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ABSTRACT OF THE DISSERTATION 

Flap Endonuclease 1 ensures telomere replication and stability 

By 

Abhishek Saharia 

Doctor of Philosophy in Biology and Biomedical Sciences 

(Molecular Genetics and Genomics) 

Washington University in St. Louis, 2009 

Professor Sheila A. Stewart, Chairperson 

 

Telomeres, protein-DNA structures that distinguish the end of a chromosome 

from a bona fide DNA double strand break, are integral to genomic stability.  High 

fidelity replication of telomeres is indispensable for their stability.  Telomere replication 

is a challenging task that is completed through the coordinated actions of telomere 

binding proteins and DNA replication and repair proteins in ways that are not well 

understood.  This work focuses on delineating the function of one DNA replication and 

repair protein, Flap Endonulcease 1 (FEN1), in telomere replication and maintenance.  I 

demonstrate that FEN1 is essential for the efficient replication of telomeres through its 

ability to re-initiate stalled replication forks.  FEN1 depletion leads to telomere 

dysfunction characterized by the recognition of the telomeres as DNA double strand 

breaks and the specific loss of telomeres replicated by the lagging strand machinery.  

Expression of catalytically active telomerase, the reverse transcriptase that adds telomeric 

repeats to chromosome ends, was sufficient to rescue telomere dysfunction upon FEN1 
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depletion.  Genetic rescue experiments revealed that the nuclease activity of FEN1, its 

interaction with the RecQ helicases and its ability to process DNA bubble structures are 

essential to prevent telomere loss, whereas its ability to process Okazaki fragments is 

dispensable.  However, FEN1 depletion did not affect cell cycle progression or in vitro 

DNA replication through non-telomeric substrates and in the absence of telomere 

dysfunction, FEN1 depletion did not affect overall genomic stability.  Further analysis 

revealed that FEN1 is important for the efficient re-initiation of stalled replication forks 

and that this function ensures telomere stability.  As with telomere loss, FEN1’s ability to 

process bubble DNA structures and its ability to interact with the RecQ helicases are vital 

for the re-initiation of stalled replication forks.  Finally, FEN1 depletion in transformed 

telomerase-negative ALT-positive cells leads to telomere end-to-end fusions.  I propose 

that FEN1 maintains stable telomeres through the efficient re-initiation of stalled 

replication forks that occur in the G-rich lagging strand telomere, ensuring high fidelity 

telomere replication.  This model suggests that mutations that arise in FEN1 are 

detrimental to telomere stability, leading to genomic instability and driving the 

transformation process.  
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1.1  Significance and Overview 

Normal human cells possess a limited replicative lifespan.  These cells enter a 

state of permanent cell cycle arrest termed senescence [1].  Cells possess an internal 

mitotic clock, identified as the telomere, capable of limiting their potential for cell 

division [1-3].  Work since then has demonstrated that telomeres can function as tumor 

suppressors in the face of intact checkpoints, promote tumorigenesis through the 

induction of genomic instability and are essential for cellular immortality, a defining 

characteristic of tumor cells [4].  The realization that the telomere plays a pivotal role in 

the transformation process led researchers to focus on the biochemical mechanisms that 

govern its stability.  What has emerged from this work is an understanding that telomere 

maintenance is the result of the coordinated actions of telomere binding proteins and the 

DNA replication and repair machinery.  Delineating how these mechanisms interact and 

how the DNA repair machinery differentiates between the telomere and a bona fide DNA 

double strand break is a current challenge. 

 

1.2  Telomeres and Cancer: The Telomere Hypothesis 

In 1961, Leonard Hayflick observed that fibroblasts isolated from an individual 

underwent a limited number of cell divisions (later referred to as the ‘The Hayflick 

limit’), at which point they underwent a checkpoint-dependent permanent growth arrest 

termed senescence [5, 6].  These observations led to the hypothesis that the cell contained 

an internal clocking mechanism that counted the number of cellular divisions.  The 

realization that the telomere was the long sought after internal clocking mechanism came 
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much later in 1990s.  In the 1970s, James Watson and Alexey Olovnikov had proposed 

the “end replication problem”, suggesting that due to the inherent nature of lagging strand 

DNA replication, the termini of linear chromosomes would not be completely replicated 

leading to the loss of genetic material with every cell division [7, 8].  Harley and Greider 

eventually demonstrated the connection between the end replication problem and the 

Hayflick limit, postulating that the internal clocking mechanism was the telomere [2].  

They demonstrated that the mean telomere length of normal human cells shortened 

progressively with each cell division and that telomere length predicted the replicative 

capacity of cells [2, 3].  Importantly, when cells were isolated from the same individual 

on multiple occasions, they entered senescence with similar kinetics and with 

approximately the same telomere length, suggesting that telomere length was responsible 

for triggering senescence [3].  These observations gave rise to the “telomere hypothesis”, 

which suggested that telomeres represent the internal clocking mechanisms originally 

described by Hayflick [2, 9].  Indeed, it is now appreciated that senescence can be 

triggered by loss of telomere structural integrity and that telomere length is one 

component that contributes to this integrity [9-11].  Additionally, senescence can also be 

induced through other telomere-independent mechanisms such as environmental and 

oncogenic stress and DNA damage [12].  

 

The telomere hypothesis, describing the mitotic clock, postulates that the loss of 

telomeric DNA due to incomplete end replication leads to cellular senescence, the first 

proliferative barrier (Figure 1.1). Telomere-induced senescence is a critical tumor 
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suppressor mechanism in vivo, forming a barrier to cellular immortalization [13-19].  

Inactivation of both the p53 and Rb tumor suppressor pathways allows the bypass of 

senescence in human cells, leading to continued cell division and further telomere 

shortening [9, 20].  Cells that bypass senescence eventually reach a second proliferative 

barrier referred to as crisis (Figure 1.1).  At crisis, telomere lengths are critically short 

leading to structural destabilization, chromosomal end-to-end fusions, and subsequent 

cell death [9].  Cells that continue to divide despite the loss of telomere integrity undergo 

chromosome breakage-fusion-bridge cycles, develop chromosomal aberrations and 

genomic instability, a driving force in the evolution of a human tumor cell [21, 22].   

 

Approximately 1 in 107 cells entering crisis escape death.  Those that do escape 

crisis activate a telomere maintenance mechanism and thus acquire immortality (Figure 

1.1), a defining characteristic of human tumors [23].  The majority of cells activate 

telomerase (hTERT) – a reverse transcriptase that utilizes an RNA template to add de 

novo telomeric sequences to the ends of telomeres [24-26]– which lengthens the 

telomeres and allows the formation of a stable telomere structure [27, 28].  The ability of 

telomerase to immortalize cells and its necessity in the transformation process suggested 

that inhibition of telomerase would diminish the proliferative capacity of cancer cells.  

Indeed, telomerase inhibition in telomerase-positive immortal tumor cells led to 

progressive telomere loss and the induction of apoptosis [29] (Figure 1.1).  It also led to 

loss of tumorigenic potential in xenograft models indicating the necessity of cellular 

immortality for tumorigenesis [29].   
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Alternatively, cells can utilize a non-telomerase based method for stabilizing and 

lengthening their telomeres, known as ‘ALT’ (Alternative Lengthening of Telomeres) 

[30, 31].  Unlike telomerase which utilizes an RNA component to add telomeric repeats 

to chromosomes ends, the ALT mechanism is postulated to utilize homologous 

recombination (HR) to lengthen telomeres [31-34], though the molecular details of this 

mechanism still require elucidation.  Together, these studies underscore the importance of 

telomeres at different stages in the transformation process and signify the importance of 

understanding mechanisms that govern its stability.  

 

1.3  Telomere structure and function 

Since Barbara McClintock and Herman Muller first identified them in the 1930s, 

telomeres have been recognized as capping structures that play an essential role in 

distinguishing natural chromosome ends from bona fide DNA DNA double strand breaks 

(DSBs) [35, 36].  When telomeres become critically short their protective structure is 

compromised, triggering a DNA damage response (DDR) [37].  These unprotected 

telomere ends are recognized as DSBs, established by the presence of several DNA DSB 

response factors such as phosphorylated-ATM (ataxia-telangiectasia mutated), γ-H2AX, 

MDC1, NBS1 and 53BP1 [37].  Such DNA damage foci at the telomeres were named 

telomere dysfunction-induced foci (TIFs) [38].  Recent work has clearly demonstrated 

that the ability to maintain telomere structure is dependent on the length of the telomere, 

presence of the ssOH and a plethora of proteins that bind and/or modify the telomere [39, 
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40].  While it was originally believed that the telomere must exclude DDR proteins to 

maintain its stability, it is now clear that such machinery plays an integral role in 

telomere maintenance [41].  The current challenge is to define the mechanisms that 

govern the actions of the DDR machinery that leads to the formation of a stable capped 

telomere versus those that act upon uncapped (i.e. dysfunctional) telomeres.   

 

The telomere is a dynamic nucleoprotein structure (Figure 1.2).  It forms a 

complex displacement loop (D-loop) structure, referred to as the “T-loop”, where the 

single strand overhang loops back around and inserts itself into the double strand region 

of the telomere (Figure 1.2).  The T-loop structure was visualized both in vitro and in 

vivo through electron microscopy [42, 43].  It is suggested that this ‘capped’ telomere 

hides the end of the chromosome and prevents its recognition by the DNA damage 

pathway.  The stability of the T-loop is dependent on the presence of the ssOH as well as 

TRF2, an essential telomere binding protein [40, 44].  It is therefore interesting to note 

that the length of the ssOH is significantly shorter in senescent cells compared to younger 

cells [45], suggesting that the telomere structure is disrupted in senescent cells.   

 

In addition to TRF2, other proteins are important for telomere maintenance.  

Many of these proteins have been characterized, including a core complex of six proteins 

referred to as Shelterin [40, 46], consisting of TRF1, TRF2, TIN2, TPP1, POT1 and 

RAP1 (Figure 1.2).   TRF1 and TRF2 coat the length of the telomere as homodimers 

with high specificity to telomere double-strand DNA [47-51].  TIN2 binds to both TRF1 
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and TRF2 forming a protein ‘bridge’ between these two proteins [52-54].  POT1 binds to 

single strand telomeric DNA via an OB (oligonucleotide binding)-fold domain, while 

TPP1 has been shown to recruit POT1 to the telomere [55, 56].  TPP1 also links POT1 to 

TIN2, and therefore forms a bridge to the TRF1 and TRF2 proteins.  RAP1 is recruited to 

the telomere by TRF2 [57, 58].  All the above-mentioned proteins are required for the 

maintenance of a functional telomere.  Disturbing the equilibrium of these proteins by 

either overexpression or depletion results in telomere dysfunction [40].  For example, 

depletion of TRF2 or introduction of a TRF2 dominant-negative allele results in telomere 

destabilization or uncapping, recognition as a DNA DSB, and formation of TIFs, 

characterized by the presence of 53BP1 and γH2AX at the telomere [37, 38, 59].  The cell 

attempts to repair these lesions via non-homologous end joining (NHEJ) or single-strand 

annealing, leading to chromosome end-to-end fusions with telomeric DNA at the 

junctions [60, 61]. 

 

The Shelterin components perform several essential tasks that maintain stable 

telomeres [40].  In addition to maintaining telomere structure, TRF2 is an inhibitor of 

ATM and Chk2 at the telomere [62, 63], suggesting that the ATM pathway is spatially 

controlled at the telomere.  The other Shelterin components also influence telomere 

dynamics when their levels are modulated.  For example, overexpression of TRF1 results 

in telomere shortening both in telomerase-positive human and mouse cells, suggesting 

that TRF1 controls telomerase access to chromosome ends [49].  Recent work has also 

demonstrated that TRF1 is essential for telomere replication and that its absence leads to 
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the formation of stalled replication forks at telomeres [64].  POT1 functions to maintain 

telomere length by modulating the action of telomerase and protects their stability by 

inhibiting the action of the ataxia-telangiectasia and Rad3-related (ATR) pathway [62, 

65, 66].  TIN2 and TPP1 do not bind telomeric DNA directly, but influence telomere 

dynamics by forming a protein bridge between the double strand DNA binding proteins 

TRF1 and TRF2 and the single strand DNA binding protein POT1 [54, 67].  The loss of 

either protein leads to the activation of DDR at telomeres and the formation of TIFs [40].  

Recently, a novel form of TIN2 has also been identified at the nuclear matrix, suggesting 

a unique role for it in anchoring telomeres [68].  TPP1 interacts directly with POT1 and is 

involved in the recruitment of telomerase to the telomeres [67].  Finally, RAP1 interacts 

directly with TRF2 and this complex inhibits nonhomologous end-joining repair proteins 

from recognizing the telomere as a DSB [69]. 

 

In addition to the core Shelterin complex, a number of DDR proteins have been 

associated with the telomere (Figure 1.2). The functional importance of the DDR 

proteins at the telomere was first observed in Saccharomyces cereviseae (S. cereviseae), 

where cells with mutations in TEL1, an Ataxia Telangiectasia Mutated (ATM) homolog, 

resulted in shortened telomeres [70, 71].  This was further confirmed by studies in 

Schizosaccharomyces pombe (S. pombe), mice and human cells [72].  Similarly, several 

proteins involved in DNA replication, DNA damage signaling and DNA repair play 

critical roles in telomere maintenance.  These include DNA damage signaling 

phosphoinositide 3-kinase related kinases (PIKKs) such as ATM, ATR and DNA-PK [73, 



 9 

74]; homologous recombination machinery such as RAD54, RAD51D, the MRN 

complex (comprising the Mre11, Rad50 and NBS1 proteins) and BRCA1 [75-77]; 

proteins involved in non-homologous end joining such as KU70/KU86 [73, 78]. Several 

base excision repair proteins also play an important role in telomere biology such as the 

XPF/ERCC1 complex, PARP1 and PARP2 proteins [79-84]. A recent study also 

identified Apollo, a nuclease that plays a specific role in telomere biology [85, 86].  

Furthermore, the Werner (WRN) protein, a RecQ helicase that functions in 

recombination and repair pathways, is essential to ensure high fidelity replication of the 

lagging strand at the telomere [87, 88].  Finally, the Origin recognition complex (Orc2) 

localizes to the telomere where it prevents telomere loss and the formation of telomeric 

circles – a hallmark of telomere replication stress [89].  All the above examples illustrate 

the intricate relationship between the DNA replication and repair factors and telomere 

maintenance; however, a comprehensive understanding of this interplay has yet to be 

elucidated.  The work discussed in this thesis takes our understanding further by 

characterizing the function of Flap Endonuclease 1 (FEN1), a DDR factor, at human 

telomeres.  

 

1.4  Telomere replication 

Continued cellular proliferation requires high fidelity duplication of the genome 

and proper maintenance of the telomeres.  Loss of genomic integrity contributes to the 

transformation process, therefore several compensatory mechanisms have evolved to 

ensure high fidelity replication of the genome.  Highly repetitive sequences, such as the 
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telomere, present unique challenges to the DNA replication machinery making them 

exquisitely sensitive to the loss of repair and replication mechanisms [90, 91].  As 

detailed above, several DNA replication and repair proteins bind telomeres, interact with 

Shelterin proteins and are critical for telomere function [40].  Depletion of these proteins 

or abrogation of their telomere binding capability leads to telomere dysfunction, 

indicating that these proteins play a specific role in maintaining telomere stability.  Based 

on these observations, I hypothesize that replication of this specialized structure – the 

telomere – requires a coordinated effort by the telomere binding proteins and the DNA 

replication and repair proteins.  Several questions arise from this hypothesis – Which are 

the telomere binding proteins involved?  Which are the DNA replication and repair 

proteins involved?  Are the telomere-binding proteins actively involved in telomere 

replication and repair or do they simply provide a scaffold?  Do the telomere binding 

proteins modulate the activity of the DNA replication and repair machinery?  How is this 

process regulated and coordinated?  Several lines of evidence have recently emerged 

supporting the stated hypothesis [64, 89-92].  Indeed, Shelterin components, TRF1 and 

TRF2 interact with and modulate the activities of several DNA repair and replication 

proteins [40].  These findings have led to a new model of telomere function: once thought 

to exclude the DNA repair machinery it is now appreciated that telomere replication and 

stability is the result of an intricate interplay between the telomere binding proteins and 

the DNA replication and repair mechanisms (Figure 1.3).   
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1.5  Challenges to telomere replication  

Replication of telomeres poses several challenges to the moving fork (Figure 

1.4).  Telomeric repetitive G-rich sequences have a high propensity to form G-

quadruplexes (G4) that impede the progressing replication fork, leading to the formation 

of stalled forks [90, 93, 94].  Indeed, several reports have indicated pausing and/or 

stalling of replication forks moving through telomeres [95-97].  The presence of the T-

loop also presents a topological barrier for the replication fork.  Additionally, telomere 

replication is primarily initiated by the most distal origin of replication from the 

centromere and continues unidirectionally towards the end of the telomere (Figure 1.4) 

[64].  If this fork stalls and is not re-initiated efficiently, it will collapse leading to the 

formation of a DSB [98] resulting in telomere deletion.  Therefore it is not surprising that 

telomeres have been recently identified as fragile sites that are highly sensitive to 

replication stress [64].  As a result, successful telomere replication requires the 

coordinated action of telomere binding proteins and their recruitment and/or modification 

of traditional DNA replication and repair factors [90, 91]. 

 

Recent work indicates that stalled forks are formed within replicating human 

telomeres [97].  During S-phase the ATR-dependent DDR machinery (ATR and RPA) is 

recruited together with the DNA replication machinery (Pol α, PCNA, FEN1) [97] to the 

telomere.  The ATR-dependent repair machinery is postulated to be present at the 

telomere in response to stalled replication forks, resolving them and leading to efficient 

telomere replication.  In addition, the T-loop has to be resolved to allow the passage of 
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the replication fork and reformed post duplication, to form a stable telomere structure.  In 

late S/early G2 phase of the cell cycle, phosphorylated ATM and the HR machinery are 

recruited to the telomere [97, 99], suggesting that these proteins are involved in the re-

formation of the T-loop.  Together, these observations indicate the presence of stalled 

replication forks at human telomeres and reveal a critical role for the DNA replication 

and repair machinery to efficiently duplicate telomeres.   

 

Robust mechanisms evolved to ensure high fidelity replication and repair of the 

telomere appear to be coordinated by telomere binding proteins [90, 91].  Work done in 

S. pombe demonstrated that Taz1 (the TRF1 and TRF2 homolog) is required for efficient 

replication fork progression through the telomere [92]. Taz1 loss causes progressing 

replication forks to stall upon encountering telomere sequences, resulting in a lack of 

telomere replication and an abrupt, complete loss of telomeres.  Importantly, Taz1 

requirement for telomere replication occurs due to the sequence of the telomere itself, 

independent of its location in the genome [92].  This was the first evidence suggesting 

that telomere replication is dependent on telomere-binding proteins.   

 

Similar work in mammalian cells demonstrated that TRF1 is critical for telomere 

replication [64].  Deletion of TRF1 resulted in an increase in stalled replication forks at 

telomeres, decreased telomere replication and activation of the ATR-dependent DDR 

[64].  The report concluded that telomeres resemble fragile sites and that TRF1 is 

required for efficient replication primarily through its recruitment of the BLM and 
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RTEL1 helicases [64].  The requirement of TRF1 for efficient telomere replication is 

analogous to Taz1.  

 

Recent work also supports the putative role of TRF2 in coordinating the activities 

of DDR proteins at the telomere.  TRF2 binds and initiates the replication of the oriP 

sequence in the Epstein Barr virus DNA [100].  In addition, TRF2 directly interacts with 

ORC2, a central component of the origin of replication complex that binds replication 

origins and initiates bidirectional DNA replication [100].  Interestingly, loss of ORC2 

leads to telomere dysfunction, characterized by signal free ends and the appearance of 

circular telomeric DNA (T-circles), suggesting inefficient telomere replication [89].  

