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Abstract

We report the results of an experiment comparing the merits of the pen and the
mouse as drawing devices. For this study a pen-based graphic diagram editor equipped
with a shape recognition algorithm was developed on GO’s PenPoint operating system.
A commercially available drawing program on NeXT was used for mouse-based editing.
Twelve CS students were chosen as subjects and asked to draw four different diagrams of
similar complexity: two with a pen and the other two with a mouse. The diagrams are
chosen from the categories of dataflow visual language, Petri nets, flowcharts, and state
diagrams. The results indicate that drawing by pen is twice as fast as drawing by mouse.

1. Introduction

Various visual languages require drawing and editing graphic diagrams. Convenient and
easy drawing is an important factor for the acceptability of visual Ianguages by end users. The
existing tools for diagram drawing, such as MacDraw, use the mouse/menu paradigm of user
interface. The pen/gesture paradigm offers a possibly improved alternative.

The pen user interface is heralded as more natural and powerful than the mouse, due to
pointing, handwriting, gesturing, and drawing [3, 5, 61. Itis widely believed that the pen is
mightier than the mouse. There are comparison studies of different input devices such as pen,
mouse and keyboard in different application areas, e.g., [10] for spreadsheet applications and (8]
for text entry. However, scientific evidence is not yet well-established in the area of visual
languages. It is the goal of this study to fill this gap.

This paper reports the results of an experiment designed to compare the ease of constructing
graphic diagrams, with either a pen or a mouse. To disconnect the issue of keyboarding in user
interface, we have eliminated all textual components of graphic diagrams. The experiment
consists of:

Selection of subjects,

Selection of diagrams to be drawn by each subject.

Selection of editing tools (pen or mouse).

Assignment of tasks; who draws which diagram in what order using which tool.

1 This research is partially supported by the Kumon Machine Project and by Laboratory for Pen-Based Silicon Paper Technology.
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Execution of each task and data collection.
Analysis of collected data.

Twelve CS students with little pen experience were chosen as subjects. Four diagrams of
similar complexity were selected, one each from the categories of dataflow visual programs, Petri
nets, flowcharts, and state diagrams. We have developed a pen-based diagram editor for GO's
PenPoint [1] running on NCR3125 pen computer [9]. The editor can recognize and respond to
shapes and gesture commands. Appsoft’s Draw version 1.02[4] on NeXT was used as the mouse-
based diagram editor. A random task assignment table was constructed. Procedures and
instruction sheets for the subjects were prepared. The experiment was executed and monitored by
the same person throughout to collect relevant data,

We faced two difficulties at the onset of this work: (1) It is difficult to measure the
convenience and ease of drawing, and (2) few pen-based drawing programs are available, As an
objective measurement, we have chosen to compare the length of time necessary to construct the
same diagram with reasonable precision, using both pen and mouse. Asa subjective
measurement, we sought comments from each participant comparing the pen and the mouse with
respect to the ease of use and general preferences.

To address the second difficulty, we evaluated a commercial product, NoteTaker 1.0.3 of
InkWare [6], as a possible candidate for pen-based drawing tool. We found that it was not
suitable for this experiment . Its shape recognition is too limited. In NoteTaker every graphic
object, e.g., a rectangle or a circle, must be entered by a single stroke for correct recognition. This
would impose undue restrictions on user interaction with the editor. Instead, we decided to
construct our own editor, called GDE (Graphic Diagram Editor), that can recognize multi-stroke
entries of a graphic shape. There is no restriction in GDE on the number of strokes that can be
used to construct a single shape, as long as the stroke sequence is entered without long pauses
between the strokes,

Another minor problem with NoteTaker is that it does not provide any gesture-based
commands in ShapeExpert, its drawing component. The ShapeExpert is controlled by tapping
menus and palettes. It does not take advantage of pen’s power to select an operator and an
operand by a single gesture, thus reducing the traffic between the editing space and menu items.
GDE offers mostly gesture-based commands for editing diagrams.

