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The vitreous humor of the eye is a biological hydrogel principally composed of fibrillary 

collagen interspersed with semi-flexible polyelectrolyte, hyaluronic acid (HA).  Certain 

pathological conditions necessitate its removal and replacement.  Current vitreous substitutes, 

such as silicone oils and perfluorocarbons, are hydrophobic, do not resemble the properties of the 

vitreous, and have known complications.  An ideal vitreous substitute should have properties of 

the natural vitreous, perform its functions, and be biocompatible in the eye.  Inspired by the 

structure and composition of the natural vitreous, we used bio-mimicry to develop an injectable 

two-component hydrogel.  The hydrogel is composed of a fibrillary gellan, an analogue of 

collagen, and a semi-flexible polyelectrolyte poly[methacrylamide-co-(methacrylic acid)], an 

analogue of hyaluronic acid, both endowed with thiol cross-linkers for reversible covalent 

linkage.  The gellan, in the polymeric mixture, undergoes coil-helix transition near physiological 

temperature, enabling instantaneous in situ physical gelation of the solution.  The thiol cross-

linkers that later oxidize to disulfides under physiological conditions, make the hydrogel non-

absorbable, non-degradable, and reversible, for facile removal if needed. 

We used response surface methodology to investigate the structure-property relationships 

of eleven two-component hydrogels, and identified two hydrogel formulations that match the 



xvi 
 

primary properties of the vitreous.  We determined how each component of the hydrogel affects 

their optical, mechanical, sol-gel transition temperature, and osmotic swelling properties.  All the 

hydrogels were transparent to visible light, with density and refractive indexes nearly equivalent 

to those of the natural vitreous.  The shear storage moduli of the hydrogels, at 1Hz, ranged from 

3 to 358 Pa, and the sol-gel transition temperatures, from 35.5 to 43 °C.  In addition, as expected, 

all the hydrogels swelled in physiological solutions.  Interestingly, we discovered that the 

relatively large swelling capacity of the semi-flexible ionic copolymer was significantly 

restricted by the minimally swellable fibrillary gellan network.  The tightly swollen gel of two 

dissimilar networks produced Donnan osmotic swelling pressure in physiological solutions, 

which is also the driving force for re-attachment of the retina.  Insights from the biomimetic 

nature of the gel, led us to propose that the natural vitreous also exhibits controlled swelling, 

where ionic HA’s swelling capacity is restricted by fibrillary collagen.  The Donnan swelling 

pressure produced by the tightly swollen vitreous gel maintains the delicate internal structure of 

the eye, and perhaps plays a critical role during the ocular development. 

We evaluated the biocompatibility of the two optimized formulations of the hydrogels on 

different cell lines, and in rabbits.  Both hydrogels were found to be biocompatible on primary 

porcine retinal pigment epithelial cells, human retinal pigment epithelial cells, and fibroblast 

(3T3/NIH) cells, by electric cell-substrate impedance sensing system.  Furthermore, the 

hydrogels did not impair tight junction formation or affect proliferation of the cells.  The 

hydrogels were also non-degradable in enzymatic solutions and in contact with ocular cell line 

for four weeks.  Judged against silicone oil, a clinically-accepted vitreous replacement, both 

hydrogel formulations were biocompatible in rabbits for 30 days.  Both hydrogels maintained 

optical clarity, physiological intra-ocular pressure, and intact retinal layers that displayed normal 
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electroretinographs.  In two cases of the iatrogenic retinal tear, the hydrogels reattached the 

retina by producing osmotic swelling pressure.  The hydrogels also maintained the low oxygen 

environment, compared to silicone oil, in the rabbit’s vitreous cavity for 30 days post-surgery. 

In conclusion, the two hydrogels reattach the retina via a unique mechanism of osmotic 

swelling pressure.  They overcome the limitations of silicone oil with comparable in-vivo 

biocompatibility, and merit further evaluations as an artificial vitreous.  In addition, the ability to 

control the mechanical and swelling properties of the two-component hydrogels over a wide 

range suggests their utility as biomimetic replacements of other soft tissues, such as cornea, 

nucleus pulposus, and cartilage. 
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Chapter 1: Introduction 
1.1 Vitreous humor 

1.1.1 Structural Macromolecules and their Bio-Synthesis 

Vitreous humor is a clear, jelly-like structure in the posterior segment of the eye that 

occupies two-thirds of the human eye (by volume) [1].  It is firmly attached to the surrounding 

tissues at the pars plana of the ciliary body and at the peripheral retina, the vitreous base, the 

macula, and the optic nerve disc.  It is transparent to visual light, has a refractive index (RI) 

between 1.3345-1.3348, and a density between 1.0053-1.0089.  It allows circulation of metabolic 

solutes and nutrients throughout the eye.  It is a virtually acellular, highly hydrated extracellular 

gel matrix primarily composed of water, both bound and free water, with less than 1% (w) of 

collagen fibrils and polymer chains of glycosaminoglycan (GAG) ‒ hyaluronic acid (HA).  Other 

vitreal proteins include fibrillin, chondroitin sulfate, versican, tenascin, and serum proteins, such 

as albumin, fibronectin and transferrin [2, 3].  

 
Figure 1.1: Anatomy of the human eye. Vitreous is a transparent material that fills the posterior segment of 
the eye. (Figure reproduced from Bishop et al. [3]) 
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Collagen is the major structural protein essential for the shape, strength, and resistance to 

the swelling forces induced by the HA polymeric chains.  Collagen fibrils are heterotypic in 

nature and are made of types II, V/XI, and IX (Figure 1.2).   

 
Figure 1.2: Schematic diagram of rigid-rod like collagen fibrils.  The collagen molecules of types II, V/XI and 
IX may co-assemble into heterotypic collagen fibrils.  (Scheme reproduced from Sebag et al. [4]) 

Type II is the predominant collagen type in the vitreous humor, constituting about 75% of 

the total collagen [5].  It is a member of the fibril-forming group of collagens, where type-II 

molecules form a triple helix structure with other collagen types.  They are synthesized in the 

ciliary body. Type V/XI collagen constitute ≈ 10% of the collagen in the vitreous, with roles in 

nucleating collagen fibril formation and regulating collagen fibril diameter [6].  Type IX 

collagen is not a fibril-forming collagen; however is found on the surface of collagen fibrils.  

They bind with the chondroitin sulfate and are considered as proteoglycan molecules [5].  Type 

IX collagen molecules predominantly originate from the non-pigment ciliary epithelium of the 

ciliary body.  The total collagen concentration in the vitreous gel is estimated to be ≈ 286 μg/mL 

[1].  They are not uniformly distributed throughout the vitreous gel; highest concentration is near 

vitreous base and vitreous cortex, and lowest near central vitreous.  Halfter et al. [2] showed that 

the rate of synthesis of structural vitreal proteins, such as collagen II and IV and laminin, in 
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humans and chick were abundant during embryogenesis and becomes barely detectable upon 

reaching adulthood.  The down-regulation of vitreal protein synthesis occurs during early 

postnatal life, and is from then-on maintained throughout life with minimum turnover.  

The proteoglycans (PG) are glycosylated proteins covalently bonded to the negatively 

charged glycosaminoglycan (GAG), a long un-branched highly polar polysaccharides that are 

water attracting and flexible around their ether bonds.  Hyaluronic acid is the major GAG in the 

vitreous, critical for providing swelling pressure that inflates the gel and spaces the structural 

proteins [7].  They are non-sulfated and are synthesized on the cytoplasmic surface of the plasma 

membrane.  The concentration of HA in the adult human vitreous is between ≈ 240 μg/mL and 

constitutes nearly 90% of the uronic acid-containing macromolecules in the eye [1, 8].  Major 

proportion occurs as high molecular weight polymer chains with molecular weight greater than 

1000 kDa (average 2-4 million), and possesses viscoelastic properties [8].  The electrostatic 

interactions between the ionic side groups of the HA chains and the small mobile ions in the 

tissues, contribute significantly to the structural and functional organization of the vitreous.  

Similar to the collagen fibrils, HA are also non-uniformly distributed with highest concentration 

near the posterior vitreous cortex.  Other PG of the vitreous includes chondroitin sulfate, 

versican, and collagen IX.  The collagen IX and chondroitin sulfate molecules are thought to 

play a central role in maintaining the spacing between the collagen fibrils. 

1.1.2 Functions and Properties  

The complementary properties of the composite networks of the vitreous ‒ rigid scaffolds 

of collagen and semi-flexible polyelectrolyte HA ‒ are thought to play a central role in various 

functions of the vitreous.  Important functions include maintaining optical transparency [9], 

acting as a viscoelastic damper that protects surrounding ocular tissues from sudden mechanical 
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impact [10, 11], supporting the growth of the eye [12], and mediating nutrient and oxygen 

transport [13-15].  In the vitreous, the specific organization of the bio-polymers (Collagen and 

HA) acts as a molecular sieve and limits the space for large molecules.  Also, the exclusion of 

proteins and cells helps in maintaining transparency [1, 3].   

The interaction between collagen and HA in the vitreous makes it a visco-elastic 

hydrogel [10] that acts as a shock absorber and dampens the intra-ocular motions and vibrations.  

Rheological characterizations on the vitreous revealed that the vitreous behaves as a viscoelastic 

solid under physiological frequencies.  At these frequencies, the storage modulus (elastic 

component, G') is greater than the loss modulus (viscous component, G").  Various research 

groups have investigated the mechanical properties of vitreous in different species of organisms, 

such as porcine, bovine, and human vitreous.  Different rheological methods have been 

employed to measure the visco-elastic properties of native vitreous.  The different techniques 

include inserting compression chucks with dynamic viscoelastometer into the vitreous 

cavity[16], light scattering [17], torsional pendulum [18], magnetic microrheometer [10, 19, 20], 

shear rheometry [21, 22], capillary rheometry [23], and cavitation rheometry [24].  The elastic 

shear modulus of the vitreous measured using these techniques have been summarized by 

Swindle et al [25] as shown in the Figure 1.3.  
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Figure 1.3: Elastic modulus of vitreous determined by various investigators (Figure reproduced from Swindle 
et al. [25]). 

A few important conclusions that I would like to emphasize from these studies are the 

following:  First, vitreous is a heterogeneous visco-elastic gel with collagen fibrils contributing 

to the elasticity, and HA to that of the viscosity of the material [16, 26].  Second, the 

combination of collagen and hyaluronic acid in the vitreous creates an interpenetrating mesh, 

which gets destroyed upon removal from the eye.  This consequently results in a noticeable 

decrease in modulus of the vitreous over time outside the eye.  Hence, the vitreous moduli are 

even higher when measured in vivo than the ex vivo [21, 22].  For instance, the storage modulus 

of the porcine vitreous is 10 ± 1.9 Pa and loss modulus is 3.9 ± 0.8 Pa, when measured outside 

the vitreous cavity.  Similarly, G' is 32 ± 12 Pa and G" is 7± 2 Pa when measured outside the 
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bovine vitreous cavity.  Zimberlin et al. [24] measured the storage modulus of bovine vitreous, 

via cavitation rheometry, in vivo, without disturbing the architecture of the vitreous.  They found 

the G' to be approximately 120 Pa, which was way higher than those measured outside the 

cavity.  The change in architecture of the vitreous when removed from its cavity suggests 

expecting a higher value in vivo.  Finally, of the various animals, the mechanical properties of 

the human vitreous are similar to those of the porcine vitreous.  Furthermore, the human vitreous 

most closely resembles that of the central region of the porcine vitreous, indicating that the 

porcine vitreous would serve as a suitable animal model for the human vitreous humor [10, 19, 

20].   

Another important, yet little-studied, is the role of the vitreous in generating osmotic 

swelling pressure.  Experimental techniques to predict the swelling pressure lack due to the 

fragile biopolymer network of the native vitreous.  Nickerson et al. [27] measured the rheological 

properties and the mass of porcine vitreous and noticed that both reduced with time when 

removed from the eye.  Consequently, they hypothesized collagen as a stretched web of ropes 

that resists undulating due to loss of entropy.  The HA was trapped between the web of collagen 

fibrils and the hydrostatic force exerted by the swelling HA approaches equilibrium against the 

tension from the collagen fibrils (Figure 1.4).  This swelling induces an internal tension in the 

vitreous.  Upon removal from the eye, the entropically favored reduction in collagen fibril’s end-

to-end length drives the HA out of network.   
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Figure 1.4: The anatomy of the vitreous as hypothesized by Nickerson et al. [27] 

Halfter et al. [28] disrupted the vitreous body and the inner limiting membrane of chick 

embryos with collagenase, and observed an enlargement (predominantly axial) in the eye size.  

They also speculated that during scleral development, the cortical vitreous body and the inner 

limiting membrane of the retina, which are rich in collagen, provided the mechanical strength to 

withstand the pressure emanating from the core or the central vitreous that is relatively rich in 

hyaluronic acid.  The ionic HA forms a highly swellable network that may have increased the 

weight of the vitreous body, and have caused the expansion of the eye orbit.  From both these 

studies, it is conclusive that the vitreous may be capable of generating an osmotic swelling 

pressure, which may support the retina in its position and serve as a mechanical stimulus for 

growth of the eye during development. 

The vitreous gel, by virtue of its large size and central location within the eye, is also 

assumed to be important in regulating intraocular oxygen tension.  Distribution of oxygen is 

critical in the pathogenesis of various ocular diseases [29].  For instance, retinal hypoxia may 

contribute to diabetic retinopathy and other retinal ischemic diseases [30], while increased 
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exposure of oxygen near lens may contribute to nuclear sclerotic cataract [31].  Vitreous 

maintains an oxygen gradient to prevent the occurrence of above mentioned ocular diseases.   

 

Figure 1.5: Computational model of oxygen gradient in the posterior human eye. (Figure reproduced from 
Filas et al. [32]) 

Shui et al. [33] determined that the oxygen level in the rabbit vitreous decreases from the 

posterior side of vitreous near retina (31 mm Hg in the eyes of rabbit breathing 20% oxygen at 

respiration rate) towards the anterior side of vitreous near lens (6 mm Hg) (Figure 1.5).  In a 

healthy normal eye, the core of vitreous is under hypoxic conditions where the intra-ocular 

oxygen tension is 7.1 + 0.5 mmHg [31].  The oxygen from the retinal vessels is consumed by the 

retinal epithelial cells and retinal cell layers.  The vitreous gel is critical in preventing the 

diffusion of oxygen towards lens.  Recent investigations on the oxygen tension, and the role of 

vitreous gel in metabolizing oxygen through an ascorbate-dependent manner, led to a new 

understanding of the vitreous gel [13, 34].  Filas et al. [32] determined that the vitreous gel 

possesses high concentration of ascorbate of approximately 2mM.  A consecutive series of 

undiluted human vitreous gel samples from 62 eyes were measured for oxygen consumption with 

a micro-respirometer.  They observed that ascorbate in pure water does not consume oxygen; 

however, ascorbate in the vitreous has the ability to consume oxygen.  The molecular oxygen in 
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the vitreous reacts with ascorbate in the presence of an unknown catalyst found exclusively in 

the vitreous gel to form dehydroascorbate, water and half the initial amount of oxygen.  Through 

this mechanism, the ascorbate level is depleted, and the oxygen is consumed, thereby 

maintaining the oxygen gradient.  Although the mechanism is interesting, there are several 

observations that are not explained by the above mechanism.  For example, how ascorbate is 

being replenished in the vitreous cavity, and the role of hyalocytes in oxygen consumption 

within the vitreous cavity, before and post-vitrectomy, is not yet elucidated.  Additionally, when 

guinea pig lenses are placed in hyperbaric oxygen, they begin to form nuclear cataracts only 

when the glutathione levels are markedly decreased in the lens and not on the level of oxygen.  

Thus, it appears that the complications may be due to imbalances in redox buffer capacity that is 

ostensibly associated to only oxygen.  Clearly further research is indicted to resolve the 

pathophysiology of post-vitrectomy ocular complications. 

1.1.3 Pathology and Pathophysiology 

The functions and properties of the vitreous are perturbed, because of aging, and 

pathological process, resulting in various vision-threatening ocular conditions.  The changes in 

the vitreous network structure, composition, and the interaction between its structural 

macromolecules are presumed to cause the perturbation in its functions and properties.  With 

aging (after 40 years), the gel volume of the vitreous drastically decreases with a concomitant 

increase in the liquid volume, resulting in an ocular disease called vitreous liquefaction [12].  

Liquefaction causes derangement of the normal association between collagen and HA that results 

in aggregation of collagen fibrils into bundles of parallel fibrils known as ‘floaters’, and 

formation of pockets of liquid vitreous called 'lacunae'.  Liquefaction of gel structure can cause 

degeneration or detachment of the vitreous and is associated with a number of vision-threatening 
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phenomena such as vitreous hemorrhage, macular hole, and detached retina.  Also with vitreous 

liquefaction, the oxygen from the retinal vessels can be carried away from the retina and 

distributed throughout the eyes with eye movements, thereby causing nuclear cataract in lenses 

that have redox levels below threshold [35]. 

1.2 Vitrectomy and Vitreous Substitutes 

In the past four decades, vitrectomy, the removal of vitreous humor of the eye, has 

become an important treatment option for various ocular diseases, such as diabetic vitreous 

hemorrhage, retinal tear and detachment, uveitis, and ocular trauma involving the vitreous [36].  

Vitreous replacements are an essential component of all vitrectomy surgery. Air, balanced salt 

solutions, perfluorocarbons (PFC), expansile gases, and silicone oils are used as replacements for 

the vitreous based on the clinical need [37, 38].  Expansile PFC gases are used as short-term 

substitutes for post-operative endo-tamponade and PFC liquids as intra-surgery tool to 

temporarily flatten the retina, which are exchanged for long-term substitutes.  Silicone oil is 

clinically accepted for short- or long-term tamponade (pushing force against retina) to treat 

complex or refractory retinal detachments.  Generally, the substitutes perform well; however, the 

current vitreous substitutes have several shortcomings, and cause significant patient burden.  For 

instance, when gases are used to seal retinal breaks, the patient is often positioned face down for 

days or weeks to keep the injected gas bubble against any retinal break.  Other limitations 

include expansion of gases at high altitudes, the toxic nature of PFCs over an extended period, 

elevated intraocular pressure, and lipophilic nature, emulsification and post-vitrectomic 

complications, particularly with the use of silicone oils [39-41].  Silicone oils, although clinically 

accepted as a long term substitute, are hydrophobic and have poor contact with fluids.  They 
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have a high refractive index, inhibit total filling of the cavity and must be surgically removed at a 

later date due to the risk of developing cataracts, glaucoma, band keratopathy and corneal 

decompensation [41].  In addition, current vitreous substitutes that work by surface tension and 

pneumatic pressure provide no insight into the physiology of the vitreous.  Hence, there is a need 

for long-term vitreous substitute that has fewer complications and is more similar to the native 

vitreous.  Our approach is to develop an in situ-forming hydrogel substitute that is developed 

from the first principles of structure and function of the vitreous.  In doing so, it enables us to 

gain more insight into the structure and physiology of the native vitreous.  Furthermore, such a 

biomimetic gel will expand our knowledge and provide insights on the role of the vitreous 

structure and its relation to its properties. 

1.2.1 Polymeric Hydrogels as Potential Vitreous Substitutes 

Ideal vitreous substitutes are easily implantable materials that mimic the structure and 

functions of the native vitreous, and are biocompatible with the surrounding tissues.  Active 

research is now focused on developing vitreous substitutes using natural and synthetic water-

swellable polymers [42-47] that mimics the physical and mechanical properties of native 

vitreous.  Various polymers have been proposed as vitreous substitutes, including collagen [48], 

hyaluronic acid [49, 50]; poly (1-vinyl-2-pyrrolidinone) (PVP) [51], polyvinylalcohol (PVA) 

[52, 53], and polyacrylamide (PAM) [54-56].  Baino [57], Kleinberg et al. [58], and Su et al. [59] 

have extensively reviewed the use of hydrogels, cross-linked water-soluble polymers, as 

promising vitreous substitutes.   

In the past, progress in the use of the hydrogels has been stymied by shear-degrading of 

the pre-formed gels during injection [48, 60].  To overcome the problem, in situ-

forming/injectable hydrogels have been successfully developed [45, 46, 61-64].  An in situ-
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forming hydrogel has several substantial benefits, other than the physical and optical properties 

similar to the native vitreous.  It can be easily injected into the vitreous cavity as a solution 

without any modification of the current vitrectomy procedure.  It does not shear degrade during 

the injection, a process which can cause fragmentation of the pre-formed gel and introduces free 

radicals into the cavity.  The mechanical properties and the network architecture of in situ-

forming gels are unformed prior to injection and therefore remain consistent.  The in situ-

forming gels could also serve as depots for intra-vitreal drug delivery [65]. 

Various investigators have explored injectable hydrogels as vitreous substitutes.   For 

example, Magnani et al. [52, 53] investigated the applicability of poly(vinyl alcohol) (PVA) 

hydrogels with a trisodiumtrimetaphosphate (STMP) cross-linker as vitreous replacements.  

They demonstrated that the hydrogel exhibited thixotropic behavior and was injectable.  The 

rheological analysis revealed that one of the hydrogels (PVA:STMP 8:1) behave similar to that 

of the human vitreous.  Though their light transmittance, water content measurements, diffusion 

coefficient, and in vitro cytotoxicity confirm the applicability of the hydrogel as vitreous 

substitute, further studies are needed to measure their retention time, in vivo mechanical 

properties, in vivo cytotoxicity, and their ability to reattach the retina. 

Annaka [66] has developed an in situ-forming vitreous substitute hydrogel based on 

poly(ethylene glycol) (PEG) end-capped with an octadecyl groups (E10KDC18).  In this 

hydrogel, flower micelles act as junctions that provide the elastic modulus.  The hydrogel was 

tested in rabbits, and was found to be non-toxic by monitoring postoperative intraocular pressure 

(IOP) and by histopathologic examination of retinal layers.  The moduli for the E10KDC18 

hydrogel were approximately three orders magnitude higher than the porcine modulus values, 

and refractive index values were also higher than that of the native vitreous.  Although the 



13 
 

material has the potential to match the rigidity of the vitreous by varying the concentration of the 

octadecyl groups and/or the molecular weight of PEG, further experiments are needed to confirm 

their applicability. 

Barth et al. [67] investigated the use of a crosslinked sodium hyaluronic acid 

(HealaflowTM) as a vitreous substitute.  The hydrogel was optically clear, maintained its viscosity 

and were biocompatible in rabbit eyes, without affecting the retinal morphology or functionality.  

Although they look promising, the hydrogels slightly raised the intra-ocular pressure and had a 

short-residence time in vivo, restricting its long-term usage.   

Hayashi et al. [68] synthesized a hydrogel with polymeric clusters of thiol and maleimide 

reactive tetra-armed poly(ethylene glycol).  Formulations of this hydrogel with low (7.0 mg/mL) 

polymer concentrations gelled in situ within 10.0 minutes.  They were found to be biocompatible 

in rabbit eyes and to produce low swelling pressure for retinal tamponade.   

 

Figure 1.6: In situ-forming polyacrylamide based hydrogels with reversible thiol crosslinking system.  The 
hydrogel with S-S linkages, developed through free radical polymerization of monomers, were reduced back to –SH 
groups.  The reduced polymeric solution was injected into the vitreous cavity, which re-establishes the S-S linkages, 
forming a stable hydrogel. (Figure reproduced from Swindle et al. [55, 56].  

Our laboratory has previously developed an in situ-forming polyacrylamide hydrogel 

using reversible disulfide cross-linker [55, 56].  The disulfide bond established between polymer 

chains can be reduced to thiol groups by dithiotheritol (DTT) (Figure 1.6).  The reduced 
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polymeric solution re-gels to form a hydrogel upon consumption of oxygen in the vitreous 

cavity.  The formation of disulfide cross-links establishes a stable hydrogel network that does not 

degrade easily and holds potential as a long-term vitreous substitute.  Additionally, the 

reversibility potentially eliminates the need for a second vitrectomy in case the hydrogel needs to 

be removed.  However, the polyacrylamide takes days to gel and becomes cloudy with time.  To 

overcome these issues, our lab investigated and found the derivatives of polymethacrylamide that 

remains clear for months.  Liang et al. [69], then synthesized the injectable hydrogel composed 

of copolymers of poly[methacrylamide-co-(methacrylic acid)] with thiol cross-linkers.  The 

hydrogels were optically clear and transparent, with densities, refractive indexes and rheology 

similar to the vitreous, and were noted to be biocompatible in vitro.  However, the hydrogels had 

long (3 days) duration of gelation. 

Although polymeric hydrogels seem to be promising materials for long-term vitreous 

replacement, none have advanced sufficiently to reach clinical application.  This is mainly 

because of their long-term toxicity, short residence time, degradation, or fragmentation ‒ 

changes in viscoelastic properties and resiliency after injection through a small-gauge needle.   

As an alternative to polymeric hydrogels, Gao et al. [70, 71] developed a novel artificial 

foldable capsular vitreous body (FCVB) to replace the native vitreous.  The capsular material is 

made of silicone rubber, which is filled the capsule with different materials, such as saline or 

silicone oil [72], PVA hydrogel [73], and PEG sol [74]. The FCVB had optical, mechanical, and 

biocompatible properties similar to that of the native vitreous. This material is also undergoing 

clinical trials for its use as vitreous substitute.  Although FCVB meets major functions of the 

native vitreous, it is not physiological and does not maintain the oxygen gradient within the 

vitreous cavity. 
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In summary, polymeric hydrogels and foldable capsular vitreous body achieved varying 

degrees of vitreous biomimicry. However, they do not meet all the essential functions of the 

native vitreous.  Furthermore, the hydrogels provided only an incomplete understanding of the 

macromolecular structure and functions of the native vitreous, because they were all single 

component hydrogels that were analogous to the HA of the native vitreous, and lacked a 

fibrillary component analogous to the collagen fibrils.  These observations prompted the 

investigation that is the subject of this dissertation. In the following section, I outline the research 

objectives. 

1.3 Research Objectives  

Ideal vitreous substitutes are easily implantable materials that mimic the structure and the 

properties of the native vitreous, perform its essential physiological functions, are biocompatible 

with the surrounding tissues, and are permanent.  Our laboratory is steeped in vitreous related 

research and believes that a hydrogel that includes both a fibrillary and a semi-flexible 

component would be a truer biomimetic of the native vitreous, because of two main reasons:  

First, they would meet the essential requirements of an ideal vitreous substitute.  Second, 

understanding the interplay of these two components would provide greater insights into the 

physiology and pathophysiology of the native vitreous. 

