuO NPs were most potent regarding cytotoxicity and DNA damage of 

human lung epithelial cell when comparing with other metal oxides and carbon 

nanotubes.[18]  Meng et al. found that high reactivity of nano-copper particles resulted in 

specific nanotoxicity to living organisms by culminating the metabolic alkalosis.[19] 

Results reported by Chen et al. also indicated that nano-copper particles could induce 

gravely toxicological effects and injuries on kidney, liver and spleen of experimental 

mice.[20] However, up to now, the toxicity of copper doped TiO2 NPs to different 

microbial systems is still poorly understood, and very few methods have been proposed 

to remediate toxic metal NPs from the environment.[21] While functional property 

enhancement studies have been extensively conducted, there are few to none on the 

eventually toxicity of doped materials.  Such studies are important as they would help 

develop insights to mechanistic effects of toxicity, by comparing the biological effects of 

pristine to doped titanium dioxide nanomaterials.   

Exposure of nanomaterials to microorganisms can provide preliminary answers 

on their potential toxicity. Mahapatra and Karak studied the antibacterial activity of silver 

NPs against Bacillus subtilis and Staphylococcus aureus bacteria and found toxicity 

increased with increasing concentration of the nanoparticles.[22] Sanpui and his colleagues 

used Escherichia coli as a model bacteria to test the bactericidal efficacy of chitosan-

siliver NPs.[23] Using microorganisms as a model to test the toxicity is a simple and fast 

approach; and response mechanisms could be understood readily. In addition, some 

environmental microorganisms can bioremediate NPs, which may further be considered 

as a potential methodology for countering the toxicity of such materials in the 

environment.[24]  
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In this paper, aerosol reactors are used to carefully synthesize Cu-doped titanium 

dioxide nanomaterials.  The well characterized nanomaterials are then used to evaluate 

the toxicity by examining the effects on two model bacterial species: Mycobacterium 

smegmatis, a gram-positive bacterium and a model pathogenic strain for study of 

Tuberculosis; Shewanella oneidensis MR-1, a gram-negative environmental bacterium 

found in sediments. This microorganism has a versatile metabolic system that can reduce 

many kinds of metal ions, including Fe (III), Cu(II), Cu(I), and Cr(VI) [25, 26, 27].   The 

growth rates of the two microbial species in the presence of the various nanomaterials are 

studied.  To develop a mechanistic understanding, the impact of dissolved copper (ionic 

forms) and doped nanoparticles on cellular enzymatic functions (using NADPH 

production as a model example) is established.  

 

6.3. Materials and Methods 

6.3.1. Synthesis of nanoparticles  

A flame aerosol reactor (FLAR) with a three-port co-flow diffusion burner was used to 

synthesize 40 nm Cu-doped TiO2 and pristine TiO2 nanoparticles. The FLAR has been 

used previously to synthesize nanoparticles with independent control over the size, shape, 

crystal phase, and morphology, and details are provided in earlier publications.[12]   

Titanium tetra-ispopropoxide (TTIP, 97%, Aldrich, USA) and copper (II) ethyl hexanoate 

(Aldrich, USA) were used as the precursors for the synthesis of the various 

nanomaterials. Copper (II) ethyl hexanoate was dissolved in the xylene and atomized by a 

stainless steel nebulizer to the high temperature zone. Nitrogen gas at 1.5 lpm (liter per 

minute) was bubbled through TTIP in a bubbler maintained at 88 °C. Doping percentages  
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 Table 6- 1: Summary of experiments performed in this study. 

 
 Objectives Sample System used/  Parameter values/ 

Procedure description Experimental 
technique 

1 Synthesis and 
characterization of 
nanoparticles 

A 1.8% Cu-TiO2 (40 nm)  FLAR  
Zeta P. = -7.73 +

were varied by feeding different molar ratios of the precursors to the high temperature 

combustion zone of the diffusion flame. Oxygen and methane at 7 lpm, and 1.6 lpm, 

respectively, were introduced into the FLAR system.  The temperature and residence time 

history of the nanoparticles in the combustion zone were controlled to obtain the desired 

size and composition of the nanoparticles. Sizes of the nanoparticles were characterized 

0.59 Temperature: 88°C; Characterization: 
Gas flowrate:  SEM/EDS; XRD; 

ICP-MS 1.5 lpm  (N2/TTIP); B 0.6% Cu-TiO2 (40 nm)  
7 lpm  (O2);  Zeta P. = -9.30 +
1.6 lpm (CH4)   

0.85 

C Pristine TiO2 (40 nm)  
Zeta P. = -9.79 +0.49 

D Pristine CuO Commercial product from 
Sigma 

 
(< 50 nm) 
Zeta P. = -7.96 +0.40 

E Dissolved CuCl2 and 
CuCl (Ionic form) 

Commercial product 

In vivo microbial 
nano-toxicity   

Shewanella oneidensis  2  NPs concentrations of 
0.005 and 0.02 g/L 

Cell density  
measurements on 
exposure to NPs Mycobacterium smegmatis  NPs concentrations of 

0.005 and 0.02 g/L 

In vitro enzymatic 
inhibition  

3 Glucose assay kit Hexokinase (HK) and 
glucose-6-phophate 
dehydrogenase  

NADPH production 
under NPs stress 

Mycobacterium smegmatis 4 Control of NPs 
toxicity  

Increase of cell density; 
Addition of nutrient; 

Cell density  
measurements on 
exposure to NPs or 
ionic copper 

Addition of EDTA; 
Addition of CuCl2 

 
*Abbreviations: FLAR: flame aerosol reactor; lpm: liter per minute; TTIP: Titanium tetra-isopropoxide; SEM: 
 scanning electronic microscope; EDS: energy dispersive spectroscope; XRD: X-ray diffraction; ICP-MS: 
 Inductively coupled plasma mass spectrometry; Zeta P.: Zeta potential (in modified Sauton liquid medium, pH=6.65) 
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by scanning or transmission electron micrographs (SEM: JEOL 7001LVF, Japan; TEM: 

JEOL 2100F, Japan). SEM coupled with energy dispersive spectroscopy (EDS) was used 

to confirm the presence of copper in the nanoparticles. Cu content was further verified by 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS, Agilent, USA) analysis. 

Crystal phases of the materials were determined using X-ray diffraction (XRD, Rigaku 

D-MAX/A9, Japan). Copper oxide (CuO) nanoparticles size < 50 nm (Aldrich, USA) 

were also used to aid in the mechanistic understanding. Table 6-1 lists the characteristics 

of the nanomaterials used in the biological experiments. 

 

6.3.2. Preparation of Nanoparticles (NPs) suspension for biological experiments 

Four types of NPs (1.8% Cu-doped TiO2, 0.6% Cu-doped TiO2, pristine TiO2, CuO) were 

tested in this study. The NPs were added to sterilized DI water to make the stock solution 

(1 g/L). After ultrasonic treatment (MISONIX, USA), the NP stock was directly added 

into cell cultures for toxicity studies. The zeta potential of the NP suspensions was 

measured by Zeta-sizer (Nanoseries ZS, Malvern, UK). 

6.3.3. In vivo microbial growth experiments 

M. smegmatis and S. oneidensis MR-1 strains were stored at -80°C prior to use. M. 

smegmatis was grown in Middlebrook 7H9 medium at 37 °C and S. oneidensis MR-1 was 

grown in Luria-Bertani (LB) medium at 30 °C overnight (supplementary Table S1), 

respectively. The bacteria were then inoculated into minimal medium with an inoculation 

rate of 5%. The compositions of the minimal media (supplementary Table S-1) were: 
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modified Sauton liquid medium (for M. smegmatis) and MR-1 medium (for S. oneidensis 

MR-1).  When M. smegmatis or S. oneidensis MR-1 growth in the minimal medium 

reached middle log phase (optical density at 600 nm (OD600) about 1.0), a second 

subculture was performed by transferring the cell culture (5% inoculation ratio) into 5 ml 

fresh minimal medium for toxicity experiments. NPs were added to the subculture 

solutions usually when cell density was equal to OD600~0.1 (e.g., early exponential 

phases). The cell cultures in 50 mL falcon tubes were then shaken at a speed of 200 rpm 

(each experiment has duplicates). Cell density was monitored by a UV spectrometer 

(Genesys, Thermo Scientific, USA) at a wavelength of 600 nm. The NPs also have 

certain absorbance at OD600, so the actual cell density was obtained based on the equation 

(1) below:  

OD600, actual = OD600, measured with NPs and cells  –  OD600, measured with NPs in cell free solution   (1) 

 

6.3.4. Copper concentration measurement by ICP-MS   

In order to determine free ionic copper concentrations in the aqueous culture solutions, 

Cu-TiO2 NPs were removed from the culture by high speed centrifugation (20,000 g) for 

20 minutes, after which the supernatant was collected and filtered (0.22 µm, Nylon, 

Millipore, USA). The ionic copper (Cu2+) concentrations in the supernatant were 

determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS, Agilent, USA). 

S. oneidensis MR-1 is able to reduce metal ions and absorb NPs.[27] To monitor microbial 

remediation of total Cu-TiO2 NPs, the bacteria (treated with Cu-TiO2 NPs for three hours 

or six hours) were filtered out using 0.22 µm membrane filter (Nylon, Millipore, USA). 

The solution was further pretreated with 2% HNO3 and 0.5 % HCl before estimating the 

144 
 



total copper (including both Cu2+ and Cu-doped NPs) remaining in the cell-free solution 

by ICP-MS. Since the bacterial size is >1µm, NPs or metal copper absorbed on bacterial 

surface could be removed together with bacteria by micro-filtration, while free Cu-TiO2 

NPs or ionic copper would pass through the filter and remained in the cell-free solution. 

Due to the agglomeration of the NPs, some of them may not pass through the microfilter 

and deposit on the filter membrane, and this was observed by comparing the initial total 

copper added in cell free medium to that measured with a filtration run (Table 6-2).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6- 2: Total copper in the culture solutions 

. Strain M. smegmatis  S. oneidensis MR-1 
Total copper in cell free medium with NP A (µg/L)   

 
 
A:  
1.8% Cu -
TiO2 NPs 
(20 mg/L) 

360.5+18.0 
Micro-filtration of cell free NP A solution, total copper 
remained in the medium (µg/L) 

 326.4+16.3 

0 hr OD600 ND* 0.193+0.001 
[copper]( µg/L) ND 316.5+16.1 

3 hrs OD600 ND 0.273+0.010 
[copper]( µg/L) ND 267.5+3.4 

OD600 ND 0.349+ 
6 hrs 

0.025 
[copper]( µg/L) ND 210.8+13.8 

copper reduction 
rate from 3 hrs to 
6 hrs 

∆ [copper] / (OD600 ave× time)  ND 60.8 
=((µg/L)/Abs×hr) 

Total copper in cell free medium with NP B (µg/L)  ~125 ~130 
 
B:  

3 hrs OD600 0.213+0.6% Cu -
TiO2 NPs 
(20 mg/L) 

0.001 0.261+0.008 
[copper]( µg/L) 117.9+2.1 122.0 +0.6  

 OD600 0.397+
6 hrs 

0.006 0.359+0.015 
[copper]( µg/L) 120.9+1.4 97.6+9.8 

∆ [copper]/ (OD600 ave× time)  ~0 26.2 Copper reduction 
rate from 3 hrs to 
6 hrs 

=((µg/L)/Abs×hr) 

*NP A strongly inhibited mycobacterium cellular function, so the copper microbial reduction by mycobacterium in 

NP A medium was not discussed. 

OD600 ave is the average cell density between 3 and 6 hours culture. 
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6.3.5. In vitro study on NPs and ionic Cu toxicity via enzymatic assay kit  

The effect of NPs and ionic Cu on enzyme functions was analyzed using a D-glucose 

enzymatic assay kit (R-Biopharm, Germany). The test is based on NADPH production 

rates from glucose in the presence of enzyme hexokinase (HK) and glucose-6-phosphate 

dehydrogenase. The two enzymes convert sugar, ATP, and cofactor NADP to gluconate-

6-phosphate, ADP, and NADPH.  This enzymatic reaction is present in most biological 

systems and thus it was used as a standard test for in vitro NPs toxicity. In our 

experiment, samples with known amount of NPs or ionic copper (e.g., CuCl2) was added 

to the cell-free assay solutions (containing standard amount of NADP, ATP, the two 

enzymes, and 0.5 g/L glucose standards). The reaction was carried out in 2 mL cuvettes 

and the NADPH production rate was monitored by the UV absorbance at a wavelength of 

340 nm using a spectrometer (Genesys, Thermo Scientific, USA). If any enzyme (HK or 

glucose-6-phophate dehydrogenase) is inhibited, the production of NADPH from D-

glucose will be reduced in comparison to the control experiments (without addition of 

any stresses such as NPs). Since reactants (e.g., ATP) and the products (e.g., NADPH) in 

the enzymatic reactions are essential to cellular energy metabolism for all living species, 

this in vitro test provides a simple and fast approach to study NPs biochemical toxicity at 

enzyme level. 

6.3.6. SEM/TEM protocols  

Cellular scanning electron microscope (SEM) and transmission electron microscope 

(TEM) images were taken for the samples as described briefly. Mycobacteria smegmatis 

and Shewanella oneidensis cultures were treated with 0.02 g/L of 1.8% Cu-doped TiO2 
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NPs for one hour. The NPs mixed with the bacterial culture solution was removed from 

the culturing tube by centrifugation and fixed in 4% Paraformaldehyde/ 2.5% 

Gluteraldehyde in 0.1M cacodylate buffer (pH 7.2) overnight. Samples were post fixed 

with Osmium Tetroxide and then dehydrated in ethanol. TEM samples were embedded in 

Pelco Eponate 12 resin (Ted Pella Inc., Redding, USA). Sections were cut on an 

Ultramicrotome (Leica, Germany) and viewed in a TEM (H7500, Hitachi, Japan) at 80 

kV using the HR mode and photographed using a digital camera (Hamamatsu, Japan). 

SEM samples were dried using a critical-point drier and coated with gold/palladium by a 

sputter gun. Samples were viewed and photographed using a SEM (3000H, Hitachi, 

Japan). The overall test plan in this study is described in Table 6-1. 

 

6.4. Results  

The overall objective of the tests was to examine the toxicity of Cu-doped TiO2 to 

microgansims. To better elucidate the mechanisms, tests were also conducted with 

pristine TiO2 and CuO NPs.  These were done by performing both in vivo and in vitro 

tests.  The in vivo tests using the two species can reveal the tolerance of the 

microorganisms to NPs. In vitro enzymatic tests provided a simple and fast method to 

study the interaction of NPs with key enzymes excreted by the bacteria.  

6.4.1. The effect of NPs on microbial growth 

When the bacterial density reached 0.1 (OD600), a series of tests were conducted with all 

the four different NPs (1.8% Cu-TiO2, 0.6% Cu-TiO2 ,TiO2  and CuO) by adding them to 

a M. smegmatis or S. oneidensis MR-1 culture.  When low concentration of NPs (0.005 
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g/L) are added, the three types (A, B, C in Table 6-1) have no apparent effect on 

microbial growth (see supplemental Figure S-1). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

(a) 

(b) 

Figure 6- 1: Nanoparticles toxicity (0.02 g/L) on M. smegmatis (a) and S. oneidensis 
MR-1 (b); (○) Control; ( ) 1.8% Cu-TiO2 NPs; (□) 0.6% Cu-TiO2 NPs; (◊) TiO2 NPs. 
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On addition of high concentration NPs (0.02 g/L), the growth of M. smegmatis was 

completely inhibited by 1.8% Cu-TiO2 NPs (A, Table 1; 0.02 g/L, contains about 0.36 

mg/L total copper), and moderately negative-affected by 0.6% Cu-TiO2 NPs (B, Table 6-

1; 0.02 g/L, contains about 0.11 mg/L total copper) (Figure 1). Pristine TiO2 (C, Table 6-

1) did not show any effect on M. smegmatis (or S. oneidensis MR-1) growth even at 

higher concentrations (0.02 g / L). On the other hand, S. oneidensis MR-1 growth was 

only slightly affected by 1.8 and 0.6% Cu-TiO2 NPs at high concentrations (0.02 g/L), 

i.e., final cell density was reduced by  at most 10~20%. Since no growth stress was 

detected when M. smegmatis and S. oneidensis MR-1 were exposed to pristine TiO2 NPs, 

Cu-TiO2 NPs toxicity is apparently associated with copper and the toxicity increases with 

NPs copper content.  This was verified by tests in which the same concentration of 

pristine CuO NPs (D, Table 6-1; 0.02 g/L, contains 12.9 mg/L total copper) to test its 

toxicity to M. smegmatis and S. oneidensis MR-1 in order to further confirm this 

conclusion. The results (supplementary Figure S-2) indicated that M. smegmatis growth 

was completely inhibited by pristine CuO NPs, while S. oneidensis MR-1 still displayed 

significant growth.  

 

6.4.2. In vitro enzymatic test on ionic copper and NPs toxicity  

Copper is an essential nutrient for cell growth, but high concentrations of ionic Cu can 

produce reactive radicals and interfere with protein functions.[28, 29, 30] To quickly test the 

toxicity of NPs, a simple enzymatic assay was used to investigate the enzyme activity 

under the effects of NPs. Hexokinase and glucose-6-phosphate dehydrogenase are 

common enzymes involved in the glycolysis and pentose phosphate pathway, which 
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regulate energy (NADPH) metabolism. The enzyme activity assay can be used as a model 

test to explain NPs effect on enzyme or cofactor functions. Figure 6-2 demonstrates that 

NADPH production decreased by more than 22 % in the presence of 1.8 and 0.6% Cu- 

TiO2 NPs, even at low concentrations (0.005 g/L), while pristine TiO2 NPs did not have 

any influence on the enzyme activity.  
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Figure 6- 2: Nanoparticle toxicity in vitro test using enzyme kit; A: 1.8% Cu-TiO2 NPs; 

B: 0.6% Cu-TiO2 NPs; C: TiO2 NPs; (Diagonal line column) NPs concentration (0.02 

g/L); (Horizontal line column) NPs concentration (0.005 g/L); (Vertical line column) 

NPs concentration (0.02 g/L, with EDTA). 
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6.4.3. Specification of copper associated toxicity 

The copper in Cu-TiO2 NPs can be dissolved and releases free copper ions into the 

aqueous solution because of the large specific surface area of the NPs. After addition of 

1.8 % Cu-TiO2 NPs (A, Table 6-1) into Mycobacterium or Shewanella cultures, the NPs 

were precipitated from the well mixed culture by high-speed centrifugation (20,000 g for 

20 minutes). The free ionic copper in supernatant was measured by ICP-MS. Up to 18 

µg/L ionic copper was present in solution (~5 % wt of the total copper in Cu-TiO2 NPs). 

