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Coupling of Oxidation-Reduction Reactions of Chromium, Iron and Manganese: Implications for 

the Fate and Mobility of Chromium in Aquatic Environments 

by 

Chao Pan 

Doctor of Philosophy in Energy, Environmental & Chemical Engineering 

Washington University in St. Louis, 2017 

Professor Daniel Giammar, Chair 

Both within the United States and internationally, hexavalent chromium (Cr(VI)) is a 

contaminant of concern in drinking water supplies. The U.S. Environmental Protection Agency 

is considering a Cr(VI)-specific standard. Thus improved technologies for Cr(VI) removal in 

drinking water are needed. Iron electrocoagulation for Cr(VI) removal was examined at 

conditions directly relevant to drinking water treatment, and humic acid (HA) affects the 

performance of electrocoagulation in multiple ways. The success of the chromium treatment or 

remediation also relies on the stability of the Cr(III)-containing solids with respect to reoxidation 

under groundwater conditions. Manganese is ubiquitous in aquatic and terrestrial environments, 

and the redox cycling of manganese may significantly impact the fate and transport of chromium. 

Coupling of redox reactions of chromium, iron and manganese involves multiple interaction 

pathways that occur in the aqueous phase as well as at solid-water interfaces. A mechanistic and 

quantitative understanding of these processes is needed to establish input parameters for kinetic 

and transport models and to enable decision-making for chromium treatment strategies. 
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Iron electrocoagulation (EC) is a technology that can successfully achieve low 

concentrations of Cr(VI) in treated drinking water. In our research we have applied iron 

electrocoagulation (EC) with iron serving as the sacrificial anode to treat simulated drinking 

water solutions.  Experiments have evaluated the effects of pH, dissolved oxygen, and common 

anions on Cr(VI) removal during batch EC treatment. In addition, the presence of humic acid 

(HA) inhibited the rate of Cr(VI) removal in electrocoagulation, with slower Cr(VI) removal at 

higher pH. This is due to dissolved oxygen competing with Cr(VI) for the oxidation of Fe(II) 

released from the anode. As determined using dynamic light scattering and wet chemistry 

experiments, the presence of HA resulted in the formation of Cr(III)-Fe(III)-HA colloids during 

electrocoagulation, which is difficult to remove in following water treatment steps of 

sedimentation and granular media filtration. Characterization of the solids by X-ray diffraction 

indicates that the iron oxides produced are lepidocrocite at pH 8, with more ferrihydrite in the 

presence of HA.  

Building on previous knowledge of MnO2 as an oxidant for Cr-containing solids, we 

systematically evaluated the rates and products of the oxidation of Cr(III) in iron oxides by 

MnO2. We found that Cr(III) dissolution from CrxFe1-x(OH)3 greatly influenced the Cr(VI) 

production rates. A multi-chamber reactor was used to assess the role of solid-solid mixing in 

CrxFe1-x(OH)3-MnO2 interactions. A dialysis membrane divided the reactor into two chambers, 

eliminating the possibility of direct contact of the solids in each chamber but allowing dissolved 

species to diffuse across the membrane. The Cr(VI) production rate was much lower in multi-

chamber experiments (CrxFe1-x(OH)3||MnO2) than in completely mixed batch experiments under 

the same condition, indicating that the redox interaction is greatly accelerated by mixing of the 

two solids. The model was first established to predict Cr(VI) release in Cr(OH)3||MnO2 
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multichamber experiments, as dissolved Cr(III) concentration in equilibrium with Cr(OH)3 is 

higher at low pH and it’s easy to observe the behavior of Cr(VI) dynamics with more Cr(VI) 

generation. While solid phase Mn(IV) is well known oxidants of Cr(III)-containing solids, the 

localized oxidation of adsorbed Mn(II) by dissolved oxygen can also promote the oxidation of 

Cr(III) contained within CrxFe1-x(OH)3. The promotional effects was likely due to Mn redox 

cycling in which oxidized forms of Mn species were generated as oxidants of CrxFe1-x(OH)3 that 

were more potent than O2. 
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Chapter 1. Introduction 

1.1 Background 

1.1.1 Chromium(VI) as a contaminant and drinking water regulation 

Chromium(VI), also referred to as hexavalent chromium, is a toxic contaminant that has 

been observed in private and public water supplies. Cr(VI) is recognized to be much more toxic 

than chromium(III), and is found to be toxic to bacteria, plants, animals and people. Cr(III), on 

the other hand, is less toxic than Cr(VI) and is nearly insoluble at neutral pH (Figure 1.1).
1
 Cr(III) 

is listed as an essential element, as micronutrient, to maintain good health and helps in 

maintaining the normal metabolism of glucose, cholesterol, and fat in human bodies.
2
 It is toxic 

only at high concentration. 

 

Figure 1.1 Cr(III) solubility as a function of pH 
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In parallel to the widespread public attention, drinking water regulators have been 

examining potential regulations for Cr(VI).
3
 The current national primary drinking water 

standard is 100 µg/L for total Cr,
4
 which includes both Cr(VI) and the much more prevalent and 

significantly less toxic Cr(III). However, the U.S. EPA is considering a Cr(VI)-specific standard 

and utilities have recently been required to monitor for Cr(VI) as an unregulated contaminant.  

1.1.2 Methods for chromium(VI) removal 

Physical and chemical processes involving iron can be used to remove Cr(VI) from 

solution. Cr(VI) can adsorb to iron oxides including amorphous iron oxides,
5
 goethite,

6
 

hematite,
7
 ferrihydrite

8
 and to iron–oxide–coated sands.

9
 Adsorption of Cr(VI) involves 

complexation of Cr(VI) with hydroxyl functional groups on the solid surface. Adsorption is 

strongly pH-dependent with maximum sorption at slightly acidic pH and often negligible 

adsorption in the pH range of 8-9 associated with many natural waters.
5, 7, 10-12

 Cr(VI) adsorption 

to iron oxides can also decrease with increasing ionic strength,
13

 and common ions in natural 

water such as 2

4SO   and 
4 4H SiO  can inhibit adsorption.

11
 2

4SO  competes with 2

4CrO   for 

adsorption sites on iron oxides,
5
 while 

4 4H SiO  could polymerize to physically block access to 

adsorption sites within internal pores of the solid.
14

 Because Cr(VI) adsorption to Fe(III) oxides 

and oxyhydroxides is highly dependent on the water chemistry and can be negligible at the 

conditions of many water supplies, Cr(VI) removal by coagulation using Fe(III) salts (e.g., ferric 

chloride) can be poor even with high coagulant doses.
15

 

Several Cr(VI) remediation techniques involve its reduction to Cr(III) through the use of 

reducing agents, among which Fe(II) is a particularly promising reductant. For in-situ 

remediation of groundwater, zero-valent iron has shown to effectively remove dissolved Cr(VI) 
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in permeable reactive barriers both in the laboratory
16, 17

 and in field tests.
18

 However, the rate of 

reaction is slower at neutral and mildly alkaline conditions due to passivation.
19

 Sulfur dioxide, 

sodium sulfite, sodium bisulfate, humic and fulvic acids also act as efficient reductants for Cr(VI) 

at very acidic pH.
20-22

 

Using reduction and coagulation with Fe(II), Cr(VI) can be removed to low 

concentrations in drinking water.
15, 23-25

 The rates of Cr(VI) reduction by Fe(II) are highly pH 

dependent, decreasing over the pH range 1.5-4.5 and increasing from 5 to 8.7.
26

 When Fe(II) was 

39.2 µM, the half life of 0.95 µM Cr(VI) was more than 150 minutes at pH 5.8 while less than 10 

minutes at pH 6.6. The removal mechanism of Cr(VI) in ferrous iron coagulation involves 

reduction of Cr(VI) to Cr(III) coupled with the oxidation of Fe(II) to Fe(III) (eq 1.1, written 

based on the dominant species at pH 7) and the subsequent adsorption to or co-precipitation of 

Cr(III) with an Fe(III) (oxy)hydroxide (eq 1.2).  In addition to adsorbing to the iron oxides 

produced, Cr(III) could be structurally incorporated in the iron oxide by co-precipitation to form 

a Fe(III)-Cr(III) (oxy)hydroxide solid solution.
27

  

CrO4
2-

 + 3Fe
2+

+ 3H2O + H
+
= CrOH

2+
 + 3Fe(OH)2

+ 
                          (1.1) 

xCrOH
2+

 + (1-x)Fe(OH)2
+
 + (1+x)H2O = CrxFe1-x(OH)3(s) + (1+x)H

+
   (1.2) 

1.1.3 Iron-electrocoagulation for Cr(VI) removal 

While Fe(II) can be introduced to water for Cr(VI) removal by chemical addition, iron-

based electrocoagulation (EC) can also generate Fe(II) for effective Cr(VI) removal from water.  

EC is based on applying an electric voltage to a sacrificial Fe(0) anode to generate Fe(II) in situ 

(eq 1.3).
28

 H
+
 generated during Fe(II) oxidation process (eq 1.5) could be reduced on the cathode 

(eq 1.4), stabilizing pH in the alkaline range.
29

 The generated Fe(II) can be subsequently 
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oxidized by dissolved oxygen to Fe(III), which can then precipitate as Fe(III) (oxy)hydroxides 

depending on the pH. Research over the past decades has proven the ability of electrocoagulation 

to remove a wide range of pollutants in systems with simple design and operation 
30, 31

. EC has 

been most widely studied as a technology for arsenic removal from drinking water sources at 

various conditions.
32-35

 For chromium , most EC research has focused on applications to 

industrial wastewater treatment.
36, 37

 When Cr(VI) is present, it could be directly reduced by 

Fe(II) to less soluble Cr(III) in a pathway in which the Cr(VI) competes with DO for oxidation of 

the Fe(II) (eq 1.1). 

Anode: 

Fe = Fe
2+ 

+ 2e
-
                                                       (1.3) 

Cathode:  

2H
+
 + 2e

-
 = H2 (g)                                                     (1.4) 

4Fe
2+ 

+ O2(g) + 6H2O 
 
= 4FeO(OH) (s) + 8H

+
                                 (1.5) 

1.1.4 The interaction between natural organic matter and metals 

Natural organic matter (NOM) is regarded as a group of chemically heterogeneous 

organic molecules that exist in almost all aquatic environments and can profoundly impact the 

biogeochemical cycling of metals and the colloidal stability of metal-bearing nanoparticles.
38-40

 

NOM is an important complexing agent for metal ions. For many metals the speciation is 

predominantly controlled by interaction with ligands/active sites of NOM.
41, 42

 In most cases, 

complexation of trace metals with organic matter decreases their bioavailability and toxicity but 

facilitate metal transport in aqueous systems.
43

 Natural organic matter may constitute an 

important sink for chromium in the environment, due to the strong interaction with 
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chromium(III), and to its ability to reduce chromium(VI) to chromium(III).
44

 NOM can also 

stabilize ferrihydrite, thus preventing the transformation to more crystalline Fe phases under oxic 

conditions.
45, 46

 

1.1.5 Cr(III) oxidation by manganese oxide in groundwater or soils 

Manganese oxides (Mn(III/IV)-oxide), which are primarily formed by biologically 

catalyzed reactions with oxygen,
47-49

 are common in natural environments. Biogenic manganese 

oxides are usually poorly crystalline minerals with high average Mn oxidation states (from 3.7 to 

4.0) and high specific surface areas.
50

 Birnessite is a manganese oxide with a layered structure 

that commonly forms surface coatings on weathered mineral grains.
51

 Manganese oxides are 

strong oxidants that provide a major geochemical pathway for Cr(VI) occurrence from Cr(III) in 

groundwater, soils or subseafloor environments.
52-54

 The oxidation of Cr(III) to Cr(VI) 

significantly increases its mobility and toxicity. 

Under moderate pH conditions, Mn(III,IV) (hydr)oxides, which are prevalent in the 

environment, appear to be the only potent naturally occurring oxidants of Cr(III).
55-58

 Oxidation 

of Cr(III) to Cr(VI) by Mn oxides in an aqueous system is complex and several factors have been 

credited with influencing the extent and rates of the processes involved. Adsorption mechanisms 

of Cr(III) on Mn oxides, mechanisms of electron transfer, and desorption and readsorption of 

produced Cr(VI) and Mn(II) have been reported as controlling factors for the kinetics and the 

oxidation capacity of Mn oxides.
56, 59-61

 In addition, pH, initial Cr(III) concentration, and the 

ratio of surface area of Mn oxide to solution volume also determine the kinetics and oxidation 

capacity.
56, 60
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1.2 Research Objectives  

Objective 1: Evaluate the performance of electrocoagulation for Cr(VI) removal 

Objective 1.1: Determine the effects of water chemistry on the rate and extent of Cr(VI) 

removal from iron electrocoagulation and develop a modeling tool to predict Cr(VI) removal. 

Objective 1.2: Elucidate the effect of humic acid (HA) on the performance of 

electrocoagulation for Cr(VI) removal. 

Objective 2: Explore the stability of CrxFe1-x(OH)3 coupled with Mn redox cycling 

Objective 2.1: Determine the rates and mechanisms of CrxFe1-x(OH)3 oxidation by MnO2. 

Objective 2.2: Develop a model for predicting Cr(VI) generation from Cr(III)-containing 

solids oxidation by MnO2 in systems with and without convective mixing of solutes. 

Objective 2.3: Test the role of Mn(II) in CrxFe1-x(OH)3 oxidation by oxygen. 

1.3 Overview of Dissertation 

This study includes two related main tasks that address the specific research objectives 

(Figure 1.2).  

 

Figure 1.2 Overview of two research tasks to investigate chromium in aquatic environments 
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Task 1: Study the rate and extent of Cr(VI) removal from iron electrocoagulation and 

establish a model to predict Cr(VI) removal 

Subtask 1.1 was investigation of the effect of water chemistry on Cr(VI) removal from 

electrocoagulation and establishing a model to predict the dynamics of Cr(VI) in EC. It is 

addressed in Chapter 2. I examined iron electrocoagulation for Cr(VI) removal in a laboratory-

scale batch reactor. Experiments evaluated the effects of pH, oxygen level, and common 

groundwater solutes on Cr(VI) removal, and experiments were also performed with a simulated 

groundwater source of drinking water. X-ray absorption near edge structure (XANES) spectra 

was used to probe the oxidation state of chromium in the solids produced by electrocoagulation. 

A model was developed to describe the Cr(VI) and Fe(II) dynamics in iron electrocoagulation at 

pH 6, pH 8, oxic and anoxic conditions, which is potentially applicable to a broad range of water 

chemistry conditions.  

Subtask 1.2 was to explore the effect of humic acid on Cr(VI) removal and characterize 

the solids product in EC. It is addressed in Chapter 3. Experiments examined the dynamics of 

Cr(VI) in electrocoagulation in the presence of humic acid over a wide range of conditions, from 

pH 6 to pH 9, at oxic and anoxic conditions. We used dynamic light scattering (DLS) to measure 

the particle size and zeta potential of suspensions. The colloidal conditions in EC are directly 

related with the mobility and fate of Cr(III) and HA. X-ray diffraction (XRD) and extended X-

ray absorption fine structure spectroscopy (EXAFS) provided useful information help to identify 

the iron minerology in EC that the presence of humic acid could favor ferrihydrite formation.  

Task 2: Examine the Cr(VI) production rates coupled with Mn redox cycling and establish 

a model to describe the process 
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Subtask 2.1was to determine the Cr(VI) product rates from CrxFe1-x(OH)3 oxidation by δ-

MnO2. It is addressed in Chapter 4. The Cr(VI) production from CrxFe1-x(OH)3 oxidation by δ-

MnO2 were examined as a function of pH and Fe/Cr ratios in solids. The Cr(VI) production rates 

were correlated with the corresponding dissolved Cr(III) concentration in equilibrium with 

CrxFe1-x(OH)3, which indicates the important role of Cr(III) dissolution in oxidation. A 

multichamber reactor was used to assess the role of solid-solid contact in CrxFe1-x(OH)3-MnO2 

interactions, which eliminates the contact of the two solids while still allowing aqueous species 

transport across a permeable membrane.  

Subtask 2.2 was investigation of the interaction between Cr(III)-containing solids and δ-

MnO2 on Cr(VI) generation. It is addressed in Chapter 5, which focused on studying the Cr(OH)3 

oxidation. Experiments using multichamber reactors and mixed batch reactors indicated that 

mixing of solid suspensions is important in Cr(VI) generation, especially at the conditions when 

Cr(III) solubility is low. A kinetic and transport model was developed to describe the oxidation 

rate of Cr(OH)3 oxidation by MnO2 in multichamber reactor, which could also be applied to 

predict Cr(VI) release in completely mixed batch reactor.  

Subtask 2.3 is to evaluate the role of Mn(II) in CrxFe1-x(OH)3 oxidation by dissolved 

oxygen. It is addressed in Chapter 6, examined the oxidation of CrxFe1-x(OH)3 in the presence of 

Mn(II) at oxic conditions. Both Cr(VI) generation and Mn(II) decline were measured in the 

system. The effects of pH and oxygen were studied .  

Chapter 7 summarizes the results of the present work. Important accomplishments are 

highlighted, and areas for future investigation are identified. 
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Chapter 2. Cr(VI) Removal from Drinking Water 

by Iron Electrocoagulation 

This chapter was published in Pan, C.; Troyer, L.D.; Catalano, J.G.; Giammar, D.E., 

Dynamics of chromium (VI) removal from drinking water by iron electrocoagulation. Environ 

Sci Technol 2016, 50, (24), 13502-13510.
62

 

Abstract 

The potential for new U.S. regulations for Cr(VI) in drinking water have spurred strong 

interests in improving technologies for Cr(VI) removal. This study examined iron 

electrocoagulation for Cr(VI) removal at conditions directly relevant to drinking water treatment. 

Cr(VI) is chemically reduced to less soluble Cr(III) species by the Fe(II) produced from an iron 

anode, and XANES spectra indicate that the Cr is entirely Cr(III) in solid-phases produced in 

electrocoagulation. The dynamics of Cr(VI) removal in electrocoagulation at pH 6 and pH 8 at 

both oxic and anoxic conditions can be described by a new model that incorporates Fe(II) release 

from the anode and heterogeneous and homogeneous reduction of Cr(VI) by Fe(II). 

Heterogeneous Cr(VI) reduction by adsorbed Fe(II) was critical to interpreting Cr(VI) removal at 

pH 6, and the Fe- and Cr-containing EC product was found to catalyze the redox reaction. 

Dissolved oxygen (DO) did not observably inhibit Cr(VI) removal because Fe(II) reacts with DO 

more slowly than it does with Cr(VI), and Cr(VI) removal was faster at higher pH. Even in the 

presence of common groundwater solutes, iron electrocoagulation lowered Cr(VI) concentrations 

to levels well below California’s 10 µg/L. 
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2.1 Introduction 

Both within the United States and internationally, hexavalent chromium [Cr(VI)] is a 

contaminant of concern in drinking water supplies.
63, 64

 Cr(VI) has both natural and 

anthropogenic sources.  Transformations of Cr(III) to Cr(VI) can be mediated by constituents 

that are naturally present (e.g., MnO2 solids)in aquifers or are purposefully added to water (e.g., 

chlorine disinfectants).
65, 66

 Water monitoring data collected in California in 2003 indicates that 3% 

of 6229 drinking water sources surveyed had a Cr(VI) concentration higher than 10 μg/L, and 33% 

had Cr(VI) concentration above the detection limit of 1 μg/L.
64

 The current U.S. drinking water 

standard for total chromium is 100 µg/L, which includes Cr(VI) as well as less soluble and 

significantly less toxic trivalent chromium [Cr(III)];
67

 however, in June 2014 California started 

regulating Cr(VI) with a maximum contaminant level (MCL) of 10 μg/L.
68

 The U.S. 

Environmental Protection Agency is also considering a Cr(VI)-specific standard, and utilities 

were recently required to monitor for Cr(VI) as an unregulated contaminant.
3
 If a standard for 

Cr(VI) of 10 µg/L or less is selected for the federal value, then many utilities that comply with 

the current standard will become out of compliance unless new treatment technologies are 

implemented or new water sources are acquired.
64, 69, 70

 

Physical and chemical processes involving chromium and iron can be used to remove 

Cr(VI) from solution. Although Cr(VI) can adsorb to iron oxides,
5-8

 adsorption decreases with 

increasing pH and can be negligible at the pH conditions of many water supplies. Consequently 

Cr(VI) removal by coagulation using Fe(III) salts (e.g., ferric chloride) can be poor even with 

high coagulant doses.
15
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Using reduction and coagulation with Fe(II), Cr(VI) can be removed to low 

concentrations in drinking water.
15, 23-25

 The rates of Cr(VI) reduction by Fe(II) are highly pH 

dependent, decreasing with increasing pH over the range of 1.5-4.5 and then increasing from pH 

5 to 8.7.
26

 The removal of Cr(VI) in this process involves reduction of Cr(VI) to Cr(III) coupled 

with the oxidation of Fe(II) to Fe(III) (reaction 1, written based on the dominant dissolved 

species at pH 7) and the subsequent association of Cr(III) with the Fe(III) (oxy)hydroxide solids.  

These solids can be removed by filtration, sedimentation, or other downstream particle removal 

processes.
71

 The Cr(III) can adsorb to the iron oxides produced, or it could be structurally 

incorporated into the iron oxide to form a Fe(III)-Cr(III) (oxy)hydroxide solid solution (reaction 

2).
27

 

CrO4
2-

 + 3Fe
2+

+ 3H2O + H
+
= CrOH

2+
 + 3Fe(OH)2

+   
 (2.1) 

x CrOH
2+

 + (1-x) Fe(OH)2
+
 + (1+x) H2O = CrxFe1-x(OH)3(s) + (1+x) H

+
 (2.2) 

While Fe(II) can be introduced to water for Cr(VI) removal by chemical addition, iron-

based electrocoagulation (EC) can also generate Fe(II) for effective Cr(VI) removal from water. 

EC involves applying an electric voltage to an iron anode to generate Fe(II) in situ.
28

 The Fe(II) 

generated can be oxidized by Cr(VI) or by dissolved oxygen to Fe(III), which can then 

precipitate as Fe(III) (oxy)hydroxides depending on the pH and the electrolyte composition
72

 

(reaction 3 shown for the production of lepidocrocite, γ-FeOOH).  

4Fe
2+

+O2+ 6H2O=4FeOOH(s) + 8H
+
     (2.3) 

Fe(III) oxide surfaces can serve as heterogeneous catalysts for the reduction of Cr(VI) by 

Fe(II).
73

 

Electrocoagulation can remove a wide range of pollutants in systems with simple design 

and operation.
30, 31

 EC has been most widely studied as a drinking water treatment technology for 
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removing arsenic.
32-35, 74

 To our knowledge iron EC had not previously been studied for Cr(VI) 

removal at Cr(VI) concentrations, pH values, and solution compositions most relevant to 

drinking water treatment. Previous EC research on chromium removal has focused on 

applications to industrial wastewater treatment with much higher chromium concentrations, as 

high as several hundred mg/L, and those studies did not systematically evaluate the effects of 

dissolved oxygen and pH on Cr(VI) removal.
75-77

 For the application of EC to arsenic removal 

from drinking water, Li et al established a highly constrained dynamic model of As(III) 

oxidation in the EC system over a broad range of operating conditions for a simulated 

groundwater. The model verified the role of Fe(IV) in As(III) oxidation mechanism in EC and is 

helpful to predict As(III,V) removal as well as the minimal iron dosage needed for the adequate 

treatment. There was a need to develop a model for the dynamics of the Cr(VI) removal process 

that could identify the rate-limiting step and predict the Cr(VI) removal as a function of water 

chemistry. 

The objective of this study was to identify the mechanisms and quantify the rates of 

Cr(VI) removal from drinking water by EC over a range of relevant water chemistry conditions. 

Batch experiments were used to investigate the effects of pH, DO, and the presence of common 

solutes on Cr(VI) removal. Solid phases were characterized with respect to their mineralogy and 

the oxidation state of associated Cr. To examine the roles of homogeneous and heterogeneous 

reduction of Cr(VI) by Fe(II) in the removal process, a model for the dynamics of Cr and Fe in at 

batch iron EC reactor was developed. 
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2.2 Materials and Methods 

2.2.1 Materials 

Chemicals used were analytical reagents of high purity. Ultrapure water (resistivity >18.2 

MΩ-cm) was used for the experiments. Glass volumetric flasks and 1-L polypropylene reaction 

vessels were cleaned with 10% HCl  and rinsed several times with ultrapure water before use. A 

Cr(VI) stock solution (0.1 g/L, 1.923 mM) was prepared from K2Cr2O7. Control of ionic strength 

was achieved by additions from a 1 M NaNO3 stock solution. At pH 6, 1 mM MES (2-(N-

morpholino) ethane sulfonic acid) (Fisher Scientific) was used, and 5 mM HEPES (4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid) (≥99.5%, Sigma-Aldrich) was used at pH 7 and 

8. The pH buffers and their concentrations were chosen to minimize the possible formation of 

Fe(III) and Cr(III) complexes with the buffers. At pH 4 and pH 5, no buffers were added and a 

syringe pump dosed 0.1 M trace metal grade nitric acid to maintain a constant pH during EC 

experiments. Silica, sulfate and phosphate were added from stock solutions of 0.1 M Na2SiO3, 

0.5 M Na2SO4, and 0.1 M NaH2PO4/Na2HPO4 (molar ratio 6.8:93.2 for pH 8). In addition to 

experiments with simple compositions, Cr(VI) removal was also evaluated using a challenge 

water. Based on the large body of research on Cr(VI) removal performed in Glendale, California, 

a simulated Glendale groundwater (SGG) was prepared by addition of reagents to meet a 

published composition (Table S2.1 of the Supporting Information).
24

 

2.2.2 Electrocoagulation batch experiments 

The electrocoagulation reactor consisted of a 1-L polypropylene beaker with two 1.75-cm 

diameter iron rods immersed in solution. The reactor was filled with ultrapure water and aliquots 
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of sodium nitrate, pH buffer and Cr(VI) stock solutions to a total initial volume of 1 L. The 

Cr(VI) stock solution was added to provide an initial Cr(VI) concentration of 500 μg/L (9.62 

μM). Sodium nitrate was added until the conductivity of the solution achieved 460 μS/cm, which 

corresponds to an ionic strength around 5 mM. Na
+
 and NO3

-
 do not interfere with the chemistry 

of Cr(VI) removal and only controlled the ionic strength. Because the different pH buffer 

concentrations provided different ionic strengths, the amount of sodium nitrate added depended 

on the pH of the experiment and was used to ensure that all pH values were studied with the 

same solution conductivity. The solution was continuously and completely mixed by a magnetic 

stir bar at a speed of 600 rpm. For oxic experiments air was vigorously bubbled through the 

solution at a flow rate of 0.94 L/min. Before each experiment, the two iron rods were abraded 

with sandpaper and thoroughly rinsed. The iron rods were inserted into solution and placed 2 cm 

apart. An electric potential of 4 V was applied to the rods with a direct current power supply, and 

the current was held constant at 37 mA (around 0.99 mA/cm
2
) by raising the beaker to maintain 

the same depth of immersion of the iron rods (8 cm) when portions of the solution were removed 

for sampling. 

Separate control experiments were performed to examine Cr(VI) removal by chemical 

addition of Fe(II) and the potential for Cr(VI) adsorption to iron oxides formed from chemical 

coagulation and electrocoagulation. Chemical coagulation was performed by continuous addition 

of Fe(II) from an FeSO4 solution with a syringe pump to maintain the rate that it is released from 

the anode in electrocoagulation. Adsorption experiments were performed by first preparing iron 

oxide solids and then adding Cr(VI) to those suspensions over a range of pH values. Solids for 

adsorption were prepared in the absence of Cr(VI) by (a) electrocoagulation, (b) continuous 
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addition of FeSO4, and (c) one time addition of Fe(NO3)3. Details of chemical dosage and 

adsorption experiments for Cr(VI) removal are provided in the supporting information. 

Anoxic experiments were performed in an anaerobic chamber (Coy Laboratory Products 

Inc., MI) with less than 1 ppmv of O2 in the gas phase as controlled by circulating the chamber 

atmosphere of 98% N2/2% H2 over a heated Pd catalyst. A secondary low temperature oxygen 

trap was introduced to achieve strictly anoxic conditions in the electrocoagulation reactor. The 

oxygen trap consisted of a sequence of two 200-mL suspensions of 93.2 mM Fe(III) as ferric 

hydroxide and 0.9 mM FeCl2 at pH 8.1; at these conditions dissolved O2 is rapidly consumed by 

reaction with the Fe(II).
78

 An aquarium pump was used to pass air inside the anaerobic chamber 

through the secondary oxygen trap and then into the electrocoagulation reactor. The efficacy of 

the trap was tested by evaluating the stability of an Fe(II) solution at pH 8. The rate of ferrous 

iron oxidation was much slower with the secondary oxygen trap (Figure S2.1), and the reaction 

of Fe(II) with any residual DO remaining after the passage through the secondary trap can be 

neglected in the interpretation of the EC experiment results. 

For each sampling event, a volume of suspension was drawn from the reactor using a 15 

mL syringe. The first 3 mL were dispensed as an unfiltered suspension to a test tube, acidified to 

2% HNO3 to dissolve any suspended solids, and analyzed for total iron and chromium 

concentrations. The rest of the suspension in the syringe was filtered through a 0.22 μm 

polyethersulfone (PES) membrane, and the filtrate was saved for analysis of dissolved iron, 

chromium, Cr(VI), and Fe(II) concentrations. All the samples for ICP-MS measurements 

(including total and dissolved chromium and iron) were preserved with 2% HNO3. 
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2.2.3 Analytical methods 

The samples for measuring Fe(II) or Cr(VI) were filtered once they were collected and 

then measured immediately by either ferrozine or diphenylcarbazide methods. Cr(VI) 

concentrations in the samples were determined by measuring the absorbance at 540 nm using a 

UV-vis spectrophotometer with 1-cm path length cuvettes (PerkinElmer-Lambda XLS) after 

reaction with diphenylcarbazide.
79

 Our detection limit for Cr(VI) by this method was 5μg/L 

(0.096 µM). Dissolved Fe(II) concentrations were determined spectrophotometrically by the 

ferrozine method at a wavelength of 562 nm.
80

 The method detection limit for Fe(II) was 0.3 

mg/L (5.4 µM). Total dissolved iron and total dissolved chromium (Cr(VI) and Cr(III) together) 

concentrations were measured by inductively coupled plasma mass spectrometry (ICP-MS) 

(Perkin Elmer ELAN DRC II) analysis of filtered samples. The instrument detection limits for Cr 

and Fe were 0.2 μg/L (0.0039 μM) and 0.1 mg/L (1.8 μM), respectively. Dissolved Fe(II) 

concentrations were found to be equal to dissolved iron concentrations in the experiments 

because Fe(III) has a very low solubility over the pH range studied; consequently, dissolved 

Fe(III) can be neglected in all conditions investigated.  