Therefore, in this dissertation, my objectives, as a productive team member, are the following:  

a) To understand the complex anatomy and physiology of eye. 

b) To investigate the structure-property relationships of the two-component (rigid and 

flexible) hydrogel proposed by Dr. Ravi, and formulate the hydrogel that mimics the 

properties and functions of the native vitreous. 
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c) To investigate the osmotic and oxygen diffusive properties bio-mimetic hydrogel, 

because they are critical for reducing post-vitrectomy complications. 

d) To evaluate the biocompatibility (in vitro and in vivo) of the hydrogel, in collaboration 

with the research members of our laboratory. 

The two-component bio-mimetic hydrogel will consist of thiol derivatives of a fibrillary 

biopolymer and a semi-flexible polyelectrolyte.  The fibrillary component is a biopolymer ‒ 

gellan, and the semi-flexible component is poly[methacrylamide-co-(methacrylic acid)] based 

polyelectrolyte.  The rigid component of our hydrogel, gellan, is a bio-polysaccharide, which 

undergoes sol-gel transition at a certain temperature and forms a physical gel almost 

instantaneously.  This transition also occurs in the presence of mono/divalent cations.  It is a 

stiff-biopolymer that has helical conformation below its transition temperature and swells 

minimally, analogous to collagen.  Also, it is used in ophthalmic applications [43, 75].  On the 

other hand, the poly[methacrylamide-co-(methacrylic acid)] is a semi-flexible, ionic 

polyelectrolyte, which allows for variation in the swelling (osmotic pressure) and gelling 

properties of the hydrogels [76], analogous to HA at a mesoscopic level.  Thiol groups will be 

endowed to both the polymer for safe and easy injection into the vitreous cavity, within which it 

will form an in situ hydrogel that is capable of generating osmotic pressure to reattach the retina.   

Our central hypothesis is that the two-component composite hydrogel will (1) mimic 

the macroscopic-structure of native vitreous and exhibit optical, physical, rheological, and 

biocompatibility similar to those of the native vitreous, (2) and most importantly, generate 

osmotic pressure to reattach the retina. 

As mentioned before, human vitreous has a density of 1.0053-1.0089 g/cm3 and a 

refractive index (RI) of 1.3345-1.3348 unlike the current vitreous substitute, silicone oil, with a 
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density of 0.96 g/cm3 and a refractive index of 1.404.  It is transparent, and transmits more than 

90% of visible light through it.  Native vitreous is a viscoelastic solid with storage moduli higher 

than 10 Pa, and oxygen tension between 7-9 mmHg.  The osmotic swelling pressure produced by 

the native vitreous within the vitreous cavity is not yet elucidated. 

The central hypothesis was tested and addressed in three chapters as described below:  

Chapter 2 discusses the polymer synthetic methodology for each component of the two-

component hydrogel, followed by their characterizations, such as the degree of thiolation, their 

molecular weight distribution, structure, and composition.  This chapter also briefly introduces 

the development of the two-component hydrogel.   

Chapter 3 elaborates on the development of eleven two-component hydrogel formulations 

and discusses the effect of each component on their optical, physical, rheological, swelling, and 

sol-gel transition temperature properties.  Two hydrogel formulations that most closely matched 

the properties of the native vitreous was then formulated and evaluated for the osmotic swelling 

pressure produced by them, and the oxygen transport through them.  

Chapter 4 describes the investigations on the biocompatibility of the two optimized 

formulations of the hydrogel in contact with established ocular and fibroblast cells, and in 

approved rabbit models for one month.  Furthermore, we also evaluated the resistance of these 

gels to degradation in enzymatic solutions and in the presence of ocular epithelial cells.  

Chapter 5 summarizes the important conclusions of this entire work.  Appendix A 

elaborates the development of the experimental response surface design, and Appendix B 

describes the optimization of the thiolation mechanism for the hyaluronic acid polymer to obtain 

the desired degree of thiolation.  The insights gained from the thiolation mechanism were useful 

to synthesize the gellan component of the two-component hydrogel. 



18 
 

Chapter 2: Synthesis of the Two-Component 
Hydrogels 

The vitreous is a meshwork of rigid rod-like collagen fibrils interspersed with flexible hyaluronic 

acid polymer chains.  In this work, we reverse-engineered the critical aspects of the natural 

vitreous and developed a two-component bio-mimetic hydrogel.  This chapter describes the 

synthesis and characterizations of each component of the hydrogel: (1) Thiolated gellan, which is 

a fibrillary polysaccharide analogous to collagen, and (2) poly[methacrylamide-co-(methacrylic 

acid)-co-N’,N’-bis(methylacryloyl-cystamine)] (poly(MAM-co-MAA-co-BMAC)), a semi-

flexible polyelectrolyte that is analogous to HA.  The endowed thiol groups in each component 

cross-link with each other and form a permanent in situ-forming hydrogel.  This chapter uses 

materials from References [69], and [77].  

2.1 Materials and Methods 

2.1.1 Materials 

Reagents were purchased from Sigma Aldrich Co. (St Louis, MO) and used as received 

unless otherwise stated.  Methacrylic acid (MAA) (99%) was purchased from Sigma Aldrich Co. 

(St Louis, MO) and vacuum distilled before using. 

2.1.2. Thiolation of Gellan 

A stock aqueous solution of gellan 1.33% (w/v) was prepared by dissolving the required 

quantity of gellan (4 g, 6.2 meq of COOH) in 300 mL of water at 70 °C.  The pH of the gellan 

solution was adjusted to 4.5, and the solution was cooled to 50 °C.  1-Ethyl-3-(3-
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dimethylaminopropyl) carbodiimide (EDC; 0.76 g, 4.0 mmol), N-hydroxysuccinimide (NHS; 

0.26 g, 2.2 mmol), and cystamine dihydrochloride (Cys; 0.70 g, 6.2 mmol) were dissolved in 100 

mL of water, and this solution was added to the gellan solution at 50 °C with stirring.  The 

reaction mixture was continuously stirred and cooled to room temperature in 30 minutes.  The 

mixture formed a gel at room temperature, and was allowed to react for four more hours.  

Thereafter, the reaction was terminated by adjusting the final pH to 8-9.  The excess EDC, NHS, 

and Cys were removed from the reaction mixture by dialysis (Semi-permeable membrane with a 

molecular weight cut off (MWCO) 6000-8000) in de-ionized (DI) H2O (three times).  Then, the 

pH of the mixture was adjusted to 7.5, and the disulfide bonds were reduced with a 5 molar 

excess of Dithiotheritol (DTT) for 3 hours, yielding a solution.  The excess DTT was removed by 

dialysis in N2-bubbled 1 mM hydrochloric acid (HCl) (4 L, six times).  Finally, the samples were 

analyzed for the degree of thiolation of gellan by using the 2-nitro-5-thiosulfobenzonate (NTSB) 

assay [78]. 

2.1.3. Synthesis of poly(MAM-co-MAA-co-BMAC) 

A characteristic procedure for copolymerization of methacrylamide (MAM), MAA, and 

N’,N’-bis(methylacryloyl-cystamine) (BMAC) is provided [69].  MAA was distilled at 45 °C 

under reduced pressure (~10 Torr) to remove the inhibitor and any impurities.  A stock 2, 2′-

Azobis(2-methylpropionitrile)/ Dimethylformamide (AIBN/DMF) solution (20 mg/mL) was 

made with 100 mg of AIBN and 5 mL of DMF.  MAM (2.84 g, 33 mmol), MAA (0.78 g, 9.1 

mmol), and BMAC (0.39 g, 1.35 mmol, and 2.7 meq of vinyl groups) were added to a 20 mL 

glass vial equipped with a magnetic stir bar and were dissolved in 16 mL of DMF.  The solution 

was purged with nitrogen at 22 °C for 20 min to remove the dissolved oxygen.  The stock 

AIBN/DMF solution (0.5 mL, 10 mg) was syringed into the vial, and the mixture was purged 
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with nitrogen for another 20 min at 22 °C.  The reaction was incubated at 60 °C for 18 h.  The 

obtained solid was suspended in 200 mL of DI water.  The suspension was transferred to four 50 

mL centrifuge tubes, and centrifuged at 2500 rpm for 10 min.  The supernatant was decanted.  

This procedure was repeated three times to remove the DMF, and the DMF-free solid polymer 

was re-suspended in 200 mL of DI water. 

 A 1 N sodium hydroxide (NaOH) solution was added to the suspension to adjust the pH 

to ~7.75, yielding a viscous mixture.  A 10-molar excess of DTT (0.69 g, 4.5 mmol) was added 

to reduce the disulfide bonds.  The mixture was stirred at 22 °C for 18 h, and the suspension 

became clear and less viscous.  An aliquot diluted to ≈ 2 mg/mL for gel permeation 

chromatography (GPC) characterization.  

 A 1 N HCl solution (20 mL) was then added to adjust the pH to ≈ 3.  A white solid 

precipitated and was separated via centrifuge (4000 rpm, 6 min).  The product was washed four 

times with nitrogen-purged 1 mM HCl aqueous solution, followed by washing with a 1 mM 

HCl/ethanol solution.  The copolymer was washed with nitrogen-purged 1 mM HCl aqueous 

solution again, and then lyophilized, yielding a white solid. 

2.1.4 Characterizations of the Polymers 

2-nitro-5-thiosulfobenzonate (NTSB) assay  

The total disulfide content of the derivatized polymer, before and after reducing it with 

DTT, was determined, using the 2-nitro-5-thiosulfobenzonate (NTSB) assay [78].  Briefly, Cys 

standards, with concentrations from 0.05 to 1.5 mM, were prepared using a 10 mM Cys stock by 

serial dilution, using N2-bubbled DI water.  About 900 µL of NTSB solution, prepared as 

described in the literature [78], was added to 100 µL of the sample and the standards.  Because 
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the reactions are photo-activated, assay samples were incubated in the dark for 15 minutes, and 

their absorbance was read with a spectrophotometer at 412 nm. 

Ellman’s reaction 

The amount of thiol content was determined spectrophotometrically, using Ellman’s 

reaction [79].  Briefly, 10 mg of each lyophilized sample was dissolved in 2 mL of N2-bubbled 

water.  About 500 µL of 0.1 M phosphate buffer (pH 8), 400 µL of water, and 50 µL of Ellman’s 

reagent were added to 100 µL of the sample.  Samples were incubated for 15 min at room 

temperature, and their absorbance was measured at 412 nm in a spectrophotometer.  Thiol 

content was calculated by this equation: 

−𝐒𝐒 (𝐦𝐦𝐦𝐦𝐦)
𝐠 𝐨𝐨 𝐩𝐩𝐩𝐩𝐩𝐩𝐩

=  � 𝐀𝐀
𝟏𝟏,𝟔𝟔𝟔

� × � 𝐕𝐭𝐭𝐭𝐭𝐭
𝐕𝐬𝐬𝐬𝐬𝐬𝐬

� × � 𝟏
𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐜𝐜𝐜𝐜

�,     [Equation 1] 

where Ab is the absorbance, Vtotal is the total volume, Vsample is the sample volume, and 13,600 is 

the extinction coefficient.  The concentration of the polymer (polymer conc) is in mg/mL. 

1H NMR spectroscopy 

The polymer thiol contents and their purities were characterized using 1H NMR 

spectroscopy on a Varian Unity Inova 500 (Palo Alto, CA).  Polymer samples were dissolved in 

D2O (8 mg/mL) with NaOD (20 μmol).  NaOD was used to enhance the solubility of the 

polymers in D2O.  Each sample was scanned for 128 times at 25 ̊C. 

Gel permeation chromatography (GPC) 

The molecular weight of the reduced poly(MAM-co-MAA-co-BMAC) was determined 

using GPC.  The GPC system employed a VE 1122 pump with a VE 7510 degasser 

(Viscotek/Malvern, Houston, TX, USA) that was equipped with a TDA302 triple detector system 

that measured the refractive index (RI), multi-angle laser light scattering, and viscosity.  The 

column used was a G5000PWXL (Tosoh Biosep, Montgomeryville, PA, USA).  Viscotek 
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Omnisec software was used to calculate the RI area, weight-averaged molecular weight, intrinsic 

viscosity, and hydrodynamic radius.  Samples (100 µL) were injected at a concentration of 2 

mg/mL.  The column buffer (pH 7.6) contained 20 mM of sodium phosphate, and the flow rate 

was 0.8 mL/min.  The measurements were conducted at 37 °C. 

2.2 Results and Discussion 

2.2.1 Thiolation and Characterization of Gellan 

Deacylated gellan gum is an anionic high molecular weight polysaccharide that has the 

repeat units of a tetra-saccharide (D-glucose, D-glucuronic acid, and L-rhamnose in a molar ratio 

of 2:1:1) [80].  Gellan undergoes a rapid phase change from a random-coil to a double-helix 

structure when cooled below their sol-gel transition temperature or in the presence of 

mono/divalent cations.  The mechanism of gelation involves the formation of double helical 

junction zones followed by aggregation of the double-helical segments.  Furthermore, 

complexation with cations and hydrogen bonding with water results in a 3-D rigid-rod-like 

fibrillar network [80, 81].  It is biocompatible and used in the food industry and ophthalmic 

medications (Timpotic XE) as a thickener, and in tissue engineering applications [82-84].  Du et 

al. [85] from our laboratory have chemically modified the gellan chains and endowed them with 

thiol group via carbodiimide chemistry.  The thiol group air oxidized to form disulfide linkages, 

and hence a stable chemical cross-linked hydrogel.  They demonstrated that the chemical 

modification did not alter the gellan's characteristic 3D conformation, and still had its quick 

physical gelation ability.  The combination of physical and chemical gelation enabled the 

fabrication of injectable gellan hydrogels.  Also, they showed that the sol-gel transition 

temperature decreases with increase in thiol modification.  The thiolated gellan were also 
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biocompatible with retinal pigment epithelial cell lines and were a promising material for tissue 

engineering applications.  

Carbodiimide chemistry is a well-established method for introducing chemical cross-

links in polysaccharides.  For instance, previously hyaluronic acid was thiolated via the 

carbodiimide chemistry.  The effect of various factors, such as temperature, reactant 

concentrations, and pH, on the degree of thiolation of the hydrogel, was analyzed using the 

statistical design of experiments [86]. 

 In this work, the carboxylic moieties of gellan were derivatized, with an amide-

containing thiol group, cystamine dihydrochloride, via carbodiimide crosslinking chemistry 

(Figure 2.1).  Mechanistically, the negatively charged carboxylate group attacks the electron-

deficient diimide carbon atom on the carbodiimide molecule (EDC) to form the activated O-

acylisourea intermediate.  As a result, the carbon atom of the gellan's carboxylate group becomes 

sufficiently electron-deficient to be susceptible to nucleophilic attack by the lone pair of 

electrons on the amine group of the Cys, thereby forming an amide-substituted gellan molecule 

and acylurea.  The O-acylisourea, which is very unstable, is usually stabilized by reacting with 

NHS, but still maintaining it in an active form.  The amide-substituted gellan is reduced to thiol-

substituted gellan (thiolated gellan), by using DTT.  The thiolated gellan is then lyophilized and 

stored at -20 oC.   
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Figure 2.1: Reaction scheme for thiolation of gellan using carbodiimide chemistry. 

Based on our previous studies, the biocompatibility and the sol-gel transition temperature 

of the hydrogel were noted to decrease with the increase in the thiol content.  Therefore, the 

gellan was designed to have 11 mol % of thiolation for this study.  The gellan was chemically 

modified and confirmed to have the thiol content as 11% (mol) of the repeat unit, using NTSB 

and Ellman's assay.  The effect of concentration of thiolated gellan on the sol-gel transition 
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temperature, mechanical properties, and biocompatibility of the two-component hydrogels were 

determined and discussed in chapters 3 and 4.  

2.2.2  Synthesis and Characterizations of poly(MAM-co-MAA-co-BMAC)  

Copolymerization is a promising strategy to synthesize polymeric materials with 

properties that are tunable between those of the respective homopolymers.  In this study, the 

desirable properties of MAM, MAA, and BMAC were combined to make copolymers suitable 

for use as a vitreous substitute.  The MAM repeating units comprise the majority of the 

backbone, and the ionic MAA repeating units help the copolymers to form gels at a lower 

concentration, to increase the swelling ability, and the optical clarity.  BMAC was incorporated 

into the copolymers to introduce pendent thiol groups, which were used as sites for reversible 

crosslinking.  The disulfide bonds were reduced by DTT to generate a linear soluble thiol-

containing copolymer.  This reduced co-polymer, upon oxidation, reforms the original disulfide 

bonds and establishes a chemically crosslinked gel.  The reactions are illustrated in Figure 2.2. 
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Figure 2.2: Copolymerization of MAM, MAA, and BMAC. (Figure reproduced from Liang et al. [69]) 

The molecular weight (Mn) of copolymers ranged from ≈ 100 k to ≈ 200 kDa, and their 

polydispersity indexes ranged from 1.47 to 2.63.  The thiol content of the copolymer was 2% 

(mol), confirmed by NTSB assay, Ellman's assay, and 1HNMR spectra (Figure 2.3).  The effect 

of the MAA ionic component and the BMAC cross-linker in the copolymer and the 
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biocompatibility of the copolymer with various cell lines were studied in detail by my colleague 

Dr. Liang in the Ravi Laboratory.  Liang et al. [87] showed that the poly(MAM-co-MAA-co-

BMAC) with a 2% (mol) thiol cross-linker and a methacrylic acid content of 20% (mol) was a 

semi-flexible polymer, with a Mark-Houwink constant of 1.23.  Furthermore, this copolymer was 

well-tolerated by ARPE-19 cells up to a concentration of 12.5 mg/mL.  Beyond this 

concentration, increasing the mol % of thiol cross-linker was increasingly toxic to the cells.  

 

Figure 2.3: 1HNMR spectra of poly(MAM-co-MAA-co-BMAC) in D2O. 
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2.2.3  Development of Two-Component Hydrogels 

 

Figure 2.4: Schematic representation of our two-component polymer solution injected via syringe into the 
vitreous cavity.  Thiolated gellan in the formulation undergoes phase-transition to form a physically cross-linked 
hydrogel instantaneously upon cooling.  The thiols in the polymeric mixture oxidize to form mixed disulfide 
linkages and establish a chemically crosslinked network. 
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The two-component hydrogels were developed by mixing the polymeric solution of the 

rigid component of our hydrogel, thiolated gellan, and the semi-flexible ionic polyelectrolyte, 

poly(MAM-co-MAA-co-BMAC), at different proportions (Figure 2.4).  The thiolated gellan in 

the polymeric mixture undergoes sol-gel transition at certain temperature, where the random coil 

polymer in the solution phase transforms to helical conformation almost instantaneously, 

forming a physically crosslinked gel.  The physically crosslinked thiolated gellan network traps 

the copolymer, and prevents the diffusion of the polymer chains away from the location.  The 

thiol groups in the physically crosslinked gel then oxidize over time to form a reversible 

chemically crosslinked hydrogel.  The thiol cross-linkers make the hydrogel non-absorbable and 

non-degradable.  They also provide easy injectability of the polymeric solution into the vitreous 

cavity, which is re-crosslinked by air-oxidation to form a gel in situ.  The in situ-formed gel is 

superior when compared with a preformed gel, since the latter would be shear degraded by 

injection through a small gauge needle, and thus lose its elasticity and swelling ability that are 

necessary to hold the retina in place.  Furthermore, the hydrogel can also be easily removed, by 

reducing the disulfide linkages back to thiol when needed.  However, the inherent long-term 

stability and biocompatibility of the hydrogel should eliminate any need for its removal, avoiding 

secondary surgeries. 

The properties of the two-component hydrogels are tunable with the change in 

concentration of each component.  To ascertain the composition of this two-component hydrogel 

that can mimic the properties of natural vitreous, the optical, physical, mechanical, transition 

temperature, osmotic swelling, and biocompatible properties of a series of statistically designed 

(Response surface methodology, RSM) hydrogels (Chapters 3, and 4) were evaluated. 
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2.3 Conclusions 

We have designed a potentially reversible in situ-forming two-component hydrogel that 

mimics the macroscopic composition of the native vitreous.  The components are gellan, an 

analogue of collagen, and poly[methacrylamide-co-(methacrylic acid)], an analogue of 

hyaluronic acid; both endowed with thiol side groups. The degree of thiolation was found to be 

11 % (mol) for gellan and 2 % (mol) for the copolymer.  The thiolated gellan has the ability to 

form physical gel instantaneously upon cooling below its sol-gel transition temperature. The 

physically cross-linked thiolated gellan network traps the copolymer, and prevents the diffusion 

of the polymer chains away from the location.  The thiol groups in the physically cross-linked 

gel then oxidize over time to form a reversible chemically cross-linked hydrogel.  The effect of 

concentration of each component on the network properties of the two-component hydrogels is 

evaluated in the next chapter. 
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Chapter 3: Network Properties of the Two-
Component Hydrogels 

This chapter describes the network properties of the two-component hydrogels.  Response 

surface methodology (RSM) was used to consider seventeen hydrogels, and to determine how 

each component affects their optical, mechanical, sol-gel transition temperature, and osmotic 

swelling properties.  Three hydrogel formulations whose properties most closely matched those 

of the native vitreous were selected for biocompatibility evaluations.  Two of the best performing 

hydrogels were further evaluated for their capacity to produce osmotic pressure, and for oxygen 

transport through them. Part of the work described in the chapter uses materials from reference 

[77]. 

3.1 Materials and Methods 

3.1.1 Materials 

All reagents were purchased from Sigma Aldrich Co. (St Louis, MO) and used as 

received unless otherwise stated.  MAA (99%) was purchased from Sigma Aldrich Co. (St Louis, 

MO) and vacuum distilled before using. 
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3.1.2 Response Surface Method Design  

 

Figure 3.1: Design points used in the D-optimal design of RSM.  The variables ‒ concentrations of thiolated 
gellan and poly(MAM-co-MAA-co-BMAC) ‒ were varied between 0.5 ‒ 1.5 and 5.0 ‒ 15.0 mg/mL respectively.  
The points represent each hydrogel formulation, and the numbers represent the number of replicates at each point. 

To observe the relationship between the variables that govern the experiment and one or 

more responses, we used D-Optimal design of RSM (Design-Expert® software, version 7, Stat-

Ease, Minneapolis, MN) with additional center points and replicates.  The concentrations of 

thiolated gellan and poly(MAM-co-MAA-co-BMAC) were the two variables.  Five different 

concentrations, of each were considered, with two replicates at each vertex of the design space 

and three replicates at the center point.  In all, there were 17 hydrogel samples, with 11 

formulations, as shown in Figure 3.1.  Each formulation was characterized for storage modulus, 

loss modulus, refractive index, optical transmittance, density, sol-gel transition temperature, and 

degree of swelling. 

Using the optimization tool available in the Design-Expert software, we selected three 

hydrogel formulations with refractive indexes between 1.334-1.338, densities between 1.002-
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1.009, an optical transmittance greater than 85% in the visible wavelength, storage moduli 

between 100-200 Pa, and transition temperatures between 38-41°C.  The three optimized 

formulations were used for in vitro biocompatibility studies.  Two of the best performing gels 

were then chosen for further evaluation of the osmotic pressure they produced, oxygen transport 

through them, and their biocompatibility in rabbit eyes. 

3.1.3 Two-Component Hydrogels Preparation 

The thiolated gellan (synthesized as described in chapter 2) was dissolved at 2X the 

concentration of the final formulations (Table 3.1), in nitrogen (N2) bubbled water.  The 

poly(MAM-co-MAA-co-BMAC) (synthesized as described in chapter 2) was dissolved in 2X 

PBS (with 2% (v) Antibiotic/Antimycotic solution) at 2X the concentration of the final 

formulations.  The pH of the solutions was adjusted to 7.5, they were separately heated to 55 °C 

for 15 minutes and finally mixed to investigate the sol-gel transition temperature.  Three mL of 

the two-component polymer solution was immediately cast in a pre-weighed sterile 35-mm dish 

for rheological studies and was injected into a dialysis cassette with a semi-permeable membrane 

having a molecular weight cut off (MWCO) of 10 kDa (Slice-A-Lyzer, Thermo Scientific, 

Rockford, IL) for osmotic swelling studies.  To form the S-S crosslinked two-component 

hydrogel, the two-component polymeric solution with thiol groups was oxidized for a week at 37 

°C in a humidified chamber.  The gelling of the two-component polymer solution was confirmed 

by tilting the dishes at 45° and checking for resistance to flow.  Then, 1X PBS ( - Ca2+, -Mg2+) 

was added to the dishes, and the gels were left at 37 °C for an additional seven days to reach 

equilibrium swelling, defined as when there was no more increase in the weight of the hydrogel. 
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3.1.4 Sol-Gel Transition Temperature Measurements  

The sol-gel transition characteristic of each hydrogel formulation was measured using a 

Vilastic-3 oscillatory tube rheometer (Vilastic Scientific Inc., Austin, TX).  The polymeric 

solution at 55 °C was filled into the oscillatory tube of the rheometer and cooled to 15 °C.  The 

storage moduli of each polymeric solution were measured continuously as it transformed into a 

hydrogel.  This thermal scan was performed at a 5% constant shear strain and 1.0 Hz constant 

frequency.  A 3X molar excess of glutathione was added to the samples during measurement to 

prevent disulfide cross-linking. 

3.1.5 Shear Modulus Measurements 

To determine the shear modulus, frequency scans were performed for the hydrogels at 37 

ºC, using a plate-plate type modular compact rheometer (MCR rheometer; Anton Paar, TX, 

USA).  Before testing, the excess PBS (-Ca2+, -Mg2+) was removed from the swollen hydrogels 

in the 35 mm dishes.  The hydrogels, still in the 35 mm dishes, were cut to 21 mm diameter 

cylinders with a custom-made cutter, and the perimeter material was discarded.  The rheometer 

was initialized for zero height between its plates and then was fully opened.  The dishes 

containing 21 mm diameter hydrogel cylinders were placed on the bottom plate of the rheometer, 

and the top plate was brought into contact with the gel and kept there by a pneumatic positioning 

system.  A small force (0.2 N) was applied to the gel to ensure good contact between the gel-

plate systems (top plate, 20 mm diameter).  For a range of frequencies, from 0.1 to 10 Hz, the 

shear modulus of the hydrogel was measured at a 2% strain and a constant temperature of 37 ºC. 
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3.1.6 Osmotic Swelling Behavior of Hydrogels 

 The osmotic swelling pressure of polymeric hydrogels was determined by the 

macroscopic swelling/de-swelling technique [88-90].  This technique is based on the principle 

that the swelling pressure of a hydrogel becomes equal to the known osmotic pressure exerted by 

the surrounding macromolecular polymer solution at equilibrium.  Three sets of experiments 

were performed to determine the swelling/de-swelling of hydrogels using this technique. 