In order to investigate free ionic copper stresses to bacterial strains, M. smegmatis and S. 

oneidensis MR-1 were both exposed to Cu2+ (CuCl2) or Cu+ (CuCl) using similar cell 

culture conditions. Figure 6-3 indicates that the growth inhibition of M. smegmatis was 

not obvious when Cu2+ concentration was 93 µg/L, while complete inhibition of growth 

occurred at a Cu2+ concentration of 1.9 mg/L.  S. oneidensis had even higher tolerance to 

copper ions in the MR-1 medium. Furthermore, the growth profiles of M. smegmatis and 

S. oneidensis MR-1 in presence of CuCl (total copper concentration ranged from 14 µg/L 

to 1.9 mg/L) did not differ from the controls (Supplementary Figure S-3), possibly 

because CuCl has very low solubility. Such results indicate that Mycobacterium can grow 

with higher ionic copper concentrations if NPs are not present.  Thus, the inhibitory effect 

from Cu-TiO2 NPs to cells was probably due to an increased localized concentration of 

Cu2+ near the surface of the NPs.  
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(b) 

 

Figure 6- 3: The effect of [Cu (II)] on the growth of M. smegmatis (a) and S. 
oneidensis MR-1 (b); (○) Control; (∆) 18.7 mg/L; (�) 1.9 mg/L; (□) 93 µg/L; (◊) 
14 µg/L. 

152 
 



6.5. Discussion 

Previous studies [31, 32, 33] on mechanisms of NP toxicity have pointed out two hypotheses: 

(1) Very small NPs can enter the cell and change cellular structure integrity; (2) NPs 

release toxic ions and interfere with cellular metabolism rather than penetrating into the 

cell. The SEM and TEM results (Figure 6-4 and 6-5) show that NPs were not inside the 

M. smegmatis or S. oneidensis MR-1 cells and there was no apparent physical damage to 

cellular structures. SEM pictures (Figure 6-4) showed that large numbers of NPs resided 

on the S. oneidensis MR-1 cell surface, but did not lyse the cells. Such observations 

confirm that 1.8 % Cu-TiO2 NPs (A, Table 6-1) mediated its toxicity mainly through 

ionic copper. In the culture medium (i.e., modified Sauton liquid medium, pH 6.65, 20 

mg/L pristine TiO2 and 1.8% Cu-TiO2 NPs have zeta potential values of -9.79 +0.49 and 

-7.73 +0.59 mV respectively. Less negative zeta potential of Cu-TiO2 NPs explains that 

they tend to aggregate more (also illustrated by Figure 6-5). [12, 34] The agglomeration of 

the NPs increases the particle sizes (small fraction of NPs can’t pass through 0.22μm 

micro filtration due to agglomeration, Table 6-2) and may reduce its ability to 

mechanically damage cellular structure. TiO2 based NPs are negatively charged (based on 

zeta potential) and its surface appeared to be able to absorb/re-absorb positive charged 

ionic Cu. The copper in the Cu-TiO2 NPs are dissolved slowly and therefore form a more 

concentrated layer around the agglomerate structure[32, 34] , i.e., Cu-TiO2 NPs serve as a 

dissolved ionic copper carrier/concentrator (e.g., 20 mg Cu-TiO2 NPs A contains around 

360 µg total copper).  Thus, the Cu-TiO2 NPs more efficiently suppress cellular functions 

via locally concentrated ionic copper zone when they contact cells (illustrated by Figure 
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6-6). Furthermore, M. smegmatis was cultured with CuCl2 solution (Cu2+ = 360 µg/L) 

and the same CuCl2 solution with pristine TiO2 NPs (20 mg/L) respectively. 

 

 

 

 

 

 

 
 

 

 Figure 6- 4: SEM images of M. smegmatis with 1.8% Cu-TiO2 NPs  
(a) and S. oneidensis MR-1 with 1.8% Cu-TiO2 NPs (b). 

 

 

(a) (b)  

 

 

 

 

 

 

 

 

Figure 6-5: TEM images of M. smegmatis with 1.8% Cu-TiO2 NPs (a) and 

S. oneidensis MR-1 with 1.8% Cu-TiO2 NPs (b). 
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Supplementary Figure S-4 indicated that presence of none-toxic TiO2 (C, Table 6-1) 

would also enhance CuCl2 inhibition to M. smegmatis to some extent. With same amount 

of total copper content, the observed toxicity is in the following order:   20 mg/L 1.8% 

Cu-TiO2 NPs (A, Table 6-1) > 360 µg/L Cu2+ + pristine TiO2 NPs (20 mg/L) > 360 µg/L 

Cu2+ (Supplementary Figure S-4). This also indicates the combined effect from NPs and 

toxic ions may produce higher cytotoxicity to microorganisms. 

Cu-TiO2 NPs toxicity level can be influenced by cell density, addition of 

nutrients, and presence of chelating agents in the system. First, increased bacterial density 

could reduce the degree of Cu-TiO2 NPs toxicity. For example, by comparing the final 

cell density obtained from Cu-TiO2 NPs stressed cultures (0.02 g/L) to that of the control 

cultures (without NPs stresses), the stress on microbial growth was significantly 

alleviated if M. smegmatis was stressed by Cu-TiO2 NPs at higher OD600 (Table 6-3).  

This is because high cell density reduces the average amount of NPs interacting with each 

cell, resulting in lower localized ionic copper concentrations. Addition of rich nutrients 

(Middlebrook 7H9 nutrients, Table S-1) into a minimal medium promoted bacterial 

growth and also reduced the inhibition effect of NPs on the growth of M. smegmatis 

(Figure 6-7). EDTA is a chelating agent which is able to sequester di- and trivalent metal 

ions to reduce metal toxicity of ions such as Mn2+, Cu2+, Fe3+, Pb2+ and Co3+.[35]  EDTA 

may be also absorbed onto the Cu-TiO2 NPs surface to form Ti-(OH)EDTA-Cu complex 

and prevent its dissolution.[36] 
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Figure 6- 6: The effect of EDTA and nutrients addition on nanoparticle toxicity 

(M. smegmatis); (○) Control; (�) Control with EDTA; (□) 1.8% Cu-TiO2 NPs 

(0.02 g/L); (◊) 1.8% Cu-TiO2 NPs (0.02 g/L with EDTA); (∆) 1.8% Cu-TiO2 

NPs (0.02 g/L with Middlebrook 7H9 nutrients). 

After addition of 0.02 g/L EDTA to a  M. smegmatis culture solution, cells were able to 

maintain normal growth under 0.02 g/L 1.8% Cu-TiO2 NP stress (Figure 6-7). In vitro 

enzymatic assay tests also showed that EDTA significantly reduced the inhibitory effect 

of Cu-TiO2 NPs on NADPH production (Figure 6-3).  

S. oneidensis MR-1 was able to absorb Cu-TiO2 NPs during its growth (illustrated 

by Figure 6-4-b). M. smegmatis or S. oneidensis MR-1 grew with 0.02 g/L Cu-TiO2 NPs 

A or B. The total copper (including free copper ions and copper with TiO2 particles) in 

the aqueous phase (e. g., not absorbed by cells) was measured by ICP-MS after removing 

the cells using a 0.22 µm membrane-filter. The total copper concentration in the aqueous 
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phase in the M. smegmatis culture did not change significantly when it grew with Cu-

TiO2 NPs B.  However, the total copper concentration in the aqueous phase in the S. 

oneidensis MR-1 culture significantly decreased when it grew with Cu-TiO2 NPs A  or B, 

most likely by reducing copper to metal copper and immobilizing the NPs or metal 

copper on cell surfaces (Figure 6-4-b and Table 6-2). Because S. oneidensis MR-1 has 

unique Cu2+ reducing enzymatic systems on its outer membrane, it is able to tolerate 

higher concentration of metal ions and remediate soluble or insoluble copper ions.[26, 27, 29] 

Therefore, S. oneidensis MR-1 may be a potential candidate to remediate the toxic metal 

NPs in the environment.  

(b) (a) 

 

6.6. Conclusions 

Results from both in vivo (S. oneidensis MR-1 and M. smegmatis growth) and in vitro 

(enzymatic test) experiments have demonstrated that TiO2 NPs themselves may not be 

toxic to microorganisms (at the sizes and concentrations tested). However, NPs can 

enhance the cytotoxicity of metal compounds (i.e., Cu2+) possibly by creating more 

efficient interactions between metal ions and cells by forming a locally concentrated ionic 

zone near the surface of NPs.  While there are clear impacts on the environment, this 

observation may help in the design of new NPs based drugs to limit pathogen activities 

(such as Mycobacterium species). Hence, the composition of NPs (i.e., toxic ionic 

copper) is an important consideration for NPs toxicity. Meanwhile, high cell density, 

nutrient supplement or addition of EDTA, reduces the associated cellular stress by metal-

doped NPs.  Metal reducer bacterium, S. oneidensis MR-1, can reduce the toxic metals 
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via their versatile metabolisms, as well as the capability of immobilizing NPs on cellular 

surfaces.  

 

6.7. References 

  [1] M. R. Wiesner, G. V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Environ. Sci. 

Technol. 2006, 40, 4336–4345. 

  [2] P. Biswas, C. Y. Wu, J. Air Waste Manag. Assoc. 2005, 55, 708-746. 

  [3] National Research Council, Review of Federal Strategy for Nanotechnology-Related 

Environmental, Health, and Safety Research, 2008 

  [5] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 

69-96. 

  [6] A. Fujishima, K. Honda, Nature 1972, 238, 37. 

  [7] E. Sahle-Demessie, M. A. Gonzalez, J. Enriquez, Q. Zhao, Ind. Eng. Chem. Res., 

2000, 39, 48-58. 

  [8]  P. Biswas, C. Y. Wu, J. Air Waste Manag. Assoc. 1998, 48 (2), 113-127.  

  [9] G. Oberdörster, E. Oberdörster, J. Oberdörster, Environ. Health Persp. 2005, 113, 

823-839. 

[10] D. B. Warheit, T. R. Webb, K. L. Reed, S. Frerichs, C. M. Sayes, Toxicology 2007, 

230, 90-104. 

[11] C. M. Sayes, R. Wahi, P. A. Kurian, Y. P. Liu, J. L. West, K. D. Ausman, Toxicol. 

Sci. 2006, 92, 174-185. 

[12] J. Jiang, G. Oberdörster, P. Biswas, J. Nanopat. Res. 2009, In press. 

[13] Z. M. Wang, G. Yang, P. Biswas, W. Bresser, P. Boolchand, Powder Technol. 2001, 

114 (1-3), 197-204. 

[14] G. M. M. Colόn, M. C. Hidalgo, J. A. Navío, Appl. Cata. B: Environ. 2006, 67, 41-

51. 

[15] N. Namiki, K. Cho,  P. Fraundorf, P. Biswas, Ind. Engr. Chem. Res. 2005, 44(14), 

5213-5220. 

[16] C. A. Grimes, J. Mater. Chem. 2007, 17, 1451-1457. 

158 
 



[17] W. Choi, A. Termin, M. R. Hoffmann, J. Phys.Chem. 1994, 98(51), 13669-13679. 

[18] H. L. Karlsson, P. Cronholm, J. Gustafsson, L. Möller, Chem. Res. Toxicol.  2008, 

21, 1726-1732. 

[19] H. Meng, Z. Chen, G. Xing, H. Yuan, C. Chen, F. Zhao, C. Zhang, Y. Zhao, Toxicol. 

Lett. 2007, 175, 102-110. 

[20] Z. Chen, H. Meng, G. Xing, C. Chen, Y. Zhao, G. Jia, T. Wang, H. Yuan, C. Ye, F. 

Zhao, Z. Chai, C. Zhu, X. Fang, B. Ma, L. Wan, Toxicol. Lett. 2006, 163, 109-120. 

[21] N. Lewinski, V. Colvin, R. Drezek, Small 2008, 4(1), 26-49. 

[22] S. S. Mahapatra, N. Karak, Mater. Chem. Phy. 2009, In press. 

[23] P. Sanpui, A. Murugadoss, P. V. D. Prasad, S. S. Ghosh, A. Chattopadhyay, Int. J.  

Food Microbiol. 2008, 124, 142-146. 

[24] Y. J. Tang, A. L. Meadows, J. D. Keasling, Biotech. Bioeng. 2007, 96(1), 125-133. 

[25] J. M. Tiedje, Nature Biotech. 2002, 20, 1093-1094. 

[26] Y. A. Gorby, S. Yanina, J. S. Malean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. 

Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, E. A. Hill, L. Shi, D. S. 

Elias, D. W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K. H. Nealson, 

J. K. Fredrickson, PNAS  2006, 103 (30), 11358-11363. 

[27] Y. J. Tang, M. Ashcroft, D. Chen, G. Min, C. Kim, B. Murkhejee, C. Larabell, J. D. 

Keasling, F. F. Chen, Nano Lett. 2007, 7(3), 754-760. 

[28] A. Manceau, K. L. Nagy, M. A. Marcus, M. Lanson, N. Geoffroy, T. Jacquet, T. 

Kirpichtchikova, Environ. Sci. Technol. 2008, 42, 1766-1772. 

[29] A. C. M. Toes, M. H. Daleke, J. G. Kuenen, G. Muyzer, Microbiology 2008, 154, 

2709-2718. 

[30] A. Turner, N. Singh, L. Millard, Environ. Sci. Technol. 2008, 42 (23), 8740-8746. 

[31] N.  Lubick, Environ. Sci. Technol. 2008, 42, 8617–8617. 

[32] E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, R. 

Behra, Environ. Sci. Technol. 2008, 42, 8959-8964. 

[33] M. Yamanaka, K. Hara, J. Kudo, Appl. Environ. Microbiol. 2005, 71(11), 7589-

7593. 

[34] M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K. A. Dawson, PNAS 2008, 

105 (38), 14265-14270. 

159 
 



[35] M. Iijima, N. Sato, M. Tsukada, H. Kamiya, J. Am. Ceram. Soc. 2007, 90 (9), 2741-

2746. 

[36] J. K. Yang, A. P. Davis, J. Coll. Interface Sci. 1999, 216(1), 77-85. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

160 
 



6.9. Supporting Information 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

(a) 

(b) 

Figure 6-S1. Cu-TiO2 nanoparticles toxicity (0.005 g/L) on M. smegmatis 

(a) and S. oneidensis MR-1 (b); (○) Control; ( ) 1.8% Cu-TiO2 NPs; (□) 

0.6% Cu-TiO2 NPs. 
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 Figure 6-S2: Effect of CuO nanoparticles (0.02 g/L) on M. smegmatis and 

S. oneidensis MR-1 growth; (Diagonal line column) OD600 at 0 hr; 

(Horizontal line column) OD600 at 24 hrs. 
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(a) 

(b) 

Figure 6-S3: The effect of [Cu (I)] on the growth of M. smegmatis (a) and 

S. oneidensis MR-1 (b); (○) Control; (■) 18.7 mg/L; ( ) 1.9 mg/L; (□) 93 

µg/L; (◊) 14 µg/L. 
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Figure 6-S4: Toxicity comparison of 1.8% Cu-TiO2 NPs, CuCl2 solution with TiO2 

NPs and CuCl2 solution on the growth of M. smegmatis; 1: 1.8% Cu-TiO2 NPs (20 

mg/L) 2: TiO2 (20 mg/L) + Cu (II) (360 µg/L) 3: Cu (II) (360 µg/L). 
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Chapter 7:  

Role of Dopant Concentration, Crystal Phase, 

and Particle Size on Microbial Inactivation of 

Cu-Doped TiO2 Nanomaterials 
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7.1. Abstract 

The properties of Cu-doped TiO2 nanoparticles (NPs) were independently controlled in a 

flame aerosol reactor by varying the molar feed ratios of the precursors, and by 

optimizing temperature and time history in the flame.  The effect of the physico-chemical 

properties (dopant concentration, crystal phase, and particle size) of Cu-doped TiO2 

nanomaterials on inactivation of Mycobacterium smegmatis (a model pathogenic 

bacterium) was investigated under three light conditions (complete dark, fluorescent 

light, and UV light).  The survival rate of M. smegmatis (in a minimal salt medium for 2 

hr) exposed to the NPs varied depending on the light irradiation conditions as well as the 

dopant concentrations.  

In dark conditions, pristine TiO2 showed insignificant microbial inactivation, but 

inactivation increased with increasing dopant concentration. Under fluorescent light 

illumination, no significant effect was observed for TiO2. However, when TiO2 was 

doped with copper, inactivation increased with dopant concentration, reaching more than 

90% (>3 wt% dopant).  Enhanced microbial inactivation by TiO2 NPs was observed only 

under UV light.  When TiO2 NPs were doped with copper, their inactivation potential 

was promoted, and the UV-resistant cells were reduced by over 99%.  In addition, the 

microbial inactivation potential of NPs was also crystal phase- and size-dependent under 

all three light conditions.  A lower ratio of anatase phase and smaller sizes of Cu-doped 

TiO2 NPs resulted in decreased bacterial survival.  The increased inactivation potential of 

doped TiO2 NPs is possibly due to both enhanced photo-catalytic reactions and leached 

copper ions. 

166 
 



Key words: Mycobacterium smegmatis; anatase phase ratios; particle size; UV light; 

chemical composition. 