Solids for characterization were collected from suspensions after 45 minutes of 

electrocoagulation or chemical coagulation with and without chromium. The suspensions were 

concentrated by centrifugation and then freeze-dried. The specific surface areas (SSA) of 

selected solid samples were measured by BET N2-adsorption with a surface area analyzer 

(NOVA 2000e, Quantachrome Instruments). X-ray powder diffraction (XRD) patterns of solid 

samples were collected using Cu Kα radiation (Bruker d8 Advance X-ray diffractometer). 

Cr K-edge X-ray absorption near-edge structure (XANES) spectra were collected on 

samples from electrocoagulation reactors at pH 6 and pH 8 after 10 minutes and 45 minutes of 
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reactor operation. Samples with added Si and P were collected after 10 minutes of 

electrocoagulation. Samples were vacuum-filtered onto mixed cellulose ester membranes (0.22 

µm) and then sandwiched as wet pastes between Kapton film and sealed with Kapton tape. 

XANES spectra were collected at beamline 4-1 at Stanford Synchrotron Radiation Lightsource 

(SSRL) using a Si (220) double-crystal monochromator with a harmonic rejection mirror. 

Fluorescence-yield spectra were collected using a 30-element energy-dispersive solid-state Ge 

detector. Reference spectra were also collected on a potassium chromate salt (K2Cr2O7) and a 

Cr(OH)3 solid that was synthesized by adjusting the pH of Cr(III) solution to 7 using NaOH. 

Background subtraction and linear combination fitting of XANES spectra were performed using 

the Athena
81

 interface to IFEFFIT.
82

 

2.3 Results and Discussion 

2.3.1 Overview of chromium removal in Electrocoagulation 

Before systematically exploring the influence of water chemistry on Cr(VI) removal by 

electrocoagulation, we will present the results of the operation of the reactor at a single condition 

(oxic at pH 8.0). The initially clear and colorless solution became a turbid orange suspension 

typical of Fe(III) (oxy)hydroxides after 15 minutes. XRD showed that the dominant iron oxide 

formed during electrocoagulation at this condition was lepidocrocite; at pH 6 a mixture of 

ferrihydrite and lepidocrocite formed (Figure S2.2). Solids produced in other EC research 

include magnetite, lepidocrocite, ferrihydrite, and green rust.
72, 83, 84

 At conditions similar to ours 

(pH 7.5-10 in 5 mM NaCl with a low current density of 5 mA/cm
2
), Dubrawski et al. also 

identified lepidocrocite as the product of EC.
84

 They noted that lepidocrocite is a well-known 

product of Fe(II) oxidation by DO in the absence of strongly adsorbing ions. 
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Figure 2.1. Performance of Cr(VI) removal by iron electrocoagulation at pH 8.0 in an aerated 

reactor. [Cr(VI)]0 = 500 μg/L, 5 mM HEPES for pH 8.0, U = 4 V, I = 37 mA, and conductivity = 

460 μS/cm. The performance is tracked with respect to (a) measured concentrations of total 

(Fetotal) and dissolved (Fediss) iron together with the predicted total iron concentration based on 

Faraday’s law and (b) total (Crtotal) and dissolved (Crdiss) chromium concentrations. Because 

dissolved Cr and dissolved Cr(VI) were essentially identical, the points for those values plot on 

top of one another. 

In EC, the total iron concentration increases linearly because of the constant electrical 

current passed through the solution by the electrodes (Figure 2.1a); the values of the total iron 

concentrations were consistent with predictions based on Faraday’s law (eq. S2.6 in the 
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supporting information) with the assumption that Fe(II) is generated at the anode. Control 

experiments without electric current (data not shown) indicated that iron dissolution from the 

anode was negligible compared with iron generated during EC. The Fe(II) released from the 

anode can be oxidized rapidly by either Cr(VI) or dissolved oxygen at pH 8 (Figure 2.1a). 

However, the rapid removal of Cr(VI) at pH 8 demonstrated that Cr(VI) is a strong competitor 

with DO for oxidizing Fe(II) (Figure 2.1b).  

Table 2.1. The residual dissolved Cr during EC in comparison to predicted values at different pH 

pH 4 5 6 7 8 

Reaction time-oxic (min) 30 25 20 15 10 

Measured Crdiss (oxic ) (µg/L)
1
 62.5 2.4 1.2 3.1 2.6 

Mole ratio of Fe(III)/Cr(III) in solid (oxic) 6.8 7.3 3.3 2.8 3.7 

Reaction time-anoxic (min)   7  10 

Measured Crdiss (anoxic ) (µg/L)
2
  

 

 
2.3 

 

 
   3.0 

Cr(III)diss by Cr(OH)3(s) (µg/L)
3
 78022 517 14 0.8 1.6 

Cr(III)diss by (CrxFe1-x)(OH)3(s) (µg/L)
4
 107 0.95 0.04 - - 

1
 The dissolved Cr concentration measured by ICP-MS at the end of reaction time in oxic 

conditions; 

2
 The dissolved Cr concentration measured by ICP-MS at the end of reaction time in anoxic 

conditions; 

3
 The estimated Cr(III) solubility controlled by Cr(OH)3(s), calculation is based on equilibrium 

constants given by 
85

; 

4
 The estimated Cr(III) solubility controlled by (CrxFe1-x)(OH)3(s) co-precipitation, the 

concentration of dissolved Cr(III) at pH 7 and pH 8 is too low to give values, calculation is based 

on equilibrium constants given by a published reference.
86
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The total chromium concentration remained constant during EC (Figure 2.1b) because 

chromium remained in the suspension of the batch reactor and was not removed by reaction on 

the electrodes or the reactor walls. The total chromium includes both dissolved and suspended 

solids that had precipitated, and thus contains both Cr(III) and Cr(VI). For this experimental 

condition the dissolved Cr(VI) concentration was identical to the total dissolved Cr concentration 

(Figure 2.1b), indicating that the dissolved Cr(III) concentration was negligible, consistent with 

the expected low solubility of Cr(III) at pH 8 (Figure S2.6). The dissolved chromium dropped 

below the California primary drinking water standard of 10 µg/L (Table 2.1) within 10 minutes.  

 

Figure 2.2. Cr K-edge XANES spectra of samples (black) from electrocoagulation reactors at 

pH 6 and 8 after 10 or 45 minutes of electrocoagulation. Samples at pH 8 were also reacted for 

10 minutes with P and Si. Reference spectra of potassium chromate (Cr(VI)) and chromium 

hydroxide (Cr(III)) are shown in blue. 
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XANES analysis of the solids demonstrated that the rapid removal of Cr(VI) during 

electrocoagulation was caused by reduction of Cr(VI) to less soluble Cr(III). At both 10 minutes 

and 45 minutes, only Cr(III) was detected in the solids based on Cr K-edge XANES spectra 

(Figure 2.2). Batch adsorption experiments in which Cr(VI) was contacted with preformed solids 

produced by electrocoagulation found a low affinity of Cr(VI) for the solids (Figure S2.3), 

indicating that Cr(VI) adsorption is not a dominant mechanism for Cr(VI) removal in EC and 

that the reduction to Cr(III) is critical to successful treatment. In chemical coagulation 

experiments with continuous Fe(II) addition at rates identical to the rate of Fe(II) generation in 

electrocoagulation, Cr(VI) removal versus time was very similar to that for electrocoagulation 

(Figure S4). This further confirmed that Cr(VI) was reduced by Fe(II) generated from EC. 

2.3.2 Influence of DO on rates and mechanisms 

DO competes with Cr(VI) for the oxidation of Fe(II) and can potentially influence the 

rate and extent of Cr(VI) removal in electrocoagulation. The pH values of 6 and 8 were chosen to 

investigate the influence of DO on Cr(VI) removal during electrocoagulation because the rate of 

DO reaction is about 2800 times faster at pH 8 than at pH 6 (the Fe(II) oxidation rate by DO at 

pH 6 and pH 8 is provided in supporting information). The reaction rates are such that Fe(II) 

oxidation by DO at pH 6 is on a timescale that is very long relative to that of the treatment time, 

while the rate at pH 8 is sufficiently fast that it is essentially instantaneous relative to the 

treatment time. At pH 6, DO oxidized Fe(II) very slowly in comparison to the oxidation of Fe(II) 

by Cr(VI), as indicated by the by the fact that the Fe(II) concentration is only slightly lower at 

oxic than anoxic conditions (Figure 2.3a). Consequently, rates and extents of Cr(VI) removal at 

oxic and anoxic conditions were not that different at pH 6 (Figure 2.3b). Similar to our 

observations with EC, Schlautman and Han found that DO had only a minor influence on Cr(VI) 
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reduction by chemical addition of Fe(II) below pH 6.
87

 At pH 8 even though Fe(II) was rapidly 

oxidized by DO in aerated experiments (Figure 2.3c) and held at low concentrations, Cr(VI) was 

still removed at a comparable rate in anoxic experiments to that in oxic experiments because of 

the very fast reduction of Cr(VI) by Fe(II). For the anoxic conditions, the stoichiometry of Cr(VI) 

reduction by Fe(II) is clear. The dissolved Fe(II) stayed low at pH 8 until the Cr(VI) was 

essentially all reduced (Figure 2.3c), and then dissolved Fe(II) started increasing parallel to the 

total iron (line of Faraday’s law, eqn S2.6). At the time of essentially complete Cr(VI) removal, 

the difference between total and dissolved Fe indicated that about 2 mg/L (36 µM) of Fe(II) had 

been consumed by reduction of 500 µg/L (9.6 µM) of Cr(VI), which approaches the expected 

molar stoichiometry of 3:1 for oxidation of Fe(II) by Cr(VI).  

A quantitative model for the dynamics of Cr(VI) reduction in electrocoagulation was 

developed based on detailed studies of Cr(VI)/Fe(II) and Fe(II)/O2 systems. The rates of change 

of Cr(VI) (eqn. 2.4) and Fe(II) (eqn. 2.5) during electrocoagulation can be written as  

 

 

The definitions and values of the rate constants are summarized in Table 2.2. Eqn. 2.4 

includes terms to account for both homogeneous and heterogeneous reduction of Cr(VI). In eqn. 

2.5, the four terms are included to track the fate of Fe(II) as it is affected by (i) homogeneous and 

(ii) heterogeneous reaction of Fe(II) with Cr(VI), (iii) Fe(II) production from the anode 

according to Faraday’s law, and (iv) Fe(II) oxidation by dissolved oxygen. Fe(III)s is the 
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concentration of Fe(III)-containing solid on which heterogeneous Cr(VI) reduction by Fe(II) can 

occur with [Fe(III)]s = [Fe(II)]T- [Fe(III)]diss. The model is based on two assumptions. First, the 

adsorbed concentrations of both Cr(VI) and Fe(II) are negligible compared with dissolved 

concentrations at pH 6 and pH 8. Second, the ratio of the concentration of any adsorbed Fe(II) 

adsorbed (albeit small) to its dissolved concentrations remains constant during the reaction. 

Detailed explanations for the choices and validities of these assumptions are given in the 

supporting information. Based on the first assumption, we use the total Cr(VI) and Fe(II) to 

simulate the dissolved Cr(VI) and Fe(II) concentration in experiments. The ordinary differential 

equations (ODEs) in the model were solved by the ode45 solver in Matlab 7.0. The parameters in 

Equations 2.4 and 2.5 were determined independently in control experiments focused on specific 

processes (i.e., not electrocoagulation experiments) and then included in the model for 

examination of EC performance for Cr(VI) removal. Detailed discussion of the determination of 

the parameters is included in the supporting information. 

Cr(VI) could be successfully modeled at pH 8 without including any terms for 

heterogeneous Cr(VI) reduction (i.e. k’hetero=0 in Table 2.2) because Fe(II) generation in EC was 

the rate-limiting step for Cr(VI) removal (Figure 2.3c&d). The total Cr(VI) predicted by the 

model agrees well with the measured dissolved Cr(VI) at both oxic and anoxic conditions 

(Figure 2.3d), which is consistent with the assumption that Cr(VI) adsorption was negligible in 

the EC process. Fe(II) is generated from the anode, and it is immediately oxidized by Cr(VI) at 

pH 8 even when not considering the heterogeneous reaction (Figure 2.3c). The predicted total 

Fe(II) concentration was somewhat higher than the measured dissolved Fe(II) concentrations at 

pH 8, and this difference could be the result of adsorption of some of the Fe(II) to the solids 

produced during EC. Previous studies have found that Fe(II) can adsorb onto iron (hydr)oxides 
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that include lepidocrocite, goethite, magnetite and ferrihydrite, and the extent of adsorption 

increases with increasing pH.
88-90

 The rate of Cr(VI) removal was comparable at oxic and anoxic 

conditions, indicating that Fe(II) reacts with Cr(VI) much faster than with dissolved oxygen. The 

proportion of overall Fe(II) oxidation due to Cr(VI), fCr, is given as  

                    fcr=
3(khomo+k

'
hetero∙[Fe(III)]s)∙[Cr(VI)]diss

kO2
+3(khomo+k

'
hetero∙[Fe(III)]s)∙[Cr(VI)]diss

                                          (2.6) 

At pH 8 with an initial Cr(VI) concentration of 500 μg/L, fCr is 0.99. 

At pH 6 heterogeneous reduction of Cr(VI) was involved in the overall Cr(VI) removal 

process. Efforts to model the data using only homogeneous reduction were not successful (Figure 

S2.10 of the supporting information). The model for Cr(VI) removal predicted both dissolved 

Cr(VI) and dissolved Fe(II) well when all terms in equations 2.4 and 2.5 were included, 

including a heterogeneous reaction at pH 6 for Cr(VI) reduction by Fe(II) on the surface of 

freshly produced Fe(III) solids. Control experiments done in support of the model development 

showed that the heterogeneous Cr(VI) reduction rate was linearly correlated with the amount of 

Fe(III) generated, indicating that Cr(VI) reduction in EC is an autocatalytic reaction on surface 

sites of FexCr1-x(OH)3 (Figure S2.11 of the supporting information). Although Buerge and Hug 

verified that both lepidocrocite and goethite could catalyze Cr(VI) reduction by Fe(II),
73

 our 

experiment is the first verification that Cr(VI) was auto catalytically reduced on FexCr1-x(OH)3 in 

iron based EC by modeling methods. At pH 6, DO did not affect Cr(VI) removal and Fe(II) was 

almost entirely oxidized by Cr(VI). The proportion of overall Fe(II) oxidation due to Cr(VI) (eq 

2.7) fCr was 1.0. 
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Figure 2.3. The effect of dissolved oxygen on (a) dissolved Fe(II) and (b) dissolved Cr(VI) at 

pH 6 and (c) dissolved Fe(II) and (d) dissolved Cr(VI) at pH 8 during electrocoagulation 

with[Cr(VI)]0 = 500 μg/L, U = 4 V, I = 37 mA, and conductivity = 460 μS/cm. At pH 6 the pH 

was buffered with 1 mM MES and at pH 8 5mM HEPES was used. The points are the 

experimental data and the dashed lines are the output of a model based on equations 2.4 and 2.5. 

The solid line in panels a and c is the estimated total iron in the reactor based on release from the 

anode as calculated by Faraday’s law. 
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Table 2.2. Rate constants used for modeling dissolved Cr(VI) and Fe(II) during 

electrocoagulation 

rate 

constant 
definition 

value 

pH 6           pH 8 
dimensions 

methods of 

determination 

khomo 
homogeneous rate constant for 

reduction of Cr(VI) by Fe(II) 
35 51500 M

-1 
s

-1
 

control experiments 

in SI 

khetero
′  

Heterogeneous rate constant 

for Cr(VI) reduction by 

adsorbed Fe(II) 

1.1×10
7
 0 M

-2 ∙s-1
 

derivation in SI 

using control 

experiments 

k2 Fe(II) generation rate in EC 1.92×10
-7

 1.92×10
-7

 M∙s-1
 

Faraday's law with 

I=37 mA (Eq. S2.6) 

kO2

1
 Fe(II) oxidation rate by O2 3.85×10

-6
 1.05×10

-2
 s

-1
 

Derivation from 

published eqn
61

 
1
 The rate constant is a pseudo first order rate constant calculated for a dissolved 

oxygen concentration in equilibrium with air and according to the exact Fe(II) 

speciation of experiments at pH 6 and 8 for calculation of the rate constant from 

equations in the cited reference. 

2.3.3 Influence of pH 

To examine the influence of pH on EC performance, experiments were conducted over a 

range of pH values from 4 to 8. The total iron release rate agreed well with Faraday’s law for all 

pH values (data not shown), but the trend in dissolved Fe(II) was dramatically influenced by pH 

(Figure 2.4a). Less than 20% of the Fe(II) was oxidized within 15 minutes at the three lowest pH 

values studied (4, 5, and 6), while at pH 7 approximately 50% of Fe(II) was oxidized at 15 

minutes due to the increased rate of oxidation by DO. At pH 8 essentially no iron remained as 

dissolved Fe(II). The large increase in the rate of Fe(II) oxidation with increasing pH is 

consistent with the literature.
91, 92

 Because of the slow oxidation of Fe(II) by DO at pH 4 to 6, 

most of the Fe(II) oxidation observed in those experiments was through reaction with Cr(VI). 

According to the reaction stoichiometry between Cr(VI) and Fe(II) (reaction 1), 1.62 mg/L Fe(II) 
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(28.93 µM) would be consumed by the reduction of 500 µg/L Cr(VI) (9.62 µM). At pH 4, 5, and 

6, Cr(VI) reduction is essentially complete after 20, 15, and 10 minutes respectively (Figure 

2.4b), and at these times the differences between the total and dissolved iron concentrations is 

about 2 mg/L (Figure 2.4a), which is close to the stoichiometric value of 1.62 mg/L that would 

be consumed by reaction with Cr(VI). 

The rate of Cr(VI) removal in EC increased with increasing pH from 4 to 7 and all the EC 

experiments with influence of different pH for Cr(VI) measurements were duplicated with error 

bars representing standard deviation (Figure 2.4b). The variation associated with different pH 

values was much larger than the variation between duplicate experiments. The pH-dependence of 

Cr(VI) reduction is consistent with several reports in the literature of an increasing rate constant 

for the reduction of Cr(VI) by Fe(II) with increasing pH above pH 4.5 (Figure S2.5).
26, 93, 94

 At 

pH 8 the rate of Cr(VI) removal was slightly lower than at pH 7, although the dissolved Cr(VI) 

concentration still decreased to below 5 µg/L within 4 minutes. The deviation of the pH 8 results 

from the general trend of Cr(VI) removal versus pH was probably because DO more 

substantially competed with Cr(VI) for oxidation of Fe(II) at pH 8. This is the first clear 

quantification of the rate of Cr(VI) removal in EC at different pH. Previous studies of Cr(VI) 

removal by EC usually did not control pH  and they only reported the removal efficiency after 

certain times with different initial pH.
76, 95, 96

 

While Cr(VI) removal was rapid at all pH conditions studied, the final total dissolved Cr 

concentration [Cr(VI) and Cr(III)] was strongly dependent on pH (Table 2.1). Even when the 

dissolved Cr(VI) concentration decreases to below the drinking water standard, we may still need 

to consider trace amounts of soluble Cr(III) in filtered water because Cr(III) species could be 

reoxidized to Cr(VI) when they are exposed to chlorine and chloramine disinfectants in 
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downstream treatment processes.
97, 98

 Thus, removal of both Cr(III) and Cr(VI) is important to a 

successful chromium treatment technology. From pH 5 to 8, the dissolved chromium could be 

successfully removed to below 5 µg/L within 25 minutes. However, at pH 4, the dissolved 

chromium was 63 µg/L after 30 minutes even when the dissolved Cr(VI) was below its detection 

limit of 5 µg/L; we do note that pH 4 is outside of the range of most drinking water treatment 

processes (Table 2.1). Similar to our results, Golder found increasing removal of Cr(III) with 

increasing pH from EC.
99

 

 

Figure 2.4. The effect of pH on a) dissolved iron and b) dissolved Cr(VI) in electrocoagulation 

in aerated experiments with [Cr(VI)]0=500 μg/L, 1mM MES for pH=6, 5mM HEPES for pH 7.0 

and 8.0, U=4 V, I=37 mA, and conductivity=460 μS/cm. 
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The dissolved Cr concentration at the end of the experiments can be compared with the 

predicted solubility of the relevant Cr(III)-containing solids (Table 2.1). Although Cr(OH)3(s) has 

a low solubility at neutral pH, the measured final Cr concentrations at pH 4-6 were much lower 

than the solubility of Cr(OH)3(s). The lower solubility is probably the result of precipitation of 

(CrxFe1-x)(OH)3(s) as a solid solution of Cr(OH)3(s)and Fe(OH)3(s) that has a lower equilibrium 

dissolved Cr concentration than that of pure Cr(OH)3(s) (Table 2.1). Formation of a solid solution 

lowers the aqueous concentration of the minor component.
100

 The dissolved Cr concentration in 

equilibrium with (CrxFe1-x)(OH)3(s) decreases with decreasing mole fraction of Cr(III) in the solid 

solution.
10, 27

 While the dissolved Cr concentrations at pH 4 to 6 are lower than the predicted 

solubility of pure Cr(OH)3(s), they are still above the predicted solubility of (CrxFe1-x)(OH)3(s), 

which may be due to suspensions not having reached a final equilibrium state in the 30 minute 

reaction time of the experiments. It is also possible that at oxic conditions that some Cr(III) was 

removed by adsorption of Cr(III) to Fe(III) or mixed Fe(III)/Cr(III) solids.  At anoxic conditions 

and early stages of oxic experiments, the high ratio of Cr to Fe in the solids (1:3 for anoxic 

conditions) indicates that there is not enough iron in the solids to provide sufficient surface area 

for Cr(III) adsorption. 

2.3.4 Influence of sulfate, silica and phosphate 

The presence of silica did not significantly influence Cr(VI) removal during EC at pH 8 

(Figure 2.5). Earlier work on As(V) removal by EC found that silica had no significant effect on 

As removal, although silica prevented the formation of lepidocrocite and led to generation of 

poorly crystalline ferrihydrite.
33

 Although sulfate could potentially compete for adsorption sites 

with chromium,
101, 102

 it did not affect the performance of EC on chromium removal. This 

supports our conclusion that adsorption does not play a large role in Cr(VI) removal during EC. 
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Figure 2.5. The influence of other water constituents on the removal of Cr(VI) during iron 

electrocoagulation was investigated in aerated experiments with [Cr(VI)]0=500 μg/L, U=4 V, 

and I=37 mA that evaluated (a)the effects of sulfate, silica and phosphate on Cr(VI) removal 

with 5mM HEPES at pH 8.0 and conductivity=460 μS/cm and (b) Cr(VI) removal during 

electrocoagulation in simulated Glendale groundwater (pH 7.4 and conductivity= 885 μS/cm). 

Phosphate inhibited Cr(VI) removal in EC (Figure 2.5). Without phosphate, Cr(VI) 

decreased to below detection within 4 minutes, but 15 and 20 minutes were needed when the 

solution contained 5 mg/L (0.16 mM) or 20 mg/L (0.65 mM) phosphate, respectively. Phosphate 

was observed to inhibit As removal in EC because phosphate competed with As species for the 
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surface sites on lepidocrocite. Because adsorption is not the dominant mechanism for Cr(VI) 

removal in EC, phosphate probably influences the Cr(VI) removal process by enhancing the rate 

of aqueous Fe(II) oxidation by DO
103

 and making Fe(II) less available for Cr(VI) reduction. Also, 

both filtered Cr(III) and Fe(III) concentrations increased with the presence of phosphate in EC 

which might be due to phosphate forming dissolved complexes or colloids with Fe(III) and Cr(III) 

(Figure. S2.13). 

Simulated Glendale groundwater (SGG) was used as a challenge water for Cr(VI). The 

SGG had high concentrations of calcium, sulfate, silica, and chloride with an initial pH of 7.4. 

Cr(VI) could be removed from an initial concentration of 500 μg/L in this water to below the 

detection limit within 7 minutes (Figure 2.5b). The dissolved chromium concentration was 

similar to the dissolved Cr(VI) concentration, indicating that Cr(III) was insoluble for the SGG 

water condition. After 10 minutes of EC treatment, the dissolved chromium was below 1 µg/L. 

2.4 Environmental Implication 

Electrocoagulation is an alternative to chemical coagulation that uses metal electrodes 

and electricity instead of chemical addition to deliver coagulants to water. With iron 

electrocoagulation, the iron anode releases soluble Fe(II) to reduce Cr(VI) to less mobile and less 

toxic Cr(III). The Cr(III) is associated with the Fe(III) oxide particles, which can then be 

removed by conventional processes (e.g., sedimentation followed by granular media filtration). 

Electrocoagulation avoids the need for chemical handling and can be attractive in settings with 

better access to electricity than to chemical supplies. Because the coagulant is continuously 

supplied in electrocoagulation, its dosing can be carefully controlled by changing the current, 

which can result in minimization of sludge production. This study demonstrates that, at 
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conditions relevant to drinking water treatment, electrocoagulation can efficiently remove Cr(VI) 

to a low concentration below current state and federal regulatory limits, and even below 

potentially more strict new Cr(VI)-specific regulations. At pH 8 the iron oxides that contained 

chromium had visible settled out of suspension within 30 minutes after stirring was stopped, 

indicating the EC could be applied without posing a large burden on downstream particle 

removal processes in drinking water treatment applications. At pH 6, although final dissolved Cr 

concentration is low, low amounts of suspended solids in the solution due to slow Fe(II) 

oxidation needs longer time settling and filtration was a better choice for removing Chromium. 

The stability of Cr(III) in the solids produced means that dissolved Cr(III) is not available to be 

reoxidized to Cr(VI) by downstream water treatment process. The newly established model of 

Cr(VI) reduction dynamics in electrocoagulation is essential for developing a reaction-based 

interpretation of the process. At pH 8 Fe(II) generation in EC is the rate-limiting step, and 

consequently homogeneous reduction of Cr(VI) by Fe(II) could fit the data well. In contrast, at 

pH 6 both homogeneous and heterogeneous reduction are important, and the solid products of 

the reaction accelerate the reduction in an autocatalytic process. 

In electrocoagulation, formation of Cr(III)-Fe(III) oxides makes Cr(III) stable with 

respect to re-release from desorption, but the residual solids need to be protected from 

reoxidation by manganese oxides when discharged to natural environments. Future research can 

focus on the stability of the Cr(III)-Fe(III) oxides in natural environments.  In addition to its use 

in drinking water treatment, electrocoagulation could be used to treat Cr(VI)-rich brines 

produced during regeneration of anion exchange resins used for Cr(VI) removal. 
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Supporting Information 

Additional information regarding the SGG composition, control experiments, XRD 

pattern of solids generated from EC, equilibrium solubility calculations, model development and 

phosphate impact is included. 

Table S2.1. Water composition of simulated Glendale groundwater 
24

 

constituent Target concentration
a
 

Laboratory 

concentration
b
 

alkalinity 215mg/L as CaCO3 215mg/L as CaCO3 

chloride 68 mg/L 68 mg/L 

conductivity 840 µS/cm 885 µS/cm 

hardness 332 mg/L as CaCO3 326 mg/L as CaCO3 

nitrate 5.3 mg/L as N 5.3 mg/L as N 

pH 7.4  pH unit 7.4  pH unit 

phosphate 0.25 mg/L as PO4 0.25 mg/L asPO4 

silicate 27 mg/L as SiO2 27 mg/L as SiO2 

sulfate 87 mg/L as SO4 220 mg/L as SO4 
a
 Target concentration based on reported composition. 

b
 Actual concentration achieved in the laboratory in simulated Glendale groundwater. The sulfate 

concentration is higher than target concentration to account for the charge balance. 
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Fe(II) oxidation rate with varying degrees of oxygen removal 

0 2 4 6 8 10 12
0

2

4

6

8

10

12

 

 

 with 2nd O
2
 trap

 without 2nd O
2
 trap

F
e
(I

I)
 C

o
n

c
e
n

tr
a
ti

o
n

 (
m

g
/L

)

Time (h)  

Figure S2.1. Change in Fe(II) concentration from a solution with 10 mg/L Fe(II) as a result of 

oxidation at pH 8 with 5mM HEPES in an anaerobic chamber (atmosphere of 98% N2 / 2% H2) 

with or without a secondary O2 trap. 
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Figure S2.2. X-ray diffraction patterns of solids generated during electrocoagulation and 

chemical coagulation at pH 8. The reference pattern for lepidocrocite (044-1445 from the 

International Crystal Diffraction Database) is included for comparison. The pattern labeled 

FeSO4-Chemical coagulation is the iron oxide generated by continuous addition of FeSO4. The 

pattern labeled Fe(NO3)3-Chemical coagulation is for the iron oxide generated by a one-time 

addition of Fe(NO3)3. 
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Cr(VI) adsorption onto iron oxides  

Because Cr(VI) adsorption to the Fe(III) oxides produced during electrocoagulation may 

be a part of the overall removal process, the equilibrium adsorption of Cr(VI) to iron 

(oxy)hydroxides generated in electrocoagulation and chemical coagulation was evaluated in 

batch experiments.  To generate sufficient solids for adsorption tests, EC was performed for 45 

minutes with 37 mA current at pH 8 and 0.94 L/min air bubbling with 5mM HEPES and 5 mM 

sodium nitrate. This 45-minute reaction time generated a 1 L of iron (oxy)hydroxide suspension 

with 29 mg/L (0.52 mM) iron. Cr(VI) adsorption was also examined for iron oxides generated 

from chemical addition of iron from either ferric nitrate or ferrous sulfate.  For adsorption 

experiments to iron oxides produced using Fe(NO3)3, a 1 L solution was first prepared with 5 

mM HEPES and 5 mM NaNO3.  Then 209 mg Fe(NO3)3·9H2O was dissolved into the 1 L 

solution to give a total iron concentration of 29 mg/L, which is the same as the suspensions 

produced by electrocoagulation. The solution was rapidly stirred to ensure complete mixing of 

the suspension, and the pH was adjusted to 8 with NaOH. For generation of iron oxides from 

oxidation of Fe(II) in FeSO4, 10 mM FeSO4 was continuously added to a 1 L solution with 5 mM 

HEPES and 5 mM NaNO3 at a rate of 0.644 mg/L·min as Fe for 45 minutes with 0.94 L/min air 

bubbling. Both EC and FeSO4-based chemical coagulation solutions were bubbled for an 

additional 30 minutes after the period of Fe(II) addition to promote complete oxidation of Fe(II). 