 In the first experiment, 17 hydrogels of 11 different formulations, designed previously 

using RSM [77], were swollen in a 1X PBS bathing solution and kept in a humidified chamber at 

37 °C until they reached equilibrium.  In the second experiment, the 17 hydrogel samples were 

investigated when immersed in poly (vinylpyrrolidone) (dissolved in 1X PBS) (PVP, 29 kDa) 

[91] solution at 3 kPa osmotic pressure.  In the third experiment, the two optimized hydrogel 

formulations, 0.9G_12CoP and 1.5G_10CoP (n=5 each), were swelled/de-swelled in 

poly(ethylene glycol) solutions (dissolved in 1X PBS) (PEG, 20kDa) [92] at different osmotic 

pressures.  The polymer volume fraction of the gel at equilibrium with the surrounding solution 

was measured and normalized to the initial polymer volume fraction, to obtain the volume ratio 

of polymer injected into the cavity to that of the vitreous removed. 

 In all the experiments, three mL of each polymeric solution at 48 °C was injected into the 

dialysis cassettes with semi-permeable membranes having a molecular weight cut off (MWCO) 

of 10 kDa, gelled, and swelled in 1X PBS at 37 °C till it reached equilibrium.  At equilibrium, 

there was no more change in the weight of the hydrogel.  Each swollen gel was then immersed in 

a macromolecular solution of known osmotic pressure at 25 °C till it reached equilibrium.  The 

dialysis membrane selectively prevented the entry of external polymeric macromolecules into the 

hydrogel. The change in weight of the hydrogels before and after the immersion in external 
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solution was recorded.  The degree of swelling/de-swelling of the hydrogel was normalized to 

the DoS of the initially formed gel, as given in Equation (2): 

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 𝐃𝐃𝐃 =
�𝐖𝐖 −𝐖𝐖

𝐖𝐖 �

�𝐖𝐖 −𝐖𝐖
𝐖𝐖 �

= �
𝐖𝐖 −𝐖𝐖
𝐖𝐖 −𝐖𝐖

� , 

[Equation 2] 

where Ws is the final swollen weight of the hydrogel in equilibrium with the surrounding 

solution, Wd is the dry weight of the hydrogel, and Wi is the initial weight of the fully formed 

hydrogel.  According to Equation (2), hydrogels that neither swell nor de-swell have a value 

equivalent to 1.  Swollen gels have a value > 1, in contrast to de-swollen gels, which have a 

value < 1. 

3.1.7 Optical and Physical Properties of Hydrogels  

Refractive Index 

The refractive indexes of the hydrogel samples were determined at 552 nm in an Abbe 

refractometer (ATAGO Abbe Refractometer NAR-1T, Kirkland, WA) kept at 37 °C. 

Optical Transmittance 

A UV/VIS spectrophotometer (DU800; Beckman Coulter Inc., Brea, CA) was used to 

measure the transmittance of light (280–800 nm) at 25 °C. 

Density 

The mass of 100 µL of the hydrogel at 25 °C was determined.  The mass of 100 µL of water and 

its density at 25 °C were used as references to find the relative density of the hydrogel. 
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3.1.8 Oxygen Transport Studies 

 

Figure 3.2: Experimental set-up of the 1D-diffusion chamber.  (A) Three-chamber diffusion cell. (B) 
Schematic diagram of overall set-up (not drawn to scale).  In a three chamber diffusion cell set-up, the top-chamber 
is filled with a flow of aerated solvent (1X PBS) via the inlet and outlet at 10 mL/min. The mid-chamber is filled 
with the hydrogel sample/controls, and the bottom chamber remains empty.  The top- and the mid-chambers are 
separated by a semi-permeable membrane with a MWCO of 3.5 kDa, whereas the bottom chamber is blocked by an 
aluminum sheet instead of a semi-permeable membrane.  At 10 mm from the top of the mid-chamber, there is a 
1mm hole, through which a 21ԍ 1 ½" needle containing the oxygen measuring probe (OxyLab pO2 E-Series Sensor) 
is inserted. The oxygen probe is connected to a computer interface that records the measured partial pressure data in 
real time.  
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A three-segment diffusion chamber was designed, as shown in Figure 3.2.  Each chamber 

is made of acrylic and measures 14 mm high, 25 mm in outer diameter, and 19 mm in inner 

diameter.  The experimental method is first validated by measuring the diffusion of oxygen in 

water at 23 °C and 38 °C.  Upon confirming the validity of the method, the mid-chamber is filled 

with either 0.9G_12CoP or 1.5G_10CoP hydrogel, or with a control: balanced salt solution 

(BSS), or silicone oil (SO). 

To fill the mid-chamber with hydrogel, first the conical bottom was cut off a 50 mL 

plastic centrifuge tube with its cap attached, forming an upside-down dish.  Then, the dish was 

inverted, the mid-chamber was slide in through the open bottom, and was filled by pipette with 

polymer solution at 50 °C.  The dish and mid-chamber together were placed in a humidified 

chamber, where over the course of ≈ one week, the vitreous substitute oxidized from a physically 

crosslinked gel (-SH) to a chemical crosslinked (S-S) gel.  The mid-chamber containing the 

hydrogel sample was then gently removed from the dish.  To remove free oxygen from the 

hydrogel sample prior to diffusion studies, the gel-filled mid-chamber was placed in a sealed 1X 

PBS bath that was continuously bubbled with nitrogen for at least 2 hours.  After de-oxygenation 

was confirmed by probe measurement, the mid-chamber was removed from the 1X PBS bath, 

and assembled with the other segments just prior to diffusion studies.  For the controls, the 

oxygen was removed directly by purging nitrogen gas through the control solution placed in a 

sealed glass tube (5 mL).  The oxygen-deficient control solution was then injected into the 

assembled mid-chamber (procedure discussed below) via needle slowly, without inducing air 

bubbles. 

The three chambers were assembled as shown in Figure 3.2.  The top-chamber is filled 

with a circulating aerated solvent (1X PBS) via the inlet and outlet. The solvent reservoir was 



39 
 

continuously purged with air, and the oxygen saturated solvent concentration was confirmed by 

probe measurement.  As shown in Figure 3.2A, the top- and the mid-chambers are separated by a 

semi-permeable membrane with MWCO 3.5 kDa.   The semi-permeable membrane was checked 

for its flatness, without any bulging.  The mid-chamber contains the hydrogel sample.  The 

bottom chamber remains empty, blocked by an aluminum sheet.  Rubber O-rings at the outer 

faces of the top and bottom chambers prevent leaks when clamped.  At 10 mm from the top of 

the mid-chamber, there is a 1 mm hole, through which a 21ԍ 1½" needle containing the oxygen 

measuring probe (OxyLab pO2 E-Series Sensor, Oxford Optronix Ltd., Oxford, U.K.) is inserted.  

For the control experiments, the de-oxygenated control solutions were injected via the same hole 

into the mid-chamber prior to oxygen probe insertion.  Care was taken to make sure that the 

diffusing medium was fully-filled without entrapping any air bubbles.  The entire set-up, 

comprising the three-chamber diffusion cell, solvent reservoir, and the oxygen probe, were 

placed inside an oven to maintain a constant temperature.  The temperature of the oven was 

continuously monitored throughout the experiment.  The constant temperature was also was also 

confirmed for a few experiments, by using the oxygen probe with a temperature sensor.  The 

oxygen probe injected into the sample chamber was connected to a computer interface (OxyLab 

‒ Tissue oxygenation monitor) via LabView® software that records the measured oxygen partial 

pressure (pO2) in real time. 

Measurements were taken from a fixed displacement point within the diffusion chamber 

and exported from the software interface into Microsoft Excel or a text file. To yield a value for 

the diffusion constant, the data was subsequently fitted to the analytical solution obtained after 

solving the diffusion equation [93] derived in the next section. 

Derivation of Diffusion Equation 
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The Fick’s second law is given as 

𝛛𝛛
𝛛𝛛

= 𝐃𝛁𝟐𝐂 + 𝐑. 
[Equation 3] 

The assumptions are (1) R = 0, because there is no mass generation, (2) the oxygen diffuses in 

one dimension, (3) The rigid acrylate diffusion cell is impermeable to gas, imposing no flux at 

the cell edges.  Based on the assumptions, the equation (3) is simplified to one dimension  

𝜕𝜕
𝜕𝜕

= 𝐷
𝜕2𝐶
𝜕𝜕2

 . 
[Equation 4] 

 

Figure 3.3: Boundary conditions for oxygen transport through the hydrogels 

The boundary conditions (Figure 3.3) are as follow: 

At 𝑥 = 0, the flux,  𝜕𝜕
𝜕𝜕

= 0. 

At 𝑥 = 𝐿, the solvent is continuously aerated and the solvent is oxygen saturated, hence 𝐶 =

𝐶𝑠 (𝑥). 

At 𝑡 = 0, a specified initial concentration profile is assumed to be 𝐶 =  𝐶𝑖(𝑥).  

Converting the variables to dimensionless form yields 

𝜕∅
𝜕𝜕

=
𝜕2∅
𝜕𝜂2

 , 

[Equation 5] 
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where the dimensionless concentration ∅ =  𝐶−𝐶𝑠
𝐶𝑖− 𝐶𝑠

 ; Cs is the saturation concentration, which is 

assumed to be the maximum concentration; and Ci is the initial oxygen concentration, which is 

assumed as the minimum concentration in the experimental data.  The dimensionless time is 

given as 𝜏 = 𝑡
𝑡𝑟𝑟𝑟

= 𝑡𝑡
𝐿2

 , and the dimensionless distance 𝜂 = 𝑥
𝐿
. 

The boundary conditions for the dimensionless form are as follow: 

At 𝜂 = 0 , the flux, 𝜕∅
𝜕𝜕

= 0. 

At 𝜂 = 1 , solvent is oxygen saturated and hence, ∅ = 0. 

At = 0 , ∅ =  1, which is a uniform starting profile. 

The general solution to Equation 4 via separation of variables is of the form 

∅ = 𝒆𝒆𝒆(−𝝀𝒏𝟐𝝉)𝑭𝒏(𝜼), 

[Equation 6] 

where λn is a constant.  Substituting the general solution for Ø in equation 4, we require 

 
𝛛𝟐𝐅𝐧
𝛛𝛈𝟐

+ 𝛌𝐧𝟐𝐅𝐧 = 𝟎 . 

[Equation 7] 

The general solution is  

𝑭𝒏 =  𝑨𝒏 𝒄𝒄𝒄(𝝀𝒏𝜼) + 𝑩𝒏 𝒔𝒔𝒔(𝝀𝒏𝜼) , 

[Equation 8] 

where An and Bn are integration constants. Now, applying the boundary conditions to the above 

general solution, we get the following: 

At 𝜂 = 0, Bn=0, hence 𝐹𝑛 =  𝐴𝑛 cos(𝜆𝑛𝜂). 
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At 𝜂 = 1, 𝐴𝑛 cos(𝜆𝑛𝜂) = 0. 

An ≠ 0, because the solution will be trivial if An = 0. Therefore, 

𝜆𝑛 = �𝑛 +  
1
2
�  𝜋 , 

where n= 0,1,2,3,… Fn is a eigenfunction.  A series solution that incorporates all the values of n 

is given below: 

∅(𝜂, 𝜏) = �𝐴𝑛exp(−𝜆𝑛2𝜏) cos(𝜆𝑛𝜂)
∞

𝑛=0

. 

Using the initial condition, at 𝜏 = 0   ∅ =  1, we have 

∅(𝜂, 𝜏) = �𝐴𝑛 cos(𝜆𝑛𝜂)
∞

𝑛=0

. 

[Equation 9] 

To find An, we use the orthogonal property of the F function, which is stated as 

� 𝐅𝐧(𝛈)
𝟏

𝟎
𝐅𝐦(𝛈)𝐝𝐝 = 𝟎 𝐢𝐢 𝐧 ≠ 𝐦.  

Expanding Equation 9 gives 

𝜙𝑖(𝜂) =  𝐴0 cos(𝜆0𝜂) + 𝐴1 cos(𝜆1𝜂) + 𝐴2 cos(𝜆2𝜂) + 𝐴3 cos(𝜆3𝜂) + ⋯. 

Multiplying both sides by cos(𝜆1𝜂), we get 

𝜙𝑖(𝜂) cos(𝜆1𝜂)

=  𝐴0 cos(𝜆0𝜂) cos(𝜆1𝜂) + 𝐴1 𝑐𝑐𝑐2(𝜆1𝜂)  + 𝐴2 cos(𝜆2𝜂) cos(𝜆1𝜂)

+ 𝐴3 cos(𝜆3𝜂) cos(𝜆1𝜂) + ⋯. 

Integrating from 0 to 1 with respect to η, only the A1 term remains on the RHS, and upon 

rearranging, we get A1 as  
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𝐴1 =
∫ 𝜙𝑖(𝜂) cos(𝜆1𝜂)𝑑𝑑1
0

∫ 𝑐𝑐𝑐2(𝜆1𝜂)𝑑𝑑1
0

 

By numerical integration, A1 can be computed for any prescribed initial conditions.  The general 

solution for An is given by 

𝐴𝑛 =
∫ 𝜙𝑖(𝜂) cos(𝜆𝑛𝜂)𝑑𝑑1
0

∫ 𝑐𝑐𝑐2(𝜆𝑛𝜂)𝑑𝑑1
0

 . 

Applying a constant initial concentration ∅𝑖 =  1, the series coefficients are 

𝐴𝑛 =
2(−1)𝑛

�𝑛 + 1
2� 𝜋

 . 

For oxygen transport through a short length x = 0.01 m, just one term may be sufficient for a 

reasonable estimate of the concentration profile.  Therefore, using a term approximation of  

𝐴0 =
2(−1)0

�0 + 1
2� 𝜋

=  
4
𝜋

 , 

the concentration is given as 

∅(𝜂, 𝜏) = 𝐴0exp(−𝜆02𝜏) cos(𝜆0𝜂) 

𝜆0 =
𝜋
2

 

∅(0, 𝜏) =
4
𝜋

exp �− �
𝜋
2
�
2
𝜏� . 

[Equation 10] 

Taking loge on both sides, we get 

𝑙𝑙(𝜙) = ln �
4
𝜋
� − �

𝜋
2
�
2
𝜏 = ln �

4
𝜋
� − ��

𝜋
2
�
2

×
𝑡𝑡
𝐿2
� . 

[Equation 11] 
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The measured oxygen partial pressure was converted into a dimensionless concentration, and 

transformed to the logarithmic domain to obtain ln (𝜙).  ln (𝜙) was then plotted against time (t).  

The data was smoothened in SigmaPlot® (version 14, Systat software, Inc., San Jose, CA), using 

a local smoothening technique that employs a negative exponential regression.  The sampling 

proportion was 0.1, and the outliers were rejected.  The slope of the smoothened plot was 

calculated, by linear curve fitting for Equation 11 with the constant intercept.  The slope of the 

plot is equivalent to �𝜋
2
�
2

× 𝐷
𝐿2

, from which the diffusion coefficient is calculated. 

3.1.9  Statistical Analysis 

Results of hydrogel characterizations and surface model fittings designed from RSM 

were statistically analyzed in Stat-Ease, using analysis of variance (ANOVA) with 95% 

confidence limits.  All oxygen tension results are reported as mean ± SE (standard error) (n = 3-

5), where the error bars denote 𝑆𝑆
√𝑛

 .  To compare the experimental groups to the control, an F-test 

was performed to analyze the variance between the groups, followed by a two-tailed t-test 

(assuming equal or unequal variances, based on the result from the F-test). A p-value < 0.05 was 

considered to be statistically significant. 

3.2 Results and Discussion 

RSM is a statistical tool to determine the effects of variables by performing a minimum 

number of experiments.  It can also be used to optimize responses that are usually influenced by 

a number of important variables.  In the D-optimal design algorithm, design points are optimally 

selected in the domain of interest that can deliver the maximum amount of information.  In this 

study, the concentrations of each component were varied at five different levels, and their 
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influence on the physical, optical, mechanical, swelling, and temperature transition properties of 

the hydrogel was measured.  

 

Figure 3.4: Optical transmittance (%) of natural vitreous and two-component hydrogels for wavelength from 

200 to 800 nm.  The hydrogels are either of formulation 1.5 mg/mL of thiolated gellan and 10 mg/mL of copolymer 

(1.5G_10CoP), or 0.9 mg/mL of thiolated gellan and 12 mg/mL of copolymer (0.9G_12CoP).  Error bars are the 

standard deviation of three replicates of each sample. 

 The physical and optical properties of the 17 hydrogels did not vary drastically with 

varying formulations.  Refractive index measurements ranged from 1.334-1.338, densities ranged 

from 1.002-1.009, and the optical transmittances were greater than 85% in the visible 

wavelength.  The optical transmittance in the ultraviolet range dropped drastically and was zero 

below 275 nm, similar to that of the natural vitreous (Figure 3.4).  In contrast, the sol-gel 

transition temperatures, storage and loss moduli, and the degree of swelling varied with varying 

formulations of hydrogel, as shown in Table 3.1.  The upcoming sections discusses the effect of 

concentration of each component on their properties. 
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Table 3.1: Sol-gel transition temperature, storage and loss moduli, and percentage swelling for 17 hydrogels 
designed using RSM 

Run 
Number, 

Gellan 
Conc. 

[mg/mL] 

CoP 
Conc. 

[mg/mL] 

Sol-gel 
Transition 

Temp. 
[°C] 

Storage 
Modulus 
@ 1 Hz        

[Pa] 

Loss 
Modulus 
@ 1 Hz        

[Pa] 
N. Degree 

of 
Swelling 

in 1X 
PBS 

Weight % 
of Dried 
Polymer 
in Eqlb. 
Swollen 

Hydrogel  
[%] 

 Number 
of 

Replicates 
in 

Brackets 

Swollen Swollen 

1 0.75 12.5 37 51.3 3.12 1.37 1.28 

2 1 10 41.5 106 4.55 1.55 0.9 

3 1.5 15 42.5 358 50.3 1.54 1.36 

4 1.5 10 41.5 178 7.48 1.41 1.01 

5 1.5 5 39.5 151 12 1.38 0.58 

6 (3) 1.5 15 41.8 199 10.2 1.68 1.29 

7 (2) 1 10 40.8 115 13.9 1.12 1.04 

8 (5) 1.5 5 40 138 3.82 1.25 0.62 

9 1 7.5 41.8 67.7 4.47 1.35 0.79 

10 0.5 10 36.8 35.1 4.45 1.43 0.95 

11 0.5 5 35.5 3.05 1.18 1.29 0.54 

12 0.5 15 40.5 113 38.8 1.48 1.26 

13 1 15 42.5 143 7.7 1.54 1.29 

14 1.25 12.5 43 173 8.52 1.60 1.15 

15 (2) 1 10 41.5 91.8 5.02 1.60 0.94 

16 (11) 0.5 5 36 21.1 3.35 1.23 0.55 

17 (12) 0.5 15 38.8 120 28.7 1.52 1.27 

 

3.2.1 Sol-Gel Transition Temperature Characteristics of Hydrogels 
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Figure 3.5: Temperature scans for a mixture of 0.9 mg/mL thiolated gellan and 12 mg/mL poly(MAM-co-

MAA-co-BMAC).   

The two-component hydrogels undergo rapid sol-gel transition upon cooling below their 

sol-gel transition temperature (Tgel).  As seen in Figure 3.5, a polymeric solution of 0.9 mg/mL 

thiolated gellan (G) and 12 mg/mL poly(MAM-co-MAA-co-BMAC) (CoP), represented as 

0.9G_12CoP, transitions to a gel at 40 °C upon cooling from 55 °C.  At a temperature above this 

transition temperature, the viscosity (loss moduli) of the material is larger than its elasticity 

(storage moduli), indicating that the solution phase is dominant over the gel phase. Vice-versa, at 

a temperature below Tgel, the reverse is true, indicating the solid-like behavior of the material.  

Furthermore, the elastic physical gel, when oxidized with chemical crosslinks, is thermally 

irreversible and does not transition to a solution upon heating to a higher temperature. 
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Figure 3.6: A modelled cubic surface plot of sol-gel transition temperature against the concentration of 

thiolated gellan and copolymer in mg/mL.   represents increasing transition temperature from 35.5 to 43 

°C. 

As Table 3.1 shows, the mixtures used in our work transition in the range of 35.5 to 42.5 

°C, depending on their formulation.  The experimental data for the hydrogels (Table 1) fits a 

cubic model (Figure 3.6).  According to the ANOVA, the cubic surface fits the experimental data 

with a p-value of <0.0001 and a determination coefficient R2 of 0.965.  Based on the surface, the 

equation to predict the transition temperature is given below: 

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 = 𝟑𝟑.𝟒𝟒 − 𝟏𝟏𝟏.𝟒𝟒 × [𝐆] + 𝟖.𝟗𝟗 × [𝐂𝐂𝐂] − 𝟎.𝟏𝟏 × [𝐆] ×

[𝐂𝐂𝐂] + 𝟏𝟏𝟏.𝟖𝟖 × [𝐆]𝟐 − 𝟎.𝟗𝟑 × [𝐂𝐂𝐂]𝟐 − 𝟒𝟒.𝟏𝟏 × [𝐆]𝟑 + 𝟎.𝟎𝟎 × [𝐂𝐂𝐂]𝟑  [Equation 12] 

where 37.4 is the intercept of the data, [G] is the concentration of thiolated gellan in mg/mL, and 

[CoP] is the concentration of copolymer in mg/mL. 
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The concentrations of both the components were statistically significant in governing the 

transition temperature of the hydrogel.  Of the two, the concentration of thiolated gellan (p 

<0.001) was considerably more significant than that of the copolymer (p = 0.036) in the range of 

concentrations that were investigated.  Thiolated gellan is essential for the temperature-triggered 

instantaneous physical gelation of the hydrogel, and varying the concentration of the copolymer 

helps in tuning to achieve the desired Tgel.  For instance, the Tgel increases as the concentration 

of copolymer increases (Figure 3.7).   

 

Figure 3.7: Variation in transition temperature of two-component hydrogels made of 1.5 mg/mL gellan 

combined with increasing concentrations of copolymer, from 5 mg/mL (1.5G_5CoP) to 15 mg/mL (1.5G_15CoP). 
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3.2.2 Rheological Characteristics of Hydrogels 

 

Figure 3.8: Storage and loss moduli of a two-component hydrogel 0.9 mg/mL thiolated gellan and 12 mg/mL 

poly(MAM-co-MAA-co-BMAC). The storage moduli were greater than loss moduli at all frequencies from 0.01-10 

Hz, indicating a gel-like behavior.  

The mechanical properties of the hydrogel, measured in terms of the storage modulus (G'; 

elastic or solid component) and the loss modulus (G''; viscous or liquid component) from the 

frequency sweep, depends on the concentrations of the components of the hydrogel.  The storage 

moduli were greater than the loss moduli at all frequencies from 0.01 to 10 Hz for all 

formulations of hydrogel, indicating a gel-like behavior.  For instance, Figure 3.8 illustrates the 

storage and loss moduli characteristics of the 0.9G_12CoP hydrogel. 
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Figure 3.9: A modelled surface plot of storage modulus in Pa at 1 Hz against change in concentration of 

thiolated gellan and copolymer (CoP) in mg/mL.  The storage moduli results from 17 two-component hydrogels 

were analyzed and fitted to the modelled surface with a p-value of <0.001 obtained from ANOVA.   

represents the increasing storage modulus from 3 to 358 Pa. 

The storage modulus of the swollen hydrogels ranged from 3.05 to 358 Pa, while the loss 

modulus was 1.18 to 50.3 Pa at a frequency of 1 Hz (Table 1).  A linear regression model fits the 

experimental data for G' (Table 3.1) with a p-value of <0.001 and R2 of 0.80.  A planar surface 

was used to represent the variation of storage moduli with differing concentrations of thiolated 

gellan and copolymer (Figure 3.9).   The storage moduli can be predicted using the polynomial 

equation for this linear fit, which is given by 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑴𝑴𝑴𝑴𝑴𝑴 =  −𝟏𝟏𝟏.𝟔𝟔 + 𝟏𝟏𝟏.𝟗𝟗 × [𝑮] + 𝟏𝟏.𝟕𝟕 × [𝑪𝑪𝑪],  [Equation 13] 
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where -141.60 is the intercept of the model.  The negative value of the constant (intercept) has no 

practical application, because the model is not predicted at zero concentration of thiolated gellan 

and copolymer.  The real value of this linear regression model is to understand how the storage 

moduli changes with a change in the values of the variables ([G], from 0.5 to 1.5 mg/mL, and 

[CoP], from 5 to 15 mg/mL). 

 The concentrations of both the components were found to significantly influence the 

stiffness and rigidity of the two-component hydrogel.  Of the two, thiolated gellan (p-value 

<0.0001) was found to be a more significant factor than the copolymer (p-value 0.001).  The 

storage modulus of copolymer component without thiolated gellan was  ≈ 1.5 Pa at 9 mg/mL 

[76].  However, with the addition of thiolated gellan, the storage modulus of a two-component 

hydrogel of 10 mg/mL copolymer and 0.5 mg/mL thiolated gellan (Run #10, Table 1) was 35 Pa.  

Also, for a two-component hydrogel of 10 mg/mL copolymer and increasing concentrations of 

thiolated gellan (from 0.5 to 1.5 mg/mL), the G' increases from 35 Pa to 178 Pa.  The thiolated 

gellan component contributes to the stiffness and rigidity of the hydrogel network. 
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3.2.3 Osmotic Swelling Characteristics of Hydrogels 

 

Figure 3.10: Normalized degree of swelling (DoS) of the two-component hydrogel, 1.5G_15CoP, compared to 

that of each of its component, thiolated gellan (1.5G) and CoP (15CoP), in 1X PBS. 