 

7.2. Introduction 

Adverse health impacts stemming from waterborne particles and microbial agents remain 

an important public health concern.  Numerous control methods are employed for water 

purification including disinfection through chlorination, ozonation, and UV-irradiation 

[1, 2].  Among these strategies, UV-irradiation is a widely used method that yields no 

byproducts; it is effective against most microorganisms [3],  and is integrated into various 

applications such as heating, ventilation, and air conditioning systems (HVAC) [4] as 

well as sterilization and medical applications.  Recent studies indicate that some species 

of Mycobacteria and viruses are resistant to UV-irradiation [1, 5].  As an alternative, 

recent advancements in nanoparticle technology have enabled the production of several 

antibacterial nanomaterials that have demonstrated powerful photo-catalytic inactivation 

of various microorganisms [5-8].  The advantages of this nanomaterial photo-catalysis 

approach include its high inactivation potential for most pathogenic microorganisms (due 

to formation of oxidizing reactive radicals), oxidation potential for organic wastes, and 

minimal formation of disinfection byproducts [5].   Additionally, there is no consumption 

of oxidizing agents, and as an added benefit, the nanomaterials can be recycled.   

The photo-catalytic inactivation potential of nanomaterial primarily depends on 

the generation of reactive oxygen species (ROS) (OH, O2
- , and H2O2) upon irradiation 

and direct contact with the microorganisms [6-9].  The reactivity of nanomaterials is a 

function of their physico-chemical properties, such as size, surface characteristics, crystal 
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phase, dopant types and concentrations, agglomeration behavior, and suspension stability 

[10-13].  Of the various nanomaterials, TiO2 is one of the most promising and widely 

used due to its low cost, chemical stability in aqueous environments and strong oxidizing 

power against microorganisms.  However, one disadvantage of using TiO2 is that it 

absorbs light only in the UV region for photo-catalysis reactions.  To shift the absorption 

range to the visible spectrum, numerous approaches have been pursued in effort to alter 

the structure of TiO2, however, doping is considered to be very promising [14-16].  

Although several doped TiO2 materials have been developed and applied for microbial 

inactivation [6, 17], processing of stable doped nanomaterials with well-controlled 

properties that can effectively harvest visible light remains a challenge.  

 In recent investigations, Cu-doped TiO2 has proven to be stable, has shown 

enhanced photo-catalytic degradation [18, 19], and has improved CO2 photo-reduction 

[20, 21].  A few studies indicate that compared to TiO2, Cu-doped TiO2 enhances 

microbial inactivation potential when treated in aqueous media under dark [22], weak 

UV, and visible light irradiation [7, 9, 23].  Other studies indicate that incorporating 

copper dopant into the TiO2 lattice structure alters the properties such as size and crystal 

phase, and shifts the absorption spectra to the visible spectrum by replacing Ti in the 

substitutional sites or in the interstitial sites. Cu-doping also alters the stability in 

suspensions [15, 24].  The altered physico-chemical properties due to dopant 

incorporation may result in different concentrations of active and defect sites that might 

affect overall performance.  However, the role of the different physico-chemical 

properties of Cu-doped TiO2 (such as composition, crystal phase, and particle size) on its 

inactivation potential under different light irradiation conditions has not been 
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demonstrated and is not well understood. To develop a better understanding and 

correlation of different material properties with inactivation potential, doped 

nanomaterial properties need to be independently controlled.  

Recent advancements in understanding the effects of process parameters in the 

flame aerosol reactor (FLAR) allow for the production of nanomaterials with strictly 

controlled properties [15, 25], and FLAR is the preferred synthesis route to manufacture 

commercial quantities.  Sahu and Biswas [15] studied in detail the synthesis of Cu-doped 

TiO2 nanomaterial in a flame aerosol reactor.  In this paper, the study is extended to 

control the nanomaterial properties independently for microbial inactivation evaluation.  

For example, to clearly correlate the inactivation potential with the crystal phase of the 

nanoparticles, the crystal phase of the particles was varied while maintaining the same 

size. 

Mycobacteria are widespread in the environment and also colonize their hosts.  

For example, billions of people around the world are infected by M. tuberculosis.  All 

mycobacterium species have thick and waxy cell walls, which make them naturally 

resistant to a number of antibiotics (e.g., penicillin) and harmful chemicals (acids, alkalis, 

detergents, etc.) [26].  Besides, Mycobacteria were found to have 2–10 times more 

resistance to UV than other bacteria, such as E. coli [1].  Some mycobacterial species 

have extremely long growth periods, making laboratory culturing a slow process.  

However, M. smegmatis is a fast-growing and non-pathogenic species which is often used 

as a model species for Tuberculosis studies [27].  In this study, M. smegmatis was an 

ideal species for analysis of the general properties of Mycobacteria.   
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The goals of this study are twofold.  First, the synthesis of Cu-doped TiO2 

nanomaterials with controlled physico-chemical properties is demonstrated.  By 

controlling the process parameters, nanomaterials with different dopant compositions 

maintaining a similar primary particle size and crystal phase were synthesized.  Crystal 

phase and primary particle size were independently varied at a fixed dopant 

concentration.  Second, the effect of copper-doped TiO2 nanoparticles (with specified 

physico-chemical properties) on the survival rates of M. smegmatis was investigated.  In 

addition, the potential interaction mechanisms of the doped nanoparticles (NPs) with the 

bacteria have been illustrated.  The study of the interaction between Cu-doped TiO2 NPs 

and bacteria under various irradiation conditions (dark, UV-light, fluorescent light) was 

conducted to demonstrate the potential application of NPs for controlling infectious 

disease (e.g., tuberculosis). 

 

7.3. Materials and Methods 

7.3.1. Nanomaterial synthesis and characterization 

TiO2 and Cu-doped TiO2 NPs were synthesized in a diffusion flame aerosol reactor.  The 

design details and description of the diffusion burner used for the synthesis of Cu-doped 

TiO2 are discussed in detail in Jiang et al [25].  Oxygen and methane were used to set up 

the flame and the flow rates were varied based on the final material properties desired.  

Titanium tetra-isopropoxide (TTIP, 97%, Aldrich) was used as the TiO2 precursor and 

copper nitrate was the precursor for the dopant.  The TTIP feed rate was controlled by 

varying the carrier gas flow rate through the bubbler.  Copper nitrate was dissolved in DI 

water and atomized by a stainless steel nebulizer before being introduced to the high 
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temperature flame in the form of fine droplets.  Doping concentration was varied by 

changing the concentration of copper nitrate in the aqueous solution. All the particles 

were synthesized by the diffusion flame aerosol reactor, except for the pristine CuO (used 

for comparison with TiO2 and doped TiO2) which was commercially obtained from 

Sigma-Aldrich. 

Particle size and morphology were characterized by scanning and transmission 

electron microscopy (SEM: JEOL 7001LVF, Japan; TEM: JEOL 2100F, Japan).  SEM 

coupled with energy dispersive spectroscopy was used to analyze the dopant in the NPs.  

Crystal phase of the synthesized materials was verified using an X-ray diffractometer 

(XRD, Rigaku D-MAX/A9, Japan).  The crystal phase composition was determined 

according to the method described by Spurr and Meyer [28].   

7.3.2. M. smegmatis cultivation and its survival under NP stress 

M. smegmatis was grown in a Sautons’ liquid medium at 37°C at a shaking speed of 150 

rpm [29].  NPs (with different properties) were suspended in sterilized distilled water to 

make the stock solutions (1 g/L).  Before use, the NP suspension was sonicated for 1 min 

(to break up any large agglomerates).  When the growth of M. smegmatis approached the 

stationary phase (OD600 ~1.0), cells were diluted with 5 ml Sautons’ salt medium (no 

carbon sources) to a concentration of 106 ~107 CFU/ml before mixing with sonicated NP 

stock solution or Cu2+ ions.  The bacterial culture was exposed to dark, fluorescent light 

(intensity-505 µw/cm2), UV light (intensity-3.07 µw/cm2) with NPs (20 mg/L) or Cu2+ 

ions for 2 hr.  Then 100 µL of sample was extracted, diluted, and spread onto the agar 

plates (Sautons’ liquid medium with 1.5% agar).  The total number of viable cells was 

estimated based on colony-forming units (CFU) after 1~2 days’ incubation at 37°C.  The 
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reported averaged CFU and standard deviations are based on multiple tests (n=4).  To 

determine the dissolution of Cu2+ from the NPs under different conditions, Cu-doped 

TiO2 NPs with cells were removed from the cultures by high speed centrifugation (19,000 

×g) for 20 min, after which the supernatant was collected and filtered (0.22 µm, Nylon, 

Millipore, USA) and then analyzed by inductively coupled plasma mass spectrometry 

(ICP-MS, Agilent, USA) [22]. 

7.3.3. Experimental plan 

Table 7-1 summarizes the experiments conducted in this study.  In the first set of 

experiments, the molar feed ratios of the precursor were varied (0.25 to 7 wt%) to 

synthesize nanomaterials with different dopant concentrations (Test-1(B-F)).  Nitrogen 

gas at 2 lpm (liters per minute) was bubbled through TTIP in a bubbler maintained at 98 

°C.  Oxygen and methane at 8 and 1.8 lpm respectively were introduced into the FLAR 

system.  TiO2 was synthesized under the same conditions to compare with the doped 

TiO2 nanoparticles (Test 1 (A)).   The dopant concentration was kept below 10 wt% so 

that the dopant would not have a significant effect on the material properties.   

The second set of experiments was aimed at varying the crystal phase 

composition while maintaining similar primary particle size, as crystal phase of the 

nanomaterials affects the microbial inactivation potential and agglomeration behavior in 

the suspension [10, 30].  The methane flow rates were varied from 0.8 to 1.8 lpm to 

control the crystal phase of the material while maintaining the particle size to be the same 

(Test 2(A-F)).   The dopant concentration was kept constant at 3 wt%, and primary 

particle size was approximately ~35 nm.   
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Table 7-1: Summary of investigated Cu-doped TiO2 NPs 

 
Test 
# 

Dopant 
Concentration 
(wt %) 

Crystal 
Phase 

Particle 
size 

Light 
Condition 

Objective 

(nm) 
Study the influence of 
nanoparticle composition 
on inactivation  potential 

~35 Dark, 
Fluorescent 
light, 

~100 % 
anatase  

0  1 A 
0.25    B 

 0.5    C 
UV-light 1    D 

3    E 
5    F 
7    G 
100 (commercial)   H 

Crystal phase effect on 
inactivation potential 

~35  Dark, 
Fluorescent 
light, 

3 39%  anatase 2 A 
50%  anatase    B 
79%  anatase    C 

UV-light 95%  anatase    D 
  

Examine the effect of 
particle size on  
inactivation potential 

 In the third set of experiments, to study the effect of particle size on microbial 

inactivation potential, particle size was varied while maintaining similar crystal phase.  

The TTIP precursor feed rate was varied from 1 to 5.5 lpm, and the residence time was 

controlled at 3 wt% dopant concentration (Test 3).  

Microbial inactivation was investigated under dark, fluorescent (intensity-505 

µW/cm2) and UV-light (intensity-3.07 µW/cm2) conditions at a dose of 20 mg/L of NPs 

for 2 hours (Test (1-3)). The light emission spectra of the UV- and fluorescent light used 

for this study are shown in Figure 7-1.  The UV-light was mainly in the UV-C region, 

3 A 
   B 
   C 
   D 
   

3 ~100 % 
anatase 

Dark, 
Fluorescent 
light, 

<20 
  33 
  59 

UV-light   69 

TiO2 100% 
anatase 

~35 UV-light Examine the effect of 
copper ions and 
nanoparticles with time on 
inactivation potential 

4 A 
Cu2+ (145 µg/L)    B 

   C 3 wt% Cu-TiO2 
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with the emission peak at 253 m, and the fluorescent light had an emission spectrum 

ranging from 400 to 800 nm, with the highest peak at 611 nm.   
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Figure 7- 1: Light emission spectra of the (A) UV light, and (B) Florescent light 
used for this study 
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Finally, to understand the potential inactivation mechanisms, the microbial 

inactivation was compared among TiO2, Cu2+ ions, and 3 wt% Cu-doped TiO2 materials 

under UV light as a function of time (Test-4). 

 

7.4. Results and Discussion  

Nanoparticles’ physico-chemical properties influence their inactivation potential for 

microbes.  To establish the dependence of NP properties on inactivation potential, there is 

a need to synthesize materials with strict control of characteristics.  The synthesis of 

doped nanomaterials is discussed first, followed by details of their microbial inactivation 

potential against M. smegmatis. 

 

7.4.1. Cu-doped TiO2 nanomaterial with controlled dopant concentration, crystal phase, 

and size  

7.4.1.1. Dopant Concentration  

Nanomaterial reactivity depends on dopant types and concentrations.  Limbach et al 

(2007) illustrated that dopant concentration is the most important factor that determines 

ROS generation by NPs.  They found optimum generation of reactive radicals for 

intermediate iron dopant concentrations in SiO2.  Based on the composition of the 

nanomaterials, the active sites may vary and generate different amounts of reactive 

species.  In this study, the effect of dopant concentration of Cu-doped TiO2 nanomaterial 

on microbial inactivation potential was investigated by varying the concentration from 

0.25 to 7 wt% (Test-1).  The dopant concentration was varied while ensuring no major 
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change in particle size and crystal phase.  The XRD diffraction patterns of the Cu-doped 

TiO2 nanoparticles prepared at different dopant concentrations are shown in Figure 7-2.  

All the particles prepared were mostly of anatase phase, as seen from the figure.  

However, the results indicate that with increasing dopant concentration, anatase to rutile 

phase transition occurred.  The phase transition from anatase to rutile is attributed to 

oxygen vacancies created due to the replacement of Ti atoms by Cu2+ ions in the crystal 

structure [15, 31].  The results are consistent with our previous study [15], where a 

detailed explanation was provided.  Other studies have reported that dopant addition to 

host material may change the crystal phase, which is also consistent with this study [16]. 

Representative TEM micrographs of TiO2 and Cu-doped TiO2 nanomaterials are shown 
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Figure 7- 2: XRD spectra of as prepared pristine TiO2 and Cu-doped TiO2 NPs with different 
dopant concentrations (A-anatase, R-rutile, particle size ~35nm) (Numbers in the parenthesis 
refer to Test # in Table 1) 
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in Figure 7-3.  The mean primary particle size measured by counting 200 nanoparticles 

from the TEM micrographs is approximately ~35 nm for all the cases.  TEM micrographs 

indicate that particles are loosely agglomerated and spherical.  To ensure that the crystal 

phase of TiO2 was primarily anatase, the copper dopant concentration was kept less than 

10 wt%.  The results indicate that the particle composition can be varied (maintaining 

similar size and crystal phase) by better understanding of the synthesis process and 

dopant effects on material properties. 

7.4.1.2. Crystal phase 

The crystal phase of NPs plays an important role in photo-catalytic applications as well as 

in microbial inactivation [10, 13, 30].  For instance, the anatase phase of TiO2 is mostly 

preferred for photo-catalytic applications [13].  Jiang et al [10] demonstrated that ROS 

generation is crystal phase composition dependent; amorphous is more active than 

anatase, followed by an anatase and rutile mixture.  The different crystal phase 

compositions lead to different arrangements of atoms in the structure and may generate 

different ROS that will affect the microbial inactivation potential.  In the second set of 

experiments (Test-2), the crystal phase of the doped NPs was controlled by varying the 

temperature and time history in the flame. The methane flow rates were changed, while 

the dopant concentration was maintained at 3 wt%.  By changing the methane flow rates 

from 0.8 to 1.8 lpm, anatase crystal phase compositions were varied from 39 to 95%, 

whereas particles remained spherical and similar in size.  The control of crystal phase 

composition is attributed to the temperature and residence time balance at different  



(B) (C) (A) 

  

 
 
 
 
 
 
 
 

 

 Figure 7- 3: TEM micrographs and particle size distribution of representative pristine TiO2 and Cu-dopedTiO2 NPs with different 
 dopant composition (Test-1) (A) Pure TiO2 (1A) (B) 1 wt% Cu-TiO2 (1D) (C) 3 wt% Cu-TiO2 (1E) 
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methane flow rates [15, 25].  The same observation was made by Jiang et al [25], who 

synthesized TiO2 NPs under different methane flow rates in a diffusion flame reactor.   