The 1 L suspension generated by EC or chemical coagulation was then divided into ten 

100 mL volumes for use in Cr(VI) adsorption tests. In each test 0.5 mL of 0.1g/L Cr(VI) stock 

solution was added to the 100 mL suspension to yield an initial dissolved Cr(VI) concentration 

of 500 μg/L (9.62 µM). The solution pH was adjusted to a desired value by addition of diluted 
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NaOH or HNO3 solution. The suspensions were stirred for 2 hours before filtration and analysis.  

The final pH was measured and used as the equilibrium pH. 

For the iron oxides generated from EC, less than 25% of the Cr(VI) was adsorbed across 

the entire pH range studied, and no adsorption was observed at pH 8. The low degree of Cr(VI) 

adsorption to the solids from EC demonstrates that adsorption is not an important mechanism for 

Cr(VI) removal during EC. The adsorption capacities of Cr(VI) on iron (oxy)hydroxides 

generated in chemical coagulation were also investigated. Similar to the pH adsorption edge for 

Cr(VI) on iron oxides from EC, the iron oxide generated by FeSO4-based chemical coagulation 

adsorbed very little of the Cr(VI).  The maximum adsorption percentage (at pH 5.6) was only 

11.8 %. The low extent of adsorption of Cr(VI) on these two iron oxides might be due to a lack 

of specific adsorption sites on lepidocrocite for Cr(VI). However, when starting with Fe(III) 

from a one-time dose of Fe(NO3)3 at pH 8 the solid produced was two-line ferryhydrite 

(FigureS2.2). In contrast to Cr(VI) adsorption to lepidocrocite, the ferrihydrite almost completely 

adsorbed the Cr(VI) at pH 5 in an experiment with an initial dissolved Cr(VI) concentration of 

500 μg/L, although even this solid adsorbed almost no Cr(VI) at pH 8 or higher (Figure S2.3). 

The iron oxide from EC has a specific surface area of 169 m
2
/g while that from Fe(NO3)3-based 

CC has a specific surface area of 299 m
2
/g. Assuming a widely used site density of 2.31 

sites/nm
2
 of the iron oxides,

104
 then the total surface site concentration of iron oxides from EC 

and Fe(NO3)3-based chemical coagulation are 43.6 μM and 74.3 μM, respectively, which are 

both much higher than the concentration of Cr(VI) of500 μg/L (9.6 μM). Consequently the 

differences in specific surface areas of the two materials are probably not the cause of the 

different extents of adsorption. Consistent with our observations, in previous work, ferrihydrite 
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was reported to be very reactive for Cr(VI) adsorption at low pH 
105

 while lepidocrocite had less 

affinity for adsorbing Cr(VI).
73
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Figure S2.3. Percent of Cr(VI) that is adsorbed as a function of pH for Cr(VI)0 = 500 μg/L and 

Fetotal = 29 mg/L. Adsorption edges are shown for Cr(VI) adsorption to iron oxides produced 

from three different approaches: chemical coagulation with a one-time dose of Fe(NO3)3, 

chemical coagulation with continuous FeSO4 addition, and electrocoagulation. 
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Comparison of chemical coagulation (CC) and electrocoagulation  

For Fe(II)-based chemical coagulation, a 10 mM FeSO4 stock solution was continuously 

added to a 1 L volume of solution in the reactor with a syringe pump and NaOH was also added 

to neutralize acidic Fe(II) solution and maintain a stable pH. The rate of Fe(II) addition was fixed 

to be the same as in the EC experiments (0.644 mg Fe/L·min). Other than the method of adding 

the Fe(II), the procedures for the chemical coagulation experiments were the same as those for 

electrocoagulation.  
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Figure S2.4. Comparison of electrocoagulation (EC) and chemical coagulation (CC) with FeSO4 

for removing Cr(VI) at (a) pH 6 and (b) pH 8. The experiments were performed with [Cr(VI)]0 = 

500 μg/L and conductivity = 460 μS/cm in aerated solutions. For EC, iron was generated using 
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iron electrodes with U = 4 V and I = 37 mA, and for CC, Fe(II) was provided by constant 

addition of a 10 mM FeSO4 solution at 1.15 mL/min from a syringe pump.  
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Figure S2.5. The second order rate constant for Cr(VI) reduction by Fe(II) reported in previous 

studies.  
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Cr(III) solubility versus pH 

 

Figure S2.6. Calculated dissolved Cr(III) concentration in equilibrium with Cr(OH)3(s)as a 

function of pH as determined using stability and hydrolysis constants from three different 

sources. 

Table S2.2. Chromium(III) solubility and hydrolysis constants for calculation in Figure S2.5 

Reaction 
Stability Constants Stability Constants Stability Constants 

(data base compiled 

by Benjamin 2002
85

) 
(Rai et al 1987

106
) 

(data base compiled by 

Schecher and McAvoy 2007
107

) 

Cr(OH)3(s)+3H
+
= Cr

3+
+3H2O Log K= 8.87 Log K= 9.64 Log K= 8.819 

Cr
3+

+H2O = Cr(OH)
2+

+H
+
 Log*β1= -4.00 Log*β1= -3.55 Log*β1= -3.657 

Cr
3+

+2H2O = Cr(OH)2
+
+2H

+
 Log*β2= -9.62 Log*β2= -10.59 Log*β2= -9.569 

Cr
3+

+3H2O = Cr(OH)3(aq)+3H
+
 Log*β3= -16.75 Log*β3= -16.46 Log*β3= -17.991 

Cr
3+

+4H2O = Cr(OH)4
-
+4H

+
 Log*β4= -27.77 Log*β4= -27.9 Log*β4= -27.388 
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Development of Model of Cr(VI) removal in electrocoagulation 

1 Electrocoagulation considering homogeneous reaction at pH 8 

A chemical dynamic model of Cr(VI) reduction and Fe(II) oxidation in 

electrocoagulation was developed based on previous detailed studies of Cr(VI)/Fe(II) and 

Fe(II)/O2 systems. Assumptions are made that the adsorbed concentrations of both Cr(VI) and 

Fe(II) are negligible compared with dissolved species at pH 6 and pH 8. For both Cr(VI) and 

Fe(II), the dissolved concentrations are used to represent total concentration. Second, we assume 

that the ratio of the concentration of any adsorbed Fe(II) (albeit small) to its dissolved 

concentration remains constant during the reaction, which will be applied in later heterogeneous 

reaction discussion for EC at pH 6. This second assumption is valid provided that 

adsorption/desorption reactions are fast compared to the redox reactions
73

 and that the surface 

sites of the solids are not close to saturation. The two assumptions are based on the following 

experimental observations: 

1) Cr(VI) has a low affinity for the EC product at pH 6. The similarity between the filtered 

and the unfiltered Cr(VI) concentration indicates that Cr(VI) associated with Fe(III) 

solids during reaction of Cr(VI) in the EC experiments is negligible. XANES data also 

show that no Cr(VI) was in the solid phase following the EC experiments. Adsorption 

experiments showed that there was no adsorption of Cr(VI) on iron hydroxide produced 

from EC at pH 8 and only 15% of Cr(VI) adsorbed to iron hydroxide solids that were first 

generated for 45 minutes at Cr-free conditions in the EC reactor at pH 6before being 

contacted with Cr(VI) (Figure S2.3). 

2) Control experiments showed that little Fe(II) adsorbed onto the Fe(III)-Cr(III) hydroxide 

solids produced from EC (data not shown) at pH 6, which might be due to a positively 
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charged EC product at pH 6. Positive surface charges were confirmed by zeta potential 

analysis.  

When only considering the homogeneous reaction of Cr(VI) reduction by Fe(II), the 

expressions for Cr(VI) concentration and Fe(II) concentration in electrocoagulation are: 

-
d [Fe(II)]

dt
=3*k1*[Cr(VI)]*[Fe(II)]-k2+kO2

*[Fe(II)]                         (S2.1) 

-
d [Cr(VI)]

dt
=k1*[Cr(VI)]*[Fe(II)]                                    (S2.2) 

k1 is the rate constant of Cr(VI) reduction by Fe(II), at pH =8 a value of k1=5.15*10
4 

M
-1 

s
-1 

is taken from previous studies.
8 
 

The Fe(II) generation rate in EC is k2= 
I

z∗F
 according to Faraday’s law (equation S2.3).   

Fe
total

M I t
Fe  =  

Z F

 


                                                   (S2.3) 

Faraday’s law can be used to describe the relationship between current (I) in amperes 

(1A=1C/s) and the amount of iron released to the solution (Fetotal), where MFe is the atomic 

weight of iron (55.85 g/mol), t is time (in seconds), z is the number of electrons transferred per 

iron released (z = 2 for release of Fe(II)), and F is Faraday’s constant (96,485 C/mol). 

The pseudo first order rate constant for Fe(II) oxidation rate by O2 in water in equilibrium 

with air is kO2
, kO2

= 1.05×10
-2 

s
-1 

at pH 8 and kO2
= 3.85×10

-6 
s

-1 
at pH 6, which is derived from 

the equation in King’s paper 
9
 and then calculated for our conditions. The Fe(II) oxidation rates 

is affected by both pH and the carbonate concentration in solution. 

This model with just homogeneous reduction can effectively simulate the experimental 

data of dissolved concentration at pH 8 as shown in the main manuscript (Figure 2.5d). 
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2 Electrocoagulation modeling at pH 6 

2.1 Control experiments to study individual processes at anoxic conditions 

 

 

Figure S2.7. (a) 50µg/L Cr(VI) reduced by 1000 µg/L Fe(II) at pH 6 with 4mM MES under 

anoxic condition (b) Experimental data with simulation result derived from equation S2.1 

The rate constant for reduction of Cr(VI) by dissolved Fe(II) at pH 6 at anoxic conditions 

was determined in simple batch experiments with addition of known amounts of Cr(VI) and 

Fe(II).   

dCr(VI)

dt
=-k1*Cr(VI)*Fe(II)                                           (S2.4) 
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The first experiments performed at pH 6 were at conditions selected to minimize 

contributions from any heterogeneous reduction and to enable interpretation of the reaction based 

on pseudo first order reaction kinetics. This experiment was performed with a low initial Cr(VI) 

concentration of 50 µg/L that would minimize CrxFe1-x(OH)3 generation that could otherwise 

lead to extensive heterogeneous Cr(VI) reduction in parallel to homogeneous reduction. With 

Fe(II) in great excess of Cr(VI), Cr(VI) removal could be interpreted using pseudo first kinetics 

(Figure S2.7a). A pseudo first order reaction rate constant of 6.3·10
-4

 s
-1

 was determined, and 

then a second order reaction rate constant k1 of 35 M
-1

s
-1

could be determined. This value is then 

used as the rate constant for homogenous reduction (khomo) in the later model development 

(discussed further below). The second order rate constant is in the range of 29-47 M
-1

s
-1 

reported 

in previous study.
8 

The dissolved and total Cr(VI) concentration is quite similar (data not 

shown). For both Cr(VI) and Fe(II), the dissolved concentrations are used to represent total 

concentration and this assumption will be discussed later. 

The reduction was also investigated at higher Cr(VI) concentration for examining the 

possible autocatalytic effect of heterogeneous reaction occurring in parallel with the 

homogeneous reaction once some Fe(III)/Cr(III) solid has been produced. In the first experiment 

to study this, the amounts of Cr(VI) and Fe(II) added could lead to complete consumption of 

each following stoichiometric reaction. Figure S2.8 shows results of reaction of 500 µg/L 

(9.62µmol/L) Cr(VI) with 1615 µg/L Fe(II) (28.84 µmol/L) ([Fe]: [Cr]molar = 3) at pH 6. 

Equation S2.4 can be integrated to the linear expressions for this special case of [Fe(II)]0= 

3[Cr(VI)]0 and at a stoichiometric progress of the reaction: 

1

[Cr(VI)]
=

1

[Cr(VI)]
0

+3k1t                                                (S2.5) 
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1

[Fe(II)]
=

1

[Fe(II)]
0

+k1t                                                  (S2.6) 

When the data were plotted according to Equation S2.5 (Figure S2.8), the slope of the 

data kept increasing, indicating that k1was increasing with reaction time. If the reaction followed 

a simple second order reaction, then the data in Figure S2.8 would have plotted as a straight line 

according to equation S2.5 with a constant value of k1. The concave up trend suggests an 

autocatalytic effect in the system at a high concentration of chromium. Such a marked 

autocatalytic effect for Cr(VI) reduction by a stoichiometric amount of Fe(II) was not observed 

in a previous study;8 however the experiments in that study were conducted at pH 5 instead of pH 

6, and the initial concentrations were higher (20 µM Cr(VI) instead of 9.62 µM). 

 

Figure S2.8. Second-order plot of 1/[Cr(VI)]diss vs time and stoichiometric concentrations of 

3[Cr(VI)]=[Fe(II)] ( [Cr(VI)]0=500 µg/L) at pH 6. The dashed line is an extension of the initial 

slope of 1/Cr(VI)diss versus time, and the deviation of the data from this line indicates that the 

actual slope (which is related to the rate of the reaction) increases with increasing time. 
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Experiments on the reduction of 500 µg/L Cr(VI) by different concentrations of Fe(II) 

were performed to estimate the heterogeneous rate constant in the reaction. In Figure S2.9, Log 

Cr(VI) decreased linearly during the reaction process regardless of the concentration of Fe(II), 

which indicates that Cr(VI) reduction is pseudo first order for all of those doses, with a pseudo 

first order rate constant kobs (kobs =k1·[Fe(II)]). As Fe(II) is consumed during the reaction, the rate 

constant for Cr(VI) reduction by Fe(II) kept increasing, especially for solutions without excess 

Fe(II). In Figure S2.9c, we find that kobs/[Fe(II)]0 increases with increasing Fe(II) initial 

concentration, and a suitable k1 can be chosen for use in the model of the dynamics of Fe(II) and 

Cr(VI) during electrocoagulation based on the average Fe(II) concentration during the 

electrocoagulation experiment. According to the time at which Cr(VI) had decreased from 500 

µg/L to below detection limit in EC and the corresponding Fe(II) amount, we choose the rate 

constant extracted from 500 µg/L Cr(VI) reduction by 3300 µg/L Fe(II) to apply as the 

heterogeneous rate constant in the electrocoagulation kinetic calculations described later. This 

value is khetero
′ = 1.1x10

7
 M

-2
∙s

-1
. 
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Figure S2.9. Examination of the kinetics of reduction of 500 µg/L Cr(VI) by different initial 

concentrations of Fe(II) at pH 6 with 4 mM MES shown with (a) a linear scale and (b) a 

logarithmic scale indicating a different pseudo first ordre rate constant in each case.  Panel c is 

the value of the kobs/Fe(II)0 versus the initial Fe(II) concentration; if the reaction were 

homogeneous and second order, then kobs/[Fe(II)]0 would be constant and would plot as a 

horizontal line (e.g., like the dashed line shown). 
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2.2 Electrocoagulation modeling at pH 6 

Figure S2.10 provides the calculated Cr(VI) and Fe(II) concentrations at pH 6 when only 

considering the homogeneous reduction of Cr(VI) by Fe(II). The rate constant for Cr(VI) 

reduction by Fe(II)determined above from control experiments is k1= khomo= 35M
-1

s
-1

. 
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Figure S2.10. The homogeneous rate constant applied in EC at both oxic and anoxic conditions 

at pH 6 (a) Cr(VI) concentration (b) Fe(II) concentration   
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In Figure S2.10, the actual Cr(VI) decrease during electrocoagulation is much faster than 

predicted at pH 6 assuming only homogeneous reduction, which implies the occurrence of 

heterogeneous reduction of Cr(VI) by Fe(II) on the Fe(III)-containing solids. The incorporation 

of a heterogeneous reaction at pH 6 into the model is clearly necessary.  

Based on the second assumption that adsorption/desorption reactions are fast and that the 

surface sites of the solids are not close to saturation for dissolved Fe(II), the rate of Cr(VI) 

reduction by Fe(II) (equation S2.2) can be rewritten as: 

-
d [Cr(VI)]

dt
=k1*[Cr(VI)]*[Fe(II)]=k

dd
*[Cr(VI)]

diss
*[Fe(II)]

diss
+kad*[Cr(VI)]

ads
*[Fe(II)]

diss
  

+kda*[Cr(VI)]diss*[Fe(II)]
ads

+ kaa*[Cr(VI)]ads*[Fe(II)]
ads

         (S2.7) 

where the subscripts diss and ads mean dissolved and adsorbed species, respectively, and 

the subscripts on the rate constants of “a” and “d” indicate which species are interacting in which 

particular combination of possible reactions. 

The Cr(VI) reduction rate in equation S2.7 can be simplified to equation S2.8 under the 

assumption that any minor fraction of adsorbed Cr(VI)  does not strongly affect the kinetics 

([Cr(VI)]ads = 0). This assumption is consistent with those used in a previous study.
73

 

-
d[Cr(VI)]

dt
=khomo*[Cr(VI)]

diss
*[Fe(II)]

diss
+khetero*[Cr(VI)]

diss
*[Fe(II)]

diss
     (S2.8) 

Here khomo = kdd and is used to represent the homogeneous rate constant of Cr(VI) 

reduction by dissolved Fe(II); k hetero =kda*Feads /Fediss and represents the rate constant for 

heterogeneous reduction of Cr(VI) by adsorbed Fe(II). 

For the same reason, the Fe(II) concentration in electrocoagulation can be simplified to 

equation S2.9 as: 
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-
d[Fe(II)]

dt
=3khomo*[Cr(VI)]

diss
*[Fe(II)]

diss
+3khetero*[Cr(VI)]

diss
*[Fe(II)]

diss
 + kO2

*[Fe(II)]
diss

  

(S2.9) 

Fe(II) coordinated with surface hydroxyl groups of amorphous iron(III) hydroxides, 

which are precipitating during the electrocoagulation, could lead to enhanced Cr(VI) reduction 

rates. 

Furthermore, we tried two approaches for including a value to represent the amount of 

solid present and the associated value of k hetero for use in the model: 

Approach 1: iron oxide surface sites are constant during EC process and are not a rate-

limiting factor in overall Cr(VI) reduction). (khetero is constant in equation S2.8 and S2.9) 

-
d[Cr(VI)]

dt
=khomo*[Cr(VI)]

diss
*[Fe(II)]

diss
+khetero*[Cr(VI)]

diss
*[Fe(II)]

diss
       (S2.10) 

Approach 2: iron oxide surface sites increase with time and are proportional to the 

amount of Fe(III) generated. 

-
d[Cr(VI)]

dt
=khomo*[Cr(VI)]

diss
*[Fe(II)]

diss
 

+khetero
'

([Fe(II)]
T
-[Fe(II)]

diss
)*[Cr(VI)]

diss
*[Fe(II)]

diss
       (S2.11) 

[Fe(II)]T is the total iron concentration in EC at time t. 

For Approach 1, Figure S2.11 shows that although the model fit the control experiment 

data very well, the model could not simulate the EC process when using the same khetero value as 

in the control experiments.  Further, there was a lag time in Cr(VI) removal in the EC 

experiments that could not be accounted for using Approach 1. 
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Figure S2.11. Data and output of a model with constant surface sites applied to both (a) 500 

µg/L Cr(VI) reduced by 3300 µg/L Fe(II) and (b) EC at pH 6  

For Approach2, we assumed that the Fe(III) solids provide surface sites for 

heterogeneous reaction and the availability of solid surface sites are the limiting factor for the 

heterogeneous reaction. Although the model does not fit the data from the control experiments 

(Figure S2.12a)as well as it they did when using Approach 1, the EC process can be fitted much 

better by the modeling with khetero
′ = 1.1x10

7
 M

-2
∙s

-1
, the rate constant from the control 

experiment.  

(a) 

(b) 
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Figure S2.12. Data and a model simulation with surface sites depending on Fe(III) applied to 

both (a) 500 µg/L Cr(VI) reduced by 3300 µg/L Fe(II) and (b) EC at pH 6 
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The influence of phosphate on EC 

 
Figure S2.13. Dissolved Chromium and iron concentration in electrocoagulation with 20 mg/L 

phosphate-P in aerated experiments. [Cr(VI)]0=500 μg/L, U=4 V, I=37 mA, pH=8.0 with 5mM 

HEPES and conductivity=460 μS/cm. 
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Chapter 3. Effect of Humic Acid on the Removal 

of Chromium(VI) and the Production of Solids in 

Iron Electrocoagulation 

This chapter was published in Pan, C.; Troyer, L. D.; Liao, P.; Catalano, J. G.; Li, W.; 

Giammar, D. E., Effect of Humic Acid on the Removal of Chromium (VI) and the Production of 

Solids in Iron Electrocoagulation. Environ Sci Technol 2017, 51, (11), 6308-6318.
108

 

Abstract 

Iron-based electrocoagulation can be highly effective for Cr(VI) removal from water 

supplies. However, the presence of humic acid (HA) inhibited the rate of Cr(VI) removal in 

electrocoagulation, with the greatest decreases in Cr(VI) removal rate at higher pH. This 

inhibition was probably due to the formation of Fe(II) complexes with HA that are more rapidly 

oxidized than uncomplexed Fe(II) by dissolved oxygen, making less Fe(II) available for 

reduction of Cr(VI). Close association of Fe(III), Cr(III) and HA in the solid products formed 

during electrocoagulation influenced the fate of both Cr(III) and HA. At pH 8, the solid products 

were colloids (1-200 nm) with Cr(III) and HA concentrations in the filtered fraction being quite 

high, while at pH 6 these concentrations were low due to aggregation of small particles. X-ray 

diffraction and X-ray absorption fine structure spectroscopy indicated that the iron oxides 

produced were a mixture of lepidocrocite and ferrihydrite, with the proportion of ferrihydrite 

increasing in the presence of HA. Cr(VI) was completely reduced to Cr(III) in electrocoagulation, 

and the coordination environment of the Cr(III) in the solids was similar regardless of the humic 

acid loading, pH and dissolved oxygen level. 
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3.1 Introduction 

Hexavalent chromium [Cr(VI)] is a toxic and carcinogenic metal found in groundwater 

and surface waters as a result of human activities and natural processes. A common Cr(VI) 

treatment technique involves Cr(VI) reduction to Cr(III) by Fe(II) and the subsequent association 

of Cr(III) with the produced Fe(III) (oxy)hydroxide solids.
24, 109

 The Cr(III) can either adsorb to 

or be structurally incorporated into the iron oxide by co-precipitation to form a Fe(III)-Cr(III) 

(oxy)hydroxide solid solution.
110

 Iron-based electrocoagulation (EC), where Fe(II) is produced 

from the iron anode, can lower the Cr(VI) concentrations to levels well below the 10 μg/L 

drinking water standard recently established in California.
62

 In our recent work on 

electrocoagulation, the dynamics of Cr(VI) removal could be described by a model that 

incorporates Fe(II) release from the anode and heterogeneous and homogeneous reduction of 

Cr(VI) by Fe(II). The Fe- and Cr-containing EC product was found to catalyze that Cr(VI) 

reduction by adsorbed Fe(II). Iron-electrocoagulation is also known to destabilize and remove 

natural organic matter (NOM, chiefly humic substances) by charge neutralization and sweep 

flocculation.
111, 112

 However, the influence of NOM on the extent and rate of Cr(VI) removal and 

the structure of the iron- and chromium-containing solids was not determined in the previous 

work. 

Iron undergoes significant interactions with humic substances in the dissolved and 

particulate phases. Humic substances are complex organic macromolecules that are ubiquitous in 

water, soil and sediments.
113

 The concentration of humic substances in groundwater can be as 

high as 70 mg/L as dissolved organic carbon (DOC), whereas the DOC concentration in surface 

waters can be as high as 100 mg/L with an average concentration of 5 mg/L.
114-116

 Humic 

substances can be in soluble (defined as diameter less than 1 nm) or colloidal forms (1 to 200 
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nm)
117

 depending on solution conditions. Anionic functional groups, primarily carboxylic and 

phenolic groups, of humic substances introduce negative charges and have a strong affinity for 

positively charged mineral surfaces or metal cations.
115, 118-120

 NOM can become associated with 

iron oxides by adsorbing to already existing Fe oxides,
121, 122

 but it can also become associated 

with iron oxides during the initial formation of iron oxides. The precipitation of Fe(III) phases 

and immediate adsorption of NOM to the newly formed hydrous oxides and precipitation of 

NOM by monomeric or polymeric Fe species are parallel processes that have been referred to as 

co-precipitation.
123, 124

 Co-precipitation of NOM with Fe is common in environments where Fe 

hydrolysis occurs due to changes in pH or redox potential.
125

 Lalonde et al. estimated that around 

21.5 percent of organic carbon is co-precipitated or adsorbed to reactive iron-oxide phases in 

sediments across a wide range of depositional environments. Simple adsorption of organic matter 

on reactive iron oxide surfaces accounts for little uptake compared with co-precipitation and/or 

chelation of organic compounds with iron oxides.
119

 In addition to the stabilization of NOM by 

association with iron oxides,
111, 112

 co-precipitation is also known to alter the particle size and 

structural order of the newly formed oxyhydroxides.
126, 127

 Eusterhues et al. found that even a 

small amount of NOM significantly affects crystal growth, leading to smaller ferrihydrite 

crystals, increased lattice spacing, and greater distortion of Fe(III) octahedra. 

Besides interacting with metal oxides, humic substances also bind soluble metal ions, 

which is important for the speciation, transport and toxicity of these trace metals.
128-130

 Cr(III) 

binds to Suwannee River fulvic acid (SRFA) as a monomeric Cr(III)-SRFA complex at pH<5, 

but it binds as polynuclear Cr(III)-SRFA at higher pH.
129

 However, fewer studies have examined 

the chemistry of HA in systems containing both Cr(III) and Fe(III).
131, 132
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Dissolved organic matter can affect the rate of Fe(II) oxidation by dissolved oxygen.
133-

136
 A variety of iron(II)-binding ligands and humic acids were found to decrease the rate of 

iron(II) oxidation.
134

 However, it has been noted that back reduction of Fe(III) species by 

catechol-type ligands may have decreased their observed oxidation rate.
137

 In contrast, Liang, et 

al. 
138

 found that DOM can accelerate the iron(II) oxidation rate under some conditions. This 

study and another postulated that in the presence of DOM, net oxidation is the result of two 

competing pathways, DOM-iron(II) complexation followed by oxidation of the complex and 

oxidation of inorganic iron(II) species.
138, 139

 In addition to the influence of complexed HA on 

Fe(II) oxidation, HA could also directly influence Cr(VI) reduction by Fe(II) at suboxic 

conditions. Cr(VI) reduction by Fe(II) was reported to be accelerated with the presence of 

different organic ligands including, and the acceleration extent is dependent on pH.
140-142

  

The objectives of this study were to evaluate the effect of HA on the process of Cr(VI) 

removal by Fe-electrocoagulation, including its influence on the dynamics of Cr(VI) reduction, 

the colloidal stability of solids produced from electrocoagulation, and the coordination 

environments of chromium and iron in these solid products. We chose humic acid as a 

representative NOM to evaluate its effects on Cr(VI) removal by electrocoagulation. Humic acid 

might affect the process by inhibiting or accelerating the rates of Fe(II) oxidation by dissolved 

oxygen and Cr(VI) reduction by Fe(II), reducing Cr(VI) with specific ligands, competitively 

adsorbing onto reactive sites of iron oxides, adjusting or even reversing the electrostatic charge 

of mineral surfaces, and forming colloids composed of HA, Fe(III), and Cr(III). 
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3.2 Materials and Methods 

3.2.1 Materials 

Chemicals used were analytical reagents of high purity. Ultrapure water (resistivity >18.2 

MΩ-cm) was used for the experiments. Glass volumetric flasks and 1-L polypropylene reaction 

vessels were cleaned with 10% HCl  and rinsed several times with ultrapure water before use. A 

Cr(VI) stock solution (0.1 g/L, 1.923 mM) was prepared from K2Cr2O7. Control of ionic strength 

was achieved by additions from a 1 M NaNO3 stock solution. At pH 6, 1 mM MES (2-(N-

morpholino) ethane sulfonic acid) (Fisher Scientific) was used, 2 mM HEPES (4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid) (≥99.5%, Sigma-Aldrich) was used at pH 7 and 

8, and 2 mM CHES (N-Cyclohexyl-2-aminoethanesulfonic acid) (≥99.5%, Sigma-Aldrich) was 

used for experiments at pH 9. The pH buffers and their concentrations were chosen to minimize 

the possible formation of Fe(III) and Cr(III) complexes with the buffers.
143, 144

  MES, HEPES 

and CHES are widely used for their minimal influences on metal complexation.
94, 145-148

 

Commercial humic acid was chosen as a model for colloidal humic substances (Sigma-Aldrich). 

Sigma-Aldrich humic acid displays similar redox properties (midpoint potential and electron 

accepting capacity) as those of soil-derived humic acids
149

, and it  has been used in numerous 

other studies.
132, 150, 151

 The stock solution of HA was filtered through a 0.45 μm polyethersulfone 

(PES) membrane (Millipore) under vacuum and stored in the dark at 4 °C before use. 

3.2.2 Electrocoagulation batch experiments 

The electrocoagulation reactor and procedure were the same as described in detail in our 

previous work.
62

 Briefly, the electrocoagulation reactor consisted two iron rods immersed in a 1 
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L solution with 2 mg/L (38.5 μM) intial Cr(VI) and 5mM buffers. Sodium nitrate was added 

until the conductivity of the solution achieved 460 μS/cm. An electric potential of 4 V was 

applied to the rods with a direct current power supply, and the current was held constant at 37 

mA. Anoxic experiments were performed in an anaerobic chamber (Coy Laboratory Products 

Inc., MI) with a secondary low temperature oxygen trap to achieve strictly anoxic conditions in 

the electrocoagulation reactor
62, 152

. All the EC experiments for Cr(VI) removal with different 

concentrations of HA were performed in duplicate with error bars representing standard 

deviation, as shown in Figure 3.1.   

