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ABSTRACT OF THE DISSERTATION

Optimal Control of Inhomogeneous Ensembles

by

Justin Arthur Ernest Ruths

Doctor of Philosophy in Systems Science and Mathematics

Washington University in St. Louis, 2011

Research Advisor: Professor Jr-Shin Li

This dissertation is concerned with formulating the problem and developing meth-

ods for the synthesis of optimal, open-loop inputs for large numbers of identically

structured dynamical systems that exhibit variation in the values of characteristic

parameters across the collection, or ensemble. Our goal is to steer the family of sys-

tems from an initial state (or pattern) to a desired state (or pattern) with the same

common control while compensating for the inherent dispersion caused by the inho-

mogeneous parameter values. We compose an optimal ensemble control problem and

develop a computational method based on pseudospectral approximations to solve

these complex problems. This class of ensemble systems is strongly motivated by

natural complications in the control of quantum phenomena, especially in magnetic

resonance; however, similar structures are prevalent in a variety of other applications.

From another perspective, the same methodology can be used to analyze systems

that have uncertainty in the values of characteristic parameters, which are ubiquitous

throughout science and engineering.
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Preface

The escalation in both our understanding of the natural world and our technology

to construct engineered mechanisms has led to increasingly more complex models of

important dynamical systems. This dissertation attempts to bridge the widening gap

between this complexity and our capacity for mathematical analysis by developing

new tools that provide a systematic approach to characterize and control special

classes of complex dynamical systems. This type of work is a relatively rare art

and often left out of multidisciplinary teams. However, it is research like this that

is the glue between engineering, mathematics, and science - fully integrating the

competencies of the separate efforts. Moreover, in this age of efficiency it is of even

greater importance to fully understand the limits of our current models and methods

so that we can squeeze the last drop out of every system that we create, engineer,

and study.

It is with this awareness and perspective that the value of this work and others like

it should be understood. With this in mind, my dissertation but scratches at the

surface of the grand challenge facing future innovation and research. However, the

stepwise methodology as well as the close integration of theory and computation is a

strong model to sustainably keep pace with the exciting advancements in science and

engineering.

xi



Chapter 1

Introduction

In this work, we will develop a new framework and novel methods to synthesize

optimal, open-loop controls for a class of complex dynamical systems called inhomo-

geneous ensembles. Such systems are motivated by the challenges arising from pulse

design problems in nuclear magnetic resonance (NMR) and imaging (MRI), but also

appear in additional areas of quantum control as well as science and engineering.

Studying the conditions for the controllability and developing methods for comput-

ing optimal control laws of optimal ensemble control problems will foster many new

avenues of research in theoretical control, systems theory, and computational meth-

ods. In the following sections I discuss in more detail the motivation and background

for this research area.

1.1 Inhomogeneous Ensembles

The boundaries of scientific discovery and engineering interest lie at the brink of

human - and mathematical - comprehension. Attempting to accurately model the

millions upon millions of interacting cells, the complex network of protein pathways

at the intra-cellular level, or the Avogadro’s number of quantum spins involved in

typical experiments yields models of tremendous scale. In many of these applications

feedback is either extremely limited, impractical, or expensive due, in part, to the

sheer number of the systems involved. Our desire to engineer and control leads us to

develop a manageable mathematical framework to analyze such large-scale complex

systems. This thesis is concerned with creating a systematic approach towards opti-

mal control problems of a special class of complex systems, in which the dynamics of

1



the many sub-members can be indexed as a function of specific system parameters.

In the next section I describe the original motivation for inhomogeneous ensembles

from quantum systems. Since its introduction, however, new promising applications

have been identified in other key areas of research and suggest a new and expanding

topic in systems analysis and control theory.

1.1.1 Quantum Ensembles

Quantum science represents a diverse frontier of research and promises to deliver

substantial advancements in, but not limited to, early-stage cancer detection, protein

structure and function, drug delivery, as well as quantum information, computation,

and optics [67, 12, 44, 24]. Common amongst these varied applications is the small

size (nanometers) and short timescales (microseconds) involved, which require re-

searchers to use elaborate equipment to interact with these ultra-small and ultra-fast

systems. In all quantum experiments, electromagnetic signals are used to manipu-

late the quantum elements by shaping the system Hamiltonian (see Section 4.2 for

more details). Designing these signals, or pulses, intelligently can lead to significant

improvements in signal recovery, which in turn results in increased performance, effi-

ciency, or resolution depending upon the application. From the perspective of control

theory, this design goal can be cast as a state transfer problem of a bilinear (linear in

both state and control) dynamical system. The synthesis of these controls is typically

an open-loop process, as measurement of the system state for feedback is generally

either unavailable or expensive to obtain.

At the quantum level, there are no direct interactions; instead, the behavior is dic-

tated entirely by the interplay of the electromagnetic fields surrounding the quantum

systems. In practice, these field strengths are highly susceptible to various forms

of inhomogeneity originating from equipment irregularity as well as chemical inter-

actions [15]. Compensating for the dispersive effect of these inhomogeneities in the

pulse design process is key to preserving the signal recovered in a realistic experiment

and is the motivation for the mathematical and computation framework developed

here.

2



A canonical quantum spin system from NMR is given by the Bloch equations, in

which the time evolution of the spin magnetization vector M is modeled by

d

dt






Mx

My

Mz




 =






0 −ω u

ω 0 −v

−u v 0











Mx

My

Mz




 ,

(see 4.3 for complete formulation). The behavior is characterized by a rotation around

the effective magnetic field, which is a combination of the static magnetic field applied

in the +z direction and the electromagnetic pulse applied in the transverse plane. The

targeted spin is typically a particular atom (e.g., hydrogen in proton NMR or in MRI),

which has a specific characteristic physical constant called the gyromagnetic ratio (γ).

The angular velocity, ωeff, about this effective field, Beff, is given by the product ωeff =

γBeff = (v, u, ω)′. Although the gyromagnetic ratio is unique and fixed for a given

atom, the magnetic field is susceptible to variation, i.e., Beff ∈ [Bnom −∆,Bnom + ∆]

is distributed about a nominal value. The major sources of this variation stem from

equipment irregularities, which, for example, cause strong fields nearer to the source

and weaker fields farther from the source. In addition, surrounding molecules can

attenuate the effective magnetic field through chemical shielding. These so-called

chemical shifts are crucial tools in NMR spectroscopy in determining the chemical

structure of complex molecules. In some applications, however, and also in MRI, in

which hydrogen atoms near regions of fat or bone are shifted differently, there is great

need to compensate for this chemical shielding as well.

The difference in the trajectories taken by atoms experiencing slightly different effec-

tive magnetic fields accumulates and can cause very noticeable dispersion in the final

states of the spins. Figure 1.1 shows the dramatic difference in the state trajectories,

starting at (0, 0, 1)′ attempting to reach (1, 0, 0)′ under the control of an on-resonance

hard pulse (u(t) = A and v(t) = 0, where A is a constant amplitude), due to varia-

tion in the static field and applied pulse, respectively. Compensating for these effects

then means developing pulses that will steer all of these inhomogeneous spins between

these points of interest simultaneously. Because there is no way to apply a separate

pulse to each of the spins, this pulse is common to all members of the ensemble.

From a systems and control perspective, this poses a very interesting and challenging

problem where we model these inhomogeneous effects as a family of dynamical systems

3



Figure 1.1: The effect inhomogeneity in the static magnetic field equally distributed
around a center point (left) and in the electromagnetic pulse distributed equally
around the nominal value (right).

with variation in the value of characteristic parameters. Designing compensating

pulses is then a highly under actuated open-loop steering problem on an infinite

dimensional state space. This forms a new area of systems theory directly related

to quantum control, but with wider applications to other areas within science and

engineering.

1.1.2 Biological Ensembles

The large volume of cells within living tissue makes modeling their behavior a funda-

mental challenge to studying and optimizing these systems. In such cases, there are

millions of cells that operate in roughly the same way, however, not entirely identical.

For example, the dynamics of an action potential of neuronal cells follows a cyclic

process, which can receive input from surrounding cells or stimuli. It is possible to ex-

tract a fundamental baseline (zero-input) frequency of oscillation by linearizing about

this high-dimensional limit cycle [47]. The characteristic frequency of oscillation of

“firing” tends to vary across the population of neurons, so it is well modeled as an in-

homogeneous ensemble. The synchrony and de-synchrony of these neurons is directly

linked to conditions like Parkinson’s disease and epilepsy. Therefore, studying and

controlling the ensemble synchronization patterns is of keen clinical interest. Such

structures of large numbers of varied entities is repeated in many parts of biology,

including cardiac tissue and protein signaling pathways within the cell.

4



1.1.3 Uncertain Systems

In the systems mentioned above there is a physical population of parallel structures

that show a measurable variation, e.g., different frequencies. However, the same

methodology can be used to model and control single systems that evidence uncer-

tainty in one or more of the parameters within the dynamics. In an analog to the

preceding example, an engineered system might have uncertainty in the stiffness of

a beam or strut. This can be modeled as a spring with uncertainty in the spring

constant k (i.e. ẍ = −kx). Although there is actually only a single value that corre-

sponds to the true spring constant, using the methods for inhomogeneous ensembles,

we can study and derive controls to drive the system which will work for all values

of spring constant within the specified uncertainty. This technique will be able to

provide improvements in, for example, manufacturing robotics, flight control, and

sensorless robust navigation. Recently such analysis has yielded a single ensemble

control that steers a collection of nonholonomic vehicles with different wheel radius

and that has been verified experimentally [1].

1.2 History of Pulse Design in NMR

While there is little precedent for control of mathematical ensembles, those working

in pulse design have unwittingly approached this problem for many years. Pulse

design has been and continues to be an active area of research with a rich and diverse

literature on the topic. A majority of this work, especially done in the early history

of NMR, is based on intuition and others on ad-hoc methods to compensate for the

inherent inhomogeneity. Recently, interest in optimal control has provided a new

and reliable tactic for tackling these problems. The emphasis of this dissertation is to

additionally provide a clear mathematical framework for posing pulse design problems

that includes variation in parameter values.

Quickly after the discovery of magnetic resonance and chemical shift effects, a variety

of intuitive methods were developed and a suite of elementary pulses became common

in NMR experiments. One of the techniques, spin echoes, uses a reverse evolution of

a bandwidth of spins to undo the dephasing caused by the forward evolution [25, 11].
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More elaborate designs then used combinations of these fundamental pulses to yield

composite pulse sequences, which again took advantage of the inherent symmetry

involved in the evolution of the spins and the Bloch sphere [35, 59, 66]. Today

there exist large volumes of these pulses that have been assembled in clever ways

to try to mitigate the effect of the inhomogeneities experienced in a real experiment

[2]. However, it was soon realized that intuition was not sufficient to maximize the

performance in quantum systems and ad-hoc, iterative algorithms were employed to

design pulses [60]. Soon thereafter the analytic Shinnar-Le Roux selective excitation

algorithm was developed based on the idea of small tip-angle approximations [50].