Further work demonstrated that deletion of the region of TRF2 that interacts with ORC2 

also leads to the formation of T-circles suggesting that this interaction is important for 

efficient telomere replication, and that TRF2 indeed coordinates telomere replication 

[101].  

 

In addition to the G-rich sequence, the T-loop also presents a barrier to telomere 

replication (Figure 1.4).  Indeed, as a replication fork approaches the distal end of the 

telomere, the T-loop is likely to inhibit free rotation of the DNA, thus posing a 

topological barrier to the replication machinery.  To allow passage of the replication fork, 

the T-loop needs to be resolved by the actions of specialized helicases.  Post duplication 

of the DNA, the T-loop needs to be reformed by the HR machinery to ensure a stable 

telomere.  Several lines of evidence suggest that the resolution and reformation of the T-
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loop are also coordinated by telomere binding proteins such as TRF1 and TRF2.  Both 

TRF1 and TRF2 interact with and stimulate the activities of the WRN and BLM RecQ 

helicases that are able to assist in the resolution of D-loop structures [102, 103].  In 

addition, TRF1 and TRF2 are integral to T-loop re-formation as well [97].  Indeed, it was 

recently described that TRF2 can directly enhance strand invasion required for the 

formation of the T-loop (Figure 1.2) [104].  Together these results demonstrate that 

telomere replication is unique, and requires a coordinated effort from telomere binding 

proteins and the DNA replication and repair machinery to efficiently complete 

replication.  

 

1.6  Flap Endonuclease 1 and Telomere Replication 

The inherent nature of the telomeric DNA sequence causes strand specific DNA 

replication – the C-rich strand always provides the template for leading strand synthesis 

while the G-rich strand is the template for lagging strand replication (Figure 1.4).  The 

repetitive nature of the telomeric DNA and the tendency of G-rich DNA to form 

secondary structures create a situation in which lagging strand replication at the telomere 

is particularly challenging.  Therefore, several studies have focused on understanding the 

role of lagging strand replication proteins in telomere maintenance [105-107].  

 

Lagging strand DNA synthesis requires the formation and processing of Okazaki 

fragments, which need to be cleaved and ligated (known as Okazaki fragment 

maturation) [108, 109].  One model of Okazaki fragment maturation suggests that 
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maturation requires the coordinated activity of two nucleases, FEN1 and Dna2 [109].  

This model proposes that upon encountering the RNA/DNA strand from the adjacent 

Okazaki fragment, polymerase δ displaces the strand producing a flap structure.  If the 

flap is long or forms a secondary structure it is coated by RPA initiating its cleavage by 

Dna2 into a shorter flap, which is then processed by FEN1 to generate a nick sealed by 

DNA ligase I [110].   

 

FEN1 is a structure-specific metallonuclease that plays an important role in DNA 

metabolism.  In addition to Okazaki fragment processing, FEN1 is also a critical DNA 

repair enzyme.  Work done in S. cerevisiae, S. pombe and human cells demonstrate that 

FEN1 and its homologs are also involved in long-patch base-excision repair (LP-BER) 

[111, 112].  Indeed, deletion of FEN1 homologs in S. cerevisiae and S. pombe leads to 

UV sensitivity indicating a role for FEN1 in BER [113-115].  Yeast rad27Δ (the FEN1 

homolog) mutants and human carcinoma cells expressing a dominant negative FEN1 

protein are also sensitive to the DNA alkylating agents such as methylmethane sulfonate 

(MMS) [114, 116].  Additionally, genetic work in yeast and chicken cells has suggested 

that FEN1 is involved in NHEJ and homologous recombination pathways [117-119].  

Defects and deletions of FEN1 in yeast also lead to an increase in spontaneous mutations 

[113, 114].  Besides its role in DNA replication and repair of genomic DNA, recent work 

indicates that FEN1 activity is important in mitochondrial DNA repair [120]. 
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FEN1 also prevents trinucleotide repeat (TNR) expansion and contraction [111, 

118, 121].  Work in yeast shows that deletion or haploinsufficiency of RAD27 leads to 

expansion of triplet repeats presumably due to strand slippage and/or formation of 

secondary structures that cannot be processed by FEN1 [122]. Similarly, in mice 

haploinsufficiency of FEN1 leads to the expansion of a Huntington’s disease locus CAG 

repeat [118].  However, recent studies have shown that TNR expansion upon FEN1 loss 

is a species-specific phenomenon.  Mutation of FEN1 in Drosophila did not affect the 

CAG repeat locus [123].  Similarly, FEN1 depletion in human cells that were cultured 

over 27 successive passages did not affect the CAG Huntington’s locus stability [124].  

Despite clear species differences, these results demonstrate the importance of FEN1 in 

DNA replication, DNA repair and maintenance of genome stability. 

 

FEN1 has multiple nuclease activities [111, 125].  It has a 5’ flap endonuclease 

(FEN) activity and a 5’ to 3’ exonuclease (EXO) activity, both of which have been 

studied extensively [115, 126].  These two activities are considered crucial for Okazaki 

fragment maturation and long patch–base excision repair.  Recently, human FEN1 was 

also found to cleave gapped DNA forks or bubble structures that resemble stalled 

replication forks [127, 128].  Mutational analysis enabled the separation of this gap 

endonuclease (GEN) activity from the FEN and EXO activities.  Interestingly, the GEN 

activity did not require a free 5’ flap like the FEN and EXO activities and it has since 

been implicated in apoptotic DNA fragmentation and reinitiation of stalled replication 

forks [127, 129, 130].  
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The multiple FEN1 nuclease functions and DNA replication and repair activities 

suggests differential regulation of these through post-translational modification.  Indeed, 

FEN1 is phosphorylated by Cdk1-Cyclin A in late S phase [131], which reduces its FEN 

and EXO activities without affecting its DNA binding capabilities.  In addition, 

phosphorylation abolishes PCNA binding, suggesting that it is able to regulate FEN1 

function in DNA replication and repair [131].   FEN1 is also acetylated by p300 histone 

acetyl transferase (HAT) at four lysine residues on the C-terminus [132].  Acetylation of 

FEN1 is induced by UV treatment and reduces its DNA binding capability as well as its 

FEN and EXO nuclease activities [132], indicating a role for it in DNA repair.  Although 

these post-translational modifications suggest a functional modulation of FEN1 activity, 

their biological significance has yet to be elucidated.   

 

Given FEN1’s role in genome maintenance, it is not surprising that it is an 

important tumor suppressor [133].   Homozygous deletion of FEN1 in mice is inviable, 

whereas the heterozygous animals are viable and disease-free [134, 135].  However, in a 

heterozygous adenomatous polyposis coli (APC) background, the haploinsufficiency of 

FEN1 leads to adenocarcinomas in the gastrointestinal tract and decreased survival of the 

mice [134, 136].  The biological relevance of FEN1 is further underscored by the 

discovery of mutations in human FEN1 that have been implicated in increased 

tumorigenesis [130, 137].  Analysis of several tumor types from lung, breast and 

melonoma revealed point mutants that abrogated two of the three known FEN1 functions 
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[130].  Interestingly, these mutations affected the GEN activity of FEN1, leaving the FEN 

activity intact.  Knocking in one of these FEN1 mutations, E160D, in mice led to the 

development of autoimmunity and neoplasias in the lung [130].  This was attributed to 

incomplete DNA fragmentation during apoptosis due to decreased GEN activity.  

Another study conducted on a different strain of mice with the same point mutation in 

FEN1 revealed a different spectrum of cancers with early B-cell lymphomas [138].  

Comparative genomic hybridization analyses of these lymphomas showed genomic 

instability with changes in chromosome copy number, chromosomal rearrangements, 

gains and losses [138]. 

 

Finally, Rad27, the FEN1 homolog in S.cerevisease, plays an important role in 

telomere function [105, 106].  Indeed, deletion of RAD27 led to heterogeneous telomere 

lengths and an increase in single strand telomeric overhang (ssOH).  The increase in 

ssOH is attributed to incomplete or defective lagging strand synthesis at the telomeres 

[105, 106].  Similarly, deletion of Rad2, the FEN1 homolog in S. pombe, led to telomere 

shortening [139].  Together these results demonstrate that FEN1 is important for telomere 

maintenance in lower eukaryotes, suggesting a role for FEN1 at mammalian telomeres.  

 

Indeed, work on mammalian FEN1 also supports a role for this protein in 

telomere maintenance.  FEN1 physically interacts with WRN [140], a RecQ helicase that 

plays an important role in lagging strand DNA replication at the telomere [87].  This 

interaction stimulates both the FEN and the GEN activities of FEN1 [127, 140], 
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suggesting a role for this complex in DNA repair and replication.  Interestingly, FEN1 

and WRN form a complex upon encountering stalled replication forks and processes 

branch migrating structures resembling regressed forks in vitro [141].  Importantly, the 

Shelterin component, TRF2 also interacts with FEN1 [142], suggesting that it recruits 

FEN1 to the telomere for accurate processing of telomeric DNA.  Finally, recent work 

demonstrated that FEN1 associates with mammalian telomeres in a biphasic manner, 

localizing to the telomere during the S and G2 phases of the cell cycle [97], suggesting a 

role for FEN1 in mammalian telomere replication and repair.   

 

1.7  Summary  

Elucidating the different components involved in the efficient replication and 

maintenance of stable telomeres is paramount to our understanding of these complicated 

structures that play a pivotal role in tumorigenesis.  The complex nature of the telomere 

presents a uniquely challenging template for the DNA replication machinery, making 

coordination between telomere binding proteins and DNA replication and repair 

machinery vital to successful telomere replication.  Several lines of evidence suggest that 

FEN1, an important nuclease in DNA replication and repair, is a bona fide telomere 

binding protein that has a role in mammalian telomere biology.  The following sections 

of this thesis will elucidate the role of FEN1 in maintaining and preserving telomere 

stability.  Chapter 2 focuses on the role of FEN1 in replicating mammalian telomeres in 

primary human fibroblasts that do not have an active telomere maintenance mechanism. 

Chapter 3 concentrates on elucidating the mechanism through which FEN1 is able to 
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efficiently replicate human telomeres in primary human fibroblasts.  Chapter 4 examines 

the necessity of FEN1 in the maintenance of stable telomeres in human tumor cells that 

have two different methods of telomere maintenance.  In Chapter 5 I highlight the 

significance of this work in advancing our understanding of telomere replication and 

draw attention to questions that remain to be addressed from this work.  
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Figure 1.1  The telomere hypothesis 
Telomere length is progressively lost during successive rounds of cellular division, 
eventually leading to p53- and Rb-dependent permanent growth arrest, referred to as 
senescence.  Inactivation of p53 and Rb pathways allows continued cellular division and 
further telomere shortening.  Continued telomere erosion leads the cells into their second 
proliferative barrier, crisis, where the telomeres are unable to protect the chromosome 
ends, resulting in chromosome fusions and cell death.  Rare clones escape crisis by 
activating a telomere maintenance mechanism, either through the expression of 
telomerase or alternative lengthening of telomeres (ALT).  Inhibition of telomerase leads 
to cell death in telomerase-positive cells.  
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Figure 1.2  Schematic of the T-loop and telomere structure 
Representation of the T-loop, in which the single-stranded overhang inserts into the 
double-stranded telomeric DNA, creating a displacement loop. The DNA and associated 
telomeric proteins create a capped, or functional, telomere. 
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Figure 1.3  Telomere stability requires DNA damage response proteins 
Telomeres were once thought to exclude DNA repair and replication machinery but are 
now known to recruit and modulate the activities of this machinery.   Failure to recruit 
this machinery leads to telomere dysfunction and subsequent genomic instability. 
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Figure 1.4  Telomere replication is a challenging task 
Replication of telomeres inherently poses several challenges.  The telomeric DNA 
consists of a highly repetitive G-rich sequence (1) that has a greater probability of 
forming secondary structures such as G-quadruplexes (2).  The T-loop also presents a 
topological barrier to telomere replication (3).  Telomeres replicate from a single 
unidirectional fork (4) and remain unreplicated if this fork collapses. 
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Abstract 

Telomere stability plays an important role in the preservation of genomic stability and is 

maintained through the coordinated actions of telomere specific proteins and DNA repair 

and replication proteins [1, 2]. Flap Endonuclease 1 (FEN1) is a protein that plays a role 

in lagging strand DNA replication, base excision repair, homologous recombination, and 

re-initiation of stalled replication forks [3, 4]. Here, we demonstrate that FEN1 depletion 

leads to telomere dysfunction characterized by the presence of γH2AX and sister 

telomere loss. Expression of catalytically active telomerase, the reverse transcriptase that 

adds telomeric repeats to chromosome ends, was sufficient to rescue telomere 

dysfunction upon FEN1 depletion.  Strikingly, FEN1 depletion exclusively abrogates 

telomeres replicated by lagging strand DNA replication.  Genetic rescue experiments 

utilizing FEN1 mutant proteins that retained the ability to localize to telomeric repeats 

revealed that FEN1’s nuclease activity and ability to interact with the Werner protein 

(WRN) and telomere binding protein, TRF2 were required for FEN1 activity at the 

telomere. Given FEN1’s role in lagging strand DNA replication and re-initiation of 

stalled replication forks, we propose that FEN1 contributes to telomere stability by 

ensuring efficient telomere replication.  

 

 

Results and Discussion 

High fidelity replication of telomeres is critical to maintain telomere stability, and 

is confounded by both the end replication problem and repetitive G-rich nature of 
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telomeric DNA [5]. Repetitive DNA sequences such as those found in the telomere 

present a challenging template for the replication machinery due to a propensity to form 

secondary structures that can lead to stalled replication forks [6, 7]. Due to the 

importance and difficulty of high fidelity replication through the telomere, recent studies 

have focused on the role DNA replication/repair proteins play in telomere stability [8-

11]. Rad27, the FEN1 homolog is one such replication and repair protein that plays a role 

at Sachharomyces cerevisiae telomeres [8, 12]. Here, we demonstrate that FEN1 plays a 

critical role in mammalian telomere stability.  

Previous work demonstrated that FEN1 localized to the telomere in a cell cycle 

dependent manner [13]. We confirmed this observation by chromatin 

immunoprecipitation (ChIP) from cells 1) synchronized with thymidine and aphidicolin 

(Figure 2.S1) and 2) enriched in different phases of the cell cycle by centrifugal 

elutriation (Figure 2.S2).  In agreement with previous work, we found that FEN1 

localized to the telomere in the S and G2/M phases of the cell cycle. Purified FEN1 has 

been shown to interact directly with TRF2 through both the basic and myb domains of 

TRF2 [14]. Utilizing antibodies specific for endogenous FEN1 and TRF2, we 

demonstrate that these proteins interact in vivo (Figure 2.S3).  

 FEN1’s presence at the telomere and its interaction with TRF2 raised the 

intriguing possibility that it played a role in telomere biology. To address this directly, 

lentiviral expressed RNA interference (RNAi) hairpins targeting FEN1 (shFEN) or a 

scrambled hairpin (negative control, shSCR) were introduced into BJ fibroblasts (Figure 

2.1A). Upon transduction, FEN1 protein expression was virtually undetectable compared 
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to control cells (Figure 2.1B). To determine whether FEN1 depletion resulted in telomere 

dysfunction, we analyzed telomeres for the presence of γH2AX (an indicator of DNA 

damage) by ChIP. Lysates from cells expressing shSCR or shFEN were subject to 

immunoprecipitation using an antibody to γH2AX, followed by quantitation of isolated 

telomeric and genomic DNA (ALU).  We found that upon FEN1 depletion, 

immunoprecipitation of γH2AX resulted in a significant increase in the amount of 

isolated telomeric DNA compared to control cells (1.39 fold greater than control; P<0.05; 

Figure 2.1C and 2.1D). In contrast, no significant increase was observed in γH2AX 

associated with ALU DNA (1.09 fold; P=0.59), indicating that there is increased DNA 

damage upon FEN1 depletion at telomeric sequences compared to the genome at large. A 

similar increase in γH2AX associated telomeric and genomic DNA was observed when 

cells were treated with the ribonucleotide reductase inhibitor, hydroxyurea (data not 

shown). Together these results indicate that FEN1 depletion results in telomere 

dysfunction similar to that observed upon replication stress following hydroxyurea 

treatment.  

We next assessed the telomeres directly upon FEN1 depletion. FEN1 was 

depleted in BJ fibroblasts expressing the SV40 early region (BJL) (the presence of the 

early region facilitated isolation of metaphase chromosomes) (Figure 2.2A). Following 

FEN1 depletion, we utilized fluorescence in situ hybridization (FISH) to visualize 

telomeres. We found that FEN1 depletion resulted in increased sister telomere loss (STL) 

(Figure 2.2B and 2.2C). On average, 9.4% of the chromosomes isolated from control 

cells displayed STLs (Figure 2.2C). Upon FEN1 depletion, the percentage of 
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chromosomes displaying STLs increased nearly two-fold (16.8%, P<0.0001; Figure 

2.2C), indicating that FEN1 depletion impacted telomere stability.  

Depletion of FEN1 leads to sister telomere loss (Figure 2.2) resulting in 

recognition of telomeres by the DNA damage machinery (Figure 2.1).  Several papers 

have demonstrated that telomerase is preferentially recruited to the shortest telomeres 

[15-18], raising the possibility that telomerase may compensate for FEN1 depletion at the 

telomere.  Therefore, we expressed shSCR or shFEN in BJL cells expressing telomerase 

(BJLT; Figure 2.2A).  We found that in the presence of telomerase, STLs were 

significantly reduced upon FEN1 depletion. Indeed, in BJLT cells only 2.6% of 

chromosomes displayed STLs upon FEN1 depletion (P<0.05; Figure 2.2B and C), 

which was significantly lower than the 16.8% STLs observed in BJL cells devoid of 

telomerase activity. Together, these results demonstrate that telomerase compensates for 

FEN1 depletion at the telomere.  

The above observation was reminiscent of a report demonstrating that mutations 

in WRN, a known FEN1 binding protein, led to STLs that were limited to telomeres 

replicated by lagging strand DNA synthesis [19]. Given FEN1’s known role in lagging 

strand DNA replication and its interaction with the WRN protein [20, 21], we 

investigated whether FEN1 depletion compromised lagging strand DNA synthesis of the 

telomere. To carry out these studies, we employed chromosome orientation fluorescent in 

situ hybridization (CO-FISH), which is capable of distinguishing between telomeres 

replicated by leading versus lagging strand DNA synthesis (Figure 2.3A). CO-FISH 

analysis revealed that reduction in FEN1 protein levels led to a specific loss of the 
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lagging strand telomere (Figure 2.3B and 3C). BJL cells expressing the control hairpin 

(shSCR) had similar levels of telomere loss of both leading and lagging strands (4.4% 

and 3.8%, Figure 2.3C). Strikingly, cells expressing shFEN exhibited a significant 2-fold 

increase in loss of the lagging strand sister telomeres (9.5% versus 3.8%, P<0.0001; 

Figure 2.3C), with no change in the number of leading strand STLs observed. Together, 

these data demonstrate that FEN1 depletion exclusively compromises lagging strand 

DNA replication at the telomere.  

 Several biochemical functions have been ascribed to FEN1 [3, 4]. To determine 

whether FEN1 nuclease activity or its interaction with the WRN protein is necessary for 

telomere stability we created a novel vector, pResQ, capable of expressing both an 

shRNA and a cDNA (Figure 2.S4), and conducted genetic rescue experiments. We also 

designed a second shRNA targeted to the FEN1 3’ UTR (shFEN3), which facilitated our 

analysis by allowing us to deplete endogenous protein, while having no effect on mRNA 

produced from a cDNA devoid of the 3’UTR sequence. The FEN1 mutants utilized were 

D181A (DA), which completely lacks nuclease activity [22] and delta C (ΔC; 20 amino 

acid deletion on the C-terminus), which retains partial ability to process flap structures 

with the replication clamp, PCNA, but is unable to bind the WRN protein [23, 24]. Cells 

transduced with the indicated vector confirmed that endogenous FEN1 protein was 

significantly reduced and the wild-type and mutant proteins were expressed, albeit to 

varying levels (Figure 2.4A).  