Thiolated gellan hydrogels exhibited negligible swelling in 1X PBS, with a normalized 

DoS nearly equivalent to 1.  In contrast, the poly(MAM-co-MAA-co-BMAC), due to its added 

charge density, were highly swellable (Figure 3.10) in 1X PBS.  The swelling capacity of this 

copolymer increases with an increase in MAA content, or its concentration [87].  The 20 % (mol) 

MAA content in our copolymer offers the maximum possible swelling.  On the other hand, the 

two-component hydrogels swelled in 1X PBS, and had a normalized DoS lower than that of the 

copolymer, CoP, and higher than that of the thiolated gellan, G (Figure 3.10).  This intermediate 

degree of swelling demonstrates that in a two-component hydrogel, the copolymer’s swelling 

capacity is restricted by the minimally swellable thiolated gellan fibrils, resulting in a swelling 



54 
 

behavior referred to as “controlled swelling behavior” in this work. This behavior results in a 

tightly swollen network with the capacity to produce a significant Donnan swelling pressure. 

 

Figure 3.11: Surface model fit for normalized DoS of 17 hydrogels, designed using RSM, in 1X PBS for 

varying [G] and [CoP]. The color gradient represents increasing normalized DoS, from 1.2 to 1.7.  The experimental 

results fit the modelled surface with a p-value of <0.001.  

The degree to which the two-component hydrogel swells in the presence of water or 

physiological fluid depends on the hydrogel's composition.  The normalized DoS of the two-

component hydrogels range from 1.24 to 1.69.  A linear regression model fits the experimental 

swelling data, tabulated in Table 3.1, with a p-value of 0.0008 and R2 of 0.66 (Figure 3.11).  The 

polynomial equation given in Equation 14 predicts the normalized degree of swelling.  

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝑫𝑫𝑫 =  𝟏.𝟏𝟏 +  𝟎.𝟎𝟎 ×  [𝑮] +  𝟎.𝟎𝟎 ×  [𝑪𝑪𝑪],   [Equation 14] 
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where 1.101 is the intercept in the design space for [G], ranging from 0.5 to 1.5 mg/mL 
, and 

[CoP], ranging from 5 to 15 mg/mL.  Therefore, normalized DoS was not interpreted at [G] = 

[CoP] = 0. The overall contribution of [CoP] was significant (p < 0.01) for hydrogel swelling in 

this defined concentration range.  

 

 

Figure 3.12: Surface model fit for normalized DoS of 17 hydrogels in macroscopic polymer solution at 3 kPa 

osmotic pressure. The color gradient represents increasing normalized DoS, from 0.4 to 1.0.  

In contrast to swelling in PBS, the hydrogels gets iso-tropically compressed when 

immersed in polymer solutions of known osmotic pressures.  The vitreous replacements were 

assumed to be subjected to a maximum compression at 3 kPa [94].  The two-component 

hydrogel de-swelled with normalized DoS < 1 when immersed in PVP solutions at 3 kPa osmotic 

pressure (Figure 3.12).  In the presence of an external compressive load, the hydrogels de-swells 

when their internal swelling pressure was less than the external compressive load.  From the 
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statistical design of experiments, the concentrations of both the poly(MAM-co-MAA-co-BMAC) 

( p < 0.01), and the fibrillary thiolated gellan (p < 0.05) were significant in controlling the degree 

of de-swelling of the two-component hydrogels.  Equation 15 predicts the normalized DoS of the 

hydrogels in polymeric solutions at 3kPa osmotic pressure. 

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝑫𝑫𝑫 =  𝟎.𝟐𝟐 +  𝟎.𝟏𝟏 ×  [𝑮] +  𝟎.𝟎𝟎 ×  [𝑪𝑪𝑪],   [Equation 15] 

where 0.223 is the intercept for the defined concentration ranges of [G] and [CoP].  To conclude, 

both components offer compressive resistance against an external load and potentially mimic the 

physiological functions of the native vitreous, such as dampening ocular motion and protecting 

the eye against injury.  

3.2.4 Osmotic Swelling Characteristics of the Native Vitreous 

The role of the vitreous in generating osmotic swelling pressure remains poorly 

understood.  Experimental techniques to predict the swelling pressure lack due to the fragile 

biopolymer network of the native vitreous.  In light of our findings on the behavior of 

biomimetic vitreous substitutes, we feel it is reasonable to predict the swelling behavior of the 

native vitreous.  We propose that the native vitreous exhibits controlled Donnan swelling 

behavior, similar to the biomimetic substitute.  The native vitreous, due to its hydrophilic 

composition and ionic HA, swells in the presence of physiological fluids [3, 27].  The swelling 

force of HA is counter-balanced by the rigid elastic collagen fibers, resulting in a tightly swollen 

vitreous gel. 

According to the Flory-Rehner theory [95], the pressure generated by the swelling HA 

(πHA) is the summation of three main components: (1) Osmotic pressure due to the biopolymer-

solvent mixing in the vitreous gel (πos), (2) Elastic pressure due to deformation of network chains 
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into an elongated state during swelling (πel), and (3) Ionic pressure induced by non-uniform 

distribution of mobile ions between the vitreous gel and the external solution (πion). 

πHA = πos, HA + πel, HA + πion, HA        [Equation 16] 

The ionic pressure generated due to Gibbs-Donnan effect is positive and favors swelling. The 

osmotic pressure for a polyelectrolyte gel-like HA is also positive and depends on the polymer 

volume fraction and the polymer-solvent interaction parameter.  In contrast, the elastic pressure 

is negative in magnitude and restricts swelling.  Due to the dominating positive force that favors 

swelling, HA has a high swelling capacity.  This is congruous with our observations on the ionic 

thiolated poly[methacrylamide-co-(methacrylic acid)] where its degree of swelling was high 

(normalized DoS ≈ 2; Figure 3.10).   

On the other hand, collagen forms a minimally-swellable network in physiological fluids.  

Lloyd et al. showed that fresh collagen fibrils from ox-hides swell minimally, retaining their 

constant dimensions, in solutions (HCl/ NaOH) with pH ranging between 5.5 to 9.0 [96].  

Therefore, in physiological solutions of neutral pH, the net swelling pressure produced by the 

collagen fibrils are most likely a minimal positive value; a negative swelling pressure would be 

indicated by shrinkage in the volume of collagen fibrils.  This observation is in agreement with 

our findings on gellan, where the degrees of swelling of thiolated gellan fibrils at neutral pH 

were minimal (normalized DoS ≈ 1, Figure 3.10) and not negative.  

The native vitreous comprises of the swelling HA and the rigid minimally-swellable 

collagen fibrils.  The net swelling pressure produced by the vitreous is perhaps given by,  

 

πvitreous = πHA + πCOL          [Equation 17] 

πswell, vitreous = πos, COL + πos, HA + πel, COL+ πel, HA + πion, COL + πion, HA   [Equation 18] 
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Here, the swelling force is due to the net (πos + πion), which is counter-balanced by the 

restraining/compressive force primarily contributed by the πel of collagen fibrils, resulting in a 

tightly swollen vitreous gel.  Furthermore, the swelling pressure (πswell) produced by the vitreous 

gel may play a central role in (1) Stimulating the growth and development of the eye and (2) 

Securing the retina in position.  The vitreous swelling hypothesis is also consistent with 

observations of other investigators.  Halfter et al. [28] disrupted the vitreous body and the inner 

limiting membrane (ILM) of chick embryos with collagenase and observed an enlargement 

(predominantly axial) in the eye size.  They also speculated that the cortical vitreous body and 

ILM of the retina provided the mechanical strength to withstand the pressure emanating from the 

core or the central vitreous that is relatively rich in hyaluronic acid, during scleral development.  

The pressure within the vitreous cavity may originate from the Donnan swelling pressure 

(πvitreous), as given in Equation (18).  When collagen is disrupted, the restraining elastic pressure 

of collagen (πel,COL) approaches zero, and πswell, vitreous increases due to the high πionic, HA.  The 

ionic HA in the vitreous forms a highly swellable network that increases the weight of the 

vitreous body and the size of the eye-orbit.  Excess or inadequate swelling pressure of the 

vitreous in infants may alter the development of the eye, resulting in myopia or hyperopia, 

respectively.  However, as the eye reaches adult size, we believe that the vitreous continues to 

exert a non-zero osmotic Donnan swelling pressure, which is capable of holding the retina 

against the posterior wall of the eye but may not affect the growth of the eye.  This hypothesis is 

congruous with the suggestion of Nickerson et al. [27] that the hydrostatic force exerted by the 

swelling HA approaches equilibrium against the tension from the collagen fibrils.  Furthermore, 

the interplay between a rigid component (collagen) and a semi-flexible component (HA) in 
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vitreous swelling seems universal in biological hydrogels, for example, articular cartilage [97, 

98], the nucleus pulposus [88], and the corneal stroma [99]. 

3.2.5 Optimization of Hydrogels 

Design-expert software was used to numerically optimize the hydrogel formulations for a 

transition temperature between 38 to 41 °C and storage moduli between 100 to 200 Pa.  A 

transition temperature slightly above the physiological temperature enables the injection as a 

polymeric solution, without causing heat-related trauma to the eye.   

The mechanical properties of the vitreous have been investigated by various groups, as 

reviewed in detail by Swindle et al. [25].  The storage modulus of porcine vitreous is 10 + 1.9 Pa,  

and that of bovine vitreous is 32 + 12 Pa [100].  However, the architecture of the natural vitreous 

changes when removed from the vitreous cavity, which suggests that these values are lower than 

those found in vivo.  Furthermore, according to Zimberlin et al. [24], the G' of bovine vitreous ex 

vivo with an intact membrane is 120 Pa.  The G' of the hydrogel is critical in withstanding the 

saccadic movements of the eye; a quick movement of both eyes can vary from a small amplitude 

with a frequency of 10 °/s to a large amplitude with a frequency of 300 °/s [101].  Measuring the 

G' at high frequency mimics rapid eye movements.  The G' of soft hydrogels, such as 0.5G_5CoP 

or 0.5G_10CoP, drops to 0 Pa at frequencies above 6.33 Hz, which implies that the polymeric 

material behaves like a liquid at high frequency, possibly causing a slippage between the retinal 

cells and the polymer.  Hence, to avoid damage from impact and act as a shock absorber, storage 

moduli higher than 100 Pa are desirable in a vitreous substitute. 

Consequently, three optimal formulations of two-component hydrogel for specified Tgel 

and swollen storage moduli were chosen for further study.  The formulations were 1.5G_5CoP, 

0.9G_12 CoP, and 1.5G_10CoP.  Table 3.2 summarizes the sol-gel transition temperature, 
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rheology, and physical characteristics of the optimal formulations.  All of the hydrogels were 

transparent to visible light, with densities and refractive indexes similar to those of the natural 

vitreous.  These formulations were further tested for in vitro biocompatibility and cell 

proliferation assay (Chapter 4).  Of the three formulations, hydrogels with [CoP] ≥ 10 mg/mL 

produced considerable degree of swelling (DoS > 1.4). Hence, two hydrogels ‒ 0.9G_12CoP and 

1.5G_10CoP ‒ were chosen for further evaluations, such as osmotic pressure produced by the 

hydrogels, oxygen transport through them, and their biocompatibility in rabbit eyes. 

Table 3.2: Rheological and physical properties of three RSM optimized formulations of the two-component 
hydrogel. 

Formulation 
G     

Conc. 
[mg/mL] 

CoP 
Conc. 

[mg/mL] 

Sol-gel 
Transn. 
Temp. 
[°C] 

Swollen 
Storage 

Modulus 
at 1 Hz 

[Pa] 

Swollen 
Loss 

Modulus 
at 1 Hz 

[Pa] 

Norm. 
Degree 

of 
Swelling 

in 
1XPBS 

Refrac. 
Index Density 

Average 
Light 

Transm.  
(%) 

1.5G_5CoP 1.5 5 39.75 144.5 7.91 1.32 1.3351 1.009 93.6 

0.9G_12CoP 0.9 12 40.2 151 4.73 1.53 1.3355 1.003 94 

1.5G_10CoP 1.5 10 41.5 178 7.48 1.52 1.3372 1.006 87.6 
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3.2.5 Osmotic Swelling Pressure Produced by the Two Optimized Hydrogels  

 

Figure 3.13: Swelling pressure produced by two optimized hydrogel formulations (n = 5 each) for varying 

ratios of injected polymer solution volume vs. volume of the native vitreous removed from the eye.  

 The osmotic swelling pressure produced by the hydrogel is the driving mechanism for 

retinal tamponade.  Furthermore, the swelling pressured produced by the hydrogel was found to 

vary by tailoring the volumetric ratio of the polymer solution injected into the vitreous cavity to 

the volume native vitreous removed.  For a constant hydrogel composition, the volumetric ratio 

is directly related to the final polymer concentration of the hydrogel, which decreases upon 

swelling in contact with a physiological solution.  At a volumetric ratio equivalent to 1, the two 

hydrogels, 0.9G_12CoP, and 1.5G_10CoP, produced swelling pressures of 1.61 and 1.77 kPa 

(12.1 and 13.3 mmHg) respectively.  When the volumetric ratio was less than 1, the in situ-
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formed hydrogel swelled, decreasing the final polymer concentration of the gel and consequently 

decreasing the swelling pressure (Figure 3.13).  This relationship provides the precise volume of 

injected vitreous substitute needed to produce appropriate osmotic swelling pressure for treating 

retinal detachments in people of diverse age groups. 

3.2.6 Oxygen Transport through the Two Optimized Hydrogels  

The partial pressure of oxygen (pO2) in the de-oxygenated medium was measured over 

time at a fixed displacement from the saturation concentration (Figure 3.2), using the fiber optic 

oxygen sensor.  The experimental variables that may affect the measured pO2 results are (1) 

Temperature, (2) Dissolved oxygen concentration in the solvent, (3) Diffusing medium, (4) 

Displacement of the measuring point from the oxygen saturated solvent, and (5) Permeability of 

the semi-permeable membrane.  The entire diffusion cell set-up, the solvent reservoir, and the 

oxygen probe were placed in a temperature-controlled oven to minimize the temperature 

fluctuation in the diffusing medium (Figure 3.2). Also, an oxygen probe with a temperature 

sensor was used to monitor the temperature of the diffusing medium for a few experiments.  

During the initial set-up, the temperature of the diffusing medium was slightly lower than the 

desired temperature, which then equilibrated to the desired temperature within 30 mins.  The 

average temperature fluctuations were in the range between 1.1-1.8 °C.  The solvent reservoir 

was continuously bubbled with air throughout the experiment, and saturated with oxygen.  The 

partial pressure of the solvent was measured using an oxygen probe to confirm the oxygen 

saturation.  The sample medium was carefully placed in the mid-chamber or the sample chamber 

without an air-bubble, thereby minimizing variations in the diffusivity results.  The oxygen probe 

was inserted at a fixed displacement of 0.01 m from the semi-permeable membrane that 

separated the top- and mid-chamber.  The flatness of the semi-permeable membrane was also 
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checked for minimizing variations in displacement of the measuring point.  Furthermore, the 

dialysis membrane was a thin, porous material, whose MWCO was nearly 1000 times greater 

than the MW of oxygen molecule.  The membrane does offer resistance to diffusion of gas 

across them, however, was assumed to be negligible for our experiments.  Dowse et al. [102] 

estimated the resistance to diffusion of oxygen across the semi-permeable membrane, and 

concluded that the material offers the path of least resistance and also, any capacitance can be 

safely ignored.  By employing the above methods, the errors in the diffusivity results due to the 

change in the experimental variables were controlled. 

 

Figure 3.14: Oxygen level in water at 23 °C (A, C), and at 38 °C (B, D) over time. (A, B) represent the partial 

pressure of oxygen measured over time. (C, D) represent the logarithmic conversion of dimensionless oxygen 

concentration over time.  In all the plots, the experimental data is given in solid line (different colors represent the 

replicates), and the linear fit in C, D is represented in dashed line.  
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The experimental data (pO2) increases exponentially over time till it reaches saturation as 

shown in Figure 3.14A, C.  The pO2 is then converted to the logarithmic domain, and then fitted 

to the analytical solution for the Fick's second law to obtain the oxygen diffusivity values (Figure 

3.14 C, D).  Figure 3.14 shows the concentration of oxygen over time for water at 23 °C and 38 

°C.  The average goodness of the fit was 0.95±0.04 for water at 23 °C, and 0.76±0.03 at 38 °C. 

The diffusivity of oxygen in water was found to be 2.9±0.1 E-09 m2/s at 23 °C and 4.7±0.2 E-09 

m2/s at 38 °C.  The diffusivity values were slightly greater than the range of values estimated by 

various investigators, such as Bhunia et al. [103] (2.2±0.1 E-09 m2/s at 22 °C), Penicaud et al. 

[104] ( 2.5±0.07 E-09 m2/s at 20 °C), and Wise et al. [105] (3.9 E-09 m2/s at 40 °C); however, 

there was no significant difference between the experimental and literature values at both the 

temperatures.   

As expected, the temperature had a pronounced influence on the oxygen diffusivity.  The 

oxygen diffusion increased significantly (p = 0.0012) with an increase in temperature from 23 °C 

to 38 °C.  Also, the partial pressure of oxygen at saturation decreased from 147±8 mmHg to 

125±4 mmHg, correspondingly the solubility of oxygen in water, calculated using Henry’s law, 

decreased from 8.4±0.3 mg/L to 5.4±0.2 mg/L for an increase in temperature from 23 °C to 38 

°C, respectively.  This is because, with increase in temperature, the kinetic energy increases, 

consequently the motion of gas molecules increases, which results in breaking of intermolecular 

bonds, thereby letting the gas molecules to escape from the solution.   

In a solid state diffusion, energy is required by an atom to jump to the next neighboring vacant 

position, and the energy required for migration is referred to as activation energy [106]. The 

activation energy for migration is usually produced by thermal vibrations. Similarly, in gas-
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liquid diffusion, the energy required by the gas molecules to diffuse through the medium is given 

based on the Arrhenius-type equation, which is defined as: 

DO2 =  D0exp �−Ea
RT
�,         [Equation 19] 

where D0 is the pre-exponential factor, Ea is the activation energy for molecular diffusion, T is 

the absolute temperature (K), and R is the universal gas constant (8.314 J/ (mol.K)).  The 

activation energy of diffusion of oxygen molecules in water was 23.6±0.7 kJ/mol, which was 

slightly greater than those predicted by Bhunia et al. (Ea = 21.4 kJ/mol) [103].  Therefore, it is 

conclusive that the experimental method is applicable for obtaining the oxygen diffusivity in the 

current vitreous substitutes (BSS and SO; controls), and the two-component hydrogels 

(0.9G_12CoP and 1.5G_10CoP).  

 

Figure 3.15: Oxygen concentration of the experimental controls over time.  The logarithmic form of 

dimensionless oxygen concentration decreases linearly over time.  Solid lines indicate the experimental data 

(different colors represent the number of replicates), and dashed lines represent the fit. 

Both the controls (BSS and SO) and the experimental groups (0.9G_12CoP and 

1.5G_10CoP) were measured at 38 °C.  At a fixed displacement, the oxygen concentration 

(measured as pO2) in the controls and the experimental groups increased exponentially over time 
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until it reached saturation.  The oxygen concentration was then converted to its dimensionless 

form, which is calculated as ∅ =  𝐶−𝐶𝑠
𝐶𝑖− 𝐶𝑠

 ; Cs is the saturation concentration, which is assumed to 

be the maximum concentration; and Ci is the initial oxygen concentration, which is assumed as 

the minimum concentration in the experimental data.  Because the saturation concentration is 

greater than the initial concentration, the dimensionless concentration decreases over time 

(Figure 3.15 and Figure 3.16). 

 

Figure 3.16: Logarithmic form of the dimensionless oxygen concentration of hydrogel samples over time. (A) 

0.9G_12CoP hydrogel (B) 1.5G_10CoP hydrogel.  Experimental data for different repeats are given in solid lines of 

different colors, and the linear curve fits are represented in dashed line. 

The logarithmic conversion to the dimensionless oxygen concentration resulted in a 

linear plot over time.  The number of repeats for each medium was 3; except silicone oil, where 

n=2.  Due to some unknown reason, the oxygen probe broke during each measurement for 

silicone oil.  Each plot fits the analytical solution for the Fick's second law, given in equation 11.  

The average goodness of fit was 0.84-0.86 for controls, BSS and SO, and 0.92-0.95 for 

hydrogels.  The medium's oxygen diffusion coefficient was calculated from the slope of the fit.   
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Figure 3.17: Oxygen diffusion coefficient in controls and hydrogels.  All the other mediums are measured at 38 

°C.  Data represent Mean diffusivity, and error bars indicate the standard deviation. The significant difference 

between the values, with p<0.05 is represented as (*) and p<0.01 as (**). 

Figure 3.17 shows the oxygen diffusion coefficient (DO2) of the controls and the 

experimental groups.  There is no significant difference (p=0.60) in DO2 between each of the 

controls (current vitreous substitutes) – BSS and Silicone oil.  When the de-oxygenated BSS is 

separated from the oxygen saturated PBS (isotonic), there exists an oxygen concentration 

gradient across the chambers, and therefore the oxygen from higher concentration zone diffuses 

towards the lower concentration zone until it reaches equilibrium.  Evans et al. reported the DO2 

of physiological saline to be 2.1E-09 m2/s at 22 °C.  According to the Stokes-Einstein's equation, 

the diffusivity depends on viscosity and temperature as given below: 

𝑫𝟏𝜼𝟏
𝑻𝟏

=  𝑫𝟐𝜼𝟐
𝑻𝟐

,          [Equation 20] 

where 𝜂 is dynamic viscosity, and T is the temperature.  Applying the temperature conversion for 

the diffusivity reported by Evans et al., the DO2 of physiological saline is estimated to be 5.8E-09 

m2/s at 38 °C.  This literature value is comparable to our experimental diffusivity value (6.0±0.5 
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E-09 m2/s).  On the other hand, silicone oil is a uniform hydrophobic medium.  The diffusion of 

lipid-soluble molecule, like oxygen, in silicone oil is primarily governed by its solubility in the 

medium.  Poncelet et al. [107] showed that the oxygen solubility in silicone oil is approximately 

20-fold higher than that of the oxygen solubility in water. Therefore, as expected, higher oxygen 

diffusivity in silicone oil than water was observed in our experiments.  

The oxygen diffusivity in the hydrogels was significantly lower than both the controls 

(BSS and SO) (Figure 3.17).  The oxygen diffusion coefficients in hydrogels of formulations 

0.9G_12CoP and 1.5G_10CoP were approximately 2 and 4 times respectively lower than the 

controls, indicating that the oxygen diffuses at a slower rate in the hydrogels. This is because, 

unlike the controls that have a uniform liquid phase, hydrogels forms a heterogeneous porous 

medium.  The polymeric chains make the medium structurally rigid.  The oxygen diffuses 

through a tortuous path created by polymeric chains, thereby slowing down the effective 

diffusion process.  Furthermore, among the two hydrogels, oxygen diffusivity in 1.5G_10CoP 

was twice lower than the 0.9G_12CoP.  Compan et al. [108] demonstrated that the diffusivity of 

oxygen through a methacrylate-based hydrogel increases with an increase in water content 

(swelling), which in turn depends on the composition of the polymeric gel.  Their observations 

are congruous with our experimental results, where the 0.9G_12CoP has a higher DO2 than 

1.5G_10CoP, because of its slightly higher degree of swelling in 0.9G_12CoP than that of the 

1.5G_10CoP.  

Several theories, such as free volume theory, hydrodynamic theory, obstruction theory, 

and combined hydrodynamic and obstruction effects, have been proposed to understand the 

diffusion process through the hydrogels.  Amsden et al. [109] neatly summarized the solute 

diffusion with hydrogels.  Off all the theories, obstruction theory is applicable to our gels 
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because it assumes that the path length for solute diffusion through the medium increases in the 

presence of impenetrable polymer chains.  Ogston et al. [110] took a phenomenological approach 

to predict the oxygen diffusivity through the hydrogel.  They considered hydrogel as a 

crosslinked polymer made of a random network of straight, long fibers of negligible width, and 

considered solute to be a hard sphere.  The solute was assumed to diffuse through a succession of 

random unit steps in hydrogel.  The diffusion does not occur if the solute encounters a polymer 

chain.  They expressed the diffusion coefficient in the gel compared to water as given below:  

𝑫𝑶𝑶𝑶
𝑫𝑶𝑶𝑶 

= 𝐞𝐞𝐞 �−√∅
𝒓𝒇+𝒓𝒔
𝒓𝒇

�        [Equation 21] 

where φ is the polymer volume fraction within the gel, rf is the radius of the fiber, and rs is the 

solute hydrodynamic radius; Do2w is the oxygen diffusivity in water at 38 °C, which is assumed 

to be 4E-9 m2/s.  Although conceptually appealing, the Ogston model is applicable only for a 

dilute or semi-dilute system of small molecules.  The DO2 of our two-component hydrogels, 

0.9G_12CoP and 1.5G_10CoP, predicted using this model was 3.65E-9 and 3.67E-9 m2/s, 

respectively.  The model was in good agreement with the experimental diffusivity value for 

0.9G_12CoP hydrogel; however, had >50% deviation from the experimental determined 

1.5G_10CoP hydrogel.  This is because most of the theories, including hydrodynamic, 

obstruction, and combinations, assumes polymer chains as rigid chains, and fail to account for 

the diffusion in composite systems.  The two-component hydrogels have unique variation in 

structural composition, which comprises of a rigid-rod like fibrils interspersed with semi-flexible 

copolymer network.  To understand the effect of structural variations in polymeric chains on the 

diffusivity of solutes through them, more experiments with different formulations of the two-

component hydrogels are needed. 
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3.3 Conclusions 

Biocompatible hydrogels with tailored biomimetic properties and functions of the native 

vitreous are an ideal vitreous substitute.  Inspired by the native vitreous, we developed a two-

component hydrogel with a fibrillary thiolated gellan and a semi-flexible poly(MAM-co-MAA-

co-BMAC).  The optical transparencies, refractive indexes, and densities of the two-component 

hydrogels are close to those of the native vitreous.  In addition, the hydrogels have the ability to 

undergo temperature-triggered physical gelation instantaneously near physiological temperature.  