Although optimal control has origins in pulse design back to the 1980s and 1990s

[13, 53], it has been a major contributor to pulse design methods in the past decade

[61, 28, 33]. A family of computational methods have been applied to these problems

including the gradient and Krotov methods [31, 46].

This dissertation offers a unique perspective on the design of pulses for NMR appli-

cations by providing a unified method from start (modeling and analysis) to finish

(computation and synthesis). In particular, the mathematical characterization of the

problem suggests new approaches for the numerical methods, which we follow in this

work.

1.3 Organization

This dissertation is organized as follows:

• In Chapter 2, I provide a more rigorous definition of ensemble control and

existing results on ensemble controllability. I review key aspects of optimal

control that will be used throughout this dissertation and then formulate an

optimal ensemble control problem.

• In Chapter 3, I introduce a pseudospectral method developed to reduce opti-

mal control problems to nonlinear programming problems. I then show a direct

extension of the method that accommodates optimal ensemble control prob-

lems. I also touch upon several practical topics including implementation and

limitations.
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• In Chapter 4, I present several examples of optimal ensemble control problems

from quantum pulse design and the corresponding solutions found by the mul-

tidimensional pseudospectral method. I consider a unitary quantum system

modeled by the Bloch equations and solve several practical examples including

inhomogeneity in static and applied fields, variation in initial conditions, and

time-varying frequency. I then focus on two versions of a non-unitary quantum

system with and without the consideration of ensemble effects. Analytic opti-

mal solutions are known for these problems and they provide a benchmark to

use when evaluating the controls found by the pseudospectral method.

• In Chapter 5, I address the convergence of the single- and multidimensional

pseudospectral method for optimal control and optimal ensemble control prob-

lems, respectively. In particular, I show that the solutions of the nonlinear

programming problem generated by the pseudospectral method converge to the

optimal solutions of the original problem as the order of approximation (dis-

cretization) increases. We provide this proof for the pseudospectral method and

then provide extensions to consider the ensemble case. Several empirical results

from problems in Chapter 4 are shown to motivate the analysis.

1.4 Contribution

The novelty of this dissertation belongs to the extensions to consider the optimal

ensemble control. In particular,

• Theory: This thesis contributes an all-new formulation of optimal control prob-

lems for ensemble systems in Section 2.3. Chapter 5 presents a new approach to

prove the convergence of the pseudospectral method for optimal control as well

as the extension to the multidimensional pseudospectral method for optimal

ensemble control.

• Computation: The extension of the pseudospectral method to consider the

optimal ensemble control problem in a systematic and rigorous fashion is the

central computational contribution of this work. In addition, the implementa-

tion choices to streamline the use of the pseudospectral and multidimensional
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extension, such as using AMPL, is not precedented in the literature and will

allow the method to reach a broader audience by being able to incorporate it

into an online webservice.

• Application: Prior to this work, the application of the pseudospectral method

was largely limited to trajectory-type problems motivated by, e.g., satellites.

Applying, and extending, this methodology to the control of quantum systems

is a unique to this thesis. A majority of work in optimal control of quantum

systems relied on variations of the standard gradient method. All of the results

presented in Chapter 4 are novel to this thesis work, as well as the example

presented in Chapter 3.
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Chapter 2

Ensemble & Optimal Control

The types of systems discussed in the preceding chapter motivate us to devise a

systematic way to characterize and study inhomogeneous ensembles. Moreover, the

practical constraints imposed by safety concerns and hardware limitations highlight

the importance of being able to solve problems based on these ensemble systems in

an optimal manner. In this chapter, I present an overview of the theory of ensembles,

which guides the development of the rest of this work. I also review standard results in

optimal control and present the formulation for optimal control of ensemble systems.

Although the introduction of ensemble control has been quite recent, related work

has been studied for a number of years. The challenges inherent in the control of

quantum systems, as presented in the Introduction, has been a longstanding problem

in chemical physics and has yielded many interesting problems in systems and con-

trol theory. Some of these applications were first interpreted from the perspective of

stochastic control [5, 8]. In these cases the sub-members of the ensemble were char-

acterized by identical dynamics, however, influenced by different Brownian motions.

Subsequently, these problems were then cast as a new form of control of parameterized

control systems, which required a novel controllability analysis. The inhomogeneous

Bloch equations were the prototype system of ensemble control, followed by other

examples from the control of quantum systems [38, 36]. Ensemble controllability

was then derived for time-varying, finite-dimensional linear systems using a different

methodology. Below we expand upon these concepts, which form the foundation for

the presented work in optimal ensemble control.
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2.1 Ensemble Controllability

Ensemble control [37] is a mathematical framework to characterize parameterized

dynamical systems of the form,

d

dt
x(t, s) = F

(
t, s, x(t, s), u(t)

)
, x(0, s) = x0(s), (2.1)

where x ∈ R
n, u ∈ R

m, s ∈ S ⊂ R
d, with F and x0(s) smooth functions of their

respective arguments. The significant challenge of this class of control problems orig-

inates from requiring the same open-loop control, u(t), to guide the inhomogeneous

continuum of systems from an initial distribution, x0(s), to a desired final distribution

over the corresponding function space. We require such a framework to analyze and

control ensemble systems in a systematic fashion. As can be seen in the quantum

pulse design literature, there are dozens of ad hoc approaches to these problems that

attempt to use intuition, however, this type of work is more guess-and-check than

rigorous engineering. It is only in the context of a mathematical framework that a

dependable metric for optimality can be established and bounds on performance and

efficiency can be understood.

We use ensemble control to investigate the pertinent fundamental properties of en-

semble systems. The first natural question that arises is whether such systems are

controllable at all. The aim is to compensate for the dispersion inherent in the pa-

rameterized dynamics; however, there is no guarantee that it is possible. Therefore,

by taking the form of the dynamics and the parameters into account, ensemble con-

trollability assesses the types of variations that can be compensated [36].

Definition 1. The family of systems in (2.1) is called ensemble controllable on

the function space F(S) defined on some compact set S ⊂ R
d, if there exists a control

law u(t) such that starting from any initial state x(0, s) the system can be steered to

within a ball of radius ǫ around the target state g(s) ∈ F(S), i.e., ‖x(T, s)−g(s)‖ < ǫ.

Here ‖·‖ denotes a desired norm, say L2 norm, on F(S). The final time T may depend

on ǫ.

As a new field there is much left wide open for investigation. The pioneering work in

this area investigated the controllability of linear time-varying ensemble systems and
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the bilinear Bloch equations with inhomogeneity, which as mentioned earlier was the

prototype for this field of study [37, 38]. Results for general nonlinear systems are of

keen interest as well as the quantification of reachable sets, which defines the possible

controllable states in the absence of complete controllability. Moreover, advancements

in the analysis of these systems will promote new methods, as in this work, for control

and optimal control of ensembles.

2.1.1 Controllability of Bilinear Ensemble Systems

In what follows we consider the control affine dynamical system,

d

dt
x = f(x) +

m∑

i=1

uigi(x), (2.2)

where f and gi are the drift and control vector fields that drive the motion of the

state, x, on a manifold M ⊂ R
n with controls ui, for i = 0, 1, . . . , m. The study of

the controllability of such systems can be understood using the tools of Lie groups.

A fundamental mathematical concept in this area is the Lie bracket, which represents

possible directions of control that might not be in the linear span of the vector fields.

It can be understood as follows. Consider the driftless system

d

dt
x = g1(x)u1 + g2(x)u2,

where u1 and u2 are the controls which can be used to steer the system. Given a

small unit of time t, we can propagate the system forward for the sequence of four

control steps, each with length t: (u1, u2) = (1, 0)→ (0, 1)→ (−1, 0)→ (0,−1). The

evolution yields x(4t) = (exp−tg2)(exp−tg1)(exp tg2)(exp tg1)x(0). If we expand this

expression, to the second order we find,

x(4t) = x(0) + t2[g2, g1] + O(t3),

where

[g2, g1] =
∂g2

∂x
g1 −

∂g1

∂x
g2,
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Figure 2.1: The four-step back-and-forth

maneuver of two vector fields, g1 and g2,

creates a displacement defined by, to the

second order, the Lie bracket of the vec-

tor fields. If [g2, g1] is not a linear combi-

nation of g1 and g2, the Lie bracket syn-

thesizes a new direction of control.

is the Lie bracket of g1 and g2 [36]. This

quantity then represents, to the second or-

der, the difference in initial and final posi-

tions x(4t)−x(0). If [g2, g1] /∈ span{g1, g2},

then this back-and-forth maneuver gener-

ates a new direction of controllable mo-

tion. Supposing this is true, we can con-

tinue these Lie bracket calculations be-

tween the now three vector fields available

{g1, g2, [g2, g1]}. Therefore, the study of

controllability of becomes whether enough

independent new directions can be syn-

thesized through the appropriate nested

Lie brackets of the original vector fields.

This framework was developed for both

the driftless (as above) and with-drift sys-

tems [7, 27].

Finite Number of Bloch Systems

The framework of Lie brackets allows us to approach the problem of a finite number

of Bloch systems controlled by the same open-loop input. Specifically, consider the

inhomogeneous Bloch equations,

d

dt
M(t, ω, ǫ) =

[

ωΩz + ǫu(t)Ωy + ǫv(t)Ωx

]

M(t, ω, ǫ),

where ω ∈ [−B, B] and ǫ ∈ [1 − δ, 1 + δ], 0 < δ < 1, are parameters exhibiting

variation (see 4.3 for complete description and Appendix C for the definitions of the

generators of rotation Ωα). For now suppose we sample these parameters resulting in

the finite collection of Bloch systems,

d

dt
Mij(t) =

[
ωiΩz + ǫju(t)Ωy + ǫjv(t)Ωx

]
Mij(t), (2.3)
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where ωi distinct, i = 1, 2, . . . , Nω, are sampled from [−B, B], and ǫj distinct, j =

1, 2, . . . , Nǫ, are sampled from [1 − δ, 1 + δ]. Combining this set of samples into a

large combined system, it forms a 3NωNǫ-dimensional control system evolving on a

Lie group G ≡ (SO(3))NωNǫ by

Θ̇ = HΘ, (2.4)

where SO(3) is the special orthogonal group and Θ ∈ G; H =
⊕

i,j Hij, the direct sum

of 3× 3 matrices Hij = ωiΩz + uǫjΩy + vǫjΩx, i = 1, 2, . . . , Nω, j = 1, 2, . . . , Nǫ, and