For each sampling event, a volume of suspension was drawn from the reactor. The 

suspensions for analyzing total iron and chromium were acidified directly after collection. The 

rest of the suspension in the syringe was filtered through a 0.22 μm polyethersulfone (PES) 

membrane, and the filtrate was saved for analysis of dissolved iron, chromium, Cr(VI), Fe(II) 

and humic acid concentrations. The aliquots for Cr(VI), Fe(II) and HA were not acidified and 

measured immediately after being collected. Only the separate aliquots for ICP-MS 

measurements were preserved with 2% HNO3.  

3.2.3 Analytical methods 

Cr(VI) concentrations in the samples were determined with the diphenylcarbazide (DPC) 

method by measuring the absorbance at 540 nm using a spectrophotometer (PerkinElmer-

Lambda XLS).
153

 Total dissolved Fe(II) concentrations were determined spectrophotometrically 

by the ferrozine method at a wavelength of 562 nm.
154

 Total dissolved iron and total dissolved 

chromium (Cr(VI) and Cr(III) together) concentrations were measured by inductively coupled 

plasma mass spectrometry (ICP-MS) (PerkinElmer ELAN DRC II) analysis of filtered samples. 

In experiments without humic acid, dissolved Fe(II) concentrations were found to be equal to 
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dissolved iron concentrations because Fe(III) has a very low solubility from the range of pH 6 to 

pH 9 that was studied. The organic carbon concentration of the humic acid stock solution was 

determined by a total organic carbon analyzer (TOC-L, Shidmadzu Scientific Instrument, Inc., 

MD). DOC concentrations of filtered samples were measured spectrophotometrically at 254 nm 

using a 1 cm quartz cell. To eliminate interference from Fe(III) in absorbance measurements for 

DOC determination, 0.05 ml 5% hydroxylamine hydrochloride was added to each 1 ml sample 

and the absorbance was recorded until no further change occurred, indicating that all the Fe(III) 

had been reduced to non-interfering Fe(II).
155

  

Soluble (<10 kDa), colloidal (10 kDa - 0.22 m) and particulate (>0.22 m) Cr, Fe and 

HA were fractionated from samples by 10 kDa ultrafiltration and 0.22 m filtration. Colloids in 

this study were defined as particles ranging from 10 kDa (roughly equal to 1-3 nm) to 0.22 m 

(the initial filtration). Specifically, the colloidal samples were operationally isolated by the pore 

size of separating devices, i.e. filtered water samples (filtrates) were separated into permeates 

(<10 kDa, soluble phase) and retentates (10 kDa - 0.22 m, concentrated colloidal phase) by 

ultrafiltration membranes (MF-Millipore) with nominal molecular weight cut-offs of 10 kDa. 

The particle size distributions and zeta potential of electrocoagulation products were 

measured through dynamic light scattering (DLS) analysis using (ZetaSizer Nano, Malvern 

Instruments, UK). For each sampling event, the suspension was taken from the 

electrocoagulation reactor and measured by DLS within 5 minutes. TEM samples were prepared 

by dropping approximately 30 μL of electrocoagulation suspension quickly onto 200 mesh 

carbon-coated copper grids (Ted Pella, Inc.) followed by immediate evaporation of the remaining 

water at room temperature under vacuum. TEM micrographs were taken with a transmission 

electron microscope under 120 kV (FEI Spirit G2). Solids for X-ray powder diffraction (XRD) 
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were collected from suspensions after 30 minutes of electrocoagulation reaction. The 

suspensions were concentrated by centrifugation and then freeze-dried. XRD patterns of solid 

samples were collected using Cu Kα radiation (Bruker d8 Advance X-ray diffractometer).  

Fe and Cr K-edge X-ray absorption fine structure (XAFS) spectra were collected on 

samples from electrocoagulation reactors after 30 minutes of reaction. Samples were vacuum-

filtered onto mixed cellulose ester membranes (0.22 µm) and then sandwiched as wet pastes 

between Kapton film and sealed with Kapton tape. XANES spectra were collected at the 

Advanced Photon Source on beamlines 5-BM-D and 20-BM-B. 5-BM-D and 20-BM-B both 

employ a water-cooled Si (111) double crystal monochromator; harmonic rejection is achieved 

through detuning the monochromator by 10 to 30% and beamline-specific mirror 

configurations.
156, 157

 Fluorescence-yield spectra were collected with a 4-element energy-

dispersive silicon drift detector at beamline 5-BM-D and were collected with a 13-element solid 

state Ge energy-dispersive detector at beamline 20-BM-B. Fe reference compounds included 

lepidocrocite and 2-line ferrihydrite. Two-line ferrihydrite was synthesized by dissolving 

Fe(NO3)39H2O in DI water and adding NaOH to bring the pH to 7. The suspension was then 

dialyzed to remove dissolved sodium and nitrate and the cleaned suspension was freeze-dried.
158

 

Lepidocrocite was synthesized using previously-described procedures.
158

 Cr reference 

compounds of Fe(III)-Cr(III) co-precipitates were synthesized by first combining Fe(III) chloride 

and Cr(III) chloride stock solutions in varying ratios with a total concentration of 60 M Fe and 

Cr with 10 mM NaCl as a background electrolyte. The solutions were then adjusted to pH 7 

using NaOH and stirred for 2 days before being prepared by vacuum-filtration in the same way 

as the samples. Fe and Cr spectra were processed in the Athena
159

 interface to IFEFFIT.
160

 

Athena was also used for linear combination fitting of Fe extended X-ray absorption fine 
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structure (EXAFS) spectra. Structural models of Cr EXAFS spectra were refined in SixPACK
161

 

using backscattering phase and amplitude functions generated from FEFF 7.02.
162, 163

 

3.2.4 Modeling the dynamics of Cr(VI) removal 

Reaction kinetics considering Fe(II) generation in EC, Cr(VI) reduction by Fe(II), Fe(II) 

oxidation by dissolved oxygen (DO), and acceleration of Fe(II) oxidation by DO caused by HA 

were applied to simulate the dynamics of dissolved Cr(VI) and Fe(II) during electrocoagulation. 

The rates of change of Cr(VI) (eq 3.1) and Fe(II) (eq 3.2) during electrocoagulation can be 

written as  

-
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=khomo*[Cr(VI)]

diss
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*[Fe(II)]
diss

  (3.2)  

The definitions and values of the rate constants are summarized in Table S3.1. The 

development and initial parameterization of the model were described in our recent work on 

experiments in the absence of humic acid.
62

 Briefly, equation 3.1 includes both homogeneous 

and heterogeneous reduction of Cr(VI). In equation 3.2, the four terms are included to track the 

fate of Fe(II) as it is affected by (i) homogeneous and (ii) heterogeneous reaction of Fe(II) with 

Cr(VI), (iii) Fe(II) production from the anode according to Faraday’s law, and (iv) Fe(II) 

oxidation by dissolved oxygen. The terms of heterogeneous reactions are simplified under the 

assumption that any minor fraction of adsorbed Cr(VI) does not strongly affect the kinetics and 

that adsorbed Fe(II) is proportional to the dissolved Fe(II). In the presence of HA, the rate of 

Fe(II) oxidation by DO would increase and enhancing factors were used to represent the 

increasing extent. The enhancing factor of Fe(II) oxidation with different HA concentration (f) 
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was an adjustable parameter that was used to fit the model output to the experimental data. 

Because the rest of the model had been previously developed from independently determined 

parameters, the enhancing factor was the only fitting parameter in the present study.  

3.3 Results and Discussion 

3.3.1 Effect of humic acid on Cr(VI) removal rate in electrocoagulation 

Without the presence of oxygen, HA had no effect on the rate of Cr(VI) removal from pH 

6 to pH 9 (Figure 3.1). Although HA was previously reported to accelerate Cr(VI) reduction by 

Fe(II),
140

 this was not observed from pH 7 to pH 9 even without oxygen. The lack of an 

observable effect of HA at anoxic conditions suggests that Fe(II) generation from the anode in 

electrocoagulation was the rate-limiting step for Cr(VI) removal
62

 and the reduction of Cr(VI) by 

Fe(II) either with or without HA was much faster than Fe(II) production.  

With oxygen present, HA inhibited Cr(VI) removal at the higher pH conditions studied 

(Figure 3.1). Humic acid has a high density of carboxylate functional groups that complex with 

both Fe(II) and Fe(III).
164

 The strong complex with Fe(III) could drive down the free Fe(III) 

concentration and lower the reduction potential of the Fe(III)/Fe(II) half reaction, thus Fe(II) 

could be more easily oxidized by dissolved oxygen.
165, 166

 In addition, the complexation of Fe(II) 

by carboxylate functional groups increases the rate of Fe(II) oxidation by O2 compared to 

uncomplexed Fe(II).
135

 Thus Cr(VI) reduction by Fe(II) was inhibited as oxygen became a strong 

competitor with Cr(VI) to oxidize Fe(II)-HA complexes. The greater inhibition of Cr(VI) 

removal by HA at higher pH during electrocoagulation might be due to the pH dependence of the 

rate of the complexed Fe(II) oxidation by O2. Figure S3.1 shows the influence of HA on the 

evolution of dissolved Fe(II) in electrocoagulation at oxic conditions without the presence of 
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chromium. The enhancement of Fe(II) oxidation was not observed at pH 6 in electrocoagulation 

(Figure S3.1a) and the Fe(II) concentration with or without HA was similar to total iron 

(represented by Faraday’s law, equation S3.1 in supporting information). The Fe(II) oxidation by 

dissolved oxygen was too slow at pH 6 and could be negligible within the short time of 

electrocoagulation. At a higher pH of 7, it is easier to see the trend of Fe(II) oxidation 

acceleration in electrocoagulation (Figure S3.1b). At pH 8 no accelerating effect of HA on Fe(II) 

oxidation can be discerned because the rate was very fast even in the absence of HA (Figure 

S3.1c). Fe(II) was immediately oxidized once generated in electrocoagulation even without HA. 

This pH-dependence of the HA-enhanced oxidation of Fe(II) by O2 might be due to a greater 

abundance of deprotonated carboxyl groups that could complex Fe(II) better at higher pH. 

We applied the model for the dynamics of Fe(II) and Cr(VI) during electrocoagulation at 

both oxic and anoxic conditions (eq 3.1 and eq 3.2). For the processes with HA present, we 

increased the Fe(II) oxidation rate constant by changing the value of the enhancing factor f in the 

term of Fe(II) oxidation by DO (eq 3.2). The enhancing factors for Fe(II) oxidation, f, are 

summarized in Table S3.2. The enhancing factors necessary to fit the evolution of Cr(VI) during 

electrocoagulation increased with increasing pH and humic acid concentrations. At pH 7 it is 

hard to precisely determine the enhancing factors of different HA concentration as 

experimentally there is a slight enhancement of Fe(II) oxidation (Figure S3.1b) and inhibition of 

Cr(VI) removal (Figure 3.1), and at pH 6 there is no experimental evidence for even a slight 

enhancing factor of Fe(II) oxidation by HA. In modeling the behavior at both pH 6 and 7, the 

enhancing factor could be set to 1 (i.e. no enhancement) and acceptable fits were achieved. 

Including any factor greater than 1 at pH 7 would actually have resulted in poorer fits.  
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Figure 3.1 The influence of humic acid on Cr(VI) removal from pH 6 to pH 9 at oxic and anoxic 

conditions. The dashed lines correspond to simulations done according to the humic acid 

concentration present (Cr(VI) concentration derived from eq 3.1). Humic acid concentrations are 

expressed as mg C/L.  Conditions: [Cr(VI)]0 = 2 mg/L, U = 4 V, I = 37 mA, 2 mM MES for pH 

6.0, 5 mM HEPES for pH 7.0 and 8.0, 5 mM CHES for pH 9, and conductivity = 460 μS/cm. 

The evolution of the Fe(II) concentration during electrocoagulation calculated by the 

model is shown in Figure S3.2. According to the model output, HA would not influence the 

macroscopically observable Fe(II) concentration evolution even at oxic conditions from pH 6 to 
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pH 9. This is because any HA enhancement of Fe(II) oxidation by dissolved oxygen is not 

apparent at pH 6, is very limited at pH 7, and is not observable at pH 8 and above because all 

Fe(II) is immediately oxidized once generated even without HA. In the model equations, it is 

assumed that all the Cr(VI) in EC solids is reduced to Cr(III) even in the presence of humic acid. 

This is consistent with the XANES spectroscopy results discussed below. 

3.3.2 Effect of HA on the formation of colloidal particles in electrocoagulation 

The overall performance of iron electrocoagulation and its integration with other unit 

operations in water treatment will depend on the coagulation of the particles produced in addition 

to the Cr(VI) removal just discussed. Humic acid enhanced coagulation-flocculation at pH 6 

while it inhibited coagulation-flocculation at pH 8. Without HA, Fe-Cr solid particles produced 

from electrocoagulation are positively charged below pH 6.5 as determined from zeta potential 

measurement (pHpzc= 6.5 in Figure S3.3). This pH dependence of surface charge is comparable 

to that reported by Wan et al., where the lepidocrocite produced in electrocoagulation had an 

isoelectric pH of about 7.0.
33

 As a result, solid particles generated during electrocoagulation with 

no HA present had zeta potentials that were positive at pH 6 (Figure 3.2c) and negative at pH 8 

(Figure 3.2d). Particle size measured by DLS provides information on the changes in the state of 

colloidal systems. Without HA at pH 6, electrostatically repulsive interactions predominantly 

reduced the collision efficiency of particles due to their positive charge. Iron oxide solids were 

colloids for the first 10 minutes and then aggregated into larger particles as more iron oxide 

particles were generated (Figure 3.2a). The humic acid influences the surface charge properties 

of electrocoagulation products, which govern particle-particle interactions. Since the produced 

amount of iron oxide is low at the beginning of EC process, the negatively charged HA adsorbs 

and thus neutralizes the positive charges on the iron oxide surface at pH 6 and gives the initial 
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solids formed a net negative charge. In this process, the heteroaggregation between the HA and 

iron oxides was promoted due to favorable electrostatic attractions between oppositely charged 

particles.
167

 With more output of positively charged iron oxides generated from EC, the surface 

charge of particles became less negative than 30 mV within 5 minutes, and eventually the surface 

charge was reversed at 15 minutes. The charge neutralization and reversal led to an unstable 

particle system in which aggregation occurred.  As seen in Figure 3.2a for the case of 5 mg/L HA 

at pH 6, the aggregate size already exceeded 1 µm after 5 minutes. DLS does not give 

information on very large particles so we only showed the data up to five minutes. 

Particles with zeta potentials more positive than +30 mV or more negative than −30 mV 

are normally considered stable.
168

 Figure 3.2d shows the surface charge of EC products at pH 8 

in the absence and presence of HA. Iron oxides generated in EC without HA are only slightly 

negatively charged at pH 8, and thus aggregation to larger particles occurs easily. The particle 

size increased from 0 to 1000 nm in less than 1 minute. In the presence of 5 mg/L HA at pH 8, 

the surface charge of solid particles generated during electrocoagulation is always negative (ca. -

40 mV). Under this condition, the particle size is stable, ranging from 163 to 244 nm during the 

whole EC process. The stabilization of colloidal particles by HA at pH 8 (Figure 3.2b) can be 

ascribed to the enhanced electrosteric stabilization effect from adsorbed HA,
122

  which increases 

the dispersion of the particles. 

The stability of the particles in electrocoagulation greatly influences the fate of Cr(III). 

All Fe(II) and Cr(VI) are soluble as no Cr(VI) or Fe(II) were detected in large particles or 

colloids. All Cr(III), Fe(III) and HA were present in either colloids or larger suspended particles 

because of their negligible concentration detected in soluble filtrates after 10 kDa membrane 

ultrafiltration. Thus the colloidal concentrations of Cr(III), Fe(III) and HA are the same as their 
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concentrations in the samples filtered with 0.22 m membranes, which are recorded in Figure 

S3.4. Figure 3.3 summarizes the fractions of the total amounts of Cr(III), Fe(III) and HA that are 

present as colloids following electrocoagulation. In the first five minutes at pH 6, when EC 

products with HA are small colloidal particles from DLS, the colloidal fractions of Cr(III), Fe(III) 

and HA concentrations are close to 1. However after 5 minutes, the Cr(III), Fe(III) and HA 

aggregated and became larger particles. At pH 8, the negatively charged HA prevents the 

aggregation of particles, and the Cr(III), Fe(III) and HA were colloids at pH 8 over the entire 

duration of electrocoagulation. The consistent colloidal behaviors among Cr(III), Fe(III), and HA 

indicate their close associations during electrocoagulation. 

 

Figure 3.2. The hydrodynamic diameter and electrophoretic mobility of particles produced 

during electrocoagulation with (blue squares) and without (red circles) 5 mg/L HA at pH 6 and 

pH 8; Cr(VI)0 = 2 mg/L, U = 4V, I = 0.037 A. 
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HA removal during electrocoagulation process is also important as NOM has been 

identified as a precursor to harmful disinfection by-product (DBP) from upon contact with 

chlorine disinfectants.
169-172

 It can be seen in Figure 3.3 that HA is present in stable colloids 

during electrocoagulation at high pH. However HA could still be aggregated in EC with 

optimized operation conditions, e.g. increasing anodic Fe(II) dosage rate or dosage time. Many 

studies in recent years have reported that iron-electrocoagulation operations can be effective at 

removing natural organic matter.
111, 112, 173

 The presence of divalent cations (Ca
2+

 and Mg
2+

) 

might also introduce HA aggregation and subsequent removal by filtration.
174, 175

 

 

Figure 3.3 Colloid conditions of solids produced during electrocoagulation at pH 6 and pH 8.  

The colloidal portion is the concentration of colloidal Cr(III), Fe(III) and HA divided by the 

concentration of total Cr(III), Fe(III) and HA, respectively.  
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3.3.3 Characterization of precipitates produced during electrocoagulation 

XRD measurements (Figure 3.4) show that both pH and the presence of HA affect the 

mineralogy of iron oxides produced during electrocoagulation. The patterns suggest that 

ferrihydrite dominates at pH 6, with nanocrystalline lepidocrocite also likely present, whereas 

lepidocrocite dominates at pH 8. The addition of HA has little apparent effect on the mineralogy 

at pH 6 but leads to a decrease in lepidocrocite coherent domain size (as indicated by the 

broadening of the XRD reflections) at pH 8. The higher concentrations of HA used may also 

increase the production of ferrihydrite at pH 8. 

 
Figure 3.4. The XRD pattern of iron oxides produced during electrocoagulation without 

chromium present at various conditions. For reference the patterns of pure lepidocrocite and 2-

line ferrihydrite are included in XRD plots. 
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EXAFS spectroscopy (Figure 3.5) was used to quantify the iron mineralogy produced via 

electrocoagulation with and without HA and Cr(VI) because such quantification of 

nanocrystalline phases is not possible via XRD. All spectra were modeled via linear combination 

fitting using the spectra of lepidocrocite and ferrihydrite, the phases identified as being dominant 

components in XRD. Fitting confirms that in the absence of HA lepidocrocite is the sole mineral 

product of electrocoagulation at pH 8 but that ferrihydrite dominates at pH 6, with a minor 

lepidocrocite component present (Table 3.1). The addition of HA, Cr(VI), or both species favors 

an increased formation of ferrihydrite at pH 8. In contrast, at pH 6 neither HA nor Cr(VI) 

appreciably affects the ratio of ferrihydrite to lepidocrocite, with the former dominating under all 

conditions studied. 

 

Figure 3.5. The Fe K-edge EXAFS spectra of iron oxides produced during electrocoagulation in 

the presence and absence of chromium at various conditions. For reference the patterns of pure 

lepidocrocite and 2-line ferrihydrite are included in EXAFS plots.  
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Table 3.1. Fe K-edge EXAFS linear combination fitting results for solids generated in the 

electrocoagulation reactor. 

Cr 

(mg/L) 

HA 

(mg/L) 
pH 

Percent Component Component 

Sum Lepidocrocite 2-line Ferrihydrite 

- - 6 20±1 80±2 1.10 

2 - 6 27±2 73±3 1.09 

- 5 6 31±2 69±3 1.12 

2 5 6 17±1 83±2 1.13 

- - 8 100 0 1.00 

2 - 8 48±2 52±3 1.10 

- 5 8 37±2 63±3 1.11 

2 5 8 23±1 77±3 1.15 

The influence of HA and Cr(VI) on the Fe(III) solids produced at pH 8 likely results from 

their effect on Fe(III) nucleation and polymerization. Complexation of Fe by HA may favor 

smaller particle sizes and inhibit aggregation, which is supported by the hydrodynamic diameter 

measurements described above. Cr(VI) reduction by Fe(II) can lead to Cr(III)-Fe(III) 

coprecipitates
176

 and the initial nuclei formed presumably favor ferrihydrite over lepidocrocite. 

The TEM images of Fe/Cr oxide precipitates formed from electrocoagulation shown in 

Figure 3.6 further confirm the role of HA in affecting the properties of EC solids. At pH 8 

without humic acid, the precipitate exhibits a “hedgehog-like” morphology that is similar to 

lepidocrocite-rich precipitates formed at the condition of Fe(II) oxidation by DO.
177

 However, 

for the solids produced by electrocoagulation in the presence of 5 mg/L humic acid, the 

hedgehog-like morphology disappeared and the precipitates consist of smaller particles with a 

smoother surface aggregated into flocs, in line with previous results for amorphous Fe(III)-HA 

precipitates.
178

 The TEM analyses further demonstrate the electrosteric stabilization effect from 

HA at pH 8. To further examine how HA affected the morphology of precipitated iron oxides, 

experiments with adsorption of 5 mg/L HA onto pre-formed electrocoagulation products at pH 8 

created in the absence of HA were conducted, and the TEM images are shown in Figures 3.6c. 
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The “hedgehog-like” morphology is clear when HA adsorbs to pre-formed solids, distinct from 

iron oxides that are simultaneously precipitated in the presence of HA. Although the EXAFS 

shows that lepidocrocite still accounts for 23% of the solids generated after EC with 5mg/L HA 

at pH 8, the “hedge-like” morphology was not visible in TEM images of this solids, which is 

probably because the particles were too small or the lepidocrocite in these particular samples did 

not have that morphology. At pH 6 without HA, we still could observe the “hedgehog-like” 

morphology although it is less pronounced than at pH 8, consistent with the XRD and EXAFS 

spectroscopy results showing more ferrihydrite formation at pH 6. With 5 mg/L HA, the 

precipitates show greater aggregation but still contain features suggesting that some lepidocrocite 

is present (Figure 3.6e).
177, 179

  

 
Figure 3.6. Transmission electron micrographs of solids produced by electrocoagulation at oxic 

conditions (a) at pH 8, (b) with 5 mg/L HA at pH 8, (c) at pH 8 and with post-electrocoagulation 

HA addition, (d) at pH 6, (e) with 5 mg/L HA at pH 6, (f) at pH 6 with post-electrocoagulation 

HA addition. Electrocoagulation with post HA addition was conducted by first producing solids 

in electrocoagulation and then adding HA two hours later. Scale bar is 100 nm. 
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XAFS spectroscopy was also used to characterize the speciation of Cr in the solids 

produced by electrocoagulation treatment of Cr(VI) solutions. XANES spectra show that these 

solids contain solely Cr(III), as indicated by the lack of a large, single pre-edge feature at ~5991 

eV (Figure S3.5). All solids have similar XANES and EXAFS spectra (Figure 3.7), indicating 

that Cr speciation is largely unaffected by conditions in the electrocoagulation reactor. 

Comparison of the XANES and EXAFS spectra to those of Fe-Cr coprecipitates that have Fe:Cr 

ratios of 3:1 and 1:3 shows that the EC products closely resemble the 3:1 coprecipitates (Figure 

S3.6) . This is consistent with prior work that found that the products of Cr(VI) reduction by 

Fe(II) have an Fe:Cr ratio of 3:1 due to the reaction stoichiometry.
176, 180

  

 

Figure 3.7. Cr K-edge (a) XANES and (b) EXAFS spectra of electrocoagulation products at pH 

6 and pH 8 with and without 5 mg/L HA, all with an initial Cr(VI) concentration of 2 mg/L and 

operated at oxic conditions.  

To examine the coordination environment of Cr within the Fe oxide mineral structure, 

shell-by-shell fitting was performed on Cr K-edge EXAFS spectra of EC products (Figure S3.7). 

Sample spectra were well-fit with one Cr-O shell at 1.98 Å and one Cr-Fe shell at 3.04 Å (Table 
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S3.3). A second Cr-Fe shell could be fit at 3.5 Å or at 3.9 Å, but the N values for either fit 

refined to values within error of zero and increased the reduced chi-squared value making their 

addition not statistically justified. The lack of a second Cr-Fe shell, which was observed in prior 

studies of Cr-Fe coprecipitates,
176, 181

 may reflect the nanocrystalline nature of the products 

formed during electrocoagulation and the short reaction times (minutes) which inhibit particle 

ripening. The increase in ferrihydrite content upon addition of Cr(VI) during electrocoagulation 

suggests that in the present system Cr(VI) reduction by Fe(II) favors nucleation of ferrihydrite. 

Fitting also shows that HA does not alter Cr speciation, likely because ferrihydrite formation is 

also promoted during EC by HA. 

3.4 Environmental Implications 

Hexavalent chromium is a contaminant of great concern in water supplies, and iron-based 

electrocoagulation can effectively remove Cr(VI) to a very low concentration. The presence of 

humic acid in raw water during electrocoagulation leads to slower Cr(VI) removal at high pH, 

indicating that an electrocoagulation process will need more time to completely remove Cr(VI). 

The presence of HA also resulted in the formation of solid products with close association of 

Fe(III), Cr(III), and HA. The colloidal conditions of the electrocoagulation products would 

greatly influence the mobility of chromium even if all the Cr(VI) was reduced to Cr(III) by Fe(II) 

in EC. Cr(III), HA and Fe(III) could pass through filtration steps when HA results in stable 

colloid formation during electrocoagulation at high pH. The passage of Cr(III) and HA through 

filtration steps as colloids could lead to concerns of Cr(III) reoxidation and DBP production 

during the later disinfection process in water treatment. Humic acid could be aggregated by 

optimizing the electrocoagulation operation conditions. (e.g., longer electrocoagulation time or 

higher dosage rate of Fe(II) from the anode with increasing the currency). All of the Cr in the 
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solids produced by electrocoagulation was the less toxic Cr(III) form, and the coordination 

environment of Cr was indicative of Cr(III) incorporation into an iron oxide surface regardless of 

the presence of HA.  
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Chapter 3. Supporting Information 

Additional information regarding the Faraday’s law, dynamic modeling, zeta potential of 

solids produced from EC, the concentration of colloidal Cr, HA and Fe in EC, Cr XANES 

spectra and Cr EXAFS fitting parameters is included.  

Faraday’s Law: 

Fe
total

M I t
Fe  =  

Z F

 


                                                   (S3.1) 

where MFe is the atomic weight of iron (55.85 g/mol), I is current (A), t is time (in 

seconds), z is the number of electrons transferred per iron released (z = 2 for release of Fe(II)), 

and F is Faraday’s constant (96,485 C/mol). 

 

Table S3.1. Rate constants for modeling the dynamics of dissolved Cr(VI) and Fe(II) during 

electrocoagulation 

 

Table S3.2. Enhancing factor (f) of Fe(II) oxidation by dissolved oxygen in the presence of HA 

 
pH 6 pH 7 pH 8 pH 9 

No HA 1 1 1 1 

1 mg/L HA 1 - 90 200 

5 mg/L HA 1 1 200 350 

20 mg/L HA 1 1 360 1000 

 

rate 

constant 
definition 

value 
unit 

methods of 

determination pH 6           pH 7             pH 8          pH 9 

khomo 
homogeneous rate constant for 

reduction of Cr(VI) by Fe(II) 
35 811 5.15×10

4
 4.85×10

6
 M

-1 
s

-1
 Published 

182, 183
 

khetero
′  

Heterogeneous rate constant for 

Cr(VI) reduction by adsorbed Fe(II) 
1.1×10

7
 0 0 0 M

-2 
∙s

-1
 Published 

183
 

k2 Fe(II) generation rate in EC 1.92×10
-7

 1.92×10
-7

 1.92×10
-7

 1.92×10
-7

 M∙s
-1

 
Faraday's law 

with I=37 mA  

kO2
 Fe(II) oxidation rate by O2 3.85×10

-6
 1.65×10

-4
 1.05×10

-2
 0.20 s

-1
 Published 

184
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Figure S3.1. Evolution of dissolved Fe(II) during electrocoagulation in the presence of dissolved 

oxygen and humic acid at (a) pH 6, (b) pH 7, (c) pH 8. Conditions: no chromium, U = 4V, I = 

0.037 A, 2 mM MES for pH 6.0, 5 mM HEPES for pH 7.0 and pH 8.0, and conductivity = 460 

μS/cm. 
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Figure S3.2. Modeled Fe(II) concentration during the Cr(VI) removal in electrocoagulation at 

both oxic and anoxic conditions. The effect of HA is not shown because the Fe(II) concentrations 

are almost identical with and without HA at each pH presented.  

