Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-93-16

1993-01-01

The N-body Problem: Distributed System Load Balancing and
Performance Evaluation

Vasudha Govindan and Mark A. Franklin

In this paper, the N-body simulation problem is considered, its parallel implementation
described, its execution time performance is modeled and compared with measured results,
and two alternative load balancing algorithms for enhancing performance investigated. Parallel
N-body techniques are widely applied in various fields and possess characteristics that
challenge the computation and communication capabilities of parallel computing systems and
are therefore good candidates for use as parallel benchmarks. Performance models may be
used to estimate the performance of an algorithm on a given system, identify performance
bottlenecks and study the performance implications of several algorithm are system
enhancements. In this... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Govindan, Vasudha and Franklin, Mark A., "The N-body Problem: Distributed System Load Balancing and
Performance Evaluation” Report Number: WUCS-93-16 (1993). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/303

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/303?utm_source=openscholarship.wustl.edu%2Fcse_research%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/303

The N-body Problem: Distributed System Load Balancing and Performance
Evaluation

Vasudha Govindan and Mark A. Franklin

Complete Abstract:

In this paper, the N-body simulation problem is considered, its parallel implementation described, its
execution time performance is modeled and compared with measured results, and two alternative load
balancing algorithms for enhancing performance investigated. Parallel N-body techniques are widely
applied in various fields and possess characteristics that challenge the computation and communication
capabilities of parallel computing systems and are therefore good candidates for use as parallel
benchmarks. Performance models may be used to estimate the performance of an algorithm on a given
system, identify performance bottlenecks and study the performance implications of several algorithm
are system enhancements. In this paper, we propose a general framework for developing performance
models for a class of synchronous iterative algorithms and specilize it for the case of N-body simulation
algorithms. We use the model to estimate the performance of two load balancing algorithms.

https://openscholarship.wustl.edu/cse_research/303?utm_source=openscholarship.wustl.edu%2Fcse_research%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/303?utm_source=openscholarship.wustl.edu%2Fcse_research%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages

The N-body Problem: Distributed System Load
Balancing and Performance Evaluation

Yasudha Govindan and Mark A. Franklin

WUCS-93-16

March 1993

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130-4899

Abstract: In this paper, the N-body simulation problem is considered, its parallel
implementation described, its execution time performance is modeled and compared with
measured results, and two alternative load balancing algorithms for enhancing
performance investigated. Parallel N-body techniques are widely applied in various fields
and possess characteristics that challenge the computation and communication
capabilities of parallel computing systems and are therefore good candidates for use as
parallel benchmarks.

Performance models may be used to estimate the performance of an algorithm on a
given system, identify performance bottlenecks and study the performance implications
of several algorithm and system enhancements. In this paper, we propose a general
framework for developing performance models for a class of synchronous iterative
algorithms and specialize it for the case of N-body simulation algorithms. We use the
model to estimate the performance of two load balancing algorithms.

The N-Body Problem: Distributed System Load Balancing And
Performance Evaluation*

Mark Franklin Vasudha Govindan
jbf@random.wustl.edu vasu@uuccrc.wustl.edu

Computer and Communications Research Center
‘Washington University
Campus Box 1115
. One Brookings Drive
St. Louis, Missouri 63130

1 Introduction

- In this paper, the N-body simulation problem is considered, its parallel implementation is
described, its execution time performance is modeled and compared with measured results,
. and two alternative load balancing algorithms for enhancing performance are investigated.

Parallel N-body techniques are widely applied in a number of fields[8] ranging from
astrophysics[11], to fluid dynamics, to computational geometry[7]. They require dynamically
changing, non-uniforin, intensive computation and irregular, unstructured communication.
They are therefore good candidates for use as parallel computing benchmarks{10] and the
results presented in this paper are part of an ongoing effort at developing such parallel
benchmarks. In addition, the N-body simulation algorithm presented here is prototypical of
a wide class of algorithms referred to as synchronous iterative algorithms. The models and
results given in this paper apply to much of this class. N-body simulation algorithm has been
implemented on a network of SUN workstations connected by standard ethernet, running
under the PVM[13] environment. Performance has been measured and models verified in
this manner.

An important step in the design of high performance computing systems is to study
possible enhancements to the existing system and estimate the performance implications
of these enhancements. Similarly, certain modifications to the algorithms may also lead to
significant performance improvements. To evaluate the these modifications and their perfor-
mance implications, a general performance model is needed that can predict the performance
of an algorithm on a particular system. This paper presents a general framework for devel-
oping simple mean-value oriented performance models for a class of synchronous iterative
algorithms. The performance model is then specialized for the case of the parallel N-body

*This research has been sponsored in part by funding from the NSF under grant CCR-9021041.

simulations algorithm. Using this model, we estimate the performance improvements of-

fered by alternative load balancing techniques. The model can also be used to examine the

effects of other algorithm enhancements (e.g., latency hiding techniques), and also to deter-

mine the effects of architecture parameters on performance (e.g., the use of hardware based
- synchronization networks). These investigations, however, are not pursued here.

The remainder of this paper is divided into five sections. Section 2 describes the N-
body simulation problem and the serial and parallel algorithm used in our implementation.
Section 3 states the various steps involved in the development of the performance model for
the N-body simulation algorithm. The model can be used to predict the performance of the
algorithm on a given system and in Section 4 it is used to estimate algorithm performance
when executing on a network of SUN workstations. Measured performance is compared with
model predicted results and the two are shown to be in good agreement. In section 5, we
evaluate the effect of two load balancing algorithms on the performance of the simulation.
We show that the distributed load balancing algorithm yields up to 25% improvement in
speedup. Section 6 summarizes our work, presents conclusions and indicates how the model

can be used to explore other potential performance improvements.