The physical gelation, combined with chemical gelation (thiol cross-linking) endows the 

hydrogels with the in situ-forming ability.  The hydrogels were viscoelastic solid, and swells in a 

physiological fluid, producing an osmotic swelling pressure.  The mechanical property, transition 

temperature, and extent of swelling of the two-component hydrogels can be adjusted by changing 

the concentration of each component.  Although both the components are significant in 

controlling the properties, the concentration of the thiolated gellan is statistically more 

significant than that of the copolymer in controlling the storage modulus and transition 

temperature, while the concentration of copolymer is critical in governing the extent of swelling 

in physiological solution.  In the light of findings on the swelling behavior of the bio-mimetic 

hydrogel, we propose that the native vitreous exhibits controlled swelling behavior.  The 

swelling force exerted by the ionic HA is perhaps counterbalanced by the stiff collagen scaffold, 

resulting in a tightly swollen vitreous gel that produces osmotic swelling pressure.  Two 

hydrogels formulations ‒ 0.9G_12 CoP and 1.5G_10CoP ‒ that most closely match the 

properties of the native vitreous were further evaluated.  The hydrogels 0.9G_12CoP and 

1.5G_10CoP produced swelling pressures of 11.4 and 12.9 mmHg respectively when injected 

into the vitreous cavity.  The oxygen diffusivity through the hydrogels was significantly lower 
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than current substitutes, such as BSS and Silicone oil, as expected.  The two hydrogels are 

recommended for further biocompatibility evaluations in animal models.   
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Chapter 4: Biocompatibility of the Two-
Component Hydrogels 

We evaluated the biocompatibility of the individual components of the two-component hydrogel 

at different concentrations, and optimized three formulations of in-situ forming hydrogels, 

1.5G_5CoP, 0.9G_12CoP, and 1.5G_10CoP.  These are all potentially biocompatible, have sol-

gel transitions near physiological temperature, and have optical, physical, and mechanical 

properties close to those of the native vitreous.  This chapter describes the biocompatibility and 

degradation assessments performed on these hydrogels in contact with various cell lines.  The 

two best performing hydrogels, 0.9G_12CoP and 1.5G_10CoP, were further investigated for 

their biocompatibility in rabbit models.  Part of the work described in the chapter uses materials 

from the reference [77] and the manuscript submitted to the Journal of Biomaterials [111]. 

4.1 Materials and Methods 

4.1.1 Materials 

Dulbecco’s modified Eagles’ medium/Nutrient Mixture F-12 Ham was purchased from 

Thermo Fisher Scientific (Great Island, NY). Glycine (tissue culture grade) and 

ethylenediaminetetraacetic acid disodium salt (EDTA, electrophoresis grade) were purchased 

from Fisher Scientific (Pittsburg, PA).  Gentamicin and amphotericin were purchased from 

Sigma Aldrich Co. (St. Louis, MO).  Human retinal pigment epithelial cells (ARPE-19) and 

fibroblast cells (3T3/NIH) cell lines were purchased from American Type Culture Collection 

(Manassas, VA).  Rat retinal Müller cells (rMC-1), an immortalized cell line established by 

Vijay et al. [112], were graciously given to us by Dr. Rithwick Rajagopal, Department of 
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Ophthalmology and Visual Sciences at the Washington University School of Medicine.  Dutch-

Belted male rabbits were purchased from Myrtle’s Rabbitry/Covance Research Products Inc. 

(Denver, PA) and silicone oil 5000 (SO) was from Bausch and Lomb Incorporated (Rochester, 

NY).  The drugs and supplies for animal surgery were purchased from the Division of 

Comparative Medicine Pharmacy, Washington University School of Medicine (St. Louis, MO). 

4.1.2 Isolation of Primary Porcine Retinal Pigment Epithelial Cells 

The procedures for extraction and passaging of primary porcine retinal pigment epithelial 

(ppRPE) cells were similar to the protocol described by Toops et al. [113], with few 

modifications.  The procured disinfected eye cups of pig eyes, after removal of the vitreous and 

retina, were incubated with 2 mL of 2X Trypsin with 5.3 mM EDTA in Hank’s Balanced Salt 

Solution (HBSS) without Ca2+ and Mg2+ for 90 minutes.  Cells were collected as per the Toops 

protocol and plated at a density between 3000 to 4000 cells/cm2.  ppRPE cells were used at the 

first or second passage for biocompatibility assessments. 

4.1.3 Growth of Cell Lines 

The growth rate of cells was studied using a real-time, label-free, impedance-based 

method–Electric Cell-substrate Impedance Sensing (ECIS®) (Applied BioPhysics, Troy, NY).  

The gold electrodes of the ECIS 96-well plate were pre-treated by incubating each well with 100 

µL of 10 mM sterile cysteine for 15 mins.  The wells were then rinsed twice with 150 µL sterile 

double-distilled water.  To coat proteins on the gold electrodes, Dulbecco’s modified Eagles’ 

medium/Nutrient Mixture F-12 Ham with 10% fetal calf serum (FCS), 1X 

penicillin/streptomycin 1X gentamicin, and 0.1X amphotericin (DMEM/F12) was added to the 

wells and the resistance across the electrodes was recorded.  About 150 µL of the ppRPE cells 
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(n=8 each) in DMEM/F12 media were plated on the ECIS 96-well plate at increasing cell 

densities from 2,000 cells/well to 40,000 cells/well.  rMC-1 cells (n=8) from 1,000 to 20,000 

cells/well.  The cells were left undisturbed at room temperature for 30 minutes to allow cells to 

adhere to the bottom of the wells, avoiding convection currents and uneven cell distribution.  

Next, the 96-well plate was connected to the ECIS, and the resistance offered by the cells during 

their growth and subsequent attachment to the plate was continuously measured at different 

frequencies from 400 Hz to 64,000 Hz against time.  DMEM/F12 medium was changed every 3 

days to maintain consistent growth.  The experiment was terminated when the cells reached 

confluence and the measured resistance saturated.  

4.1.4 Hydrogel Preparation 

Thiolated gellan (synthesized as described in chapter 2) was dissolved at 2X the 

concentrations of the final formulations (0.5 mg/mL, 1.0 mg/mL, and 1.5 mg/mL) in sterile 

nitrogen (N2) bubbled water, and the pH of the solution was adjusted to 7.4.  The thiolated gellan 

solution and sterile 2X DMEM/F12 media were then heated separately at 45 °C for 15 minutes 

and mixed immediately prior to being cast over ARPE-19 cells and ppRPE cells. 

To make composite hydrogels, thiolated gellan was dissolved in sterile nitrogen (N2) bubbled 

water, and poly(MAM-co-MAA-co-BMAC) (synthesized as described in chapter 1) was 

dissolved in sterile 2X DMEM/F12 media.  Both components were dissolved at 2X the 

concentration of the desired final formulations and the pH of both solutions was adjusted to 7.4.  

The thiolated gellan and poly(MAM-co-MAA-co-BMAC) solutions were then heated separately 

at 45 °C for 15 minutes and mixed immediately prior to application to the cells. 
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4.1.5 In Vitro Biocompatibility Tests 

Biocompatibility Evaluations using ECIS 

The biocompatibility of the thiolated gellan hydrogels was tested using an ECIS.  ARPE-

19 and ppRPE cells were plated at densities of 20,000 and 40,000 cells/well, respectively.  A day 

later, after the cells had attached to the electrodes, the thiolated gellan solution was cast over the 

cells.  The resistance across the electrodes was measured continuously over time at 4000 Hz.  

The cytotoxicity was interpreted as the decrease in resistance with respect to the control, cells 

without hydrogel.  The DMEM/F-12 medium was exchanged on day 3, and the experiment was 

terminated on day 6, after the initial addition of polymer solution. 

To evaluate the biocompatibility of the two-component hydrogels, two sets of 

experiments were performed.  First, to determine the biocompatibility of a confluent layer of 

cells in contact with hydrogel, the cells were plated at high densities: 40,000 cells/well for 

ppRPE, 20,000 cells/well for ARPE-19, and 10,000 cells/well for rMC-1 and 3T3/NIH cells.  

Prior to addition of two-component polymer solution, ppRPE, ARPE-19, and rMC-1 cells were 

kept in culture for seven, seven, and three days respectively to allow complete formation of tight 

junctions, while the 3T3/NIH fibroblasts were cultured for one day.  Due to the lack of contact 

inhibition in 3T3 cells, confluency was not reached until the end of the experiment.  Cytotoxicity 

was interpreted as the decrease in resistance with respect to the control and the effects on tight 

cell junctions were shown by changes in barrier resistance.  These two characteristics were 

observed at an optimal frequency of 4,000 Hz for six days after addition of polymer solution to 

ARPE-19, ppRPE, and 3T3/NIH cells, and for three days in the case of the rMC-1 cell line.  In 

the second assay, the cells were plated at low densities (ppRPE at 10,000 cells/well, ARPE-19 at 

5,000 cells/well, and 3T3/NIH at 4,000 cells /well), and the polymer solution was added the 
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following day to investigate the proliferation of cells in the presence of gel.  Simultaneously, the 

cell morphology was imaged using bright-field microscopy on the 4th, 7th, and 11th days after the 

addition of polymer solution.  Note that the cell plating densities and the experimental timing 

were same as for the ECIS biocompatibility experiment.  

Biocompatibility Evaluations using MTT 

MTT assay was performed to evaluate the biocompatibility of the hydrogels in contact 

with rMC-1 cells. Simultaneous to the ECIS experiment, the rMC-1 of 10,000 cells/well (n=4) 

was plated in a 96-well plate for MTT assay.  The cell plating densities and the experimental 

timing were same as for the ECIS biocompatibility experiment.  After 72 and 120 hours of 

hydrogel addition at confluence conditions, the cells were incubated with 100 µL 3-(4,5-

Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) of concentration 1mg/mL for 5 

hours.  The media with the hydrogel was then removed, and the MTT dye on the cell layer was 

dissolved with Dimethyl sulfoxide (DMSO).  The absorbance of the samples was measured at 

540 nm in a UV-Vis spectrophotometer. 

Cell Count Analysis 

To evaluate the final number of cells, the rMC-1 in 96 well-plate (n=3) was lifted by 

incubation in 100 µL of trypsin for 10 mins followed by the addition of 100 µL of fresh media.  

The media with cells were centrifuged at 750 rpm for 5 mins.  The supernatant was discarded, 

and the sediment cells were re-diluted with 500 µL media.  About 10 µL of cell sample was 

mixed with 10 µL of typan-blue, and the number of cells in 10 µL of final solution was counted 

using a hemocytometer under the microscope. 



77 
 

4.1.6 Degradation Studies 

Two degradation studies of the hydrogel were carried out in vitro by incubating the gel in 

1X PBS containing either (i) 10,000 U/mL of lysozyme or (ii) 1,000 U/mL of trypsin, at 37°C 

for 4 weeks.  Two mL of either lysozyme or trypsin solution was added to pre-weighed 35 mm 

dishes containing hydrogel formulations of (a) 0.9G_12CoP and (b) 1.5G_10CoP.  At 

predetermined time intervals, the gel was patted dry and weighed.  The percent degradation was 

determined by  

𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑴𝑴𝑴𝑴 𝑳𝑳𝑳𝑳 =  �𝑾𝟎−𝑾𝒕
𝑾𝟎

� ∗ 𝟏𝟏𝟏      [Equation 22] 

where W0 is the initial weight of the hydrogel, and Wt is the weight of the gel at time t (days). 

We also tested the 1.5G_10CoP hydrogel in contact with primary porcine retinal pigment 

epithelial (ppRPE) cells for 30 days.  The ppRPE cells were grown on the apical side of 

microporous collagen-coated millicell-CM insert membranes (0.4 µM).  Two mL of the polymer 

solution was pipetted into each cell of a six-well tissue culture tray, incubated at 37 °C for three 

days to fully gel, then allowed to swell in DMEM/F12 medium for seven days.  The insert 

membranes containing the ppRPE cells were then placed over the hydrogel and incubated in 

DMEM/F12 medium for 30 days.  Every 3-4 days, media from the apical side of the cultured 

cells on the membrane was transferred to the basolateral side containing the gel, to allow any 

enzymes on the apical side of the epithelial cells to come into contact with the hydrogel.  The 

goal was to accurately represent the enzymes that the hydrogel may come in contact with inside 

the eye.  Hydrogels that were not in contact with cells were the controls.  The rheology of the 

composite hydrogel (n=3) after 30 days in contact with cells was measured using a plate-plate 

shear rheometer, as described in chapter 3.  The cells were fixed using 4% formaldehyde, stained 
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for nucleus and actin fibers using (4', 6-diamidino-2-phenylindole dihydrochloride) (DAPI) and 

phalloidin, and imaged using confocal microscopy. 

4.1.7 Animal Preparation and Study Protocol 

All studies were performed in accordance with the Association for Research in Vision 

and Ophthalmology (ARVO) resolution on the use of animals in vision and ophthalmic research.  

Thirty two Dutch-Belted male rabbits, 5-6 months of age, were used in this experiment.  Eleven 

rabbits (n=11) were investigated for each formulation of hydrogel, 0.9G_12CoP and 

1.5G_10COP, and 10 rabbits with silicone oil 5000 (n=10) (SO) served as the vitreous substitute 

control.  Vitrectomy followed by replacement was performed on the right eye of each animal, 

while the left eye was the non-surgical eye – referred as a non-surgical control in this paper.  We 

performed detailed ophthalmic examinations by slit lamp and measured intra-ocular pressure 

(IOP) prior to surgery, and on days 1, 4, 7, and 30 post-operation.  Prior to surgery and 30 days 

after, electroretinogram (ERG) tests were performed on a subset of study rabbits (six were 

injected with SO, six with 0.9G_12CoP, and eight with 1.5G_10CoP hydrogel).  Ocular 

coherence tomography (OCT) and fundus examinations were performed on a subset of rabbits 

(n=4 for each experimental group) 30 days after surgery.  All rabbits were euthanized after the 

final examinations, and the eyeballs were removed for histology. 

4.1.8 Vitrectomy and Injection of Vitreous Substitute 

Dr. Ying-Bo Shui, an experienced vitreoretinal surgeon, performed all surgical 

procedures.  The surgeries were performed under general anesthesia using isoflurane and 

ketamine.  Rabbits were prepped and draped in a standard surgical manner, and their eyes were 



79 
 

dilated and prepped with an antibiotic.  While anesthetized, the rabbits underwent a complete 

ophthalmic examination. 

After establishing baseline ocular conditions, a partial two-port pars plana vitrectomy was 

performed on the right eye of the rabbit.  Approximately 0.5 to 0.6 mL of vitreous from the 

temporal side of the vitreous cavity was removed using a 23 gauge vitrector (Pro Care Plus 

Vitrectomy System, Vision Care Devices, Redding, CA), followed by a fluid-air exchange, and 

injection of approximately the same volume of the vitreous substitute as the removed vitreous.  

Due to the relatively large volume of the lens in the rabbit eye, only a partial vitrectomy could be 

performed, to avoid touching the lens and forming a cataract.  The rabbit vitreous is known for 

its tight adherence to the retina, rendering complete hyaloid removal unlikely. 

4.1.9 Rabbit Pre- and Post-operative Examinations 

Slit Lamp 

Slit-lamp examinations were performed before surgery and 1, 4, 7, and 30 days post-

operation. 

Intraocular Pressure 

Rabbit eyes were anesthetized with topical 0.5% proparacaine hydrochloride (Alcaine, 

Alcon-Couvreur, Belgium).  IOP was measured using a tonometer (Tono-Pen XL, Nicosia, 

Cyprus) on the days mentioned in the study protocol.  

Funduscopic and Ocular Coherence Tomography 

Rabbits were anesthetized by intramuscular administration of 15-20 mg kg-1 ketamine 

with 2-5 mg kg-1 xylazine and maintained with IV ketamine (5-10 mg kg-1) as needed during the 

procedure.  The rabbit fundus was visualized and imaged with an endoscope camera, and OCT 
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was performed on both eyes using Leica’s Envisu R2210 Spectral domain ophthalmic imaging 

system (Buffalo Grove, Illinois) to obtain the cross-sectional images (B Scan) of the retina. 

Oxygen Tension Measurements 

Prior to surgery and 30 days post-surgery, the oxygen tension in the vitreous and the 

vitreous substitute respectively was measured using an oxygen measuring probe (OxyLab pO2 E-

Series Sensor, Oxford Optronix Ltd., Oxford, U.K.) (Figure 4.1B).  The oxyprobe was connected 

to the OxyLab ‒ Tissue oxygenation monitor, and the computer interface via the LabView® 

software.  The partial pressure of oxygen were measured at the (a) Vitrectomy site, the site where 

vitrectomy was performed, and the vitreous was replaced with the substitute, and the (b) Intra-

vitreal site, the site where vitrectomy was not performed and the vitreous remains intact (Figure 

4.1A).  Controls were the measurements obtained in the vitreous of the non-surgical eye (left 

eye). 

 

Figure 4.1: (A) Anatomy of the rabbit eye with the sites where the partial pressure of oxygen was measured.  
(B) Image of the oxygen measuring probe.  The probe (extending from the white head) is very thin compared to the 
25G needle represented in blue for reference. 

Electroretinogram 
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At least 7 days prior to surgery and 30 days post-surgery, electroretinogram examinations 

were performed on the study rabbits (n = 6 each for SO and 0.9G_12CoP hydrogel, and n =8 for 

1.5G_10CoP hydrogel).  Briefly, rabbits were sedated by intramuscular administration of 15-20 

mg kg-1 ketamine with 2-5 mg kg-1 xylazine and maintained with IV ketamine (5-10 mg kg-1) as 

needed during the procedure.  Rabbits were maintained at a constant physiologically appropriate 

body temperature, and vital signs were monitored while the rabbits were sedated.  A human 

ERG-Jet corneal contact lens electrode (Universo SA, La Chaux-de-Fonds, Switzerland) was 

placed on each eye with 2.5% hypromellose (“Gonak”, Akorn Inc., Lake Forest, IL).  A 

reference needle electrode (The Electrode Store, Inc., Buckley, WA) was placed under the skin 

between the ears at the vertex of the skull, and a ground electrode was placed subcutaneously on 

the left flank.  The rabbit was positioned with its head inside the Ganzfeld dome of an LKC 

E3000 Electro-diagnostic system (LKC Technologies, Gaithersburg, MD), and ERG testing was 

performed in five steps on both eyes. 

The rabbit was adapted to a background light intensity of 2.30 log cd m-2 for 10 minutes 

and then tested using photopic flash ERG (Step 1).  The average response from five flash stimuli 

of 2.53 cd s m-2 intensity was obtained.  The photopic flicker ERG (Step 2) consisted of an 

average response from 10 flickering stimuli of the same intensity at 30 Hz, at the same 

background light level.  Next, the rabbit was dark adapted for 20 minutes before scotopic flash 

ERG was performed (Step 3).  The average response from 6 flash stimuli (0.0101 cd s m-2) was 

obtained.  After 2 additional minutes of dark adaptation, a mesopic flash ERG (Step 4) was 

measured from an average of five 2.53 cd s m-2 flash stimuli presented at intervals of 30.3 ms, 

and finally (Step 5) oscillatory potentials were averaged from responses of three 2.53 cd s m-2 

flash stimuli.  If needed, Yobine® was administered after ERG to assist in the recovery of the 
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rabbits.  In the electroretinography, the a-wave amplitude was measured from the baseline to the 

trough of the a-wave, and the b-wave amplitude was measured from the bottom of the a-wave to 

the peak of the b-wave.  The analyzed data were used to compare the treated right eye retinal 

responses post-surgery with their respective pre-surgical activity.  

Histology 

After 30 days, the rabbits were euthanized, and the eyeballs were excised and fixed in 4% 

formalin, pH 7.3, in 0.1 M Sørensen’s phosphate buffer for 1 hour.  The specimens were then 

washed with 1X PBS twice, sectioned at 12 µm on a cryostat, and every tenth slide was stained 

with hematoxylin and eosin (H&E) according to standard procedures.  The histopathologic 

evaluation was conducted by an experienced pathologist from Seventh Wave Laboratories LLC 

(St. Louis, MO).  Tissues were scored from 0 (null) to 4 (severe) for five histopathological 

criteria: (1) Needle track or suture line through the ora ciliaris (2) Mononuclear cell 

inflammation in the vitreous (3) Focal rupture of the posterior lens capsule (4) Displacement of 

the nuclei rods and cones into the inner or outer segment of the photoreceptor layer, and (5) 

Hemorrhage.  Furthermore, representative specimens from each of the study cohorts were 

additionally reviewed by our university’s ophthalmic pathologist, Dr. George J. Harocopos.  

Bright-field images were captured with a charge-coupled camera attached to a microscope 

(Olympus BX51, Olympus America, Inc., Melville, NY).  The artifacts in the images are due to a 

delay in the fixation process. 

4.1.10  Statistical Analysis 

All results are reported as the mean ± SE (standard error), where error bars denote the SE.  

The standard error is the standard deviation divided by the square root of the number of repeats 

for each experimental group.  For the ECIS and degradation studies, the F-test was performed to 
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analyze the variance between the experimental group and the control, followed by a one-tailed t-

test (assuming equal or unequal variances, based on the result from the F-test) with an alternative 

hypothesis of Mean(control) > Mean(experimental group).  The experimental group is 

considered to be toxic to the cells if the t-test is true.  For rabbit studies, the experimental groups 

were the hydrogel formulations 0.9G_12CoP and 1.5G_10CoP, while SO and the non-surgical 

left eye were controls.  The F-test, followed by a two-tailed t-test (assuming equal or unequal 

variances, based on the result from the F-test) was performed to analyze the variance.  A p-value 

< 0.05 was considered to be statistically significant for all studies. 

4.2 Results and Discussion 

4.2.1 Growth Curves of Different Cell Lines  

 

Figure 4.2:  Path of current flow through monolayer of cells plated over gold electrode at different frequencies 
in ECIS. (Figure reproduced from Applied Biophysics)  

The growth characteristics of different cell lines established in tissue culture were 

evaluated using ECIS.  ECIS non-invasively measures the impedance across gold electrodes in 

the bottom of tissue culture wells at frequencies from 400 to 64,000 Hz [114-116] as a function 

of time. During cell growth, with changes in cell morphology and attachment to the electrodes in 
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the bottom of the wells, there is an accompanying change in impedance measured across the 

electrodes.  At low frequencies (< 2000 Hz), current flows around the cells, and hence the 

measured impedance represents the layer's cell-to-cell barrier function (Figure 4.2) [114].  At 

higher frequencies (> 40,000 Hz), current flows directly across cell membrane, and hence the 

measured impedance depends on the cell coverage.  In this study, spectroscopic impedance data 

were analyzed at two different frequencies.  First, the resistance values were measured at 4,000 

Hz, because at this frequency, the resistance values reflects a combination of intercellular 

(establishment of cell–cell junctions) and sub-cellular (cell–substrate adhesion) alterations [115].  

Second, the capacitive portion of the impedance was studied at a high frequency – 64,000 Hz.  

These measurements essentially report only the fraction of the electrode covered with cells, and 

so they mimic data obtained with normal microscopy. 

 

Figure 4.3: The measured resistance of (A) ppRPE and (B) rMC-1 cells seeded at different cell densities over 
time.  The resistances were measured at 4000 Hz.  

The ocular cell lines, ppRPE and rMC-1, exhibited an exponential growth till it reached 

confluency (Figure 4.3).  The resistances of the cells increase as it attaches to the electrodes in 

the bottom of the wells (cell-substrate adhesion) and as the adjacent cells establish its barrier 
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(intracelluar, barrier resistance).  The resistance of the cells increases during the exponential 

growth and saturates at confluency.  Cells seeded at different densities reach a constant 

saturation resistance.  The growth of ARPE-19 cells and fibroblasts 3T3/NIH cells were 

previously studied by my colleagues in Ravi laboratory, and hence the cell seeding densities for 

cyto-toxicity assays were decided based on the literature values [87].  ARPE-19 cells have a 

growth characteristic similar to ppRPE.  Unlike epithelial cells (ppRPE and ARPE-19), the 

fibroblasts (3T3/NIH) cells grow exponentially till they reach a peak, after which they start to 

decay.  This is because the 3T3/NIH cells lack the property of contact inhibition. 

 

Figure 4.4: The growth behavior of the retinal muler cells (rMC-1) after reaching confluency.  (1) Bright-field 
images of cells at different time periods.  (A) At confluence, (B) 2 days after confluency, and (C) 3 days after 
confluency.  (2) Measured resistance at 4000 Hz over time corresponding to the time periods A, B, and C.  Note that 
media was added/exchanged on days 2, 3, 4, and 5. 
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The rMC-1 cells displayed a different behavior after reaching confluence compared to 

those of the epithelial cells (ARPE-19, and ppRPE).  Unlike the epithelial cells that maintained a 

stable attachment to the ECIS electrode surface, the rMC-1 cells lifted up and curled, even with 

the slightest disturbance that occurred during medium exchange (Figure 4.4).  We also observed 

a corresponding decrease in resistance with change in cell morphology and attachment (Figure 

4.4).  The reason behind this behavior is not yet elucidated; we speculate the lack of contact 

inhibition and vertical growth characteristic of the Müller cells may be the causes.  To the best of 

our knowledge, we are the first ones to investigate the growth of rMC-1 in ECIS, and to observe 

this behavior as well.   

 

 

Figure 4.5: Capacitance of the cells measured at 64,000 Hz as a function of time. (A) ppRPE cells (B) rMC-1 
cells.  The slope of the experimental data, are fitted with linear regression models.   

The doubling time of each cell line (ppRPE and rMC-1) was calculated from the 

capacitance vs time plot at 64,000 Hz frequency (Figure 4.5).  The slope of the capacitance curve 

over time for cells of different seeding cell densities were fitted to a linear regression model.  

The goodness of fit was between 0.97-0.99.  The doubling time of the cells corresponds to the 

time required to achieve half the value of maximum measured capacitance (the mid-point of the 

capacitance slope) [115].  The doubling time for ppRPE and rMC-1 cell lines at different cell 
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densities were determined and represented in Figure 4.6.  The experimental parameters, seeding 

cell density and time periods, to test the biocompatibility of hydrogels on confluent layer of cells 

and on proliferating cells were decided based on their cell-growth characteristics and are given in 

section 4.1.5. 

 

Figure 4.6: Doubling times of cells seeded at different cell densities (# of cells/well).   