We next determined whether the wildtype or mutant FEN1 proteins could rescue 

the telomere dysfunction observed upon FEN1 depletion. No significant change in 
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leading strand STLs was observed following expression of any of the FEN1 proteins 

(Figure 2.S5 and Figure 2.4B). Reduction of FEN1 protein with a second independent 

hairpin (shFEN3) led to a 2-fold increase in lagging strand STLs (Figure 2.4B). 

Importantly, expression of wild-type FEN1 (WT) rescued the lagging strand STL 

phenotype, indicating that the observed phenotype was specific to the depletion of FEN1 

(Figure 2.4B). In contrast, ectopic expression of either the DA nuclease deficient mutant 

or the ΔC mutant was unable to rescue the lagging strand STL phenotype upon FEN1 

depletion (Figure 2.S5 and Figure 2.4B). These observations suggest that both the 

nuclease activity and FEN1’s interaction with WRN is critical for its role at the telomere. 

 To rule out that failure of the mutants to rescue FEN1 depletion resulted from an 

inability of the mutants to interact with TRF2 or localize to the telomere, we conducted 

immunoprecipitation and ChIP experiments. As shown in Figure 2.4C, the DA mutant, 

but not the ΔC mutant retained the ability to interact with TRF2, indicating that the C-

terminal 20 amino acids are critical for FEN1 binding to TRF2. This also suggests that 

the phenotype of the ΔC mutant may be compounded by the combined loss of TRF2 and 

WRN interactions. To determine whether the mutant FEN1 proteins retained the ability to 

localize to the telomere, we also carried out ChIP analysis on lysates from 293T cells 

ectopically expressing epitope-tagged proteins.  We found that all three FEN1 proteins 

associated with telomeric DNA (Figure 2.4D). These results, together with the functional 

data presented above, demonstrate that failure to rescue sister telomere loss was not due 

to an inability of the mutants to localize to the telomere.  
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FEN1 is a DNA replication and repair protein [4, 25]. To explore the possible 

impact of FEN1 depletion on the genome at large, we carried out karyotypic analysis of 

BJL and BJLT cells. Upon FEN1 depletion, BJL cells displayed a mild increase in 

genomic instability as evidenced by a modest increase in the number of chromatid breaks 

and chromosome gaps observed (Table 2.S1). Because telomerase rescues the telomere 

phenotype observed upon FEN1 depletion (Figure 2.2), any chromosomal abnormalities 

observed in BJLT cells depleted of FEN1 would be attributed to a non-telomeric effect. 

Karyotypic analysis of BJLT cells revealed no significant differences between cells 

expressing shSCR or shFEN (Table 2.S1), indicating that the impact of FEN1 depletion 

on the genome is the result of telomere dysfunction.  

FEN1 is a structure specific endonuclease that acts in DNA replication and repair. 

Here, we assessed FEN1’s role in telomere stability. In agreement with previous work 

[13, 14], we found that FEN1 is present at mammalian telomeres in a cell cycle 

dependent manner, and that it interacts with TRF2. This interaction requires the C-

terminal region of FEN1. FEN1 depletion led to telomere dysfunction characterized by an 

increase in γH2AX at telomeres and sister telomere loss (STL). The latter was repressed 

by telomerase expression. CO-FISH analysis revealed that STLs were limited to 

telomeres replicated by lagging strand DNA synthesis. We further demonstrated that 

FEN1 nuclease activity and its C-terminal region are critical for its function at the 

telomere. FEN1 depletion revealed only a mild increase in genomic instability that was 

completely abolished in the presence of telomerase. Collectively, these data demonstrate 
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that FEN1 is important for telomere stability and suggest that FEN1 is required for 

proficient replication and/or repair of telomeres.  

Telomere repeat binding proteins interact with DNA replication and repair 

proteins to maintain telomere stability [1, 5].  Abrogation of these protein-protein 

interactions in both yeast and mammalian systems can have profound effects on telomere 

stability [2].  These observations raise the possibility that the telomere represents a 

specialized structure whose replication and stability is ensured by the coordinated efforts 

of numerous redundant systems [5]. Highly repetitive sequences such as those present in 

the telomere can adopt complex secondary structures that are challenging to replicate and 

have the potential to lead to stalled replication forks [5, 7].  If left unresolved, these can 

result in double strand breaks [26].  Given FEN1’s potential role in the reinitiation of 

stalled replication forks [27, 28], its absence is likely to compound the ability of the 

replication machinery to successfully transit the G-rich TTAGGG tracks.  In support of 

this, our data demonstrate that FEN1 depletion results in specific loss of lagging strand-

replicating sister telomeres.  We propose that FEN1 is recruited to the telomere to 

facilitate replication and in its absence the replication machinery has a propensity to stall 

and/or inefficiently re-initiate stalled replication forks within the telomeric repeats.  This 

hypothesis is particularly attractive in light of work demonstrating that loss of the Werner 

protein, which localizes with FEN1 at stalled replication forks thereby facilitating 

processing of branch migrating structures [28], phenocopies FEN1 depletion at the 

telomere [19].  In both the case of FEN1 depletion (this report) and WRN loss [19], 

telomerase rescues the telomere phenotype. Because telomerase is recruited to, and 
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extends the shortest telomeres [15-18], its presence would be expected to rescue STLs by 

lengthening shortened telomeres created after a stalled-fork-induced break. Interestingly, 

the ΔC FEN1 mutant that does not interact with the WRN [24] or TRF2 protein is unable 

to rescue the telomere defect observed upon FEN1 depletion despite its ability to localize 

to the telomere.  Because the ΔC mutant retains a partial ability to interact with PCNA 

[23, 24], this result suggests that it is FEN1’s repair function that is critical for its activity 

at the telomere.   

 

 

Materials and Methods 

Cell Culture and Synchronization.  All cells were grown as reported [29-31]. Briefly, 

cells were grown at 37°C in 5% CO2. HeLa and 293T cells were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM) containing 10% heat-inactivated fetal calf serum and 

1% penicillin/streptomycin.  BJ fibroblasts were cultured in DMEM with 15% Medium 

199 (Sigma, St. Louis, MO), 15% fetal calf serum and 1% penicillin/streptomycin. HeLa 

cells were synchronized using a sequential Thymidine (2mM)-Aphidicolin (1µg/ml) 

block (16 hours) with a 10-hour release between them. Centrifugal elutriation was carried 

out on 293 cells using a Beckman JE6B elutriation rotor (Beckman). Small fractions of 

cells were collected at the indicated time points, stained with propidium iodide, and 

subjected to FACS analysis to determine the cell cycle phase before subsequent analyses.  
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Virus Production and Infection.  Viral production and infections were carried out as 

described [32]. Briefly, 293T cells were transfected using TransIT-LT1 (Mirius, 

Madison, WI).  Virus was harvested 48 hours post transfection, and infections were 

carried out in the presence of 10 µg/ml of protamine sulphate for 4-6 hours.  Following 

infection, target cells were selected with 1 µg/ml puromycin. The pLKO.1shSCRp, 

pLKO.1shFENp and pResQ lentiviruses were produced by cotransfection with 

pCMVΔR8.2 and pCMV-VSV-G (8:1 ratio). The sequences used for the hairpins were 

for shFEN 5’-GGAGATCGTGCGGCGACTTGA-3’ shFEN3 5’-

TTAAGAGCTACAGCTAGAGAA-3’ and shSCR [33]. The pResQ was constructed by 

inserting the U6 promoter into pFIRu (Unpublished data, Dr. Greg Longmore). The U6 

promoter was amplified using 5’-TCTAGATGAGGGCCTATTTCCCATGATTCC-3’ 

and 5’-CTCGAGTACGTAACCGGTGTTTCGTCCTTTCCAC-3’ primers, and inserted 

with the XbaI and XhoI endonucleases.   

 

Western Blot Analysis.  Cells were washed with PBS and lysed in RIPA buffer (150mM 

NaCl, 1% Triton X-100, 0.5% Sodium Deoxycholate, 0.1% SDS, 50mM Tris pH8.0, 

aprotonin, leupeptin, pepstatin, and PMSF).  Protein concentration was quantified using 

the Bio-Rad Protein Assay (500-0006, Bio-Rad, CA) Proteins were separated on an SDS-

polyacrylamide gel and transferred to a PVDF membrane.  Antibodies used: rabbit 

polyclonal anti-FEN1 (#586, Bethyl Labs, Montgomery, TX), mouse monoclonal anti-

Actin (ABCAM, Cambridge, MA), rabbit polyclonal anti-TRF2 (Santa Cruz Biotech, H-

300), mouse monoclonal anti-Flag M2 (Sigma St. Louis, MO).   
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Co-Immunoprecipitation. 293T nuclear extracts were prepared as described [34]. 

Nuclear extracts were precleared with 150µl of Protein A beads (Amersham) for 1 hr at 

4°C and incubated with 5µg TRF2 antibody (Santa Cruz Biotech, H-300) or IgG (Sigma) 

and 40µl of Protein A beads at 4°C, overnight. Bound proteins were eluted and analyzed 

by SDS-PAGE and western blot analysis.  

 

Chromatin Immunoprecipitation (ChIP).  ChIP was conducted as previously described 

with the following modifications [13]. Cells were crosslinked on the plate with 1% 

formaldehyde for 60 minutes at room temperature, washed with PBS and lysed in 1% 

SDS, 50 mM Tris-HCl, pH 8.0, 10 mM EDTA plus protease inhibitors at a density of 

2x107 cells/ml.  Lysates were sonicated with a Missonix 3000 sonicator (Missonix, NY) 

at a setting of 5 (6 cycles of 30 seconds), producing chromatin fragments ranging from 

100 and 500 bases.  Equal quantities of protein lysate were diluted and precleared with 

40µl of Protein A beads (GE Healthcare, Sweden) for 4 hours at 4°C.  

Immunoprecipitations were performed overnight with 8µg of antibodies and 30µl of 

Protein A/G-PLUS Sepharose beads (Santa Cruz, sc-2003) that had been pre-blocked 

with 5µg of sheared E.coli DNA and 30µg BSA. Antibodies used were: anti-TRF2 (05-

521, Upstate, Charlottesville, VA), anti-phospho-H2AX (JBW301, Upstate, 

Charlottesville, VA), rIgG (Sigma, St. Louis, MO), and anti-Fen1 (#587, Bethyl Labs, 

Montgomery, TX). The beads were washed and eluted in 70mM Tris (pH8.0), 1mM 

EDTA and 1.5% SDS at 65°C.  Crosslinks were reversed by incubation at 65°C for 4-6 
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hours.  The eluate was treated with 40µg of Proteinase K treatment for an hour at 37°C.   

Samples were phenol-chloroform extracted and precipitated overnight at -20°C.  The 

precipitates were resuspended in 0.4N NaOH and blotted onto a Hybond-XL membrane 

(Amersham Biosciences, UK) (70% loaded for telomere signal and 20% loaded for ALU 

signal).  The telomere probe, TEL (TTAGGG)n and Alu probe (ALU), were produced by 

random priming using the Amersham Ready-To-Go beads, -dCTP.  Following 

hybridization, membranes were washed and analyzed by a Phosphor Imager (Amersham, 

Piscataway, NJ).  

 

Fluorescence in situ Hybridization (FISH).  FISH was carried out as described [35]. A 

subconfluent population of cells was incubated with 0.1µg/ml of colcemid for 2-6 hours 

to allow mitotic cells to accumulate.  After hypotonic swelling in 75 mM KCl (10 min, 

37°C), cells were fixed in methanol/acetic acid (3:1) and then dropped onto clean glass 

slides and aged overnight at 65°C.  Slides were rehydrated in PBS, and fixed with 4% 

paraformaldehyde (in PBS) for 2 minutes.  After washing, the slides were dehydrated 

with a cold ethanol series, and hybridized with 0.3µg/ml PNA probes targeted to the 

telomere, Cy3-(CCCTAA)3 and the centromere (FFLU-OO-

CTTCGTTGGAAACGGGA), in 70% formamide, 10mM Tris (pH 7.2) and blocking 

agent (Sigma, St. Louis, MO).  DNA was denatured for 3 minutes at 80°C and 

hybridization was carried out at 37°C for 2-4 hours in a moist chamber.  The slides were 

washed in 70% formamide, 10mM Tris (pH 7.2) and 0.1% BSA, and subsequently 

washed with TBS-T (0.1M Tris pH 7.2, 0.15M NaCl and 0.08% Tween-20).  The slides 
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were dehydrated in a cold ethanol series and mounted using VectaShield (Vector Labs, 

Burlingame, CA) containing 0.1µg/ml DAPI. Images were taken using a Nikon 90i 

Microscope and analyzed on the ISIS FISH imaging software (Metasystems, Altlussheim, 

Germany). 

 

Choromosome Orientation-FISH (CO-FISH). CO-FISH was conducted as previously 

described [36] with the following modifications.  The cells were incubated with BrdU 

and BrdC, at the ratio of 3:1 (3µg/ml:1µg/ml) for one cell cycle.  Metaphases were 

prepared as described above, and processed as described [36]. The metaphases were 

probed with Fluorescein-(TTAGGG)3 at 0.06µg/ml and Cy3-(CCCTAA)3 at 0.3µg/ml.  

The Flu probe was also boiled for 5 minutes at 95°C in the hybridization buffer, and then 

crashed on ice before hybridization.  

 

Statistical Analysis.  The Wilcoxon Two-Sample test (two-tailed distribution) was used 

for all the FISH analyses. Student’s T-test was used to analyze the ChIP data.  
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Figure 2.1.  FEN1 depletion leads to telomere dysfunction.  
(A) Timeline of experimental procedure given in days. (B) Short hairpins against FEN1 
(shFEN) or a scrambled sequence (shSCR) were expressed in BJ fibroblasts. FEN1 
(upper panel) and β-Actin (lower panel) protein levels were assessed by Western blot 
analysis. (C) Representative ChIP assay of cells expressing shSCR or shFEN. ChIPs were 
conducted as described in the supplemental materials. The inputs indicate 0.2%, 0.1% 
and 0.04% of the total protein extract. (D) Quantification of six independent ChIP assays. 
The graph indicates the relative amount of telomere (Telo) or ALU repeat (ALU) DNA 
isolated from cells expressing shSCR (white) or shFEN (black). The error bars represent 
standard error of the mean (SEM).  
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Figure 2.2.  Increased sister telomere loss (STL) upon FEN1 depletion.  
(A) Short hairpins against a scrambled sequence (shSCR) or FEN1 (shFEN) were 
expressed in BJ fibroblasts expressing SV40 early region, in the absence (BJL) or 
presence of telomerase (BJLT). FEN1 (upper panel) and β-Actin (lower panel) protein 
levels were assessed by Western blot analysis. (B) Representative metaphases from BJL 
and BJLT cells following shRNA expression. FISH analysis was conducted using Cy3-
[CCCTAA]3 (red) and FLU-labeled centromere probes (green).  DNA was stained with 
4’,6-diamidino-2-phenylindole (DAPI; blue). Arrowheads indicate missing sister 
telomeres. The side panels show higher magnification images of the metaphase 
chromosomes. (C) Quantification of chromosomes displaying STLs following shRNA 
expression in BJL (black bars) and BJLT (white bars) cells.  A minimum of 60 
metaphases, from two independent experiments, was analyzed per treatment in a blinded 
fashion (* P<0.0001; †, P<0.05). The error bars represent SEM. 
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Figure 2.3.  FEN1 depletion leads to loss of telomeres replicated by lagging strand 
DNA synthesis.  
(A) CO-FISH schematic. Newly synthesized strands incorporate BrdU and BrdC. UV and 
ExoIII treatment results in degradation of newly synthesized DNA containing BrdU and 
BrdC, and the template strands are hybridized with Cy3-[CCCTAA]3 (red, lagging 
strand) and FLU-[TTAGGG]3 (green, leading strand) probes. (B) Representative CO-
FISH of metaphases from BJL cells expressing the indicated hairpins. Color schemes are 
as described in (A). The arrowheads indicate missing telomeres. (C) Quantification of 
(B). A minimum of 60 metaphases from two independent experiments was analyzed per 
treatment in a blinded fashion (*P<0.0001). The error bars represent SEM. 
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Figure 2.4.  The nuclease activity and C-terminal region of FEN1 are essential for its 
role at the telomere.  
(A) Western blot analysis of endogenous and ectopically expressed FEN1 proteins 
following transduction of BJL cells (upper panel). The ectopically expressed FEN1 
proteins carry a triple-flag tag (3XF), which produces a larger protein.  Abbreviations are 
as follows:  Ctrl indicates control cells in which GFP was ectopically expressed, 3XF-F 
indicates the ectopically expressed wildtype and DA mutant, 3XF-FC indicates the ∆C 
mutant, and Endog indicates the endogenous FEN1 protein (*, Non-specific band). β-
Actin (lower panel) is shown as a loading control. (B) Quantification of STLs after CO-
FISH on metaphase chromosomes following depletion of the endogenous protein and 
expression of the indicated FEN1 protein, depicted as percentage of chromosomes with 
missing leading and lagging strand telomeres. A minimum of 60 metaphases from two 
independent experiments was analyzed per treatment in a blinded fashion (†, P<0.0001). 
The error bars represent SEM. (C) 293T cells transduced with flag-tagged FEN1 mutants, 
DA and ΔC and subjected to immunoprecipitation (IP) with an anti-TRF2 antibody as 
described in the supplemental.  The presence of TRF2 and the FEN1 mutants were 
detected by immunoblot (IB) using anti-TRF2 and anti-Flag antibodies, respectively. The 
input lane indicates 10% of total protein used per immunoprecipitation. (D) FEN1 
mutants localize to the telomere. Representative ChIP analysis of 293T cells (Ctrl) or 
293T cells transduced with wildtype (WT) or a FEN1 mutant (DA and ΔC), subjected to 
immunoprecipitation with the M2 flag antibody. Precipitated DNA was probed for the 
presence of telomeric sequences as described in the supplemental information. The inputs 
indicate 0.2%, 0.1% and 0.04% of the total protein extract.  
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Figure 2.S1  FEN1 localizes to the telomere.  
(A) Cell Cycle analysis of the HeLa cells used for chromatin immunoprecipitation (ChIP) 
assays. FACS analysis of propidium iodide stained synchronized HeLa cells taken at the 
indicated times post-release. The percentage of cells in each phase of the cell cycle is 
indicated. (B) ChIP with the indicated antibodies on synchronized lysates. Isolated DNA 
was probed with a probe against the telomere and Alu DNA. The inputs indicate 0.2%, 
0.1% and 0.04% of the total protein extract. 
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Figure 2.S2  FEN1 localizes to the telomere.  
(A) Cell Cycle analysis of the 293 cells used for ChIP assays. FACS analysis of 
propidium iodide stained synchronized 293 cells post elutriation. The percentage of cells 
in each phase of the cell cycle is indicated. (B) Representative ChIP assay from the 293 
cells separated via centrifugal elutriation using the indicated antibodies. Assays were 
conducted using equal amounts of protein extracts. rIgG was used as a negative control. 
The input for each of the lysates indicates 0.1% and 0.04% of the total protein extract. 
The isolated DNA samples were subjected to southern blot analysis using telomere and 
ALU probes. A lighter exposure is provided for the TRF2 telomere panel relative to the 
FEN1 panel. (C) Quantification of the relative FEN1 immunoprecipitation in the ChIP 
assays (n=2) following normalization for input and efficiency of DNA extraction. The 
graph shows relative pulldown compared to the G1 phase. Blue bars indicate the telomere 
signal and the red bars indicate the ALU signal. 
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Figure 2.S3  FEN1 interacts with TRF2.  
Co-immunoprecipitation experiments were conducted with nuclear lysates from HeLa 
cells to detect interaction between endogenous proteins.  TRF2 was immunoprecipitated 
(IP) with anti-TRF2.  The presence of FEN1 and TRF2 in the IP was confirmed by 
immunoblotting (IB) with antibodies against TRF2 and FEN1 as indicated. 
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Figure 2.S4. Schematic representation of the pResQ vector.  
A novel retroviral vector capable of: 1) utilizing RNAi to knock down a gene of interest 
(shRNA), 2) overexpressing a cDNA, and 3) expressing the puromycin resistance gene, 
facilitating isolation of transduced populations. 
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Figure 2.S5.  The nuclease activity and C-terminal region of FEN1 are essential for 
its role at the telomere. 
Representative images of metaphases isolated from BJL cells with the indicated 
treatments. CO-FISH was conducted on these metaphases and the color schematic is the 
same as in Figure 2.3. The white arrowheads indicate missing sister telomeres. 
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Table 2.S1.  Cytogenetic analysis upon FEN1 depletion in the absence (BJL) and 
presence of telomerase (BJLT). Karyotypic analysis was conducted on blinded samples.  