H ∈ g, the Lie algebra of G. In this finite case, since G is compact and connected,

if the Lie algebra generated by the vector fields {ωiΩz, ǫjΩy, ǫjΩx}LA = g, then every

point in the group G can be reached by certain control input, which is analogous to

the vector fields spanning the entire space as detailed in the previous section. We can

express the recursive Lie bracket as,

adk
X(Y ) = [X, adk−1

X (Y )]

for any k ≥ 1, with ad0
X(Y ) = Y . Performing recursive Lie brackets on the sampled

system in (2.3) leads to

ad2ℓ
ǫjΩy

(ad2k
ωiΩz

(ǫjΩx)) = (−1)k+ℓω2k
i ǫ2ℓ+1

j Ωx,

ad2ℓ+1
ǫjΩy

(ad2k
ωiΩz

(ǫjΩx)) = (−1)k+ℓ+1ω2k
i ǫ2ℓ+2

j Ωz,

ad2ℓ
ǫjΩx

(ad2k
ωiΩz

(ǫjΩy)) = (−1)k+ℓω2k
i ǫ2ℓ+1

j Ωy,

where k, ℓ ∈ Z≥0 are nonnegative integers. Now, let

Xkℓ =
{
ω2k

i ǫ2ℓ+1
j Ωx

}
,

Ykℓ =
{
ω2k

i ǫ2ℓ+1
j Ωy

}
,

Zkℓ =
{
ω2k

i ǫ2ℓ+2
j Ωz

}
,

where i = 1, 2, . . . , Nω, j = 1, 2, . . . , Nǫ and Xkℓ, Ykℓ, Zkℓ ∈ g. For k = 1, 2, . . . , Nω and

ℓ = 1, 2, . . . , Nǫ, it can be shown that {Xkℓ, Ykℓ, Zkℓ} form a linearly independent set

if ωm 6= ωn, m 6= n, and ǫp 6= ǫq, p 6= q, for m, n = 1, 2, . . . , Nω and p, q = 1, 2, . . . , Nǫ

[36]. Therefore,

span
{

Xkℓ, Ykℓ, Zkℓ

}

= g,
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and the finite family of NωNǫ Bloch systems in (2.3) is controllable.

Ensemble Bloch Equations

The fundamental challenge for the controllability of ensembles is that we represent

the family of systems as an uncountable continuum. For this reason the preceding

methodology does not apply because the ensemble system evolves on an infinite di-

mensional Lie group. The approach for the ensemble case is most transparent for the

driftless Bloch equations, i.e., no variation in the frequency parameter ω,

d

dt
M(t, ǫ) = ǫ

[

u(t)Ωy + v(t)Ωx

]

M(t, ǫ).

Similar to above we can investigate the Lie algebra generated by the control vector

fields {ǫΩy, ǫΩx},

ad2k−1
ǫΩy

(ǫΩx)) = (−1)kǫ2kΩz,

ad2k
ǫΩy

(ǫΩx) = (−1)kǫ2k+1Ωx,

where k ∈ N. This implies that it is possible to synthesize terms of the form

ǫ2k+1Ωx through successive Lie bracketing. With available generators of rotation

{ǫΩx, ǫ
3Ωx, . . . , ǫ

2n+1Ωx} can produce rotations,

Rx(ǫ) = exp (c0ǫΩx) exp (c1ǫ
3Ωx) . . . exp (cnǫ2n+1Ωx) = exp

( n∑

k=0

ckǫ
2k+1Ωx

)

.

We can then choose the order of approximation n and the coefficients {ck} so that
∑n

k=0 ckǫ
2k+1 ≈ Θx(ǫ). By approximating any odd function in this manner we can

generate a rotation,

Rx(ǫ) ≈ exp {Θx(ǫ)Ωx}.

about the x-axis. Similarly, we can generate an approximate rotation around the

y-axis with angle Θy(ǫ). Therefore, using Euler angle decomposition with angles

(α, β, γ) we can synthesize any arbitrary rotation in SO(3),

R(ǫ) = exp {α(ǫ)Ωx} exp {β(ǫ)Ωy} exp {γ(ǫ)Ωx},
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provided R(ǫ) is a continuous function in ǫ, by approximating the functions α(ǫ), β(ǫ),

and γ(ǫ) as done above. Since we can achieve any desired rotation with arbitrary

accuracy, through the choice of n, this system is controllable.

This is in fact a constructive proof for controllability of the Bloch equations; how-

ever, generating back-and-forth evolutions is inefficient in practice. Creating methods

to design efficient compensating controls is then of particular importance. The in-

volvement of polynomial approximation in the proof of controllability suggests that

polynomials should be incorporated in the methods developed to control and optimize

these systems. In the real world application of the Bloch equations, there are bounds

on, for example, the available control amplitudes. In NMR the spectrometers have

sensitive probes and in MRI there are limits on the allowable applied fields that can

be used with human patients. In dissipative quantum systems the system state is not

constant and so the desired target state is unknown but should be maximized. These

considerations lead us to consider the important practical question of optimal control

of ensembles.

2.1.2 Controllability of Time-Varying Linear Ensemble Sys-

tems

In particular, time-varying linear systems of the following form have been studied,

d

dt
x(t, s) = A(t, s)x(t, s) + B(t, s)u(t),

where the state x ∈ R
n is indexed by a parameter s ∈ S that shows variation, with

A and B time-varying matrices of appropriate size that are also indexed by s. The

single open-loop control u ∈ R
m is used to steer the ensemble of systems from an

initial state (or distribution) to another state (or distribution). The state of such a

system, starting at x(0, s), at any time t can be expressed by the variation of constants

formula,

x(t, s) = Φ(t, 0, s)x(0, s) +

∫ t

0

Φ(t, τ, s)B(τ, s)u(τ) dτ,

where Φ(t, 0, s) is the transition matrix associated with the linear system and can

be computed by the Peano-Baker series if A is bounded [6]. If we let ξ(s) =
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Φ(0, t, s)xd(s) − x(0, s), where xd(s) is the desired final state, then the variation of

constants formula above becomes,

ξ(s) =

∫ t

0

Φ(0, τ, s)B(τ, s)u(τ) dτ. (2.5)

It has been shown that the necessary and sufficient conditions for ensemble con-

trollability are related to the Fredholm integral equation of the first kind of the

input-to-state operator [37],

(Lu)(s) =

∫ T

0

Φ(0, t, s)B(t, s)u(t) dt, (2.6)

which is found by letting t = T in (2.5). For controllability, we require (Lu)(s) = ξ(s),

where ξ(s) is known as long as the final state xd(T ) can be specified. The conditions on

the singular system of this operator guarantee controllability of this class of ensemble

systems.

2.2 Optimal Control

Optimal control merges the two individually challenging areas of control and optimiza-

tion to rigorously characterize and solve optimization problems based on dynamical

systems. Early versions of optimal control can be seen as far back as Bernoulli’s

Brachystrochrone problem in 1696 with the birth of the calculus of variations. Sub-

sequent associated ideas, including the Euler-Lagrange equations of motion, pushed

further towards the concept of optimal control [64]. A flourish of work starting in the

mid-twentieth century marked the true era of optimal control including Pontryagin’s

maximum principle [52].

Common amongst all optimal control problems is a dynamical system of the general

form,
d

dt
x(t) = f

(
t, x(t), u(t)

)
,

and a specified initial state x(0) = x0. Beyond these elements, the nature and com-

position of an optimal control problem can vary depending upon the application. In

some cases a terminal state constraint can be given, i.e., x(T ) = xd, where xd is the
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desired final state. Whether or not such a terminal constraint is given, a function of

merit is defined to evaluate candidate control and state trajectory pairs. This cost

functional incorporates a terminal cost to be evaluated at the final time, T , and a

running cost that evaluates the time history of the states and controls. Additional

path constraints can also be incorporated to place variable bounds on the solution.

Assembling these individual pieces yields an optimal control problem of standard

Bolza form,

min ϕ(T, x(T )) +

∫ T

0

L(x(t), u(t)) dt

s.t.
d

dt
x(t) = f

(
t, x(t), u(t)

)
, (2.7)

e(x(0), x(T )) = 0,

g(x(t), u(t)) ≤ 0,

where we can minimize (or maximize) the terminal and running costs, ϕ and L,

respectively, subject to the dynamics; endpoint constraints given by e; and additional

path constraints given by g [9].

2.2.1 Solving Optimal Control Problems

As described above, optimal control is a general framework to pose optimizations of

dynamical systems. A variety of methods have been developed and employed to solve

such problems. Here we give a brief overview of this area to provide context for the

numerical method presented in Chapter 3.

Maximum Principle

The maximum principle states the necessary conditions for a candidate control, u(t),

to be optimal with respect to the optimal control problem in (2.7). It is stated as

follows.

Theorem 1 (Maximum Principle [52]). Suppose the controlled trajectory (x∗, u∗)

defined over the interval [0, T ] is optimal and the control u∗ is piecewise continuous.
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Then there exist a constant λ0 ≥ 0 and a covector λ : [0, T ] → (Rn)∗, the so-called

adjoint variable, such that the following conditions are satisfied:

1. Nontriviality of the conditions: (λ0, λ(t)) 6= 0, ∀t ∈ [0, T ];

2. Adjoint equation: the adjoint variable λ is a solution to the time-varying

linear differential equation

λ̇(t) = −λ0Lx(t, x∗(t), u∗(t))− λ(t)fx(t, x∗(t, u∗(t))); (2.8)

3. Minimum condition: everywhere in [0, T ] we have

H(t, λ0, λ(t), x∗(t), u∗(t)) = min
v∈U

H(t, λ0, λ(t), x∗(t), v). (2.9)

If the Lagrangian L and the dynamics f are continuously differentiable in t, then

the function h : t→ H(t, λ0, λ(t), x∗(t), u∗(t)) is continuously differentiable with

derivative given by

ḣ(t) = Ht(t, λ0, λ(t), x∗(t), u∗(t)). (2.10)

4. Transversality condition: at the endpoint of the controlled trajectory the

covector

(H + λ0ϕt,−λ + λ0ϕx)

is orthogonal to the terminal constraint N , i.e., there exists a covector ν ∈

(Rn+1−k)∗ such that

H + λ0ϕt + νDtΨ = 0, λ = λ0ϕx + νDxΨ at (T, x∗(T )). (2.11)

Here we label the state space and control set M and U , respectively. We define a

Hamiltonian,

H(t, λ0, λ, x, u) = λf(t, x, u) + λ0L(t, x, u),

terminal constraints as a k-dimensional embedded submanifold,

N = {(t, x) ∈ R×M : Ψ(t, x) = 0},
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and D in (2.11) is the respective matrix of partial derivatives.

In principle, the goal of the maximum principle is to eliminate the optimization by

incorporating the cost into a two point boundary value problem on both the state

equation dynamics and the adjoint dynamics in (2.8). By solving these equations

simultaneously we can identify candidate extremals that satisfy both the dynamics

and the adjoint equation, thereby satisfying the first order necessary conditions for

optimality.

Computational Methods

While optimal control gives a mathematically rigorous way to frame optimization

problems on dynamical systems and existing results, like the maximum principle, can

give the necessary criteria for an optimal solution, using this machinery is largely

nontrivial. Analytic work in this area can be challenging for systems of even one or

two dimensions. Due to these difficulties, significant interest has been garnered in

the area of computational optimal control methods. Numerical methods for optimal

control can be classified either as a direct or indirect method. Although these methods

can use the same numerical methods to solve them, they differ in implementation and

convergence.