4.2.2 In Vitro Biocompatibility and Proliferation Tests for Hydrogels 

The biocompatibility of the hydrogel was analyzed using ECIS.  Adding a layer of 

polymeric gel onto the cells that are attached to the electrodes of the ECIS 96-well plate further 

complicates the impedance of the system.  Therefore, in this study, the resistance of the cell-gel 

system was monitored over time at 4,000 Hz, because at this frequency the contribution of 

resistance from cells (inter-cellular and sub-cellular) dominates the resistance contributions from 

hydrogel and media. 
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Figure 4.7: The measured resistance of ARPE-19 and ppRPE cells in contact with three different thiolated 
gellan hydrogel formulations over time.  Controls are cells without hydrogel.  All measurements were at the 4000 
Hz, the optimal frequency for measuring the biocompatibility of the cells in either high density (non-proliferative, 
A–C) or low density (proliferative, D–F) conditions. The resistance spikes on days 1, 4, and 7 represent the 
exchange of cell medium. 

The ARPE-19 and ppRPE cells were biocompatible with all three concentrations (0.5 

mg/mL, 1.0 mg/mL, and 1.5 mg/mL) of thiolated gellan hydrogels (Figure 4.7).  At confluence 

(Figure 4.7A, B), the resistances of both the cell lines after the addition of polymer solution are 

comparable to those of the control cells without gels.  ARPE-19 cells exhibit a slight reduction in 

resistance immediately after the addition of polymer solution; however, recovers quickly within 

a few hours. For both cell types, the spikes on day 1, 4, and 7 indicates the exchange of 

DMEM/F-12 medium to maintain cell growth.  The gellan hydrogels of all three concentrations 

were also biocompatible over a proliferating layer of ARPE-19 and ppRPE cells (Figure 4.7C, 

D).  The proliferating cells maintained their growth rate comparable to those of the control.  Mild 
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concentrations of gellan (0.5 mg/mL) demonstrated a resistance profile higher than those of the 

control, indicating that mild concentrations of gellan promote the growth of the ARPE-19 cells.  

The biocompatibility of poly(MAM-co-MAA-co-BMAC) gel was determined by my 

colleagues, Liang et al. [87], who found that copolymer gels with concentrations less than 12.5 

mg/mL were biocompatible with ARPE-19, ppRPE, and 3T3/NIH cells.  All three cell lines 

revealed a significant decrease in resistance at 15 mg/mL copolymer concentration.  Moreover, 

the growth curve of ARPE-19 cells plated at low density showed a more pronounced effect from 

the copolymers than did cells plated at high density.  Therefore, we optimized three hydrogel 

formulations, 1.5G_5CoP, 0.9G_12CoP, and 1.5G_10CoP, which are potentially biocompatible 

in addition to their bio-mimetic vitreous properties.  These hydrogels were further evaluated for 

their biocompatibility using ECIS. 
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Figure 4.8: The measured resistance of cells after addition of hydrogels of different formulations.  Control is 
cells without hydrogel.  All measurements were at the 4000 Hz, the optimal frequency for measuring the 
biocompatibility of the hydrogels in contact with a confluent layer of cells. (A) ARPE-19 cells, (B) ppRPE cells, (C) 
3T3/NIH cells, and (D) rMC-1 cells.  Note that the resistance measurements were represented from the time after the 
addition of polymer solution to the cells.  Data represents the Mean (n=4) ± SE.  

The epithelial (ARPE-19 and ppRPE) and fibroblastic (3T3/NIH) cell lines are 

biocompatible with the optimized formulations of the hydrogels (Figure 4.8).  In the presence of 

the three hydrogels for six days, ARPE-19 cells revealed no significant change in resistance or 

toxicity (failed t-test) compared to control cells (Figure 4.8A).  The control is the resistance of 

cells without the addition of any gel.  The resistance peaks on the third and fifth day are due to 

the addition or change of the growth medium, which allowed the diffusion of nutrients through 

the hydrogel to reach the confluent layer of cells and mimic the natural eye conditions.  The 

3T3/NIH fibroblast cells show no significant toxicity (p > 0.05) similar to the ARPE-19 cells 
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(Figure 4.8C).  The ppRPE cells show no significant toxicity with the 1.5G_5CoP hydrogel 

formulation (Figure 4.8B).  However, the ppRPE cells in contact with the other two formulations 

show a 30% decrease in resistance for the first three days (Figure 4.8B).  The cells do recover 

within the next two days and achieve the same resistance as the control by the end of six days.  

The initial decrease in resistance may correspond to the presence of thiol groups in the physically 

crosslinked gel in contact with the cells.  In the first three days, the thiol groups completely 

oxidize to form disulfide linkages in the hydrogel [76], while the cells compete with the thiol 

groups for dissolved oxygen.  Upon addition of fresh media on the third day, the cells recover 

quickly.  In addition, the t-tests on the ppRPE cells in contact with the hydrogels on day 6 failed 

statistically, showing that the cells are biocompatible with all three hydrogels. 

 

Figure 4.9: Morphology of rMC-1 at different time periods. The hydrogels were added over a confluent layer 
of the RMCs and were found to be biocompatible without any drastic change in the morphology.  The cell densities 
of rMC-1 increase with each day and curl up after 2 days of confluency due to excessive growth.  

The in situ-forming hydrogel were also biocompatible with a confluent layer of retinal 

Müller cells (rMC-1).  At 4000 Hz, resistances of the cells in contact with the hydrogels over ≈ 2 
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days after hydrogel addition were comparable to those of control cells (without hydrogel) in 

ECIS (Figure 4.8D).  The resistances of the cells (including the control) dropped after the 

exchange of medium at the beginning of day 3.  The drop in resistance for all experimental 

groups is consistent with the curling of the cells as shown in Figure 4.9, and with the 

observations of rMC-1 growth described in section 4.2.1.   

 

Figure 4.10: The % biocompatibility of hydrogels from MTT, and Cell count analysis.  The biocompatibility of 
the control (cells without the hydrogel) was fixed at 100%.  Data represents the Mean (n=4) ± SE. 

To confirm the biocompatibility results with rMC-1 cells, we investigated the 

biocompatibility of hydrogels using MTT assay and simultaneously counted the number of cells.  

MTT and cell count analysis at 3 days after the hydrogel addition confirmed that both the 

hydrogels were biocompatible with the cells.  The hydrogel biocompatibility percentage was 

greater than 80% compared to the control, which was fixed at 100% (Figure 4.10).   
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Figure 4.11: Measured resistance of proliferating layer of cells in contact with three hydrogel formulations over 
time.  Control is the cells without hydrogel.  The resistances were measured at 4000 Hz frequency. Each data point 
in the hydrogels and control represents the average of 15 wells and 3 respectively.  Data represents the Mean (n=4) ± 
SE. 

In addition to demonstrating biocompatibility at confluence, cells of all three types in 

growth phase or in proliferation were also biocompatible with the hydrogels (Figure 4.11A, B & 

C).  The resistance peaks at various times indicate the exchange of medium.  Both the ARPE-19 

and ppRPE cells proliferated well in the presence of all the three optimized formulations of 

hydrogel (Figure 4.11A & B).  The resistance of these cells after 10 days in contact with gel was 

significantly higher compared to the control cells without the gel (p-value <0.01, failed t-test).  

With the ppRPE cells there is a slight initial drop in resistance, which did not affect their growth 

(Figure 4.11B). 

The cell morphology was also monitored after addition of the polymer solution.  As an 

example, Figure 4.12 shows cells in contact with the 0.9G_12CoP hydrogel observed under 
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bright field illumination at 10X magnification on days 4, 7, and 11 after the addition of polymer 

solution.  The morphology of the retinal cells was not affected by any formulation, and the 

images show that the number of cells increased with time (Figure 4.12).  These findings indicate 

(1) the three formulations are biocompatible with the ppRPE and ARPE-19 cell lines and (2) the 

studies of hydrogel obtained from ECIS are consistent with changes in cell morphology. 

3T3/NIH cells also proliferated in the presence of the three hydrogel formulations (Figure 

4.11C).  The cells in contact with the 1.5G_5CoP hydrogel statistically failed the t-test on day 5 

and failed with the other two hydrogels on day 6.  However, after day 7, cell growth and activity 

was lower than that of the control cells.  Bright-field microscopic images of 3T3/NIH cells 

indicated a possible slight slowing of cell growth in contact with 0.9G_12CoP hydrogel by day 

11 (Figure 4.12).  However, the morphology of the 3T3/NIH cells still appears to be relatively 

normal. 
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Figure 4.12: Bright-field images of (A) ARPE-19, (B) ppRPE, and (C) 3T3/NIH cells alone (control on 11th 
day) and in contact with composite hydrogel 0.9G_12CoP on the 4th, 7th and 11th day post polymer addition (Scale 
bar – 100 um). 

(A)   ARPE-19 CONTROL 

4 DAYS POST POLYMER 
ADDITION 

7 DAYS POST POLYMER 
ADDITION 

11 DAYS POST POLYMER ADDITION 

(B)  ppRPE CONTROL 

4 DAYS POST POLYMER 
ADDITION 

7 DAYS POST POLYMER 
ADDITION 

11 DAYS POST POLYMER ADDITION 

(C)  3T3 CONTROL 

4 DAYS POST POLYMER 
ADDITION 

7 DAYS POST POLYMER 
ADDITION 

11 DAYS POST POLYMER ADDITION 
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To check if the hydrogel affects the integrity of the cell junctions, the barrier resistance 

(Rb) of the three cell lines was analyzed by ECIS modelling software, which separated out the 

different components of cell-layer resistance.  The barrier resistances of ARPE-19 and 3T3/NIH 

cells were not affected by the three hydrogels, and they followed a similar pattern as the 

resistances measured in Figure 4.8A, C.  Figure 4.13 shows the Rb from the time of the plating 

of the ppRPE cells.  After tight junctions form completely, the Rb is around 3.25 – 3.75 times the 

resistance of the empty well.  The control ppRPE cell barrier functions start to deteriorate from 

day 7 on.  After the addition of polymer, the barrier resistance for ppRPE cells was lower than 

the controls from day 1 to 3, similar to the results observed at 4,000 Hz.  However, with 

complete chemical crosslinking of the gel and a medium exchange, the Rb recovers significantly 

and also fails the t-test on day 12, confirming the reformation of tight cell junctions (Figure 

4.13). 

 

Figure 4.13: Barrier resistance measurements in Ohm.cm2 over time (days) for ppRPE cells plated at high 
density (40,000 cells/well) for three different formulations of hydrogel.  The spikes in resistances denote medium 
exchanges. Data represents the Mean (n=4) ± SE. 
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4.2.3 In Vitro Degradation of Hydrogels 

In four weeks, the hydrogels did not show significant loss in mass (p-value > 0.05) in the 

presence of lysozyme and trypsin.  In fact, a slight increase in mass was observed, similar to the 

control (Figure 4.14A), which might have been due to swelling and protein absorption in the 

hydrogels in contact with the enzymatic solutions.  After 0.9G_12CoP and 1.5G_10CoP 

hydrogels were incubated with enzymatic solutions for four weeks, their storage moduli showed 

similar pattern as the control (Figure 4.14B).  We chose lysozyme and trypsin for our 

degradation studies because lysosomal enzymes are distributed widely in various ocular tissues 

and trypsin is a commonly used enzyme that hydrolyzes proteins.  Van deemter et al [117] 

detected trypsin in the vitreous, and explored its function in the degradation of collagen fibrils.  

In our work, hydrogels did not degrade within 28 days due to the strong chemical cross-links (S-

S linkages) in the hydrogel network. 

 

Figure 4.14: Degradation studies. (A) Percent of mass remaining in the 0.9G_12CoP and 1.5G_10CoP 
hydrogels after 4 weeks in the presence of lysozyme and trypsin.  (B) Storage moduli of 1.5G_10CoP and 
0.9G_12CoP at different frequencies.  Control is the hydrogel in 1X PBS.  Error bars are the standard deviations 
from three replicates of each sample. 

Both the hydrogel were also evaluated for 30 days in contact with the insert membrane 

supporting ppRPE cells on its apical side, and was found to be stable and non-degradable.  The 
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ppRPE cells stayed alive and maintained a monolayer in the presence of 1.5G_10CoP hydrogel, 

as they did in the control cells, the cells without hydrogel (Figure 4.15).  Furthermore, the actin 

density, which is linked to the overall health of the cells [118], was not compromised in the 

presence of the hydrogels.  Thus, there was no apparent toxic effect of the hydrogels on the 

ppRPE cells.  Moreover, the storage moduli of the hydrogel were comparable to that of the 

hydrogel alone (control) at 1 Hz frequency, indicating that the hydrogel was still well-formed.  

The stability of the gel is most likely due to its strong physical and chemical cross-links (S-S 

linkages).   

 

Figure 4.15: Degradation study on the hydrogel.  Confocal images of the ppRPE cells.  The image shows the 
monolayer of cells stained for nuclei (blue; DAPI) and cell matrix – actin fibers (red; phalloidin) in (i) Control 
medium (without hydrogel contact) and in contact with (ii) 1.5G_10CoP hydrogel and (iii) 0.9G_12CoP hydrogel.  
No toxic effect was observed.   

4.2.4 Biocompatibility Evaluations of Hydrogels on Rabbits 

The in situ-forming hydrogels, 0.9G_12CoP, and 1.5G_10CoP, were easily incorporated 

into standard vitrectomy procedures via injection.  No significant inflammation in the anterior 

segment of the eye was observed in slit lamp examinations performed on days 1, 7, and 30 after 

surgery.  The conjunctiva was mildly inflamed on day 1 post-operation, but this was significantly 

reduced on day 4, and the conjunctiva was clear and colorless by post-operative day 7.  The 

lenses were clear, and the Y-suture was clearly visible in rabbits treated with the hydrogels.  
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However, six silicone-oil-treated (n=10), three 0.9G_12CoP-treated (n=11), and six 

1.5G_10CoP-treated (n=11) rabbits had a slight posterior polar cataract at 30 days post-

operation.  In three of the six 1.5G_10CoP hydrogel-treated rabbits, the cataract was localized, 

which indicated that surgical trauma during vitrectomy was the cause.  A global cataract would 

be expected with vitreous substitute toxicity.  The retina and the optic nerve appeared normal.  

With one exception, funduscopic examinations on post-operative day 30 revealed no vitreous 

opacity, vitreous hemorrhage, membrane formation, or chorio-retinal lesions (Figure 4.16A).  In 

one rabbit treated with 1.5G_10CoP hydrogel, vitreous hemorrhage occurred during surgery, and 

was still present on day 30. 
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Figure 4.16: (A) Fundoscopic and (B) OCT images of rabbit vitreous cavities and retinas.  (1) Non-surgical 
control (2) Silicone oil vitreous replacement (3) 0.9G_12CoP replacement, and (4) 1.5G_10CoP hydrogel 
replacement.  No vitreous opacity, vitreous hemorrhage, membrane formation, chorio-retinal lesions, or atrophy in 
retinal layers is observed. 

Optical coherence tomography was performed on four rabbits in each group and showed 

no retinal detachment 30 days post-operation.  Coulmn B in Figure 4.16 shows the OCT retinal 
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right-eye cross-section images of rabbits treated with 0.9G_12CoP, 1.5G_10CoP hydrogels, and 

SO, as well as an image of non-surgical control (left eye) at 30 days post-operation.  The retinal 

thickness of the treated eye is comparable to that of the untreated-control eye.  There was no 

atrophy in the retinal thickness of either the hydrogel-treated rabbits or the silicone oil-treated 

rabbits. 

 

Figure 4.17: Pre-surgical and post-surgical IOP measurements in all experimental groups.  Data represents the 
mean ± SE.  At 30 days post-operation, no significant difference was observed in IOPs of the hydrogel-treated 
rabbits (n=10 for 0.9G_12CoP and n=8 for 1.5G_10CoP gel) compared to the controls (n=10 for silicone oil and 
n=24 for non-surgical control). 

Pre-surgical and post-surgical IOP measurements were comparable for all experimental 

groups (Figure 4.17).  On post-operative day 1, 0.9G_12 CoP hydrogel showed a decrease in 

IOP, but this difference was recovered by day 4.  The literature value for an average rabbit IOP is 

15.44 ± 2.16 mmHg [119], with a range of 11-21 mmHg during the light phase of the diurnal 

cycle.  All IOP measurements fell within the published rabbit IOP range [119], with the 

exception of immediate post-operation measurements in all experimental groups and the SO 

control, where the experimental values were slightly higher than the reported values in the 

literature.  In addition, a two-tailed t-test showed no significant difference (p > 0.10) in the final 
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IOPs (day 30 post-operation) of the experimental groups compared to the silicone oil and the 

non-surgical control. 

 

Figure 4.18: ERG response (n=5) of a rabbit retina elicited by light stimuli under mesopic conditions (moderate 
light conditions where both rods and cones are active).  The ERG reponses were obtained before and 30 days post-
operation, where rabbit vitreous was partially replaced with a 0.9G_12CoP hydrogel.  Data represent the mean 
amplitudes (n=5) ± SE. 

Electroretinogram analysis revealed normal retinal function in the rabbits treated with our 

hydrogels.  The rabbits showed a characteristic ERG wave pattern in response to light stimuli, 

with a negative deflection (a-wave, due to hyper-polarization of the photoreceptor layer) 

followed by a positive amplitude peak (b-wave, due to de-polarization of the Müller cells) 7 days 

prior and 30 days post-operation (Figure 4.18).  Table 4.1 summarizes the amplitudes and 

implicit times (time-to-peak from the onset of flash stimuli) of the characteristic waves in 

response to light stimuli under scotopic (dark-adapted), photopic (light-adapted), and standard 

mesopic (both scotopic and photopic) conditions.  The data summarized are raw data without any 

processing, and hence are likely to have a considerable standard error.  The amplitudes for SO 

treated-rabbits, including the deviations, were comparable to those found by Mackiewicz et al. 

[120]. 
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Table 4.1: Amplitudes and implicit times of characteristic waves in response to standard mesopic, scotopic, 
and photopic light stimuli.  

 

 

The ratio of the post-operative to the pre-operative ERG parameters was calculated.  The 

ERG responses (amplitudes and implicit times) of the experimental groups (hydrogels) 

stimulated with a standard mesopic light flash were not significantly different (p > 0.10) from the 

  Standard Mesopic Light Stimulus  Scotopic Stimulus  Photopic Stimulus  

  a-Wave 

Amplitude 

(µV) 

a-Wave 

Implicit 

time (ms) 

b-Wave 

Amplitude 

(µV) 

b-Wave 

Implicit 

time (ms) 

b-Wave 

Amplitude 

(µV) 

b-Wave 

Implicit 

time (ms) 

b-Wave 

Amplitude 

(µV) 

b-Wave  

Implicit 

time (ms) 

Si
lic

on
e 

oi
l 

Pre 
171.04 

±3.75 

11.75 

±0.39 

346.31 

±21.63 

76.33 

±7.31 

225.01 

±30.55 

48.04 

±2.75 

161.29 

±8.10 

56.50 

±21.47 

Post 
179.66 

±10.38 

11.08 

±0.58 

345.88 

±33.44 

73.42 

±7.49 

217.64 

±29.22 

59.86 

±5.75 

157.10 

±8.68 

29.58 

±0.51 

0.
9G

_1
2C

oP
 

Pre 
160.93 

±8.00 

11.08 

±0.42 

359.06 

±28.48 

70.33 

±7.51 

244.78 

±27.79 

61.85 

±6.12 

143.81 

±15.06 

28.50 

±0.82 

Post 
164.55 

±9.32 

10.08 

±0.30 

412.35 

±38.04 

60.50 

±8.45 

287.97 

±24.43 

87.73 

±7.14 

181.65 

±11.81 

28.25 

±0.65 

1.
5G

_1
0C

oP
 

Pre 
145.44 

±11.17 

11.19 

±10.38 

268.59 

±30.54 

59.25 

±9.12 

150.40 

±19.58 

64.68 

±4.01 

129.33 

±14.99 

50.19 

±19.90 

Post 
131.21 

±4.35 

13.50 

±1.11 

295.72 

±19.82 

69.19 

±10.88 

156.46 

±31.97 

50.40 

±15.67 

128.12 

±18.44 

30.44 

±1.05 
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SO control (Figure 4.19A, 4.19B), except for the b-wave amplitude of 0.9G_12CoP (p = 0.04) 

hydrogel. 

 

Figure 4.19: The characteristic ratios of post- to pre-operative a-wave and b-wave amplitudes (A, C, D), and 
corresponding implicit times (B) of the vitreous-substitute- treated (right, R) eye and the control (left, L) eye, when 
stimulated with standard mesopic (2.526 cd·s·m-2) light (A, B), scotopic light in dark adapted conditions (C), and 
photopic flash in light adapted conditions (D).  (A) compares the amplitude between substitutes, and (B) compares 
the implicit times between substitutes.  The photoreceptor activity was normal and functional with the hydrogels.  

The b-wave amplitude of the 0.9G_12CoP treated eye is higher than the SO control, and is 

statistically comparable to the left eye control, suggesting normal photoreceptor activity.  

Furthermore, the amplitudes and implicit times of the treated (right eye) are comparable to those 

of the non-surgical control (left eye) in the experimental groups, except for the a-wave amplitude 

(p = 0.04) and the corresponding minimum implicit time (minT, p = 0.03) of 0.9G_12CoP 

hydrogel.  The increase in the a-wave amplitude and the corresponding decrease in the implicit 
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time (minT) of the 0.9G_12CoP gel are both statistically significant in comparison to the non-

surgical control, indicating that the photoreceptors have better functional activity than the 

control.  Therefore, it was concluded that hydrogel-treated rabbits exhibited normal rod and cone 

activity.  The exclusive activity of rods stimulated by 0.010 cd·s·m-2 scotopic light flashes in the 

dark adapted rabbits was normal (Figure 4.19C).  Furthermore, the activity of cones was 

confirmed to be normal through the photopic and flicker response in light adapted conditions.  

The b-wave amplitude ratio was nearly 1 in response to photopic flashes (Figure 4.19D).  In 

addition, there was no absolute difference in flicker responses.  Statistically, there was no 

significant difference between the ERG responses of the experimental groups when stimulated 

with different light flashes compared to the silicone oil and the non-surgical controls, indicating 

that the hydrogel-substitutes were biocompatible in the rabbit eyes and exhibited similar retinal 

activity to the controls. 

 

Figure 4.20: Bright-field microscopic image (H&E staining, Scale bar = 50µm) of rabbit retinas.  (A) Non-
surgical control.  (B) Silicone oil, (C) 0.9G_12CoP hydrogel, and (D) 1.5G_10CoP hydrogel.  B, C, and D are 
retinas of rabbit eyes with partial vitreous replacements.  All retinal layers were intact, without any retinal atrophy.  
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Histopathological examinations revealed that the retinal layers were intact in the rabbits 

treated with the hydrogels.  Figure 4.20 shows the retinal structure of rabbit eyes treated with 

0.9G_12 CoP and 1.5G_10CoP hydrogel, and with SO, at 30 days post-operation.  The integrity 

of the retinal layers was preserved, and no significant pathological inflammation or deformation, 

such as retinal edema, epiretinal membranes, atrophic changes of the retinal layers, hemorrhage, 

or mononuclear cell inflammation were observed in the experimental group compared to the SO 

group (Figure 4.21).  When qualitatively scored, the pathological changes in the retina of the 

experimental groups were found to be less than 1 (0 = no change and 4 = severe change).  A 

minimal number of mononuclear inflammatory cells in the vitreous were common.  The presence 

of mono-nuclear inflammatory cells is perhaps due to focal trauma to the posterior lens capsule, 

and to the presence of a suture line near the ora ciliaris that may have introduced foreign 

material.  Both of these sources of inflammation are likely to occur during the surgical 

procedure, due to the anatomical huge lens of rabbits.  The H&E-stained sections displayed a 

normal retinal morphology, without any degenerate changes in the retina. 

 

Figure 4.21: Histopathology scores for rabbit retinas with silicone oil (n=9), 0.9G_12CoP (n=8), and 
1.5G_10CoP (n=8) hydrogel as vitreous replacements.  Scores from 0 to 4 indicate severity, from null to severe.  
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Data represent the mean ± SE.  No significant difference was observed between the hydrogels and the controls, with 
the exception for the mononuclear cell inflammation, which was common, but minimal (score ̴ 1). 

Our hydrogel may prevent retinal detachment and can function to keep the retina in 

position.  Retinal tears accidentally occurred during surgery in two rabbits receiving hydrogel as 

a vitreous replacement.  At 30 days post-operation, direct visual examination by our vitreo-

retinal surgeon, as well as OCT and ERG examination, revealed that the retinal tear did not 

develop into a retinal detachment.  The retinal thickness was similar to that of the controls when 

analyzed using OCT.  In addition, the ERG analysis demonstrated no significant changes in the 

activity of rods and cones, compared to the silicone oil control. 

4.2.5 In Vivo Oxygen Tension Evaluations for Vitreous Substitutes  

The native vitreous gel maintains an oxygen gradient in the vitreous cavity, with the 

highest near retinal vasculature and the lowest near posterior lens [33, 121].  After vitrectomy, 

there is a drastic increase in oxygen levels in the vitreous cavity compared to pre-vitrectomy [31, 

32, 121].  Holekamp et al. [31] revealed that the oxygen gradient maintained by the intact 

vitreous gel is lost after its removal in humans.  Furthermore, Barbazetto et al. [121] showed that 

the rabbit eyes replaced with balanced salt solution (BSS) after vitrectomy, does not maintain the 

oxygen gradient that was observed in the native vitreous.  They also reported that an increase in 

oxygen after vitrectomy leads to an increase in lenticular oxygen tension with the subsequent 

formation of a nuclear cataract.  Therefore, there is a need to preserve the low oxygen 

environment near the lens before and after vitrectomy. 

In this study, we measured the partial pressure of oxygen (oxygen tension) in rabbit's 

vitreous, which were replaced with either silicone oil (n=3) or 1.5G_10CoP hydrogels (n=9) after 

30 days post-surgery.  The non-surgical (left eye, n=8), and the silicone oil substituted eye 

(surgical, right eye) were the controls.  The oxygen tension in the medium (vitreous/substitutes) 
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was measured at two sites: (1) Vitrectomy site, where the vitreous was replaced with the 

substitutes, either silicone oil or 1.5G_10CoP hydrogel, during the partial pars planar vitrectomy.  