Chromosomal 

Aberrations 
BJL BJLT 

 shSCR shFEN shSCR shFEN 

Chromosome Gap 1 5 0 0 

Minute 0 0 0 0 

Chromatid Break 9 24 6 1 

Chromatid Gap 0 0 0 0 

Chromatid Exchange 10 10 0 0 

Tri-Radial 1 1 0 0 

Quadra-Radial 0 0 0 0 

Dicentric 0 0 0 0 

Ring Chromosome 0 0 0 0 

Metaphase Number 68 118 41 33 
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Abstract 

 

High fidelity telomere replication is critical to telomere stability and genomic stability.  

Telomeres present a challenging template for DNA replication and are duplicated by the 

coordinated actions of telomere binding proteins and DNA replication and repair 

proteins.  Recently, we demonstrated that Flap Endonuclease 1 (FEN1), a nuclease 

important for DNA replication and repair, is critical for telomere stability and its 

depletion led to a loss of lagging strand-replicated telomeres.  Here, we show that FEN1 

contributes to telomere stability by ensuring efficient duplication of telomeres.  FEN1 

depletion does not affect cell cycle progression nor in vitro DNA replication through non-

telomeric substrates, suggesting other nucleases compensate for FEN1 loss throughout 

the genome during DNA replication.  However, FEN1 depletion leads to a decrease in 

replication fork re-initiation events following hydroxyurea challenge, indicating that 

FEN1 is important for efficient re-initiation of stalled replication forks.  Genetic rescue 

experiments revealed that a novel gap endonuclease (GEN) activity involved in 

processing DNA bubble structures and FEN1’s ability to interact with the RecQ helicases 

are vital for FEN1-dependent re-initiation of stalled replication forks.  We further 

demonstrate that FEN1’s ability to process Okazaki fragments is not required for efficient 

telomere replication.  In contrast, FEN1’s GEN activity, which is critical for re-initiation 

of stalled forks, prevents replication-dependent loss of lagging strand telomeres.  We 

propose that FEN1 maintains stable telomeres through the efficient re-initiation of stalled 
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replication forks that occur in the G-rich lagging strand telomere, ensuring high fidelity 

telomere replication. 

 

 

Introduction 

High fidelity DNA replication is critical for genome stability and continued cellular 

proliferation, and is thus ensured by redundant mechanisms.  The existence of inherited 

syndromes in which DNA replication/repair proteins are mutated or lost and overall DNA 

replication is able to continue best illustrate the robustness of these redundant systems 

(58).  For example, Werner (WRN) helicase function is lost in Werner’s syndrome, yet 

these patients replicate their DNA, suggesting that other RecQ helicases compensate for 

its function in DNA replication  (49, 50).  However, this compensation is incomplete and 

patients with mutations in WRN manifest progeria syndromes characterized by genomic 

instability (48).   

 

Deficiencies in various DNA replication/repair mechanisms become particularly 

detrimental in highly repetitive DNA sequences that present unique challenges to the 

DNA replication machinery (13, 56).  For example, triplicate repeats can cause 

replication fork slippage, resulting in deleterious expansions and deletions (19).  

Similarly, telomeric DNA, which consists of repetitive G-rich sequences capable of 

forming secondary structures such as G-quadruplexes (G4) can impede the replication 

fork (13, 27, 37).  Thus, telomeres are particularly sensitive to the loss of DNA 
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replication/repair proteins such as WRN.  Indeed, cells from WRN patients display overt 

telomere dysfunction while displaying only minor defects in overall genomic replication 

(6, 7, 48), suggesting that other proteins partially compensate for WRN throughout the 

genome but are unable to fully compensate for WRN function at the telomere.  

 

Given the difficulties encountered during telomere replication, robust mechanisms have 

evolved to ensure high fidelity replication and repair of the telomere.  These mechanisms 

appear to be coordinated by the Shelterin complex, a six-protein complex of telomere 

binding proteins (10, 13, 56).  Indeed, TRF2, an essential component of the Shelterin 

complex, interacts with and modulates the activities of numerous DNA replication and 

repair proteins (10).  For example, TRF2 binds WRN and BLM helicases and stimulates 

their activity in vitro, suggesting that it recruits them to replicate/repair telomeric DNA 

(36).  In Schizosaccharomyces pombe (S. pombe), the TRF1/2 homolog, Taz1 is essential 

for DNA replication through the telomeres (30).  Upon Taz1 deletion, replication forks 

stall and telomeres are rapidly lost (30).  TRF1 plays a similar role in mammalian cells 

(43).  Following deletion of TRF1, stalled replication forks accumulate within the 

telomeric repeats and an ATR-dependent DNA damage response (DDR) is detected, 

indicating a replication defect (43).  Together, these data underscore the importance of 

the coordinated action between Shelterin components and the DNA replication and repair 

machinery to ensure efficient telomere replication.  
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We recently demonstrated that FEN1, a structure-specific metallonuclease that 

participates in DNA replication and repair, is vital for maintaining telomere stability (39).  

FEN1 directly participates in processing of Okazaki fragments during lagging strand 

replication (23).  FEN1 also participates in several DNA repair pathways including base 

excision repair, homologous recombination, and re-initiation of stalled replication forks 

(26, 47).  In addition, FEN1 directly interacts with TRF2 and localizes to mammalian 

telomeres during S-phase (32, 39, 57). Recently, we demonstrated that FEN1 depletion in 

telomerase-deficient cells results in a DNA damage response (DDR) at telomeres and 

telomere dysfunction characterized by loss of sister telomeres (STL) replicated by the 

lagging strand machinery (39, 40).  Furthermore, genetic rescue experiments 

demonstrated that the nuclease activity and the C-terminus, WRN-interacting domain 

were important for FEN1 function at the telomere (39).  

 

Here we demonstrate that FEN1 promotes efficient re-initiation of stalled replication 

forks.  The C-terminal domain of FEN1 and its novel gap endonuclease activity (GEN) 

are critical for its ability to re-initiate stalled replication forks.  However, FEN1 depletion 

does not affect progression through S-phase nor SV40 Large-T-dependent in vitro DNA 

replication.  Finally, we demonstrate that the PCNA-interacting domain of FEN1 is 

dispensable for its telomere function, and that the GEN activity of FEN1 is critical for its 

ability to prevent STLs upon FEN1 depletion.  We propose that FEN1 maintains stable 

telomeres through the efficient re-initation of stalled replication forks that occur in the G-

rich telomere, ensuring high fidelity telomere replication. 
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Materials and Methods 

Cell Culture.  All cells were grown as reported (39, 40, 51, 53).  Briefly, cells were 

grown at 37°C in 5% CO2.  HeLa and 293T cells were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) containing 10% heat-inactivated fetal calf serum and 1% 

penicillin/streptomycin.  BJ fibroblasts were cultured in DMEM with 15% Medium 199 

(Sigma, St. Louis, MO), 15% heat-inactivated fetal calf serum and 1% 

penicillin/streptomycin.  

 

Virus Production and Infection.  Lentiviral production and cell infections were carried 

out as described (39, 40, 52).  Briefly, 293T cells were transfected with TransIT-LT1 

(Mirius, Madison, WI).  Virus was harvested 48 hours post transfection, and infections 

were carried out overnight in the presence of 10 µg/ml of protamine sulfate.  Following 

infection, transduced cells were selected with 1 µg/ml puromycin.  For adenovirus 

production, FEN1 cDNAs were cloned into the pShuttle vector (Stratagene, La Jolla, CA) 

at the EcoRV site.  The hWT, DA and ΔC cDNAs were previously described (39); the ΔP 

cDNA was previously described (45); the ΔPΔC cDNA was constructed using a forward 

primer complementary to the flag epitope 5’-

GGTACCATGGACTACAAAGACCATGACGG-3’ and the following reverse primer, 

5’-CTCGAGTTATTAGGTGCTGCCTTGGCGGCTCTTAC-3’, and cloned into the 

pShuttle plasmid; the mWT and mED cDNAs were previously described (62).  Following 

subcloning, the FEN1 cDNAs were recombined into the pAdEasy-1 plasmid (Stratagene, 
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La Jolla, CA) and the resultant DNA was transfected into HEK293 cells to produce 

infectious adenovirus.  The adenovirus production and concentration was carried out 

according to manufacturer’s protocol using the AdEasy XL Adenoviral Vector System 

(Stratagene, La Jolla, CA).  The titer of the concentrated adenovirus was determined 

using AdEasy Viral Titer kit (Strategene, La Jolla, CA) according to the manufacturer’s 

protocol.  

 

Western Blot Analysis.  All western blots were conducted as described (39). Antibodies 

used: rabbit polyclonal anti-FEN1 (#586, Bethyl Labs, Montgomery, TX), mouse 

monoclonal anti-Actin (ABCAM, Cambridge, MA), rabbit polyclonal anti-TRF2 (H-300; 

Santa Cruz Biotech, Santa Cruz, CA), mouse monoclonal anti-Flag M2 (Sigma St. Louis, 

MO), rabbit polyclonal anti-Cyclophilin A (Cell Signaling Technology, Danvers, MA).  

 

S-phase progression assay.  HeLa cells were cultured for 1 hour in the presence of 

50µM 5-bromo-2-deoxyuridine (BrdU).  The cells were then washed in phosphate 

buffered saline (PBS), replaced in culture medium and harvested at the indicated times.  

The harvested cells were washed with PBS and then fixed in 4% paraformaldehyde and 

0.1% TritonX-100 in PBS for 20 minutes at room temperature.  Cells were further 

permeabilized with 0.1% TritonX-100 for 10 minutes on ice and fixed again for 5 

minutes as previously described.  The DNA was denatured with 30µg of DNaseI (Sigma, 

St. Louis, MO) at 37°C for an hour.  The BrdU was detected with a FITC-conjugated 

anti-BrdU antibody (A21303, Invitrogen, Carlsbad, CA) and the DNA content of the cells 
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was determined by 7-amino-actinomysin D (7-AAD; BD Biosciences, San Jose, CA) 

staining.  The stained cells were analyzed on a FACSCalibur machine (BD Biosciences, 

San Jose, CA).  

 

SV-40 Large-T Antigen dependent in vitro DNA replication assay.  The crude cell 

extracts for this assay were prepared using HeLa cells as described in (4).  Briefly, HeLa 

cells were harvested, washed in cold isotonic buffer [20mM HEPES, pH 7.8, 1.5mM 

MgCl2, 5mM KCl, 250mM sucrose, 1mM dithiothreitol (DTT), 0.1mM 

phenylmethylsulfonyl fluoride (PMSF)], and then with cold hypotonic buffer (isotonic 

buffer without sucrose).  The cells were then swollen on ice for 15 minutes in hypotonic 

buffer and lysed with 10 strokes of the Dounce homogenizer (pestle B).  The cell lysate 

suspension was kept on ice for another 60 minutes.  Following this incubation, the lysate 

was centrifuged at 1700g at 4°C for 10 minutes to remove the nuclei and then centrifuged 

again at 12,000g for 10 minutes at 4°C to clarify the lysate.  The resulting lysate was 

flash frozen in liquid nitrogen and stored at -80°C.  Linear plasmid DNA (pSVO.11-2K; 

(34)) used in the replication reactions was prepared by equilibrium centrifugation in 

cesium chloride-ethidium bromide gradients and then digested with BbsI.  The in vitro 

replication reactions were carried out according to the protocol in (4).  Briefly, each 25µL 

reaction contained 30mM HEPES, pH 7.5, 7mM MgCl2, 4mM rATP, 50µM each of 

rCTP, rUTP, rGTP, 100µM each of dATP, dGTP, dTTP, dCTP, 0.5mM DTT, 40mM 

creatine phosphate, 0.625 units creatine phosphokinase, 20µM [α-32P]dCTP (1µCi), 50ng 

linearized plasmid DNA, 1µg Large-T antigen (Chimerx, Madison, WI) and 100µg 
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cytoplasmic extract.  The reaction was incubated for 10 minutes on ice and then at 37°C 

for the indicated time.  To stop the reaction, an equal volume of stop solution (2% SDS, 

50mM EDTA, 1mg/ml Proteinase K) was added and the reaction was incubated for an 

additional 30 minutes at 37°C.  The reactions were subject to a 

phenol/chloroform/isoamyl alcohol extraction and then the DNA was precipitated.  The 

precipitated DNA was separated on an agarose electrophoresis gel to determine 

replication products that were quantified using a Phosphor Imager (Amersham, 

Piscataway, NJ). 

 

Replication Re-initiation assay. The protocol was adapted from (17, 42).  Briefly, cells 

were cultured with 1.5mM hydroxyurea (HU) for 16 hours.  The cells were then released 

from HU inhibition into medium containing 150µM BrdU for 10 minutes.  The cells were 

fixed immediately, permeabilized with 0.5% TritonX-100, and treated with 10units of 

DNaseI at 37°C for 1 hour to denature the DNA.  The antibodies used for staining were 

mouse anti-BrdU (BD Biosciences, San Jose, CA); rabbit anti-FLAG (Sigma, St. Louis, 

MO); Alexa Fluor 488 goat anti-mouse and Alexa Fluor 546 goat anti-rabbit (Invitrogen, 

Carlsbad, CA).  

 

Co-Immunoprecipitation (Co-IP).  Co-IP was conducted as described (39).  Briefly, 

293T cells were transfected with the indicated cDNA constructs and then nuclear extracts 

were prepared as described (12).  Nuclear extracts were precleared with 150µl of Protein 

A beads (GE Healthcare, Piscataway, NJ) for 1 hr at 4°C and incubated with 5µg TRF2 
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antibody (H-300; Santa Cruz Biotech, Santa Cruz, CA) or IgG (Sigma, St. Louis, MO) 

and 40µl of Protein A beads at 4°C, overnight.  Bound proteins were eluted and analyzed 

by SDS-PAGE and western blot analysis.  

 

Chromatin Immunoprecipitation (ChIP).  ChIP was conducted as described (39). 

 

Metaphase preparation and Chromosome Orientation-FISH (CO-FISH).  Metaphase 

preparation and CO-FISH was conducted as described (39).  

 

Statistical Analysis.  The Student’s T-test (two-tailed distribution with equal variance) 

was used for all the BrdU foci and CO-FISH analyses.  

 

 

Results 

FEN1 depletion leads to inefficient replication fork restart   

FEN1 is a structure-specific endonuclease that plays an important role in DNA 

metabolism.  FEN1 participates in Okazaki fragment processing during lagging strand 

DNA replication and is important for several DNA repair processes (26, 47).  Indeed, 

FEN1 localizes to stalled replication forks where it interacts with the RecQ helicase, 

Werner (WRN), and is postulated to participate in DNA replication fork re-initiation (44, 

62).  The telomeric DNA sequence presents a challenging template for the DNA 
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replication machinery.  As such, telomeres resemble fragile sites that are revealed upon 

aphidicolin treatment (43), providing evidence that telomeric replication is challenging. 

Furthermore, replication fork pausing and stalling have been observed within telomeric 

repeats both in vitro and in vivo (18, 28, 34, 57).  This suggests that high fidelity telomere 

replication requires the actions of a replication fork re-initiation complex.  

 

Recently, we demonstrated that in human cells FEN1 depletion results in telomere 

dysfunction while having little impact on total genome stability (39).  These results were 

intriguing as they suggested that other proteins compensate for FEN1 depletion during 

genomic replication and/or repair but these same proteins are ineffective within telomeric 

sequences.  Interestingly, the FEN1ΔC mutant that does not interact with the Werner 

protein is unable to rescue telomere dysfunction upon depletion of endogenous FEN1, 

although it is able to bind the telomere (39, 45).  It is therefore interesting to speculate 

that FEN1 is required for the re-initiation of stalled replication forks at telomeres.  Given 

the data implicating FEN1 in replication fork re-initiation we first addressed how FEN1 

depletion impacted DNA replication fork re-initiation following forced fork stalling 

induced by hydroxyurea treatment. 

 

Hydroxyurea treatment causes nucleotide depletion, resulting in DNA replication fork 

stalling and S-phase arrest.  Upon removal of hydroxyurea, nucleotide pools recover and 

stalled DNA replication forks re-initiate, allowing S-phase to proceed.  To investigate 

whether FEN1 contributes to DNA replication fork re-initiation, we induced stalled DNA 
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replication forks in HeLa cells by treating them with hydroxyurea for 16 hours and then 

releasing them in the presence of BrdU for ten minutes.  Because BrdU is only 

incorporated where the DNA replication forks re-initiate, the efficiency of repair can be 

determined by quantitating BrdU foci (Figure 3.1A) (17).  If FEN1 participates in the 

repair and restart of stalled DNA replication forks, its depletion would cause fewer re-

initiation events and thus fewer BrdU foci would be observed. 

 

HeLa cells were transduced with a lentiviral construct encoding a short hairpin RNA 

(shRNA) targeting the FEN1 3’UTR (shFEN3) or a control hairpin (shSCR) (39).  

Expression of shFEN3 led to a significant reduction in FEN1 protein compared to cells 

expressing shSCR (Figure 3.1B).  Control cells and FEN1-depleted cells were cultured 

for 16 hours in the presence of hydroxyurea (HU) and then released from HU inhibition 

in the presence of BrdU for ten minutes (Figure 3.1A).  BrdU foci were observed 

through immunostaining.  As expected, we observed a striking decrease in the number of 

BrdU foci upon FEN1 depletion, indicating that FEN1 is important for the re-initiation of 

stalled DNA replication forks in vivo (Figure 3.1C and 3.1D).  In cells expressing the 

control hairpin, there were an average of 15 BrdU foci per cell.  In contrast, FEN1 

depletion led to an average of 6.5 BrdU foci per cell, a greater than 50% decrease 

(P<0.0001; Figure 3.1D).  Importantly, even in the absence of FEN1, cells were able to 

re-initiate stalled DNA replication forks, albeit less efficiently.  Together these results 

demonstrate that FEN1 is important for efficient repair/restart of stalled DNA replication 

forks.  
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To date, the biochemical properties of FEN1 critical to the restart of stalled DNA 

replication forks have not been determined.  Therefore, we next carried out the re-

initiation assay described above in cells depleted of endogenous FEN1 and expressing 

various FEN1 mutants as outlined in Figure 3.2B.  The different FEN1 proteins used in 

this study included 1) human wildtype (hWT), which is competent for both replication 

and repair functions; 2) D181A (DA), which lacks nuclease activity (46) and thus 

represents a loss-of-function allele; 3) delta C (ΔC; 20 amino acid deletion on the C-

terminus), which retains near wildtype ability to process flap structures with the 

replication clamp, PCNA, but is unable to bind the BLM and WRN helicases and 

participate in FEN1’s DNA repair functions (45, 54); 4) delta P (ΔP; 9 amino acid 

deletion in the gene), which retains the ability to interact with the RecQ helicases, BLM 

and WRN, but is unable to interact with the replication clamp, PCNA (45), thus rendering 

it replication incompetent yet repair competent; and 5) deltaP-deltaC (ΔPΔC; 44 amino 

acid deletion on the C-terminus), which deletes FEN1’s nuclear localization signal and 

abrogates its ability to interact with PCNA, BLM and WRN (45), thus creating a second 

loss-of-function allele that retains the nuclease domain.  In addition, we also expressed a 

murine E160D (mED) mutant, which retains near wild-type levels of flap endonuclease 

(FEN) activity and the ability to participate in DNA replication, but is devoid of the novel 

gap endonuclease (GEN) activity, involved in processing DNA bubble structures and 

hypothesized to function in DNA repair including the re-initiation of stalled replication 



 79 

forks (25, 62).  Finally, we also expressed a murine wildtype (mWT) protein as a control 

for the mED mutant.  