An indirect method focuses on finding an approximate solution to the two point

boundary value problem from the necessary conditions, as given by the maximum

principle. The advantages to solving this set of coupled state and adjoint equations

instead of the optimal control problem include increased accuracy and the guarantee

that the solution satisfies the necessary optimality conditions. However, these con-

ditions must be derived analytically, which poses a great challenge to nonlinear and

high dimension problems. There are also a number of cases in which the maximum

principle does not give sufficient information to specify the endpoint constraints on

the two point boundary value problem, such as when the target state is a single point

and the Transversality condition does not yield additional information to set the end-

point constraints of the adjoint equation. In these cases, values for the endpoints

must be guessed and evaluated, which requires another level of an iterative scheme.
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In comparison, direct methods approach the original optimization problem in (2.7).

While they lack some of the accuracy inherent in indirect methods, they require little

additional information regarding initial guesses and do not need iterative schemes to

test various endpoint values. The state variables are physically relevant to the prob-

lem, unlike the adjoint variable in the necessary conditions. As mentioned above,

similar methods - such as shooting, finite difference, collocation, etc. - can be used

with direct or indirect methods. The easy interpretation and implementation of direct

methods make them prime candidates for study. Moreover, moving toward parame-

terized systems in which deriving the necessary conditions is generally infeasible, we

consider a direct method in this work to build a computational scheme for solving

optimal ensemble control problems.

2.3 Optimal Ensemble Control

The time-evolution of ensemble systems requires a slightly more general form for the

dynamics than given in (2.7). In particular, the ensemble dynamics (2.1) includes

an additional dimension of continuity in the parameter over the specified interval of

variation. The following formulation for optimal ensemble control must accommodate

this extra dimension,

min

∫

S

[
ϕ(T, x(T, s)) +

∫ T

0

L(x(t, s), u(t)) dt
]

ds,

s.t.
d

dt
x(t, s) = F

(
t, s, x(t, s), u(t)

)
, (2.12)

e(x(0, s), x(T, s)) = 0,

g(x(t, s), u(t)) ≤ 0,

where the cost functional includes another integration in the parameter, s. The

cost is attempted to be highly general. We implicitly assume that the terminal and

running costs can include weighting functions of s, i.e., ϕ = ϕ(s, T, x(T, s)) and

L = L(s, t, x(t, s), u(t)). In this way the cost can incorporate any desired profile in

the parameter domain S.
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An optimal nonlinear control problem of this form is, in general, analytically in-

tractable. Computational methods are then required to solve such exceedingly com-

plex optimal ensemble control problems. The idea from previous work in ensemble

control of quantum systems that constructing appropriate polynomials is a key tool

in characterizing the controllability of ensemble systems of interest motivates the use

of polynomials within the computational framework [39].
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Chapter 3

Pseudospectral Method for

Optimal Control

As we have seen in the preceding chapters, the challenge in solving general nonlinear

optimal control problems and, even more so, optimal ensemble control problems moti-

vates the investigation of robust and flexible numerical methods. In this work I adapt

a Legendre pseudospectral method, which is a spectral collocation method using Leg-

endre polynomials as basis functions for the expansion of the unknown variables.

Spectral methods were originally developed to solve problems in fluid dynamics and

since then pseudospectral methods have been successfully applied to optimal control

problems in many areas of science and engineering [54, 16, 56] since the introduction

of the concept in the mid 1990s [14]. The fact that ensemble dynamics share some sim-

ilar characteristics with partial differential equations supports that a pseudospectral

method is well suited as a numerical method for optimal ensemble control.

3.1 Spectral Methods

Spectral methods are numerical techniques that rely on the expansion of a function

in terms of an infinite sequence of orthogonal functions, i.e. x =
∑∞

k=0 x̂kφk where

〈φk, φj〉 = δkj. These methods are characterized by spectral accuracy, which means

that the kth coefficient, x̂k, decays faster than k−n, ∀n ≥ 1, for smooth functions [10].

The well-known Fourier series expansion for periodic functions is possibly the most

notable example. Fourier series are limited to expression of periodic functions due to

the choice of basis (sometimes called trial) functions, φk, the trigonometric functions.
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Through a different choice of orthogonal functions, namely those of Jacobi type, we

can extend spectral methods to non-periodic functions. For our purposes, spectral

methods are a natural numerical framework for dealing with optimal control problems,

because they are able to transform an ordinary or partial differential equation into

an algebraic equation through relatively simple recursion relations for the derivatives

of the basis functions.

There are three different approaches to spectral methods. The basis functions express

the approximation to the solution of the differential equation; however, another set

of functions, weight (sometimes called test) functions - the x̂k, are needed to ensure

that the differential equation and boundary conditions are satisfied. How the weight

functions are selected separates the various spectral methods and is directly related

to the residual - the error between the truncated expansion and the exact function [4].

For optimal control, we are interested in differential equations that govern dynamics,

in general, ẋ = f(x). The residual for a truncated expansion xN =
∑N

k=0 x̂kφk is

R(x) =
d

dt
xN − f(xN).

Collocation methods require the residual to be zero at specific physically-relevant

points whereas tau and Galerkin methods enforce the differential equation by requir-

ing that the residual is orthogonal to as many of the basis functions as possible. Collo-

cation methods offer a distinct advantage for differential equations involving variable

coefficients or nonlinear terms, as the computation involves products of numbers -

the values at the collocation nodes - rather than products of expansions as in Tau or

Galerkin methods [18]. It is from this difference that the collocation spectral method

gets the “pseudo”-spectral name.

3.1.1 Comparison to Finite Element Methods

Whereas collocation, Galerkin, and tau spectral methods differ in their choice of test

functions, spectral methods differ from finite element methods by their choice of basis

functions. The idea of approximating a function on an interval with a polynomial is
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common to both, however, finite elements select basis functions to be local polyno-

mials on small sub-intervals, generally of much lower order [10]. In order to increase

accuracy the three major types of finite element methods either (“h-refinement”) sub-

divide each sub-interval further to improve resolution, (“r-refinement”) only subdivide

sub-intervals where the gradient is steep, or (“p-refinement”) increase the degree of

the polynomial on each interval [4]. The major advantage of finite element methods

is the ability to chop up complex multidimensional structures, such as engineered

surfaces, into sub-intervals, which generally comes at the cost of accuracy. Therefore,

the use of spectral versus finite element tools is largely determined by the application.

In the case of modeling the compression dynamics of an automobile during a collision,

the geometry of the structure and the small scale of fractures and distortions would

be more appropriate for finite element methods. In the case of optimal control, in

which solutions are relatively smooth (or piecewise smooth), global polynomial ex-

pansions of reasonable order can be expected to not only work well but out perform

finite element methods.

3.2 Pseudospectral Method

The overarching goal of the pseudospectral method is to convert the continuous op-

timal control problem in (2.7) into a constrained algebraic optimization problem,

which can be solved by efficient numerical nonlinear optimization solvers. To provide

a context for understanding this work, I first present a review of the pseudospectral

method for optimal control, i.e., without variation, and then provide an extension to

consider the optimal ensemble control problem.

Pseudospectral discretization methods use expansions of orthogonal polynomials (see

Appendix A.1) to approximate the states of the system and thereby inherit the spec-

tral accuracy characteristic of orthogonal polynomial expansions [10]. Through special

recursive properties (see Appendix A.2), derivatives of these orthogonal polynomials

can be expressed in terms of the polynomials themselves, making it possible to ac-

curately approximate the differential equation that describes the dynamics with an

algebraic relation imposed at a small number of discretization points. An appropri-

ate choice of these discretization points, or nodes, facilitates the approximation of the
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states as well as ensures accurate numerical integration through Gaussian quadrature.

As we elaborate on these ideas below, a majority of the derivations and justifications

behind the formulas in this section have been placed in Appendix A to make this

important section more readable.

We first shift the original problem from the time domain t ∈ [0, T ] to the rescaled

domain t̃ ∈ [−1, 1] on which the orthogonal polynomials are defined with a simple

affine transformation

t̃ =
2t− T

T
.

In this dissertation, the variable t will be used interchangeably either on the [0, T ]

or [−1, 1] interval and the choice will be set by context. Our choice of the Legen-

dre orthogonal polynomial family suggests we compute the integral term of the cost

function using Legendre-Gauss-Lobatto (LGL) quadrature, in which the integral is

approximated by a summation of the integrand evaluated at specific set of nodes,

∫ 1

−1

f(t) dt ≈

N∑

i=1

f(ti)wi, wi =

∫ 1

−1

ℓi(t) dt, (3.1)

where N is the order of polynomial approximation, wi are discrete weights, and ℓi(t)

is the ith Lagrange polynomial, discussed below and in Appendix A.3 [4]. Lobatto in

LGL refers to the inclusion of the endpoints as nodes, which is necessary in discretiz-

ing optimal control problems in order to enforce initial and terminal conditions. In

particular, if the integrand f ∈ P2N−1 and the nodes ti ∈ ΓLGL, the integral approxi-

mation is exact, where P2N−1 denotes the set of polynomials of degree 2N − 1 or less

and where ΓLGL = {ti : L′
N (t)|ti = 0, i = 1, . . .N − 1}

⋃
{−1, 1} are the N + 1 LGL

nodes determined by the derivative of the N th order Legendre polynomial, L′
N (t), and

the interval endpoints [10].

LGL quadrature requires we know the integrand values at the LGL nodes - f(ti) in

(3.1); however, the N th order Legendre expansions

x(t) ≈ PNx(t) =
∑N

k=0 x̃kLk(t), (3.2)

u(t) ≈ PNu(t) =
∑N

k=0 ũkLk(t), (3.3)
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do not directly give us a way to discretize the states and controls at these nodes,

i.e., the expansions coefficients x̃k and ũk have no direct physical meaning. To over-

come this, we approximate these Legendre expansions with interpolating polynomials,

which, by definition, are equal to the Legendre expansions at the interpolation nodes.

Because any interpolating polynomial can be represented by Lagrange polynomials

we can represent the state and control as,

PNx(t) ≈ INx(t) =
∑N

k=0 x̄kℓk(t), (3.4)

PNu(t) ≈ INu(t) =
∑N

k=0 ūkℓk(t), (3.5)

where the coefficients x̄k and ūk are the values of the state and control Legendre expan-

sions evaluated at the kth interpolation node, respectively, i.e., PNx(tk) = INx(tk) =

x̄k and PNu(tk) = INu(tk) = ūk. The coefficients have this property because the

kth Lagrange polynomial is characterized by taking unit value at the kth interpola-

tion node and zero value at all other nodes such that ℓk(ti) = δki, where δki is the

Kronecker delta function [65]. Using this second approximation we can compute the

integrand of the cost function integral at the LGL nodes and x̄k and ūk become the

decision variables of the subsequent nonlinear programming problem.