2 N-Body Simulations

Classical N-body techniques study the evolution of a system of bodies under forces exerted
on each body by the entire ensemble. For n bodies., a direct evaluation of all pairwise forces
results in a time complexity of O(n?). Approximate methods like the hierarchical methods
considered here reduce the complexity to O(nlogn) for general distributions and O(n) for
uniform distributions[2]{1].

Hierarchical methods are based on the following principle due to Sir Isaac Newton[d4]: If
the magnitude of interaction between bodies falls off rapidly with distance, then the effect
of a large group of bodies may be approximated by a single equivalent body, if the group of
bodies is far enough away from the point at which the effect is being evaluated.

The technique discussed here is based on the Barnes-Hut algorithm([2] to study the evo-
lution of a system of bodies {or particles) under the influence of Newtonian gravitational
attraction. The input consists of the mass, initial position and initial velocities of particles
distributed over a finite physical domain. The simulation proceeds over a number of time-
steps, every time-step computing the net force on every body and updating its position and
other attributes. The simulations enable us to study the evolution of such a system over -
time. A two dimensional physical domain is considered here, though the technique can be

ComputeForce (cell, particle)
begin
if ((length {cell) / distance (cell, particle) < 8) or (cell is a leaf))
force = force + NewtonForce (cell, particle);
else
For each subcell of cell, Do:
ComputeForce (subcell, particle);
end,

Figure 1: The Recursive Force Calculation Algorithm

easily extended to the three dimensional case.

2.1 . The Algorithm

As indicated earlier, the Barnes-Hut algorithm uses a hierarchical approach and results in a
computational complexity O(nlogn). To do this, all the information about the particles are
represented in the form of a binary tree.

The binary tree is formed using a procedure called Orthogonal Recursive Bisection (ORB)[6].
The procedure starts at the root of the binary tree which represents the entire physical
domain and all particles contained in it. Successive levels of the tree are formed by recur-
sively dividing the physical domain into two rectangular sub-domains (with equal number
of particles) and assigning tree-nodes to represent each of these sub-domains until the-fi-
nal sub-domains assigned contain just one particle each. In the resultant tree structure,
leaves represent particles and internal nodes represent groups of particles. While the origi-
nal Barnes-Hut algorithm employs quad-trees, our implementation employs binary trees.

The next step associates with each node, the center of mass and the equivalent mass for
particles in that node’s sub-region. This is done by propagating information up the tree
from the leaves to successive “parent” nodes, and finally to the root. The leaves now contain
- information about the particles, and the internal nodes contain information about groups of
particles. The tree can now be used to compute the resultant force on each particle. The
tree is traversed once per particle to compute the resultant force acting on that particle
by all other particles (or particle aggregates). The force computation algorithm for each
particle starts at the root of the tree and proceeds downward. At each internal node, a
calculation is made to determine whether the aggregate of particles represented by the node
can be considered as a single mass. This is done by calculating the ratio of the length of the
sub-domain currently being processed, length(noede), to the distance between the particle

Nbody_Simulation()
Begin
Initialize mass, position and velocities of particles.
For each timestep, Do:
Begin
Build binary tree.
Compute total mass and center of mass for each cell.
For each particle, Do:
Begin
ComputeForce(root,particle);
Update position, velocities.
End;
End;
End.

Figure 2: Serial N-Body Simulation Algorithm

and the center of mass of the sub-domain, distance(node, particle). If the sub-domain is
far enough away from the particle (i.e., if length(node) / distance(node, particle) < 4,
where § is a fixed accuracy parameter), the Newtonian force between the particle and the
sub-domain is computed. Otherwise, the algorithm is recursively applied to each child of the
current node (see Figure 1).

At the end of the force calculation phase, the resultant positions and velocity of the
particles are updated. Given that the particles now have new positions, a new tree is formed
and the entire procedure is repeated for the next timestep. The simulation proceeds for the

desired number of timesteps as summarized in Figure 2.

2.2 Parallel Implementation
Two important issues in the parallel implementation of the algorithm described above are:

o Partitioning of the problem into modules, and the effective mapping of- these mod-
ules onto the available processors (i.e., to obtain maximum speedup): For the N-body
problem, the entire physical domain is broken into sub-domains and the mapping as-
signs each processor to one sub-domain. Processors are responsible for all computation
associated with the particles within their sub-domain.

e Imposing a structure on the communication pattern required by the algorithm such
that the number and size of messages are minimized: In the N-body problem, the
computation of resultant forces requires that the mass and position of every other

Build_Locally_Essential tree()
Begin
for each of the log, p bisectors
Begin
Traverse the tree and identify data
that may be essential on the
other side of the bisector
Delete data that can never be necessary on
this side of the bisector.
.Exchange data with corresponding processor
on the other side of the bisector.
Merge received data into tree
End
End -

Figure 3: Algorithm for “Locally Essential Tree” formation

particles (or particle ensemble) be known. When particles are distributed over all pro-
cessors, exchange of information is required between every pair of processors resulting
in long-range, unstructured communications.