In the next section we describe GDE. In Section 3 we outline the experimental design. In
Section 4 we tabulate the results . In Section 5 we evaluate the validity of our experiments and

results. Finally, we conclude with future directions.

2. Graphic Diagram Editor

GDE is a pen-based geometric editor with a shape recognition capability. Itrunson GO’s
PenPoint operating system. The editor supports a two-dimensional layout of geometric objects on
a transparent background. The geometric objects can be rectangles, circles, ellipses, lines,
diamonds and polylines. No text can be entered by GDE. Objects can be created, selected,
deleted, moved, resized, copied and pasted. Options are provided to set the line thickness to
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either normal or bold. The option "Line Style’ is provided which allows lines to be drawn with or
without arrowheads. GDE provides gesture support in editing geometric objects. The gestures
that are currently provided include single-tap, flick and circle. These gestures are used to select,
move, resize, copy and paste the objects. In short, all the editing operations except delete can be
performed without using menu options. An important feature of GDE is its automatic shape
recognition. (See Section 2.1.) The recognizer can be turned on or off selectively. GDE also
supports loading and saving of diagrams. GDE is coded in PenPoint C, and the source code is
approximately 5000 lines and the executable code is 262KB.

2.1 The Shape Recognizer

The shape recognizer used in GDE is algorithmic rather than adaptive (like neural nets),

Some of the benefits of using an algorithm over a neural net recognizer include reduction in the
size of the program and quicker response times. An algorithm does not need to be "tanght’ like a
neural net, thus simplifying user interface design of the editor.

Our shape recognizer does not require users to draw a shape in a certain way. It allows the
users to lift the pen and draw the shape with as many strokes as they like and in any order they
wish. The algorithm does not use dynamic stroke information to evaluate input. Only static data
points {i.e. XY co-ordinates) are used and they may be input in any order. The recognition
algorithm is invoked at the end of last stroke of the shape. Successive strokes of the same shape
and the terminating stroke are distinguished by time-out. The time-out is proportional to the
number of data points collected in the previous stroke so that larger objects have longer time-out.

The recognition algorithm uses several filters. Each filter guesses at the shape gives an error
value. If the error is too large, then another filter is used until the error is within the desired
range.

The first filter used in this algorithm is based on the observation that for regular polygons the
ratio of the square of perimeter(P) to area(A) is constant. For a square, P/A = 16, independenily
of the size of the sides. This idea is extended to the shapes with unequal widths and hights such as
non-square rectangles. The second filter is the ratio of the input area to the bounding rectangle. A
rectangle should have a ratio close to 1, a diamond close to 0.5, and an ellipse somewhere in
between.

The final action is rejection of the data or a default shape. All the shapes except polylines are
drawn in this way. A polyline is drawn by tapping on the screen at the positions corresponding to
the vertices of the polyline. The end of polyline is represented by drawing a small flick gesture
starting from the last vertex.

2.2 Shape Editing and Gesture Support

Once the shape is recognized, it is drawn either using normal or bold thickness depending
upon the current selection of thickness from the menu. A line or a polyline can be drawn with or
without arrowheads. This facility is provided as a "Line Style’ item in the menu bar. In the case
of a polyline, the arrowhead is drawn only at the last vertex. A shape drawn on the screen can be
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selected by making a single tap gesture anywhere inside that shape for non-line shapes, and, on or
near the line for line shapes. A selected shape is represented by control buttons at its corners.
After the shape is selected it can be resized by touching the pen inside any of the control
buttons and dragging it in the desired direction. By touching the pen anywhere inside the shape
but not in the control buttons, the shape can be moved. The selected shape can be deleted or
copied into the buffer by using menu options. The shape that is copied in the buffer can be pasted
by tapping the pen on the screen such that the point of contact becomes the geometric centre of
that shape. However, the shape stored in the buffer can be pasted only once. Another way to copy
the shape is, using a circular gesture. A circular gesture is a drawing of an either circular or
elliptical shape at any location on the tablet. Thus by drawing the circle followed by a single tap,
one can copy and paste the selected shape. In recognition mode, the circle is recognized as a
circular shape, whereas, in selection mode, the circle is recognized as a gesture to copy the
selection into the buffer. When the circle is used as a gesture, the size of the gesture does not
matter. Similarly, when a *flick’ gesture is used to indicate the end of polyline, the size or

orientation of the flick does not matter.