 

7.4.1.3. Particle size  

Various studies have reported that particle size is an important parameter that affects the 

catalytic activity of the materials; however no study has reported microbial inactivation 

potential of Cu-doped TiO2 nanomaterials.  The size and mobility of the nanoparticles  

will influence the microbial inactivation.  Earlier studies have demonstrated that partially 

soluble materials may be taken up into the cell by a Trojan-horse type mechanism (i.e. 

the nanoparticle is transported into the cell and then releases ions) and may enhance the 

damaging action [12].  To study the particle size effect, particles of different sizes were 

prepared at 3 wt% dopant concentration.  Particle size was controlled by varying the 

precursor feed rate as well as the residence time in the flame.  However, synthesizing 

different particle sizes with the same crystal phase is challenging.  The feed rate of TTIP 

was varied from 0.5 to 5.5 lpm (Test-3).  A corresponding amount of copper nitrate was 

dissolved in the solution to maintain the 3 wt% copper dopant concentration.  The 

particle size was varied from < 20 to 69 nm.  The XRD spectra of different size particles 

are shown in Figure 7-4.  TEM micrographs (Figure 7-5) show that all particles were of 

the same anatase crystal phase but with differing particle size.  With increasing feed rates 

and residence time in the high temperature flame, more number of particles was 

generated, and enhanced collisonal growth resulted in larger sized particles.   Studies 

show that the crystal phase of a material can be dictated by controlling both temperature 
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and the cooling rate.  The anatase phase was stabilized by a high quenching rate.  The 

results indicate that these control measures can be extended to other doped nanomaterials. 
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Figure 7- 4: spectra of as prepared pristine TiO2 and Cu-doped TiO2 NPs with 
different dopant composition (A-Anatase, R-Rutile, Particle size ~35nm) (Test-1) 
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 Figure 7- 5: TEM micrographs and particle size distribution of representative 3 wt% Cu-doped 
 TiO2 NPs with different size (Test-3) (A) 33 nm (3A) (B) 69 nm (3D) 
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7.4.2. Viability of M. smegamatis in the presence of Cu-doped TiO2 NPs under different 

light conditions 

7.4.2.1. Effect of dopant concentration on M. smegamatis inactivation  

The response of M. smegamatis to Cu-doped TiO2 NPs under different light conditions is 

shown in Figure 7-6 (Test-1).  Under dark conditions (2 hr of exposure time), pristine 

TiO2 NPs had very little effect on the cell viability compared to the control samples 

without any NPs (P-values > 0.05, Students t-test).  However, the survival of M. 

smegamatis decreased with increasing dopant concentration, indicating that Cu-doped 

TiO2 NPs have microbial inactivation potential under dark conditions.  The CFU based 

survival decreased by 90% for 7 wt% Cu-doped NPs, and the highest microbial 

inactivation potential was observed for pure CuO NPs (>95%).  The higher microbial 

inactivation potential of CuO was most likely due to release of copper ions and/or the 

high surface reactivity when NPs physically interacted with the cells [32].  Karlsson et al 

[33] have shown that release of Cu ions in the cell medium may not be the only 

mechanism for introducing toxic effects.  The toxic effects were attributed to both NP 

physical interaction with cells and the release of copper ions from NPs.  Limbach et al 

[12]  proposed that nanoparticles may enter the cytoplasm of the cell by a Trojan-horse 

mechanism  and that the inactivation capability of NPs was enhanced due to an increased 

uptake of ions into the cell structure,  disturbing its function [12].  However, Cu-doped 

TiO2 NPs tend to agglomerate in the aqueous solution, and their effective sizes were not 

much smaller than the bacteria itself [22].  Also, mycobacteria have a very thick and 

waxy cell wall.  Therefore, the Trojan horse mechanism discussed earlier may not play an 

important role here [12].  Instead, the leached Cu2+ ion, which electro-statically interacts 
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with the negatively charged cell membrane, forms a concentrated ionic zone of copper 

enhancing the microbial effects as illustrated in Figure 7-8.   
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Figure 7- 6: Response of M. smegamatis to Cu-doped TiO2 NPs with different dopant 
composition under different light conditions (Dose: 20 mg/L, Particle size: ~35 nm, 
Crystal Phase-~100 % Anatase, UV-light Intensity-3.07 µW/cm2, Fluorescent Light 
Intensity-505µW/cm2) 

 

Under fluorescent light, TiO2 had no statistically significant effect on the survival 

rate when the dopant concentration was below 3wt%.  However, above 3 wt% dopant 

concentration the NPs microbial inactivation potential was enhanced above 90% (P-

values < 0.05) (Figure 7-6) and was higher than for the dark condition at the same dopant 
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concentration.  The enhanced microbial inactivation potential above 3 wt% dopant 

indicates increased visible light photo-catalysisc reaction due to more absorption of 

fluorescent light.  Sahu and Biswas [15] demonstrated that the absorption is increased in 

the visible spectrum when copper dopant is incorporated into the TiO2 structure.  The 

absorption spectra of the Cu-doped TiO2 nanomaterials indicate that the absorption in the 

visible wavelength range (400-800 nm) increased with increased dopant concentration 

leading to increased microbial inactivation potential.  In addition, the leached copper ions 

may enhance OH radical generation, which contributes to higher inactivation potential as 

discussed below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7- 7: UV-vis absorption spectrum of the Cu-doped TiO2 
nanomaterial used for the study 
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Under UV-light illumination, M. smegamatis could tolerate UV stress (only about 

1.5-magnitude decrease in viable cells) due to its unique thick cell wall structure [26].  

The cell wall plays an important role in photo-catalytic cell inactivation efficiency, since 

the cell wall is the first barrier of the inactivation process.  Egerton et al [34] 

demonstrated that increased UV resistance of gram positive bacteria is attributed to a 

stronger cell envelope compared to gram negative bacteria.  In a similar study, Cho et al 

[35] demonstrated that differences in cell size and surface structure may lead to different 

inactivation behaviors.  Interestingly, copper doping in the TiO2 NPs reduced the viability 

of M. smegamatis under UV by over 99%.  In addition, it was observed that the survival 

rate of M. Smegmatis also depended on the Cu-doping amount: ~5 wt% Cu-doped NPs 

produced the highest inactivation under UV light.  Sato and Taya [9] observed similar 

enhanced microbial inactivation for E-coli in the presence of  Cu-TiO2, compared to TiO2 

nanostructured films. Under light irradiation, photo-catalysis reactions generate ROS 

(H2O2, OH, O2
-), which in turn react with the cell surface and disturb the structural 

integrity of the cell, leading to enhanced inactivation compared to dark conditions [7, 9, 

13].  However, the increased photo-catalytic microbial inactivation of doped NPs, 

compared to pristine TiO2 may be attributed to three factors.   First, the dopant enhances 

the photo-catalytic reaction process by reducing the electron-hole pair recombination 

rate: the interfacial charge transfer caused by the copper dopant attracts the conduction 

band electrons and thus generates more reactive radicals [20, 36].  Erkan et al [37] and 

Egerton et al [34] found similar improved bacterial inactivation, when they tested the 

effect of UV irradiated Pd-TiO2 and Fe-TiO2 nanomaterials on E-coli.  Second, Cu2+ ions 

that leached out of the doped materials had deleterious effects on bacterial functions, as 
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indicated in the experiments under dark conditions (Figure 7-8 indicates that the copper 

on the particle surface was released into the aqueous solution very quickly, in one 

minute). Third, Cu2+ may undergo a reduction reaction with the electron generated from 

the photoreaction thereby forming Cu1+ ion, which subsequently react with H2O2 to 

generate more harmful OH radicals, as shown in Figure 7-8 [7, 9].  Cho et al [35] 

demonstrated a linear correlation between photo-irradiation  generated OH radicals and  
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Figure 7- 8: Amount of copper leached from the 3 wt% Cu-doped TiO2 NP 
after introduced in the solution under different conditions (Dose-20 mg/L)  

 

E. coli microbial inactivation.   Therefore, increased OH radical formation enhances 

oxidative stress on M. smegamatis.  Sjogren et al [38] demonstrated that adding Fe3+ ions 

to the photo-catalytic process of TiO2 enhanced microbial inactivation of MS2 virus due 
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to the generation of OH radicals from the Fenton reaction. Similarly, the presence of a 

copper component in NPs eventually increased OH radical generation in aqueous solution 

and led to enhanced microbial inactivation. The change in surface defects characteristics 

and dynamic change in property that may arise due to disoulution of dopant has not been 

considered in this study and beyond the scope of this work. 

To test of our hypothesis and gain a detailed mechanistic understanding of the 

role of Cu2+ ions and nanoparticles, M. smegamatis was treated with 3 wt% Cu-doped 

TiO2 NPs, TiO2 NPs, or Cu2+ ions for different exposure times under UV-light (Test-4).  

Figure 7-9 shows the microbial inactivation potential normalized with the leached copper 

ions.  Under UV light, Cu-doped TiO2 NPs killed more viable cells than TiO2 NPs / Cu2+  
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Figure 7- 9: Response of M. smegamatis with time under UV-light irradiation for 
TiO2, 3wt% Cu-TiO2 and Cu2+ ions (145 µg/L) (Test-4) 
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ions.   Sato and Taya [9] demonstrated that the co-existence of Cu2+ ions and H2O2 

enhances the inactivation potential for E. coli by producing more reactive OH radicals.  

Similarly, the increased microbial inactivation of Cu-doped TiO2 also suggested the 

combined effect of Cu2+ ions, NPs surface reactions, and UV light, as shown in Figure 7-

10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 7- 10: A schematic illustration of M. smegamatis interaction mechanism with Cu-doped 
TiO2 NPs under dark and UV-light conditions 
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This current study indicates that inactivation under light conditions is attributed to 

the combined effect of three factors: (1) interaction of the cell with ionic copper, (2) 

enhanced formation of OH radicals, and (3) improved photo-catalytic reactions due to 

reduced electron-hole pair recombination.  The results suggest that the Cu-doped TiO2 

system is much more effective for inactivation, and the photo-catalysis reaction pathway 

can be adopted for inactivation for various bacteria. These results clearly indicate that 

bioavailable copper and exposed nanoparticle concentration have to be considered for 

ecological risk assessments, which may be different for reallife exposure scenarios. 

 

7.4.2.2. Crystal phase and particle size effects on M. smegamatis inactivation 

The reactive oxygen species generation potential of nanomaterials depends on size, 

crystal phase, and agglomeration behavior in the suspension [10, 30].  Discontinuous 

crystal planes or defects in the crystal structures of nanomaterials can influence reactive 

oxygen species generation and hence nanoparticle activity [39].  A high number of 

surface defects can result in more activity.  Higher activity has been observed for anatase 

phase TiO2 compared to the rutile phase in many studies [10].  Almquist and Biswas [13] 

found that 25-40 nm anatase TiO2 is more active than the rutile material.  Gurr et al [40] 

demonstrated that photo-catalytic oxidative damage for TiO2 is greater for an anatase-

rutile mixture than for a  pure anatase or rutile phase.  In addition, the dispersion behavior 

of the nanoparticles in the solution can significantly influence the photo-catalytic 

efficiency [24, 40].  The effects of crystal phase composition and size of Cu-doped TiO2 

NPs on the viability of M. smegamatis are illustrated in Figure 7-11.  When the anatase 
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phase ratio of Cu-doped TiO2 NPs was decreased from 95 to 70% (i.e., reduced 

agglomeration of particles), the survival of M. smegamatis dropped considerably  
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Figure 7- 11: Response of M. smegamatis to 3wt % Cu-doped TiO2 NPs under 
different light conditions with different (A) Anatase crystal phase composition 
(Particle size ~35nm) (Test-2) (B) Particle size (Crystal phase-100% anatase) 
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under all three light conditions.  Further decreasing  the anatase phase ratio reduced the 

inactivation potential even more, because the agglomeration of the nanoparticles in the 

suspension reduced the available surface area   Particle agglomeration depends on the 

iso-electric point (IEP) of the nanomaterial [24, 30, 41].  Recently, Sahu et al [24] 

reported that the IEP of 3 wt% Cu-doped TiO2 is around a pH of 6.6.  They also 

demonstrated that the IEP of Cu-doped TiO2 is greater than TiO2 alone, due to 

replacement of Ti4+ ions by Cu2+ ions in the crystal lattice.  Particles having more rutile 

phase structures have a lower IEP [30].  For all crystal phase compositions in this study, 

the pH of NP solutions was 6.5 under all light conditions.   As the anatase phase 

composition increased to 95% (pH 6.5 close to the IEP), agglomeration was promoted.  

Enhanced agglomeration resulted in less surface contact between the particles with the 

bacterial cells, and thus reduced inactivation potential.  Furthermore, photo-induced 

reactions take place at the surface of the nanoparticles. A reduction in particle size 

provides a larger surface area enhancing the photo-catalytic reactions.  The effect of 

particle size on survival of M. smegmatis is illustrated in Figure 7-11.   Microbial 

inactivation potential of M. smegamatis by NPs became less effective when the particle 

size was increased from <20 to 69 nm.  A similar phenomenon was observed in other 

studies [10].  The smaller size particles have more surface defect sites  [10], which can 

induce more inactivation compared to larger size particles.  As the particle size decreases, 

the number of surface atoms/molecules increases, changing the particle’s electronic 

structure, surface defect density, and surface sorption sites and enhancing the particle 

reactivity [42].  Studies have demonstrated that surface area of the nanoparticles may be a 

better dose metric for evaluating toxic effects.  
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Figure 7- 12: Response of M. smegamatis to 3 wt % Cu-doped TiO2 NPs under 
different light conditions normalized with different dose metrics (A) particle 
surface area concentration (B) Particle number concentration 
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The size effect based on surface area concentration and number concentrations are shown 

in Figure 7-12. The same increasing bacterial survival was observed when expressed in 

surface area and number concentrationdose parameters. Previous studies indicate that 

ROS generation is correlated with particle surface area in dark conditions for TiO2 

nanoparticles [10]. In this study ROS generation was not measured. The genartion of 

ROS may be different due to different light irradiation conditions. In addition, the 

mechanisms of potential toxic effects are very different from pristine TiO2 as discussed 

before. More detailed investigation on ROS measurement under different light conditions 

may provide better correlation with particle size, which is beyond the scope of this study. 

 

7.5. Conclusions 

Cu-doped TiO2 nanoparticles’ physico-chemical properties (dopant concentration, crystal 

phase, and particle size) were well controlled by manipulating the synthesis process 

parameters (i.e. the molar feed ratios of precursors, temperature, and time history) and 

their microbial inactivation potentials were evaluated.  The microbial inactivation 

potential increased with increasing dopant concentration under both dark and light 

conditions.  Under light conditions, the increased microbial inactivation potential for Cu-

TiO2 NPs is attributed to enhanced photoreactions and generation of more harmful OH 

radicals due to the leached copper from the surfaces of the particles. Crystal phase 

composition affects particle agglomeration (the anatase phase promoted agglomeration), 

and thus anatase phase was found to have a lower microbial inactivation potential 

compared to the rutile phase.  Due to their larger surface area, smaller size particles 

exhibited higher microbial inactivation than larger size particles. This study clearly 
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indicates that microbial inactivation potential of Cu-doped TiO2 can be enhanced after 

proper physical-chemical modifications, and is more efficient than conventional TiO2 

with UV and fluorescent light illumination. These light-activated NPs may lead to novel 

photo-induced antimicrobial reagents for environmental and medical applications. 
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Chapter 8:  

Summary and Future Directions 
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8.1. Summary 

The research conducted for this dissertation addressed fundamental aspects of doped-

nanomaterial synthesis in a high temperature gas phase process.  It explored how particles 

are formed and how important parameters control nanomaterial properties.  In addition, in 

situ nanoparticles’ charge characterization, exposure characterization, and detailed post 

synthesis characterization was conducted at different stages to relate the material 

properties with their applications.  Some of the major conclusions from this study are 

summarized below. 

 

i. A single-step diffusion flame aerosol reactor system developed earlier was 

modified for the synthesis of doped-TiO2 nanomaterials. The influences of 

important process parameters that control the doped nanomaterial properties were 

identified. The dopant and annealing conditions were found to have a strong 

effect on nanomaterial size, crystal phase, suspension stability, and absorption 

properties.  This system can be used to synthesize nanomaterials with different 

compositions, crystal phases, and different sizes and morphologies. This 

continuous process can be extended for other doped nanomaterials and is scalable. 

ii.  The in-situ charging characteristics of TiO2 and Cu-doped TiO2 were measured 

by integrating a DMA and a TDMA measurement system with the nanoparticle 

synthesis process. It was found that nanoparticles synthesized in a diffusion flame 

carry single as well as double charges depending on the particle size and dopant 

concentration. Numerical calculation identified the charging mechanism at 

different flame operating parameters, and the diffusion charging mechanism was 
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found to be dominant of particles in the flame, which was consistent with the 

experimental results. 

iii. A nanoparticle characterization methodology was developed to assess the 

exposure potential during different operating scenarios for the gas phase reactors. 

It was found that surrounding concentration levels are much higher during 

synthesis in a flame aerosol reactor than in an enclosed furnace aerosol reactor. 

Nanoparticle exposure levels also depend on product recovery and handling 

procedures, and maintenance of the reactor. Based on the exposure scenarios, 

appropriate personal protective equipment was recommended for workers 

operating flame aerosol reactors.   

iv. The roles of dopant types and concentration on dispersion properties were studied. 

It was found that dopant with an oxidation state above that of Ti shifts the iso-

electric point (IEP) of TiO2 to lower pH values, whereas dopant with lower 

oxidation state shifted the IEP to higher pH values.  The agglomeration and 

surface charge behavior of nanomaterials was found to depend on size, crystal 

phase, pH, and ionic strength. The results from this study demonstrate that the 

state of dispersion should be carefully considered, while evaluating the 

nanomaterial for toxicity, photo-catalytic action, and environmental fate and 

transport behavior. 

v. Response of two environmental microorganisms; Mycobacterial smegamitis and 

Shewanella Oneidensis was investigated by exposing them to pristine TiO2 and 

Cu-doped TiO2. Doped nanomaterial was found to have more toxic effect than 
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pure TiO2 on M. Smegamitis, although no significant effect was observed for S. 

Oneidensisunder under complete dark conditions. The study indicates that the 

agglomeration state of the suspended nanoparticles can have a significant effect 

on toxicity. The finding will help in evaluating the toxic potential effect of doped 

nanomaterials on environmental ecosystems hosting specific types of 

microorganisms. 

vi. The role of dopant concentration, crystal phase, and size on microbial inactivation 

potential was evaluated under dark, fluorescent light, and UV light conditions. It 

was found that inactivation potential depends both on light conditions as well as 

on physio-chemical properties of the doped nanomaterials. The dopant 

concentration was found to have a remarkable effect on the inactivation potential: 

inactivation increased with increased copper dopant concentration under all three 

light conditions. Inactivation potential also seems to be crystal phase and size 

dependent, and particle agglomeration in the suspension reduces the effective 

inactivation potential. 

vii. The microbial inactivation of M. Smegamitis when exposed to Cu-doped TiO2 

nanoparticles were found to combine the effect of leached copper ions and 

enhanced photo-catalytic reactions due to reduction in the electron and hole pair 

recombination under light conditions. The inactivation potential under fluorescent 

light above 3 wt% copper dopant indicates that these doped nanomaterials can be 

effectively used as antibacterial materials, which can act effectively under normal 

living light conditions. 
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8.2. Future directions 

This work demonstrated the synthesis and characterization doped TiO2 nanomaterials and 

their applications. However, as nanomaterial applications will grow; its environmental 

impacts need more attention. Some of the issues have been addressed in this dissertation 

but more exploration is required for making the nanotechnology applications viable and 

sustainable.  