A decomposition of the physical domain, using the Orthogonal Recursive Bisection (ORB)
described earlier, ensures rough computational balance while providing a structure for ef-
ficient communication. The physical domain is recursively divided into two rectangular
domains (with equal workloads) and half the processors are assigned to each domain. The
procedure is repeated until there is one processor associated with each rectangular domain.
To obtain regularly shaped partitions, the cartesian direction in which division takes place
is alternated with successive divisions. At the end of the partitioning phase, the physical
domain is decomposed into p sub-domains, where p is the number of available processors.
The ORB decomposition results in log, p spatial bise'ctors,' one for each recursive bisection.
The decomposition procedure is represénted in the form of a binary tree, called the ORB-
tree where, each level of the tree corresponds to a spatial bisector, and the leaves of the tree
represent the processor sub-domains.

Each processor now has a spatially contiguous domain and is responsible for all compu-
tation associated with the particles present in its domain. The processors now recursively
bisect their respective domains and represent their particles in the form of a binary tree.
The information at the intermediate nodes, the center of mass and equivalent mass of the
sub-domains are filled by an upward pass from the leaves to the root of the local tree.

Parallel N-Body_Simulation(} -
Begin
Initialize mass, position and velocities of particles
Distribute particles among processors
For Each Time-Step,
At Each Processor, Do
Begin
Form Complete ORB tree
Compute Center of mass of local particles
Exchange Center of mass (Synchronization Phase)
Build_Locally_Essential_Tree()
For Each Local Particle, Do:
Begin '
ComputeForce(root, particle)
Update Position, Velocity
End;
Invoke Load Balancing Routines
End;
End.

Figure 4: The Parallel N-Body Simulation Algorithm

To compute the center of mass and the equivalent mass of the entire physical domain,
the processors need to exchange information on the center of mass and equivalent mass of
their respective domains. Information is passed from the leaves (in this case, the processor
domains) to the root, where the center of mass and equivalent mass of the entire domain is
calculated and then, passed back down the tree so that all the processdrs have the informa-
tion. This can be viewed as an implicit synchronization phase in the algorithm since all the
processors have to “co-operate” to compute the total mass and center of mass of the system.

The ORB-tree associated with particles local to the processor and the relevant information
on particles from other processors, together, is referred to as the “locally essential tree”(le-
tree). Clearly, formation of the le-tree involves exchange of information between each pair
of processors. The ORB decomposition imposes a hierarchical structure on this apparently
“unstructured” communications requirement. The algorithm to construct the le-tree (due
to Salmon [11]) is illustrated in Figure 3. The le-free algorithm reduces the amount of data
transferred (and hence the message size) by having the sender identify and send only the
data required b{y the receiving processors. Due to the tree structure, the exchange of data
takes place in st.a,ges. corresponding to each level of the tree. Successive messages aggregate
the data received, thus limiting the total number of messages exchanged. Fach processor

P

sends and receives log, p messages (as opposed to p messages in the unstructured case). In
addition to reducing the number of messages sent, the cost of the messages is reduced if a
binary tree structure can be effectively mapped onto the underlying communication network
topology. This is true for many of the topologies available (e.g., hypercube).

Once the le-tree is formed, the processors have all the information needed to compute
the resultant force on the particles in their domain. Resultant force computation takes
place entirely locally without any communication using a recursive function similar to the
algorithm in Figure 1. The resultant velocity and dispiacement of the particles are updated.
Figure 4 summarizes the parallel N-body simulation algorithm in pseudo-code form. In
the following section, a performance model is developed to evaluate the performance of the

parallel N-body simulation algorithm on any given system.

3 Performance Model

3.1 Synchronous Iterative Algorithms

Performance models may be used to estimate the performance of an algorithm on a particular
computer system and also to evaluate potential enhancements to the system and to the
algorithm. In this section, we propose a general performance model that can be adapted
to derive performance models for a class of synchronous iterative algorithms (also called
multiphase algorithms or synchronous algorithms)[9][5]. The model formulation is similar to
the technique developed in [3] for hierarchical discrete event simulation.

Synchronous iterative algorithms generally possess the following structure: The execution
of the algorithm proceeds in a number of sequential steps or “iterations”. The work associated
with each iteration is distributed over some or all of the available processors. At the end of
each iteration, the processors perform a barrier synchronization[12] and then proceed to the
next iteration. '

The time spent in each iteration can be divided into three phases - computation, com-
munication and synchronization. The work done in each of these phases depends on the
algorithm. Typically, in the computation phase, each processor evaluates a set of local vari-
ables or attributes using its own local unshared data. Local data here refers to data present
in the processor memory for distributed memory MIMD systems,.and in a processor’s local
cache for shared memory MIMD systems.

In the communication phase, each processor (in a distributed memory architecture) sends
some or all of its local information to the processors that may need the information to

compute their local variables and receives similar information from other processors. In

this development, we assume a distributed memory system although it applies with minor
modifications to the shared memory case. ' :

The synchronization phase may be just a barrier point that ensures that all processors
complete iteration £ — 1 before any processor can start iteration k. In distributed memory
systems, synchronization involves exchange of messages between processors (log, p messages

for a complete exchange on hypercube-type systems).

The synchronization phase forces the processors to proceed in lock-step, one iteration
at a time, through the algorithm. Therefore the time for each iteration is the sum of the
synchronization time and the maximum, over all processors, of the sum of computation and
communication fimes on each processor. Here, we assume that computation and communi-
cations are not overlapped. However, the model can be extended to allow partial or complete
overlap. The time for each iteration, Ti.,, given p processors are available can be expressed
 as:

Titer = m2X (Teomps + Teommyi) + Toyme (1)
In the ideal case, where the computation and communication loads are evenly distributed

over all processors, the terms in the Maz expression reduce to their average values.
Smaller T, results in smaller execution times and hence better performance. A number

of algorithm and system enhancements can be applied to improve performance. Some options

are listed below:

e High performance communication support: Reduces T.omm.

e Special hardware/software for synchronization: Reduces Tyync.