(2) Intra-vitreal site, where the vitreous remained intact (Figure 4.1).  The partial pressure of 

oxygen (pO2) at the intra-vitreal site was comparable between the left eye (non-surgical control), 

silicone oil- and 1.5G_10CoP hydrogel-replaced rabbit eyes.  The results indicate that the 

vitreous remains intact and maintains its oxygen levels at the intra-vitreal site after the partial 

pars planar vitrectomy (Figure 4.22). 

 

Figure 4.22: Oxygen tension (partial pressure of oxygen (pO2) in mm Hg) values for different substitutes 
measured 30 days post-surgery.  Data represents the Mean± SE.  The number of repeats (animals) was 8, 3, and 9 for 
the left eye, silicone oil and the 1.5G_10CoP hydrogel respectively.  At the vitrectomy site, there is a significant 
increase in pO2 values for silicone oil compared to the left eye control and the 1.5G_10CoP hydrogel.  A significant 
increase in pO2 was also observed between the vitrecotmy and the intra-vitreal site for rabbits replaced with silicone 
oil.   

The oxygen tension measurements at the vitrectomy site revealed that there was a 

significant increase in the pO2 values between the silicone oil and the non-surgical (left eye) 

control (p = 0.002) (Figure 4.22).  There was also a significant increase in pO2 values (p = 0.04) 

between the intra-vitreal and the vitrectomy site for silicone oil.  The oxygen tension 
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measurements for silicone oil suggests that the silicone oil lack the ability to preserve the low 

oxygen levels compared to the native vitreous after vitrectomy.  Due to the uniform medium of 

the silicone oil, the oxygen distribution is primarily governed by its oxygen solubility, which is 

20 times higher than the water [107].  Furthermore, we also found that the oxygen diffusivity 

(DO2 = 4.45E-09 m2/s) of silicone oil is higher than water at 38 °C (Refer to Chapter 3, section 

3.2.6).  The higher oxygen solubility and diffusivity in silicone oil have perhaps caused an 

increase in the oxygen levels in the rabbit's vitreous cavity.  In addition, the reducing agents are 

usually hydrophilic and are almost insoluble in silicone oil. 

The two-component hydrogel, 1.5G_10CoP, maintained the low oxygen level in the 

vitreous cavity, without any significant increase (p = 0.75), compared to the non-surgical control 

(Left eye).  There were also no significant difference (p = 0.19) in the pO2 values between the 

vitrectomy and the intra-vitreal site (Figure 4.22) for the hydrogel 30 days post-surgery.  In the 

intact hydrogel, the oxygen distribution is primarily governed by diffusion of oxygen through the 

solvent through a tortuous path developed due to the cross-linked polymeric chains.  The oxygen 

diffusivity in hydrogel (DO2 = 1.8E-09 m2/s) is also lower than those of the silicone oil and BSS.  

Therefore, the results suggests the potential of 1.5G_10CoP hydrogel to preserve the low oxygen 

environment in the vitreous cavity after vitrectomy; however, further measurements after longer 

durations in fully vitrectomized animal eyes that are replaced with our hydrogels are needed.   

4.3 Conclusions 

The two-component hydrogels, 0.9G_12CoP and 1.5G_10CoP, that most closely 

matched the properties of the native vitreous were evaluated for its biocompatibility in contact 

with different ocular cell lines, and in rabbit eyes.  Both the hydrogels were biocompatible in 

vitro with ppRPE, ARPE-19, retinal Müller (rMC-1) cells, and fibroblast 3T3/NIH cells.  The 



110 
 

hydrogels did not impair tight junction formation or affect proliferation of the cells.  

Furthermore, both the hydrogels did not degrade in vitro for about four weeks in contact with 

enzymes and with ppRPE cells. The hydrogels were well tolerated by the rabbit’s eye and were 

non-toxic to the retina for at least 30 days.  In addition, both the hydrogels overcomes the 

limitations of silicone oil and has comparable in vivo biocompatibility, hence proving to be 

superior to the clinically accepted current substitute.  The hydrogel, 1.5G_10CoP, maintained the 

low oxygen environment in the rabbit’s vitreous cavity for over 30 days, and their oxygen levels 

were comparable to that of the native vitreous.  Both the hydrogel formulations, 0.9G_12CoP 

and 1.5G_10CoP, are recommended for a six-month evaluation as an artificial vitreous, 

preferably in mini-pigs. 
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Chapter 5: Conclusions and 
Recommendations 

 
Current substitutes are not based on the physiological-properties of the vitreous, and 

consequently provide no insight into developing better and more physiologically similar 

prostheses.  An ideal substitute would bio-mimic the properties of the native vitreous and 

performs its essential physiological functions.  Inspired by the macromolecular design and 

composition of the native vitreous, we developed  an injectable two-component hydrogel 

composed of fibrillary gellan (analogous to fibrillary collagen) and polyelectrolyte 

poly[methacrylamide-co-(methacrylic acid)] (analogous to HA), both endowed with thiol groups. 

Gellan, in the polymeric mixture, instantaneously transitions from a random coil to a helical 

structure upon cooling to physiological temperature, and physically traps the semi-flexible 

copolymer network.  Within hours, the thiols in the physically-crosslinked gel oxidize to form 

mixed disulfide covalent bonds and establish a permanent hydrogel of two dissimilar networks.   

Eleven different formulations of this hydrogel, with water contents ranging from 98.6 to 

99.5% (vol), gelled instantaneously at low total concentrations of the two polymer components 

ranging from 5.5 mg/mL to 17.5 mg/mL.  Similar to the native vitreous, these hydrogels were 

optically clear, with refractive indexes ranging from 1.334 to 1.338, densities from 1.002 to 

1.009 g/cm3, and optical transmittance greater than 85%.  The gels were also viscoelastic solids 

with mechanical characteristics similar to the vitreous.  They swell in physiological fluid and 

produce osmotic swelling pressure, which is the driving force to re-attach the retina of the eye.  

The phase-transition, mechanical, and osmotic swelling properties of this two-component 

polymeric system were a function of the degree of thiolation, and the concentration of each 
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component in the mixture.  Although both the components are significant in controlling the 

properties, for a constant degree of thiolation, the sol-gel phase transition properties and the 

stiffness (the elastic component) of the hydrogels were governed primarily by the concentration 

of thiolated gellan, while the swelling capacity (the viscous element) was influenced by the 

concentration of the copolymer.  

Interestingly, we found the two-component hydrogel exhibited controlled swelling in 

physiological solution, where the higher swelling capacity of the copolymer, due to its added 

charge density, was restricted by the minimally swellable fibrillary gellan network.  The 

behavior resulted in a tightly swollen network with the capacity to produce a significant Donnan 

swelling pressure.  The swelling pressure exerted by the hydrogel was initially regulated by 

varying the concentration of each component, and later by varying the volume ratio of the 

polymer solution injected into the vitreous cavity to the volume of the native vitreous removed.  

We believe the controllability of the swelling pressure produced by the hydrogel has greater 

clinical significance in retinal detachment treatment for people of diverse age groups. 

In contrast to swelling in physiological solutions, the hydrogels de-swelled in polymer 

solutions of certain known osmotic pressures, isotropically compressed the gels.  In the presence 

of an external compressive load, both the components of the hydrogel exerted a combined 

compressive resistance against the load, which potentially mimics the physiological functions of 

the native vitreous, such as dampening ocular motion and protecting the eye against injury. 

Due to the biomimetic composition and properties of the native vitreous, the hydrogel 

provides additional insights into the physiology of the vitreous.  In the light of our findings on 

the bio-mimetic hydrogel, we propose that the native vitreous exhibits controlled swelling 

behavior and produces Donnan swelling pressure, similar to the biomimetic substitute.  The 
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swelling force exerted by the HA of the vitreous is counterbalanced by the restraining elastic 

pressure produced by the minimally swellable collagenous fibers. This tightly swollen vitreous 

gel exerts a Donnan swelling pressure that may play a central role in stimulating the growth and 

development of the eye, and securing the retina in position.  

Finally, two hydrogel formulations, 0.9G_12CoP, and 1.5G_10CoP, whose properties 

most closely matched those of the native vitreous, were selected for further evaluations, such as 

oxygen transport through them, and biocompatibility on cells and rabbits.  Judged against current 

vitreous substitutes, such as BSS and silicone oil, both the hydrogels had significantly lower 

oxygen diffusivity coefficients. The 1.5G_10CoP hydrogel had lower oxygen solubility and 

further delayed the diffusion of oxygen compared to 0.9G_12CoP hydrogel. 

Both the hydrogels were biocompatible in vitro in contact with various ocular cell lines, 

such as ocular epithelial cells (ppRPE, ARPE-19), retinal Müller cells (rMC-1), and fibroblast 

cells (3T3/NIH).  The hydrogels did not impair tight junction formation or affect proliferation of 

the cells.  Furthermore, both the hydrogel did not degrade in vitro for about four weeks in contact 

with enzymatic solutions, and with ppRPE cells.  Both the hydrogels were well tolerated by the 

rabbit’s eye and were non-toxic to the retina for at least 30 days.  The hydrogels preserved the 

low oxygen environment in the vitreous cavity for 30 days after vitrectomy. Furthermore, the 

hydrogels overcomes the limitations of silicone oil and has comparable in vivo biocompatibility, 

hence proving to be superior to the clinically accepted current substitute. 

  Two hydrogel formulations are recommended for further evaluation as an artificial 

vitreous in a mini-pig model eye.  Moreover, the formulations of the two-component hydrogel 

mimic the macromolecular components of soft tissues, and can be adjusted to approximate their 
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properties.  The two-component hydrogels are suggested as a biomimetic replacement of other 

soft tissues, such as articular cartilage, the nucleus pulposus, and the corneal stroma. 
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Appendix A 

Response Surface Methodology 
Design of Experiments (DoE) is a statistical tool to effectively design the experiments in 

order to quantitatively identify the relationship of the significant factor(s) that affect the 

response.  Factors are the independent variables that can be changed in an experiment, and the 

response is the outcome measured from the experiment and is the dependent variable.  For this 

study, the factors were the concentration of thiolated gellan and the copolymer of the two-

component hydrogel, and the responses were the refractive index, optical transmittance, density, 

storage and loss modulus, the degree of swelling of the hydrogel in 1X PBS and PVP solution of 

3kPa osmotic pressure.  The objectives of this study were: (1) To quantify the relationship 

between each factor (including their interaction) and the properties of the hydrogel, (2) To 

determine the optimal formulation of the hydrogel that exhibits properties similar to the native 

vitreous, and (3) To minimize the number of experimental runs and variability.  Varying one-

factor-at-a-time results in more number of experimental runs, is time-consuming and expensive, 

and does not reveal the confounding effect between the factors over the responses.  Therefore, 

we used the multi-variate statistic technique, DoE, to efficiently achieve our primary objectives.  

Several designs, such as factorial design, response surface, and mixtures designs, can be 

used to design the experiments.  Factorial designs [1, 2] are useful for pre-screening the process 

to identify the significant factor(s) from a number of factors that affect the responses.  Mixtures 

designs [3, 4] are useful when independent factors are proportions of different components, 

which are subjected to a constraint.  Response surface designs [5, 6] are beneficial to identify the 
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relationship between the significant factors and the responses, as well as to determine the optimal 

point that may satisfy all the criteria in the design space.  Design space is the domain where the 

experiments are performed to investigate the response.  Both response surface and mixtures 

designs are applicable to our study; however, response surface was chosen to obtain the same 

information in a minimal number of experimental runs.  

Response surface design allows one to understand how the factors influence the shape of 

the response and give a sense of direction.  RSM has been extensively used in automobile 

industries, food science, engineering, physical and biological sciences.  Depending on the order 

of the polynomial design and the application, several RSM designs, such as central composite 

design, Box-Behnken, and optimal designs, are used to design the experiments.  Central 

composite designs [7-9] are commonly used design for optimizing the response affected by two 

or three variables.  The variables are varied at five different levels, which include the factorial 

points and the axial points.  Box-Behnken design [10, 11] is an efficient design model that 

selects points from a three-level-factorial design space to estimate the first- and second-order 

coefficients of the model.  Optimal designs are those which allow estimation of a variable with 

minimal variance.  D-optimal [12, 13] is an optimal design of RSM that enables one to obtain 

maximum information with a minimal number of runs and minimal variance.  A D-optimal 

design of RSM is chosen for this study, whose design development is discussed in the upcoming 

section A1. 

A1 Experimental Design Development 
The first step in developing a design is to identify the design space.  The design space for this 

study is constructed by varying the concentration of gellan and the copolymer.  Based on our 
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previous study, the concentration of gellan ([G]) is varied at five different levels (values of a 

variable) from 0.5 mg/mL to 1.5 mg/mL, and the concentration of copolymer ([CoP]) is varied 

from 5 to 15 mg/mL at five different levels.  Based on the degree of polynomial, different 

models of experimental design can be investigated.  The upcoming sections explain the 

development of the experimental design, and how each design affects the response, i.e., the 

transition temperature of the hydrogel. 

A1.1 Linear Model  

The simplest model of the RSM is based on the linear function.  The minimum number of 

experimental runs is 3 for this design, which pertains to the vertices of the design space.  Figure 

A1 represents the design space of a simple linear model with an additional point.  The surface of 

the response developed based on the linear model should fit the equation given below: 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀,        [Equation 23] 

where y is the response, β0, β1, and β2 are the regression coefficients, 𝒙𝟏𝑎𝑎𝑎 𝒙𝟐 are the factors, 

and ε is the error. 
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Figure A23: Design space for a linear model of an RSM. Squares represent the formulation, and the number 
represents the number of repeats at each formulation. 

The design space shown in Figure A1 is initially written in terms of coded factors, which 

are the factors that have a value in terms of levels and not the actual value; high levels have a 

value of +1, and low levels have a value -1 (Table 1).  A multiple regression model analysis is 

used to identify the quantitative relationship between the factors and the response.  

Table A2: The factors and response for a linear model of RSM. 

Coded factor 

𝑥1 

(reflects[G]) 

Actual factor 

[G] 

(mg/mL) 

Coded factor 

𝑥2 

(reflects [CoP]) 

Actual factor 

[CoP] 

(mg/mL) 

y 

(Response: Transition 

temperature) 
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1 1.5 1 15.0 41.8 

1 1.5 -1 5.0 40.0 

-1 0.5 1 15.0 40.5 

-1 0.5 -1 5.0 35.5 

1 1.5 1 15.0 42.5 

1 1.5 -1 5.0 39.5 

-1 0.5 1 15.0 38.8 

-1 0.5 -1 5.0 36.0 

 

The equation 23 is derived from the multiple regression model analysis of the data given in Table 

1.  Data in Table 1 can be written in its matrix format, 𝑦 = 𝑋𝑋 + 𝜀, which has a least square 

solution 𝜷 = (𝑋′𝑋)−1𝑋′𝑦.  The y is the response matrix, for instance, the average transition 

temperature of the hydrogel, X is the factor matrix, β is the matrix of regression coefficient, and 

ε is the error matrix.   

 𝑦 = �

42.15
39.75
39.65
35.75

�  𝑋 = �

1 1 1
1 1 −1
1 −1 1
1 −1 −1

�   𝛽 = �
𝛽0
𝛽1
𝛽2
�  𝜀 = �

𝜀0
𝜀1
𝜀2
� 

As mentioned before, the least square solution of the matrix equation is calculated as follows: 

𝑋′ = �
1 1 1 1
1 1 −1 −1
1 −1 1 −1

� 

𝑋′𝑋 = �
4 0 0
0 4 0
0 0 4

� 
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The model matrix is orthogonal because the off-diagonal elements of the matrix 𝑋′𝑋 are zero [6].  

Also, the optimality criteria for the D-optimal design are to maximize the |𝑋′𝑋| matrix. 

The inverse matrix is given as:  

(𝑋′𝑋)−1 = �
0.25 0 0

0 0.25 0
0 0 0.25

� 

The product 𝑋′𝑦, is calculated to be:  

𝑋′𝑦 = �
157.3

6.5
6.3

� 

The regression matrix 𝜷 is found to be:  

𝜷 = (𝑋′𝑋)−1𝑋′𝑦 = �
39.33
1.62
1.58

� 

The transition temperature (y) can be predicted by substituting the values for β0, β1, β2 obtained 

from the regression matrix into equation 23, 

𝒚 =  𝟑𝟑.𝟑𝟑 +  𝟏.𝟔𝟔𝒙𝟏 + 𝟏.𝟓𝟓𝒙𝟐       [Equation 24] 

The impact of the factors that affect the responses can be identified from the above-coded 

equation.  For instance, the factor 𝑥1 that reflects the variable ‒ concentration of gellan ‒ has a 

higher impact over the response, transition temperature of the hydrogel, than the concentration of 

copolymer.  

The coded factor equation is then converted to actual values of the factors,  
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𝒚 =  𝟑𝟑.𝟗𝟗 +  𝟑.𝟐𝟐 × [𝑮] + 𝟎.𝟑𝟑 × [𝑪𝑪𝑪]      [Equation 25] 

The surface response for the above equation is depicted in a 3-D plot as given in Figure A2.  

 

Figure A24: A modeled planar surface plot of sol-gel transition temperature against the concentration of 
thiolated gellan [G] and copolymer [CoP] in mg/mL.   represents increasing transition temperature from 
35.5 to 43 °C. 

The linear model of the response is analyzed using analysis of variance (ANOVA), to 

determine if it’s the best fit for the measured experimental data.  The Design Expert software 

from Stat-Ease (version 11) computes the regression equation and analyzes the quality of the 

fitted surface using ANOVA, normal probability, box-cox analysis, distribution of residuals.  

The analysis of variance is a statistical test used to analyze whether the means of two or 

more groups are equal.  Table A2 summarizes the ANOVA analysis for the experimental data 
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obtained from Design-Expert.  Based on the analysis, the modeled surface fits the experimental 

data significantly with a p-value of 0.0013 and a goodness of fit R2 of 0.93.   

Table A3: ANOVA for a linear model based on coded factors. 

Source Sum of 
Squares 

Degree of 
freedom (df) Mean Square F-value p-value Model 

significance 

Model 40.97 2 20.48 33.42 0.0013 significant 

A-[G] 21.12 1 21.12 34.46 0.0020  

B-[CoP] 19.85 1 19.85 32.37 0.0023  

Residual 3.07 5 0.6130    

Lack of Fit 1.13 1 1.13 2.32 0.2024 not 
significant 

Pure Error 1.94 4 0.4850    

Cor Total 44.03 7     

The sum of squares, the degree of freedom, and the mean square are calculated using 

standard formulas described in [14].  The F-test is a characteristic statistical test, which assesses 

if the model fits the experimental data.  The F-value is calculated as the ratio of Mean square of 

the model to that of the residual.  A model F-value of 33.42 implies the model is significant and 

there is only a 0.13% chance that an F-value this large could occur due to noise.  Similarly, a p-

value less than 0.05 indicate model terms are significant. In this case, A and B, which reflects 

[G] and [CoP] respectively are significant model terms.  The lack-of-fit test, as the name 

describes, assesses the lack of fit of the model to that of the experimental data.  A  Lack of Fit F-
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value is calculated as the ratio of Mean square of the lack-of-fit to that of the pure error, which is 

found to be 2.32.  The corresponding p-value is 0.2, indicating that the lack-of-fit is not 

significant relative to the pure error.  The distribution of residuals is analyzed via ANOVA, the 

normal probability, and box-cox analysis.  Minimal is the mean square residual value, better is 

the design.  The normal probability distribution, box-cox, and other residual analysis are 

described in Appendix B and reference [15]. 

The linear model is restricted to a planar response surface.  Also, this simplest model 

does not enable one to understand how the interaction between factors affects the response.  To 

understand the interaction effects and the curvatures of the response, higher degree polynomial 

model has to be constructed.  

A1.2 Simple Second-order Model 

The simplest second-order model of the RSM is based on a function given in equation 26 

that allows one to understand a linear and two-factor-interaction effect over the response.  The 

minimum number of experimental runs is 4 for this design, which pertains to the vertices and the 

center of the design space (Figure A3).  The surface of the response developed based on the 

model would fit the equation given below: 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥1𝑥2 + 𝜀,      [Equation 26] 

where y is the response, β0, β1, β2, and β3 are the regression coefficients, 𝒙𝟏𝑎𝑎𝑎 𝒙𝟐 are the factors, 

and ε is the error. 
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Figure A25: Design space for a simplest second-order model of an RSM.  Squares represent the formulation, 
and the number represents the number of repeats at each formulation. 

The 3-D surface developed based on multiple regression analysis of the second-order 

model is depicted in Figure A4.  Similar to the first order model, a planar surface model is still 

the best fit for the second-order design.  The model fits the experimental data with a p-value of 

0.0024 and an R2 of 0.78.  The transition temperature of the hydrogel can be predicted using the 

equation given below: 

𝒚 =  𝟑𝟑.𝟒𝟒 +  𝟑.𝟐𝟐 × [𝑮] + 𝟎.𝟑𝟑 × [𝑪𝑪𝑪]      [Equation 27] 

The above equation approximates the equation 25 predicted using first-order model.  Both the 

factors had a significant influence over the transition temperature of the hydrogel. 
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Figure A26: A modeled planar surface plot of sol-gel transition temperature against the concentration of 
thiolated gellan [G] and copolymer [CoP] in mg/mL.   represents increasing transition temperature from 
35.5 to 43 °C. 

A1.3 Simple Quadratic Model 

A higher-order polynomial allows one to identify the curvature of the response.  A simple 

quadratic model allows understanding the second-degree factorial effect over the response given 

in equation  

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥1𝑥2 + 𝛽4𝑥12 + 𝛽5𝑥22 + 𝜀,    [Equation 28] 

A simplest quadratic model needs a six minimal experimental runs, which includes points in the 

center edge, vertices, and center.  The vertices and center point account for the factorial effects 

over response, while the center of edges accounts for the quadratic effects.  Figure A5 depicts the 
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design space made of eight different formulations with repeats.  The number of replicates helps 

to calculate the pure error of the response surface. 

 

Figure A27: Design space for a simple quadratic model of an RSM.  Squares represent the formulation, and the 
number represents the number of repeats at each formulation. 

A quadratic modeled surface was found to be the best for the experimental data (Figure 

A6).  The modeled surface fits the experimental data with a p-value < 0.0001 and an R2  of 0.95.  

The regression equation that predicts the transition temperature is given by: 

𝒚 =  𝟐𝟐.𝟒𝟒 +  𝟐𝟎.𝟐𝟐 × [𝑮] + 𝟎.𝟒𝟒 × [𝑪𝑪𝑪]− 𝟎.𝟏𝟏 × [𝑮] × [𝑪𝑪𝑪]− 𝟕.𝟓𝟓 × [𝑮]𝟐 

 [Equation 29] 
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The significant factors that affect the transition temperature were found to be [G], [CoP], and 

[G]2
. 

 

Figure A28: A modeled quadratic surface plot of sol-gel transition temperature against the concentration of 
thiolated gellan [G] and copolymer [CoP] in mg/mL.   represents increasing transition temperature from 
35.5 to 43 °C. 

A1.4 Quadratic Model of a D-optimal Design of RSM 

A D-optimal design of RSM with additional points based on a quadratic model was 

designed with 11 different formulations as shown in Figure A7.  This design allows one to 

investigate up-to a third-degree factorial effect over the response as given in equation below: 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥1𝑥2 + 𝛽4𝑥12 + 𝛽5𝑥22 + 𝛽6𝑥12𝑥2 + 𝛽7𝑥1𝑥22 + 𝛽8𝑥13 + 𝛽9𝑥23 +

𝜀,           [Equation 30] 
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In addition to those described in a simple quadratic model, the experimental points in the design 

space include the axial check points and interior check points that account for the cubic 

interaction effects. 

 

Figure A29: Design space for a quadratic model of a D-optimal RSM design.  Squares represent the 
formulation, and the number represents the number of repeats at each formulation. 
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Figure A30: A modeled cubic surface plot of sol-gel transition temperature against the concentration of 

thiolated gellan and copolymer in mg/mL.   represents increasing transition temperature from 35.5 to 43 

°C. 

As already mentioned in section 3.2.1, the cubic surface is the best fit for the quadratic model 

design with a p-value of <0.0001 and an R2 of 0.97.  The cubic equation used to predict the 

transition temperature is given by: 

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 = 𝟑𝟑.𝟒𝟒 − 𝟏𝟏𝟏.𝟒𝟒 × [𝐆] + 𝟖.𝟗𝟗 × [𝐂𝐂𝐂] − 𝟎.𝟏𝟏 × [𝐆] ×

[𝐂𝐂𝐂] + 𝟏𝟏𝟏.𝟖𝟖 × [𝐆]𝟐 − 𝟎.𝟗𝟗 × [𝐂𝐂𝐂]𝟐 − 𝟒𝟒.𝟏𝟏 × [𝐆]𝟑 + 𝟎.𝟎𝟎 × [𝐂𝐂𝐂]𝟑  [Equation 31] 

In order to obtain maximal information from the factorial effects and their interaction over the 

response, a D-optimal design with additional points was chosen in our study (Refer Chapter 3). 
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A2 Conclusions 
The development of the experimental design from a simple first-order model to a 

quadratic model was discussed.  A simple first-order design model accounts for the effects of 

factors over the response.  A higher-order polynomial model will enable one to fully-understand 

the effect of the factorial interaction and higher-degree factorial effects over the response.  Also, 

the model may influence the curvatures and shape of the response surface.  Therefore, we 

recommend a D-optimal response surface design made of 11 different formulations with repeats 

to evaluate the structure-property relationships of the two-component hydrogel.  Furthermore, 

the D-optimal design allows one to precisely predict the optimal formulation that approximates 

the properties of the native vitreous humor. 
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Appendix B  

Investigating Thiol-Modification on 
Hyaluronan via Carbodiimide Chemistry 

using Response Surface Methodology 
 

Hyaluronan (HA) is a naturally occurring glycosaminoglycan widely researched for its use as a 

biomaterial in tissue engineering, drug delivery, angiogenesis, and ophthalmic surgeries.  The 

mechanical properties of this biomaterial can be altered to a required extent by chemically 

modifying the pendant reactive groups.  However, derivatizing these polymers to a 

predetermined extent has been the Achilles heel for this process.  In this study, we investigate the 

modification of HA in which the carboxyl group, in one of the saccharide groups, is derivatized 

to an amide containing a thiol group.  The derivatization is accomplished by the well-known 

carbodiimide-based activation [1-3] of the carboxyl group of HA with N-(3-

Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) and N-hydroxylsuccinimide 

(NHS), followed by its reaction with a disulfide-containing amine [1-10].  Based on the details of 

experimental conditions from several published sources, we focused on identifying the relative 

effects of various reaction parameters or factors.  Using the design of experiments (DoE) 

statistics, involving fractional factorial design (FF) [11, 12] and response surface methodology 

(RSM) [13-15], one can effectively design experiments to quantitatively identify the relationship 

of significant factor(s) that affect the reaction output (response).  This enables one to statistically 

optimize the reaction parameters to yield a desired output, carry out better trade-offs when 

multiple critical factors are governing the reaction, and minimize variability.  In DoE involving 
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multiple factors, a particular design is chosen based on the number of factors to be tested and the 

levels over which they vary.  In general, the factors affecting the process are initially screened 

using fractional factorial designs to determine their significance.  Two to four key factors are 

further optimized using RSM to maximize, minimize, or stabilize the response [11, 16, 17]. 