The work in this dissertation addresses doped TiO2 nanomaterial synthesis in a 

laboratory scale gas phase reactor. However, for industrial scale application, the synthesis 

process needs to be scaled up. There are experimental evidences that nanomaterial 

property changes based on the different criteria used for scaling the reactor. There are 

two different approaches that can be adopted for scaling up the flame reactor. First, 

increasing the numbers of small scale laboratory reactors to increase the nanomaterial 

producion quantities. Due to many reactors, operation and maintennace of the individual 

reactors is essential. Second approach is scaling up burner dimension and other operating 

parameters to increase the production rate of materials. A detailed study is needed to 

identify the scale up parameters for producing large quantities while controlling the 

doped nanomaterial properties. Developing second generation new nanoscale materials in 

a single-step scalable process, as well as method to characterize and manipulate will 

advance the nanotechnology to broader applications in energy and the environment such 

as solar cells for energy harvesting and sensors to detect and clean environmental 

pollutants. In addition, a detail modeling approach is essential to predict the nanostructure 

and composition that give rise to desirable functional behavior. 
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Exposure to nanoparticles will potentially increase with enhanced nanotechnology 

applications.  Few characterization techniques were adopted in this work to characterize 

nanoparticle exposure. Studies have already demonstrated that various dose metrics 

should be considered while evaluating the potential toxic effects. Other dose parameters 

such as surface area of the particles should be measured to gain a more understanding of 

the potential adverse impacts arise due to nanoparticle exposure. Nanoparticle exposure 

measurement in small occupational environments such as research laboratory is helpful; 

however, continuous exposure in industrial and pilot scale plants producing nanomaterial 

will provide a better assessment of exposure to nanotechnology workers. Research on 

developing portable exposure measurement instruments will bring new advancement in 

exposure characterization. 

Detailed characterization of the nanomaterials at different stages is important to 

fundamentally understand the phenomena occurring at nanoscale. Surface defect 

characteristics and other intrinsic properties of TiO2 material changes due to doping, 

which need to be studied. For example, addition of dopant modifies the dielectric 

properties of TiO2, which affect the charge carried by the particles during the synthesis 

process. In addition, more surface characterization techniques are required to identify the 

surface defect sites that will help in correlating with the performance.  

Although nanomaterials were applied for bacterial inactivation in this work, the 

detailed mechanisms of inactivation are still not clear. Experimental evidence indicates 

inactivation potential depends on the bacterial species. More investigation regarding 

bacterial cell structures and detailed microscopic changes in cell structure after exposed 

to nanomaterials will help in understanding the inactivation behavior. In addition, various 
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other doped and composite nanomaterials should be investigated for bacterial inactivation 

using different bacterial species. The inactivation mechanisms as well as potential 

inactivation may vary from species to species. In addition, the toxicity potential of these 

nanomaterials on mammalian cell should be investigated, as the nanomaterials will be 

exposed to mammalian animals through different exposure pathways. 
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Appendix-A:  

Experimental setups  
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Figure A- 1: Digital image of the flame aerosol reactor system used for 

 
 
 
 

 

 
 

Figure A- 1: Digital image of the flame aerosol reactor system used for Cu-doped TiO2 
nanomaterial synthesis 
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Figure A-2: Digital image of the sampling system from flame aerosol reactor to TDMA 
system 
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Figure A- 3: Tandem differential analyzer system used for charge distribution measurement study. 
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 Figure A- 4: Dynamic light scattering instrument used for dipserison study 
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Appendix-B:  

Cu-doped TiO2 Nanoparticles Enhance 

Survival of Shewanella oneidensis MR-1 

under Ultraviolet Light (UV) Exposure 

 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
The results presented here were published in: 
 
Wu, B, W, Zhuang, M, Sahu, P, Biswas , and Y. J. Tang, Cu-doped TiO2 Nanoparticles 
Enhanced Survival of Shewanella oneidensis MR-1 during UV Exposure, Science of the 
Total Environment, 2011(In press). 
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B.1. Abstract  

It has been known that photocatalytic TiO2 nanoparticles (NPs) can be used as an 

efficient anti-microbial agent under UV light due to generation of reactive oxygen species 

(ROS), while Shewanella oneidensis MR-1 is a metal-reducing bacterium highly 

susceptible to UV radiation. Interestingly, we found that the presence of Cu-doped TiO2 

NPs in the cultural medium dramatically increased the survival rates of strain MR-1 by 

over 10,000-fold (incubation without shaking) and ~200 fold (incubation with shaking) 

after a 2-hr exposure to UV light. Furthermore, we observed that the DNA repair gene 

recA in MR-1 was significantly induced by UV exposure (indicating cellular damage 

under UV stress), but the influence of NPs on recA expression was not statistically 

evident. Plausible explanations to NP attenuation of UV stresses are: 1. TiO2 based NPs 

are capable of scattering and absorbing UV light and thus create shading effect to protect 

MR-1 from UV radiation; 2. more importantly, Cu-doped TiO2 NPs can co-agglomerate 

with MR-1 to form large flocs that improves cells’ survival against the environmental 

stresses. This study improves our understandings of NP ecological impacts and provides 

useful insights to application of photocatalytic-NPs for bacterial disinfection.  

 

Key words: Absorb; agglomerate ; Disinfection; Flocs; recA; Shaking  
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B.2. Introduction 

The use of nanoparticles to destroy microorganisms is an effective method for water 

disinfection (Adams et al., 2006; Rawat et al., 2007). To increase NP antimicrobial 

efficiency, irradiation of photo-catalytic nanoparticles with UV light can be employed for 

photoelectrochemical oxidation of bacterial cells (Matsunaga and Okochi, 1995). For 

example, Titanium dioxide (TiO2) NPs are widely used as photocatalysts. To enhance 

their photoactivity properties, transition metals (such as copper, silver, etc.) have been 

doped with TiO2 NPs (Hamal et al. 2010; Namiki et al., 2005; Colόn et al., 2006; Wu et 

al., 2010a). Metal doped TiO2 NPs in the anatase crystalline form is a strong bactericidal 

agent when exposed to near-UV light (Hamal et al.; Marciano et al., 2009). This is due to 

the fact that metal doped TiO2 NPs produce reactive oxygen species (ROS, such as OH●), 

which cause lipid peroxidation in membranes, DNA damage, and oxidation of amino 

acids and protein catalytic centers (Brunet et al., 2009). On the other hand, TiO2 NPs can 

agglomerate in the aqueous medium and affect the interactions between NPs and 

microorganisms. The NP agglomeration may also affect NPs’ antimicrobial activity 

(Jiang et al., 2009; Wu et al., 2010a).    

       Shewanella oneidensis MR-1 is an environmentally important bacterium which can 

use electrons from carbon substrates to reduce diverse heavy metals (e.g. Mn(III) and 

(IV), Fe(III), Cr(VI), U(VI)) (Heidelberg et al., 2002). Previous study has shown that 

MR-1 is highly sensitive to all wavelengths of UV radiation. In general, UV light 

damages cell nucleotide and the cell normal functions cannot recover without correct 

repair of DNA molecules. However, some nucleotide excision repair component genes 

(uvrA, uvrB, and uvrD) in MR-1 are not active under UV stress and thus cannot prevent 
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harmful mutations caused by UV-damaged DNA (Qiu et al., 2004; Qiu et al., 2005a; Qiu 

et al., 2005b). In addition, UV irradiation stimulates the release of Fe(II) from MR-1 

proteins, leading to additional cellular damage by Fe(II)-dependent oxidative stress 

(Ghosal et al., 2005). In this study, we focus on the responses of MR-1 to Cu-doped TiO2 

NPs under UV light condition, which can provide insights into the ecological impact of 

photoactive nanoparticles under solar irradiations.  

 

B.3. Materials and Methods 

B.3.1. Preparation of TiO2 NPs and humic acid-coated NP stock solutions.   

      A flame aerosol reactor (FLAR) with a three-port co-flow diffusion burner was used 

to synthesize TiO2 NPs (35 nm) and Cu-doped TiO2 NPs (15, 35 and 65 nm) (Jiang et al., 

2009; Wu et al., 2010a). In brief, titanium tetra-ispopropoxide (TTIP, 97%, Aldrich-

Sigma, USA) and copper (II) ethyl hexanoate (Aldrich-Sigma, USA) were used as the 

precursors to the Cu-doped TiO2 NPs. Copper (II) ethyl hexanoate was dissolved in 

xylene and atomized by a stainless steel nebulizer in the high temperature zone. Doping 

percentages were varied by feeding different molar ratios of the precursors into the high 

temperature combustion zone. The temperature and residence time of the NPs in the 

combustion zone were controlled to obtain the desired size and composition of the NPs.  

Furthermore, CuO NPs (40 nm) were purchased from Aldrich-Sigma (USA). 

Polystyrene NPs (~100 nm, served in the control experiments) were purchased from 

Duke Scientific Corporation (USA). TiO2 NPs, Cu-doped TiO2 NPs, CuO NPs, and 

polystyrene NPs were suspended in sterilized and distilled water to make a stock solution 

(1 g/L). The size distributions of NPs were measured by a dynamic light scattering 
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analyzer (Malvern, UK). The absorbance profiles of Cu-doped TiO2 NPs after the UV 

exposure were investigated by a UV/Visible spectrometer (Olis DW2000, On-Line 

Instrument Systems, USA) using a cell-free medium as the blank. 

Humic acid (HA) solution was obtained by dissolving solid HA (Sigma-Aldrich, 

USA) with 0.1 M NaOH and then adjusted to pH 5.0 by 0.1 M HCl. Humic acid-coated 

NP stock solution was prepared by mixing 20 mL NP stock solution (1 g/L) with 20 mL 

HA solution (0.4 g/L) in a sterilized glass vial. After shaking (150 rpm at 30°C) in the 

dark for 2 days, the humic acid-coated NP stock solutions were ready for the experiments 

(Yang et al., 2009; Zhang et al., 2009).  

B.3.2. MR-1 survival under NP stresses.  

  S. oneidensis MR-1 was first grown in a minimal MR-1 medium (30 mM lactate as 

carbon source) at 30°C (Tang et al., 2007). When the MR-1 growth approached OD600 

(~1.0), cells were diluted with 5 mL of minimal MR-1 medium (no carbon source) to ~ 

4×107 CFU/mL. NP stock solution was sonicated for 1 min to break NP agglomerates 

before being added to the cell cultures (final NP concentration of 2 mg/L or 20 mg/L). 

The cell cultures with NPs were incubated in sterilized glass bottles for 2 hr without or 

with shaking (200 rpm). The incubation condition was under dark, florescence light 

(1324.2 µw/cm2), or UV radiation (120.8 µw/cm2). To count the survival cells, 100 µL 

cultures (two biological and two technical replicates) were serially diluted and spread on 

the LB agar (Difco, BD, USA) plates. The total number of viable cells was estimated by 

the colony-forming unit (CFU) after 24-hr incubation at 30°C.  
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B.3.3. Observation of NP and cell morphologies by transmission electron microscopy 

(TEM), scanning electron microscopy (SEM), and optical microscopy.  

      TEM was used to observe the agglomeration of the NPs after UV exposure. The 

samples were air dried and inspected with the TEM (H7500, Hitachi, Japan) at 80 kV 

using the HR mode and photographed by an attached digital camera (FEI, USA). SEM 

was used to observe cell morphologies. After UV exposure, the cells were deposited on a 

piece of silicon wafer and were fixed using 2% glutaraldehyde for 2 hrs. The samples 

were washed three times by soaking them in 0.1 M sodium cacodylate buffer (20 minutes 

each time). The fixed cells were dehydrated in a series of 10-minute soaks in 50%, 70%, 

85%, 95%, and 100% ethanol and were subsequently dried in a freezing-drier (Labconco, 

USA). The dried cells were sputter gold-coated (SPI supplies, USA) and imaged using an 

SEM (FEI, USA) (Wu et al., 2010b). Besides, an optical microscope (Zeiss, USA) was 

used to directly observe the natural conformation of cell agglomeration, and pictures 

were taken by a built-in camera (Nikon, Japan).  

B.3.4 Transcriptional analysis of key genes by quantitative reverse transcription-

polymerase chain reaction (qRT-PCR).  

      After exposure of the MR-1 culture (OD600 ~0.1) to UV radiation (with or without 

Cu-doped TiO2 NPs) for 30 min or 2 hrs (without shaking), the cultures were recovered at 

30°C in MR-1 medium (shaking at 200 rpm). Subsequently, cell samples were taken after 

20 and 60 min. Controls were treated the same but without UV exposure. The qRT-PCR 

was performed following a protocol previously reported (Wu et al., 2010c). In brief, total 

RNA was extracted from the cell pellets using an RNAwiz kit (Ambion, Japan) according 
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to the manufacturer’s instruction.  DNA contamination was further removed by DNase 

treatment using a RQ1 RNase-Free DNase kit (Promega, USA) in accordance with the 

manufacturer’s protocol.  The extracted RNA was then transcribed to cDNA using a 

Reverse Transcriptase kit (Applied Biosystems, USA) by following the manufacturer’s 

protocol. The forward primer (5’-TGCCGAAGGTTTCGAGGTC-3’) and reverse primer 

(5’-TGATTTTAGTGCCGCCCTTG-3’) were employed to amplify the ldhA (internal 

control), and the forward primer (5’-CCTCAAGCAATCGAACACTCTG-3’) and reverse 

primer (5’-CACCCGTTGTGGTTTCTGG-3’) were used to amplify the recA genes 

(inducible genes) (Qiu et al., 2004; Qiu et al., 2005a) in the cDNA by a GoTaq® qPCR 

Master Mix kit (Promega, USA) using a real-time PCR system (Applied Biosystems, 

USA). The relative quantification method (comparative CT) was used to calculate the 

expression level of the UV-stressed cells compared to that of the unstressed cells. Three 

biological replications and three technical replications were conducted. 

 

B.4. Results and Discussion 

B.4.1.  MR-1 survival under NPs and light conditions (incubation without shaking) 

We incubated MR-1 with NPs for 2 hrs without shaking. Figure B-1A showed that 

neither TiO2 NPs nor Cu-doped TiO2 NPs reduced the viability of MR-1 compared to the 

controls under dark or fluorescent light conditions. These results confirmed that MR-1 

tolerated the Cu-doped TiO2 NP stress (Wu et al., 2010a). Three reasons explain 

resistance of MR-1 to NP stress. First, outer membrane of MR-1 (a gram-negative 

bacterium) contains lipopolysaccharides that protect the membrane from NP attack (note: 

lipopolysaccharides improve the structural integrity of cell membrane).  
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Figure B-1: S. oneidensis MR-1 survival (in the log10 scale) under NP and UV stresses. 

(A) Responses of MR-1 to NPs (35 nm) under light conditions (2 hr light exposure). Grey 

column with dot line, under UV light (2 mg/L NPs); White column with dot line, under 

UV light (20 mg/L NPs); Black column, under UV light (20 mg/L NPs) with shaking (200 

rpm); Grey column with solid line, in dark (20 mg/L NPs); White column with solid line, 

under fluorescent light (20 mg/L NPs).  

(B): Time-dependent responses of MR-1 to 1% Cu-doped TiO2 NPs (35 nm, 20 mg/L, 

incubation without shaking). (□) Cells survival after UV exposure (without NPs); (○) Cells 

survival after UV exposure (with NPs).  

(C): Particle size effect on MR-1 survival after 2 hr UV exposure (3% Cu-doped TiO2 NPs, 

20 mg/L, incubation without shaking).  

Figure B- 1: S. oneidensis MR-1 survival (in the log10 scale) under NP and UV stresses. 
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Second, MR-1 produces extracellular polymeric substances (e.g., extracellular 

proteins). Such biomaterials form physical barriers that prevent NP penetrations into cells 

(Suresh et al., 2010; Wu et al., 2010b). Third, the metal reducer MR-1 can transfer 

electrons from metabolism of organic sources to various electron acceptors and thus 

attenuates potential NP oxidative stress. For example, MR-1 enzymatically reduces the 

copper ions released from Cu-doped TiO2 NPs (Wu et al., 2010a).   

MR-1 is highly sensitive to UV light because of their unique physiology (Qiu et al., 

2004; Qiu et al., 2005a). Although UV light killed most MR-1 cells in the culture 

(survival of 5~6 CFU/mL) after a 2 hr-exposure, the presence of small amount of Cu-

doped TiO2 NPs (2 mg/L) tended to significantly increase the survival rates of MR-1 by 

up to 1,000 fold (Figure B-1A). As the NP concentration increased from 2 mg/L to 20 

mg/L, the cell survival rate further improved by 2~50 fold. This observation indicated a 

positive correspondence of the NP doses and MR-1 survival rates. Besides, SEM images 

(Figures B-2A and B-2B) revealed the cell morphology after UV exposure for 2 hrs: the 

surface structure of solitary cells was rough and lysed, while the agglomerated cells with 

NPs might maintain their normal shape. 

Cell survival rate was associated with a doping amount of copper on TiO2 NPs, UV 

exposure time, and NP sizes. First, Cu-doped TiO2 NPs (i.e., 0.25% and 1% copper) 

showed significantly higher improvement of cell survival rates compared to the TiO2 

NPs. For example, after 2 hr-UV exposure, culture with 1% Cu-doped TiO2 NPs (35 nm, 

20 mg/L) had the highest viable cell amount (~9×104 CFU/mL) among our experiments. 

Such protection was reduced when doped copper was over 5% (Figure B-1A), and CuO 

NPs had minimal effectiveness to protect MR-1 against UV stress.  
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Figure B- 2: S. oneidensis MR-1 survival (in the log10 scale) under NP and UV stresses. 