Furthermore, the selection of LGL nodes, which are non-uniform on [−1, 1] with

quadratic spacing towards the endpoints, as interpolation nodes suppresses the spu-

rious oscillations between nodes that is present when using uniformly spaced nodes,

called the Runge phenomena [18]. It can be shown that the LGL interpolation nodes

are close to optimal (see Appendix A.4) [62]. The LGL nodes permit us to rewrite

the Lagrange polynomials in terms of the Legendre polynomials, which is critical to

inherit the special derivative and spectral accuracy properties of the orthogonal poly-

nomials despite using Lagrange interpolating polynomials. Given tk ∈ ΓLGL, we can

express the Lagrange polynomial as (see Appendix A.5),

ℓk(t) =
1

N(N + 1)LN(tk)

(t2 − 1)L′
N (t)

t− tk
. (3.6)
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The derivative of (3.4) at ti ∈ ΓLGL is then,

d

dt
INx(ti) =

N∑

k=0

x̄k ℓ̇k(ti) =

N∑

k=0

Dikx̄k (3.7)

= Di0x̄0 + Di1x̄1 + · · ·+ DiN x̄N ,

where D is the constant matrix with elements (see Appendix A.6),

Dik =







LN (ti)
LN (tk)

1
ti−tk

i 6= k

−N(N+1)
4

i = k = 0

N(N+1)
4

i = k = N

0 otherwise.

(3.8)

We have now effectively discretized all parts of the original optimal control problem.

The problem in (2.7) can now be written as,

min ϕ(T, x̄N) +
T

2

N∑

i=0

L(x̄i, ūi)wi

s.t.
N∑

k=0

Dikx̄k =
T

2
f(x̄i, ūi), (3.9)

e(x̄0, x̄N) = 0,

g(x̄i, ūi) ≤ 0, ∀ i ∈ {0, 1, . . . , N}.

Notice that the second and third lines are equality constraints reflecting the dynamics

and endpoint conditions, respectively, and the last line is an inequality constraint

reflecting the path constraints.
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Figure 3.1: The time-optimal frictionless atom cooling problem in (3.10) is efficiently
solved by the pseudospectral method. The dots in the two right-most figures indicates
the 71 interpolation nodes used to approximate the original problem.

3.3 Example from Quantum Optics

Now that we have laid the foundation for the pseudospectral method for optimal

control, it is worth evaluating its performance on a pertinent example. Frictionless

atom cooling in a harmonic trap refers to lowering the harmonic frequency of the

trap to a desired value, while keeping the populations of the initial and final levels

the same. In order ensure that the levels are not changed, friction and heat must not

be generated throughout this process. There are adiabatic methods to achieve this

transfer, however, these are typically much slower than necessary. We consider the

specific problem here to design the time optimal control, where we allow the trap to

become an expulsive potential, corresponding to imaginary frequencies, for a short

period of time. The dynamics of this problem can be transformed into the following

normalized form [63],

ẋ1 = x2, (3.10)

ẋ2 = −ux1 +
1

x3
1

.

We seek to find the control −1 ≤ u(t) ≤ 8, with u(0) = 1 and u(T ) = 1/γ4, that

steers (3.10) from (x1(0), x2(0)) = (1, 0) to (x1(T ), x2(T )) = (γ, 0) minimizing the

final time, T , where γ =
√

ω0/ωf = 10 quantifies the desired cooling from a natural

frequency ω0 to a desired frequency ωf .
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This problem has been solved analytically and the derived control and corresponding

trajectories are shown in the first two frames of Figure 3.1 [63]. The pseudospec-

tral method effectively transforms the continuous time-optimal control problem into

a nonlinear programming problem and finds a close approximation of the optimal

control and state trajectory. The optimized control and trajectory are also shown

in Figure 3.1 with the interpolation nodes overlaid as dots. The cubic term in the

dynamics and the high resolution needed for “bang-bang” type control required a

level of disretization around N = 71.

3.4 Multidimensional Extension

The ensemble optimal control problem in (2.12) includes another dimension of conti-

nuity in the parameter domain, s ∈ S ⊂ R
d, which must be discretized (or sampled)

to fit within the constrained optimization method. To reduce the complexity of nota-

tion we first consider a single parameter variation, i.e., d = 1 and S = [s, s̄], however,

it is straightforward to extend this to higher dimensions.

Consider the ensemble extension of the interpolation approximation in (3.4),

x(t, s) ≈ IN×Ns
x(t, s) =

N∑

k=0

x̄k(s)ℓk(t)

≈

N∑

k=0

(
Ns∑

r=0

x̄krℓr(s)

)

ℓk(t), (3.11)

and the ensemble extension of the approximate derivative from (3.7) at ti ∈ ΓLGL and

sj ∈ ΓLGL
Ns

,

d

dt
IN×Ns

x(ti, sj) =
N∑

k=0

Dik

(
Ns∑

r=0

x̄krℓr(sj)

)

=

N∑

k=0

Dikx̄kj , (3.12)

where x̄kj = x(tk, sj). In (3.11) and (3.12) we have effectively used a two dimensional

interpolating grid at the N + 1 and Ns + 1 LGL nodes in time and the parameter,
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respectively. Using (3.11), (3.12), in conjunction with the LGL quadrature rule, we

summarize the ensemble pseudospectral discretization of the ensemble optimal control

problem as

min
s̄− s

2

Ns∑

r=0

[

ϕ(T, x̄Nr) +
T

2

N∑

i=0

L(x̄ir, ūir)w
N
i

]

wNs

r

s.t.
N∑

k=0

Dikx̄kr =
T

2
F (x̄ir, ūi), (3.13)

e(x̄0r, x̄Nr) = 0,

g(x̄ir, ūir) ≤ 0, ∀
i ∈ {0, 1, . . . , N}

r ∈ {0, 1, . . . , Ns}
,

where wN and wNs are the LGL quadrature weights corresponding to polynomial

approximations of order N and Ns respectively.

It is straightforward to extend this interpolating structure to accommodate parameter

spaces of higher dimension, s = (s1, s2, . . . , sd)
′ ∈ S ⊂ R

d, d > 1. In this general case,

x(t, s) ≈ IN×Ns1
×···×Nsd

x(t, s) =
N∑

k=0

x̄k(s)ℓk(t)

=

N∑

k=0

Ns1∑

r1=0

· · ·

Nsd∑

rd=0

x̄kr1...rd
ℓrd

(sd) · · · ℓr1
(s1)ℓk(t).

3.5 Implementation

As a significant portion of this dissertation deals with numerical computation, it is ap-

propriate to highlight certain aspects of the implementation of the method and discuss

properties of a practical nature. As mentioned in preceding sections of this chapter,

the objective of the pseudospectral and multidimensional pseudospectral method is

to approximate a continuous-time optimal control problem by a nonlinear program-

ming problem. The advantage in doing this is that by discretizing the continuous

dynamics and converting the state space from a function space to a vector space, we

can leverage decades of work in algorithm development for nonlinear optimization,

such as all types of gradient methods, simulated annealing, genetic algorithms, and
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many others. Most modern nonlinear solvers include multiple of these tools, which

when used in concert allow for some level of confidence regarding avoidance of local

minima and other common shortcomings of individual numerical solvers.

3.5.1 Visualization

To make the translation of the optimal control problem into the discretized opti-

mization more concrete, this section expands on several of the key steps within the

pseudospectral approximations to make them more immediately accessible. The origi-

nal problem has unknown functions x(t) ∈ R
n and u(t) ∈ R

m and a possibly unknown

terminal time T . Approximating the states and controls with polynomials of order

N on the nodes ΓLGL
N as in (3.4) creates interpolating polynomials with coefficients

x̄i and ūi















x1(t)
...

xn(t)

u1(t)
...

um(t)















⇒















x̄10 x̄11 · · · x̄1N

...
...

x̄n0 x̄n1 · · · x̄nN

ū10 ū11 · · · ū1N

...
...

ūm0 ūm1 · · · ūmN















which become the decision variables of the discretized optimization in addition to

the terminal time T . In the ensemble case, when x(t, s) ∈ R
n, the decision variables

compose a (d+2)-dimensional matrix, where s ∈ R
d. In the discretized optimization,

similar to the original optimal control problem, the solver then selects the values ūij

subject to the bounds placed on the control and any specific path constraints. Setting

the discretized optimization apart from the original, the state coefficients x̄ij are also

treated as decision variables and the solver chooses values for these coefficients subject

to bounds on the state, specific path constraints, and also the equality constraints

that impose the dynamics as in (3.7).
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3.5.2 Limitations

While the pseudospectral method is a highly robust and flexible method, there are

some limitations of the method that should be mentioned. In particular there are

discontinuous or highly varying solutions that it will not find, due to the coarse dis-

cretization and polynomial approximation. Although it will not find this class of

controls and the corresponding states, in practical applications it is of great bene-

fit to develop solutions that closely approximate the discontinuities while remaining

smooth. As with all optimization methods, it is susceptible to local minima. We

can, especially if the optimal (or anticipated) cost is known, impose a “performance”

constraint that requires the solver to continue searching until it achieves this specified

level.

Cost function selection is highly influential on the optimization outcome and similar

cost function choices can, at times, lead to different results. It is important to fully

understand the dynamics of the system so as to avoid, for example, singularities in

the state search space. Finally, adjusting and testing various parameter values (e.g.

N , Ns) is key to finding the right tradeoff between speed and accuracy.

3.5.3 Programming Environments & Languages

The “pseudospectral method” is a collection of mathematical approximations, which

means the method is independent of the exact implementation of it. The fundamental

requirements are to have some ability for the necessary linear algebra as well as the

definitions of the Lagrange and Legendre polynomials. With these tools, scripts can

be written to calculate the LGL nodes and the coefficients in the differentiation ma-

trix, D. Therefore, any programming language with access to these types of libraries

is suitable for use with the pseudospectral method. In fact, there are a variety of

commercial and open source packages available for various forms of the pseudospec-

tral method for optimal control. These packaged solutions are mainly written in

MATLAB, however, C, Python, Java, and any other major programming language

are fully viable. The ensemble extension, although straightforward, requires a level

of flexibility that is generally not found in these commercial solutions, which is why

in this research I built custom software to perform the pseudospectral discretization.
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Although I began this work prototyping in MATLAB, there is tremendous benefit to

working with a highly specialized optimization language like AMPL. AMPL is both

a program and a syntax structure that facilitates the succinct formulation of a vector

space optimization problem. The patterns of the pseudospectral approximations, and

further the patterns inherent in ensemble control problems, make it simple to write the

nonlinear programming problem in this syntax. Beyond this ease of implementation,

AMPL offers a useful presolve and plug-and-play features. A presolve is done by

AMPL to eliminate any redundant or check for conflicting constraints. This eliminates

unnecessary degrees of freedom, which simplifies the problem before it is handed

to a numerical solver. AMPL is a widely accepted optimization interface and all

mainstream numerical solvers create versions that work immediately with AMPL.