 

 

Figure S3.3. Effect of pH on zeta potential of the solids generated by 30 minutes 

electrocoagulation with or without chromium and HA. U = 4 V, I = 37 mA, conductivity = 460 

μS/cm. 
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Figure S3.4. The concentration of colloidal chromium(III), humic acid and iron during 

electrocoagulation at two conditions. Conditions: [Cr(VI)]0 = 2 mg/L, U = 4 V, I = 37 mA, 2 mM 

MES for pH 6.0, 5 mM HEPES for pH 8.0, and conductivity = 460 μS/cm. 
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Figure S3.5. Cr K-edge XANES spectra of electrocoagulation products at pH 6 and pH 8 with 

and without 5 mg/L HA, all with an initial Cr(VI) concentration of 2 mg/L and operated under 

oxic conditions. Cr K-edge XANES spectra of Cr(OH)3 and Na2CrO4 reference standards are 

plotted for comparison.  
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Figure S3.6. Cr K-edge (a) XANES spectra, (b) EXAFS spectra, (c) Fourier transform 

magnitudes, and (d) real components of the Fourier transforms of the electrocoagulation product 

at pH 8 with 2 mg/L initial Cr(VI) plotted against 3:1 and 1:3 Fe:Cr hydroxide co-precipitates 

prepared by pH adjustment to 7. Fe(III)-Cr(III) co-precipitates reference were synthesized by 

combining Fe(III) chloride and Cr(III) chloride stock solutions in varying ratios with a total 

concentration of 60 M Fe and Cr with 10 mM NaCl as a background electrolyte without the 

presence of humic acid.  
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Figure S3.7. Data (black solid) and structural fits (red dashed) to the Cr K-edge EXAFS spectra 

(a), Fourier transform magnitudes (b), and real components of the Fourier transforms (c) of a set 

of electrocoagulation reactor solids. Electrocoagulation reactors contained 2 mg/L initial Cr(VI) 

at pH 8 with (1) and without (2) 5 mg/L humic acid and at pH 6 with (3) and without (4) 5 mg/L 

humic acid. 
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Table S3.3. Cr K-edge EXAFS fitting parameters 

Sample  Cr-O Cr-Fe ∆E0 (eV)
d
 χν

2e
 

pH 8 N
a
 5.4(6) 4(2) -4(1) 35.2 

 R (Å)
 b
 1.984(7)

f
 3.04(2)   

 σ
2 
(Å

2
)

 c
 0.0032(9) 0.012(4)   

pH 8 + HA N 5.4(6) 3(1) -4(2) 18.1 

 R (Å) 1.980(7) 3.04(2)   

 σ
2 
(Å

2
) 0.0035(9) 0.010(4)   

pH 6 N 5.3(5) 3(1) -4(1) 19.9 

 R (Å) 1.983(6) 3.04(1)   

 σ
2 
(Å

2
) 0.0031(8) 0.010(4)   

pH 6 + HA N 5.2(5) 3(1) -3(1) 22.1 

 R (Å) 1.983(7) 3.04(2)   

 σ
2 
(Å

2
) 0.0030(9) 0.010(4)   

a
 Coordination number. 

b
 Interatomic distance. 

c
 Debye-Waller factor. 

d
 Difference in the 

threshold Fermi level between the data and theory. 
e
 Goodness of fit parameter 

185
.  

f
 Value in 

parentheses represent the 1σ uncertainty in the last digit; parameters without specified 

uncertainties were held constant during fitting. 
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Chapter 4. Rates of Cr(VI) Generation from 

CrxFe1-x(OH)3 Solids upon Reaction with 

Manganese Oxide 

This chapter was published in Pan, C.; Liu, H.; Catalano, J. G.; Qian, A.; Wang, Z.; 

Giammar, D. E., Rates of Cr(VI) generation from CrxFe1-x(OH)3 solids upon reaction with 

manganese oxide. Environ Sci Technol. 2017. As soon as possible. 

Abstract 

The reaction of manganese oxides with Cr(III)-bearing solids in soils and sediments can 

lead to the natural production of Cr(VI) in groundwater. Building on previous knowledge of 

MnO2 as an oxidant for Cr(III)-containing solids, this study systematically evaluated the rates 

and mechanisms of the oxidation of Cr(III) in iron oxides by δ-MnO2. The Fe/Cr ratio (x = 

0.055-0.23 in CrxFe1-x(OH)3) and pH (5-9) greatly influenced the Cr(VI) production rates by 

controlling the solubility of Cr(III) in iron oxides. We established a quantitative relationship 

between Cr(VI) production rates and Cr(III) solubility of CrxFe1-x(OH)3, which can help predict 

Cr(VI) production rates at different conditions. The adsorption of Cr(VI) and Mn(II) on solids 

shows a typical pH dependence for anions and cations. A multichamber reactor was used to 

assess the role of solid-solid contact in CrxFe1-x(OH)3-MnO2 interactions, which eliminates the 

contact of the two solids while still allowing aqueous species transport by a permeable 

membrane. Cr(VI) production rates were much lower in multichamber than in completely mixed 

batch experiments, indicating that the redox interaction is accelerated by mixing of the solids. 

Our results suggest that soluble Cr(III) released from CrxFe1-x(OH)3 solids to aqueous solution 

can migrate to MnO2 surfaces where it is oxidized.  
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4.1 Introduction 

Hexavalent chromium [Cr(VI)] is a known carcinogen often found in water supplies both 

from human activities (e.g. electroplating and wood treatment, leather tanning, and chromite ore 

processing)
186-188

 and from the oxidation of Cr(III) by natural processes. Cr(III) is much less 

toxic and less mobile than Cr(VI). Common techniques for Cr(VI) removal from solution involve 

Cr(VI) reduction to Cr(III) by iron-based compounds (e.g. Fe(II), Fe(0) or FeS2) and the 

subsequent association of Cr(III) with the produced Fe(III) (oxy)hydroxide solids.
189-191

 In 

addition, iron-reducing bacteria in the environment can drive Cr(VI) reduction under anaerobic 

conditions by producing Fe
2+

 that then reduces Cr(VI) to Cr(III).
192, 193

 For these anthropogenic 

or natural iron-based Cr(VI) reduction processes, the solid product is often a Cr(III)-Fe(III)-

coprecipitate, with a general molecular formula of CrxFe1-x(OH)3.
62, 189, 194-197

 CrxFe1-x(OH)3 can 

occur as a solid solution, such that the chromium solubility depends on ratio of Fe/Cr in the solid 

and on the pH of the solution.
194, 198

 In this case the dissolved Cr(III) in equilibrium with CrxFe1-

x(OH)3 is much lower than with pure Cr(OH)3. E.g., compared with Cr(OH)3, dissolved Cr(III) in 

equilibrium with CrxFe1-x(OH)3 is an order of magnitude lower when x=0.69 and five orders of 

magnitude lower when x=0.01 at the same pH.  

Manganese oxides are strong oxidants that provide a major geochemical pathway for 

Cr(VI) occurrence from Cr(III) in groundwater, soils or subseafloor environments.
52-54

 Field-

scale studies showed that Mn(III)/Mn(IV) mineral concentration was a good predictor of an 

aquifer’s capacity to form and solubilize Cr(VI). In a study of serpentine soils of the California 

coast range, McClain et al. detected Cr(VI) in the same horizons where mineral-bound Cr(III) 

was collocated with biogenic Mn(III/IV) oxides that were similar to birnessite, and they 

quantified in situ Cr(VI) production rates in the presence of biogenic Mn(III/IV)-oxides.
199
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Similarly, Gonzalez et al. suggested that the significant amounts of Cr(VI) in the drinking water 

of Santa Cruz County, California were due to Cr(III) mineral deposits being oxidized by 

manganese oxides in the Aromas Red Sands aquifer.
200

  

The oxidation of Cr(III) in real or simulated soils and sediments by manganese oxides has 

received recent attention. For example, rates and extents of Cr(III) oxidation from chromite 

(FeCr2O4), Cr(III)-bearing silicates and CrxFe1-x(OH)3 by manganese oxides were compared with 

that from Cr(OH)3 in previous studies.
52, 53, 199, 201-203

 The rate of Cr(VI) generation from solid-

associated Cr(III) oxidation by manganese oxides is often proportional to the Cr(III) solubility. 

Oze et al. demonstrated that Cr(III) from chromite is oxidized in the presence of MnO2.
204

 Even 

though Cr(III)-bearing silicates have less Cr(III) than chromite, Cr(III)-bearing silicates actually 

have a higher Cr(VI) production rate upon reaction with manganese oxides because of their 

higher solubility.
202

 Hausladen and Fendorf compared the Cr(VI) genesis in column experiments 

with sands coated with either CrxFe1-x(OH)3 or Cr(OH)3 in the presence of MnO2 and found that 

Cr(VI) concentrations were correlated with the Cr(III)-mineral solubility.
201

 Most of these 

studies focused on the dissolved Cr(VI) that was released into water and did not consider the 

Cr(VI) that was produced but readsorbed onto the solid phases. The undetermined dynamics of 

Cr(VI) release from solid phase may prevent the establishment of quantitative relationship 

between Cr solubility and the total oxidation rate of Cr(III). In addition, several studies reported 

passivation of Mn oxides towards Cr(III) oxidation by reaction with Cr(OH)3, which may have 

been due to the precipitation of Cr(III) hydroxide on the manganese oxide surface.
205

 However, it 

is not clear whether there is a similar inhibitory effect for oxidation of Cr(III)-bearing Fe(III) 

oxide or hydroxide minerals by manganese oxides.  
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The objectives of this study were to (1) determine the rates of total Cr(VI) production 

from CrxFe1-x(OH)3 oxidation by δ-MnO2 in terms of pH and Fe/Cr ratio and (2) test the role of 

proximity between CrxFe1-x(OH)3 and MnO2 in Cr(VI) production and identify the products of 

MnO2 reaction with CrxFe1-x(OH)3. Cr(VI) production rates were correlated with dissolved Cr(III) 

concentrations in equilibrium with CrxFe1-x(OH)3. Completely mixed batch experiments and 

multichamber experiments were operated to test the role of proximity of these two poorly soluble 

solids in Cr(VI) production. Initial and reacted manganese oxide phases were characterized by 

X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high-resolution 

transmission electron microscopy (HR-TEM).  

4.2 Materials and Methods 

4.2.1 Materials 

Ultrapure water (resistivity > 18.2 MΩ-cm) was used for all the experiments. At pH 5 and 

pH 6, no buffer was added to the reactors and the pH values of the solutions were maintained by 

NaOH/HCl. At pH 7 and pH 8, the pH values of suspensions were buffered by 5 mM 3-(N-

morpholino) propanesulfonic acid (MOPS, pKa=7.2). At pH 9, 5 mM N-cyclohexyl-2-

aminoethanesulfonic acid (CHES, pKa=9.3) was used for buffering the suspension. The pH 

buffers and their concentrations were chosen to minimize their complexes with Cr(III)/Fe(III) 

and their stability against oxidation by MnO2.
62, 108, 206, 207

 MOPS and CHES were widely used 

for their minimal influence on metal complexation.
108, 208-210

 The presence of MOPS and CHES 

did not appear to cause any MnO2 dissolution in control experiments (Figure S4.1). A NaCl 

solution was used as the background electrolyte in all experiments since Na
+
 and Cl

-
 do not 

interfere with the chemistry of Cr(III) oxidation and only affect the ionic strength. The amount of 
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NaCl was added dependent on pH to provide a total 5 mM ionic strength including contribution 

from the buffers.  

4.2.2 Mineral synthesis 

Synthetic δ-MnO2 was prepared by reacting KMnO4 with MnCl2 at basic pH following 

the method described by Villalobos, et al. 
50

 The δ-MnO2 prepared in this method was previously 

determined to be a close synthetic analog to naturally-occurring biogenic manganese oxide.
206

 X-

ray powder diffraction (XRD) confirmed that the solid was δ-MnO2 (Figure S4.2a). 

Transmission electron microscopy (TEM) provided evidence of δ-MnO2 morphology and sizes 

(Figure S4.3) similar to what was reported previously.
50

 The XPS results show that the initial δ-

MnO2 surface is 94.9% Mn(VI) and 5.1% Mn(III). The average oxidation state of Mn is 3.95, 

consistent with the reported Mn average oxidation state of being close to 4 and Mn(II) under the 

detection limit in δ-MnO2.
50, 211

 CrxFe1-x(OH)3 was synthesized by titrating mixed solutions of 

FeCl3 and CrCl3 at different Fe:Cr molar ratios with 1 M and 0.1 M NaOH to pH 7 and 

maintaining the pH for 24 hours. This was similar to the procedure described by Hansel et al.
176, 

212, 213
 The suspension was then washed five times with ultrapure water, and the supernatant was 

discarded after centrifugation. Amorphous Cr(OH)3(s) was synthesized with the same method 

but with no FeCl3 present (i.e., x = 1). Portions of suspension were dissolved in nitric acid to 

determine the exact Cr and Fe concentrations in the solids produced by inductively coupled 

plasma-mass spectroscopy (ICP-MS). CrxFe1-x(OH)3 solids with three different Fe/Cr ratios were 

prepared with x being 0.23, 0.11 and 0.055, respectively. XRD patterns of the CrxFe1-x(OH)3 

appeared similar to that of 2-line ferrihydrite (broad peaks at 35° and 63° 2θ for Cu Kα) and 

without characteristic peaks of Cr(OH)3 at 2θ = 19.1° (Figure S4.2a). CrxFe1-x(OH)3 solids 

prepared by this co-precipitation method have been suggested as a solid solution based on 

https://en.wiktionary.org/wiki/%E1%BD%A5%CF%81%CE%B1#Ancient_Greek
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chromium solubility and FT-IR evidence.
198, 214

 More recent work discovered that Cr(III) 

substitution in Cr(III)-Fe(III) hydroxide solids was limited to octahedral sites, while Fe(III) can 

be in both octahedral and tetrahedral sites.
213

  

4.2.3 Mixed batch and multichamber reactor 

As opposed to multichamber experiments with separated CrxFe1-x(OH)3 and MnO2 

suspensions, completely mixed batch experiments were conducted in a glass beaker filled with 

ultrapure water, NaCl, pH buffer, MnO2 suspension, and CrxFe1-x(OH)3 suspensions with 40 

mg/L initial Cr(III) concentration to a total volume of 1 L. Multichamber experiments were used 

to assess the role of solid-solid contact in CrxFe1-x(OH)3-MnO2 interactions. The multichamber 

reactor was the same as we used previously in studying UO2-MnO2 interactions.
206

 Briefly, a 

dialysis membrane with a molecular weight cut off (MWCO) of 3500 (approximately 2.1nm 

diameter) divided the reactor into two-110 mL chambers, eliminating the direct contact of the 

CrxFe1-x(OH)3 and MnO2 solids but allowing the individual chambers to be completely mixed by 

a magnetic stir bar and dissolved species to diffuse across the membrane. The background 

solution in CrxFe1-x(OH)3||MnO2 experiment was the same as that used in completely mixed 

batch experiments. “||” notes the separation of solids by a dialysis membrane. MnO2||water 

control experiments were conducted with the multichamber reactor to account for the dissolution 

of MnO2. For both completely mixed batch experiments and multichamber experiments, samples 

were periodically collected and a portion of them were filtered with 0.02 μm polyethersulfone 

(PES) syringe filters (Tisch Environmental, OH) for analysis of dissolved chromium, dissolved 

Cr(VI) and dissolved manganese. The remaining portions of the samples were used for total 

Cr(VI) and total Mn(II) analysis. Experiments were performed under atmosphere for both 

completely mixed and multichamber experiments.  
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4.2.4 Aqueous and solid phase analysis 

Total and dissolved Cr, Fe and Mn concentrations were measured by ICP-MS 

(PerkinElmer ELAN DRC II). The instrument detection limits for Cr, Fe and Mn were 0.2 μg/L 

(0.0039 μM), 0.1 mg/L (1.8 μM), and 0.5 μg/L (0.009 μM), respectively. Dissolved Cr(VI) and 

dissolved Mn(II) were determined by the diphenylcarbazide method and ICP-MS, respectively. 

Cr(VI) concentrations in the samples were determined spectrophotometrically (PerkinElmer-

Lambda XLS) after reaction with diphenylcarbazide.
215

 The detection limit for Cr(VI) by this 

method was 5 μg/L (0.096 μM). Dissolved Mn(II) concentrations were assumed to equal the total 

dissolved Mn concentration because both Mn(IV) and Mn(III) are sparingly soluble.
216

 

Concentrations of total Cr(VI) and total Mn(II), which include adsorbed as well as dissolved 

species, were measured after extracting the surface-associated species into solution. For total 

Cr(VI) measurements, adsorbed Cr(VI) was extracted by adding a sodium phosphate solution 

pre-adjusted to have the same pH as the sample suspension to provide a 10 mM phosphate 

concentration in the suspension.
210, 217

 The efficiency of this extraction procedure was above 90% 

± 5% based on control experiments. The control experiments were operated with Cr(VI) 

adsorption onto Cr(III)-Fe(III) hydroxide solids followed by phosphate addition to induce Cr(VI) 

desorption. After Cr(VI) was desorbed from solid phases, the suspension was filtered and 

measured by the diphenylcarbzide method. Other portions of suspensions were treated with 10 

mM CuSO4 for 1 hour to extract adsorbed Mn(II). In this method Cu(II) preferentially adsorbs to 

MnO2 and induces Mn(II) desorption.
218-220

 This method was shown to remove >90% of the 

adsorbed Mn(II) from a biologically reduced δ-MnO2.
221

 The method only extracts adsorbed 

Mn(II) and should not mobilize structurally incorporated Mn(II) or Mn(III).  
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TEM samples were prepared by dropping approximately 30 μL of suspension onto 200 

mesh carbon-coated copper grids (Ted Pella, Inc.) followed by immediate evaporation of the 

remaining water at room temperature under vacuum. TEM micrographs were taken with a 

transmission electron microscope under 120 kV (FEI Spirit G2). The solid samples for XRD, 

XPS and HR-TEM were prepared by centrifugation and freeze-drying. XRD patterns were 

collected using Cu Kα radiation (Bruker d8 Advance X-ray diffractometer). XPS analyses were 

conducted using a Physical Electronics 5000 Versa Probe II Scanning ESCA Microprobe with an 

Al Kα X-ray source at 23.5 eV pass energy at a 100 μm X-ray spot size. The binding energy was 

calibrated using C 1s at 284.6 eV and the XPS spectra were processed by using CasaXPS 

software (Version 2.3.15)
222

 with the Gaussian-Lorentzian function (70% G-30% L), and Shirley 

background was used for peak fitting. The quantification of Mn valence state was made 

following a method in which the Mn 2p3/2 spectrum is divided into five multiplet peaks (total of 

15 binding energies) of Mn(IV), Mn(III) and Mn(II).
223

 A value of 1.5 for the full width of the 

peak at half the maximum peak height (FWHM) was assigned to fit the Mn 2p3/2 spectrum for all 

of the multiplet binding energy spectra.
224

 In this study, the standard deviation of constituents 

fitted by CasaXPS is around 5%. HR-TEM observation was carried out using an FEI TF electron 

microscope operated at 200 kV and energy dispersive X-ray (EDX) analysis was used to confirm 

the particle compositions, and selected area electron diffraction (SAED) patterns were collected 

to determine the extent of crystallinity of the Mn oxides and Cr(III)-Fe(III) hydroxides as well as 

to identify the mineral phases. 
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4.3 Results and Discussion 

4.3.1 CrxFe1-x(OH)3 oxidation by δ-MnO2  

Cr(VI) and Mn(II) concentrations from CrxFe1-x(OH)3 oxidation were experimentally 

determined at ambient conditions as a function of pH (5-9) and Fe/Cr ratio(x= 0.23,0.11,0.055) 

(Figure 4.1).  

In the CrxFe1-x(OH)3 and MnO2 reaction system, the Cr(VI) concentrations increased 

linearly with time, indicating a constant Cr(VI) production rate. With a fixed Fe/Cr ratio, Cr(VI) 

production rates decreased when the pH increased from 5 to 9. For more iron-rich solids (lower 

x), Cr(VI) production rates are lower at a constant pH. It should be noted that all of the 

experiments contained the same total amount of initial Cr(III). Cr(VI) production from CrxFe1-

x(OH)3 reaction with MnO2 was not inhibited by the sparing solubility of Cr(III)-Fe(III) 

hydroxides. In addition, Cr(VI) was fully adsorbed onto the solid phases at a low pH while most 

was released into solution at higher pH, which is the expected adsorption behavior of an anion 

(Figure 4.2a). 

The initial rate of Cr(VI) production at pH 5 is higher for MnO2 reaction with Cr(OH)3 

than with Cr0.23Fe0.77(OH)3, but the total amount of Cr(VI) generated after 200 hours is actually 

higher for Cr0.23Fe0.77(OH)3 (Figure S4.4). The predicted dissolved Cr(III) in equilibrium with 

Cr0.23Fe0.77(OH)3 is much lower than in equilibrium with Cr(OH)3, so the lower cumulative Cr(VI) 

production from Cr(OH)3 may be caused by precipitation of Cr(OH)3 on the surface of MnO2.
205

 

In contrast, the dissolved Cr(III) concentration in the Cr0.23Fe0.77(OH)3  system is not high enough 

for nucleation and formation Cr(OH)3 precipitates on the MnO2 surface. The concentration of 

dissolved Cr(III) in equilibrium with CrxFe1-x(OH)3 at different pH was shown in Figure 4.3a. 
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The predicted dissolved Cr(III) concentration was based on empirical equations for the CrOH
2+

 

concentration (eq. 4.1)
198

  and consideration of other Cr(III) complexes with hydroxide.
225

 The 

CrxFe1-x(OH)3 solids for the Cr(III) solubility prediction by Sass et al (1987) were prepared by 

neutralizing acidic solutions containing Cr(III) and Fe(III) at room temperatures,
14

 which is the 

same approach used in our study. Detailed calculation of Cr(III) solubility are provided in the 

supporting information (Table S4.1) . 

Log (CrOH
2+

) = -2 pH + 4.18 + 0.28(1-x)
2 

- 1.79(1-x)
3
 + log x                 (4.1) 

The ratio of total Mn(II)/Cr(VI) produced in the solution gives clues to the oxidation state 

of reduced Mn after MnO2 reaction with CrxFe1-x(OH)3 solids. Different stoichiometric ratios of 

Cr(VI) to Mn(II) will occur depending on whether the Mn(IV) is reduced to Mn(III) 

(Mn(II)/Cr(VI) = 0 in eq. 4.2) or to Mn(II) (Mn(II)/Cr(VI) = 1.5 in eq. 4.3). Elementary reactions 

between Mn(IV) and Cr(III) proceed through one-electron transfer steps, although dissolution of 

MnO2 involves a net transfer of two electrons from Mn(IV) to aqueous Mn(II), while three 

electrons are necessary to fully oxidize Cr(III) to Cr(VI).
226

 At pH 5 the ratio of total Mn(II) to 

total Cr(VI) was very close to 1.5 (Figure 4.1), which indicates that the Mn(IV) was reduced to 

Mn(II) at this condition. In contrast, at pH 9 the average value of total Mn(II) divided by total 

Cr(VI) was only around 0.3, which suggests that solid-associated Mn(III) is the dominant final 

product of the redox reaction at this higher pH.  

 Cr(OH)3(s) + 3MnO2 + H2O = HCrO4
- 
+ 3MnOOH + H

+
                        (4.2) 

 2Cr(OH)3(s) + 3MnO2 + 4H
+
 = 2HCrO4

-
 + 3Mn

2+
 + 4H2O                      (4.3) 

Mn
2+

 + MnO2 + 2H2O = 2H
+ 

+ 2MnOOH                                 (4.4) 
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A possible explanation for this pH effect is more favorable Mn(II) adsorption onto the 

MnO2 surface at high pH (Figure 4.2b), a step critical for initiation of interfacial Mn(II)-Mn(IV) 

comproportionation that produces Mn(III) (eq 4.4).
227

 More than 90% of Mn(II) was adsorbed 

onto the solid phases when the pH is above 7. The observed pH-dependence of Mn(II) adsorption 

is typical of what would be expected for adsorption of a cation to an iron oxide surface (Figure 

4.2b and Figure S4.5).
228

 In eq. 4.2 and eq. 4.4, Mn(III)OOH is shown as just one possible 

Mn(III)-containing solid product.  

 

Figure 4.1. Cr(III) oxidation from CrxFe1-x(OH)3 oxidation by manganese oxide at pH values 

from 5 to 9 with 770 M initial Cr(III) (40 mg/L) and 436 M of initial MnO2 (40 mg/L MnO2) 

in the mixed suspension. In almost all cases the uncertainty estimates are smaller than the size of 

symbols. 

At pH 9 the total Cr(VI) concentration generated from Cr0.23Fe0.77(OH)3 can be as high as 

200 M, which would have required 600 M MnO2 if we assume that Mn(III) is the product of 

MnO2 reduction. As there was only 436 M MnO2 in the initial solution, reduced Mn(II) might 
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have been reoxidized to Mn oxides by dissolved oxygen, which can be a fast reaction at high 

pH.
216, 229

 Mn oxides formed in this way can continue oxidizing Cr(III).  

 

Figure 4.2. The pH dependence of adsorption of (a) Mn(II) and (b) Cr(VI) onto the solid phases 

in CrxFe1-x(OH)3-MnO2 completely mixed suspensions. The percent adsorbed is calculated from 

measurements at each sampling event for an experiment with a mixed suspensions of 770 M 

initial Cr(III) (40 mg/L) and 436 M initial MnO2 (40 mg/L MnO2). Each point represents the 

average value of the adsorbed portion to the mixture of CrxFe1-x(OH)3 and MnO2 at each 

sampling event at a determined pH and Fe/Cr value.  

The interaction between δ-MnO2 and generated Mn(II) can lead to substantial changes in 

MnO2 structure, and bulk transformations are promoted by higher pH values.
211, 230, 231

 In  XRD 

patterns, the reacted solids from the Cr0.23Fe0.77(OH)3 and MnO2 completely mixed batch 
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experiments for 400 hours exhibit new characteristic peaks at 2θ values of 12.44° (d= ~7.2 Å) 

and 24.85° (d= ~3.6 Å) at pH 9, which can be attributed to the (001) and (002) lattice spacings of 

triclinic birnessite.
232

 These new diffraction peaks reflect the transformation of δ-MnO2 layer 

symmetry from hexagonal to orthogonal at pH 9, consistent with prior work.
232

 No observable 

changes in the pattern are observed at pH 5. HR-TEM images and EDS analysis of the reacted 

products shows that most of the solids remain poorly crystalline and aggregated at pH 5 while 

more crystalline MnO2 particles appear at pH 9 (Figures S4.6 and S4.7), corresponding to the 

triclinic birnessite identified via XRD. The valence of Mn on the solid surface was determined 

directly by analyzing the solid products using XPS with a focus on Mn 2p3/2 peaks (Figure S4.8). 

Table S4.2 gives the relative portion of each multiplet for the surface species from the fitting in 

Figure S4.8 and the relative percentage of Mn(IV): Mn(III): Mn(II) at the solid surfaces are listed 

in Table 4.1. Mn(IV) is reduced to Mn(III) and Mn(II) during reaction with Cr(III) in iron oxides 

(Table 4.1). For each CrxFe1-x(OH)3, the Mn(II) percentage is higher at pH 9 than at pH 5, which 

is probably because of greater Mn(II) adsorption onto solid phases at pH 9.  

Table 4.1. Summary of Mn oxidation state percent at the surface of the solids determined using 

XPS Mn 2p3/2. 

Sample Mn(IV) (%) Mn(III) (%) 
Mn(II) 

(%) 

MnO2 initial solids 94.9 5.1 
 

Cr0.23Fe0.77(OH)3  + MnO2, pH 5 17.8 47.3 34.9 

Cr0.23Fe0.77(OH)3  + MnO2, pH 9 11.9 42.0 46.1 

Cr0.11Fe0.89(OH)3  + MnO2, pH 5 23.8 48.5 27.7 

Cr0.11Fe0.89(OH)3  + MnO2, pH 9 15.0 42.4 42.6 
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Figure 4.3. (a) Calculated Cr(III) solubility in equilibrium with CrxFe1-x(OH)3 solids as a 

function of pH and Fe/Cr; (b) Cr(VI) production rates calculated from Figure 4.1, the dashed 

lines are the predicted Cr(VI) production rates dependent on pH and Fe/Cr (equation 4.5); (c) 

The correlation between Cr(VI) production rates and the calculated Cr(III) solubility of different 

CrxFe1-x(OH)3 solids with the color of the symbols representing solids with different Fe/Cr ratios 

(blue, green and red symbols represent x=0.23, x=0.11 and x=0.055, respectively). Cr(III)0 =770 

M (40 mg/L), MnO2 = 436 M (40 mg/L MnO2)  
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Information about the processes controlling Cr(VI) production rates can be gained from 

examining the results for all three CrxFe1-x(OH)3 solids at different pH levels (Figure 4.3b). The 

rates of Cr(VI) production were determined from the relationship between the total Cr(VI)  

concentration and time (Figure 4.1). The rates were calculated by linear regression of all the data 

points with a least squares approach. The error bars in Figure 4.3b show the standard deviation of 

the rates determined from the duplicate experiments (Figure 4.1). The lower production rates of 

total Cr(VI) with increasing pH and increasing Fe/Cr are consistent with the chromium solubility 

of CrxFe1-x(OH)3 solids being lower at higher pH and when Cr(III) is more dilute within the solid 

phase. When the MnO2 concentration is fixed, the rate of the Cr(VI) production exhibits a log-

linear relationship to the predicted equilibrium Cr(III) concentration in the aqueous phase. As 

shown in Figure 4.3c, suspensions of CrxFe1-x(OH)3 and δ-MnO2 produce Cr(VI) at a rate that 

can be described by  

dCr(VI)

dt
=k

'
Cr(III)

eq,diss

n
                                                      (4.5) 

where the rate constant k′ is 1.51 × 10−5 M0.78 h−1, the order of the reaction n is 0.22, 

and Cr(III)eq,diss is the calculated equilibrium dissolved Cr(III) concentration of CrxFe1-x(OH)3 

solids (Figure 4.3a). In their study of chromite oxidation by MnO2, Oze et al. also found that 

Cr(III) oxidation rates were proportional to the dissolved concentration of Cr(III) predicted from 

estimated Cr(III) solubility of chromite and exhibited a log-linear relationship with reaction order 

n close to 0.25.
204

 The reaction order is similar to that determined in our study. The effect of pH 

and Fe/Cr ratio were fully accounted for by the calculated equilibrium dissolved Cr(III) 

concentration, which was directly correlated to the Cr(VI) generation rates. The model 

successfully predicted Cr(VI) production rates of CrxFe1-x(OH)3 solids at different pH (dash line 

in Figure 4.3b) based on estimated dissolved Cr(III) concentration in equilibrium with CrxFe1-
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x(OH)3. A universal correlation between Cr(VI) production rates and Cr(III) solubility suggests 

that Cr(III) dissolution plays an important role in Cr(VI) production from oxidation of CrxFe1-

x(OH)3 solids by manganese oxides. The possibility of specific surface area (SSA) of different 

CrxFe1-x(OH)3 exerting an influence on the rate can be ruled out as the SSA values are similar for 

the Cr(III)-Fe(III) hydroxides of different Fe/Cr ratios that we used.
212

 Cr(III) first dissolves from 

CrxFe1-x(OH)3 and then migrates to the surface of MnO2, where it is oxidized to Cr(VI). This is 

consistent with the process interpreted in the previous study that Cr(III) is oxidized through a 

multistep process to Cr(VI) upon adsorbing to MnO2.
204

 Cr(VI) is then released to the solution 

and a portion of Cr(VI) can be readsorbed to the solid surfaces.  