(A) SEM image of cell agglomerates in the presence of NPs;  

(B) SEM image of solitary damaged cell in the presence of NPs;  

(C) TEM image of agglomerated NPs (35 nm);  

(D) Optical microscopy image of cells without NPs (incubation without shaking);  

(E) Optical microscopy image of cells in the presence of NPs (incubation without 

shaking); 

(F) Optical microscopy image of cells in the presence of NPs under shaking conditions 

(200 rpm).  
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Second, cell survival rate was a function of UV exposure time. In the cultures 

without any NPs, viable cell number dropped sharply from ~3×107 CFU/mL to ~180 

CFU/mL after 30 minutes of UV-exposure (Figure B-1B). However, if the cultures were 

supplemented with 1% Cu-doped TiO2 NPs (35 nm and 20 mg/L), viable MR-1 number 

was over 4×105 CFU/mL after 60 minutes of UV-exposure; further extending UV 

exposure time to 2 hrs, the live cell population was still high (~9×104 CFU/mL, Figure B-

1B). Third, small size NPs were less effective in protecting cells from UV stress than the 

NPs with larger sizes (>35nm). For example, we had tested Cu-doped TiO2 NPs with 

three different particle sizes (15nm, 35nm, and 65nm). We found that MR-1 survival 

rates were lowest in the culture with 15 nm ultrafine NPs (Figure B-1C). 

B.4.2. MR-1 recA gene regulation under NP stresses and UV light 

The recA gene in MR-1 is involved in important cellular functions including cell 

division, DNA repair and maintenance, and mutagenesis (Qiu et al., 2005a).  The 

expression levels of recA gene in MR-1 after UV exposure in the absence of NPs was 

compared to those in the presence of NPs. Table B-1 demonstrates that UV exposure 

significantly induced average recA gene expression (unit: n-fold) by 5.5-fold, indicating 

that the UV radiation caused apparent DNA damage. However, the induction of recA 

gene expressions in the absence and presence of Cu-doped TiO2 NPs was not 

significantly different (P-value >0.1) under light conditions (i.e., DNA damage was not 

induced by NPs). This result suggested that the presence of NPs did not significantly 

affect recA gene expression in MR-1. Thus, the attenuation of UV stress to MR-1 was 

not due to the NP stimulation for the repair of cellular functions. 
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Table B- 1: Expression level (unit: n-fold) of S. oneidensis MR-1 after UV exposure. 

 
P-value Cells  Cells with 1% Cu-

doped TiO2 NPs  
 

Without UV exposure 1.0* 0.82 0.214 
(0.39 to 2.6)** (0.55 to 1.2) 

UV exposure for 30 min 
and recovery 20 min 

2.4 2.4 0.998 
(0.84 to 6.7) (0.83 to 6.8) 

UV exposure for 2 hr 
and recovery 1 hr 

5.5 7.5 0.713 
(1.7 to 17.7) (1.3 to 43.3) 

 
* The data presented here was normalized using ldhA as internal control and was the 

mean of 6 data points from the three biological replicates and three technical replicates. 
 
** The number in the parenthesis was the confidence intervals (95%). 

 

B.4.3. Agglomeration of NPs and MR-1 cells 

Both TiO2 and Cu-doped TiO2 NPs (~35 nm) tended to spontaneously agglomerate in the 

aqueous environments because of NP high surface forces.  The final formed bulk NP 

agglomerates had a mean particle size of ~700 to 900 nm in the aqueous medium (Figure 

B-2C), regardless of light conditions (data not shown). In addition, MR-1 (negatively 

charged cell surface) produced extracellular polymeric substances (EPS), which led to an 

co-agglomeration of cells with NPs (Wu et al., 2010a). Under non-agitation conditions, 

we found that MR-1 formed cell clusters in the medium suspension (Figure B-2D), while 

addition of NPs significantly promoted cell agglomeration, which led to the formation of 

much larger flocs ranging from a size of a few micrometers to ~20 micrometers (Figure 

B-2 E). Compared to solitary cells, the agglomerated cells usually have high survival 

ratios under environmental stresses (Monier and Lindow, 2003). Therefore, we 
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hypothesized that TiO2 based particles served as the “platform” to facilitate the formation 

of large bacterial flocs that sheltered the viable cells within the matrix from UV 

radiations (Monier and Lindow, 2003), while detailed study of NP agglomeration has 

been reported in our earlier papers (Jiang et al., 2009; Wu et al., 2010a). 

 On the other hand, we conducted experiments using HA-coated 1% Cu-doped TiO2 

or polystyrene NPs to reduce the agglomeration of NPs in the liquid medium. The HA is 

natural organic matter that influences the stability and agglomeration state of particles 

(Xie et al., 2008; Yang et al., 2009; Zhang et al., 2009). In our study, HA-coating on 1% 

Cu-doped TiO2 NPs led to an apparent decrease in a mean particle size of NP 

agglomerates from ~914 nm to ~ 380 nm (Figure B-3). In addition, the hydrophobic 

characteristics of polystyrene NPs (primary size of ~100 nm) (Habicht et al., 2008; Jiang 

et al., 2010) resulted in less agglomeration of the NPs in the aqueous solutions, where 

they had a mean particle size of ~ 230 nm (Figure B-3). Table B-2 shows that MR-1 

survival rate dropped 1.5~3 orders of magnitude when HA-coated 1% Cu-doped TiO2 or 

polystyrene NPs were mixed with MR-1 compared to that 1% Cu-doped TiO2 NPs 

(without shaking). In addition, we shook the culture vigorously (shaking speed of 200 

rpm) during the incubation under UV light. Continuous agitation could increase microbial 

exposure to UV light and reduce co- agglomeration of NPs and cells (i.e., decrease of floc 

size, Figure B-2F). As expected, shaking condition significantly reduced the viable cells 

under UV light. Under shaking conditions, cell survival rate was below 5 CFU/mL 

without any NPs, while up to 1000 CFU/mL was still observed in the presence of Cu-

doped TiO2 NPs (~200-fold improvement of cell survival rate).  
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 Figure B- 3: The hydrodynamic size distributions of NPs in the cell-free  medium. 

 Red line: TiO2 NPs; Green line: 1.0% Cu-doped TiO2 NPs (35 nm); Black line:  

 HA-coated 1.0% Cu-doped TiO2 NPs (35 nm); Blue line: Polystyrene NPs. 

 Figure B- 4: Absorbance profiles of NPs before and after UV exposure. 

 (A) 1.0% Cu-doped TiO2 (35 nm); (B) 3.0% Cu-doped TiO2 (35 nm). Solid line: 

 absorbance at the beginning of UV exposure; Dot line: absorbance after 2hr-UV 

 exposure. 

These results indicated that the protection of MR-1 by Cu-doped TiO2 NPs was less 

effective if the cells and NPs agglomeration was minimized.   
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B.4.4. Cu-doped TiO2 NPs absorbed UV light to reduce UV stress on MR-1 

TiO2 NPs can absorb the UV light or shift the absorption spectrum towards visible light 

spectrums (Wang et al., 2009). Previous study has proved that TiO2 particles (at high 

concentrations) can reduce photochemical disinfection of Escherichia coli under UV light 

due to light absorption and scattering (Matsunaga and Okochi, 1995). For example, 

concentration of TiO2 particles (2.5mg/L) can enhance UV light for disinfection of 

Escherichia coli. If the concentration of TiO2 NP was raised to 100mg/L, the survived 

cell after UV-exposure increased significantly. This study found that CuO-TiO2-based  

 

 

 

 

 

 

Table B- 2: Viable cells in the presence of NPs (20 mg/L) after UV exposure for 2 hr. 

 1.0% Cu-doped TiO2 
NPs  

HA-coated 1.0% Cu-
doped TiO2 NPs  

Polystyrene NPs 

 No shaking Shaking No shaking Shaking No shaking Shaking 
Log10 

(CFU/mL) 
4.96±0.19 2.65±0.04 3.21±0.72 1.69±0.08 1.87±0.01 ~ 0 

NP suspensions attenuated UV stress to MR-1 cells even at a very low concentration 

(2 mg/L). Figure B-4 showed that photocatalytic Cu-doped TiO2 (with 1% or 3% copper) 

displayed strong UV absorbing capabilities (270~340 nm) and thus led to a decrease of 

light transmission in the culture medium. Even under shaking conditions, Cu-doped TiO2 

NPs still effectively attenuated UV radiation into cultures (Table B-2). Compared to HA-

coated TiO2 NPs and polystyrene NPs (NPs with lower photo-activities), shaking cultures 

with Cu-doped TiO2 NPs had highest survival rate (450 CFU/mL) after 2hr-UV exposure 

(Table B-2). 
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B.5. Conclusions 

In previous studies, it has been demonstrated that photo-catalytic NPs can promote the 

efficiency of UV disinfection of bacteria. Interestingly, Cu-doped TiO2 NPs may mediate 

the UV stress to Shewanella oneidensis MR-1. NPs tend to form micrometer-sized 

agglomerates due to their special surface characteristics. During the self- agglomeration 

process, NPs may facilitate co- agglomeration with microbial cells to form larger flocs. 

Furthermore, Cu-doped TiO2 NPs effectively absorb UV light and decrease UV 

transmission in the culture medium. This hints that the presence of NPs may be beneficial 

to some vulnerable environmentally relevant bacteria under exposure to harmful sun 

light. On the other hand, prevention of cell and NP agglomerations is important for 

effective disinfection of harmful bacteria by photo-catalytic NPs. 
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Appendix C:  

Chemical Compositions and Source 

Identification of PM2.5 Aerosols for 

Estimation of a Diesel Source Surrogate   
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C.1.Abstract 

Exposure to traffic-related pollution during childhood has been associated with asthma 

exacerbation, and asthma incidence.  The objective of the Cincinnati Childhood Allergy 

and Air Pollution Study (CCAAPS) is to determine if the development of allergic and 

respiratory disease is associated with exposure to diesel engine exhaust particles.  A 

detailed receptor model analyses was undertaken by applying positive matrix 

factorization (PMF) and UNMIX receptor models to two PM2.5 data sets: one consisting 

of two carbon fractions and the other of eight temperature-resolved carbon fractions.  

Based on the source profiles resolved from the analyses, markers of traffic related air 

pollution were estimated: the elemental carbon attributed to traffic (ECAT) and elemental 

carbon attributed to diesel vehicle emission (ECAD).  

Application of UNMIX to the two data sets generated four source factors: combustion 

related sulfate, traffic, metal processing and soil/crustal. The PMF application generated 

six source factors derived from analyzing two carbon fractions and seven factors from 

temperature-resolved eight carbon fractions. The source factors (with source contribution 

estimates by mass concentrations in parentheses) are: combustion sulfate (46.8%), 

vegetative burning (15.8%), secondary sulfate (12.9%), diesel vehicle emission (10.9%), 

metal processing (7.5%), gasoline vehicle emission (5.6%) and soil/crustal (0.7%). Diesel 

and gasoline vehicle emission sources were separated using eight temperature-resolved 

organic and elemental carbon fractions.  Application of PMF to both datasets also 

differentiated the sulfate rich source from the vegetative burning source, which are 

combined in a single factor by UNMIX modeling.  Calculated ECAT and ECAD values 

at different locations indicated that traffic source impacts depend on factors such as 
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traffic volumes, meteorological parameters, and the mode of vehicle operation apart from 

the proximity of the sites to highways. The difference in ECAT and ECAD,   however, 

was less than one standard deviation. Thus, a cost benefit consideration should be used 

when deciding on the benefits of an eight or two carbon approach. 

 

Keywords: PM2.5, Receptor modeling, Diesel exhaust, gasoline exhaust, elemental 

carbon, organic carbon.   
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C.2. Introduction 

Exposure to traffic-related particles during childhood has been shown to exacerbate 

existing asthma including decreased lung function (Trenga et al., 2006), emergency 

department visits (Sun et al., 2005), wheezing in early infancy and childhood (Ryan et al. 

2007, 2009) and medication use (Schildcrout et al., 2006).  Recently, Jerrett et al. (2008) 

demonstrated an association between exposure to traffic-related pollution and the 

development of asthma.  Traffic-related sources represented by vehicular exhaust, 

contribute a major fraction to total ambient PM (Chow et al., 2007; Shi et al., 1999; 

Watson et al., 2008) and are comprised of metals, organic polycyclic aromatic 

hydrocarbons (PAH), secondary sulfate and nitrate, and elemental and organic carbon 

(EC and OC, respectively) (Hetland et al., 2005; Wichmann, 2007).  Particles arising 

from traffic sources are of particular interest because of size (primarily fine, PM2.5, and 

ultrafine, PM0.1), chemical composition, and shape (morphology).  The characteristics of 

traffic-originated particles enable them to penetrate the upper and lower airways and 

translocate to other tissues including the brain (Kreyling et al., 2002).  Approximately 

92%  of diesel engine exhaust particulates (DEP) by mass concentration are within the 

ultrafine size range resulting in high particle density concentrations that reach and deposit 

in the nasal and peripheral airways upon inhalation (EPA, 2002). Inhalation of DEP 

generates reactive oxygen species (ROS), inducing oxidative stress on nasal mucosal and 

bronchial epithelial cells leading to increased mucus production, disruption of the 

respiratory epithelial barrier and increased airway hyper responsiveness (Riedl and Diaz-

Sanchez, 2005). DEP also possess immune adjuvant properties capable of enhancing 

local nasal production of allergic cytokines and specific IgE responses (e.g., IL-4) to 
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inhaled aeroallergens, particularly in the nasal airway (Pandya et al., 2002). Recently, 

studies have suggested that particles arising from gasoline combustion may demonstrate 

similar toxicity to DEP (Seagrave et al., 2002). 

The objective of the Cincinnati Childhood Allergy and Air Pollution Study 

(CCAAPS), a longitudinal birth cohort study, is to determine if exposure to DEP during 

infancy and early childhood is associated with the development of allergic disease and 

asthma (Martuzevicius et al., 2004).  In order to examine the relationship between 

exposure to traffic-related air pollutants and health effects in the CCAAPS cohort, a land-

use regression (LUR) model was developed. This LUR model utilized a marker of traffic-

related particles thought to be dominated by DEP (Ryan et al., 2007; Ryan et al., 2008), 

the fraction of elemental carbon attributable to traffic (ECAT). ECAT was derived by 

applying two commonly used receptor modeling techniques for source apportionment to 

ambient data, positive matrix factorization (PMF) and UNMIX (Henry, 2003; Kim and 

Hopke, 2004a; Lee et al., 2006; Lewis et al., 2003; Maykut et al., 2003; Polissar et al., 

2001).  Hu et al. (2006) applied UNMIX receptor modeling to PM2.5 data collected at two 

CCAAPS sampling sites in order to identify four possible major polluting sources: 1) 

combustion related sulfate sources, 2) traffic related sources, 3) metal processing 

industries and 4) soil/crustal sources.  In the CCAAPS cohort, exposure to increased 

levels of ECAT during infancy was associated with wheezing prior to age one (Ryan et 

al. 2007).  Further, children exposed to high levels of ECAT and endotoxin in their home 

prior to age one had greater than a five-fold increased risk for persistent wheezing at age 

three when compared to children exposed to low levels of ECAT and endotoxin (Ryan et 
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al., 2009).  Sucharew et al. (2010) reported that traffic exhaust exposure (quantified by 

ECAT) may be a risk factor for night cough in young children. 

More recently, source sampling of diesel and gasoline vehicular emissions and 

subsequent analysis of the carbon fractions by the temperature resolved thermal optical 

method indicates that gasoline and diesel sources can be differentiated based on the 

abundance of individual carbon sub fractions (Cao et al., 2006; Chow et al., 2004; 

Watson et al., 1994). OC and EC fractions and the organic pyrolyzed organic carbon 

(OPTRC) are measured at different temperature steps. PMF receptor modeling analysis 

using temperature resolved eight carbon fractions for PM2.5 data from Seattle, WA 

(Maykut et al., 2003),  Atlanta, GA (Kim et al., 2004), Washington, DC (Kim and Hopke, 

2004b), Georgia and Alabama (Liu et al., 2006), and St. Louis (Lee et al., 2006) 

illustrated that diesel and gasoline vehicle sources can be delineated.  

The objective of this study was to improve the identification of source contributions 

by differentiating gasoline and diesel vehicle emissions using temperature resolved eight 

carbon fractions.  In addition, the potential for combining the sampling data obtained at 

different sites into one dataset for source apportionment when the sampling sites are in 

close proximity was examined.  UNMIX and PMF are applied to the same dataset 

containing only EC and OC carbon fractions estimated by the NIOSH method.  In 

addition, UNMIX and PMF are applied to eight temperature resolved carbon fractions 

estimated by the IMPROVE protocol (Chow et al., 1993). The major sources identified 

by both modeling techniques are compared.  The EC attributed to individual traffic 

sources (diesel and gasoline) is derived based on the resolved sources from the receptor 

modeling.  
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C.3. Materials and Methods 

C.3.1. Ambient PM2.5 sampling and chemical analysis methods   

For the epidemiological study undertaken in the Greater Cincinnati area, sampling was 

conducted at 24 sites of the CCAAPS network (Figure C-1). Details regarding the 

monitoring sites can be found in previous publications (Hu, 2007; Hu et al., 2006).  

Ambient data obtained at eleven selected sites between 2002 and 2006 were utilized for 

this analysis. These extensive data base provides more representative source profiles and 

contributions than modeling conducted with a few datasets.  

Twenty-four hour integrated ambient air sampling was conducted nominally from 

0900 am to 0900 pm (+1 day).  37-mm Teflon-membrane filters (nominal pore size = 1 

µm) (Pall Corporation) and 37-mm quartz-filters (Whatman Inc) with Harvard-type 

impactors (Air Diagnostics and Engineering Inc.) were used for collecting PM2.5 samples.  