In this work, we have attempted to identify the relative importance of reaction variables 

or factors influencing the amidation reaction, and determine the quantitative relationship between 

the factors and their responses.  The five main factors we investigated, using FF design, were the 

pH, duration of reaction, and the mole ratios of Cys, EDC, and NHS with respect to a repeat unit 

of HA (disaccharide consisting of glucoronic acid and N-acetyl glucoseamine).  The mole ratios 

of reactants to repeat unit of HA, will be mentioned as moles of reactant.  The response was the 

degree of amidation of HA.  We used a D-optimal design of RSM to determine how each factor 

affected the degree of thiolation of HA and the formation of side products.  We optimized the 

reaction for a pre-determined extent of derivatization with minimal side product.  This work uses 

material from the reference [18] 

B1 Materials and Methods 

B1.1 Materials 

Hyaluronic acid (MW 60 kDa) was purchased from Lifecore Biomedical (Chaska, MN).  

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), N-hydroxysuccinimide (NHS), 

cystamine dihydrochloride (Cys), dithiotheritol (DTT), glycine, sodium sulphite, sodium 

hydroxide, sodium chloride, and ethylenediaminetetraacetic acid were purchased from Sigma 

Aldrich (St. Louis, MO).  The FF and RSM experiments were designed using Design-Expert® 

software, version 7, Stat-Ease (Minneapolis, MN). 
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B1.2 Design of Experiments 

Selection of factors affecting the reaction 

An essential step of planning the factorial process is selecting the factor(s) and their 

levels of variation.  Five main factors affecting the degree of amidation of HA were moles of 

Cys, EDC and NHS; pH, and duration of the reaction.  The other critical factor affecting the 

reaction was the temperature, which was kept constant at 37 oC.  The factors were varied at two 

levels for FF and five levels for RSM. 

Fractional factorial design for screening the significant factors 

The experimental design and statistical analysis were carried out in Design-Expert 7.0.0.  

We chose a two-level fractional factorial design to investigate the factors and screen for the 

significant variables affecting the response.  We chose a design of resolution V in which the 

main effects were un-confounded, while two-factor interactions were confounded with three-

factor interactions (Table B4) in 16 experimental runs (2(5-1)).  We conducted the experiments in 

random order to nullify the effect of systematic errors.  

Table B4: Alias structure of the 2(5-1) fractional-factorial design 

Effect Factors 
[A] A 
[B] B 
[C] C 
[D] D 
[E] E 
[AB] AB+CDE 
[AC] AC+BDE 
[AD] AD+BCE 
[AE] AE+BCD 
[BC] BC+ADE 
[BD] BD+ACE 
[BE] BE+ACD 
[CD] CD+ABE 
[CE] CE+ABD 
[DE] DE+ABC 

 



145 
 

D-Optimal design for optimizing the degree of amidation of HA 

The relationships between the significant factors obtained from FF analysis, were 

determined by a two-factor, five-level D-Optimal design with a quadratic model of RSM.  A 

second-order polynomial, was used to calculate the predicted response: 

𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏11𝑋12 + 𝑏22𝑋22 + 𝑏12𝑋1𝑋2             [Equation 32] 

where Y is the predicted response, X1 and X2 are independent variables (factors), b0 is the 

intercept, b1 and b2 are linear, b11 and b22 are squared, and b12 are interaction effects of the 

factors.  To investigate their effect over the responses, the degree of amidation of HA (Y), the 

factors, X1 and X2 were varied over 5 levels, with different combinations resulting from 16 

experiments. 

B1.3 Amidation of HA 

We did the FF as a single block design.  Stock solutions of HA (1% (w/v)); EDC, NHS, 

and Cys of respective moles at two levels of concentration and pH were prepared.  The total 

reaction volume of the experiment was 5 mL.  A required volume of HA repeat unit, EDC, NHS, 

and Cys was added to 0.5 M MES buffer, and the mixture was maintained at the correct pH in a 

closed 20-mL glass vial.  This was continuously agitated in a shaker at 200 rpm for a required 

duration at 37oC.  The reaction was stopped by adding 1 N NaOH, and the final pH was adjusted 

to 8-9.  Excess EDC, NHS, and Cys were removed from the reaction mixture by dialyzing 

(MWCO: 6,000-8,000) in deionized (DI) H2O (thrice).  The pH of samples was adjusted to 7.5, 

and reduced with DTT for 3 h.  Excess DTT was removed by dialyzing (semi-permeable 

membrane of MWCO: 6,000-8,000) in N2-bubbled 1 mM HCl (six times).  The samples were 

analyzed for the percentage of derivatization of HA with thiols, using a disulfide  and an 

Ellman’s test. 
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The 16 combinations of RSM were performed using the same procedure as specified in 

FF design. 

B1.4 Determination of degree of amidation via disulfide linkage 

Using the 2-nitro-5-thiosulfobenzonate (NTSB) assay [19], we determined the total thiol 

and disulfide content of the derivatized HA before and after reducing with DTT.  Briefly, Cys 

standards of concentrations from 0.05 to 1.5 mM were prepared using a 10 mM Cys stock by 

serial dilution, using N2-bubbled DI water.  About 900 µL of NTSB solution, prepared as 

described in the literature [19], was added to 100 µL of the sample and the standards.  Because 

the reactions are photo-activated, assay samples were incubated in the dark for 15 minutes and 

their absorbance was read with a spectrophotometer at 412 nm. 

B1.5 Ellman’s reaction 

The amount of thiol content was also determined spectrophotometrically, using an Ellman’s 

reagent as described by Ellman [20].  Briefly, we diluted 10 mg of each lyophilized sample with 

2 mL of N2-bubbled water.  To 100 µL of this sample, we added 500 µL of 0.1 M phosphate 

buffer (pH 8), 400 µL of water, and 50 µL of Ellman’s reagent.  Samples were incubated for 15 

min at room temperature, and their absorbance measured at 412 nm in a spectrophotometer.  

Thiol content was calculated as per the equation given below: 

𝑆𝑆 (𝑚𝑚𝑚𝑚𝑚) 𝑔 𝑜𝑜 𝐻𝐻 =  (𝐴𝐴 13600⁄ ) ∗ �𝑉𝑡𝑡𝑡𝑡𝑡 𝑉𝑠𝑠𝑠𝑠𝑠𝑠⁄ � ∗ (1 𝐻𝐻 𝑐𝑐𝑐𝑐⁄ )⁄            [Equation 33] 

where Ab is the absorbance and Vtotal is the total volume, while Vsample is the sample volume and 

13600 is the extinction coefficient.  The concentration of the HA (HA conc) is in mg/mL. 
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B1.6 Characterization of Amidated HA 

The amidated HA was characterized using 1H NMR spectroscopy.   1H NMR spectra 

were obtained on a Varian Unity Inova 500 (Palo Alto, CA).  HA samples were dissolved in D2O 

(8 mg/mL) with NaOD (20 μmol).  Each sample was scanned for 128 times at 25 ̊C. 

B2 Results and Discussion 

B2.1 Amidation and Characterization of HA 

 

Figure B31: Carbodiimide crosslinking reaction of HA and Cys with EDC and NHS 

Derivatization of carboxylic moieties of HA, to an amide containing thiol group with 

cystamine dihydrochloride via carbodiimide crosslinking chemistry, proceeds as described in 

Figure B1.  Mechanistically, the negatively charged carboxylate group attacks the electron-

deficient diimide carbon atom on the carbodiimide molecule (EDC) to form the activated O-
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acylisourea intermediate.  The result is that the carbon atom of the HA carboxylate group 

becomes sufficiently electron-deficient to be susceptible to nucleophilic attack by the lone pair of 

electrons on the amine group of the Cys, thereby forms an amide-substituted HA molecule and 

acylurea.  The O-acylisourea, which is very unstable, is usually stabilized by substituting it with 

NHS while maintaining it in an active form. 

Several investigators [1-4] have derivatized HA through this mechanism; however, these 

procedures did not describe the quantitative relationship needed for optimization between the 

reactants and the degree of thiolation.  Sehgal [5] optimized the reaction conditions one factor at 

a time to link monovalent butyric acid over Affi-gel 102 with the use of EDC and NHS.  These 

studies showed the significance of NHS for better yield of products, as well as the advantage of 

an MES buffer rather than a phosphate buffer.  The experiments were carried out over a range of 

carboxylic acid:amine mole ratios with a maximum of 1:15; EDC:NHS mole ratios with a 

maximum of 15:1; pH of 3 to 8; and a duration of 1-24 h.  Kafedjiiski [1] focused on 

synthesizing a novel HA-cysteine ethyl ester conjugate mediated by EDC and NHS.  The 

experiments were performed at pH 5.5 for 4 h with varying EDC:NHS ratios.  Similarly, Cao [6] 

analyzed the mechanical stability of collagen-chondroitin sulfate scaffolds with various EDC 

concentrations.  The experiments were carried out for about 4 h in MES buffer for various 

concentrations of EDC with a constant EDC:NHS ratio of 4:1.  In the literature, the duration of 

the crosslinking reaction has varied from 1 h to 24 h, with the majority being around 4 h [7-9].  

Sehgal [5] observed that the percentage of coupling plateaued beyond 6 h.  Most investigators 

used a pH of 4.5 to 6.5; while the majority used a pH of 5 [9, 10]. 

Table B5: The experimental condition (factors) and thiol content (response) obtained from a disulfide test for 
each experiment using FF design. 

Run Factor A: 
Cystamine Factor B: pH Factor C: NHS Factor D: EDC Factor E: Time Response: 

Thiol content 
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 (moles)  (moles) (moles) (hours) 
(in % of 

derivatizat-ion 
of HA) 

13 0.1 4.5 0.1 1 6 0.27 

3 10 4.5 0.1 1 1 0.77 

11 0.1 6.5 0.1 1 1 3.73 

5 10 6.5 0.1 1 6 10.22 

2 0.1 4.5 1 1 1 0.28 

14 10 4.5 1 1 6 0.35 

4 0.1 6.5 1 1 6 6.28 

15 10 6.5 1 1 1 19.55 

10 0.1 4.5 0.1 15 1 4.67 

6 10 4.5 0.1 15 6 29.28 

8 0.1 6.5 0.1 15 6 5.44 

9 10 6.5 0.1 15 1 17.16 

7 0.1 4.5 1 15 6 5.05 

16 10 4.5 1 15 1 13.89 

12 0.1 6.5 1 15 1 5.01 

1 10 6.5 1 15 6 22.21 

 

 We analyzed the dependence of these factors on one-another by designing experiments 

using FF design varying at two levels whose limits were chosen based on the literature (Table 

B5).  The final product of the reaction, amide-substituted HA, was reduced with DTT, purified 

with DI water free of oxygen (achieved through nitrogen bubbling) at acidic pH, and lyophilized 

to obtain a white fluffy, fibrous solid.  The degree of thiolation of the derivatized HA was 

determined, using the disulfide test and Ellman’s test.  The disulfide test measures both thiol and 

disulfide content in the sample, and the Ellman’s test measures only the thiol content.  The 

results from Ellman’s test are 30%-50% lower than the disulfide test results.  This is because 
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HA-SH is partially oxidized to disulfide, during the purification process.  Hence, the disulfide 

test results were chosen for statistical analysis. 

B2.2 Fractional factorial design 

Determination of significant factors from FF design 

 

Figure B32:  Normal probability plot of the effects of the factors and their interactions.  Effect of single factors 
is represented by A, B, C, D, E; their interactions with other variables are represented as AB, BC, etc.  In this figure, 
A- Cys; B- pH; D- EDC; BD- two factorial interaction of pH and EDC.    represents positive effects; while    
represents negative effects.  The model is framed based on selecting the dominant factors that are highlighted, and 
labeled in plots; other factors are considered as errors. 

The response from the disulfide test for FF design (Table 5) varied from a minimum of 

0.27% to a maximum of 29.28% with a mean of 9.01% and standard deviation of 8.59%.  We 

identified significant factors from the normal probability plot by choosing those factors that fall 

away from the standard line (Figure B2).  The normal probability plot shows that the single 

factors EDC, the pH of the reaction medium, and Cys have a positive effect on the response, 

while the two-factor interaction between pH and EDC has a negative effect.  Also, the Pareto 

diagram gives the contribution of each factor, which is useful in selecting the factors (Figure 
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B3(a)).  Having selected the important factors , we determined the need for transformation of 

data based on value of the ratio of maximum over minimum response.  Generally, the response 

ratio above 10 may require a transformation, while a ratio below 3 may not need transformation.  

In our design, for a high response ratio of 108.4, we needed a log transformation, which is 

confirmed by the Box-Cox plot of power transforms (Figure B3(b)). 

 

Figure B33: (a) Pareto chart representing the effect of each factor over response variable in the descending 
order from greatest to lowest contribution for FF design.  Bonferroni limit is the threshold where the effect emerging 
above this limit are significant.  T limit is the threshold where the effect emerging above this but below Bonferroni 
limit may possibly be significant.  Effects D, B, BD, A are significant. b) Box-Cox plot of power transforms 
representing the required transformation of data for FF design.  In this figure, blue line represents lambda current = 
0;  green line is best lambda current = -0.13.  The recommended transform is Log transformation with lambda = 0. 

The quality of the fitted model was evaluated by analysis of variance (ANOVA), a 

statistical method for making simultaneous comparisons between two or more means.  It yields 

values that are analyzed for the existence of a significant relationship between the variables.  In 

this study, we found the fitted model to be highly significant, with a determination coefficient 

(R2) of 0.96.  Also, the predicted R2 of 0.92 was in reasonable agreement with the adjusted R2 of 

0.95.  The F-test assesses whether any of the effect of factors on response is, on average, superior 
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or inferior to the others versus the null hypothesis, which considered all factors to yield the same 

mean response.  The p-value helps to assess if the main effect of each factor is statistically 

significant (p < 0.05) or marginally significant (p < 0.1). 

Table B6: Table representing the experimental conditions (factors) and thiol content (response) obtained 
from disulfide tests for each experiment using response-surface design 

Run Factor A: EDC Factor B: Amine Response: Thiol 
Content 

 (moles) (moles) 
(in % of 

Derivatization of 
HA) 

16 0.5 0.5 6.80 

3 10 0.5 15.74 

14 0.5 10 7.61 

12 10 10 27.5 

10 5.25 10 22.52 

4 10 5.25 26.33 

5 5.25 2.88 23.95 

11 0.5 5.25 5.52 

15 2.88 7.63 25.89 

7 7.63 7.63 37.12 

9 5.25 0.5 21.47 

8 0.5 0.5 6.82 

13 10 0.5 24.87 

2 0.5 10 7.65 

1 10 10 34.50 

6 10 5.25 36.34 

 

The Model F value of 73.67 and p-value of < 0.0001 indicates that the model is 

significant (Table B4).  There is only a 0.01% chance that a Model F-value this large could occur 
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due to noise.  Thus, the significant factors influencing the response from FF design are EDC, pH 

of the reaction medium, Cys, and interaction between EDC and pH. 

Table B7: Model Summary Statistics of the FF and RSM Models 

Models F-value p-value R2 Adjusted R2 Predicted R2 Adequate 
Precision 

FF 73.67 < 0.0001 0.96 0.95 0.92 22.51 

RSM- 
Thiol 

Content 

39.43 < 0.0001 0.91 0.88 0.84 14.79 

RSM- 
Side reaction 

56.09 < 0.0001 0.92 0.90 0.87 14.37 

 

Diagnostic plots of residuals 

 

Figure B34: Residual analysis of the FF design. (a) Plot of normal probability of residuals and (b) Plot of 
external studentised residuals with each run. 

 

While the ANOVA emphasizes the significance of the chosen model of contributory 

factors over the response, the distribution of residuals, which are the difference between the 

predicted and observed values, is also a crucial part to be examined.  The normal probability plot 



154 
 

of residuals helps us assess how closely the observed values follow the theoretical distribution, 

which was indicated by a straight line showing normal distribution (Figure B4(a)).  The 

externally studentized residual is the plot of residuals versus run, which tests whether the run in 

question is consistent with the rest of the data for this model.  This helps to determine the 

outliers, and whether there is a need to investigate them.  For this model, the residuals are 

uniformly distributed for each run (Figure B4(b)), and lie within the control limits, thereby 

indicating the run is consistent with the rest of the data.  

Plots of dominant effects on response 

 

Figure B35: Model graph depicting the nature of interactions between the factors EDC and the pH of the 
reaction medium in response to amidation at constant values of other factors of Cys = 10 (moles), NHS = 0.1 
(moles), time = 3.5 h for FF design.  Note that thiol content is a surrogate for amide content. 

  

 In this study, based on the ANOVA and residual analysis, it is evident that the EDC, pH 

of the reaction medium and Cys are the significant single factors governing the thiolation of HA.  

These factors show a positive effect in the specified range, indicating the higher degree of 
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amidation near the maximum range of the factors.  This is in agreement with the one factor 

analysis performed by Sehgal [5] for optimizing the amidation reaction.  However, FF provides 

aditional information on the interaction between the factors, which is not obtained through one-

at-a-time factor analysis.  We observed the effect of a two-factor interaction between EDC and 

the pH of the reaction medium to be significant.  The graph for the interaction between the 

factors enables us to understand how the independent variables interact with one another and 

affect the response (Figure B5).  This helps us to predict the change in response with the change 

in experimental conditions.  

B2.3 D-optimal design of RSM 

Response-surface methodology is used to evaluate the nonlinear effects of factors and 

search for optimum conditions to stabilize the response.  This methodology is useful for 

quantifying the relationships between the factors and one or more responses to determine optimal 

conditions.  Of several design in RSM, D-Optimal design maximizes the determinant of the 

information matrix [16, 17].  We used this design to investigate the factors affecting the response 

and to build empirical models for optimizing their formulations.  Two significant factors 

considered for the analysis were EDC and Cys (Table B3).  The FF results also show pH as a 

significant single factor affecting the response.  A pH of 6.5 is considered for RSM since, 

statistically, pH in the range of 4.5 to 6.5 had a positive effect on the response.  Also, at pH 

lower than 6.5, the carboxylate moieties of HA are less dissociated, which makes HA less 

reactive to attack the electron-deficient carbon atom of EDC.  At pH higher than 6.5, hydrolysis 

of the intermediate may occur.  The experimental results required a log transformation, indicated 

by the Box-Cox plot of power transforms.  The results were fitted into a second-order response 

surface model, a quadratic fit, for which the polynomial equation is as follows: 
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𝑳𝑳𝑳𝟏𝟏 (𝑨𝑨𝑨𝑨𝑨 𝑪𝑪𝑪𝑪𝑪𝑪𝑪) = 𝟎.𝟔𝟔 +  (𝟎.𝟏𝟏 ∗  𝑬𝑬𝑬)  +  (𝟎.𝟎𝟎𝟎 ∗ 𝑪𝑪𝑪)  +  (−𝟎.𝟎𝟎𝟎 ∗
𝑬𝑬𝑬𝟐)            

 (Equation 34) 

where 0.69 is the intercept of the data. 

Analysis of RSM 

The ANOVA for the results of disulfide tests indicated that the quadratic regression 

models were statistically significant, with an R2 of 0.91 and no significant lack of fit (Table B4).  

The R2 value indicates a good correlation between the experimental and predicted model.  The 

adjusted R2 that tests the goodness-of-fit of the regression equation was 0.88.  Also, the model 

had a high F-value, 39.43, from the F-test and a p-value of < 0.001.  This quadratic model was 

graphically represented by the three dimensional response surfaces.  We observed the effect of 

EDC and Cys, and their mutual interaction over the response from the graphs (Figure B6).  Also, 

we noted a normal distribution of residuals with the theoretical values from the normal 

probability plot of residuals.  We found that there are no outliers to be investigated and that the 

run was consistent with the rest of the data for this model using the externally studentized 

residual plot. 
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Figure B36: Model graph depicting the nature of interaction between factors EDC and Cys in response to thiol 
derivatization at constant values of other factors of pH = 6.5, NHS = 0.5 (moles), and time = 3.5 h D-optimal design 
of RSM. 

From the ANOVA and the residual analysis, we observed that the significant factor 

controlling the amidation reaction is EDC rather than amine.  As shown by analysis of the 

reaction mechanism (Figure B1), HA reacts with EDC to give the intermediate, O-acylisourea.  

The intermediate reacts with NHS to give a stable NHS-ester, followed by its reaction with 

cystamine yielding the desired product.  However, this may be accompanied by certain side 

reactions.  One of the drawbacks of the carbodiimide-based condensation is that the intermediate 

O-acylisourea can react not only with primary amine and NHS, but also with EDC and water 

[21-23].  The side reaction of the intermediate O-acylisourea with water leads to hydrolysis and 

decreases the efficacy of EDC.  Hydrolysis of the intermediate O-acylisourea produces urea as 

the side product which can be removed by dialysis.  The side reaction of the intermediate O-

acylisourea with EDC produces the side product N-acylurea on the carboxyl groups, especially 

when excess amount of EDC is used during the reaction.  In this study, the carboxyl groups are 
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on the backbone of HA, which makes the removal of the side product N-acylurea very difficult.  

We measured the contents of N-acylurea by 1H NMR in D2O (Figure B7).  The integration from 

3.1 to 3.9 ppm, which corresponds to the methine groups on the six-membered rings, was set as 

10, and was used as a standard to calculate other contents.  

 

Figure B37: A characteristic 1H NMR spectrum of amidated HA with side product  

Statistically analyzing the correlation between this side reaction and the reactant 

formulation, the significant factors controlling the reaction are EDC and (EDC)2.  It follows a 

second order quadratic fit with a square root transformation given by the polynomial equation: 

√𝐒𝐒𝐒𝐒 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 =  𝟎.𝟐𝟐 + (𝟏.𝟖𝟖 ∗ 𝐄𝐄𝐄) + (−𝟎.𝟏𝟏 ∗ 𝐄𝐄𝐄𝟐)   (Equation 35) 

  

It is evident from ANOVA that this quadratic regression model is statistically significant with p-

value < 0.0001 and model F value of 56.09.  The lack of fit F-value is 0.77, which implies it is 

not significant and the quadratic fit is apt for this model (Table B4).  The graphical correlation of 

the side reaction with factors Amine and EDC is shown in (Figure B8).  The statistical analysis 

also confirms that this side reaction is mainly caused by EDC, which is consistent with the 
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mechanism mentioned above.  Another possible reaction between HA and cystamine, apart from 

the side reactions of intermediate, is that the terminal aldehyde group of polysaccharide in its 

open-chain form can react with a primary amine to form a Schiff-base [24-26].  This introduces a 

terminal thiol group to the HA.  However, the amount of terminal aldehyde group in open-chain 

form is relatively small compared to the side NHS-activated carboxyl groups. 

 

Figure B38: Model graph depicting the nature of interaction between factors EDC and Cys in response to the 
side reaction 

 In summary, EDC is the critical factor which controls the desired as well as the undesired 

substitution.  However, since the concentration of NHS was kept constant for RSM design in this 

study, the effect of NHS on the side reaction is not investigated.  But it is noteworthy that, using 

sufficient amount of NHS would be critical to suppress the formation of the side product N-

acylurea because NHS competes with EDC to react with the intermediate O-acylisourea.  

B2.4 Optimization of factors 

The aim of this study was to optimize the amidation reaction to determine the 

experimental conditions and the formulations needed to synthesize HA hydrogels of a specified 



160 
 

degree of amidation and thus thiolation.  DoE predicts the optimal formulations for carrying out 

the amidation reaction with the help of the polynomial model equation for any specified degree 

of amidation.  For instance, to amidate 7.5 mole % of HA (based on repeat units) with minimal 

side reactions, the optimal formulation would be 0.5 moles of EDC and NHS (each) and 8 moles 

of Cys with the pH of the reaction medium at 6.5 for 3.5 h at 37oC.  This formulation is effective 

in producing the desired amidation of HA with negligible side product. 

B3 Conclusions 

The chemical modification of HA plays a significant role in designing the scaffolds for its 

use in applications such as tissue engineering, targeted drug delivery via thiol-modified-HA 

coated gold nanoparticles, and permanent vitreous substitute with in-vivo gelling properties.  Pre-

determining the degree of derivatization of HA is critical for defining the mechanical properties 

of the scaffolds specific to its application.  We investigated the factors controlling derivatization 

of HA through the carbodiimide reaction and determined the quadratic polynomial model to 

obtain hydrogels with desired degree of amidation.  We designed the experiments and analyzed 

the carbodiimide reaction with the help of DoE statistics involving FF and RSM.  The percentage 

derivatization of HA via this mechanism is dependent on the formulation of reactants and 

experimental conditions.  Based on the formulation of the reactants, the yield of desired product 

and the side product can be effectively controlled.  EDC is the critical factor which controls the 

desired as well as the undesired substitution.  An adequate quadratic polynomial model for 

predicting the degree of thiolation and the side reaction from the response surface design is 

respectively: 

𝐿𝐿𝐿10 (𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 0.69 +  (0.19 ∗  𝐸𝐸𝐸)  +  (0.013 ∗ 𝐶𝐶𝐶)  +  (−0.013 ∗ 𝐸𝐸𝐸2)    

√𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  0.20 + (1.81 ∗ 𝐸𝐸𝐸) + (−0.12 ∗ 𝐸𝐸𝐸2)  
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This model can be used to design optimal formulations of the reaction to obtain the desirable 

degree of amidation with cystamine on HA with minimal side reaction. 
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