4.3.2 Role of solid-solid proximity in Cr(III) oxidation 

As Cr(VI) production is not limited by the sparing solubility of Cr(III)-Fe(III) hydroxides 

and MnO2, the proximity between the two minerals might play an important role in the overall 

reaction process. Figure 4.4 compares Cr0.23Fe0.77(OH)3 oxidation by MnO2 at pH 8 in the 

completely mixed batch with multichamber experiments at the same condition. The rate of Cr(VI) 

production in the multichamber experiment was much lower than in the completely mixed batch 

experiment. The difference demonstrates the importance of solid-solid contact or proximity on 

CrxFe1-x(OH)3-MnO2 interactions. In mixed batch experiments, Cr(VI) production rate was high 

and not limited by the sparing Cr(III) solubility of Cr0.23Fe0.77(OH)3 and Mn(III)/Mn(IV) of 

MnO2. In contrast, the concentration of the total Cr(VI) produced in the multichamber 

experiment was measureable but below 1 M even after 400 hours (Figure 4.4 and Figure S4.9). 

The average Cr(VI) production rate in multichamber reactor is only 1.1×10
-3

 M/h, 90 times 

lower than the 0.10 M/h in well mixed batch experiment. Similarly, for another poorly soluble 

mineral UO2 which is a reductive remediation product of uranium, Wang et al. used 
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multichamber reactor experiments to show that the effective redox interaction between UO2 and 

MnO2 requires proximity of the two dissimilar solids.
206

 Plathe et al. found that UO2 oxidation 

by MnO2 needed proximity between the two solids phases as U(IV) oxidation by O2 was not 

enhanced by manganese oxides in a porous medium with spatially separated UO2 and MnO2 

solids in contrast to significant enhancement in completely mixed experiments.
233

 

In the multichamber experiments, Cr(III) dissolved from Cr0.23Fe0.77(OH)3, diffused 

across the membrane and was oxidized in the MnO2 chamber. Mn(III, IV) intermediates could 

not persist at an appreciable concentration without the presence of ligands and thus could not 

transport oxidized forms of Mn to the CrxFe1-x(OH)3 chamber. The dissolved Mn concentration 

in the water chamber of a MnO2||water control experiment was extremely low and oxidized Mn 

species were not the soluble intermediate involved in the redox reaction between the two solids. 

After the Cr(III) was oxidized by the MnO2 in the MnO2 chamber, the released Cr(VI) could then 

diffuse back to the CrxFe1-x(OH)3 chamber and adsorb onto the surface of Cr0.23Fe0.77(OH)3 solids. 

Consistent with a flux of Cr(VI) from the MnO2 chamber to the CrxFe1-x(OH)3 chamber, the 

dissolved Cr(VI) concentration in the MnO2 chamber was higher than that in the 

Cr0.23Fe0.77(OH)3 chamber (Figure S4.9). Because of the low Cr(III) solubility of 

Cr0.23Fe0.77(OH)3, the driving force for Cr(III) transport across the membrane was small. As a 

result, CrxFe1-x(OH)3 dissolution and Cr(III) transport were the rate-limiting steps for Cr(III) 

oxidation in the multichamber experiment. In contrast, Cr(III) transport did not limit the 

oxidation process in completely mixed suspensions since Cr(III) released from solids can move 

very quickly to the surface of a MnO2 particle by advection in the completely-mixed suspensions.  

Based on the observations that Cr(III) oxidation rates were proportional to the expected 

Cr(III) solubility of Fe-Cr solids and that proximity of CrxFe1-x(OH)3 and MnO2 is important for 
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Cr(VI) genesis, we deduce that the overall reaction proceeds as follows. First, Cr(III) dissolves 

from the solid and transports to the surface of CrxFe1-x(OH)3 particles by advection or diffusion. 

Because Cr(III) can be consumed by oxidation to Cr(VI) when MnO2 is present, a driving force 

for Cr(III) transport from the surface and continuing CrxFe1-x(OH)3 dissolution is maintained. 

Second, there were no diffusive transport limitation for soluble Cr(III) to reach the MnO2 surface 

when mixing of solid particles. Third, upon adsorbing to MnO2, Cr(III) is oxidized through a 

multistep process to Cr(VI). Finally, the Cr(VI) is released to the aqueous phase with some 

readsorbing to the CrxFe1-x(OH)3 solids depending on the particular pH.  

 

Figure 4.4. Cr(VI) production from Cr0.23Fe0.77(OH)3-MnO2 reaction in a multichamber or 

completely mixed batch experiment. For multichamber experiments, Cr(III)0 = 1440 M (80 

mg/L) in the chromium chamber and MnO2 = 872 M (80 mg/L MnO2) in the MnO2 chamber. 

These concentrations are twice as high as in the completely mixed experiments so that the 

overall the Mn and Cr concentration are the same for multichamber and completely mixed 

experiments. Inset shows the Cr(VI) concentrations in the multichamber experiment in a 

narrower y-axis range. 
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4.4 Environmental Implication 

In this study we established a quantitative relationship between Cr(VI) production rates 

and Cr(III) solubility of CrxFe1-x(OH)3 upon reaction of CrxFe1-x(OH)3 with δ-MnO2 in well-

mixed systems. This relationship enables predictions of Cr(VI) production rates at different pH 

and Fe/Cr ratios. Cr(III) dissolves from CrxFe1-x(OH)3 and transfers to the surface of MnO2 

where it is oxidized to Cr(VI) and is subsequently released to solution or adsorbed onto the 

CrxFe1-x(OH)3. Dissolved Cr(VI) at pH 9 is much higher than at pH 5 after reaction of CrxFe1-

x(OH)3 with MnO2 because less Cr(VI) adsorbs at higher pH. However, the desorption of Cr(VI) 

in the presence of natural water with competing adsorbates (e.g. phosphate) might lead to overall 

higher Cr(VI) release at lower pH. Thus it is important to study both dissolved Cr(VI) and total 

Cr(VI) in CrxFe1-x(OH)3 and MnO2 systems, which could improve predictions of the 

concentration of Cr(VI) released into water. The systematic study of dissolved and total Cr(VI) 

generation at different pH and Fe/Cr ratios is helpful for predicting Cr(VI) release in natural 

environments when Cr(III)-containing solids are disposed above ground in waste piles or below 

ground.
234, 235

 As CrxFe1-x(OH)3 solids with higher Fe/Cr ratio are less susceptible to oxidation by 

MnO2, higher iron dosages in coagulation-based Cr treatments would yield more stable products. 

Our findings clarify the important role of proximity between CrxFe1-x(OH)3  and MnO2 in 

the rate of Cr(VI) generation. In subsurface environments, if the two solids are physically 

separated, then CrxFe1-x(OH)3 dissolution rates will be quite slow and Cr(VI) genesis rates are far 

less than when the two solids are mixed. Thus, Cr(VI) release rate predictions need to consider 

whether there is proximity between the CrxFe1-x(OH)3 and MnO2, especially with respect to 

whether particle-associated chromium could be transported to enable contact with MnO2. MnO2 

might also be formed in close proximity with Cr(III)-containing solid surfaces through biotic or 
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abiotic Mn(II) oxidation by dissolved oxygen. The resulting MnO2 would be a more potent 

oxidant of the Cr(III) in the solid than would be the dissolved oxygen. Therefore, when we 

consider options for Cr(III)-containing waste disposal we should avoid soils or groundwater that 

contain substantial manganese oxides. 
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Chapter 4. Supporting Information 

Additional information regarding the δ-MnO2 dissolution, XRD patterns and TEM 

images of initial solids, Cr0.11Fe0.89(OH)3 and Cr0.055Fe0.945(OH)3 oxidation by manganese oxide, 

comparison of Cr(OH)3 and Cr0.23Fe0.77(OH)3 oxidation by MnO2, pH-dependence of Cr(VI) and 

Mn(II) adsorption, zeta potential of initial solids, calculated Cr(III) solubility of CrxFe1-x (OH)3, 

Cr(VI) and Mn concentrations in Cr0.23Fe0.77(OH)3-MnO2 multichamber experiments, HR-TEM 

images of the solid product and their EDS results, and XPS results of reacted solid products are 

provided in the supplementary documents.  

 

Figure S4.1. δ-MnO2 dissolution at pH 8 and pH 9 with or without buffer. MnO2 = 436 M, I = 

5 mM with NaCl as background electrolyte. 
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Figure S4.2. X-ray diffraction patterns of (a) initial MnO2 and CrxFe1-x(OH)3 solids (b) reaction 

products of MnO2 and Cr0.23Fe0.77(OH)3 after 400 hours at pH 5 and pH 9. The reference pattern 

for triclinic birnessite
236

 is included for comparison. The asterisk (*) indicates the diffraction 

features from PTFE abraded from the stir bar.
237
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Figure S4.3. Transmission electron microscographs of initial solids  
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Figure S4.4. Total Cr(VI) concentration from Cr(OH)3 and Cr0.23Fe0.77 (OH)3 oxidation by MnO2 

at pH 5 with 770 M initial Cr(III) (40 mg/L) and 436 M of initial MnO2 (40 mg/L MnO2) in 

the mixed suspension for both experiments. 

 

Figure S4.5. Zeta potential of CrxFe1-x(OH)3 initial solids. For comparison with the zeta potential 

of the Cr-containing solids, the zeta potential of the MnO2 is -54 mV at pH 8. 
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Figure S4.6. TEM images and SAED patterns of the solid products of MnO2 and 

Cr0.23Fe0.77(OH)3 reacted for 400 hours at pH 5 (a) and pH 9 (b). The red circles refer to the areas 

for SAED patterns.  
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Figure S4.7. EDS results of reacted solid products. The analyzed areas are the same as the 

labeled circles in Figure S4.6.  
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Figure S4.8. XPS spectra of Mn 2p3/2 photoelectron lines for the solid product and initial MnO2 
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Figure S4.9. Cr(VI) and Mn(II) concentrations in Cr0.23Fe0.77(OH)3||MnO2 multichamber 

experiments. Cr(III)0 = 1440 M (80 mg/L) in the chromium chamber and MnO2 = 872 M (80 

mg/L MnO2) in the MnO2 chamber, pH=8 with 5mM MOPS as buffers and NaCl as background 

electrolyte. 
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A general relationship [log (CrOH
2+

) = -2pH + 4.18 + 0.28(1-x)
2
-1.79(1-x)

3
 + log x] was 

used to calculate the Cr concentrations in solution between pH 2 and pH 6 that are in equilibrium 

with CrxFe1-x(OH)3 (x ≤ 0.69).
198

 As CrOH2+ is the dominant species at pH ≤ 6, total dissolved 

Cr(III) concentrations including CrOH2+, Cr(OH)2+, Cr(OH)3(aq) and Cr(OH)4- in equilibrium 

with CrxFe1-x(OH)3 were calculated to cover dissolved Cr(III) concentrations from pH 5 to pH 

9 by accounting for these additional dissolved Cr(III) species above pH 6. The concentrations of 

Cr(OH)2+, Cr(OH)3(aq) and Cr(OH)4- were calculated according to equilibrium constants from 

Rai et al.
225

 

Table S4.1. Dissolved Cr(III) speciation and concentration in equilibrium with CrxFe1-x(OH)3 

solids 

Cr(III) species (M) pH 5 pH 6 pH 7 pH 8 pH 9 

log CrOH
2+

 in Cr0.23Fe0.77(OH)3 
a
 -7.11 -9.11 -11.11 -13.11 -15.11 

log CrOH
2+

 in Cr0.11Fe0.89(OH)3 -7.82 -9.82 -11.82 -13.82 -15.82 

log CrOH
2+

 in Cr0.055Fe0.945(OH)3 -8.34 -10.34 -12.34 -14.34 -16.34 

log Cr(III)diss in Cr0.23Fe0.77(OH)3 
b
 -7.07 -8.91 -9.64 -9.70 -9.71 

log Cr(III)diss in Cr0.11Fe0.89(OH)3 -7.77 -9.62 -10.35 -10.41 -10.42 

log Cr(III)diss in Cr0.055Fe0.945(OH)3 -8.30 -10.14 -10.87 -10.93 -10.94 

dominant species CrOH
2+

 CrOH
2+

 Cr(OH)3(aq) Cr(OH)3(aq) Cr(OH)3(aq) 

a. The calculated logarithm of the CrOH
2+

 concentration (M) in equilibrium with CrxFe1-x(OH)3  

b. The calculated logarithm of the total dissolved Cr(III) concentration (M) in equilibrium with 

CrxFe1-x(OH)3  
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Table S4.2. Binding energies (BE) of surface Mn species for fitting the Mn2p3/2peak of the solid 

product and the relative area of each multiplet for the surface species (All peaks were modeled as 

50% Gaussian-50% Lorentzian) 

Initial MnO2 

surface species BE (eV) FWHM (eV) Percent (%) 

Mn(IV)-O multiplet 1 641.83 1.5 42.5  

Mn(IV)-O multiplet 2 642.83 1.5 28.4  

Mn(IV)-O multiplet 3 643.68 1.5 14.2  

Mn(IV)-O multiplet 4 644.71 1.5 5.7  

Mn(IV)-O multiplet 5 645.73 1.5 4.1  

Mn(IV)-O overall: 94.9 (%) 

Mn(III)-O multiplet 1 640.70 1.5 1.2  

Mn(III)-O multiplet 2 641.40 1.5 1.2  

Mn(III)-O multiplet 3 642.21 1.5 1.6  

Mn(III)-O multiplet 4 643.23 1.5 0.8  

Mn(III)-O multiplet 5 644.60 1.5 0.3  

Mn(III)-O overall: 5.1 (%) 

 

Cr0.23Fe0.77(OH)3 +MnO2  pH=5 

surface species BE(eV) FWHM(eV) Percent (%) 

Mn(IV)-O multiplet 1 641.90 1.5 8.0  

Mn(IV)-O multiplet 2 642.90 1.5 5.3  

Mn(IV)-O multiplet 3 643.75 1.5 2.7  

Mn(IV)-O multiplet 4 644.78 1.5 1.1  

Mn(IV)-O multiplet 5 645.80 1.5 0.8  

Mn(IV)-O overall: 17.8 (%) 

Mn(III)-O multiplet 1 640.68 1.5 10.9  

Mn(III)-O multiplet 2 641.38 1.5 10.9  

Mn(III)-O multiplet 3 642.19 1.5 14.7  

Mn(III)-O multiplet 4 643.21 1.5 7.6  

Mn(III)-O multiplet 5 644.58 1.5 3.3  

Mn(III)-O overall: 47.3 (%) 

Mn(II)-O multiplet 1 639.57 1.5 13.1  

Mn(II)-O multiplet 2 640.77 1.5 9.9  

Mn(II)-O multiplet 3 641.57 1.5 6.7  

Mn(II)-O multiplet 4 642.47 1.5 3.3  

Mn(II)-O multiplet 5 643.97 1.5 2.0  

Mn(II)-O overall: 34.9 (%) 
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Cr0.23Fe0.77(OH)3 +MnO2 +MnO2  pH=9 

surface species BE (eV) FWHM (eV) Percent (%) 

Mn(IV)-O multiplet 1 641.85 1.5 5.3  

Mn(IV)-O multiplet 2 642.85 1.5 3.6  

Mn(IV)-O multiplet 3 643.70 1.5 1.8  

Mn(IV)-O multiplet 4 644.73 1.5 0.7  

Mn(IV)-O multiplet 5 645.75 1.5 0.5  

Mn(IV)-O overall: 11.9 (%) 

Mn(III)-O multiplet 1 640.59 1.5 9.7  

Mn(III)-O multiplet 2 641.29 1.5 9.6  

Mn(III)-O multiplet 3 642.10 1.5 13.0  

Mn(III)-O multiplet 4 643.12 1.5 6.8  

Mn(III)-O multiplet 5 644.49 1.5 2.9  

Mn(III)-O overall: 42.0 (%) 

Mn(II)-O multiplet 1 639.63 1.5 17.3  

Mn(II)-O multiplet 2 640.83 1.5 13.0  

Mn(II)-O multiplet 3 641.63 1.5 8.8  

Mn(II)-O multiplet 4 642.53 1.5 4.4  

Mn(II)-O multiplet 5 644.03 1.5 2.6  

Mn(II)-O overall: 46.1 (%) 

 

Cr0.11Fe0.89 (OH)3 +MnO2  pH=5 

surface species BE (eV) FWHM (eV) Percent (%) 

Mn(IV)-O multiplet 1 641.66 1.5 10.1  

Mn(IV)-O multiplet 2 642.66 1.5 6.7  

Mn(IV)-O multiplet 3 643.51 1.5 3.4  

Mn(IV)-O multiplet 4 644.54 1.5 1.4  

Mn(IV)-O multiplet 5 645.56 1.5 2.3  

Mn(IV)-O overall: 23.8 (%) 

Mn(III)-O multiplet 1 640.21 1.5 10.8  

Mn(III)-O multiplet 2 640.91 1.5 10.8  

Mn(III)-O multiplet 3 641.72 1.5 14.6  

Mn(III)-O multiplet 4 642.74 1.5 7.6  

Mn(III)-O multiplet 5 644.11 1.5 4.7  

Mn(III)-O overall: 48.5 (%) 

Mn(II)-O multiplet 1 639.51 1.5 10.4  

Mn(II)-O multiplet 2 640.71 1.5 7.8  

Mn(II)-O multiplet 3 641.51 1.5 5.3  

Mn(II)-O multiplet 4 642.41 1.5 2.6  

Mn(II)-O multiplet 5 643.91 1.5 1.6  

Mn(II)-O overall: 27.7 (%) 

 



118 

 

Cr0.11Fe0.89 (OH)3 + MnO2  pH=9 

surface species BE (eV) FWHM (eV) Percent (%) 

Mn(IV)-O multiplet 1 641.70 1.5 6.3  

Mn(IV)-O multiplet 2 642.70 1.5 4.2  

Mn(IV)-O multiplet 3 643.55 1.5 2.1  

Mn(IV)-O multiplet 4 644.58 1.5 0.9  

Mn(IV)-O multiplet 5 645.60 1.5 1.5  

Mn(IV)-O overall: 15.0 (%) 

Mn(III)-O multiplet 1 640.30 1.5 9.9  

Mn(III)-O multiplet 2 641.00 1.5 9.9  

Mn(III)-O multiplet 3 641.81 1.5 13.3  

Mn(III)-O multiplet 4 642.83 1.5 6.9  

Mn(III)-O multiplet 5 644.20 1.5 2.5  

Mn(III)-O overall: 42.4 (%) 

Mn(II)-O multiplet 1 639.40 1.5 16.0  

Mn(II)-O multiplet 2 640.60 1.5 12.0  

Mn(II)-O multiplet 3 641.40 1.5 8.1  

Mn(II)-O multiplet 4 642.30 1.5 4.0  

Mn(II)-O multiplet 5 643.80 1.5 2.4  

Mn(II)-O overall: 42.6 (%) 
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Chapter 5. Understanding the Role of Dissolution 

and Diffusion in Cr(OH)3 Oxidation by δ-MnO2  

This chapter was a manuscript in preparation for submission to ACS Earth and Space 

Chemistry. 

Abstract 

Manganese oxides are the major oxidants of Cr(III) to Cr(VI) in natural environments. 

This study evaluated the rate and extent of Cr(III) oxidation from Cr(OH)3 by 𝛿-MnO2 from pH 

5 to pH 9, with a particular focus on quantify the rate constant of Cr(III) oxidation on MnO2 

surface at pH 5. Cr(III) oxidation was initially fast, but it then slowed and ceased for pH 5 to pH 

7, which agrees with previously reported inhibition of the redox reaction above pH 4 by 

precipitation of Cr(III) on MnO2 surface. Above pH 7, Cr(VI) production was higher than at 

lower pH even though the dissolved Cr(III) concentration in equilibrium with Cr(OH)3 decreased 

with increasing pH, probably due to the generated Mn(II) being reoxidized by dissolved oxygen. 

Manganese oxides are finally reduced to feitknechtite at high pH. Multichamber experiments 

were used to assess the role of solid-solid proximity in Cr(OH)3-MnO2 interactions. At pH 5, the 

rates of aqueous Cr(III) oxidation by manganese oxides were calculated by optimizing the fit of 

data on Cr(VI) concentrations to a model for the multichamber experiments. The model could 

also predict Cr(VI) release in completely mixed batch experiments. The Cr(VI) production 

conditions in multichamber reactor and completely mixed batch reactor at different pH suggests 

that mixing of Cr(OH)3 and MnO2 solids play a more important role for Cr(VI) generation when 

dissolved Cr(III) concentration is low, as the transport of Cr(III) through solution would not be 
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limited by diffusion in completely mixed batch experiments due to either close approaches of the 

two solutes or convective transport of soluble Cr(III) to MnO2 surfaces.   

5.1 Introduction 

Chromium (Cr) is widespread in soils, sediments and water from natural and 

anthropogenic sources. The predominant species of Cr in aquatic and soil environments are 

Cr(III) and Cr(VI), with Cr(III) being less mobile and less toxic.
238

 The chromium content of 

natural solids varies widely with the type and nature of rocks or sediments, with highest 

chromium contents associated with finest particles in soils and sediments.
11

 Cr is generally 

present in the +III oxidation state in these solids.
239, 240

 In natural waters, the range of chromium 

concentration is large and dissolved chromium concentration has been observed as high as 4 

µmol/L, around twice of maximum contaminant level goals in drinking water set by EPA, which 

is 100 µg/L (1.92 µM). These high chromium concentration in natural waters are mostly Cr(VI), 

which are more soluble than Cr(III) species.
11

 Much higher Cr(VI) concentrations are found in 

groundwater that has been contaminated by human activities.
240

  

Manganese oxides, which are ubiquitous in soils, can rapidly oxidize Cr(III) to Cr(VI).
241-

243
 They provide the major geochemical pathway for Cr(VI) occurrence from Cr(III) in 

groundwater, soils or subseafloor environments.
52, 53

 Manganese oxides are believed to form 

primarily by Mn(II) oxidation via either direct or indirect microbial activity.
47

 The predominant 

type of biogenic manganese oxides formed at circumneutral pH are highly disordered and 

nanocrystalline phases, similar to hexagonal birnessite (its synthetic analogue is 𝛿-MnO2).
47, 50, 

244-246
 Several studies have investigated the kinetics of Cr(III) oxidation by various manganese 

oxides.
199, 201, 204, 247, 248

 X-ray absorption spectroscopy (XAS) and X-ray photoelectron 
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spectroscopy (XPS) have indicated that Cr(III) aqueous ions first diffuse towards Mn(IV) 

vacancies in the sheet of MnO6 octahedra; the coupled Cr(III) oxidation/ Mn(IV) reduction 

occurs through one-electron-transfer reactions and the Cr(VI) produced is then released into 

solution.
226, 249

 However, a sharp rate decline and cessation of the reaction followed the initially 

fast Cr(VI) generation from Cr(OH)3 oxidation by manganese oxides, and this decline is due to 

the formation of a Cr(OH)3 precipitate on 𝛿-MnO2.
203, 205

 The initial rates of Cr(III) oxidation on 

the MnO2 surface notably depend on pH, temperature, and Cr(III) and manganese 

concentrations.
203, 250-253

 However, most studies have focused on the Cr(III) oxidation kinetics at 

low pH and total Cr(VI) concentrations were not usually measured during the reaction processes.  

The objectives of this study were to investigate the rates and mechanism of Cr(VI) 

production from Cr(OH)3 oxidation by 𝛿-MnO2 as a function of pH and to identify the final Mn-

containing oxide products. Total Cr(VI) concentration including adsorbed Cr(VI) on solid 

surface and dissolved Cr(VI) in solution were both measured. Multichamber experiments were 

operated to test the role of mixing of Cr(OH)3 and MnO2 solids in the Cr(VI) production. The 

reaction products were characterized by high-resolution transmission electron microscopy 

(HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). 

5.2 Materials and Methods 

5.2.1 Materials 

Ultrapure water (resistivity > 18.2 MΩ-cm) was used for the experiments, and the 

chemicals used were analytical reagents of high purity. At pH 5 and pH 6, no buffer was added 

to the reactors and the pH was maintained by NaOH or HCl additions. At pH 7 and pH 8, the pH 

of the suspensions was buffered by 5 mM 3-(N-morpholino) propanesulfonic acid (MOPS, 
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pKa=7.2). At pH 9, 5 mM N-cyclohexyl-2-aminoethanesulfonic acid (CHES, pKa=9.3) was used. 

The pH buffers and their concentrations were chosen because of their minimal formation of 

complexes with Cr(III) and their stability against oxidation by MnO2.
62, 206, 207

 NaCl was added to 

provide 5 mM ionic strength as the background electrolyte because Na
+
 and Cl

-
 do not interfere 

with the chemistry of Cr(III) oxidation.  

5.2.2 Mineral synthesis 

Synthetic δ-MnO2 was prepared by reacting KMnO4 with MnCl2 at a basic pH following 

the method described by Villalobos et al.
50

 XRD confirmed that the solid was δ-MnO2, and TEM 

provided evidence of δ-MnO2 morphology and sizes as we have presented previously.
247

 

Cr(OH)3(s) was synthesized by titrating CrCl3 solutions with NaOH solution to pH 7 and 

maintaining the pH for 24 hours.
229, 247

 The suspension was then washed five times with 

ultrapure water, and the supernatant was discarded after centrifugation. The final chromium 

concentration of Cr(OH)3(s) suspension was measured by inductively coupled plasma-mass 

spectroscopy (ICP-MS, PerkinElmer ELAN DRC II) after nitric acid digestion. Cr(OH)3 exist as 

crystalline solid (Cr(OH)3·3H2O) in suspension and it almost entirely converted to amorphous 

Cr(OH)3 upon drying,
197

 which explains the broad humps in XRD pattern in Figure 5.5. The 

solubility of crystalline solid Cr(OH)3 is actually greater than its amorphous form.
225

 The 

Cr(OH)3 stock solution was sonicated for 5 minutes before use in experiments to disperse the 

particles before they were added to the reactors.  

5.2.3 Mixed batch experiments and multichamber reactor 

Completely mixed batch experiments were conducted in glass beakers filled with 

ultrapure water, 5 mM NaCl, a pH buffer, MnO2 suspension, and Cr(OH)3 suspensions with 40 
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mg/L (770 µM) initial Cr(III) concentration to a total volume of 1 L. Multichamber experiments 

were used to assess the role of mixing and solid-solid contact in Cr(OH)3-MnO2 interactions. The 

reactor was the same as described in our group’s previous work (Figure S5.1).
206, 247

 Briefly, a 

dialysis membrane with a molecular weight cut off (MWCO) of 3500 divided the reactor into 

two 110-mL chambers, eliminating the direct contact of the Cr(OH)3 and MnO2 solids but 

allowing dissolved species to diffuse across the membrane with a flux due to concentration 

difference. The suspensions were completely mixed in each chamber. For both completely mixed 

batch experiments and multichamber experiments, samples were periodically collected and a 

portion of them were filtered with 0.05 μm polyethersulfone (PES) syringe filters (Tisch 

Environmental, OH) for dissolved chromium, dissolved Cr(VI), and dissolved manganese 

analysis. The remaining portions of the unfiltered samples were used for total Cr(VI) and total 

Mn(II) analysis. Experiments were performed under the ambient laboratory atmosphere for both 

completely mixed batch experiments and multichamber experiments. 

5.2.4 Aqueous and solid phase analysis 

Total and dissolved Cr, Fe and Mn concentrations were measured by ICP-MS 

(PerkinElmer ELAN DRC II). The instrument detection limits for Cr, Fe and Mn were 0.2 μg/L 

(0.0039 μM), 0.1 mg/L (1.8 μM) and 0.5 μg/L (0.009 μM), respectively. The samples for 

measuring dissolved Cr(VI) and dissolved Mn(II) were filtered and then measured by the 

diphenylcarbazide method and ICP-MS, respectively. Dissolved Mn(II) concentrations were 

assumed to equal the total dissolved Mn concentration because both Mn(IV) and Mn(III) are 

sparingly soluble.
216

 Cr(VI) concentrations in the samples were determined 

spectrophotometrically (PerkinElmer-Lambda XLS) after reacting with diphenylcarbazide.
215

 

The detection limit for Cr(VI) by this method was 5 μg/L (0.096 μM). Total Cr(VI) and total 
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Mn(II), including adsorbed species, were measured the same way as dissolved Cr(VI) and Mn(II) 

after extracting the surface-associated species into the solution. For total Cr(VI) concentration, 

adsorbed Cr(VI) was extracted by providing a 10 mM phosphate concentration in the suspension 

to displace adsorbed Cr(VI); the Cr(VI) was then measured by the diphenylcarbzide method. The 

efficiency of this extraction method was above 90% ± 5% based on control experiments. The 

control experiments were operated with Cr(VI) adsorption onto Cr(III)─Fe(III) hydroxide solids 

followed by phosphate addition to induce Cr(VI) desorption. Other portion of selected sample 

suspensions were treated with 10 mM CuSO4 to extract adsorbed Mn(II). In this method Cu(II) 

preferentially adsorbs to MnO2, and induce Mn(II) desorption.
206, 247

 This method has been 

shown to remove >90% of the adsorbed Mn(II) from a biologically reduced 𝛿-MnO2.
221

 The 

method only extracts adsorbed Mn(II) and would not mobilize any structurally incorporated 

Mn(II) or Mn(III).  

TEM samples were prepared by dropping approximately 30 μL of suspension onto 200 

mesh carbon-coated copper grids (Ted Pella, Inc.) followed by immediate evaporation of the 

remaining water at room temperature under vacuum. TEM micrographs were taken with a 

transmission electron microscope under 120 kV (FEI Spirit G2). The solid samples for XRD, 

XPS and HR-TEM were prepared by centrifugation and freeze-drying. XRD patterns were 

collected using Cu Kα radiation (Bruker d8 Advance X-ray diffractometer). XPS analyses were 

conducted using a Physical Electronics 5000 Versa Probe II Scanning ESCA Microprobe with an 

Al Kα X-ray source at 23.5 eV pass energy at a 100 μm X-ray spot size. The binding energy was 

calibrated using C 1s at 284.6 eV, and the XPS spectra were processed by using CasaXPS 

software (Version 2.3.15)
222

  with the Gaussian-Lorentzian function (70% G-30% L), and a 

Shirley background for peak fitting. The quantification of Mn valence state was made following 
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a method in which the Mn 2p3/2 spectrum is divided into five multiplet peaks (total of 15 binding 

energies) of Mn(IV), Mn(III) and Mn(II).
223

 A value of 1.5 for the full width of the peak at half 

the maximum peak height (fwhm) was assigned to fit the Mn2p3/2 spectrum for all of the 

multiplet binding energy spectra.
224

 TEM observation was carried out using an FEI TF electron 

microscope operated at 200 kV and energy dispersive X-ray (EDX) analysis was used to confirm 

the particle compositions, and selected area electron diffraction (SAED) patterns were collected 

to determine the extent of crystallinity of the Mn oxides and Cr(OH)3 as well as to identify the 

mineral phases.  