¢ Ideal Load balancing: Reduces Maz(.) term to its average value.

¢ Overlapping computation and communication: Reduces the (Teomm i + Teomp.i)

term to a max (Teomm,i, Teomp:) term.

In the remainder of this section, we develop expfessions for Teomp,is Leomm,i and Tyyne for
the N-body simulation algorithm. Later we focus on impreving performance by achieving a

better load balancing.

3.2 Performance model for N-body Simulation algorithm

In developing the model for the N-body simulation algorithm, we assume a distributed
memory parallel processing system having identical processors and communicating over an
interconnection network. The communication costs depend on network topology and tech-

nology.

Bl |

T‘yniz,‘ x",v::f.:(cssagcs

BT | | | |
Tlc—u/ec.l Tonii Tupadel }}mﬂ.i

™ Titer

Figure 5: Sample Iteration of the Algorithm

Algorithm initialization costs are considered to be negligible. The various steps involved
in each iteration can be grouped. into computation, communication and synchronization
phases. Each iteration in the algorithm can be divided into the following five steps.

1. Exchange/propagate local center of mass (synchronization): Tyyne-
2. Form le-tree : Tj._iree (corresponds 0 Teomm)-

3. Compute resultant forces: Toree (part of Teomp,i)-

4. Update pdrtic_le attributes: Typgare (Part of Teomp,i)-

5. Form new tree of local particles: Tiocar (part of Teomp,).

Figure 5 shows a sample iteration of the algorithm for two processors. Table (i) lists the
variables used in the model and their definitions. Equation 1 for T}, (for p processors) can

now be written as follows:
fI'iter = Taync + I-f_l:aix (Tlc-trec,i + Tforcc.a' -+ Tupdate,s' =+ ﬂoca!,i) (2)

Due to the dynamic nature of the simulation, the workload on the processors may not
be balanced. Imbalance in workload causes the lightly loaded processors to wait for the
heavily loaded ones to reach the barrier. However, since the N-body simulations are compute
intensive, the force computation phase dominates each iteration?. The imbalance in all other
phases are generally very small and the max function associated with Tjocar i, Tie—trees and
Tupdate; ay be approximated by their respective average values. Equation 2 can therefore

be rewritten as:

Titer = Tsync + Ttemtree + IP:aix (T_;o,-cc) + Tupdatc + Trocat (3)

2Qur experiments, discussed later, show that in a 1024-particle, 4-processor simulation, 85% of the time
is spent in the force computation phase.

Table i: Variables and Definitions

N Total number of Particles simulated.

2 Number of Processors.
n; Number of particles allocated to processor :.
fi Average number of particles per processor. i = N/p

Tiier Time to complete one iteration.
Tayne | Synchronization time per iteration
Tle—treei | Time to form le-tree on processor £
Tforce; | Time to compute forces on processor 1 "
Topdate;; | Time to update particle information on processor 7
Tiocat,; | Time to form local tree on processor ¢
Tmag(s) | Message transmission time for message of length s.

A convenient way to deal with the max term is to define an imbalance fé,ctor, B to be
the ratio of the maximum time for force evaluation to the average force evaluation time.

_ma.xfz 1 (Tjorce)
Tf orce

(4)

B

B may change considerably as the simulation progresses, beginning with a value of about
1 (reflecting good initial balance) and moving to values in the 2 to 3 range as the load
balancing deteriorates. Equation 3 can now be rewritten as:

I‘itcr = Lsync + Illc—trcc + ﬂ X Tforce + Tupdatc + ﬂocal (5)

Detailed expressions for each of the terms in equation 5 are now derived. Table (ii)
defines the model parameters and their values measured on our system (described later).
Though the model can be extended to general topologies, to simplify notation and message
time expressions it is assumed that a binary tree can be embedded in the communications

network topology (e.g., hypercube).

3.2.1 Synchronization

In the synchronization phase, the processors exchange the total mass and center of mass
of their respective domains to calculate the total mass and center of mass of the entire
system. The synchronization procedure makes use of the ORB tree structure to compute
and distribute the global information. Processors at the leaves of the tree structure send
the information about their domain to their respective “parent” processors, The parent
computes the total mass and center of mass of its “children” and passes the information to

10

Table ii: Model Parameters

Parameter | Definition Measured Value
Kovar Force evaluations per particle 17.43
Nyyee No. of bytes to represent a particle 80 bytes
teval Time per force evaluation 100 s k
lupdate—p | Update time per particle 70 1S
tiocal—p Local tree formation time per particle | 80 7
tsearch—p | le-tree search time per particle 300 s
Imerge—p | le-tree merge time per particle 300 . pus

its parent. The “root” processor computes the global information and passes it down the
tree in a similar fashion.

The synchronization procedure therefore takes 2 x log, p message times corresponding
to the log, p levels of the tree. The processing at intermediate processors is negligible (few
additions). Thus:
‘ Toync = 2 X logy p X Tnyg(s) (6)

where, T},,4(s) is the transmission time for a message of s bytes. The message contains just
a few bytes of data representing the center of mass position and total mass of the domain

and therefore, s is generally a small number.

3.2.2 Communication

The formation of the le-tree accounts for most of the communication that takes place in each
iteration (see Figure 3). Corresponding to each of the log, p spatial bisectors, each processor
identifies its own data needed by processors on the other side of the bisector and exchanges
the data with its “partner” on the other side of the bisector. Each processor, therefore, sends
and receives log, p messages. '

The first exchange involves at most (i X Npy.) bytes where, # is the average number
of particles per processor and Ny is the number of bytes required to represent a particle.
In subsequent exchanges, processors send their own data and the data acquired from other
processors during previous exchanges. Therefore, successive messages at most double in
length. The kth exchange involves at most (2* x) particles a.nd therefore, the messages are
(2 x 7 x Npytes) atmost bytes long.