Teflon filters were conditioned at a temperature of 22-24oC with a humidity of 30-40 % 

for at least 24 hours for temperature and humidity equilibration at Washington University 

in St. Louis (Hu et al, 2006). The difference in weight of the filter samples after sampling 

and before sampling were used to determine the PM2.5 mass concentrations.   X-ray 

fluorescence (XRF) technique was used to analyze the Teflon filters for ambient 

elemental concentrations (Chester Labnet).  A total of 39 elements were analyzed and 15 

chemical species (Al, Si, S, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Pb) were 

consistently present in the analyzed samples (Hu et al., 2006).  More details regarding the 

advantage of XRF elemental measurements, quality control, and comparison with other 

methods can be found in our previous studies (Reponen et al., 2003; Martuzevicius et al., 

2004).  The detailed sampling procedure and analytical methods adopted for the  
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Figure C- 1: Schematic diagram of the sampling locations (11 Cincinnati Childhood 
Allergy and Air Pollution Study (CCAAPS) sampling sites).  Abbreviation of the 
sampling locations is given below 

. (Blue Ash (BLU), Brighton (BRI), Cheviot (CHE), Covington 1(COV1), Green Hills 

(GRE), Groesbeck (GRO), Montogomery 1(MON1), Montgomery 2(MON2), Newport 

(NEW), Norwood 2 (NOR2), St. Bernard (STB). CCAAPS network sampling sites are 

described elsewhere (Hu, 2007; Martuzevicius et al., 2004).  
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CCAAPS network sampling sites are described elsewhere (Hu, 2007; Martuzevicius et 

al., 2004).  

The quartz filters were sectioned into two halves to measure the carbon fractions. The 

first half of the filters was analyzed by the thermal optical transmittance (TOT) technique 

using the NIOSH-5040 method (Birch and Cary, 1996) to determine EC and OC 

concentrations (Sunset Lab). The other half was frozen, preserved, and then analyzed by 

the Interagency Monitoring of Protected Visual Environments (IMPROVE) thermal 

optical reflectance (TOR) protocol (Chow et al., 1993) for eight temperature resolved 

carbon fractions (Desert Research Institute).  According to this protocol, OC fractions are 

measured at four different temperature steps: O1TC at 120 °C, O2TC at 250 °C, O3TC at 

450 °C, and O4TC at 550 °C in 100 % helium (He) atmosphere.  The three EC fractions 

were measured in a mixture of 2% oxygen/98% He: E1TC at 550 °C, E2TC at 700 °C, 

and E3TC at 800 °C.  Pyrolyzed carbon (OPTRC) was determined based on the laser 

response (laser reflectance is monitored until it returned to its initial value).  In 

IMPROVE method, EC1 measurement includes OPTRC.  In this study, OPTRC has been 

subtracted from the EC1 before using as an independent variable in the modeling.  The 

detailed analysis procedure for the eight carbon fractions has been described in Chow et 

al.  (2007) and Chow et al. (1993).  The total carbon was estimated by this method as 

TC= OC (O1TC + O2TC + O3TC + O4TC + OPTRC) + EC (E1TC + E2TC + E3TC). In 

this study, 203 samples were used for which both the EC and OC concentration 

measurements and eight carbon fraction measurements were available. To directly 

compare the source estimates from the model, sampling data sets with samples having 
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both carbon fractions and temperature resolved eight carbon fraction measurements were 

used.  

Data from all the sampling stations were combined to form large datasets, which is a 

step forward from the earlier receptor modeling  study that relied on a few samples 

collected at the CCAAPS sampling sites (Hu et al., 2006).  The CCAAPS sampling sites 

are very closely located within a dimension of 35 km × 40 km.  The pollutants from any 

local source will have a fair chance to have potential impact on receptors anywhere 

within the CCAAPS sampling network, during the 24-h sampling period.  The relative 

strength of the impact on an individual receptor is dependent on the proximity of that 

receptor to the source, but the source profiles will be the same for different receptors.  

However, combining the data from all the sites into one dataset may produce higher 

uncertainties in model predictions.    

C.4. Model Description and Calculation 

Receptor modeling assumes mass conservation to apportion different source categories 

for ambient particulate matter. It can be explained in general terms as the impact of N 

independent sources on the receptor site for all chemical species in a given sample: 

                                                                                                            (1)  ij

N

k
kjikij fgx ε+= ∑

=1

where   xij is the jth species concentration measured in the ith sample, gik is the particulate 

mass concentration from the kth source contributing to the ith sample.  fkj is the jth species 

mass fraction in the kth source and ijε  is the error estimate.  

UNMIX (Henry, 2003) and PMF (Maykut et al., 2003; Paatero, 1997; Polissar et al., 

2001) provide solution to equation (1) based on two different mathematical approaches.  
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UNMIX determines the edges in the dataset. The number and direction of the edges 

depends on the number of species chosen for the UNMIX model.  UNMIX incorporates 

the algorithm “NUMFACT”  that estimates the number of factors in the data using 

principal component analysis on randomly sampled subsets of the original data (Henry, 

2003).  PMF derives a solution that minimizes an object function, Q, which is determined 

based on the uncertainties associated with individual measured data, subject to 

nonnegative constraints (Polissar et al., 2001).  The objective function is defined as: 

                                                                                                (2)                                                        [ ]2
1

1∑
∑

∑
=

=

×−
=

m

k ij

kjik

N

k
ikn

i

fgx
Q

σ

where ijσ  is an uncertainty estimate in the jth species measured in the ith sample. A PMF 

solution is not as sensitive as UNMIX to the choice of input species. The combined 

dataset has been analyzed by both UNMIX (EPA UNMIX 6.0) and PMF (EPA PMF 3.0) 

to identify the source profiles and contributions. Details about both UNMIX and PMF 

modeling techniques can be found in the literature (Henry, 2003; Paatero, 1997).  

Some of the key aspects of the receptor modeling approach are post processing of the 

datasets, identifying the outliers in the datasets, and assigning uncertainty to the measured 

species, all of which  influence the modeling results.  For UNMIX modeling, species 

having a signal/noise ratio greater than 2 and a minimum R2 of 0.8 were used to filter the 

sources.  For initial runs, good edge species obtained by plotting the PM2.5 mass versus 

species concentration were chosen to find minimum possible solution (Henry, 2003; Hu 

et al., 2006).  Additional species were included to test the stability of the solution and 

determine if this measure could enhance the identification of sources with respect to the 

number and resolution.  For datasets consisting of two carbon fractions, species chosen 

238 
 



for the model runs were, EC, OC, Al, Si, S, Fe, Cu, Zn, Ca, Se, Pb, Ti, and Ca. For 

datasets consisting of eight carbon fractions species chosen were O1TC, O2TC, O3TC, 

O4TC, OPTRC and E1TC in place of EC and OC fractions.  However, with the addition 

of the E2TC and E3TC fractions, feasible solutions for source profiles could not be 

found.  For the chosen four source factor solutions, the minimum R2=0.82 and 

signal/noise ratio was 3.31 for the eight temperature resolved carbon fractions, and 

R2=0.84 and signal/noise ratio equal to 2.73 for the two non-temperature resolved carbon 

fractions.  When more species were added, five sources were resolved. Since many 

species concentrations were negative in one of the resolved profiles, a four-source 

solution was finally chosen for this study. 

In PMF modeling, the number of factors is determined by experimenting and finding 

the optimal number based on the physical meaningful sources. The uncertainty values for 

the different species were chosen according to the values reported for the U.S EPA 

Speciation Trends Network (STN ; part of the Chemical Speciation Network [CSN]) 

(Kim et al., 2005).  To minimize the influence of extreme values on the PMF solution, a 

robust mode was chosen in this study.  Based on the signal/noise ratio of the species, 

values less than 1.5 were qualified as weak.  For some of the species, O1TC, OPTRC and 

E1TC were assigned higher uncertainty because of the uncertainty associated with their 

measurements (Kim and Hopke, 2004b; Kim et al., 2004).  The resulting PMF source 

profiles were derived based on trial and error evaluation of the solutions.  
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C.5. Results and Discussion 

C.5.1.1. Ambient PM2.5 concentration 

The PM2.5 and elemental concentrations differed between sampling sites.  The locations 

near interstate highways, the main pathway for heavy diesel vehicles, showed higher 

levels of EC and traffic-related elements such as Fe, Cu, Mn, Pb, Al and Si. The average 

PM2.5 concentration ranged from 12.6 ±5.1 µg/m3 at Groesbeck to 24.2±19.5 µg/m3 at 

Newport.  The major reason for variation is the site location.  The Newport site is located 

in the downtown area which is very close to I-471 while the Groesbeck site is in suburban 

area within 400 m from the Ronald Reagan highway.  The average PM2.5 concentrations 

as well as the concentrations of metals are presented in Table C-1 for all the sampling 

locations.  Overall, a lower spatial variation in PM2.5 (CV=21%) was observed 

throughout the sampling periods.  Martuzevicius et al. (2004) measured the spatial and 

temporal variation of the PM2.5 concentration and composition at 11 locations of 

CCAAPS during the field campaign from December 2001 to November 2002 and found 

very little variation in PM2.5, which is consistent with the observations of this study.  

However, the temporal variations in PM2.5 concentration observed at specific sites in this 

study were relatively high with the coefficient of variation ranging from 26% to 80%.  

The low overall variation in PM2.5 concentration may be due to high temporal variation in 

PM2.5, and indicates the contribution of regional sources and long range atmospheric 

transport of the fine particulate matter (Gehrig and Buchmann, 2003; Martuzevicius et 

al., 2004). The concentration was greater at city centers than in suburban and rural areas, 

which likely resulted from the merger of interstate highways and increased traffic near 

the city.  
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C. 5.1.2. Elemental composition of ambient PM2.5   

As many as 39 elements were analyzed by XRF.  Table C-1 sumarizes the results 

obtained after blank were substracted for the elements, which were present in significant 

amounts and/or served as markers for relevant sources. Among crustal element 

concentrations, the average aluminum  varied from 14.1±13.2 to 84.3 ±67.5 ng/m3, 

silicon from 34.2±42.4 to 290.7±265.2 ng/m3, and calcium from 32.9±61.8 to 

306.1±358.6 ng/m3; all with the lowest levels at Blue Ash and the highest at St. Bernard.  

Among traffic source elemental concentrations, iron varied from 56.6±57.0 ng/m3 

(Blue Ash) to 302.9 ±316.5 ng/m3 (St. Bernard), and zinc varied from 12.6±7.9 ng/m3 

(Montogomery2) to 65.9±111.0 ng/m3 (Bridgeton).  The relative abundance of different 

trace elements varied depending on the locations and relative impact of the local 

pollution sources. Calcium, silicon and iron concentrations were relatively higher at 

Brighton, St. Bernard and Newport compared to other locations. The relatively higher 

variation in the trace elements compared to PM2.5 indicates that these elements originated 

mostly from local pollution sources.  The concentration of sulfur ranged from 

946.3±294.4 ng/m3 (St. Bernard) to 2257.6±1389.3 ng/m3 (Covington1). Sulfur showed 

the highest concentration among all the elements analyzed and varied with season, which 

is likely due to the impact of 14 coal fired plants located along the Ohio River Valley and 

secondary sulfate conversion.  



Table C- 1: Average PM2.5 concentrations and its elemental compositions of samples collected at different sites (No of samples 
at each site is in the braket)
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EC        
(µg/ m3)

OC        
(µg/m3)

Na Al K Ca Si Fe Zn S
Other 
metals

Brighton (29) 17.7± 8.5 1.2± 0.7 3.5± 1.9 54.6±  
51.2

60.1±  
121.9

69.1±  
36.5

138.5±
86.3

168.2±
242.2

181.1±
124.9

65.9±
111.1

1358.10±
895.9

70.9± 
44.1

Cheviot (35) 18.4± 9.8 0.5± 0.3 3.3± 1.6 39.8± 
35.8

48.7± 
87.0

69.2±
58.2

64.3± 
35.8

118.9±
174.9

89.7± 
59.1

14.3±
8.2

2035.8± 
1456.9

44.6± 
21.2

Montgomery 1 
(20)

16.4±10.7 0.4± 0.2 3.3± 1.6 33.6± 
42.1

30.1± 
25.9

67.8±
42.8

46.7± 
22.9

65.9± 
42.3

70.2± 
34.7

15.9±
14.6

1515.3± 
1121.1

38.9± 
22.1

Covington 1 
(21)

23.2±10.5 0.9± 0.5 4.8± 1.4 78.5± 
102.2

31.1± 
18.1

60.7±
24.7

78.7± 
36.0

91.1± 
40.2

133.5±
79.0

12.8±
5.7

2257.6± 
1389.3

50.7± 
20.3

Norwood 2 (33) 19.8±9.4 0.8± 0.5 4.0± 1.6 46.4± 
49.2

48.4± 
27.6

71.5±
31.4

88.8± 
54.8

118.9±
71.7

148.0±
85.3

33.0±
21.1

1589.1± 
1054.7

57.1± 
20.9

Montgomery 2 
(12)

13.2±5.2 0.4± 0.2 2.5± 1.3 40.1± 
29.3

26.2± 
23.1

52.0±
9.8

52.5±2
5.8

60.9± 
33.8

73.0± 
50.6

12.6±
7.9

1301.0± 
740.4

32.8± 
7.7

Newport (9) 24.2±19.5 0.5± 0.2 3.0± 0.6 139.2±
241.8

30.0± 
13.2

73.9±
29.5

115.5±
61.8

105.2±
42.4

140.1±
57.0

18.6±
9.8

1369.4± 
760.8

87.8± 
132.9

Blue Ash (10) 14.2±3.9 0.3± 0.1 1.6± 0.8 27.3± 
241.8

14.1± 
13.2

44.0±
29.5

32.9± 
61.8

34.2± 
42.4

56.6± 
57.0

30.7±
9.8

1204.4± 
760.8

28.9± 
132.9

Green Hills 
(15)

15.8± 8.1 0.3± 0.2 2.3± 1.3 38.1± 
40.1

30.6± 
23.1

55.4±
23.0

43.8± 
27.4

69.9±4
6.8

59.1± 
27.8

13.2±
7.1

1647.0± 
1177.5

29.9± 
14.2

St. Bernard 
(10)

15.4± 7.3 1.3± 0.8 4.1± 2.8 71.4± 
65.3

84.4± 
67.5

84.9±
61.2

306.1±
358.6

290.7±
265.2

302.9±
316.5

37.0±
25.4

946.3± 
294.4

97.8± 
81.4

Groesbeck (9) 12.6± 5.1 0.4± 0.1 2.6± 1.0 37.5± 
21.8

24.2± 
10.7

52.5±
19.1

58.5± 
18.9

78.1± 
32.1

65.7± 
34.4

13.5±
9.6

1079.5± 
792.8

32.6±  
8.5

Sampling site PM2.5 

Concentrat
ion (µg/m3)

Elemental Composition of PM2.5 (ng/m3)



C.5.1.3. Elemental and organic carbon fractions 

Elemental and organic carbon fractions of the measured PM2.5 serve as markers for diesel 

and gasoline engine emissions. Temperature-programmed elemental and organic carbons 

were measured according to the IMPROVE-TOR and the NIOSH5040-TOT methods to 

compare results for diesel and gasoline vehicular emissions (Chow et al., 2001; Chow et 

al., 1993).  The concentrations of the elemental and organic carbon fractions as well as 

Table C- 2: Elemental and organic carbon concentrations of samples collected at 
different sites 

IMPROVE METHODb

EC (µg/m3) OC (µg/m3) EC/OC EC (µg/m3) OC (µg/m3) EC/OC

Brighton 1.2±0.7 3.5±1.9 0.33 1.4±0.9 2.8±1.3 0.50

Cheviot 0.5±0.3 3.3±1.6 0.15 0.8±0.5 2.6±1.1 0.29

Montgomery 1 0.4±0.2 3.3±1.6 0.13 0.7±0.5 2.5±1.1 0.30

Covington 1 1.0±0.5 4.8±1.4 0.20 1.7±0.8 3.4±0.9 0.51

Norwood 2 0.8±0.5 4.0±1.6 0.19 1.3±0.7 3.1±1.2 0.41

Montgomery 2 0.4±0.2 2.5±1.3 0.14 0.7±0.4 2.4±1.2 0.29

Newport 0.5±0.2 3.0±0.6 0.15 0.7±0.2 3.0±0.9 0.24

Blue Ash 0.3±0.1 1.6±0.8 0.18 0.5±0.3 1.2±0.6 0.38

Green Hills 0.3±0.2 2.3±1.3 0.15 0.5±0.3 2.0±1.2 0.26

St. Bernard 1.3±0.8 4.9±2.9 0.26 2.1±1.5 3.2±2.0 0.63

Groesbeck 0.4±0.1 2.6±1.0 0.15 0.5±0.2 2.2±1.0 0.23

Sampling site NIOSH METHODa

a NIOSH-5040 method (Birch and Cary, 1996) 

b IMPROVE temperature protocol (Chow et al., 1993)  
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methodologies. (B) EC and OC variation at different sampling locations estimated from 
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the EC/OC ratios are presented in Table C-2. EC concentrations ranged from 0.3±0.1 

µg/m3 (Blue Ash) to 1.3±0. 8 µg/m3 (St. Bernard) and OC concentrations ranged from 

1.6±0.8 (Blue Ash) to 4.9±2.9 µg/m3 (St. Bernard), as determined with NIOSH-TOT. 

However, the IMPROVE-TOR method revealed different EC and OC concentration 

ranges: 0.5±0.3 to 2.1±1.5 µg/m3 and 1.2±0.6 to 3.2±1.0 µg/m3 respectively. Differences 

between the two methods are due to greater influence from charring of organic vapors 

adsorbed within the quartz-fiber filters on TOT compared to TOR (Chow et al., 2004) .  

However, the TC measured by both methods correlated very well (r2=0.97), as shown in 

Figure C-2.  The EC/OC ratio varied from 0.1 to 0.3 (NIOSH method) and 0.2 to 0.6 

 (IMPROVE method).  The higher EC/OC ratio observed at St. Bernard and Brighton. 