This provides a wealth of options when selecting a single solver for the optimization

as compared to MATLAB or other languages, where solver support is less immediate.

It should be noted that another language is required to compute the D matrix given

a specific N . In this work, I wrote several Python scripts to automate the process of

writing the AMPL code and processing the AMPL output, e.g. plotting.

Because of the stand-alone nature and text file input-output of AMPL, it is well

suited to be used as the backend on an optimization webservice. There is a federally

funded optimization initiative called NEOS that uses a similar structure. During my

work, both to facilitate my own research and provide collaborators access to the tools

I developed, I created a Django webservice (a web framework with a Python backend)

that could be used to submit automated optimization “jobs” and keep track of them.

This is the foundation that will allow the research group to eventually share the

power and flexibility of the pseudospectral method with a much broader audience. In

particular, scientists lacking the knowledge or resources to implement our method can

likewise submit jobs for their specific application and get results by email. Giving such

scientists easy access to tools that can significantly impact their physical, chemical,

and biological experiments, this webservice has the potential to revolutionize these

fields.

Two examples are included in Appendix B to illustrate the short and efficient code

used with AMPL. The full formulation of these examples is given in the appendix,

however, a better understanding of them will come after reading the next chapter.
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Chapter 4

Optimal Pulse Design for NMR &

MRI

The consideration of variations in practical NMR and MRI led to the development

of ensemble control theory, which established the potential to construct pulses that

would compensate for the dispersion in the inhomogeneous dynamics. Realistic con-

cerns over energy use and goals to maximize the performance, efficiency, and resolu-

tion in quantum applications then guides us to cast pulse design problems as optimal

ensemble control problems. The complexity inherent in these pulse designs requires

us to develop computational techniques, such as the multidimensional pseudospec-

tral method discussed in Chapter 3. This chapter presents solutions to pulse design

problems generated by the multidimensional pseudospectral method and highlights

specific features of the method that make it effective on this class of problems.

4.1 Pulse Design

Compelling applications for quantum control have received particular attention and

have motivated seminal studies in wide-ranging areas from coherent spectroscopy and

MRI to quantum optics. Designing and implementing time-varying excitations (rf

pulses) to manipulate complex dynamics of a large quantum ensemble on the order of

Avogadro’s number is a longstanding problem and an indispensable step that enables

every application of quantum control [44]. For example, magnetic resonance appli-

cations often suffer from imperfections such as inhomogeneity in the static magnetic

field (B0 inhomogeneity) and in the applied rf field (rf inhomogeneity). In addition,
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there is dispersion in the Larmor frequency of spins due to chemical shifts. A good

pulse design strategy must be robust to these effects and such variations need to

be considered in the modeling and pulse design stages in order to match theoretical

predictions to experimental outcomes. As difficult experiments with more demand-

ing performance specifications have emerged, the complexity of finding optimal pulse

sequences has drastically increased. For example, as high-field NMR spectrometers

are increasingly more accessible and required, broadband excitation pulses are needed

to cover a wide 13C chemical-shift range, e.g., up to 40 kHz. In addition, to design

excitation and inversion pulses that are practical for a typical NMR spectrometer,

methods must accommodate realistic maximum rf power and pulse duration while

accomplishing the desired spin evolution. Such limitations and imperfections cause a

substantial increase in the complexity of the pulse design problem.

From early work using physical intuition [25, 11] to modern methods like composite

pulses [35, 60], an enormous body of pulse sequence design techniques has been pro-

posed over 50 years [2, 12] and the process of innovation is ongoing. Highly customized

methods, however, have limited scope, such as the Shinnar-Le Roux algorithm which

is robust to Larmor dispersion, but not able to compensate for rf inhomogeneity [50].

For relatively simple cases, theoretical methods, such as average Hamiltonian theory,

provide intuitive guidelines for constructing pulse sequences [23]. Heuristic numer-

ical optimization methods have been used extensively for the design of single and

multiple pulses in a pulse sequence [59]. However, these approaches have a number

of shortcomings such as slow convergence rates and being easily trapped into local

optima. In recent years, there have been attempts to look at pulse design prob-

lems from a control theory perspective [13, 53, 61, 28]. In particular, state-of-the-art

methods such as gradient ascent and Krotov algorithms are based on principles of

optimal control theory [31, 46] and have been used successfully to design broadband

and relaxation-optimized pulses which maximize the performance of quantum sys-

tems in the presence of relaxation [33, 29, 19]. These algorithms, while effective, rely

on intensive computations, as for system propagators and gradients, as well as a large

number of discretizations in the time domain over which to evolve the system.

To overcome these defects we provide a systematic framework for optimal pulse design

in quantum control. We consider a general mathematical model for pulse design

as an optimal control problem of a continuum of bilinear systems. Employing Lie
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algebra tools from prior theoretical work [39], we have shown the control problem of

pulse design can be mapped to a problem of polynomial approximation. This new

notion guides us to develop a unified computational method for optimal pulse design

based on multidimensional pseudospectral approximations, by which a continuous-

time optimal control problem of pulse design can be discretized to a constrained

optimization problem using interpolating polynomials [40, 41, 57, 58, 56, 42].

4.2 Quantum Dynamics

The dynamics of a quantum system are given by the time-evolution of its density

matrix. We consider here general dynamics in which the system may have interac-

tion with the environment that leads to dissipation in the system state. Under the

Markovian approximation, where the environment is modeled as an infinite thermo-

stat which has constant state, the evolution of the density matrix can be written in

Lindblad form in terms of the system Hamiltonian H(t) and superoperator L(·) which

model the unitary and nonunitary dynamics [43], respectively,

d

dt
ρ = −i[H(t), ρ]− L(ρ), (~ = 1).

The expression of the Hamiltonian has components corresponding to the free evolution

Hamiltonian, Hf , and the control Hamiltonians Hi,

H(t) = Hf +
m∑

i=1

ui(t)Hi,

where ui(t) are externally applied electromagnetic pulses that can be used to ma-

nipulate, or guide, the evolution of the system state. Typical pulse design problems

involve designing these pulses, or controls, to bring the final state of the density ma-

trix ρ(T ) as close as possible to a target operator. This problem can be transformed,

by taking the expectation values of the operators involved in the state transfer, to

the vector-valued, bilinear control problem, x ∈ R
n and u ∈ R

m given by,

d

dt
x =

[

Hd +

m∑

i=1

ui(t)Hi

]

x, (4.1)
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where Hd ∈ R
n×n corresponds to the drift evolution representing Hf and L, Hi ∈

R
n×n corresponds to the controlled evolution representing Hi, and t ∈ [0, T ] [41].

While (4.1) accurately represents the classical interaction of magnetic fields, in prac-

tice the effective fields - and, therefore, the matrices representing the Hamiltonians

Hd and Hi - show variation in magnitude due to different chemical environments and

equipment errors. The system can no longer be described by a single equation but

rather by a family of equations with variation in the parameters that characterize the

motion, which motivates us to consider the dispersion in the dynamics as a continuum

indexed by the system values,

d

dt
x(t, s) =

[

Hd(s) +

m∑

i=1

ui(t)Hi(s)
]

x(t, s), (4.2)

where s ∈ S ⊂ R
d is a d-dimensional interval representing the d parameters exhibiting

variation [56]. In a more general formulation the matrices representing the Hamiltoni-

ans can be time-dependent, Hd = Hd(t, s) and Hi = Hi(t, s), as in the case of random

fluctuations. Designing a single set of controls (pulses) ui(t) that simultaneously steer

an ensemble of dispersive systems in (4.2) from an initial state to a desired final state

is a fundamental problem in the control of quantum systems.

4.3 Pulse Design on the Bloch Equations

We first consider several examples based on the prototypical quantum control system

described by the Bloch equations [3]. The Bloch equations have been found to model

a range of quantum phenomena from protein spectroscopy in nuclear magnetic res-

onance (NMR) [15] and medical scans in magnetic resonance imaging (MRI) [13] to

Rabbi oscillations in quantum optics [55]. In the following discussion, we will consider

the specific application and terminology for NMR spectroscopy in liquids, however,

the methods and results are easily transferred to these other areas of interest. In

NMR spectroscopy, when the duration of the pulse design problem is small compared

with the relaxation times (T ≪ T1, T2, the characteristic longitudinal and transverse

relaxation times, respectively), the evolution of spins can be well approximated as

sequences of unitary rotations driven by the static magnetic field and the applied
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electromagnetic controls. In practice, the effective fields generating these rotations

show variation across the quantum sample due to hardware imperfection and chem-

ical shielding, which leads us to consider a range of magnetic field variations. The

corresponding dimensionless Bloch equations in the rotating frame (see Appendix C)

are,
d

dt
M(t, ω, ǫ) =

[

ωΩz + ǫu(t)Ωy + ǫv(t)Ωx

]

M(t, ω, ǫ), (4.3)

where M(t, ω, ǫ) = (Mx(t, ω, ǫ), My(t, ω, ǫ), Mz(t, ω, ǫ)) is the Cartesian magnetization

vector for the parameter values s = (ω, ǫ), ω ∈ [−B, B] ⊂ R, is the dispersion of

natural frequencies, ǫ ∈ [1 − δ, 1 + δ], 0 < δ < 1, is the amplitude attenuation

factor, and Ωα ∈ SO(3) is the generator of rotation around the α axis. A pulse

that compensates for the dispersion in frequency and is insensitive to the scaling of

the applied controls is called a broadband pulse robust to rf inhomogeneity. In this

section we consider several examples based on this model, including pulses robust

not only to frequency dispersion and inhomogeneity, but also robust to uncertainty

in initial conditions and time-varying frequencies.

4.3.1 Broadband Excitation and Inversion

A canonical problem in the control of quantum systems modeled by the Bloch equa-

tions is to design pulses that will accomplish a state-to-state transfer of the system.

Such pulses, e.g., π/2 and π pulses (accomplishing π/2 and π rotations, respectively),

are the fundamental building blocks of the pulse sequences used in many quantum

experiments. First consider the excitation, or π/2, pulse that rotates the net magne-

tization from the equilibrium position (+z) to the +x axis, i.e., M(0) = (0, 0, 1)′ →

M(T ) = (1, 0, 0)′. In the ensemble case, this goal corresponds to a uniform excitation

of the spin vector across all choices of frequency and inhomogeneity. Specifically we
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consider the optimal ensemble control problem,

min α1

∫ 1+δ

1−δ

∫ B

−B

−Mx(T, ω, ǫ) dω dǫ + α2

∫ T

0

u2(t) + v2(t) dt, (4.4)

s.t.
d

dt
M(t, ω, ǫ) =

[

ωΩz + ǫu(t)Ωy + ǫv(t)Ωx

]

M(t, ω, ǫ),

M(0, ω, ǫ) = (0 0 1)′,
√

u2(t) + v2(t) ≤ A, ∀ t ∈ [0, T ],

where A is the maximum allowable amplitude and the cost functional serves to min-

imize the z-component of the spin vector (integrated across the ensemble) and the

energy of the designed pulse, with relative weighting given by α1 and α2 (unless oth-

erwise mentioned α1 = 1 and α2 = 0). A similar cost can be used for a π pulse

designed to steer the magnetization to (0, 0,−1)′, by replacing −Mx by Mz.