Further, It is reasonable to assume that the time to search the tree for identifying ex-
portable data is proportional to the number of particles searched and merging the received
particles into the tree takes time proportional to the number of particles received. We use

11

Yscarch—p a0d Emerge~p t0 denote the search time per particle and merge time per particle,
respectively.
Tlemtree = }:}fjgp "I[Sea.rch Time + Message Time + Merge Time]
(7

= E?_—%P—I[(tmﬂch—p + tmcrgc—p) X 2k X2+ Tmsg(zk X nX betcs)]

3.2.3 Computation

The total computation in the algorithm takes place in three steps - force evaluation (Ttoree)s
update (Tupdate) and local tree management (Tlocat). The imbalance in workload among
processors is due to the dynamics of the simulation problem. As the simulation proceeds,
particles move across processor domains éausing an imbalance in the number of particles
per processor (given fixed processor domains) and the computational load at each processo'r.
However, since the force computation dominates each iteration, it is reasonable to assume
that the imbalance in the other computation terms (Tupdate and Tiocar) is negligible. The
imbalance in force computation is reflected in the imbalance parameter 3. Thus, the average

computation time per iteration can be written as:
Twm}’ = ABTforce + Tupdate + Tlocar (8)

The force evaluation phase is the most time consuming phase of each iteration. For each
particle, the tree is traversed from the root and the force on the particle due to other particles
or groups of particles are computed. Due to the hierarchical nature of the algorithm, each
particle has, on the average, O(log N) force evaluations associated with it. Let the average
. number of evaluations per particle be K. log N, where K., is a constant that depends on
the particle distribution and on the user defined accuracy/tolerance parameter, 8 (see figure
1). The time for the force evaluation phase can be expressed as:

Tforcc =1 X Keyat 1052 N X tepai) (9)

where, #,4q; is the time for each force evaluation®.

The update phase involves scanning through the list of local particles and updating their
position and velocities based on the resultant force on each particle. The time for the update
operation is proportional to the number of particles present in the processor.

Tupdatc =nX tupdate—p . ' (10)

3This operation involves evaluating the Newton’s force formula. Depending on the accuracy desired, it
could be simple first order calculation or may involve a more complex evaluation based on higher order
moments. A simple first order calculation is used in our implementation

12

Table iii: Message System Parameters

Parameter | Definition Measured Value
MAXML | Maximum fragment length 4096 bytes

tata.rt Packaging sta.rtup time 3.4 ms l
tpack-tyte | Packaging cost per byte 09 s

Liatency Latency through network 30 ms

trate Delay per byte (transmission rate) | 1 us
Lunpack—byte | Unpackaging cost per byte - 0.9 us l

Forming a new tree of local particles and computing their center of mass is essentially a
O(n log n) operation, where n is the number of local particles. The time for this phase, Tiocat

can be expressed as: ,
fTlactz.l = ﬁlng fi X tlacai-—p (11)

4 N-body Simulations on the PVM system

In this section, the performance model presented above is evaluated ard compared to mea-
sured values. In this experiment, the N-body simulation algorithm was implemented on a.
network of workstations.

The algorithm was implemented on a system consisting of eight SUN/SPARC worksta-
tions connected by a standard ethernet. The PVM programming environment was used to
develop our parallel implementation. PVM (Parallel Virtual Machine)[13] is a programming
environment, developed at the Qak Ridge National, Oak Ridge, Tennessee, which enables
a collection of independent workstations connected by some interconnection network to be
viewed as a single concurrent computing resource. PVM has been gaining popularity in
research and academic circles mainly due to its ﬂéxibility, portability and its ability to use
existing computing resources as a distributed system.

The model parameters, teval, tupdate—ps tocalaps Esearch antd tmerge are all dependent on the
* computation capacity of the processors in the system. These constants were measured (see
Tables (ii) and (iii). over a large number of trial runs. K,.. is a function of simulation
parameters such as the tolerance, & and the initial distribution of particles,

The message transmission time, Tin,,(s) is the total time to transmit a message of s bytes
from one processor to another. This includes the actual transmission delay in the network
and the packaging, unpackaging and other processing delays at the two end points. The
traffic on the ethernet and the processor loads effect the message transmission times. To
minimize the effect of these factors, all our measurements were taken when the system was

13

lightly loaded. The message system parameters were obtained by sending a large number of
messages between two processors in the network and measured the packaging, unpackaging
times and message delays for each message. The message transmission time can be expressed

as the sum-of these three components. 7
Tinag(8) = Tpack(S) + Tactay (8) + Tunpack(s) (12)

where, Tpqci(s) is the processing time to package a message of s bytes at the transmitting
end, Tyeray(s) is the time for the message to traverse the network, and 7,,p00k(8) is the
processing {imie to unpackage the message of length s bytes at the receiver end. Based on
experiments under the PVM programming environment and the ethernet interconnection of

our workstation network, terms in the above equation can be expressed as:

S
Tpack(s) = rm] X Latare + 8 X tpack—byte (13)
Tdclay(s) = tlatcncy +s$ X tratc (14)
Tu;:pack(s) = 88X tnnpack—bytc (15)

where, [.] denotes the ceiling function and MAXML, the maximum fragment length, is a
parameter used by PVM for packaging data for transmission.