3. The Experimental Design

The experiment consist of asking each subject to draw four diagrams in sequence using pre-
assigned drawing tools while the experimenter records start and finish times for each diagram,
After the drawing session, the experimenter interviewed the subjects for comments and

preferences,

3.1 Subject Selection

We chose twelve graduate and undergraduate computer science majors as our subjects. All
the subjects had used a mouse extensively on mouse-based graphic editors, but none had used a
pen for this purpose. Only one subject was familiar with a pen-based system. The subjects were
not aware of the aim of the experiment. This care was taken o that the result of the experiment
would not be influenced by the prejudices of the subject.

3.2 Object Selection

We asked our subjects to draw four diagrams each. We opted for diagrams that are commonly
drawn by CS majors, namely, Petri net, flowchart, data flow and state diagram (see Figure 1). All
the diagrams were of similar complexity, consisting of approximately ten lines and ten closed
shapes each. No text entry was required to construct any of these diagrams. As a precondition, it
should not take more than ten minutes to draw any of the four diagrams.

3.3 Tools
As a mouse-based editor, we used AppsoftDraw 1.02 on a Next Computer without a keyboard.

This is a typical mouse-based graphic editor that uses a tool palette to draw various shapes. It
facilitates editing abilities like Selection, Deletion, Copy/Paste. Of all the shapes in the tool palette,
we allowed the subjects to use only rectangles, circles, lines and polylines. The keyboard mappings
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corresponding to the editing options were disabled.

As a pen-based editor we used GDE described in Section 2. It was installed on an NCR3125
pen computer which runs on a 80286 machine at 20MHz. The features of GDE are also explained
in section 2.

3.4 Experimental Setup

To avoid the undesired influence of leaming, (i.e. one can draw the same diagram faster a
second time), we asked every subject to draw all four diagrams with a different combination of
editors. The task assignment for each subject was done based on the design presented in Table 1.

Table 1 - Various combinations of diagrams given to different subjects

Petri Net Flowchart | State Diagram | Data Flow
Combination] P p M M
Combination2 P M M P
Combination3 M M P P
Combination4 M P P M
Combination5 M P M P
Combination6é P M P M
P : Pen-Based Editor M : Mouse-Based Editor

The above table is constructed so that each diagram is drawn an equal number of times using
the pen and the mouse. Also all diagrams are drawn the same number of times. The sequence of
diagrams is administered in such a way that no two diagrams are drawn on the same editor
consecutively. For example, a subject who is assigned to perform the Combination] may be given
four diagrams in the following order; Petri Net, State Diagram, Flowchart, then Data Elow. We
did not want our subjects to get used to the editor and bias the result.

3.5 Experiment Execution

Each subject was given a randomly selected combination of four diagrams and two editors
based on Table 1. Each subject was given a small demonstration of the two editors. Then he/she
was allowed to have a brief hands-on experience with the systems. The subjects were fold which
shapes can be drawn with the editors, and what editing facilities are provided. They were
instructed to use the same editing facilities on both the editors despite the fact that the mouse-
based editor had more editing features than the pen-based one.

The subjects were told that the precision of the diagrams was not of utmost importance,
however, at the same time it could not be neglected as well. The subjects were not aware of the
fact that they were being timed. This care was taken in order for the subjects not to feel pressured
while drawing. They were also allowed to ask the experimenter when in doubt. Each subject
spent approximately thirty minutes drawing the four diagrams. A brief discussion was held with
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each subject after the experiment in which they were asked to give the merits and demerits of the

two input devices.

4. Results

The results of our experiment are shown in Table 2, and summarized in Table 3 below.