 

To facilitate our analysis, we utilized an shRNA that targeted the FEN1 3’ untranslated 

region (shFEN3), which allowed depletion of the endogenous protein while having no 

effect on expression of the various FEN1 cDNAs (39, 40).  Following depletion of FEN1, 

cells were subsequently infected with an adenovirus expressing wildtype or a mutant 

FEN1 protein.  Transduced cells were allowed to grow for 4 days and then treated with 

HU for 16 hours followed by a 10 minute BrdU pulse to label re-initiated DNA 

replication forks (Figure 3.2A).  To facilitate identification of successfully transduced 

cells, each of the FEN1 constructs was tagged with a Flag epitope.  Therefore, following 

the BrdU pulse, cells were fixed and stained with anti-BrdU and anti-Flag antibodies and 

BrdU foci were quantitated in Flag-positive cells.  As expected, expression of hWT 

FEN1 recovered the number of BrdU foci in FEN1-depleted cells to that observed in 

control cells.  Indeed, expression of wildtype FEN1 led to an average of 18 BrdU foci per 

nucleus compared to 6.5 foci in FEN1 depleted cells, demonstrating that the phenotype 

observed was specific to FEN1 loss (Figure 3.2C & 3.2D).  In contrast, expression of the 

nuclease deficient FEN1 mutant, DA, did not rescue FEN1 depletion and resulted in an 

average of 5.5 foci per nucleus, indicating that the nuclease activity of FEN1 is critical 

for its function in the repair of stalled DNA replication forks (Figure 3.2C & 3.2D).  

Similarly, expression of FEN1ΔC also failed to rescue the decreased number of BrdU 

foci observed in FEN1 depleted cells.  Because this mutant is able to interact with PCNA 
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and is competent for Okazaki fragment processing, this result suggests that the interaction 

between FEN1 and the RecQ helicases, BLM and WRN is important for FEN1’s role in 

the repair of stalled DNA replication forks (Figure 3.2C & 3.2D).  In agreement, we 

found that expression of the ΔP mutant resulted in an average of 15.6 BrdU foci (Figure 

3.2C & 3.2D), demonstrating that FEN1’s interaction with PCNA is not critical for its 

role in the repair of stalled DNA replication forks.   As expected, expression of the ΔPΔC 

mutant, a functionally null allele, was unable to rescue the reduction in BrdU foci 

observed upon FEN1 depletion (Figure 3.2C & 3.2D).  

 

Analysis of our FEN1 mutants indicated that FEN1’s DNA repair function and not its 

ability to participate in Okazaki fragment processing is critical for the restart of stalled 

DNA replication forks.  Recently, a novel activity referred to as GAP endonuclease 

(GEN) was ascribed to FEN1 (62).  The existence of this activity was intriguing because 

it has the ability to cleave DNA bubble structures, which resemble stalled replication 

forks.  Furthermore, WRN stimulates FEN1’s GEN activity, (25), suggesting that this 

activity is functionally important at stalled replication forks.   To establish whether the 

GEN function was important for the restart of stalled replication forks, we next tested the 

impact of expression of a GEN-deficient FEN1 mutant (mED).  Expression of the mED 

mutant failed to rescue the phenotype observed in FEN1 depleted cells, which displayed 

an average of 5.1 BrdU foci per nucleus (Figure 3.2C & 3.2D).  As expected, the 

wildtype protein, mWT completely recovered the number of BrdU foci observed upon 

FEN1 depletion with an average of 13.7 foci per nucleus (Figure 3.2C & 3.2D).  These 
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data indicate that the GEN activity of FEN1 plays an important role in the repair/restart 

of stalled DNA replication forks.  Taken together, these data support the hypothesis that 

FEN1 is important for the re-initiation of stalled replication forks.  Moreover, FEN1’s 

gap endonuclease activity and ability to interact with the RecQ helicases, BLM and 

WRN, are critical for this function.  

 

FEN1 depletion does not impact S phase progression 

Previously we showed that FEN1 depletion in telomerase-positive cells led to mild 

telomere dysfunction in the absence of cytogenic abnormalities (39). Furthermore, we 

showed that FEN1’s ability to interact with the WRN protein was important in its 

function at telomeres and therefore ascribed the telomere dysfunction to FEN1’s DNA 

repair activities (39).  Above, we demonstrate that FEN1 directly contributes to the restart 

of stalled DNA replication forks and that this does not depend on FEN1’s activity in 

Okazaki fragment processing but rather its DNA repair activities.  Because the BrdU foci 

assay described above recognizes replication fork re-initiation across the genome, we 

wished to further examine how FEN1 depletion impacted genomic replication.  

Therefore, to explore the effect of FEN1 depletion on DNA replication, we utilized 

shRNA technology to deplete FEN1 and determine its impact on S-phase progression.  

Because telomere dysfunction might impact S-phase progression and this defect is 

rescued in telomerase positive cells (40), telomerase-positive HeLa cells were transduced 

with a lentiviral construct encoding shFEN3 or a control hairpin (shSCR).  Expression of 

shFEN3 led to a significant reduction in FEN1 protein compared to cells expressing 



 82 

shSCR (Figure 3.1B).  To follow cells through the cell cycle, cells were pulsed with 

BrdU for one hour to label the S-phase population and then cells were followed as they 

continued through the cell cycle (Figure 3.3A).  As expected from our previous work, in 

the absence of telomere dysfunction, we did not observe a significant difference in S-

phase progression when cells were transduced with shFEN or shSCR (Figure 3.3A & 

3.3B).  As shown in Figure 3.3, in both cell lines approximately 35% of the cells were in 

S-phase following the one hour BrdU pulse.  Both the control and FEN1-depleted cells 

exited S-phase and progressed throughout the cell cycle with similar kinetics (Figure 

3.3B).  This data suggests that FEN1 is not essential for DNA replication in vivo and its 

depletion does not significantly impact cell cycle progression.  

 

FEN1 depletion does not impact DNA replication kinetics in vitro 

Our initial studies indicated that FEN1 depletion has no detectable impact on S phase 

progression.  Because minor effects on DNA replication might be missed by this assay, 

we next examined the impact of FEN1 depletion on DNA replication kinetics through 

non-telomeric DNA sequences.  To measure replication kinetics in the presence or 

absence of FEN1, we conducted an SV-40 Large-T antigen-dependent in vitro DNA 

replication assay (4) using cell lysates isolated from control or FEN1-depleted HeLa cells 

(Figure 3.3C).  The DNA replication reaction was reconstituted with lysates from control 

or FEN1 depleted cells and carried out for 0, 15, 30, 60 and 120 minutes.  As shown in 

Figure 3.3D and 3.3E, there was no difference in DNA replication efficiency when 

lysates from control versus FEN1-depleted cells were used (Figure 3.3E), indicating that 
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DNA replication proceeded in FEN1-depleted lysates with the same efficiency as lysates 

obtained from control cells.  These results are in agreement with our S-phase progression 

data and suggest that another nuclease compensates for FEN1 function during DNA 

replication in non-telomeric sequences.  

 

FEN1 interacts with the Shelterin component, TRF2 

Our previous work (39) and the data in this paper support the hypothesis that FEN1 

activity at the telomere is critical for high fidelity replication.  The data further suggest 

that other nucleases are capable of compensating for FEN1 across the genome but fail to 

do so at the telomere.  Given these results, we next wished to characterize the impact of 

the FEN1 mutants described above at the telomere.  Because recent work demonstrated 

that FEN1 localizes to the mammalian telomere and interacts with the Shelterin 

component, TRF2 (32, 39, 57), we first examined the ability of the FEN1 mutants to 

interact with TRF2 and localize to the telomere.  

 

To assess the interaction between TRF2 and the various FEN1 mutants, 293T cells were 

transfected with constructs expressing Flag-tagged wildtype or mutant FEN1 proteins.  

Nuclear lysates were obtained from the transfected cells and subject to 

immunoprecipitation with an anti-TRF2 antibody followed by western blot analysis.  To 

restrict our analysis to the ectopically expressed FEN1 proteins, western blot analysis was 

carried out using an anti-Flag antibody.  As shown in Figure 3.4A, TRF2 

immunoprecipitated the ΔP FEN1 mutant, indicating that deletion of the PCNA-
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interacting domain did not impair FEN1’s ability to interact with TRF2.  Given that our 

previous work indicated that the ΔC FEN1 mutant was unable to interact with TRF2 (39), 

it was not surprising to find that the ΔPΔC FEN1 mutant also failed to interact with TRF2 

(Figure 3.4A).  Analysis of the mWT FEN1 protein revealed that it, as well as the mED 

mutant, interacted with TRF2 (Figure 3.4A). 

 

We next carried out chromatin immunoprecipitation (ChIP) experiments to determine 

whether the various FEN1 mutants retained the ability to localize to the telomere.  As 

expected the hWT and ΔP mutant FEN1 localized to the telomere (Figure 3.4B and 

3.4C).  In contrast, the ΔPΔC FEN1 mutant was unable to precipitate telomeric DNA 

(Figure 3.4B and 3.4C).  As above, the latter result was expected because the ΔPΔC 

mutant lacks the nuclear localization domain and is unable to localize to the nucleus 

(Figure 3.2B and 3.2C).  Finally, both the mWT and mED proteins localized to the 

telomere.  Together, these data indicate that the ability of FEN1 to interact with TRF2 

and telomeric DNA correlate, suggesting that TRF2 might recruit FEN1 to the telomere 

for specialized processing and/or repair of telomeric DNA.   

 

FEN promotes telomere stability by facilitating DNA replication fork re-initiation  

The telomere consists of G-rich repetitive DNA that has the propensity to form G-

quadruplex structures that can impede the movement of the DNA replication fork (13, 27, 

30, 34, 57).  Indeed, it has been hypothesized that stalled DNA replication forks 

frequently occur in the telomere (13, 57). Failure to resolve a stalled DNA replication 
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fork within the telomere would lead to fork collapse, formation of a double strand DNA 

break and telomere loss (3).  In support of this, recent studies have suggested that 

collapsed replication forks exist at telomeres leading to the formation of very short 

telomeres (7, 18, 59).  We recently demonstrated that FEN1 depletion results in telomere 

dysfunction characterized by STLs (39), indicating that FEN1 functions in telomere 

maintenance, either through DNA replication or through DNA repair.  Given these results 

and our observations indicating that FEN1 contributes to the efficient re-initiation of 

stalled DNA replication forks (Figure 3.1), we next wished to determine whether it was 

FEN1’s role in Okazaki fragment processing or the restart of stalled DNA replication 

forks that contributed to telomere stability.  Because telomerase expression compensates 

for FEN1 loss at the telomere thus masking the STL phenotype (39, 40), we utilized 

primary BJ fibroblasts, which express insufficient telomerase to maintain telomere 

lengths (29) for these studies.    

 

Primary BJ fibroblasts were transduced with an shRNA construct targeting the 3’UTR 

(shFEN3) to deplete the cells of endogenous FEN1 (Figure 3.5B and 3.5C).  Following 

depletion of FEN1, cells were infected with an adenovirus expressing wildtype or mutant 

FEN1 (greater than 85% of the cells were infected; data not shown).  Because FEN1 

depletion leads to lagging strand specific sister telomere loss (STL), we analyzed the 

strand specific loss of telomeres in cells expressing the different FEN1 mutants (39).  To 

carry out this analysis, we utilized a technique referred to as chromosome orientation 

fluorescent in situ hybridization (CO-FISH), which takes advantage of the fact that the G- 
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and C-rich strands of the telomere are replicated by lagging and leading strand DNA 

synthesis, respectively (Figure 3.5A).  In agreement with our previous results (39), the 

CO-FISH analysis demonstrated that FEN1 depletion led to a specific loss of 9.8% of 

lagging strand replicated telomeres (up from 3.1% in the control shSCR cells; P<0.0001) 

while having no impact on telomeres replicated by the leading strand machinery (Figure 

3.5).  Expression of wild-type FEN1 rescued the lagging strand STL phenotype (3.2% 

lagging strand STLs were observed, similar to that observed in shSCR control cells), 

indicating that the observed phenotype was specific to FEN1 depletion (Figure 3.5).  

Similarly, expression of the ΔP FEN1 mutant resulted in 3.6% lagging strand STLs 

(P<0.0001 compared to shFEN3), indicating that FEN1’s interaction with PCNA was not 

important for its function at the telomere (Figure 3.5).  In contrast, expression of the 

ΔPΔC protein led to 8% lagging strand STLs, indicating that it failed to rescue telomere 

dysfunction upon FEN1 depletion (Figure 3.5).  Intriguingly, in contrast to the mWT 

protein, which was able to rescue the lagging strand STL defect upon FEN1 depletion, 

the mED mutant failed to rescue the depletion of FEN1 at the telomere (Figure 3.5).  

Indeed, expression of mWT significantly decreased the number of lagging strand STLs 

observed upon FEN1 depletion to 2.8%, while expression of the mED mutant resulted in 

lagging strand STLs (9.7%, P<0.0001) similar to that observed in ΔPΔC expressing cells.  

Because the mED mutant retains the ability to interact with TRF2 (Figure 3.4A) and 

localize to the telomere (Figure 3.4B and 3.4C) this result indicates that the gap 

endonuclease activity is critical for FEN1’s role at the mammalian telomere.  Taken 

together, these data demonstrate that FEN1’s interaction with PCNA is dispensable for its 
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role at the telomere and that FEN1’s gap endonuclease function is critical for telomere 

stability. 

 

 

Discussion  

Telomeres perform a critical cellular function by distinguishing the chromosome end 

from a bona fide double stranded DNA break.  As such, numerous mechanisms have 

evolved to protect the telomere including components of the Shelterin complex that bind 

to the unique six base pair repeat sequence.  The nature of the telomeric DNA sequence 

offers a number of challenges to the cell during DNA replication.  G-rich, telomeric 

repetitive sequences have a high propensity to form secondary structures such as G-

quadruplexes (G4) that impede the progressing replication fork, leading to the formation 

of stalled forks (13, 27, 37).  Indeed, several reports have indicated pausing and/or 

stalling of replication forks moving through telomeres (14, 18, 28, 57).  Additionally, 

telomere replication is primarily initiated by the most distal origin of replication from the 

centromere and continues unidirectionally towards the end of the telomere (43).  Given 

that telomeres are particularly susceptible to replication fork stalling (14, 18, 28, 57) and 

if the stalled fork cannot be resolved, it will lead to the formation of a double strand break 

(3) and telomere deletion will result.  In support of this, telomeres have been recently 

identified as fragile sites that are highly sensitive to replication stress (43).  Therefore 

successful telomere replication requires specialized machinery such as the coordinated 
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action of telomere binding proteins and their recruitment and/or modification of 

traditional DNA replication and repair factors (13, 56). 

 

Recent reports demonstrate that Taz1 in S. pombe and TRF1 in mice are required for 

efficient telomere replication (30, 43).  Telomere-binding proteins have evolved 

mechanisms to facilitate replication fork progression through the telomere possibly by the 

recruitment of proteins involved in DNA replication and repair (43).  TRF1 and TRF2 

interact with and stimulate the RecQ helicases, BLM and WRN (24, 35, 43), suggesting 

that they recruit these proteins to enhance DNA repair at the telomeres.  FEN1 also 

interacts with TRF2 (32, 39).  This raises the possibility that TRF2 engages the RecQ 

helicase-FEN1 complex coordinately at the telomere.  Interestingly, a recent study 

demonstrated that TRF2 increases branch migration of Holliday Junction (HJ) 

intermediates suggesting that this promotes the formation of chickenfoot structures in the 

context of a stalled replication fork at telomeres (38).  TRF1 and TRF2 may then recruit 

the WRN-FEN1 complex to resolve this structure and enable efficient restart of the 

stalled replication fork (44).   

 

FEN1 localizes to stalled replication forks with the WRN helicase and together they 

process branch migrating structures that resemble regressed replication forks (44).  In 

addition, WRN was shown to be essential for the re-initiation of stalled replication forks, 

in vivo (11, 49).  The present study demonstrates for the first time that FEN1 is important 

for the re-initiation of stalled replication forks in vivo (Figure 3.1).  Together with 
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previous work (33), this indicates that FEN1’s role in S-phase is two-fold 1) in DNA 

replication through processing of Okazaki fragments and 2) in DNA repair through the 

re-initiation of stalled replication forks.  FEN1 localizes to mammalian telomeres during 

S-phase (39, 57) so it could be involved in one or both of the functions outlined above.  

However, given that the PCNA-interacting domain of FEN1 is dispensable for telomere 

stability, our data indicate that FEN1’s role in Okazaki fragment processing is non-

essential for telomere stability.   This result indicates that other nucleases such as Dna2 or 

Exo1, which can also process Okazaki fragments (1, 2, 15, 16, 31), compensate for FEN1 

loss during lagging strand DNA replication.  However, these same nucleases fall short 

when replication forks stall within the telomeric sequences.  Indeed, we find that in the 

absence of FEN1’s ability to re-initiate stalled replication forks, sister telomeres are still 

lost despite the presence of Dna2 and Exo1.  Interestingly, other proteins involved in the 

re-initiation of stalled replication forks, PARP1 and PARP2, have also been implicated in 

telomere maintenance (5, 8, 60), further indicating the importance of the re-initiation 

process for the efficient replication of telomeres.  

 

A novel activity of FEN1, the gap endonuclease (GEN) activity, which is essential for 

FEN1’s ability to re-initiate stalled replication forks (Figure 3.2) is also essential for 

FEN1 function at telomeres (Figure 3.5).  In support of our data, a recent report 

demonstrates telomere dysfunction in mouse embryonic fibroblasts (MEFs) that have a 

knock-in of the E160D (mED) mutation (41).  Strikingly, mice with the mED knock-in 

spontaneously develop lung cancer (61) and lymphomas (22).  Importantly, mED knock-
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in mice displayed a modest increase in mutation rates and limited genomic instability 

(22), suggesting that telomere dysfunction induces genomic instability and drives this 

transformation process.  Additionally, several reports have indicated a role for FEN1 as 

an important tumor suppressor gene (20-22, 33), suggesting that its role in preserving 

telomere stability may affect tumorigenesis.  

 

Intriguingly, the C-terminal region of FEN1, essential for its function at the telomere, is 

also essential for its interaction with another RecQ helicase, BLM (45).  Similar to WRN, 

BLM is also able to unwind G4 DNA, is critical for the re-initiation of stalled replication 

forks and has recently been suggested to be important for the efficient replication of 

telomeres (9, 42, 43, 55).  This suggests that there is complicated interplay between the 

RecQ helicases, WRN and BLM, and FEN1 at mammalian telomeres, although the effect 

of BLM depletion on normal human telomeres has not been well characterized.  

Together, these data indicate that FEN1, together with the RecQ helicases (WRN and 

BLM), plays an important role in the re-initation of stalled replication forks at 

mammalian telomeres.  

 

Here we demonstrate that FEN1 is important for efficient re-initiation of stalled 

replication forks in vivo.  This repair function of FEN1 is dependent on its C-terminal 

domain and its novel GEN activity.  However, despite the importance of FEN1 in re-

initiation of stalled replication forks, FEN1 depletion in telomerase-positive cells did not 

affect S phase progression or SV40 Large-T antigen-dependent in vitro DNA replication, 
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suggesting that other nucleases compensate for FEN1 activity throughout the genome.  

However, these same proteins fail to compensate for FEN1 at the telomere.  Indeed, 

FEN1 depletion led to an increase in lagging strand STLs.  As with the re-initiation of 

stalled replication forks, both FEN1’s C-terminus and GEN activity were essential for its 

function at telomeres while its ability to interact with PCNA was dispensable.  