The St. Bernard site located near a major industrial area and a school bus depot; it was 

also within 400 m from interstate highway I-75, whereas the Brighton site located in the 

downtown area and close to interstate highway I-75.  Different EC/OC ratios reflect the 

degree of impact of traffic sources on the sampling locations. Certain fractions of EC and 

OC are rich in diesel and gasoline emissions compared to contributions from other 

sources, which provides signatures for understanding the difference between traffic 

sources (Cao et al., 2006; Watson et al., 1994). This difference is discussed in section 

4.2.3 in association with the modeling results.   
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C.5.2. Results from UNMIX and PMF Modeling 

C.5.2.1. Identified source profiles  

Four factors were derived by UNMIX using both EC and OC fractions obtained with the 

NIOSH method and IMPROVE temperature-resolved eight carbon fractions. The major 

source factors derived from UNMIX, based on relative contributions included: 

combustion related sulfate source (61.9%), traffic source (23.5%), metal processing 

(11.2%) and soil /crustal source (3.9%). The relative contributions derived from the 

UNMIX evaluated with eight carbon fractions were similar except for traffic sources 

(Table C-3).  PMF identified six sources using two carbon fractions, but could not clearly 

separate diesel emission source and gasoline vehicle sources.  PMF using temperature 

resolved eight carbon fractions resolved seven sources with clear separation between 

individual traffic sources.  PMF also identified two sulfate sources and one vegetative 

burning source; whereas these sources were regrouped into one source in UNMIX 

modeling.  The major factors and source estimates derived by PMF are as follows: 

combustion sulfate (46.8%), vegetative/wood burning (15.8%), metal processing (7.5%), 

secondary sulfate (12.9%), soil/crustal (0.7%) diesel vehicle emission (10.9%) and 

gasoline vehicle emission (5.6%). Brief explanations of the derived source profiles by 

PMF are given below.  
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Table C- 3: Average source contribution (%) to PM2.5 estimated from the UNMIX 
and PMF models 

Source UNMIX with 
two carbon 
fractions

UNMIX with 
eight carbon 

fractions

PMF with two 
carbon 

fractions

PMF with eight 
carbon fractions

Soil/Crustal 3.9±4.1 4.3±4.6 0.6±0.4 0.7±0.4

Vegetative/wood  
Burning

25.3±1.7 15.7±1.0

Combustion sulfate 61.9±8.3 66.4±7.8 46.1±0.6 46.8±0.7

Secondary sulfate 10.8±1.3 12.9±0.5

Metal Processing 11.2±3.8 10.17±4.4 7.7±0.4 7.5±0.3

Diesel Vehicle 10.9±1.9

Gasoline Vehicle 5.6±1.4

Total Traffic 23.5±6.2 18.7±5.5 9.5±2.4 16.5

 

Sulfate source 

PMF identified two sulfate related sources for both the datasets.  The percentage 

contributions estimated by PMF were 46.1% and 10.8 % using two carbon fractions, 

whereas estimated contributions were 46.8% and 12.9% for datasets consisting of eight 

carbon fractions for combustion sulfate and secondary sulfate, respectively.  These 

sources were characterized by relatively high concentrations of sulfur. The seasonal 

variation of sulfur concentrations (higher in summer and lower in winter) confirmed that 

the source is secondary sulfate. These two sources respectively contributed 73.8% and 

11.1% to the total sulfur concentrations. Some trace elements Si, Fe, and Al are 

associated with the secondary sulfate source, which is consistent with previous studies 

(Liu et al., 2006). The sum of the contributions of both sulfate sources of 56.9% is 

consistent with the previously reported values of 56% for sulfate related sources (Kim et 
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al., 2004) and in good agreement with the contribution estimated by UNMIX modeling at 

the CCAAPS sampling site (Hu et al., 2006). 

Traffic sources 

A single traffic source was resolved by applying PMF to a dataset consisting of two 

carbon fractions.  The signatures of this source were a relatively high abundance of EC, 

OC, Fe, Mn, Cu and Zn fraction.  Fe, Cu, Zn are major additives to lubricating oils; Zn is 

also associated with other transportation activities such as brake and tire wear (Lough et 

al., 2005) and  Mn is an additive are used to improve engine efficiency (Lewis et al., 

2003).  The estimated EC/OC ratios were 0.35 and 0.81 for two carbon fractions and 

eight carbon fractions datasets, respectively. The difference in the EC/OC ratios of the 

derived traffic source profile obtained using two carbon fractions and the temperature 

resolved eight carbon fractions may be attributed to the different amounts of EC and OC  

methods, which is consistent with our model results.  In a source profile analysis by 

estimated by the two measurement protocols (the NIOSH and IMPROVE methods).  This 

difference is consistent with our ambient analysis, in which the EC fraction estimated by 

IMPROVE was higher compared to the one determined with the NIOSH method and in  

most instances OC was lower, although the estimated TC values correlated very well 

(R2=0.97).  Lewis et al. (2003) observed the difference in source contribution by applying 

UNMIX modeling to two carbon fractions analyzed by the NIOSH and IMPROVE 

Watson et al. (1994), the EC/OC ratio was reported to be 0.45 for gasoline fueled vehicle 

exhaust, 0.83 for diesel-fueled vehicle exhaust, and 0.90 for a mixture of vehicle types in 

roadside tests from Phoenix, AZ.   
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Cao et al. (2006) reported EC/OC ratios varying from 0.6 to 1.2 for traffic sources with 

an average value of 1.  In this study, the EC/OC ratios were found to be 0.82 for the Cao 
 

 Figure C- 3: Comparison PMF derived source profiles using EC and OC carbon 
 fraction    (blank column) and temperature resolved carbon fraction (hatched column) 
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Cao et al. (2006) reported EC/OC ratios varying from 0.6 to 1.2 for traffic sources with 

an average value of 1.  In this study, the EC/OC ratios were found to be 0.82 for the 

traffic source by using temperature resolved eight carbon fractions, which is in close 

agreement with Cao et al. (2006).  The contributions of these two sources were 10.9% 

and 5.6% respectively for diesel and gasoline vehicle source.  The ratio of source 

contribution estimates of diesel to gasoline vehicle emissions (1.95) is in good agreement 

with the ratio of 2.3 reported by Kim et al. (2004) at the Jefferson Street monitoring site 

in Atlanta.  Since the E2TC and E3TC fractions present were much lower than E1TC 

fraction and are mostly below detection limits, the abundances of E1TC was observed in 

both source profiles.  

Vegetative/wood burning 

Vegetative burning was distinguished by high concentration of OC carbon fractions 

and high K. Seasonal variation for this source observed as being the highest during winter 

and low during summer season, confirms that the source is vegetative or wood burning.  

This factor contributes approximately 15.7% to the total PM2.5 and is dominant source of 

potassium (45.5%).  

Soil/Crustal source 

This source factor has high concentrations of Si, Al, Ti, Fe, Ca and K contributing 

0.7% to the total PM2.5.  Crustal particles may include suspended road dust and wind-

blown soil dust. The time series source contribution profiles indicated elevated air borne 

soil/crustal contribution during April and July, 2003 at Cheviot and Bridgeton sampling 

sites.  The elevated soil source contribution during these periods may be caused by wind-
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blown dust and Asian dust storm.  Some carbon fractions were found in this source 

factor, suggesting some of the airborne soils are re-suspended by road traffic.  

 

Metal processing source 

Metal processing has abundances of Zn, Pb and Fe and contributes 7.5% of the 

ambient PM2.5 concentration and contains some amount of sulfur in its profiles. The 

possible reason is that there are several metal processing facilities near the CCAAPS 

network sampling sites (Hu et al., 2006). This source has also moderate amount of K, 

which is indicative of the emissions from incinerators.  

 Source contributions estimated by PMF using two carbon and eight carbon fractions 

are consistent with the major sources.  The comparison of the source profiles derived 

from the PMF calculation is shown in Figure C-3.  The source contribution estimates 

(Table C-3) for metal processing and traffic source by using both the data sets were 

different.  The difference in metal processing source occurred partly because more 

sources were resolved using eight carbon fractions, thus effectively reducing individual 

source contributions.  The difference in traffic source contribution may be associated 

with the different analytical technique adopted for EC and OC analysis as described 

earlier.  

C.5.2.2. Comparison of source profiles derived from UNMIX and PMF 

The source profiles identified from UNMIX and PMF using eight carbon fractions are 

compared in the Figure C-4.  The larger number of sources derived from PMF modeling 

for identified two traffic sources, diesel and gasoline vehicular sources, which were 

combined to form one traffic source for comparison with UNMIX derived traffic source. 
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PMF also identified two additional sources, vegetative burning and secondary sulfate 

which were not separated in the UNMIX calculation.  The traffic source contribution 

estimates derived were very close for the eight carbon fractions, 18.7% and 16.5% for 

UNMIX and PMF, respectively. PMF derived a secondary sulfate factor, sulfate source 

and vegetative burning source compared to a single combustion related sulfate source 

derived by UNMIX. Combined contribution estimates of the two sulfate sources (59.7%) 

is similar to the one obtained by UNMIX for combustion related sulfate source estimates 

(66.4%).  The extra source profiles derived from PMF as vegetative burning contribute 

about 15.7% to PM2.5.  With seven factors derived from PMF compared to four factors by 

UNMIX, the crustal elements were distributed in all the sources resulting in lower 

contribution estimates derived by PMF for crustal source. Higher abundances of sulfur is 

observed in the UNMIX-derived source profiles because all the sulfur was distributed 

among four factors in UNMIX modeling.  The major source profiles derived by both 

UNMIX and PMF are in good agreement and provide high confidence in the modeling 

results.  Source contribution estimates derived from UNMIX and PMF using both two 

and eight carbon fractions are presented in Table C-3. 
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Figure C- 4: Comparison of UNMIX (blank) and PMF (hatched bar) source profiles     derived from 
temperature resolved eight carbon fractions 

(O1TC at 120 °C, O2TC at 250 °C, O3TC at 450 °C, and O4TC at 550 °C in a 100% helium (He) 

atmosphere. The three EC fractions were measured in a mixture of 2% oxygen/98% He: E1TC at 550 

°C, E2TC at 700 °C, and E3TC at 800 °C. Pyrolyzed carbon (OPTRC) is determined based on the 

laser response (laser reflectance is monitored until it returns to its initial value) 
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C.5.2.3. Comparison of the traffic source profiles to those referred in literature 

The individual  EC and OC fractions attributed to gasoline and diesel emissions sources 

identified in this study were compared (Figure C-5) to the PMF-determined carbon  
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Figure C- 5:Comparison of PMF derived traffic source profiles using temperature resolved 
carbon fractions with literature reported values for carbon sub fractions for: (A) Diesel vehicle 
emissions, and (B) Gasoline vehicle emissions.. (PMF analysis for Greater Cincinnati site (this 
study), Urban Washington DC (Kim and Hopke, 2004), Georgia and Alabama site (Liu et al 
2006), and Hong Kong, (Cao et al. 2006))
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fraction reported in literature for the urban Washington DC (Kim and Hopke, 2004b), 

Georgia and Alabama (Liu et al., 2006), and a source sampling study performed in Hong 

Kong (Cao et al., 2006).  The diesel vehicle source identified has high concentration of 

O2TC and E1TC, whereas gasoline source has high concentrations of O3TC and O4TC.  

This is consistent with the results reported for Washington DC and Jefferson Street in 

Atlanta (Kim and Hopke, 2004b; Kim et al., 2004).  The source sampling study by 

Watson et al. (1994) found abundant E2TC and O1TC in diesel vehicle exhaust and 

abundant E1TC in gasoline vehicle exhaust, and Cao et al. (2006) found a greater 

abundance of E2TC and O2TC in diesel vehicle exhaust and abundant O3TC and O2TC 

in gasoline vehicle exhaust.  The results qualitatively agree well with the diesel vehicle 

source estimated at Washington and Atlanta sites. However, large variations in the 

gasoline vehicle source were observed in all source apportionment studies, which is 

similar to the observations made by Lee et al (2006).  The relatively high variations may 

be due to vehicles operating in stop-and-go fashion and the various intersections of 

interstate highways run with in the CCAAPS sampling network, since intersections create 

frequent traffic congestion. 

C. 5.2.4. Traffic exposure ECAT and ECAD estimation 

Traffic sources are the major contributor to EC and OC fractions of PM2.5.  The relative 

contributions estimated from PMF modeling for diesel vehicle emissions source was 

10.9% compared to gasoline powered vehicle emissions of 5.6%. The elemental carbons 

attributed to diesel vehicle source (ECAD) and gasoline vehicle source (ECAG) were 
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separately calculated using the diesel vehicle and gasoline vehicle source derived from 

PMF.  While this calculation is based on limited number of samples that may not  

Table C- 4: Elemental carbon concentrations (µg / m3) attributed to different traffic 
sources from PMF and UNMIX model calculations: ECAT=Cumulative traffic, 
ECAG=Gasoline, ECAD=Diesel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
8-Carbon 
fractions 
(UNMIX)*

2-Carbon 
fractions (PMF)*

Literature 
Values (Ryan et 
al.( 2007))a

ECAD (Diesel) ECAG(Gasoline) ECAT ECAT ECAT ECAT

Bridgeton 0.62±0.53 0.12±0.12 0.75±0.63 0.79±0.73 0.47±0.49 0.96

Cheviot 0.19±0.19 0.078±0.08 0.26±0.21 0.29±0.32 0.13±0.17 0.40

Montogomery1 0.22±0.23 0.07±0.07 0.28±0.25 0.45±0.39 0.12±0.14 0.28

Covington1 0.43±0.26 0.21±0.10 0.63±0.31 0.63±0.35 0.44±0.26 0.69

Norwood2 0.54±0.41 0.22±0.21 0.76±0.57 0.77±0.65 0.50±0.47 0.72

Montogomery2 0.35±0.26 0.09±0.05 0.44±0.31 0.47±0.31 0.25±0.22 0.38

Newport 0.54±0.11 0.06±0.04 0.60±0.15 0.80±0.53 0.32±0.12 0.58

Blueash 0.13±0.12 0.05±0.05 0.18±0.08 0.08±0.11 0.05±0.04 0.45

Green Hills 0.09±0.12 0.07±0.03 0.16±0.12 0.32±0.27 0.06±0.08 0.35

St. Bernard 1.22±1.00 0.45±0.77 1.66±1.71 0.87±0.77 1.09±1.23 1.02

Groesbeck 0.29±0.06 0.05±0.05 0.35±0.05 0.29±0.17 0.16±0.07 0.28

aSamples collected from December 2001-December 2004

Sites of merging Interstates- St. Bernard and Bridgton, Covington1
Sites within 400m of highway- Newport, Norwood2, Montogomery2, Blue Ash, Groesbeck
Suburban beyond 400m of highway- Cheviot, Green Hills, Montogomery1

Location
8 Carbon fractions (PMF)                      

* Model results could not differentiate diesel and gasoline vehicle sources

 

accurately represent the EC values, it provides a comparison among different sites and 

relative impact of traffic sources at these sites.  The estimated ECAT and ECAD values 

are listed in the Table 4 for various locations.  ECAT values were high at sites closer to 

major truck routes, e.g., at St. Bernard and Bridgton (where I-74 merges with I-75), 
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Covington1 (close to merging point of I-71 and I-75), Newport (very close to I-471) and 

Norwood2 (400 m from SR-562).  Lower ECAT and ECAD values were estimated at 

relatively clean suburban areas such as Blue Ash as well as Cheviot,  Green Hills 

(suburbs, distant from highways), and  Montogomery1 (clean area, further from I- 275). 

This finding confirms the association between ECAT values and relevant traffic sources. 

ECAT and ECAD values demonstrate that the inner city population is generally exposed 

to higher levels traffic emissions than the suburban population. Large variations in the 

ECAT and ECAD estimates were observed at sampling sites located in close proximity to 

major roads such as Norwood2 (400 m from SR-562), Montgomery 2 (within 400 m from 

I-71), Blue Ash  (close to I-275), Newport (close to I-471) and St. Bernard (close to 

school bus depot, within 400 m from I-75).  The ECAT findings from this study (i.e. 

combined ECAD and ECAG) are consistent with our previously reported ECAT values, 

which were estimated using only two carbon fractions (Ryan et al., 2007).  This 

consistency is also related to generally the small contribution that gasoline, ECAG, 

makes to the ECAT values. The variations suggest that other factors such as traffic 

volumes and meteorological parameters are important apart from the proximity of the 

interstate highways (Hu, 2007).  Less variation in ECAT values among suburban sites 

indicates that they were beyond the impact distance of traffic sources and least affected 

by variation in traffic pattern. Traffic source emissions and exposures depend also on 

vehicle operational mode and stop-and-go at specific locations (Shah et al., 2004).  

 

C.6. Conclusions  

The ambient PM2.5 samples collected at CCAAPS monitoring sites over five years were 

analyzed for PM2.5 mass, elemental and carbon (EC and OC) concentrations. Two 
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receptor models, UNMIX and PMF, were applied to PM2.5 data consisting of two carbon 

fractions measured by NIOSH method and eight carbon fractions determined by 

IMPROVE method.  Based on the source signatures, UNMIX identified only four major 

sources using both datasets.  The source categories identified by UNMIX were 

combustion related sulfate, metal processing, traffic and soil/crustal.  PMF identified six 

and seven sources by applying two and eight carbon fractions, respectively.  Two sulfate 

sources were resolved, including a sulfate rich source and secondary sulfate source.  One 

vegetation burning source was identified based on the high abundance of OC fractions.  

The application of PMF allowed to clearly differentiate PM emissions from diesel- and 

gasoline-powered vehicles using eight carbon fractions.  Moreover, PMF could separate 

the combustion related source from the sulfate rich source which were merged in the 

UNMIX modeling.  This study indicated that using eight carbon fractions can improve 

source identification and that the PMF model can extract more sources than UNMIX 

modeling.  The difference in the two models, however, is less than one standard 

deviation. However, we acknowledge the limitation of modeling associated with a limited 

number of samples.  Resolved sources from both models were compared and agreed 

reasonably well for the major sources identified.  ECAT and ECAD values were 

estimated for different locations and found to vary depending on the proximity of 

highways as well as factors such as traffic counts, meteorology and operational mode of 

the vehicles.  These markers of traffic-related air pollution will be utilized in land-use 

regression models to assess childhood exposure to particles arising from the combustion 

of diesel and gasoline. 
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