5.2.5 Model for dynamics of Cr(VI) production 

A quantitative model for the dynamics of Cr(OH)3 oxidation by 𝛿-MnO2 in multichamber 

experiments was developed based on the dissolution rate of Cr(OH)3(s), the rates of aqueous 

Cr(III) and Cr(VI) transport across the membrane, rate of dissolved Cr(III) oxidation by 𝛿-MnO2, 

and Cr(VI) adsorption on Cr(OH)3 solids. The rate of aqueous Cr(III) oxidation on the surface of 

MnO2 was calculated by determining the parameters that provided the best fit of the model 

output to the experimental data.  

For the Cr(OH)3||MnO2 system, where “||” notes the separation of solids by a dialysis 

membrane, the governing equations are 

V
d[Cr(III)]Mn

dt
= −V ∙ k ∙ [Cr(III)]Mn ∙ [MnO2] + νCr(III) ∙ A ∙ ([Cr(III)]Cr − [Cr(III)]Mn)         (5.1) 

V
d[Cr(III)]Cr

dt
= V ∙ k′ ∙ (1 −

[Cr(III)]Cr

[Cr(III)]eq
) − νCr(III) ∙ A ∙ ([Cr(III)]Cr − [Cr(III)]Mn)                      (5.2) 

V
d[Cr(VI)]Mn

dt
= V ∙ k ∙ [Cr(III)]Mn ∙ [MnO2] − νCr(VI) ∙ A ∙ ([Cr(VI)]Mn − [Cr(VI)diss]Cr)       (5.3) 
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V
d[Cr(VI)tot]Cr

dt
= νCr(VI) ∙ A ∙ ([Cr(VI)]Mn − [Cr(VI)diss]Cr)                                                     (5.4) 

[MnO2] = [MnO2]0 − 1.5 ∙ [Cr(VI)]Mn − 1.5 ∙ [Cr(VI)tot]Cr                                                  (5.5) 

The transmembrane mass transfer coefficient was estimated from the Cr(VI) tracer 

experiment (Figure S5.4 in Supporting Information) and the aqueous Cr(III) transmembrane 

mass transfer coefficient was calculated based on a semi-empirical equation relating the 

molecular weight and mass transfer coefficients of Cr(VI) and Cr(III) (eq S5.3 in Supporting 

Information). The flux (mol m
-2

 s
-1

) of an aqueous species is proportional to its concentration 

gradient across the membrane. The relationship between [Cr(VI)diss]Cr and [Cr(VI)tot]Cr was 

estimated by adsorption experiments of Cr(VI) onto Cr(OH)3 solids (eq S5.12, S5.13 and Figure 

S5.7 in Supporting Information). The rate constant for Cr(OH)3 dissolution is k’ (5.5 × 10
-10

 mol 

L
-1 

s
-1

), which was obtained from fitting the data from Cr(OH)3||water experiments (Figure S5.4 

in Supporting Information). The rate constant of dissolved Cr(III) oxidation by MnO2 was k (3.6 

L mol
-1 

s
-1

), which was estimated by fitting the [Cr(VI)]Mn , [Cr(VI)tot]Cr  and 

[Cr(VI)diss]Cr experimental data with modeling output in from eq 5.1 to eq 5.5. The ordinary 

differential equations (ODEs) from eq 5.1 to eq 5.5 in the model were solved by the ode45 solver 

in Matlab 7.0. More detailed model derivation can be found in the Supporting Information. 

5.3 Results and Discussion 

5.3.1 Cr(OH)3 oxidation by MnO2 

From pH 5 to pH 7, Cr(III) oxidation rates were initially rapid, followed by a cessation of 

the reaction (Figure 5.1). The Cr(VI) concentration was nearly constant after increasing to 

around 100 M within the first ten hours. Both dissolved Cr(III) and MnO2 are in excess amount 
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even after cessation of the reactions.  At pH 5, the Cr(VI) produced was lower than the dissolved 

Cr(III) concentration of 240 M, which was measured before MnO2 was added to the Cr(OH)3 

suspension.  The stoichiometry of Cr(VI) and Mn(II) produced was around 1.5 times, indicating 

that Mn(II) was the reduction product of  MnO2 at pH 5 (eq 5.6). The Mn(II) generated was 

lower than the total amount of Mn(II) that could have been generated if the reaction had gone to 

completion, so Cr(III) oxidation had stopped even though there was sufficient MnO2 for further 

oxidation. This inhibitory effect of Cr(OH)3 oxidation by Mn-oxides has also been previously 

observed at pH values greater than 4 and with higher Cr(III) loadings than those in our study.
203, 

205, 251
 Those previous studies attributed the inhibition to the formation of a Cr(OH)3 precipitate 

on δ-MnO2.
205

 As a result, the amount of Cr(III) oxidized may be governed by the surface area of 

MnO2 when Cr(III) is in excess.  

             2Cr(OH)3(s) + 3MnO2 = 2CrO4
2-

 + 3Mn
2+

 + 2OH
-
 + 2H2O                     (5.6) 

             Cr(OH)3(s) + 3MnO2 + H2O = CrO4
2-

 + 3MnOOH                                  (5.7) 

From pH 8 to pH 9 when Cr(OH)3 solubility is much lower than at pH 5-7(Table 5.1), the 

Cr(VI) concentrations increased more gradually, and they ultimately increased to a higher levels 

and without any observable inhibition. At pH 8, the oxidation reaction proceeds until MnO2 was 

limiting as Mn(III) is the dominant reaction products according to the stoichiometry of the 

reaction (Figure 5.1 and eq 5.7). At pH 9, Cr(VI) can be as high as 200 M, which would require 

600 M MnO2. As there was only 436 M MnO2 in the initial suspension, Mn(II) might be 

oxidized by dissolved oxygen to MnO2, which could continue oxidizing Cr(III) at this high 

pH.
229
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Figure 5.1. Cr(OH)3 oxidation by manganese oxide from pH 5 to pH 9 with 770M initial Cr(III) 

(40 mg/L) and 436 M initial MnO2 (40 mg/L MnO2) in completely mixed batch experiments. 

Table 5.1 Comparison of Cr(OH)3 solubility with oxidation extent in the presence of MnO2 

pH value 5 6 7 8 9 

Amorphous Cr(OH)3 solubility
1
 (𝜇M) 17.0 0.3 0.02 0.0025 0.1 

Measured Cr solubility
2 
(𝜇M) 240.0 1.0 0.8 0.2 0.9 

Cr(VI)total produced at 400 hours (𝜇M) 95 80 80 130 200 

Mn(II)total produced at 400 hours (𝜇M)  156.1 40.2 16.1 8.3 8.2 

Mn(II)total/Cr(VI)total 1.64 0.50 0.20 0.06 0.04 

1. Cr(III) solubility was calculated with MINEQL+
254

 

2. Cr(III) concentration was measured after equilibrating with 40 mg/L Cr(III) at different pH for 

24 hours before adding 436 M MnO2 to the completely mixed reactor. 
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To better understand the inhibitory mechanism of Cr(OH)3 oxidation by manganese 

oxides at low pH, different amounts of MnO2 were dosed to Cr(OH)3 suspension at pH 5. As 

shown in Figure 5.2a, with different amounts of MnO2 initial concentration, Cr(VI) production 

rates were high in the initial stage, followed by the cessation of the reaction. When the reaction 

ceased, both Cr(III) and MnO2 were still present at amounts that theoretically could react with 

one another. Even though neither reactant was completely consumed, with higher MnO2 dosage, 

the higher total Cr(VI) were generated.  

 

Figure 5.2. Cr(OH)3 (770 M/ 40 mg/L) oxidation by different concentrations of MnO2 at pH 5. 

(a) total Cr(VI) production along the reaction time (b) total Cr(VI) produced after reaching 

equilibrium at 8 hours correlated with MnO2 added. 
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Total Cr(VI) concentration after reaching equilibrium were proportional to the MnO2 

dosed (Figure 5.2b), indicating that the MnO2 concentration was the limiting factor for Cr(III) 

oxidation. Manceau and Charlet proposed that mononuclear Cr(III) diffuses to the lattice 

vacancies in the Mn-oxide structure and is complexed in these sites subsequent to the electron 

transfer with Mn(IV) during Cr(III) oxidation by manganese oxides.
249

 As a result, the number of 

vacancies in the MnO2 lattice structure determines the extent of Cr(III) oxidation and the amount 

of Cr(III) oxidized is dependent on MnO2 concentration. This provides another explanation of 

the Cr(III) oxidation cessation, which might be due to vacancies in MnO2 lattice structure are 

occupied. 

5.3.2 Kinetic modeling of Cr(III) oxidation in multichamber experiments 

Cr(VI) occurs through chromium(III) dissolution from Cr(OH)3 and its oxidation on the 

MnO2 surface. At pH 5 when the initial dissolved Cr(III) concentration was as high as 240 𝜇M, 

the aqueous Cr(III) ions could quickly reach the MnO2 surface by diffusing through the 

membrane in the multichamber reactor. The total Cr(VI) concentration in the multichamber 

reactors (average of Cr(VI) concentrations in the Cr(OH)3 and MnO2 chambers, Figure 5.3a) is 

around 110 𝜇M, similar to the 95 𝜇M total Cr(VI) produced in completely mixed batch 

experiments. At pH 8 when the Cr(III) solubility was much lower than at pH 5, very little Cr(VI) 

was generated in multichamber experiment while much more was produced when the Cr(OH)3 

and MnO2 were mixed in the same suspension. The Cr(III) arrives at the MnO2 surface 

efficiently only when there was no diffusive transport limitation for dissolved Cr(III) to contact 

an MnO2 surface from advective transport of the Cr(III) to MnO2 (Figure 5.3c).  
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Figure 5.3. Concentration of Cr(VI) from Cr(OH)3-MnO2 reaction in (a) multichamber 

experiments at pH 5, (b) multichamber and completely mixed experiments at pH 5, (c) 

multichamber and completely mixed experiments at pH 8. Sufficient data for control 

experiments was available to parameterize a model to simulate the reactions at pH 5 but not at 

pH 8. For all multi-chamber experiments, Cr(III)0 = 1440M (80 mg/L) in chromium chamber, 

MnO2 = 872 M (80 mg/L MnO2) in MnO2 chamber, which are twice as high as in the 

completely mixed experiments. Then overall Mn and Cr concentrations are the same for 

multichamber experiments and the completely mixed experiments. 
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The rates of aqueous Cr(III) oxidation by MnO2 at pH 5 can be evaluated from the 

multichamber experiments (Figure 5.3a). The chromium mass transfer coefficients (νCr(III) and 

νCr(VI)) and the rate constant of Cr(OH)3(s) dissolution (k’) were determined independently in 

control experiments and then included in the model for examination of Cr(VI) release in 

multichamber experiments. For control experiments, chromium concentrations were measured in 

Cr(VI)||water and Cr(OH)3||water multichamber experiments. The Cr(VI)||water experiment was 

only affected by Cr(VI) diffusion across the membrane, so it was used to determine the mass 

transfer coefficient.  The Cr(OH)3||water multichamber experiment had Cr(III) concentrations 

that were only affected by dissolution and by mass transfer across the  membrane, so this 

experiment was used to estimate the dissolution rate constant of Cr(OH)3(s). Detailed discussions 

of parameter determination are included in the Supporting Information. By fitting the rate 

constant of aqueous Cr(III) oxidation by manganese oxides, Cr(VI) concentrations in the MnO2 

chamber, and dissolved and total Cr(VI) concentrations in the Cr(OH)3 chamber could be 

successfully modeled at pH 5 (Figure 5.3a). The rate constant of Cr(III) oxidation was then 

applied to the completely mixed batch experiments, and the model fit the experimental data well 

with respect to the rate of initial Cr(III) oxidation and the extent of oxidation (Figure 5.3b). 

5.3.3 Mn-containing products of the reaction 

The reaction products of Cr(OH)3 and MnO2 lead to more feitknechtite at higher pH as 

shown from XRD pattern (Figure 5.4). Recent work has shown that hexagonal birnessite is 

subject to structural and mineralogical changes during reaction with aqueous Mn(II), and 

solution pH could affect this interaction as Mn(II) adsorption depends on pH.
211, 231, 255, 256

 Our 

work shows that Mn(II) strongly adsorbed onto the solid phases at high pH (Figure S5.3) , which 

could lead to bulk transformation of the birnessite into feitknechtite and even a more stable 
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manganite phase through a reductive transformation process.
33

 The XRD pattern at pH 8 and pH 

9 indicated that feitknechtite was the dominant product and that no manganite formed within the 

reaction time in this study. This is because some remnant 𝛿-MnO2 has taken up Mn(II), forming 

Mn(III) in the mineral distorting the sheet structure. The feitknechtite formation is consistent 

with results in Figure 5.1 that Mn(III) was the dominant reduction products of 𝛿-MnO2 at high 

pH. At pH 5, MnO2 reduction by Cr(OH)3 did not introduce new manganese oxides phases 

(Figure 5.5), as Mn(II) was generated and then released to the solution (Figure 5.1a). 

 

Figure 5.4. X-ray diffraction patterns of MnO2 and Cr(OH)3 reaction products after 200 hours at 

pH 5, pH 8, and pH 9. The reference patterns for feitknechtite (044-1445 from the International 

Crystal Diffraction Database) and Cr(OH)3 is included for comparison. The asterisk (*) indicates 

the diffraction features from PTFE abraded from the stir bar.
237
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Figure 5.5. HR-TEM images of the reaction products of Cr(OH)3 and MnO2 at pH 5 (a) and pH 

9 (b). The inset figures are the SAED patterns obtained from the area of the red circle.  

The products formed at pH 5 and pH 9 in the oxidation of Cr(OH)3 by MnO2 were also 

investigated by TEM (Figure 5.4). At pH 5, the reaction products did not show any strong 

diffraction, revealing that there was not much change in the crystallinity of the primary solids of 

MnO2 and Cr(OH)3 but aggregated after reaction, which is consistent with the results from XRD. 

While at pH 9, the change of the morphology of the particles indicated that a mineral phase 

transformation occurred and the formed minerals were identified by SAED pattern. Surprisingly, 

feitknechtite is not observed in TEM despite it being a dominant reaction product identified by 

XRD. Instead, the SAED patterns at pH 9 are most consistent with the formation of triclinic 

birnessite. We hypothesize that this is a result of sampling bias associated with the small area 

analyzed by TEM as XRD clearly shows triclinic birnessite is not abundant. However, 

revaluation of the XRD pattern for the pH 9 sample (Figure 5.4) reveals a small peak at ~12
o
 2θ, 

consistent with the (001) diffraction peak for birnessites with excellent layer stacking, including 

the triclinic form. Triclinic birnessite is a known product of the reaction of δ-MnO2 with 
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dissolved Mn(II) at alkaline pH conditions and results from Mn(II) adsorption and 

comproportionation with structural Mn(IV), forming Mn(III) in the manganese oxide sheet.
255

 

The valence of Mn on the solid surface was determined directly by analyzing the solid 

product with Mn2p3/2 and Mn3s splitting energy intervals using XPS (Figure 5.6 and Figure 

S5.4). Table 5.2 summarizes the Mn oxidation state percentage in all the solids as determined by 

XPS 2p3/2, and percentages determined by Mn3s splitting energy intervals gave similar results 

(Figure S5.2 and Table S5.2). For the initial δ-MnO2, Mn(IV) and Mn(III) were present in the 

near-surface of 94.9% and 5.1%, respectively (Table 5.2) and the average oxidation state of Mn 

is 3.95.  For manganese oxides after reacting with Cr(OH)3, the Mn(IV) had almost entirely been 

reduced to Mn(II) and Mn(III) on the solid surface at both pH 5 and pH 9. At pH 9, Mn(II) 

reduced from Mn(IV) is more likely to adsorb on the surface of the solids, which can lead to 

phase transformation of δ-MnO2. At pH 5 even though XPS results show that a large portion of 

the surface Mn are Mn(II), most of the Mn(II) is in solution. 

Table 5.2. Summary of Mn oxidation state percent in solids determined using XPS Mn 2p3/2 

Sample Mn(IV) Mn(III) Mn(II) 

MnO2 initial solids 94.9% 5.1% 
 

Cr(OH)3+MnO2 pH 5 3.9% 46.7% 49.4% 

Cr(OH)3+MnO2 pH 9 4.4% 42.9% 52.7% 
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Figure 5.6. XPS spectra of Mn 2p3/2 photoelectron lines for the solid product and initial MnO2. 

5.4 Conclusion 

Collectively, our results demonstrate that oxidation of Cr(OH)3 by manganese oxides was 

highly dependent on pH even in a relative narrow range of circumneutral pH. In a completely 
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mixed system, Cr(III) oxidation was inhibited after an initially rapid stage at pH 5-7. When pH 

increased to pH 8 or 9, then Cr(VI) production was higher. At pH 5 Cr(VI) generated in 

equilibrium was proportional to the amount of MnO2 added. Multichamber reactors were used to 

test the role of mixing of Cr(OH)3 and MnO2 on Cr(III) oxidation, which could simulate the 

presence of a contact barrier. At pH 5 when the dissolved Cr(III) concentration was high, Cr(VI) 

concentrations in multichamber reactor reached a similar level to that in completely mixed batch 

reactor within 50 hours. While at pH 8 when dissolved Cr(III) concentration is low, the Cr(VI) 

concentration in multichamber reactor is almost negligible compared with that in completely 

mixed batch reactor even after 400 hours. Our modeling work could successfully fit the Cr(VI) 

production rates at pH 5 in completely mixed batch experiments based on parameters determined 

from multichamber experiments. This work could help us predict the rate and extent of Cr(III) 

oxidation in natural environments at different conditions. The Cr(VI) production rates were 

determined by the transport of dissolved Cr(III) in equilibrium with Cr(III)-containing solids 

upon reaction with δ-MnO2 when there is no direct contact of the solids, e.g in porous media 

environments. Furthermore, δ-MnO2 was reduced to feitknechtite at high pH in the presence of 

Cr(OH)3, which would affect the further reactivity of manganese oxides and biogeochemical 

cycling of nutrient elements and trace metals. 
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Chapter 5. Supporting Information 

 

Figure S5.1. Multichamber experimental setup 

 

 

Figure S5.2. TEM images of Cr(III) and MnO2 reaction products after 400 hours 
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Figure S5.3. pH dependence of Mn(II) adsorption onto the solid phases in Cr(OH)3-MnO2 

completely mixed suspensions. The percent adsorbed is calculated from measurement at each 

sampling event for an experiment with a mixed suspensions of 770 µM initial Cr(III) (40 mg/L) 

and 436 µM (40 mg/L MnO2). Each point represents the average value of the adsorbed portion to 

the mixture of Cr(OH)3 and MnO2 at each sampling event at a determined pH. 
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Figure S5.4. XPS spectra of Mn 3s photoelectron lines for the solid product and initial MnO2. (a) 

and (b) are the reaction products of Cr(OH)3 with MnO2 at pH5 and pH 9 respectively; (c) is the 

initial MnO2. 
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Table S5.1. Binding energies (BE) of surface Mn species for fitting the Mn2p3/2 peak of the solid 

product and the relative area of each multiplet for the surface species (All peaks were modeled as 

50% Gaussian-50% Lorentzian) 

 

Initial MnO2 

surface species BE (eV) FWHM (eV) Percent (%) 

Mn(IV)-O multiplet 1 641.83 1.5 42.52 

Mn(IV)-O multiplet 2 642.83 1.5 28.36 

Mn(IV)-O multiplet 3 643.68 1.5 14.16 

Mn(IV)-O multiplet 4 644.71 1.5 5.73 

Mn(IV)-O multiplet 5 645.73 1.5 4.11 

Mn(IV)-O overall: 94.9 (%) 

Mn(III)-O multiplet 1 640.70 1.5 1.18 

Mn(III)-O multiplet 2 641.40 1.5 1.18 

Mn(III)-O multiplet 3 642.21 1.5 1.59 

Mn(III)-O multiplet 4 643.23 1.5 0.82 

Mn(III)-O multiplet 5 644.60 1.5 0.35 

Mn(III)-O overall: 5.1 (%) 

 

Cr(OH)3+MnO2 pH=5 

surface species BE (eV) FWHM (eV) Percent (%) 

Mn(IV)-O multiplet 1 641.65 1.5 1.9 

Mn(IV)-O multiplet 2 642.65 1.5 1.0  

Mn(IV)-O multiplet 3 643.50 1.5 0.6  

Mn(IV)-O multiplet 4 644.53 1.5 0.2  

Mn(IV)-O multiplet 5 645.55 1.5 0.2 

Mn(IV)-O overall: 3.9 (%) 

Mn(III)-O multiplet 1 640.58 1.5 11.3  

Mn(III)-O multiplet 2 641.28 1.5 11.3  

Mn(III)-O multiplet 3 642.09 1.5 14.7  

Mn(III)-O multiplet 4 643.11 1.5 7.9  

Mn(III)-O multiplet 5 644.48 1.5 1.7  

Mn(III)-O overall: 46.9 (%) 

Mn(II)-O multiplet 1 639.4 1.5 18.5  

Mn(II)-O multiplet 2 640.6 1.5 13.9  

Mn(II)-O multiplet 3 641.4 1.5 9.4  

Mn(II)-O multiplet 4 642.3 1.5 4.7  

Mn(II)-O multiplet 5 643.8 1.5 2.8  

Mn(II)-O overall: 49.4 (%) 
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Cr(OH)3+MnO2 pH=9 

surface species BE(eV) FWHM(eV) Percent(%) 

Mn(IV)-O multiplet 1 641.75 1.5 1.9  

Mn(IV)-O multiplet 2 642.75 1.5 1.2  

Mn(IV)-O multiplet 3 643.60 1.5 0.6  

Mn(IV)-O multiplet 4 644.63 1.5 0.3  

Mn(IV)-O multiplet 5 645.65 1.5 0.4  

Mn(IV)-O overall: 4.4 (%) 

Mn(III)-O multiplet 1 640.51 1.5 10.0  

Mn(III)-O multiplet 2 641.21 1.5 10.0  

Mn(III)-O multiplet 3 642.02 1.5 13.5  

Mn(III)-O multiplet 4 643.04 1.5 7.0  

Mn(III)-O multiplet 5 644.41 1.5 2.5  

Mn(III)-O overall: 42.9 (%) 

Mn(II)-O multiplet 1 639.60 1.5 19.8 

Mn(II)-O multiplet 2 640.80 1.5 14.9  

Mn(II)-O multiplet 3 641.60 1.5 10.1  

Mn(II)-O multiplet 4 642.50 1.5 5.0  

Mn(II)-O multiplet 5 644.00 1.5 3.0  

Mn(II)-O overall: 52.7 (%) 

Table S5.2. Summary of Mn3s splitting energy intervals for manganese oxides determined using 

XPS 

Compounds 
Splitting energy 

interval (eV) 
Reference 

Mn(II)-O 
5.8 216, 257 

5.7 
224

 

Mn(III)-O 
5.4 

224, 258
 

5.5 
259

 

Mn(IV)-O 4.6 
216, 258

 

MnO2 initial solids 4.65 
 

Cr(OH)3+MnO2 pH 5 5.23 
 

Cr(OH)3+MnO2 pH 9 5.41 
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Derivation of multi-chamber model for Cr(OH)3 oxidation by MnO2 

 

Figure S5.5. Cr(VI) tracer experiment results (symbols) in water chamber of the Cr(VI)||water 

multichamber reactor and the simulated concentrations (dash line) using the calculated 

transmembrane mass transfer coefficient (υCrO4
2− = 2.3 × 10

-7
 m/s). [Cr(VI)]0 =31.4 μM in Cr(VI)  

chamber, pH = 5 and V = 100 mL for both chamber. 

The multichamber Cr(VI)||water, Cr(OH)3||water, Cr(OH)3||MnO2 and CrxFe1-

x(OH)3||MnO2 experiments were operated to test the mechanism of Cr(III) oxidation by MnO2.In 

the Cr(VI) tracer experiment, 100 mL of 31.4 μM Cr(VI) (from K2Cr2O7) solution of pH 5 was 

added to one side of the multichamber reactor with 100 mL water in the other chamber. The 

samples of the water chamber were collected periodically and measured by ICP-MS for 

chromium concentration. Both chambers were completely mixed during the experiment. The 

transmembrane mass transfer coefficient of Cr(VI) (νCr(VI)  = 2.3× 10
-7

 m/s) was obtained by 

optimizing the simulated concentration (eq S5-1 and eq S5-2) to the measured chromium 

concentration (Figure S5.3). 
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V
d[Cr(VI)]Cr

dt
= −νCr(VI) ∙ A ∙ ([Cr(VI)]Cr − [Cr(VI)]w)                      (S5-1) 

V
d[Cr(VI)]w

dt
= νCr(VI) ∙ A ∙ ([Cr(VI)]Cr − [Cr(VI)]w)                         (S5-2) 

where V (100 mL or 10
-4

 m
3
) is the volume of each chamber, A (20 cm

2 
or 0.002 m

2
) is 

the interfacial area of the dialysis membrane, 𝜈 is the transmembrane mass transfer coefficient of 

Cr(VI). The flux (mol m
-2 

s
-1

) of an aqueous species is proportional to its concentration gradient 

across the membrane. As both sides of the membrane were well-mixed, we assume that the mass 

transfer resistance is entirely that of the membrane and not that of the boundary layer on each 

side of the membrane. 

The mass transfer coefficient of CrOH
2+

 species (νCrOH2+) was estimated to be 3.0× 10
-7

 

m/s using the following empirical equation
260

 

ν
CrO4

2−

νCr(OH)2+
= (

MW
CrO4

2−

MWCr(OH)2+
)

−
1

2

                                                   (S5-3) 

where MW is the molecular weight for the dissolved species. At the experimental 

conditions, the dissolved Cr(VI) species (HCrO4
− at pH 5) has a molecular weight of 117 and the 

dominant dissolved Cr(III) species (Cr(OH)
2+

) has a molecular weight of 69. 

The Cr(OH)3||water multichamber experiment was operated to determine the Cr(OH)3(s) 

dissolution rate constant. Although we could also get the dissolution rate constant of Cr(OH)3(s) 

from a batch or flow-through experiments, the multichamber experiment of Cr(OH)3||water is 

more comparable to the Cr(OH)3||MnO2 experiment which will be discussed later. 

For the Cr(OH)3||water system, the governing equations are 

V
d[Cr(III)]Cr

dt
= V ∙ k′ (1 −

[Cr(III)]Cr

[Cr(III)]eq
) − νCr(III) ∙ A ∙ ([Cr(III)]Cr − [Cr(III)]w)              (S5-4) 
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V
d[Cr(III)]w

dt
= νCr(III) ∙ A ∙ ([Cr(III)]Cr − [Cr(III)]w)                               (S5-5) 

[Cr(III)]eq  is the observed final concentration of dissolved Cr in equilibrium with 

Cr(OH)3. The experimentally observed final Cr concentration of 240 µM was higher than 

calculated solubility of amorphous Cr(OH)3(s) (21.6 µM) based on the thermodynamic 

equilibrium constants from MINEQL+ 5.0, which is reasonable that the solubility of crystalline 

Cr(OH)3 is higher than amorphous Cr(OH)3. The rate constant k’ (5.5 × 10
-10

 mol L
-1 

s
-1

) for 

Cr(OH)3 dissolution was obtained by optimizing the fit of the output of equation 4-5 to the data 

from the Cr(OH)3||water experiments (Figure S5.5).  

 

Figure S5.6. Cr(III) release from Cr(OH)3 in Cr(OH)3||water multichamber experiments. Cr(III)0 

= 1.54 mM (80 mg/L) in Cr(OH)3 chamber. For both chambers pH=5 and 5mM NaCl was 

present. Model simulations are shown in dash lines. 

For the Cr(OH)3||MnO2 system the governing equations are 

V
d[Cr(III)]Mn

dt
= −V ∙ k ∙ [Cr(III)]Mn ∙ [MnO2] + νCr(III) ∙ A ∙ ([Cr(III)]Cr − [Cr(III)]Mn)      (S5-6) 

V
d[Cr(III)]Cr

dt
= V ∙ k′ ∙ (1 −

[Cr(III)]Cr

[Cr(III)]eq
) − νCr(III) ∙ A ∙ ([Cr(III)]Cr − [Cr(III)]Mn)         (S5-7) 
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V
d[Cr(VI)]Mn

dt
= V ∙ k ∙ [Cr(III)]Mn ∙ [MnO2] − νCr(VI) ∙ A ∙ ([Cr(VI)]Mn − [Cr(VI)diss]Cr)     (S5-8) 

V
d[Cr(VI)tot]Cr

dt
= νCr(VI) ∙ A ∙ ([Cr(VI)]Mn − [Cr(VI)diss]Cr)                       (S5-9) 

[Cr(VI)tot]Cr = [Cr(VI)diss]Cr ∙
𝑘L·[Cr(VI)diss]Cr+𝑄M·𝑘L+𝑀

𝑘L·[Cr(VI)diss]Cr+M
                       (S5-10) 

[MnO2] = [MnO2]0 − 1.5 ∙ [Cr(VI)]Mn − 1.5 ∙ [Cr(VI)tot]Cr                    (S5-11) 

where t is reaction time (s), [Cr(III)]Mn (M) is the dissolved Cr(III) concentration in the 

MnO2 chamber, [Cr(III)]Cr (M) is the dissolved Cr(III) concentration in the Cr(OH)3 chamber, 

[Cr(VI)]Mn  (M) is the Cr(VI) concentration in the MnO2 chamber, [Cr(VI)diss]Cr  (M) is the 

dissolved Cr(VI) concentration in the Cr(OH)3 chamber, [Cr(VI)tot]Cr (M) is the total Cr(VI) 

concentration in the Cr(OH)3 chamber including adsorbed Cr(VI) onto Cr(OH)3 solids, [MnO2] 

(M) is the concentration of MnO2 sites available for Cr(III) oxidation, and k’ (5.5 × 10
-10

  mol L
-1 

s
-1

) is the Cr(OH)3 dissolution rate constant derived in Figure S4. According to Figure 5.2, Cr(VI) 

produced during Cr(OH)3 oxidation by MnO2 is proportional to the amount of MnO2 added into 

solution. Based on this, we assume that MnO2 reactive sites were consumed during the reaction, 

and the amount of sites consumed is proportional to the amount of Cr(VI) produced. The total 

MnO2 sites available for Cr(III) oxidation ( [MnO2]0 ) is 230 µM when MnO2= 80 mg/L 

(determined from Figure S5.4a). The reaction between aqueous Cr(III) and MnO2 was a second 

order reaction.
261

 k (L mol
-1 

s
-1

) is the rate constant of dissolved Cr(III) oxidation by MnO2, 

which is estimated by fitting the [Cr(VI)]Mn, [Cr(VI)tot]Cr and [Cr(VI)diss]Cr experimental data 

with modeling output (k= 3.6 L mol
-1 

s
-1

). The models gave generally good fits of the 

experimental data and supports the proposed pathway of truly dissolved Cr(III) oxidation by 

MnO2 in the process of Cr(OH)3 oxidation by MnO2 at pH 5 (Figure 5.3a). The k value of 3.6 L 

mol
-1 

s
-1

 is then applied in mixed batch experiments to predict Cr(VI) production (Figure 5.3b).  
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The relationship between [Cr(VI)tot]Cr and  [Cr(VI)diss]Cr  (eq S5-10) is determined by 

the Langmuir adsorption model. As the Langmuir model can be derived to the following 

equation
262

: 

                𝑞 =
𝑄𝑀∙𝑘𝐿∙𝐶

1+𝑘𝐿∙𝐶
                                                          (S5-12) 

𝐶𝑇𝑜𝑡𝑎𝑙 = 𝐶𝐴 + 𝐶𝑎𝑑𝑠 = 𝐶𝐴(
𝐶𝐴𝑄𝑀+𝑀+𝑘𝐿𝑄𝑀

𝑀+𝑘𝐿𝐶𝐴
)                           (S5-13) 

where q is  concentration of Cr(VI) on adsorbent (mg adsorbate/g adsorbent), C is the 

concentration of Cr(VI) in solution (mg/L), KL is the Langmuir adsorption constant (L/mg), and 

QM is the maximum adsorption capacity (mg/g). Based on this we could conclude that 

Cr(VI)diss/Cr(VI)ads correlated linearly with Cr(VI)diss (Figure 5-4) and get eq S5-10.  