Figure 4.1 presents both a broadband π/2 and π pulse designed by the multidimen-

sional pseudospectral method without consideration of rf inhomogeneity (ǫ = 1). The

corresponding π/2 and π resonance offset profiles, simulated and experimental, are

plots of Mx(T, ω, 1) and Mz(T, ω, 1), respectively, over the frequency offset ω. The

optimized band, here ω ∈ [−A, A], with maximum amplitude A = 20 kHz, in the

experimental profile is marked by the overline. This thesis, to be both relevant to

those from both chemical physics and control backgrounds, will interchangeably use

physical units and normalized ones to refer to physical parameters such as amplitudes,

bandwidths, and durations (see Appendix C for details). The dips present in the π

pulse experimental profile indicate the presence of rf inhomogeneity as shown in the

simulated profile for various choices of ǫ. Such discrepancies motivate the need for

compensation not only in frequency but also in rf scaling.

It is important to compare the derived pulses with some of the conventional ap-

proaches used in NMR experiments. The resonance offset profile for a π pulse de-

signed for a wider bandwidth ω ∈ [−2A, 2A], A = 20 kHz shows marked improvement

over the conventional hard pulse in Figure 4.2. The hard pulse is a maximum ampli-

tude on-resonance pulse with duration T = π/2A, which performs well for the center

(on-resonance) frequency and poorer at the edges of the bandwidth.
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Figure 4.1: The control pulse shape (top), simulated resonance offset profile (middle),
and experimental resonance offset profile (bottom) for an excitation (left) and inver-
sion pulse (right) developed with the multidimensional pseudospectral method. The
π/2 pulse achieves an average x component of 0.9852 with the parameters: A = 20
kHz, B = 20 kHz, T = 50µs, N = 32, Nω = 8. The π pulse achieves an average z
component of −0.9991 with the parameters: A = 20 kHz, B = 20 kHz, T = 120µs,
N = 36, Nω = 12. The difference between the simulated and experimental offset
profiles highlights the effect of rf inhomogeneity (simulated response is shown for
ǫ = 0.85, 0.9, 0.95, 1).
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Figure 4.2: A broadband π pulse and the corresponding excitation profile (red) com-
pared to the excitation profile of the conventional hard pulse (black). The dips in the
excitation profile are due to rf inhomogeneity in the experimental equipment. A = 20
kHz, B = 40 kHz, T = 120µs, N = 36, Nω = 12.
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Figure 4.3: The 2D spectra from on-resonance (black) and 250 ppm off-resonance
(red) HSQC experiments using the pulse in Figure 4.2 (left), a standard adiabatic
pulse (middle), and the hard pulse (right). The enhanced signal off-resonance enables
better determination of protein structure and the optimized pulse achieves up to 20
times the sensitivity of the adiabatic pulse and with shorter duration (120µs versus
500µs).

If the pulse in Figure 4.2 is incorporated into an HSQC experiment, the resulting

2D spectra shows enhanced signal recovery off-resonance of up to 20 times compared

to the same experiment using an adiabatic pulse and higher still for the hard pulse

[42]. Figure 4.3 presents the on-resonance (black) and off-resonance (red) 2D spec-

tra for these pulse choices. The on-resonance spectra is expected to be the same,

as each pulse works well at the nominal (resonance) frequency. However, the re-

duced off-resonance spectra is caused by poor broadband inversion at the edges of

the bandwidth. Such plots are used to determine protein structure by investigating

the chemical shifts present in the molecule. It is crucial to reduce signal loss so that

an accurate assessment can be made of the experiment and a reliable model of the

protein can be constructed.
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Figure 4.4: Arbitrary constraints are

easy to include in the pseudospectral

formational for pulse design, such as

with a symmetry constraint on the con-

trol or leaving the pulse duration free to

vary, i.e. 0 < T ≤ Tmax. The average z

magnetization of the offset (not shown)

is −0.9923. Parameters: A = 20 kHz,

B = 20 kHz, Tmax = 200µs, N = 24,

Nω = 9.

One of the hallmark features of the pseu-

dospectral method is the freedom and flex-

ibility to specify any cost function and any

constraint. Several computational meth-

ods rely on ad hoc techniques at each step

in the optimization to project the state

and controls back onto the admissible set

of states and controls [34]. For exam-

ple, to yield a pulse of desired smooth-

ness with the Krotov method, it is neces-

sary to perform a Fourier truncation after

each step in the optimization in order to

eliminate high frequency components [45].

The collocation involved in the pseudospec-

tral approximation imposes the constraints

in a very straightforward fashion and serve

as bounds on the exploration of the state

space, so no ad hoc methods are necessary.

The π pulse in Figure 4.4 was optimized by the method with an imposed symmetry

constraint [58]. Such a condition, which is often observed in π pulses calculated with-

out the constraint, reduces the number of control variables in the optimization by

equating ūk = ūN−k and likewise for v. In addition, the pulse in Figure 4.4 was de-

signed allowing the terminal time to be a variable of the optimization. Other methods

require many runs, testing different pulse durations, to determine the optimal time,

whereas here this can be achieved in a single optimization.

In these past examples, we have considered broadband pulse designs only and have

seen the effect of rf inhomogeneity in the experimental offset profiles. To compen-

sate for the rf scaling inherent in the experiments, we consider (4.4) with a two

dimensional variation in both ω and ǫ. Figure 4.5 compares two such pulses derived

by the multidimensional pseudospectral method under different cost functions. The

standard choice (α1 = 1 and α2 = 0) achieves an average excitation of 0.98. The

minimum energy pulse (α1 = 0 and α2 = 1) is optimized with an additional con-

straint requiring the average excitation to be greater than the previous optimization,

i.e.,
∑

i,j Mx(T, ωi, ǫj)/NωNǫ ≥ 0.98. This pulse achieves an equivalent performance

42



−20
−10

0
10

20

−10%

nominal

+10%

0

0.9

1

resonance offset (kHz)
rf inhomogeneity

excitation

0 20 40 60 80 100
−20

−10

0

10

20

t ( s)

a
m

p
li
tu

d
e

 (
k

H
z
)

 

 

u

v

−20
−10

0
10

20

−10%

nominal

+10%

0

0.95

1

resonance offset (kHz)
rf inhomogeneity

excitation

0 20 40 60 80 100
−20

−10

0

10

20

a
m

p
li
tu

d
e

 (
k

H
z
)

 

 

t ( s)

u

v

Figure 4.5: Broadband excitation π/2 pulses designed to compensate for 10% rf
inhomogeneity with average excitation 0.98. The minimum-energy broadband pulse
(right) is optimized by solely minimizing energy subject to a performance constraint
and achieves this transfer with 16% less rf energy. Parameters: A = 20 kHz, B = 20
kHz, δ = 0.1, T = 100µs, N = 24, Nω = 8, Nǫ = 1.
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Figure 4.6: Broadband inversion π pulses designed to compensate for 10% rf inho-
mogeneity with average excitation −0.9929. The pulse was optimized to minimize
both magnetization and rf energy. Parameters: A = 20 kHz, B = 20 kHz, δ = 0.1 ,
T = 120µs, N = 36, Nω = 8, Nǫ = 1.

(within 0.3%) with 16% less rf energy, as given by the second term in the cost of (4.4).

Similarly, an inversion pulse robust to variation in frequency and rf scaling can be

optimized as in Figure 4.6 with equal weight given to minimizing average inversion

and control energy (α1 = 1 and α2 = 1).
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4.3.2 Variation in Initial Conditions

In most experiments, individual pulses, such as the ones in the preceding section, are

combined into a longer pulse sequence, which performs a more complicated manip-

ulation of the system state with intermediate steps and goals. Even in the case of

highly optimized individual pulses, as shown previously, there is an error between the

desired and actual final states. Moreover, pulses depend upon an exact (and usually

uniform) initial condition in order to achieve their expected levels of performance.

These effects combine to create a magnified accumulated error at the termination of

the pulse sequence. The variation of the initial conditions of these pulses, therefore,

causes significant degradation in achievable performance.

A representative example of such a pulse sequence is to perform a three step pulse se-

quence, which rotates the magnetization of the ensemble (1) from equilibrium (+z) to

a point on the transverse plane (e.g. +y); (2) to the opposite point on the transverse

plane (e.g. −y); (3) back to the equilibrium position (+z). Such pulses generally

include “phase locking” pulses before and after the second pulse during which the

magnetization dissipates. This dissipation is the portion of the experiment that is

important to recover accurately and reflects a quantity to be measured, for example, a

metabolic rate [48, 51]. If, in addition, there is accumulated error due to uncertainty

in the initial conditions of the individual pulses, this leads directly to measurement

inaccuracy. Here, by removing the “phase locking” pulses, we can abstract this pulse

sequence to a unitary process and directly address any losses due to error. The con-

trollability of the Bloch equations is shown by constructing parameter-dependent (e.g.

frequency, rf inhomogeneity) rotations of the spin vectors [38]. This, therefore, en-

sures that the problem with variation in initial conditions can be solved provided that

the initial conditions can be parameterized by the frequency and rf inhomogeneity.

Figure 4.7 displays a three-stage optimized pulse designed by the multidimensional

pseudospectral method which is robust to frequency dispersion and variation in the

initial conditions of the three stages. This pulse was run as three concurrent opti-

mizations, with the final states of one pulse fed in as the initial conditions of the next.

This optimized pulse is compared with the combination of three separately optimized

pulses; these combined pulses were designed with equal total duration. The terminal

profiles at each intermediate goal quickly show the evidence of accumulated error in
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Figure 4.7: Pulses are optimized to produce a desired z → y → −y → z evolution of
the Bloch equations. The upper plot displays the concatenation of individually opti-
mized z → y and y → −y pulses, which achieves the dashed terminal profiles shown
below, with respective average performances: 0.99, 0.98, 0.97 (0.91 minimum). The
middle plot displays a 3-part simultaneously-optimized pulse robust to variation in the
initial condition and achieves the solid terminal profiles shown below, with respective
average performances: 0.99, 0.99, 0.99 (0.97 minimum). The noticeable enhancement
in performance and uniformity is due to compensating for the inhomogeneity in the
initial condition of the individual pulses.

the case of the individually optimized pulses (each individual pulse has an average

performance greater than 0.98). Most importantly, the uniformity of the inversion is

lost in the additive error, with dips in performance down to 0.91.
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Figure 4.8: Control pulses (top) and state trajectories (bottom) corresponding to
different objectives and designed to compensate for the time-varying frequency ω(t) =
sin(t). A single-system state transfer M(0) = (0, 0, 1)′→M(T ) = (1, 0, 0)′ is designed
using the terminal cost ϕ(T ) = Mx(T ) and running costs L(t) = 0 (left), L(t) =
0.1(u(t)2 +v(t)2) (middle), L(t) = 0.1 (right). The terminal time was free in all cases,
bounded by Tmax = 1.