The processor'sending the message, packages the data in fragments of length MAXML
and sends it out on the network. The delay through the network involves an initial latency,
tiatency, and a delay, s X t,q, that depends on the transmission (bit) rate of the message
system. Unpackaging time is proportional to the length of the message.

Using expressions for message transmission times and the model derived in the previous
section, the performance of the N-body simulation algorithm can be predicted and compared
with measured results. The speedup obtained on p processors is defined as the ratio of the
time per iteration on a uniprocessor over the time per iteration on p processors.

; Tz er 1
Speedup(p) = ij""gp—;

In Figure 6, the speedup versus number of processors is plotted for 128 and 1024 particle
systems. These are simulations of a slowly evolving system where the workload remains
roughly balanced (f = 1) throughout the run. The model predicted performance within
12% of measured values with the error being due principally to the £ approximation and to
the somewhat unequal computational capabilities of the processors.

Figure 7 shows the measured and model speedup for a highly dynamic 1024-particle
simulation with a different initial distribution. In this-case, the measured workload imbalance

14

<
————— N - 128; Modal]
-———- N o= 128 Measuredc -
5 F —m— N w1024 Model —_
i N - 1 OR2<gG: Moasurad - B

-
/’/
//
-

~ - S // =

1 L ——
- - o
5 | e -

P ——
P a |- /,/ ‘‘‘‘‘‘‘‘ .
-
- -
- -
- -
-~ =
// =
= - // -
-
o
- . . " 2

1 =2 = - F=3 [=Y > =3

P: Numbaer of Processors ~«->
Figure 6: Measured and Model speedups: Slow Dynamic Case
(N: Number of particles simulated. § = 1) '

<
----- Modal -
- Moasuiredc -
S | —-—- Perfect Balance: Modol]

1 = = -3] L= rd a8
P: Number of ProCosscors —-o-

Figure 7: Measured and Model Speedups: Fast Dynamic Case
(N: Number of particles simulated = 1024. 8 > 1)

ranges from 1 to 1.2 for two processors, 1 to 1.98 for four processors and 1 to 2.57 for eight
processors (Performance model uses average measured § values). Due to the imbalance, the
speedups obtained are much smaller than the obtained with the slow dynamic example. Our
model predicted performance within 15% of measured values.

Table (iv) lists the error between measured values and those predicted using our perfor-
mance model. The mean (absolute) error and the maximum error in estimating synchroniza-
tion, communication and computation times for both examples (Figures 6 and 7) are given.
In both cases, the mean error is less than 15% with & lower error for the slow dynamic case,
where more accurate approximations of 8 (and thus for computation times) are used. The
errors in synchronization and communication times are mainly due to the effects of network

traffic.

13

Table iv: Errors in Model Predictions

Slow Dynamic Simulation | Fast Dynamic Simulation

Mean Error | Max. Error | Mean Error | Max. Error
Sync. Time 7.3% 10% 8.2 % 12%
Comm. Time 3.2% 3.7% 3.5% 4.1%
Comp. Time 7.05% 13.3% 11.2% 19.6%
Total Time 5.3% 11.6% 7.3% 15.1%

5 Load Balancing

As indicated in the prior section, improper load balancing adversely effects performance.
Thus, while the initial load balance may be near perfect, due to the dynamic nature of
the N-body simulation, workload distribution among processors may change considerably as
the simulation proceeds. Figure 7, for example, indicates that about 40% improvement can
be theoretically obtained if ideal load balance can be achieved. This section presents two
dynamic load balancing algorithms and examines their performance.

While a load balancing algorithm is expected to reduce workload imbalance, 8. there
1s a cost incurred in executing the load balancing algorithm itself. The load balancing cost
per iteration, Tjo.q, is defined as the computation and communication time per iteration
spent in executing the load balancing algorithm. In general, the load balancing cost has
two components: (1) cost for collecting system state information (e.g., load average over all
processors) and (2) cost for distributing load based on the system state information.

In our implementation, the load average is computed in the synchronization phase. Since
information on processor loads is distributed along with the center of mass information, there

is negligible added cost associated with this activity.

The cost for distributing load depends on:

(a) the load balancing algorithm used
(b) how often the algorithm is activated (dependent on the dynamics of the simulation)

(c) the communication and computation parameters of the system.

If the load balancing algorithm results in a new imbalance factor, B, the time per iteration

with load balancing can be expressed as a modification of equation (5) as:

T;tcr = Tsync + T}c—tree + B X Tforce -+ Tupda.te + Tlloco.[+ T'load (16)

16

In this section, two load balancing algorithms tailored to the N-body simulation problem
are presented and evaluated. They are referred to as the (1) Domain redistribution and (2)

Distributed load balancing algorithms.

5.1 Domain Redistribution (DR)

In the original algorithm presented, the ORB technique described in section 2.2 generates
processor domains with equal workload, and those domains remain for the entire simulation.
With the domain redistribution(DR) algorithm, the ORB decomposition routine is invoked
whenever the load imbalance, 8, exceeds a pre-defined threshold parameter, Bipreshold- 1N
this way, balance is maintained within certain bounds. The algorithm is simply:

If (ﬁ 2 ﬁthreshold)
Call ORB algorithm.

The cost associated with this approach can be modeled as follows: Let Tozg be the time

taken for ORB decomposition operation. Tprp consists of the following components:

* Zpoor: Time to “pool” together particles on all processors. The particle information is
sent up the processor tree. This involves log, p messages with each successive message

doubling in length.