Collectively, these data demonstrate that FEN1 is necessary for efficient replication of 

telomeres.  
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Figure 3.1.  FEN1 depletion decreases re-initiation of stalled replication forks.   
(A) Schematic of the stalled replication fork re-initiation assay.  HU – Hydroxyurea.  (B) 
Western blot showing FEN1 depletion.  Short hairpins against FEN1 (shFEN3) or a 
scrambled sequence (shSCR) were expressed in HeLa cells.  FEN1 (upper panel) and β-
Actin (lower panel) protein levels were assessed by Western blot analysis.  (C) 
Representative images showing FEN1 depletion decreases BrdU incorporation in HU 
treated cells.  Immunofluorescence was conducted using anti-BrdU (green) and DAPI 
(blue).  (D) Quantification of the number of BrdU foci per cell in HeLa cells with the 
indicated shRNA.  BrdU foci in minimum of a 100 cells were counted for each condition 
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and the experiment was conducted twice (a representative experiment is presented). The 
error bars show standard error of the mean (SEM) (*P<0.0001). 
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Figure 3.2.  The gap endonuclease activity and C-terminal of FEN1 are essential to 
re-initiate stalled replication forks.   
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(A) Timeline of experimental procedure given in days.  (B) Schematic showing the 
different mutants of FEN1 used in the subsequent experiments with the different domains 
of FEN1 and the deletions/mutations.  Inferences on whether the different mutants of 
FEN1 are replication competent or repair competent are shown on the right of the 
schematic with their associated references.  These inferences were made based on 
nuclease activity and ability to interact with the WRN and PCNA proteins.  (C) 
Representative images showing BrdU incorporation, after exposure to HU, in FEN1 
depleted cells with the indicated adenovirus treatment.  Immunofluorescence was 
conducted using anti-BrdU (green), anti-FLAG (red) and DAPI (blue).  (D) 
Quantification of the number of BrdU foci per cell in FEN1-depleted HeLa cells with the 
indicated adenovirus. Only cells exogenously expressing FLAG-tagged FEN1 (marked 
by the red cells in C) were quantified.  A minimum of a 75 cells was counted for each 
condition and the experiment was conducted twice (a representative experiment is 
presented).  The error bars show SEM (*P<0.0001 compared to shSCR; ∆P<0.0001 
compared to hWT; #P<0.0001 compared to mWT). 
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Figure 3.3.  FEN1 depletion does not affect S-phase progression and in vitro DNA 
replication.   
(A) Progression of cells through the different phases of the cell cycle.  HeLa cells 
expressing shSCR or shFEN3 were labeled with BrdU for one hour and analyzed at the 
indicated times using the anti-BrdU antibody (FITC-conjugated) and 7-amino-
actinomysin D (7-AAD) to mark DNA content.  (B) Graph showing the quantification of 
the number of BrdU-positive cells in S-phase. This experiment was conducted twice (a 
representative experiment is shown).  (C) Western blot of S100 lysates from control and 
FEN1-depleted HeLa cells. CycA (Cyclophilin A) (lower panel) is shown as a loading 
control.  (D) SV40 Large T dependent in vitro DNA replication assay was conducted 
using lysates from control (shSCR) and FEN1-depleted (shFEN3) HeLa cells as 
described in the methods.  The assay was stopped at indicated times and the replication 
products were separated via gel electrophoresis.  The replication products were detected 
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via autoradiography (Autorad) and the input DNA was observed via ethidium bromide 
(EtBr) staining.  A representative experiment is shown.  (E) Quantification of the 
replication products at the indicated times.  Two independent experiments were 
conducted in duplicate and the average of the four experiments is shown. The error bars 
represent SEM. 
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Figure 3.4.  FEN1 mutants interact with TRF2 and localize to the telomere.   
(A) FEN1 mutants interact with TRF2.  293T cells transfected with flag-tagged mouse 
wildtype FEN1 (mWT) or FEN1 mutants, ΔP, ΔPΔC and mED and subjected to 
immunoprecipitation (IP) with an anti-TRF2 antibody as described in the methods.  The 
presence of TRF2 and the FEN1 mutants were detected by immunoblot (IB) using anti-
TRF2 and anti-Flag antibodies, respectively.  The input lane indicates 10% of total 
protein used per immunoprecipitation.  (B) FEN1 mutants localize to the telomere.  
Representative ChIP analysis of 293T cells (Ctrl) or 293T cells transfected with wildtype 
FEN1 (hWT or mWT) or FEN1 mutants (ΔP, ΔPΔC and mED), subjected to 
immunoprecipitation with the M2 flag antibody.  Precipitated DNA was probed for the 
presence of telomeric sequences as described in the methods. The inputs indicate 0.1% 
and 0.2% of the total protein extract.  (C) Quantification of the representative ChIP assay.  
Percent of telomere pulldown was calculated using input DNA and the control pulldown 
percentage was set to 1.  
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Figure 3.5.  The gap endonuclease activity of FEN1 is essential for its function at the 
telomere.   
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(A) Chromosome Orientation – Fluorescent in situ hybridization (CO-FISH) schematic.  
Newly synthesized DNA strands incorporate BrdU and BrdC.  UV and ExoIII treatment 
results in degradation of newly synthesized DNA containing BrdU and BrdC, and the 
template strands are hybridized with Cy3-[CCCTAA]3 (red, lagging strand) and FLU-
[TTAGGG]3 (green, leading strand) probes.  (B) Western blot of FEN1 (upper panel) 
from BJ fibroblasts infected with shSCR and shFEN3.  β-Actin (lower panel) is shown as 
a loading control.  (C) Timeline of experimental procedure given in days.  (D) 
Representative CO-FISH of metaphases from BJ fibroblasts expressing shSCR or 
shFEN3 and the indicated FEN1 proteins.  Ctrl refers to cells that do not express 
exogenous FEN1 protein.  Color schemes are as described in (A).  DNA was stained with 
4’,6-diamidino-2-phenylindole (DAPI; blue).  The arrowheads indicate missing 
telomeres.  (E) Quantification of sister telomere losses on metaphase chromosomes 
following depletion of endogenous FEN1 and expression of the indicated FEN1 protein, 
depicted as percentage of chromosomes with missing leading and lagging strand 
telomeres.  A minimum of 60 metaphases from two independent experiments was 
analyzed per treatment in a blinded fashion and an average of the two experiments is 
shown (*P<0.0001).  The error bars represent SEM. 
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Abstract 

Abrogation of telomere stability through loss of function mutations in telomere binding 

proteins contributes to genomic instability and cancer progression. Recently, Flap 

endonuclease 1 (FEN1) was shown to contribute to telomere stability in human cells that 

had not yet activated a telomere maintenance mechanism, suggesting that abrogation of 

FEN1 function influences the transformation process by compromising telomere stability 

and driving genomic instability.  Here, we analyze the telomeres in human cancer cells 

following FEN1 depletion.  We show that FEN1 is required for telomere stability in cells 

that rely on the alternative lengthening of telomere (ALT) mechanism.   Indeed, FEN1 

depletion resulted in telomere dysfunction, characterized by formation of telomere 

dysfunction-induced foci (TIFs) and end-to-end fusions in ALT-positive cells.  In 

contrast, no telomere phenotype was observed in telomerase-positive cells upon FEN1 

depletion, suggesting that ongoing telomerase activity protected telomeres.  In 

consonance with this, we found that expression of the catalytic component of telomerase 

(hTERT) but not an inactive allele rescued telomere dysfunction upon FEN1 depletion in 

ALT cells.  Our data suggests that mutations that arise in FEN1 impact telomere stability 

and genome fidelity by promoting telomere fusions and anaphase-bridge-breakage cycles 

that further drive genome instability and thereby contribute to the transformation process.   

 

 

Results and Discussion 

Loss of function mutations in genes involved in detection, signaling, and repair of DNA 

damage correlate with increased genomic instability and cancer incidence. Proper 
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maintenance of telomere function is critical to genomic stability. As a functional DNA-

protein complex, the telomere distinguishes the end of a chromosome from a bona fide 

double strand break. Destabilization of telomere structure compromises its function and 

renders it susceptible to the actions of the DNA repair machinery, often leading to 

chromosome end-to-end fusions (de Lange, 2005). Telomeric fusions result in anaphase 

bridge-breakage cycles, which contribute to genomic instability and drives the 

transformation process (Artandi & DePinho, 2000).   

 

The telomere consists of repetitive double and single stranded DNA (TTAGGG) and six 

core proteins referred to as Shelterin (or Telosome) (de Lange, 2005; Liu et al., 2004) that 

together shield the telomere from the DNA repair machinery.  In addition to the Shelterin 

components, a growing list of accessory proteins localize to the telomere and play 

essential roles in telomere maintenance (Blasco, 2005). For example, ATM, WRN and 

Ku influence telomere stability where mutation and/or depletion of these proteins result 

in cancer syndromes (Blasco, 2005).  Together these data underscore the importance of 

these DNA replication and repair proteins in telomere maintenance and high fidelity 

maintenance of the genome. 

 

Recently, we demonstrated that Flap endonuclease 1 (FEN1) is a telomere binding 

protein that plays an important role in maintaining telomere stability in human cells 

(Saharia et al., 2008).  RNAi-directed depletion of FEN1 led to sister telomere loss (STL) 

that was restricted to telomeres replicated by lagging strand DNA synthesis (Saharia et 

al., 2008).  FEN1 is a multifunctional nuclease that participates in replication (Li et al., 
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1995), long-patch base excision repair (Prasad et al., 2000), homologous recombination 

(Kikuchi et al., 2005), re-initiation of stalled replication forks and DNA degradation in 

apoptotic cells (Zheng et al., 2007; Zheng et al., 2005).  Work in yeast revealed that 

disruption of the FEN1 homolog, Rad27, results in a DNA mutator phenotype and 

telomere dysfunction (Parenteau & Wellinger, 1999; Parenteau & Wellinger, 2002; 

Tishkoff et al., 1997).  Similarly, mice heterozygotic for FEN1 display a mutator 

phenotype and are predisposed to develop neoplasias (Kucherlapati et al., 2007).  Given 

that the initiation and development of cancer results in part from accumulation of genetic 

instability and that telomere dysfunction can contribute to this instability, abrogation 

and/or mutation of genes such as FEN1 may contribute to this process.  Indeed, such a 

role for FEN1 was suggested by a recent report demonstrating that knock-in of a FEN1 

mutant gene identified in human cancers resulted in cancer predisposition in a murine 

model (Zheng et al., 2007).  Specifically, when a FEN1 mutant that abrogates a repair 

function known as the gap endonuclease (GEN) activity was knocked into the analogous 

murine locus, animals developed several pathologies including lung tumors (Zheng et al., 

2007).  This observation together with our previous findings, raise the possibility that 

FEN1 depletion (and/or mutation) impacts genomic stability by abrogating telomere 

stability and in this way contributes to the transformation process.  

 

FEN1 is required for telomere stability in ALT cells. In previous work we found that 

FEN1 depletion in somatic cells that have not activated a telomere maintenance 

mechanism led to telomere dysfunction that was compensated for by ectopic expression 

of the catalytic component of telomerase (hTERT) (Saharia et al., 2008).  This 
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observation raised the possibility that FEN1 depletion or mutation might impact telomere 

stability in transformed cells that utilized the ALT mechanism of telomere maintenance.  

Thus, we investigated whether FEN1 depletion affected telomere stability in a human 

osteosarcoma cell line (U2OS) that is telomerase negative and maintains its telomeres via 

the recombination-dependent ALT mechanism (Bryan et al., 1997).  To control for 

possible off-target effects associated with RNAi, we utilized two independent lentiviral 

constructs expressing short hairpin RNAs (shRNA) targeted to FEN1’s coding region and 

3’ untranslated region (shFEN and shFEN3, respectively).  In addition, a short hairpin 

consisting of a scrambled sequence (shSCR) was also introduced into these cells and 

functioned as a negative control.  

 

Following transduction, FEN1 protein expression was determined by Western blot 

analysis.  Expression of the two hairpins (shFEN and shFEN3) led to a significant 

reduction in FEN1 protein levels (Figure 4.1A).  To determine the effect of FEN1 

depletion on telomere stability, metaphase spreads were prepared and analyzed for 

telomere dysfunction.  Metaphases were labeled using fluorescent in situ hybridization 

(FISH) with telomere (red) and centromere (green) probes and analyzed (Figure 4.1B).  

Analysis of metaphase spreads revealed that FEN1 depletion led to telomere dysfunction 

characterized by chromosomal end-to-end fusions that retained telomeric sequences at the 

fusion points (Figure 4.1B). U2OS cells expressing shSCR displayed 0.1 telomere fusion 

events per cell. In contrast, FEN1 depletion resulted in a significant increase in the 

number of telomere fusions observed in U2OS cells to 0.33 (P<0.001) and 0.38 (P<0.01) 

events in the shFEN and shFEN3 expressing cells, respectively (Figure 4.1C).  
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Moreover, the percentage of cells having one or more fusion events increased from 6.7% 

in the shSCR expressing cells to 27% and 33%, respectively in the shFEN and shFEN3 

expressing cells. 

 

The telomeric impact of FEN1 depletion was not unique to U2OS cells.  Indeed, 

depletion of FEN1 in a second ALT cell line GM847 (Figure 4.1A) also resulted in a 

significant increase in telomere dysfunction (Figure 4.1B-E).  GM847 cells infected with 

a control virus displayed 0.07 telomeric fusions.  In contrast, expression of shFEN and 

shFEN3 led to 0.8 and 0.57 telomeric fusions, respectively with 50-60% of the 

metaphases analyzed displaying one or more telomeric fusion (P<0.0001; Figure 4.1C).  

 

Several groups have demonstrated that DNA damage foci referred to as telomere 

dysfunction-induced foci (TIFs) are readily detectable when telomere stability is 

compromised (d'Adda di Fagagna et al., 2003; Takai et al., 2003). Therefore, to confirm 

the presence of telomere dysfunction upon FEN1 depletion, we examined cells for the 

presence of γH2AX foci at telomeres.  As expected, we found that FEN1 depletion led to 

an increase in TIFs (Figures 1D and 1E). In GM847 cells infected with a control hairpin, 

we noted that 27.9% of the cells had greater than 5 TIFs per cell, whereas upon infection 

with shFEN, the number of cells with greater than 5 TIFs increased to 78.2% (Figure 

4.1E). Together these data demonstrate that FEN1 contributes to telomere stability in 

immortal cells and that its depletion leads to telomere dysfunction in cells that maintain 

their telomeres via the ALT mechanism.  
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FEN1 depletion in telomerase positive cells does not impact telomere stability.  

Human cancer cells maintain stable telomere lengths through activation of either ALT or 

the telomerase enzyme.  Above we demonstrate that FEN1 depletion leads to telomeric 

fusions in ALT cells.  In addition, in a previous report we demonstrated that FEN1 

depletion in mortal human fibroblasts led to sister telomere losses (STL) that were 

rescued by expression of catalytically active telomerase. Together, these data argue that 

tumor cells that have activated telomerase would be insensitive to FEN1 depletion.  To 

test this hypothesis directly, we examined how FEN1 depletion impacted telomere 

stability in telomerase-positive cells. HeLa cells, a cervical cancer cell line that utilizes 

telomerase for telomere maintenance, were transduced with viral vectors expressing 

shSCR, shFEN, or shFEN3.  Upon FEN1 depletion (Figure 4.2A), cells were analyzed 

for telomeric fusions as described above.  As expected, depletion of FEN1 did not result 

in telomeric fusions (Figure 4.2B and 4.2C).  Similar results were observed in a second 

telomerase positive ovarian cancer cell line, 36M (Figure 4.2). These results indicate that 

cells that utilize endogenous telomerase for telomere maintenance are insensitive to 

FEN1 depletion at the telomere. 

 

Catalytically active telomerase rescues FEN1 depletion at the telomeres. Depletion of 

FEN1 in cells that maintain stable telomeres via the ALT mechanism resulted in telomere 

dysfunction.  In contrast, telomere stability was unperturbed in telomerase-positive cells 

following FEN1 depletion.  These results were reminiscent of our earlier findings that 

telomerase rescued sister telomere loss in cell lines that had not yet activated a telomere 

maintenance program (Saharia et al., 2008).  To determine whether the catalytic activity 
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of telomerase was required to protect telomeres in cells that utilized the ALT mechanism, 

we expressed the catalytic component of telomerase (hTERT) in GM847 cells (GM847-

hTERT) (Figure 4.3A) (Hahn et al., 1999).  Expression of hTERT reconstitutes 

telomerase activity in these cells, leading to lengthening of the shortest telomeres 

(Grobelny et al., 2001; Hemann et al., 2001; Perrem et al., 2001; Teixeira et al., 2004). 

 

Introduction of shRNA constructs targeting FEN1 into GM847-hTERT cells resulted in a 

significant reduction in protein expression (Figure 4.3B).  Analysis of metaphase spreads 

from cells expressing the FEN1 hairpins compared to those expressing a control hairpin 

did not reveal an increase in telomere dysfunction (Figure 4.3C). To determine whether 

it was the telomere extension activity of telomerase that compensated for FEN1 depletion 

at the telomeres as suggested by our earlier work, we utilized a catalytically inactive, 

dominant negative allele of hTERT (DN-hTERT) (Figure 4.3A).  This allele was chosen 

because previous work demonstrated that it had no impact on telomere stability in 

GM847 cells (Stewart et al., 2002). In contrast to that observed in GM847-hTERT cells, 

FEN1 depletion in GM847-DN-hTERT cells resulted in increased telomeric fusions 

(Figure 4.3B and 4.3C).  FEN1 depletion increased the number of telomere fusion events 

per cell from 0.15 events in control cells, to 0.55 and 0.53 in cells expressing the two 

hairpins against FEN1 (P<0.01; Figure 4.3C).  There was also a large increase in the 

percentage of metaphases possessing one or more fusions (46% versus 13% in the control 

cells).  The inability of DN-hTERT to rescue FEN1 depletion at the telomere indicates 

that the catalytic activity of telomerase is important for this rescue and suggests that 

telomeric extension by telomerase is important in the absence of FEN1.  
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FEN1 is a structure specific endonuclease that acts in DNA replication and repair.  Here, 

we assessed the role of FEN1 in the context of telomere stability.  We found that 

depletion of FEN1 in cancer cells that maintain their telomeres via the ALT mechanism 

results in telomere dysfunction characterized by increases in the number of TIFs and 

telomeric fusions.  In contrast, FEN1 depletion did not lead to telomere dysfunction in 

telomerase positive cells. Telomere fusions observed in ALT cells were rescued by the 

expression of catalytically active telomerase but not a catalytically dead enzyme.  Given 

our earlier work demonstrating that single telomeres were lost in pre-crisis human cells 

upon FEN1 depletion (Saharia et al., 2008) this result suggests that the ability of 

telomerase to elongate the shortest telomeres was protective.  Together these results 

suggest that abrogation of FEN1 function in telomerase-negative tumor cells results in 

increased genomic instability by compromising telomere stability that may contribute to 

tumor progression. 

 

DNA replication is a challenging cellular event that is prone to errors that can result in 

loss of genomic fidelity.  Sequences that offer significant challenges to the DNA 

replication machinery are repetitive DNA sequences, particularly those containing 

triplicate repeats (Fouche et al., 2006), which hinder replication fork progression.  

Therefore, it is not surprising that the repetitive G-rich nature of the telomere presents a 

challenging template for the replication machinery (Gilson & Geli, 2007).  Indeed, this 

has been underscored by in vitro DNA replication systems that have shown that 

replication of telomeric sequences is less efficient than randomized sequences due to a 
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significant increase in stalled DNA replication forks within telomeric sequences (Ohki & 

Ishikawa, 2004).   For these reasons, the impact of loss of function mutations in genes 

that facilitate replication fork progression and restart would be expected to have a 

profound impact at the telomere.  Indeed this has been observed with the Werner protein 

(Crabbe et al., 2004) as well as FEN1 (this study).  FEN1 functions with the Werner 

protein to process branch migrating structures that resemble stalled replication forks 

(Sharma et al., 2004).  Therefore, given that unresolved stalled replication forks lead to 

DNA double strand breaks (Branzei & Foiani, 2005), loss of Werner or FEN1 activity 

would be expected to result in telomere loss and subsequent end-to-end fusions.  