Table 2- Time required for each subject to draw each diagram

Petri Net Flowchart | State Diagram | Data Flow

Subjectl 4.2% 2.1% 6.1 6.45
Subject2 4.0¥ 7.2 8.25 4,15%
Subject3 1045 8.2 6.50% 7.10%
Subjectd 124 4.0* 5.20*% 9.15
Subject5 9.3 3.20* 9.05 4.0*
Subject6 4.25% 11.25 4.05* 9.1

Subject? 124 4.0% 5.20% 10.15
Subject8 5.15* 7.3 345 4.55%
Subject9 3.45% 3.15* 7.3 8.15
Subject10 4.15% 8.2 4.50* 9.3

Subjectl1 8.05 74 4.15% 3.55%
Subject12 8.15 2,35+ 7.55 3.55%

Note : Pen-based times are marked by *. All times are shown in minutes.

Table 3 - Average time required to draw each diagram using the pen and the mouse

Petri Net Flowchart State Diagram | Data Flow
Time(Pen) 42 3.13 5.07 4.42
Time(Mouse) 10.29 8.36 7.58 8.52
Ratio 2.42 2.67 1.55 1.88

Notes: Time(Pen) : Average time taken by six subjects to draw a diagram using the pen.
Time(Mouse) :Average time taken by six subjects to draw a diagram using the mouse.
Ratio : Time(Mouse} / Time(Pen).

In a brief discussion held with each subject after the drawing session, all the subjects except
one, felt that drawing graphic diagrams with a pen is not only easier but more natural than drawing
with a mouse. Most of the subjects said that they did not have to think about the layout of the
shapes in a diagram. They just drew the diagrams as they would draw them on paper with a
pencil. Six of the twelve subjects complained about the small screen size of the pen-based
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system. Only one subject felt that the mouse was easier to use for precise drawing. He was
accustomed to the mouse and could pinpoint any shape on the screen more easily with a mouse
than a pen. Samples of diagrams constructed by the subjects using the pens and the mice are

given in Figure 2.

5. Evaluation of results and conclusion

The obvious conclusion drawn from the above results is that editing graphic diagiams using
the pen is approximately twice as fast as editing using the mouse,

In the examples like the state diagram or Petri net., the subjects particularly preferred the pen
due to the gestures provided for Copy/Paste feature. The subjects complained about the fact that,
in the mouse-based system, they had to constantly switch back and forth between the tool palette
and the drawing context. They also found the pen-based editor easier for resizing and moving the
shapes. Half the subjects were annoyed about the small screen size of the pen-based system
despite the fact that a scroller was provided in the GDE.

In the design of the experiment, we assured that there would be variation in the combination
of diagrams that are given to all the subjects. This was done to eliminate any influence on the
results due to the penchant of the subjects towards any particular input device. Also the
complexity of the diagrams was such that the subjects did not take more than twelve minutes to
draw the diagrams, with a couple of exceptions. We also gave a little break between two
diagrams, and when the subject felt fatigued in some cases.

Despite all the above precautions, there are some shortcomings in our experiment, We feel
that twelve subjects are not sufficient to quantify the speed of editing. We did not allow text entry
in our experiment since we did not want to complicate the issue by involving a keyboard.
However, we are aware of the fact that text is an integral part of a graphic editor.

Our experiment focused on speed. We made no efforts to quantify precision or ease of
drawing. The precision was visually checked by the experimenter. The ease of using both input
devices was determined only qualitatively through a brief discussion after each drawing session.
This is not a very accurate measurement of the two above-mentioned factors. We believe that
more thorough experimentation needs to be performed in this area.

There are other ways of comparing the pen and the mouse. For example, some subjects
stated that the pen is easier to learn than the mouse. We need to design another experiment to
validate that claim. Also traditional psychological experiments to measure the response time and
the accuracy of selecting randomly displayed pixels by the pen or the mouse would be valuable
additions to our efforts to compare the pen and the mouse.
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Figure 1: Object diagrams for the experiment
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Figure 2a : Sample data flow diagram drawn by Subject8 using GDE,



UL

Figure 2b: Sample data flow diagram drawn by Subject4 using AppsoftDraw.
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