¢ Thiser: At each level of the tree, bisect the domajn‘into two halves with equal workload.
' This is analogous to the tree formation operation in step 5 described in section 3.2.

® Taistr: At each level, send particle information to processors at the next tree-level. This
1s similar in complexity to Tpoy-

Since each node at level 7 of the ORB-tree has, on the average, 2° X #i particles, we have:

TOR.B - Tpaol + Tbiscct +'Td.t'sir'

Tpoo! = Eiﬂ;gog Pl :l-l'ms_gr(2£ Xn X betes)
~ (17)
T'biscct = ZiO:goz Pl [tloca!—p X 2'R 10g2(2‘ﬁ’)] '

log; p—1 { —
sz'str = 2{:02 fpmsg(21 XnX betcs)

The parameters are defined in Table (ii). ‘
We now proceed to estimate how often the algorithm is activated. To do this, we assume

that the imbalance, §, with no load balancing, increases steadily from 1 to a maximum
value, Bas (Our measurements indicate that this assumption is reasonable) for a total of

17

Bmax
without
A load balance
- with
B load balance
threshoild
- - - 't “i Y ~ -
1 :"’ :r" :”’ :‘”’ L"’ :'él’:.o“ -
0 m M

Iterations -->

Figure 8: Variation of 8

Table v: Performance of Domain Redistribution (DR) Algorithm

: N Speedup - % gain with "
rlf Bz | B Tioad(ms) || (no balance) | (with balance) [load balance || -
111 1 1 ' 0 1 I 0%
2(1.04}1.2 1.03 139.309 1.81 ‘ 1.79 - 1.1% L
4)1.4111.98 |1.03| 513.029 2.51 287 14% |
8118 257 |1.04 949.068 3.54 3.79 7%

. M iterations, The load balancing algorithm is activated whenever the imbalance exceeds
Bihreshotd. Assuming that the linearity of 8 holds with load balancing, the load balancing

algorithm is activated every m iterations, where,

(ﬂthrcshold - 1)
= XM
(ﬁma:z: - 1)
(see Figure 8). Theréfore, the cost per iteration, Tiouq, for the domain redistribution algo-

rithm is given by:
Tors
(18)

Tload =

Table (v) gives the algorithm performance (in terms of speedup) as predicted by the model
for the 1024-particle fast dynamic system (see Figure 7). B and Bmes are measured values
for the no-balance case. The threshold parameter, Bihreshotd, Was taken as equal to 1.05,
and the total number of iterations, M, was set equal to 1000.. From the data in Table (v),
it can be seen that DR algorithm (although achieving good balance) does not yield good
overall performance due to its high execution costs. The measured speedups were close to-
the speedups predicted by the model and are plotifed in Figure 10.

18

At Each Processor:
If (myload > HWM)
Shrink Domain by my.lofaﬁ{;ﬂfl WM%
Send all particles outside my domain to neighbors

If (particles Received)
Expand domain to accommodate them.

Figure 9: Distributed Load Balancing Algorithm

5.2 Distributed Load Balancing (DLB)

In the DR algorithm above, all the processors are involved in the load balancing operation
even though only a few processors may be heavily loaded. An alternate approach is for
the heavily loaded processors to execute the load balancing algorithm locally and balance
their workloads. In the distributed load balancing (DLB) algorithm, the heavily loaded
processors “shrink” their domains by sending particles to their neighbor processors which,
in turn, “expand” their domains. The processors reach a new distribution over a number of
iterations where the heavily loaded processors have smaller domains and the lightly loaded
processors have larger domains and the workload is balanced.

The DLB algorithm is given in Figure 9. HWM, the High Water Mark, is the threshold
load at which a processor should send out particles and is typically set to 10 to 20% above
the system average. The cost associated with this load balancing technique is due to:

¢ Computation cost: Cost for comparing local load with the H WM, shrinking the local
domain and identifying particles to be sent. This cost is principally proportional to
the number of particles present in the processor domain.

e Communication cost: Cost of sending the particle to appropriate destination proces-
sors. Since processors do not wait for messages, the transfer of particles is assumed
to be overlapped with other computation and these costs are therefore assumed to be

negligible.
+ The cost per iteration for the distributed load balancing algorithm can be expressed as:
Tioad = tiy X 71 (19)

where, ¢y is the time taken to test whether a particle is outside a processors domain and
needs to be sent out. For our impleémentation, £ = 0.02 ms. The load balancing cost is,

therefore, very small compared to the total time per iteration.

19

Table vi: Performance of Distributed Load Balancing (DLB) Algorithm

‘ Speedup Gain with
plB Bmaz | B Tioaa (ms) || (no balance) | (with balance) | load balance
111 1 1 0 1 1 0%
21104 (1.2 |1.03 10.24 1.81 1.82 0.5%
4141198 {1.1 5.12 2.51 3.07 23%
8|1.8 |2.57 |[1.32 2.56 3.54 441 25% |

Since load balancing activity is localized around heavily loaded processors, if all processors
in a certain neighborhood are heavily loaded, some amount of “thrashing” may occur. As
a result, the DLB algorithm achieves poorer balance than the DR algorithm. However,
though the DLB algorithm achieves poorer balance, it results in improved speedups due to
its relativély low execution costs. For the 4 and 8 processor cases a significant improvement
of about 25% is achieved. Table vi lists the values of B, Tioeq and speedup evaluated using
our model for a 1024-particle simulation with HWM= 1.1. (f and B, are measured values
for the no-balance case reported in Figure 7. 3 is the measured imbalance for the distributed
load balance case.). The measured speedups for the distributed load balancing algorithm
are similar to the model predictions and are plotted in Figure 10. ‘

In Figure 10, the performance of the load balancing schemes are compared against the
no-balance and the perfeét balance cases. Speedup for the perfect balance case is evaluated
using the performance model (equation 16) with the imbalance, set to 1 and load balancing
cost, Tiseq set to zero. The error in model predictions are fairly small (Iéss that 15%) and
are mainly due to the approximation of # in the DR algorithm and the approximation of

Ttoaa for the DLB algorithm.