 

Figure S5-7. Correlation between Cr(VI)diss/Cr(VI)ads and Cr(VI)diss in the Cr(OH)3 chamber of 

Cr(OH)3||MnO2 multichamber system at pH 5. Cr(III)0= 1.54 mM (80 mg/L) in Cr(OH)3 

chamber, MnO2 = 80 mg/L in MnO2 chamber. Both chambers are at pH 5 and have 5mM NaCl. 

The dash line was based on equation: Cr(VI)diss/Cr(VI)ads = 0.037Cr(VI)diss + 0.58  
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Chapter 6. Cr(VI) formation from CrxFe1-x(OH)3 

induced by surface catalyzed Mn(II) 

This chapter was a manuscript in preparation for submission to Environmental Science& 

Technology Letters 

Abstract 

Cr(III)-Fe(III) hydroxide (CrxFe1-x(OH)3) is a common product of Cr(VI) reduction by 

Fe(II) that decreases the solubility and mobility of chromium. Reoxidation of Cr(III) in 

subsurface environments can generate Cr(VI) and impair groundwater quality. Here we 

investigate the feasibility of CrxFe1-x(OH)3 oxidation in the presence of Mn(II) at neutral pH as a 

potential pathway of Cr(VI) formation. Although homogenous Mn(II) oxidation by dissolved 

oxygen is slow, CrxFe1-x(OH)3 surfaces can catalyze Mn(II) oxidation by dissolved oxygen to 

form manganese oxide rapidly that then oxidizes the Cr(III) in CrxFe1-x(OH)3. The redox cycling 

of manganese can keep driving Cr(VI) generation from CrxFe1-x(OH)3. The rate of Mn(II) 

oxidation increased with increasing pH and Fe/Cr ratios in solids. The rates of both the Mn(II) 

oxidation to manganese oxide and subsequent Cr(III) oxidation from CrxFe1-x(OH)3 govern the 

overall Cr(VI) production rates. Our findings demonstrate that Cr(VI) can be naturally produced 

from CrxFe1-x(OH)3 mediated by surface catalyzed Mn(II) oxidation in ambient environments.  

6.1 Introduction 

Geogenic Cr(III) is widespread in natural solids such as rocks and sediments.
11, 263

 

Weathering of the Cr(III)-bearing minerals within soils and sediments commonly results in Cr(III) 

hydroxide precipitates, often coprecipitated with Fe(III) hydroxides.
238, 264

 The higher oxidation 
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state Cr(VI), which is rarely found in primary minerals,
265

 is more mobile and toxic. Cr(VI) can 

be reduced to Cr(III) by Fe(II) through biotic
196, 266

 or abiotic pathways.
62, 182, 267

 The reduction 

products are mixed Cr(III)-Fe(III) (oxy)hydroxides with Cr(III) substitution for Fe(III) to form a 

solid solution. Compared with Cr(OH)3, CrxFe1-x(OH)3 has much lower Cr(III) solubility and the 

iron contents could significantly affect their stability, structure, size and phase transformation.
197, 

198, 268, 269
 

Manganese (Mn) is the second most abundant transition metal after iron in the earth’s 

crust.
270

 Manganese oxides are ubiquitous in aquatic and terrestrial environments
271, 272

 and can 

control the fate and transport of chromium by adsorption, coprecipitation, and redox reactions.
273, 

274
 Mn oxides are likely to be responsible for most Cr(III) oxidation in natural environments.

53, 

202, 204
 For Cr(III) oxidation from CrxFe1-x(OH)3 by δ-MnO2, Cr(III) oxidation rates are 

proportional to the dissolved concentration of Cr(III) predicted from estimated mineral 

solubility.
201, 204, 247

 In addition, the two solids must be in proximity for Cr(III) oxidation, 

indicating that the reaction proceeds through Cr(III) dissolution from CrxFe1-x(OH)3 and 

subsequent transport to manganese oxide surface.
204, 247

 In this reaction process, δ-MnO2 

transformed from hexagonal to orthogonal at high pH.
232, 247

 In contrast, δ-MnO2 transformed to 

feitknechtite when oxidizing Cr(OH)3. 

Although Mn(IV) or Mn(III) oxides are stable at oxic environments, Mn(II) is still found 

there
275, 276

 because of the reduction of Mn oxides by natural organic matter
277, 278

 and the slow 

Mn(II) oxidation kinetics.
279

 Homogeneous Mn(II) oxidation by dissolved oxygen is on the order 

of days or years at neutral pH environments, and the oxygenation kinetics are autocatalytic.
280-282

 

However Mn(II) oxidation by dissolved oxygen can be catalyzed by metal oxide surfaces, 

especially those of iron oxides.
229, 282, 283

 The primary product of Mn(II) oxidation on mineral 
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surfaces such as hematite, goethite and albite surfaces in aerated solutions at neutral pH was 

feitknechtite (β-MnOOH). Mn(II) oxidation to Mn(IV) occurs as a two-step process in which 

solid phase Mn(III)-bearing oxides (Mn3O4) or oxyhydroxides (β-MnOOH) are initially formed 

and then undergo slower disproportionation, ultimately forming Mn(IV) oxides.
47, 216, 284

 

A recent study found that Cr(VI) was produced from oxidation of Cr(III) in Cr(OH)3 by a 

newly formed Mn oxide via Mn(II) oxidation by dissolved oxygen that was catalyzed by the 

Cr(OH)3(s) surface.
229

 CrxFe1-x(OH)3 is much more common than Cr(OH)3 in natural aquatic 

environments.
93, 110, 191

 However, no studies have examined the Cr(VI) genesis from CrxFe1-

x(OH)3 in the presence of Mn(II). The objectives of this study were to investigate the influence of 

CrxFe1-x(OH)3 on Mn oxides formation from Mn(II) oxidation, determine the likelihood of Cr(VI) 

occurrence in this process, and identify the corresponding factors and underlying mechanisms. 

The understanding of the reaction pathway and kinetics were approached by controlled bench-

scale experiments and the analysis of solutions and solids.  

6.2 Material and Methods 

6.2.1 CrxFe1-x(OH)3 synthesis and characterization  

CrxFe1-x(OH)3 was synthesized by titrating mixed solutions of FeCl3 and CrCl3 at 

different Fe:Cr molar ratios with NaOH to pH 7 and maintaining the pH for 24 hours. The 

suspension was then washed with ultrapure water. More information about the synthesis and the 

resulting solids is provided in our previous work.
247

 Cr(OH)3 was synthesized by the same 

method but with no FeCl3 present. XRD patterns of the CrxFe1-x(OH)3 are similar to those of 2-

line ferrihydrite (broad peaks at 35° and 63° 2θ for Cu Kα) and without characteristic peaks of 

Cr(OH)3 at 2θ of 19.1° (Figure S6.1).  

https://en.wiktionary.org/wiki/%E1%BD%A5%CF%81%CE%B1#Ancient_Greek
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6.2.2 Batch experiments  

Experiments were conducted in a glass beaker filled with ultrapure water, NaCl, pH 

buffers, Mn(II), and CrxFe1-x(OH)3 suspensions to a total volume of 1 L under the ambient 

laboratory atmosphere. At pH 7 and pH 8, the pH values of suspensions were buffered by 5 mM-

3-(N-morpholino) propanesulfonic acid (MOPS, pKa=7.2). At pH 9, 5 mM N-cyclohexyl-2-

aminoethanesulfonic acid (CHES, pKa=9.3) was used for buffering the suspension. The pH 

buffers and their concentrations were chosen due to their stability against oxidation by MnO2 and 

to minimize their formation of complexes with Cr(III) and Fe(III). A NaCl stock solution was 

added to provide a total of 5 mM ionic strength, including the contribution from the buffer. 

Samples were periodically collected and portions of them were filtered with 0.02 μm 

polyethersulfone (PES) for analysis of dissolved Cr(VI) and dissolved manganese. The 

remaining unfiltered portions were used for total Cr(VI) and total Mn(II) analysis.  

6.2.3 Aqueous and solid phase analysis  

The dissolved Cr(VI) concentration was determined by the diphenylcarbazide method.
215

 

Briefly, the absorbances of the samples were measured at 540 nm using a UV-vis 

spectrophotometer with 1 cm path length cuvettes after reaction with diphenylcarbazide. The 

detection limit for Cr(VI) by this method was 5 μg/L (0.096 μM). Concentrations of total Cr(VI) 

and total Mn(II), which include adsorbed as well as dissolved species, were measured after 

extracting the surface-associated species into solution. For total Cr(VI) measurements, adsorbed 

Cr(VI) was extracted by adding a sodium phosphate solution pre-adjusted to pH 8 to provide a 

10 mM phosphate concentration in the suspension.
210, 217

 After Cr(VI) was desorbed from solid 

phases, the suspension was filtered and measured by the diphenylcarbazide method. Other 
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portions of suspensions were treated with 10 mM CuSO4 for 1 hour to extract adsorbed Mn(II). 

In this method Cu(II) preferentially adsorbs to MnO2 and induces Mn(II) desorption.
206, 247, 285

  

Total and dissolved Mn concentrations were measured by ICP-MS (PerkinElmer ELAN DRC II) 

and the detection limit was 0.5 μg/L (0.009 μM). Dissolved Mn(II) concentrations were assumed 

to equal the total dissolved Mn concentration because both Mn(IV) and Mn(III) are essentially 

insoluble.
216

 

6.3 Results and Discussion 

6.3.1 Cr(VI) formation from CrxFe1-x(OH)3 in the presence of Mn(II)  

CrxFe1-x(OH)3 could catalyze Mn(II) oxidation to Mn oxides in the presence of oxygen at 

pH 8 and higher, which is relevant to environmental conditions (Figure 6.1a and Figure S6.2). At 

pH 7, almost no Mn(II) was consumed because even surface-catalyzed abiotic Mn(II) oxidation 

was negligible at pH < 8.0.
229, 283

 A higher consumption rate of total Mn(II) at pH 9 than pH 8 

was observed in our experiments, consistent with previous studies that found that the rate of 

Mn(II) oxidation usually increased two orders of magnitude for each increase of one pH unit for 

both homogeneous and heterogeneous reactions.
283

 To further confirm the catalytic role of 

CrxFe1-x(OH)3 in Mn(II) oxidation, control experiments were operated at pH 9 for measuring 

total Mn(II) consumption under the ambient atmosphere without CrxFe1-x(OH)3 (Figure S6.1a). 

Mn(II) oxidation was much slower without the presence of CrxFe1-x(OH)3. When at anoxic 

conditions, CrxFe1-x(OH)3 could not oxidize Mn(II) (Figure S6.1b), indicating that dissolved 

oxygen was the oxidant in oxic experiments and that the CrxFe1-x(OH)3 surface was catalyzing 

Mn(II) oxidation.  
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Figure 6.1. CrxFe1-x(OH)3 (Fe/Cr=4.1) associated with manganese oxide formation for  oxidation 

systems with initial Mn(II) present under the atmosphere from pH 7 to pH 9. The reaction can be 

tracked by following (a) the decrease in Mn(II) concentration and (b) the increase in Cr(VI) 

concentration. Cr(III)0=3.85 mM (200 mg/L), Mn(II)=545µM (30 mg/L). 

Manganese oxide formed from Mn(II) oxidation on the CrxFe1-x(OH)3 surface could in 

turn oxidize CrxFe1-x(OH)3, with significant Cr(VI) generation above pH 8 (Figure 6.1b). At pH 

7 no Cr(VI) production was observed because no manganese oxide generation occurred (Figure 

6.1a). Cr(VI) generation at pH 9 was much higher than at pH 8, consistent with higher 

manganese oxide generation. In our previous work, we showed that the rates of Cr(III) oxidation 

from CrxFe1-x(OH)3 by MnO2 decreased with increasing pH from pH 5 to pH 9.
247

 As a result, 
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the generation of manganese oxide plays the most important role in Cr(VI) generation. At the 

same time, the rate of Cr(III) oxidation from CrxFe1-x(OH)3 by dissolved oxygen is negligible 

compared with that oxidation by manganese oxide (Figure 6.1b and Figure S6.2). Similarly, 

Mn(II) could promote Cr(OH)3 oxidation as well as UO2 dissolution under oxic conditions 

through Mn redox cycling.
146, 229

 Oxidation of Mn(II) by O2 on Cr(OH)3 or UO2 produced 

reactive Mn species that oxidize dissolved Cr(III) from Cr(OH)3 or U(IV) from UO2 more 

rapidly than could the O2 alone. Not only we measured the total Cr(VI) generation from CrxFe1-

x(OH)3 /Mn(II) system, the dissolved Cr(VI) production, which directly regulates chromium 

contamination in groundwater, was also measured in the study (Figure S6.3). The dissolved 

Cr(VI) concentration was lower than the total Cr(VI) concentration due to partial Cr(VI) 

adsorption onto solid surfaces. The portion of adsorbed Cr(VI) at pH 8 is higher than at pH 9 as 

Cr(VI) adsorption is pH-dependent.  

6.3.2 The influence of Fe/Cr in CrxFe1-x(OH)3 on Cr(VI) production 

Both manganese oxide formation and subsequent Cr(III) oxidation from CrxFe1-x(OH)3 by 

manganese oxide play an important role in overall Cr(VI) occurrence rates at pH 8 and higher. 

Mn(II) oxidation rates increased with increasing Fe/Cr ratio in CrxFe1-x(OH)3 at pH 8 and pH 9 

(Figure 6.2a and 6.2c), possibly because CrxFe1-x(OH)3 with higher Fe/Cr ratio has higher 

catalytic capacity for Mn(II) oxidation by dissolved oxygen. Our previous study shows that 

CrxFe1-x(OH)3 with higher Fe/Cr ratio with the same initial Cr(III) concentration has lower Cr(VI) 

occurrence rates.
247

 As a result, the effects of Fe/Cr on the rates of manganese oxide formation 

and on Cr(III) oxidation from CrxFe1-x(OH)3 are offsetting and the Cr(VI) production rates in the 

presence of Mn(II) and dissolved oxygen are similar for all Fe/Cr ratios studied at pH 8. At pH 9 

the dependence of Mn(II) oxidation rates on Fe/Cr ratio has the same trend as at pH 8. CrxFe1-
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x(OH)3 with Fe/Cr of 1.2 and 4.1 have similar Cr(VI) generation rates, higher than that of CrxFe1-

x(OH)3 solids of Fe/Cr with 7.6 and 17.1.  

 

Figure 6.2. The effect of Fe/Cr ratio on CrxFe1-x(OH)3 oxidation with Mn(II) present under the 

ambient atmosphere. Cr(III)0=3.85 mM, Mn(II)=545µM. The reaction progress can be tracked by 

following Mn(II) consumption at (a) pH 8 and (c) pH 9 and the Cr(VI) generation at (b) pH 8 

and (d) pH 9.  

The Cr(VI) production rates at pH 8 and pH 9 are constant along with reaction time, 

indicating the constant MnO2 amount in solution. The amount of MnO2 in solution was 

determined both by the rate of manganese oxide formation as well as the rate of manganese 

oxide consumption for Cr(III) oxidation. The rate of Mn(II) oxidation is fast in the initial five 

hours and then gradually slows down even reaching constant value, consistent with the constant 
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Cr(VI) production rates. Thus, the rapid cycling between Mn(II) and Mn(III)/Mn(IV) could keep 

driving Cr(III) oxidation from CrxFe1-x(OH)3. 

6.3.3 The effect of Fe concentration on Cr(VI) production 

 

Figure 6.3. Oxidation of Cr(III) in CrxFe1-x(OH)3 for a series of experiments with a fixed iron 

concentration (8.9 mM or 500 mg/L) and varying Fe/Cr ratios at pH 9.  The reaction can be 

followed by observing (a) the consumption of Mn(II) and (b) the production of Cr(VI). 

Experiments were performed under the ambient atmosphere with an initial Mn(II) concentration 

of 545 µM (30 mg/L). 

The role of iron reactive sites in CrxFe1-x(OH)3 surface catalytic Mn(II) oxidation was 

assessed by holding the Fe concentration in experiments constant for solids with different Fe/Cr 

ratios. For CrxFe1-x(OH)3 solids with Fe/Cr ratios of 4.1, 7.6, and 17.1, the rates of Mn(II) 

oxidation were almost the same, while the solid with Fe/Cr of 1.2 had a notably lower Mn(II) 

oxidation rate (Figure 6.3a). Higher Cr contents in CrxFe1-x(OH)3 could lead to lower catalytic 

effects of Mn(II) oxidation, which was also confirmed in Cr(III) oxidation from CrxFe1-x(OH)3 

with Fe/Cr of 4.1 (Figure S6.5a). The lowest initial Cr(III) of 25 mg/L in CrxFe1-x(OH)3 leads to 
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the highest Mn(II) oxidation rate. For CrxFe1-x(OH)3 solids with Fe/Cr ratios from 1.2 to 17.1, 

Mn(II) concentrations stayed around 100 µM after rapid decreasing from 545 µM within 20 

hours, indicating that the manganese redox cycling reached equilibrium after initial stage. For 

Cr(VI) occurrence, the Cr(VI) concentration in the experiment with a CrxFe1-x(OH)3 solid with 

Fe/Cr of 1.2 increased much faster in the first twenty hours than it did in experiments with solids 

of other ratios (Figure 6.3b). After the first twenty hours, the rate of Cr(VI) occurrence for the 

CrxFe1-x(OH)3 with Fe/Cr of 1.2 was the same as for the other Fe/Cr ratios.  This is probably 

because higher initial equilibrium Cr(III) concentration with CrxFe1-x(OH)3 with Fe/Cr of 1.2 get 

rapidly oxidized once MnO2 got generated. 

6.4 Conclusion 

In summary, our findings demonstrate that sparingly soluble CrxFe1-x(OH)3 solids were 

readily oxidized in the presence of dissolved Mn(II) above pH 8 under oxic conditions. For 

Cr(III) oxidation from iron oxides by manganese oxide, which is a reaction between two 

sparingly soluble solids, the reaction must proceed through soluble Cr(III) intermediates and the  

rates are controlled by the transport of aqueous Cr(III).
247

 In contrast, this work shows that for 

Mn(II)-promoted Cr(III) oxidation from iron oxide, manganese oxide can be formed on the 

surface of the CrxFe1-x(OH)3 that are to be oxidized, which removes any barriers of Cr(III) 

transport to MnO2 surface. Dissolved Mn(II) could rapidly transport to the surface of CrxFe1-

x(OH)3 solids even in porous media. CrxFe1-x(OH)3 catalyzed Mn(II) oxidation coupled with the 

oxidation of CrxFe1-x(OH)3 could release substantial amounts of toxic Cr(VI). Even ambient Mn 

concentrations could lead to significant Cr(VI) release. This study evokes another potential 

pathway for Mn oxide formation and Cr(VI) contamination from sparingly soluble CrxFe1-x(OH)3 
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in natural aquatic systems. Both Mn(II) oxidation by dissolved oxygen catalyzed by the CrxFe1-

x(OH)3 surface and subsequent Cr(III) oxidation from CrxFe1-x(OH)3 by manganese oxide are 

crucial for Cr(VI) genesis dynamics. This dynamics of Cr(VI) generation is affected by pH, 

Fe/Cr ratio, and total iron content. Future studies should investigate the influence of more 

parameters influencing Cr(VI) production and build a comprehensive kinetic model based on 

Mn(II) oxidation and subsequent Cr(III) oxidation from CrxFe1-x(OH)3.  
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Chapter 6. Supporting Information 

 

Figure S6.1. a) Mn(II) oxidation by DO without the presence of CrxFe1-x(OH)3 at pH 9. b) Total 

Mn(II) concentration with CrxFe1-x(OH)3 present at anoxic conditions at pH 9.  
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Figure S6.2. CrxFe1-x(OH)3 oxidation by dissolved oxygen under the atmosphere without the 

presence of manganese at pH 9. Cr(III)0=3.85 mM, Mn(II)=545µM. 
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Figure S6.3. Dissolved Cr(VI) concentration from CrxFe1-x(OH)3 oxidation with Mn(II) present 

under the atmosphere. Cr(III)0=3.85 mM (200 mg/L), Mn(II)=545µM (30 mg/L). 
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Figure S6.4. Cr(VI) generation from CrxFe1-x(OH)3 (Fe/Cr=4.1) with Mn(II) present at anoxic 

conditions. Cr(III)0=3.85 mM (200 mg/L), Mn(II)=545µM (30 mg/L), pH= 9. 
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Figure S6.5. Cr(VI) generation from CrxFe1-x(OH)3 (Fe/Cr=4.1) with Mn(II) present under the 

atmosphere. Mn(II)=545µM (30 mg/L), pH= 9. The reaction can be followed by observing (a) 

the consumption of Mn(II) and (b) the production of Cr(VI). 
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Chapter 7. Conclusions and Recommendations 

7.1 Conclusions  

The doctoral thesis research investigated the coupling of the geochemical cycles of 

chromium, iron, and manganese and its implication for chromium fate and transport in both 

water treatment and subsurface environments. It contributed to the still-growing literature of 

chromium environmental chemistry, especially regarding the previously underappreciated role of 

sparingly soluble Cr(III)-Fe(III) hydroxide and Mn redox cycles on chromium fate. This project 

provided fundamental information about various interaction pathways between chromium, iron 

and manganese that involve redox reactions, adsorption, and precipitation. As the redox reaction 

of Fe and Mn impacts the fate of other reductively remediated contaminants, the conclusions 

from this project are expected to extend beyond chromium and to provide valuable insights for 

these other contaminants. Specific conclusions of each task are described below. 

Task 1:  Study the rate and extent of Cr(VI) removal from iron electrocoagulation and 

establish a model to predict Cr(VI) removal 

The effect of water chemistry including humic acid on Cr(VI) removal from 

electrocoagulation were investigated. A comprehensive understanding of Cr(VI) reduction by 

iron electrocoagulation was provided with batch experiments, spectroscopy and modelling 

approaches.  

The dynamics of Cr(VI) in electrocoagulation were evaluated. Cr(VI) and dissolved Cr 

concentrations could decrease rapidly to below current and likely future drinking water limits 

over a wide range of conditions. Even in the presence of common groundwater solutes, Cr(VI) 
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concentrations could be lowered far below drinking water regulations. The reduction-

precipitation mechanism of EC was confirmed by Cr species measurement, XANES spectra and 

the modeling work. The dynamics of Cr(VI) removal in electrocoagulation at pH 6 and pH 8 at 

both oxic and anoxic conditions can be described by a new model that incorporates Fe(II) release 

from the iron electrode and heterogeneous and homogeneous reduction of Cr(VI) by Fe(II).  

The presence of humic acid inhibited the Cr(VI) removal rate in electrocoagulation, with 

the greatest inhibition at higher pH. The inhibition was due to the formation of Fe(II) complexes 

with HA that are more rapidly oxidized than uncomplexed Fe(II) by dissolved oxygen, making 

less Fe(II) available for Cr(VI) reduction in EC. The formation of colloids with Cr(III), Fe(III) 

and HA confirmed the close association of the three in the solid products formed in EC. At pH 8 

the solid products were colloids while at pH 6 they form large particles due to aggregation.  

Task 2: Examine the Cr(VI) production rates coupled with Mn redox cycling and establish 

a model to describe the process 

The effects of Mn(II) and Mn(IV) oxide on Cr(III)-containing solids were investigated in 

well-controlled laboratory experiments. Experimental conditions were designed to study the 

kinetics and pathway of various interactions involving Cr(III)-containing solids and 

Mn(II)/Mn(IV). 

The kinetics of Cr(VI) generation from CrxFe1-x(OH)3 oxidation by δ-MnO2 were 

investigated using both well mixed batch experiments and multichamber experiments. In well 

mixed batch experiments, the rates of Cr(VI) generation were controlled by the dissolved Cr(III) 

concentration in equilibrium with CrxFe1-x(OH)3. We established a quantitative relationship 

between Cr(VI) production rates and Cr(III) solubility of CrxFe1-x(OH)3, which can help predict 

Cr(VI) production rates at different conditions. The multichamber reactor was used to assess the 
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role of solid-solid contact in CrxFe1-x(OH)3-MnO2 interactions, confirming that the mixing of 

suspensions of the solids could accelerate the oxidation. Cr(III) dissolves from CrxFe1-x(OH)3 

and transport to the surface of MnO2 particles. Cr(III) gets oxidized once upon adsorbing to the 

surface of MnO2 particles, followed by subsequently releasing into solution.  

The multichamber reactor was further used to evaluate the interaction between Cr(OH)3 

and MnO2 at different pH. The rates of aqueous Cr(III) oxidation by manganese oxides at pH 5 

were calculated by modeling the Cr(VI) dynamics in multichamber experiments. The Cr(VI) 

production conditions in the multichamber reactor and completely mixed batch reactors at 

different pH values suggests that the transport of aqueous Cr(III) to the surface of MnO2 was a 

limiting step in the overall kinetics of Cr(VI) generation in multichamber experiments, and the 

dissolved Cr(III) concentrations in equilibrium with Cr(III)-containing solids directly drive the 

rate of Cr(III) transport through permeable membrane in multichamber reactors. 

The role of Mn(II) on CrxFe1-x(OH)3 oxidation by dissolved oxygen was also examined in 

batch experiments. CrxFe1-x(OH)3 could catalyze Mn(II) oxidation by dissolved oxygen to form 

manganese oxides and the rate increased with increasing pH and Fe/Cr in solids. The formed 

manganese oxides could in turn oxidize Cr(III) in low-solubility CrxFe1-x(OH)3 to significant 

Cr(VI) concentrations. Both the Mn(II) oxidation to manganese oxides and subsequent CrxFe1-

x(OH)3 oxidation play an important role in Cr(VI) production rates. Our findings demonstrate 

that Cr(VI) can be naturally produced from CrxFe1-x(OH)3 mediated by surface catalyzed Mn(II) 

oxidation.  
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7.2 Recommendations for Future Work 

Recommended future work includes but is not limited to (1) performing 

electrocoagulation experiments in flow through reactor for Cr(VI) removal; (2) evaluating the 

influence of natural organic matter on Cr(III) oxidation associated with manganese redox cycling; 

(3) investigating the Cr(VI) generation from CrxFe1-x(OH)3 oxidation by MnO2 in porous media 

and field sediments; (4) comparing the Cr(VI) generation from CrxFe1-x(OH)3 driven by 

microbial Mn oxidation with that from abiotic pathway.  

We have proved that Cr(VI) could be rapidly removed from iron-electrocoagulation 

relevant to drinking water level in well mixed batch experiments. However, the Cr(VI) removal 

by electrocoagulation in flow through reactors is not clear. The performance of 

electrocoagulation in flow-through reactors can be studied to be able to better predict the 

application of EC in real water treatment systems, which will be continuous-flow operations. The 

experiments will include determining the amount of power needed for a given amount of 

coagulation, and the specification of the transport properties. These transport properties must 

ensure the appropriate residence time, voltage, and electrode characteristics. 

Natural organic matter is ubiquitous in aquatic environments and it can associate with 

manganese, dissolved iron and iron oxides, affecting the iron and manganese redox chemistry. In 

future studies it will be valuable to investigate the influence of different types of natural organic 

matter on CrxFe1-x(OH)3 oxidation by MnO2 from both aquatic chemistry and colloidal aspects. It 

would be particular interesting to test some strong organic complexing ligands which form 

complexes with Mn(III) as natural organic matter that may cause reductive dissolution of MnO2 
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and subsequent complexation with Mn(III). The presence of Mn(III)-ligands may affect the 

oxidation rate and extent of Cr(III) oxidation from CrxFe1-x(OH)3. 

The present results highlight the role of solid-solid mixing in Cr(VI) generation from 

Cr(III)-containing solids oxidation by MnO2. We compared the multichamber experiments and 

well mixed batch experiments and established a model to predict Cr(VI) generation in two 

experiments. However, it is unknown of Cr(VI) generation rates in a porous medium (such as 

subsurface sediments), which is more common in field conditions. There is no mixing of Cr(III) 

and Mn(IV) in a porous matrix in which the two solids are immobilized, and solute transport can 

be limited to that which occurs by diffusion. The aqueous Cr(III) would take more time to 

transfer to the surface of MnO2 particles in porous medium, where the model of predicting Cr(VI) 

generation needs to consider reactive transport model.  

Although the present results involve biogenic materials, the processes investigated in our 

laboratory experiments were primarily abiotic. Given that manganese oxide formation in natural 

environments is largely driven by manganese oxidizing bacteria, it would be valuable to integrate 

more biologically active processes in future studies. It would be particularly interesting to test 

whether Mn oxidizing bacteria could accelerate CrxFe1-x(OH)3 oxidation by dissolved oxygen in 

the presence of Mn(II).  
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