 

Our previous work demonstrated that FEN1 depletion led to sister telomere losses but no 

significant telomeric fusions were observed (Saharia et al., 2008).  Why then do we 

observe telomeric fusions in cells that utilize the ALT mechanism?  Telomeres within 

ALT cells are in a constant state of flux, where they undergo rapid elongation and 

shortening (Londono-Vallejo et al., 2004).  This dynamic fluctuation results in 

chromosome ends with extremely short telomeres that are unlikely to adequately protect 

telomere ends from recognition by DNA damage surveillance mechanisms.  As a result, 

telomeres within ALT cells are recognized as DNA damage, as evidenced by the 

presence of TIFs or γH2AX foci at many telomeres (Figure 4.1D and 4.1E, shSCR) 

(Nabetani et al., 2004).  Depletion of FEN1 appears to exacerbate telomere dysfunction 

by producing signal free ends in fibroblasts (Saharia et al., 2008) and increasing the 

number of TIFs in ALT cells  (Figure 4.1D and 4.1E), thus leading to additional 

substrates capable of participating in end-to-end fusions.   Because telomerase acts on the 
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shortest telomeres (Forstemann et al., 2000; Marcand et al., 1999; Ouellette et al., 2000) 

it would be recruited to those chromosome ends that experienced a catastrophic loss due 

to a stalled and unresolved replication fork or failure to cap the telomere.  Telomerase 

could then extend the short telomeres, stabilizing them and rescuing telomere 

dysfunction.   These studies suggest that FEN1 mutation contributes to the transformation 

process by increasing genomic instability through telomere loss and subsequent end-to-

end fusions.  Further, abrogation of FEN1 function in tumor cells that do not utilize 

telomerase may result in additional genomic instability leading to progression of the 

neoplastic state. 
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FIGURE 4.1. FEN1 depletion leads to telomere dysfunction in ALT cells.   
(A) Two independent shRNAs targeting FEN1 (shFEN and shFEN3) and one consisting 
of a scrambled sequence (shSCR) were introduced by lentiviral infection into GM847 and 
U2OS cells and FEN1 expression was determined by western blot analysis.  (B) 
Representative metaphases from GM847 and U2OS cells following indicated shRNA 
expression.  FISH analysis was conducted using Cy3-labeled TTAGGG probes (in red) 
and FITC-labeled centromere probes (in green).  DNA was stained using 4’,6-diamidino-
2-phenylindole (DAPI; in blue).  The lower panel shows a higher magnification image of 
the metaphase chromosomes.  (C) Quantification of telomere fusion events observed after 
indicated treatments of GM847 (blue bars) and U2OS (white bars) cells.  A minimum of 
60 metaphases was analyzed per treatment in a blinded fashion.  Statistical analysis was 
conducted using the Wilcoxon Two-Sample Test. (*P<0.001; #P<0.01). (D) FEN1 
depletion increases TIF formation in GM847 cells. Immunofluorescence was conducted 
using anti-TRF2 (green: Santa Cruz, CA, USA; H-300), anti-γH2AX (red: Upstate, NY, 
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USA; 05-636) and DAPI (blue). Confocal images were acquired on a Zeiss Axiovert 200 
microscope. (E) TIF quantification in GM847 cells. A minimum of a 100 cells was 
counted for each condition and the average for two experiments is presented. Cell culture, 
western blot analysis, viral constructs and production as well as metaphase preparation 
and statistical analyses were as previously described (Saharia et al., 2008; Stewart et al., 
2003; Stewart et al., 2002).  
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FIGURE 4.2. FEN1 is not essential for telomere stability in telomerase positive cells.   
(A) Western blot analysis reveals that introduction of two different shRNAs targeted to 
FEN1 leads to reduction in FEN1 protein levels in HeLa and 36M cells. (B) 
Representative metaphases from HeLa and 36M cells following shRNA expression. (C) 
Quantification of telomere fusion events observed following shRNA expression in HeLa 
(white bars) and 36M (black bars) cells.  A minimum of 60 metaphases was analyzed per 
treatment in a blinded fashion.  Statistical analysis was conducted using the Wilcoxon 
Two-Sample Test. 
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FIGURE 4.3. Catalytically active telomerase rescues telomere instability upon FEN1 
depletion.   
(A) Reverse transcriptase (RT) PCR demonstrating exogenous expression of the catalytic 
component of telomerase (hTERT), dominant negative hTERT (DN- hTERT), or 
uninfected (CTRL).  RNA isolation, PCR and primers were as previously described 
(Hahn et al., 1999).  (B) Western blot analysis reveals that introduction of two different 
shRNAs targeted to FEN1 leads to reduction in FEN1 protein levels in hTERT and DN-
hTERT cells.  (C) Quantification of telomere fusion events following shRNA expression 
in hTERT (white bars) and DN-hTERT (black bars) cells.  A minimum of 60 metaphases 
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was analyzed per treatment in a blinded fashion.  Statistical analysis was conducted using 
the Wilcoxon Two-Sample Test (*P<0.01).  
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5.1  Summary 

Telomeres need to be replicated with high fidelity to ensure genomic stability. 

Lack of fidelity will lead to loss of telomere integrity, its recognition as a DNA double 

strand break, end-to-end fusions, fusion-breakage-bridge cycles and ultimately to 

genomic instability. Considering that genomic instability is a driving force for cancer, 

high fidelity telomere replication is critical for tumor suppression.  Flap Endonuclease 1 

(FEN1) is a structure specific metallonuclease that performs several roles in DNA 

metabolism.  In Chapters 2, 3 and 4 I demonstrate that FEN1 is critical for telomere 

stability.  FEN1 depletion led to telomere dysfunction characterized by recognition of the 

telomeres as DNA double strand breaks (DSBs), activation of a DNA damage response 

(DDR) at telomeres, loss of single sister telomeres (STLs) in primary fibroblasts and 

telomere fusions in ALT-positive cancer cells.  Despite the impact on telomeres, no 

significant defects were observed on DNA replication and cell cycle progression, 

indicating a telomere specific role for FEN1 that is independent of its role in Okazaki 

fragment maturation.  The work presented in the preceding chapters thus allows us to 

postulate that FEN1 contributes to telomere stability by ensuring the efficient resolution 

of stalled replication forks at mammalian telomeres.  The following sections underscore 

the significance of this work and how it contributes our understanding of telomere 

biology, genome stability and tumorigenesis.  
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5.2  FEN1 in DNA Replication and Repair 

FEN1 is an important DNA replication and repair protein involved in genome 

maintenance.  In an in vitro assay utilizing purified proteins, FEN1 was identified as one 

of the ten essential components required for DNA replication [1].  However, deletion of 

the FEN1 gene in several different organisms does not inhibit DNA replication, which 

continues with relatively minor defects.  Indeed, rad27Δ in S. cereviseae, rad2Δ in S. 

pombe, and FEN1 deletion in chicken DT-40 cells does not inhibit bulk DNA replication 

[2-4].  However, deletion of mammalian FEN1 leads to early embryonic lethality in mice 

[5], suggesting a critical function for FEN1 in mammalian cells.  My work demonstrates 

that FEN1 depletion in human cells does not affect DNA replication in vitro or 

progression through S-phase (Chapter 3).   Furthermore, FEN1 depletion, in the absence 

of telomere dysfunction, does not lead to genomic instability in primary fibroblasts 

(Chapter 2) indicating that another nuclease, such as Dna2 or Exo1, is able to compensate 

for FEN1 depletion during Okazaki fragment maturation [6-10].  The aforementioned 

studies utilized complete gene knockouts to investigate FEN1 function whereas my work 

in human cells has utilized virus-based shRNA technology to deplete FEN1 from the 

cells, which does not completely eliminate the endogenous protein.  Therefore, it is 

possible that the small amount of FEN1 remaining is sufficient for uninhibited DNA 

replication.  However, FEN1 depletion does affect telomere stability, indicating that there 

is functional loss of this protein.  Only construction of human cells with FEN1 deletion 

from the genomic locus will conclusively address whether it is essential for human DNA 

replication.   
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Cytogenetic analysis upon FEN1 depletion in human telomerase-positive cells, 

lacking telomere dysfunction, revealed few aberrations indicating an absence of genomic 

instability.  However, this is a macro view and therefore only one facet of genomic 

instability.  Work in yeast and in mice show that FEN1 also plays a critical role in 

maintaining stable microsatellite and triplet repeats in the genome [11, 12].  This 

observation was species-specific, as the same was not seen in drosophila upon FEN1 

deletion [13, 14].  Additionally, a recent study in human cells observed no expansion of 

the CAG Huntington’s locus upon FEN1 depletion [15], indicating that human cells do 

not replicate the genomic instability phenotypes observed in other organisms.  Together, 

these studies support our observations on the lack of genomic instability in telomerase-

positive cells upon FEN1 depletion.  However, a more cautious analysis of the different 

micro-satellite, mini-satellite and rDNA repeat regions via Southern analysis of genomic 

DNA from FEN1-depleted human cells [15] needs to be conducted to investigate genome 

stability.  

 

 Although our data indicates that FEN1 is not essential for Okazaki 

fragment processing in human cells, work from Chapter 3 demonstrates a significant 

novel role for FEN1 in DNA repair through the re-initiation of stalled replication forks.  

This work supports recent studies suggesting that FEN1 plays a role in the re-initiation of 

stalled replication forks [16, 17].  It was previously shown that treatment of cells with 

cisplatin or mitomycin C (MMC), DNA cross-linkers that stall replication forks, 
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increased FEN1 association with WRN, a RecQ helicase, and led to the co-localization of 

this complex to the stalled forks [16].  Stalled replication forks can be converted to 

Holliday junctions (HJs) through fork regression, branch migration and the annealing of 

nascent DNA strands [18].  Together the WRN-FEN1 complex is able to process these 

branch migrating structures known as “chickenfoot” structures [16, 18].  FEN1 also 

possesses a gap endonuclease (GEN) activity, which can be stimulated by WRN and 

enhances the cleavage and resolution of chickenfoot and bubble-shaped DNA structures 

[17].  One can speculate that the telomeric lagging strand forms a putative G-quadruplex 

(G4) lesion, stalls the moving replication fork that regresses and forms chickenfoot 

structures, which can now be processed by the WRN-FEN1 complex to re-initiate the 

stalled replication fork.  Furthermore, evidence from E.coli DNA replication and repair 

demonstrates that upon stalling of a replication fork, the RecQ DNA helicase and RecJ, a 

5’ to 3’ exonuclease, can process the regressed replication fork intermediate to reinitiate 

replication [19-21]. The mammalian homologs of the RecQ-RecJ proteins that participate 

in the processing of stalled replication forks have not yet been identified.  However, we 

could reason that such function could be assumed by a RecQ helicase such as WRN or 

BLM and a RecJ nuclease, FEN1.  This hypothesis could be tested by gene replacement 

experiments of the E. coli genes with their mammalian counterparts.  

 

Though the above studies suggest a role for FEN1 in the re-initiation of stalled 

replication forks, this work is the first to conclusively demonstrate it.  FEN1’s role in fork 

re-initiation suggests that its depletion should sensitize cells to replication stress-causing 
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reagents such as HU, mitomycin C (MMC) and cisplatin.  Indeed, recent work has 

demonstrated that FEN1-depleted cancer cells are sensitive to cisplatin [22].  Our 

knowledge of FEN1 function in the re-initiation of stalled replication forks is still in its 

nascent stages and the experiments suggested herein will give us a greater understanding 

of its role in the re-initiation of stalled replication forks and at telomeres.   

 

 

5.3  Telomere Replication: FEN1 at the ends 

Replication of telomeres inherently possesses several “high risk” elements 

(Figure 1.4).  Telomeric DNA consists of a highly repetitive sequence and has a greater 

probability of forming secondary structures.  In addition, telomeres are replicated from a 

single unidirectional fork and remain unreplicated if the fork collapses.  The intricacies in 

telomere replication are compounded by the presence of the T-loop, which needs to be 

resolved before replication and reformed post-replication.  To address these unique 

challenges the DNA replication machinery undertakes specialized action for efficient 

telomere replication and stability [23, 24]. 

 

Indeed, several studies have indicated that telomere replication and stability is 

influenced by an increasing number of DDR proteins.  Recent work demonstrates that 

during replication of human telomeres the ATR-dependent DDR machinery is recruited 

together with the DNA replication machinery [25].  The ATR-dependent repair 

machinery is postulated to be present at the telomere in response to stalled replication 
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forks, leading to their resolution and efficient telomere replication.  FEN1 localizes to the 

telomere during telomere replication [25].  It is possible that FEN1 impacts telomere 

stability in two ways that are not mutually exclusive.  It could be recruited to the telomere 

in S-phase for DNA replication with PCNA and the replication machinery for the 

processing of Okazaki fragments [26].  Alternatively, it could engage in the efficient 

resolution of stalled replication forks with the ATR-dependent repair machinery [16, 17].  

Our data do not negate the possibility of either scenario of FEN1 function at the telomere.  

However, they do demonstrate that the FEN1 function in the re-initiation of stalled 

replication forks is essential to telomere stability whereas FEN1’s ability to interact with 

PCNA and process Okazaki fragments is dispensable for telomere stability. 

 

Although the results presented suggest the presence of stalled replication forks at 

human telomeres after FEN1 depletion, this has not been directly shown.  Direct evidence 

demonstrating the presence of stalled replication forks upon FEN1 depletion in human 

cells has been difficult to obtain due to technical hurdles.  Below, I have outlined some of 

the techniques that may be utilized to investigate the presence of stalled replication forks 

at telomeres upon FEN1 depletion.  First, 2D gel electrophoresis of the replication 

intermediates of human telomeres would identify the presence of stalled forks, if present, 

upon FEN1 depletion.  However, this approach is technically challenging and given the 

stochastic nature of the observed phenotype, would make the analysis extremely difficult.  

Alternatively, taking advantage of the model organism, S. pombe, where 2D gel 

electrophoresis of telomere replication intermediates is simpler due to fewer 
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chromosomes [27], we can investigate whether rad2Δ (the FEN1 homolog) cells have 

stalled replication forks at their telomeres.  Given that human FEN1 can compensate for 

its yeast homolog [28], this technique will also provide a clear way to investigate the role 

of certain mutations in telomere replication.   

 

Thirdly, the most direct method to investigate the presence of stalled replication 

forks at human telomeres upon FEN1 depletion is through single molecule analysis of 

replicating DNA (SMARD) [29].  This technique double labels replicating telomeres with 

two BrdU analogs that are temporally separated, allowing the direct measurement of the 

number of stalled replication forks per number of replicating telomeres.  SMARD 

analysis affords us the opportunity to investigate the role of FEN1 in the re-initiation of 

stalled replication forks both at the telomere and away from it [29].  Finally, a simpler but 

indirect method for investigating the presence of stalled replication forks is to identify 

ATR, ATRIP or phosphorylated-RPA foci at telomeric DNA [29, 30].  If FEN1 depletion 

leads to increased numbers of stalled replication forks at telomeres, I would predict 

increased localization of ATR-dependent DDR machinery there.  The experiments 

outlined above will provide further evidence of stalled replication forks at telomeres upon 

FEN1 depletion.  

 

Recently, telomeres have also been identified as fragile sites [29].   This result 

suggests that fragile site expression (fragile sites are said to be ‘expressed’ when they 

exhibit cytogenetic abnormalities such as gaps and breaks on metaphase chromosomes) at 
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telomeres might contribute to the inefficient replication of telomeres and lead to loss of 

single sister telomeres (STLs).  Fragile sites are usually expressed upon the induction of 

replication stress and in the absence of certain proteins that help maintain those sites, 

such as BLM [31].  Considering the complexity of telomere replication and the stalling of 

replication forks traversing the telomere, I propose that the telomere provides a natural 

form of replication stress.  My results indicate that FEN1 depletion leads to an increase in 

replication stress at telomeres, suggesting a role for it suppressing fragile site expression 

at telomeres.  To investigate FEN1’s role in the maintenance of telomere fragile sites, we 

could monitor fragile site expression at telomeres (presence of abnormal telomere 

signals) in FEN-1 depleted cells.  Additionally, it will be interesting to subject FEN1-

depleted cells to further replication stress such as exposure to low levels of aphidicolin, 

an inhibitor of DNA polymerases α and δ, and analyze fragile site expression on 

metaphase chromosomes, both at and away from the telomere.  If FEN1 were involved in 

the fragile site maintenance at the telomere and across the genome, we would expect an 

increase in fragile site expression.  Alternatively, the increase in fragile telomeres may be 

a secondary effect of FEN1 depletion and we would then expect to see no modulation of 

fragile site expression on a genomic scale upon inducing replication stress.   

 

 

5.4  FEN1, TRF2 and the RecQ helicases, BLM and WRN 

Interestingly, expression of a C-terminal deletion mutant of FEN1, which 

abolishes interaction with WRN [32], cannot rescue FEN1 depletion at the telomeres in 
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non-immortal cells.  The C-terminus is also essential for its interaction with the BLM 

protein [32] and TRF2 (Chapter 2).  Given the importance of FEN1’s C-terminus for 

telomere function and its ability to interact with BLM, WRN and TRF2, it is critical to 

determine which of these proteins recruits FEN1 to the telomere.  One hypothesis is that 

all these proteins, in conjunction with other unidentified players, mediate telomere 

replication and the following experiments will allow us to investigate this.  

 

Similar to WRN, BLM is able to unwind G4 DNA, is critical for the re-initiation 

of stalled replication forks and has recently been shown to be important for the efficient 

replication of telomeres [29, 33-35].  The BLM-FEN1 complex may play a role similar to 

the WRN-FEN1 complex in alleviating replication stress during telomere replication.  

Therefore, BLM may be able to partially compensate for WRN loss at the telomeres. 

Deletion of Blm, similar to Wrn deletion, accentuates the pathology of later generation 

telomerase RNA component (mTERC) knockout mice indicating a functional role for 

BLM at mammalian telomeres [36].  It is of interest to investigate whether BLM 

deficiency has a similar phenotype to the FEN1 and WRN deficiency in human cells, i.e., 

loss of single sister telomeres specifically from the lagging strand.  Any compensation by 

BLM for WRN can be investigated through epistasis analysis by the simultaneous 

depletion of the two proteins.  If BLM partially compensates for WRN depletion at the 

telomere, simultaneous loss will lead to an additive effect on telomere dysfunction.  

Given that FEN1 may also be recruited to the telomeres by TRF2 [37, 38], RecQ 

helicase-independent function of FEN1 at the telomere may be investigated through 
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similar epistasis analyses with the simultaneous depletion of FEN1 or BLM or both in 

WRN-deficient cells.  An increase in telomere dysfunction upon FEN1 depletion in cells 

without both BLM and WRN would suggest a role for FEN1 in telomere maintenance 

independent of the two RecQ helicases.  

 

TRF2’s interaction with FEN1 [37, 38] may directly engage the latter to actively 

repair and/or replicate telomeres.  Interestingly, TRF2 also interacts with and stimulates 

the activities of WRN and BLM RecQ helicases [39-41].  This raises the possibility that 

these proteins act concordantly to enhance replication and repair of telomeres.  

Interestingly, a recent study demonstrated that TRF2 increases branch migration of HJ 

intermediates, suggesting that this promotes formation of chickenfoot structures in the 

context of a stalled replication fork at telomeres [42].  TRF2, which binds these 

chickenfoot structures, may engage the WRN-FEN1 complex to act upon and resolve 

them [16].  In effect, TRF2 could enable this complex to efficiently restart stalled 

replication forks at telomeres.   

 

 

5.5  FEN1: A Tumor Suppressor 

Several reports have demonstrated a significant role for FEN1 in oncogenesis.  