6 Summary, Conclusions and Future Work

In this paper, we have presented a parallel N-body simulation algorithm, based on the Barnes-
" Hut algorithm, to study the evolution of a system of particles under gravitational forces. The
algorithm can be generalized to a wide variety of applications. N-body techniques are good
candidates for use as parallel benchmarks and are prototypical of a wide class of algorithms
referred to as synchronous iterative algorithms. We have implemented the algorithm on a
network of workstations connected over a standard ethernet and intend: to use the algorithm
as part of a benchmark suite oriented towards evaluation of distributed memory parallel

Processors.

20

— NOo Balancing: Modal
———=—- DR: Modol
7 r ——— DLEB: Modad -
_——— FPorfect Balancing: Modal
= Mo Balancae: Meaesured
= DR Moaeured

& - o DLB! Moonsured
—
-
~AS - -
T -
= -
- -t
,—-'-' _____.——"‘JL
- —
- - — -
- ——
- — —
- —— ———
—-’-, ,—'——- ——————— &
- — .--‘-_—.
3 |- T e o
- -
-
_/;‘/—”
- -
> R E
. = _
1 .
= =2 -t 5 L3 7 =3

P Number of Procoeseaora ——m

Figure 10: Comparison of Load Balancing Schemes

Performance models can be used to estimate the performance of the algorithm on a given
system, identify performance bottlenecks, and to evaluate possible enhancements/modifications
to the system and to the algorithm. We have outlined a framework for developing simple per-
formance models for a class of synchronous iterative algorithms. A mean-value performance
model is developed for the N-body simulation algorithm and the model is used to estimate
the performance of the algorithm on a network of workstations. The performance predicted
by our model compared very well (within a 15% error) with the measured performance.

Based on our model, several performance bottlenecks have been identified and suggestions
made that may improve overall performance . One improvement which increases processor
utilization results from maintaining a balanced workload over all processors. This reduces
the total execution time and, therefore, improves the speedup obtained. In this paper, two
load balancing algorithms are presented and models developed to estimate their performance.
These algorithms were also implemented on our workstation network. The distributed load
balancing technique yielded up to 25% improvement in speedup. The measured perfor-
mance and model prediction matched within a 15% error. Thus the model is a reasonable
predictor of performance and use of the DLB algorithm can yield substantial performance
improvements. ‘

We are currently looking into techniques that can mask communication latencies in dis-
tributed memory systems for a class of iterative algorithms. Other enhancements we are
investigating relate to the use of high speed ATM based communication networks and asso-
ciated protocols to reduce the communication time per iteration and hardware based synchro-

nization networks and related mechanisms to reduce the synchronization time. Performance

21

improvements due to these enhancements can be evaluated using the model presented in this
paper and thus provides us with a framework to quantify the performance implications of

these design decisions.

References

(1] Andrew W. Appel. An Efficient Program for Many-body Simulation. SIAM Journal of Sci-
entific and Statistical Computing, 6, January 1985.

(2] Joshua E. Barnes and Piet Hut. A Hierarchical O(N log N) Force Calculation Algorithm.
Nature, 324(4), Dec. 1986.

. [3] Roger Chamberlain and Mark A. Franklin. Hierarchical Discrete-Event Simulation on Hyper-
cube Architectures. IEEE MICRO, August 1990.

[4] Edward A. Desloge. Classical Mechanics. John Wiley, New york, 1982.

[5] M. Dubios and F.A. Briggs. Performance of synchronized iterative processes in multiprocessor
systems. IEEE Trans. Software Eng., (4), July 1982.

[6] G.C. Fox et al. Solving Problems on Concurrent Processors. Prentice Hall, Englewood Cliffs,
'NJ, 1988.

[7] P. Hanrahan et al. A Rapid Hierarchical Radiosity Problem. Proceedings of SIGGRAPH, 1991,

[8] Leslie Greengard. The Rapid Fualuation of Potential Fields in Particle Systems. ACM Press,
1987,

[9] K. Hwang and F.A.Briggs. Computer Architecture and Parallel Processing. McGraw-Hill, New
York, NY, 1986.

[10] Jaswinder Pal Singh, John L. Hennessey and Ancop Gupta. Implications of Hierarchical N-
body Methods for Multiprocessor Architecture. Technical Report CSI-TR-92-506, Computer
Systems Laboratory, Stanford University, Computer Systems Laboratory, Stanford University,

- Stanford, CA 94305, 1992.

[11] John Salmon and Michael S. Warren. Astrophysical N-body Simulations on the Delta. Tech-
nical report, California Institute of Technology, April 1992.

[12] Harold S. Stone. High-Performance Computer Architecture. Addjson-wesiey Pub. Co., Read-
ing, Mass., 1990.

(13] V.S.Sunderam. PVM: A Framework for Parallel Distributed Computing. Concurrency: Prac-
tice and Ezperience, 2, Dec. 1990.

22

	The N-body Problem: Distributed System Load Balancing and Performance Evaluation
	Recommended Citation
	The N-body Problem: Distributed System Load Balancing and Performance Evaluation

	tmp.1439928365.pdf.UNKK9