FEN1 overexpression has been associated with human lung, prostate, brain and breast 

cancer [22, 43-46].  Strikingly, FEN1 haploinsufficiency increases cancer incidence in 

mice with a heterozygous Adenomatous polyposis coli (APC) background [47, 48].  
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Interestingly, mutations have also been detected in a variety of human tumors that abolish 

the GEN and EXO, but not the FEN, activities of FEN1 [49].  Furthermore, when Shen 

and colleagues knocked-in one of the detected E160D (mED) human cancer mutations 

into mice, the transgenic animals spontaneously developed tumors indicating that FEN1 

is a tumor suppressor gene [49].  A similar study conducted on a different strain of mice 

with the same mED mutation in FEN1 revealed a different spectrum of cancers [50].  

Although in the first study [49], tumorgenesis was attributed to incomplete DNA 

fragmentation during apoptosis, an alternate hypothesis for this phenotype may also been 

proposed [50].  Our results with the FEN1 mED mutation (Chapter 4) suggest that the 

increased genomic instability and cancer incidence in mice with this mutation is caused 

by telomere dysfunction.  Indeed, murine cells expressing the mED mutant have telomere 

dysfunction evidenced by telomere end-to-end fusions [51].  Additionally, comparative 

genomic hybridization of the resulting tumors in the E160D mice showed genomic 

instability with changes in chromosome copy number, chromosomal rearrangements, 

gains and losses [50].  Telomere-dysfunction induced genomic instability is a known 

driving force for tumorigenesis [52-54], suggesting a similar mode of transformation in 

the E160D mutant mice.  However, evidence for telomere dysfunction in the FEN1 mED 

murine cells is not conclusive and further work is required to demonstrate the nuclease 

deficiency associated with the FEN1 E160D mutation and its effect on telomere stability 

in mice.  These studies will allow us to further investigate the effect of FEN1 E160D 

mutation on genomic stability and cancer incidence in both the mouse and human.  
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As described above, FEN1 is a tumor suppressor.  Conversely, FEN1 depletion 

and/or inhibition kills human colorectal cancer cells that have a Rad54B deletion [55], 

raising the possible therapeutic utility of FEN1 inhibition.  The study demonstrates that 

cancer cells with a Rad54B deletion have increased chromosomal instability and can be 

effectively and selectively killed by depleting synthetic lethal genes such as FEN1 [55].  

To this end, specific small molecule inhibitors of FEN1 have been identified and 

characterized in mammalian cells, making FEN1 inhibition a distinct possibility for 

cancer therapeutics [56, 57].  However, my data suggest that this approach be taken with 

caution.  Indeed, telomerase-positive tumor cells, which represent the vast majority of all 

tumor cells do not appear to be affected by FEN1 depletion.  Nonetheless, this approach 

may have utility in telomerase-negative, ALT-positive tumor cells, which display 

telomere dysfunction and cell death upon FEN1 depletion (Chapter 3).  

 

 

5.6  Conclusions 

High fidelity replication and maintenance of the genome is fundamental to the 

preservation of life.  Genome stability is intricately linked to the faithful maintenance of 

telomere stability.  Telomere replication, an essential but relatively unexplored 

component of telomere maintenance, is a complicated task.  Telomere chromatin poses 

several challenges to the moving replication fork causing natural stalling/pausing.  For 

these reasons, loss of function mutations or depletion of genes that facilitate replication 

fork progression and restart would be expected to have a profound impact at the telomere.  
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This thesis identifies complications associated with telomere replication and characterizes 

one protein, FEN1, as a necessary component of the telomeric replication machinery.  

The results presented herein demonstrate that FEN1 works in a complex with a RecQ 

helicase (WRN, BLM or both) to efficiently resolve stalled replication forks at sites of 

stalling.  The inability to efficiently resolve stalled forks at the telomere leads to the 

drastic loss of the distal end of the telomere causing telomere dysfunction.  Therefore, 

FEN1 mutation/depletion increases telomere dysfunction, leading to an increase in 

genomic instability, a known driving force for cancer.  My model provides an 

explanation for the increased cancer incidence observed in mice and humans with 

mutations in the FEN1 gene.  Conversely, telomere dysfunction and subsequent genomic 

instability associated with FEN1 depletion/inhibition can be exploited to selectively 

target telomerase-negative tumor cells harboring other critical mutations.  



 140 

References 

 

1. Brush, G.S., Kelly, T.J., and Stillman, B. (1995). Identification of eukaryotic 
DNA replication proteins using simian virus 40 in vitro replication system. Methods 
Enzymol 262, 522-548. 

2. Alleva, J.L., and Doetsch, P.W. (1998). Characterization of Schizosaccharomyces 
pombe Rad2 protein, a FEN-1 homolog. Nucleic Acids Res 26, 3645-3650. 

3. Greene, A.L., Snipe, J.R., Gordenin, D.A., and Resnick, M.A. (1999). Functional 
analysis of human FEN1 in Saccharomyces cerevisiae and its role in genome stability. 
Hum Mol Genet 8, 2263-2273. 

4. Kikuchi, K., Taniguchi, Y., Hatanaka, A., Sonoda, E., Hochegger, H., Adachi, N., 
Matsuzaki, Y., Koyama, H., van Gent, D.C., Jasin, M., et al. (2005). Fen-1 facilitates 
homologous recombination by removing divergent sequences at DNA break ends. Mol 
Cell Biol 25, 6948-6955. 

5. Larsen, E., Gran, C., Saether, B.E., Seeberg, E., and Klungland, A. (2003). 
Proliferation failure and gamma radiation sensitivity of Fen1 null mutant mice at the 
blastocyst stage. Mol Cell Biol 23, 5346-5353. 

6. Moreau, S., Morgan, E.A., and Symington, L.S. (2001). Overlapping functions of 
the Saccharomyces cerevisiae Mre11, Exo1 and Rad27 nucleases in DNA metabolism. 
Genetics 159, 1423-1433. 

7. Kang, H.Y., Choi, E., Bae, S.H., Lee, K.H., Gim, B.S., Kim, H.D., Park, C., 
MacNeill, S.A., and Seo, Y.S. (2000). Genetic analyses of Schizosaccharomyces pombe 
dna2(+) reveal that dna2 plays an essential role in Okazaki fragment metabolism. 
Genetics 155, 1055-1067. 

8. Bae, S.H., and Seo, Y.S. (2000). Characterization of the enzymatic properties of 
the yeast dna2 Helicase/endonuclease suggests a new model for Okazaki fragment 
processing. J Biol Chem 275, 38022-38031. 

9. Ayyagari, R., Gomes, X.V., Gordenin, D.A., and Burgers, P.M. (2003). Okazaki 
fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2. J 
Biol Chem 278, 1618-1625. 

10. Kao, H.I., Veeraraghavan, J., Polaczek, P., Campbell, J.L., and Bambara, R.A. 
(2004). On the roles of Saccharomyces cerevisiae Dna2p and Flap endonuclease 1 in 
Okazaki fragment processing. J Biol Chem 279, 15014-15024. 



 141 

11. Liu, Y., Kao, H.I., and Bambara, R.A. (2004). Flap endonuclease 1: a central 
component of DNA metabolism. Annu Rev Biochem 73, 589-615. 

12. Shen, B., Singh, P., Liu, R., Qiu, J., Zheng, L., Finger, L.D., and Alas, S. (2005). 
Multiple but dissectible functions of FEN-1 nucleases in nucleic acid processing, genome 
stability and diseases. Bioessays 27, 717-729. 

13. Ishikawa, G., Kanai, Y., Takata, K., Takeuchi, R., Shimanouchi, K., Ruike, T., 
Furukawa, T., Kimura, S., and Sakaguchi, K. (2004). DmGEN, a novel RAD2 family 
endo-exonuclease from Drosophila melanogaster. Nucleic Acids Res 32, 6251-6259. 

14. Kanai, Y., Ishikawa, G., Takeuchi, R., Ruike, T., Nakamura, R., Ihara, A., 
Ohashi, T., Takata, K., Kimura, S., and Sakaguchi, K. (2007). DmGEN shows a flap 
endonuclease activity, cleaving the blocked-flap structure and model replication fork. 
FEBS J 274, 3914-3927. 

15. Moe, S.E., Sorbo, J.G., and Holen, T. (2008). Huntingtin triplet-repeat locus is 
stable under long-term Fen1 knockdown in human cells. J Neurosci Methods 171, 233-
238. 

16. Sharma, S., Otterlei, M., Sommers, J.A., Driscoll, H.C., Dianov, G.L., Kao, H.I., 
Bambara, R.A., and Brosh, R.M., Jr. (2004). WRN helicase and FEN-1 form a complex 
upon replication arrest and together process branchmigrating DNA structures associated 
with the replication fork. Mol Biol Cell 15, 734-750. 

17. Zheng, L., Zhou, M., Chai, Q., Parrish, J., Xue, D., Patrick, S.M., Turchi, J.J., 
Yannone, S.M., Chen, D., and Shen, B. (2005). Novel function of the flap endonuclease 1 
complex in processing stalled DNA replication forks. EMBO Rep 6, 83-89. 

18. Fouche, N., Ozgur, S., Roy, D., and Griffith, J.D. (2006). Replication fork 
regression in repetitive DNAs. Nucleic Acids Res 34, 6044-6050. 

19. Courcelle, J., and Hanawalt, P.C. (1999). RecQ and RecJ process blocked 
replication forks prior to the resumption of replication in UV-irradiated Escherichia coli. 
Mol Gen Genet 262, 543-551. 

20. Courcelle, C.T., Chow, K.H., Casey, A., and Courcelle, J. (2006). Nascent DNA 
processing by RecJ favors lesion repair over translesion synthesis at arrested replication 
forks in Escherichia coli. Proc Natl Acad Sci U S A 103, 9154-9159. 

21. Courcelle, J., Donaldson, J.R., Chow, K.H., and Courcelle, C.T. (2003). DNA 
damage-induced replication fork regression and processing in Escherichia coli. Science 
299, 1064-1067. 



 142 

22. Nikolova, T., Christmann, M., and Kaina, B. (2009). FEN1 is overexpressed in 
testis, lung and brain tumors. Anticancer Res 29, 2453-2459. 

23. Gilson, E., and Geli, V. (2007). How telomeres are replicated. Nat Rev Mol Cell 
Biol 8, 825-838. 

24. Verdun, R.E., and Karlseder, J. (2007). Replication and protection of telomeres. 
Nature 447, 924-931. 

25. Verdun, R.E., and Karlseder, J. (2006). The DNA damage machinery and 
homologous recombination pathway act consecutively to protect human telomeres. Cell 
127, 709-720. 

26. Li, X., Li, J., Harrington, J., Lieber, M.R., and Burgers, P.M. (1995). Lagging 
strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation 
of FEN-1 by proliferating cell nuclear antigen. J Biol Chem 270, 22109-22112. 

27. Miller, K.M., Rog, O., and Cooper, J.P. (2006). Semi-conservative DNA 
replication through telomeres requires Taz1. Nature 440, 824-828. 

28. Hansen, R.J., Friedberg, E.C., and Reagan, M.S. (2000). Sensitivity of a S. 
cerevisiae RAD27 deletion mutant to DNA-damaging agents and in vivo 
complementation by the human FEN-1 gene. Mutat Res 461, 243-248. 

29. Sfeir, A., Kosiyatrakul, S.T., Hockemeyer, D., MacRae, S.L., Karlseder, J., 
Schildkraut, C.L., and de Lange, T. (2009). Mammalian telomeres resemble fragile sites 
and require TRF1 for efficient replication. Cell 138, 90-103. 

30. Rizzo, A., Salvati, E., Porru, M., D'Angelo, C., Stevens, M.F., D'Incalci, M., 
Leonetti, C., Gilson, E., Zupi, G., and Biroccio, A. (2009). Stabilization of quadruplex 
DNA perturbs telomere replication leading to the activation of an ATR-dependent ATM 
signaling pathway. Nucleic Acids Res. 

31. Chan, K.L., Palmai-Pallag, T., Ying, S., and Hickson, I.D. (2009). Replication 
stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 11, 
753-760. 

32. Sharma, S., Sommers, J.A., Gary, R.K., Friedrich-Heineken, E., Hubscher, U., 
and Brosh, R.M., Jr. (2005). The interaction site of Flap Endonuclease-1 with WRN 
helicase suggests a coordination of WRN and PCNA. Nucleic Acids Res 33, 6769-6781. 

33. Sun, H., Karow, J.K., Hickson, I.D., and Maizels, N. (1998). The Bloom's 
syndrome helicase unwinds G4 DNA. J Biol Chem 273, 27587-27592. 



 143 

34. Sengupta, S., Linke, S.P., Pedeux, R., Yang, Q., Farnsworth, J., Garfield, S.H., 
Valerie, K., Shay, J.W., Ellis, N.A., Wasylyk, B., et al. (2003). BLM helicase-dependent 
transport of p53 to sites of stalled DNA replication forks modulates homologous 
recombination. Embo J 22, 1210-1222. 

35. Davies, S.L., North, P.S., and Hickson, I.D. (2007). Role for BLM in replication-
fork restart and suppression of origin firing after replicative stress. Nat Struct Mol Biol 
14, 677-679. 

36. Du, X., Shen, J., Kugan, N., Furth, E.E., Lombard, D.B., Cheung, C., Pak, S., 
Luo, G., Pignolo, R.J., DePinho, R.A., et al. (2004). Telomere shortening exposes 
functions for the mouse Werner and Bloom syndrome genes. Mol Cell Biol 24, 8437-
8446. 

37. Muftuoglu, M., Wong, H.K., Imam, S.Z., Wilson, D.M., 3rd, Bohr, V.A., and 
Opresko, P.L. (2006). Telomere Repeat Binding Factor 2 Interacts with Base Excision 
Repair Proteins and Stimulates DNA Synthesis by DNA Polymerase {beta}. Cancer Res 
66, 113-124. 

38. Saharia, A., Guittat, L., Crocker, S., Lim, A., Steffen, M., Kulkarni, S., and 
Stewart, S.A. (2008). Flap endonuclease 1 contributes to telomere stability. Curr Biol 18, 
496-500. 

39. Opresko, P.L., von Kobbe, C., Laine, J.P., Harrigan, J., Hickson, I.D., and Bohr, 
V.A. (2002). Telomere-binding protein TRF2 binds to and stimulates the Werner and 
Bloom syndrome helicases. J Biol Chem 277, 41110-41119. 

40. Machwe, A., Xiao, L., and Orren, D.K. (2004). TRF2 recruits the Werner 
syndrome (WRN) exonuclease for processing of telomeric DNA. Oncogene 23, 149-156. 

41. Opresko, P.L., Otterlei, M., Graakjaer, J., Bruheim, P., Dawut, L., Kolvraa, S., 
May, A., Seidman, M.M., and Bohr, V.A. (2004). The Werner Syndrome Helicase and 
Exonuclease Cooperate to Resolve Telomeric D Loops in a Manner Regulated by TRF1 
and TRF2. Mol Cell 14, 763-774. 

42. Poulet, A., Buisson, R., Faivre-Moskalenko, C., Koelblen, M., Amiard, S., 
Montel, F., Cuesta-Lopez, S., Bornet, O., Guerlesquin, F., Godet, T., et al. (2009). TRF2 
promotes, remodels and protects telomeric Holliday junctions. Embo J 28, 641-651. 

43. Sato, M., Girard, L., Sekine, I., Sunaga, N., Ramirez, R.D., Kamibayashi, C., and 
Minna, J.D. (2003). Increased expression and no mutation of the Flap endonuclease 
(FEN1) gene in human lung cancer. Oncogene 22, 7243-7246. 



 144 

44. Lam, J.S., Seligson, D.B., Yu, H., Li, A., Eeva, M., Pantuck, A.J., Zeng, G., 
Horvath, S., and Belldegrun, A.S. (2006). Flap endonuclease 1 is overexpressed in 
prostate cancer and is associated with a high Gleason score. BJU Int 98, 445-451. 

45. Mitra, A.K., Singh, N., Singh, A., Garg, V.K., Agarwal, A., Sharma, M., 
Chaturvedi, R., and Rath, S.K. (2008). Association of polymorphisms in base excision 
repair genes with the risk of breast cancer: a case-control study in North Indian women. 
Oncol Res 17, 127-135. 

46. Yang, M., Guo, H., Wu, C., He, Y., Yu, D., Zhou, L., Wang, F., Xu, J., Tan, W., 
Wang, G., et al. (2009). Functional FEN1 polymorphisms are associated with DNA 
damage levels and lung cancer risk. Hum Mutat. 

47. Kucherlapati, M., Yang, K., Kuraguchi, M., Zhao, J., Lia, M., Heyer, J., Kane, 
M.F., Fan, K., Russell, R., Brown, A.M., et al. (2002). Haploinsufficiency of Flap 
endonuclease (Fen1) leads to rapid tumor progression. Proc Natl Acad Sci U S A 99, 
9924-9929. 

48. Kucherlapati, M., Nguyen, A., Kuraguchi, M., Yang, K., Fan, K., Bronson, R., 
Wei, K., Lipkin, M., Edelmann, W., and Kucherlapati, R. (2007). Tumor progression in 
Apc(1638N) mice with Exo1 and Fen1 deficiencies. Oncogene 26, 6297-6306. 

49. Zheng, L., Dai, H., Zhou, M., Li, M., Singh, P., Qiu, J., Tsark, W., Huang, Q., 
Kernstine, K., Zhang, X., et al. (2007). Fen1 mutations result in autoimmunity, chronic 
inflammation and cancers. Nat Med 13, 812-819. 

50. Larsen, E., Kleppa, L., Meza, T.J., Meza-Zepeda, L.A., Rada, C., Castellanos, 
C.G., Lien, G.F., Nesse, G.J., Neuberger, M.S., Laerdahl, J.K., et al. (2008). Early-onset 
lymphoma and extensive embryonic apoptosis in two domain-specific Fen1 mice 
mutants. Cancer Res 68, 4571-4579. 

51. Sampathi, S., Bhusari, A., Shen, B., and Chai, W. (2009). Human flap 
endonuclease I is in complex with telomerase and is required for telomerase-mediated 
telomere maintenance. J Biol Chem 284, 3682-3690. 

52. Chin, L., Artandi, S.E., Shen, Q., Tam, A., Lee, S.L., Gottlieb, G.J., Greider, 
C.W., and DePinho, R.A. (1999). p53 deficiency rescues the adverse effects of telomere 
loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527-
538. 

53. Artandi, S.E., Chang, S., Lee, S.L., Alson, S., Gottlieb, G.J., Chin, L., and 
DePinho, R.A. (2000). Telomere dysfunction promotes non-reciprocal translocations and 
epithelial cancers in mice. Nature 406, 641-645. 



 145 

54. Artandi, S.E., and DePinho, R.A. (2000). A critical role for telomeres in 
suppressing and facilitating carcinogenesis. Curr Opin Genet Dev 10, 39-46. 

55. McManus, K.J., Barrett, I.J., Nouhi, Y., and Hieter, P. (2009). Specific synthetic 
lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. 
Proc Natl Acad Sci U S A 106, 3276-3281. 

56. Tumey, L.N., Bom, D., Huck, B., Gleason, E., Wang, J., Silver, D., Brunden, K., 
Boozer, S., Rundlett, S., Sherf, B., et al. (2005). The identification and optimization of a 
N-hydroxy urea series of flap endonuclease 1 inhibitors. Bioorg Med Chem Lett 15, 277-
281. 

57. Tumey, L.N., Huck, B., Gleason, E., Wang, J., Silver, D., Brunden, K., Boozer, 
S., Rundlett, S., Sherf, B., Murphy, S., et al. (2004). The identification and optimization 
of 2,4-diketobutyric acids as flap endonuclease 1 inhibitors. Bioorg Med Chem Lett 14, 
4915-4918. 
 
 


	Flap Endonuclease 1 ensures telomere replication and stability
	Recommended Citation

	tmp.1328376937.pdf.R8HMr