4.3.3 Time-Varying Frequency

Until now, we have considered that the dispersion and uncertainty of the system are

stationary. However, addressing time-varying fluctuations in parameters is also of

particular theoretical and practical importance. For example, in the formulation of

quantum control problems given in (4.2) we noted that the Hamiltonians can be time-

varying, motivated by such phenomena as random telegraph noise [49]. The first step

to addressing stochastic variations in such physical systems is to demonstrate control

of time-varying systems, such as given by the expectation value of the corresponding

random process.

Figure 4.8 presents a series of optimizations designing π/2 pulses providing a state

transfer +z to +x, while compensating for a time-varying frequency, ω(t) = sin(t).

Various choices of cost functional yield different results. The arbitrary control pulse

profile corresponding to the terminal cost ϕ(T ) = Mx(T ) (Fig. 4.8, left) motivates

studying optimal control methods that provide the capacity for hybrid objectives

resulting in more physically meaningful controls, e.g. minimizing energy (middle)

and time (right).
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4.4 Relaxation Optimized Pulse Design

Multidimensional NMR experiments for protein spectroscopy rely on the concept of

polarization transfer, in which coherence is moved from one spin to another through

the application of appropriate pulse sequences. Two dimensional spectra, as shown in

Figure 4.3, are generated by observing the transfer of polarization from one spin (e.g.,

hydrogen, spin I1) to another (e.g., carbon, spin I2). Initially, spins I1 are excited

by an applied pulse that rotates the magnetization to the transverse plane. Then,

following a delay t1, a polarization transfer pulse is applied, in which magnetization

is moved from spins I1 to I2 via the coupling between the spins. Spins I2 are then

likewise excited and their precession is recorded after another delay t2. Using the delay

values and the recorded signal, the efficiency of transfer can be plotted, corresponding

to the pair (ωI1, ωI2), which creates the contour plot of a 2D spectra.

We study two important variants of this problem as representative examples of sys-

tems in which maximum efficiency is sought in the presence of dissipation. Relaxation

effects could be neglected in the Bloch equations due to the short timescales of the

developed pulses. In this application, however, relaxation is a critical component that

limits the signal recovery in real experiments. Naively, with a goal to maximize a ter-

minal state that is subject to dissipation, it seems appropriate to cast the problem as

a minimum time optimization. However, deeper investigation reveals that these are

not necessarily optimal and that an interplay between the states of the system can

yield increased signal. This observation underscores the study of relaxation optimized

pulse design.

The polarization transfer problem from liquid state NMR is composed of a pair of

isolated, heteronuclear 1/2 spin particles, which we label I1 (for example 1H) and

I2 (for example 13C or 15N), with a scalar coupling J that quantifies the interaction

between the spins [20]. In a doubly rotating frame, which rotates with each spin at its

resonance frequency, the free evolution Hamiltonian for this system is Hf = 2JI1zI2z,

where I1z = σ1z/2, I2z = σ2z/2 and σ1z, σ2z are the Pauli spin matrices for spins I1 and

I2 respectively. This Hamiltonian assumes that |ω1 − ω2| ≫ J (weak coupling limit

relative to the resonance frequencies of the spins) so that the Heisenberg coupling

(I1 · I2) can be well approximated by the scalar coupling (I1zI2z) [20].
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As we have seen with the Bloch equations, the relaxation rates and scalar coupling

depend upon the physical constants of the spins, such as gyromagnetic ratios, inter-

nuclear distance, and the correlation time of the rotational tumbling [20]. However,

these constants are scaled by the amplitudes of the various fields present in the sys-

tem. Therefore, the same equipment and location inhomogeneities cause variation

in the values of the relaxation rates and coupling. It is then crucial to incorporate

such variations into the models and optimizations for pulse design. We present the

analysis and results for both the single and ensemble cases.

The most important relaxation mechanisms in NMR spectroscopy in liquid solutions

are due to Dipole-Dipole (DD) interaction and Chemical Shift Anisotropy (CSA).

We initially ignore the cross correlation caused by interference between DD and CSA

relaxation.

4.4.1 Polarization Transfer without Cross-Correlated Relax-

ation

Here we consider the polarization transfer system with only DD and CSA relax-

ation ignoring the cross-correlated relaxation and study the case of slowly tumbling

molecules in the spin diffusion limit, in which longitudinal relaxation rates (1/T1) are

negligible compared to transverse relaxation rates (1/T2) [15].

The free evolution of the density matrix ρ representing the state of the coupled spin

system in the doubly rotating frame is given by the master equation [32]

ρ̇ =− iJ [2I1zI2z, ρ]− kDD[2I1zI2z , [2I1zI2z, ρ ]]

− k1
CSA[I1z, [I1z, ρ ]]− k2

CSA[I2z, [I2z, ρ ]], (4.5)

where J is the scalar coupling constant, kDD is the DD relaxation rate, and k1
CSA, k2

CSA

are CSA relaxation rates for spins I1, I2, respectively.

The typical problem of interest involves designing pulses, ωx and ωy in the x and y axes

respectively, to transfer the polarization from one spin to the other, i.e., I1z → I2z.

To do so, the polarization is typically passed through an intermediate, symmetric

48



step, I1z → 2I1zI2z → I2z. Because these two halves are symmetric, it is sufficient

to consider only the first step of the transfer. In particular, the controls should be

designed to maximize the final expectation value of the target operator O = 2I1zI2z

starting from ρ(0) = I1z, i.e., 〈2I1zI2z〉(T ) = trace{ρ(T )2I1zI2z}, where T is the

duration of the pulse and ρ(T ) is guided by the applied controls. We can recast this

problem in matrix form [41],









ẋ1

ẋ2

ẋ3

ẋ4









=









0 −u1 0 0

u1 −ξ −1 0

0 1 −ξ −u2

0 0 u2 0

















x1

x2

x3

x4









, (4.6)

where x1 = 〈I1z〉, x2 = 〈I1x〉, x3 = 〈2I1yI2z〉, x4 = 〈2I1zI2z〉 are expectations of the

operators involved in the transfer; ξ = (kDD + k1
CSA)/J ; and the controls u1(t) =

ωy(t)/J and u2(t) = ωx(t)/J are the transverse components of the applied magnetic

field, all normalized by the scalar coupling J.

We can now formulate the desired transfer objective as an optimal control problem

on the dynamics given by (4.6). With polarization initially x(0) = (1, 0, 0, 0)′ our aim

is to maximize x4(T ) through the appropriate choice of u1(t) and u2(t). This problem

has been solved analytically and the derived ROPE pulse establishes the maximum

achievable transfer efficiency given by,

η1 =
√

ξ2 + 1− ξ . (4.7)

Although the optimal control problem (4.6) does not consider the ensemble variations

that occur in practice, applying the pseudospectral method reveals several interesting

results. Figure 4.9 shows the transfer efficiency of several choices of ξ on the interval

[0, 1] compared with the optimal efficiency determined by ROPE. The pseudospectral

method finds controls that have corresponding efficiencies that are negligibly close

to the maximum efficiency. The figure also presents one such pulse solution and the

corresponding trajectories, again comparing to the ROPE pulse.
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Figure 4.9: (Left) The efficiency of the transfer x1 → x4 in system (4.6) achieved by
the pseudospectral method, as a function of the relaxation parameter ξ in the range
[0, 1]. The theoretically calculated maximum efficiency given by (4.7) is also shown.
(Right) ROPE and Pseudospectral controls (top) and corresponding state trajectories
(bottom) for ξ = 1. Each of the hard pulses within the ROPE pulse at t=0 and t=T
(top left) correspond to a 35◦ rotation and transfer the state from x(0−) = [1, 0, 0, 0]T

to x(0+) = [cos 35◦, sin 35◦, 0, 0]′ and from x(T−) = [0, x2(T ), η sin 35◦, η cos 35◦]′ to
x(T+) = [0, x2(T ), 0, η]T , respectively, in near instantaneous time.

A clear advantage of the pseudospectral method well illustrated by this example is

that the calculated control pulses are smooth functions. In contrast, notice the high-

amplitude spikes at the beginning and end of each component of the analytic ROPE

pulse. Such discontinuities can be challenging, if not impossible, to implement in

practice and high amplitudes can be hazardous for the experiment sample, equipment,

and human subjects (as in MRI). The pulse amplitude derived by the pseudospectral

method, is easily implementable and maintains low values despite achieving transfer

efficiencies within 1 × 10−3 of the theoretical optimal values. The pulse is attained

from an optimization that minimizes energy subject to a constraint maintaining a

desired transfer efficiency. Therefore, not only is the pseudospectral pulse without

discontinuities but it also accomplishes the transfer with 45% less energy than the

ROPE pulse.
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We now turn our attention to the ensemble case, in which the system is modeled

with variation in the relaxation rate and scalar coupling. We formulate the optimal

ensemble control problem as

max Javg =
1

2δ(ξ2 − ξ1)

∫ 1+δ

1−δ

∫ ξ2

ξ1

x4(T, ξ, J) dξ dJ

s.t.









ẋ1

ẋ2

ẋ3

ẋ4









=









0 −u1 0 0

u1 −ξ −J 0

0 J −ξ −u2

0 0 u2 0

















x1

x2

x3

x4









,

x(0) = [1, 0, 0, 0]′,
√

u2
1(t) + u2

2(t) ≤ A, ∀t ∈ [0, T ], (4.8)

where Javg is the objective that maximizes the average final value of x4 across the

ensemble; xi = xi(t, ξ, J) are again expectation values of the spin operators [57, 56];

T is the final time, free to vary as a decision variable; ξ ∈ [ξ1, ξ2] is the transverse

autocorrelated relaxation rate; J ∈ [1− δ, 1 + δ], δ ∈ [0, 1], is the scalar coupling con-

stant; u1 and u2 are the applied controls; and A is the maximum allowable amplitude.

In this case, these values have been normalized by the nominal scalar coupling J0.

Figure 4.10 illustrates smooth pseudospectral solutions to the normalized coherence

transfer problem in (4.8) with ξ ∈ [0, 2], fixed J = 1 (no variation in spin coupling),

and amplitude bound A = 20. If we use the pseudospectral method with cost Javg

we obtain the fluctuating pulse shown in Figure 4.10, top. If we use the same method

with the hybrid cost J = Javg − JE,

JE =
1

A2T

∫ T

0

u2
1(t) + u2

2(t) dt.

we obtain the pulse shown in Figure 4.10, bottom, with less oscillation. Both of these

pulses achieve a similar ensemble performance and the same figure depicts the coher-

ence transfer corresponding to the hybrid objective pulse. Including the minimum

energy term in the objective yields a significantly more implementable and physically
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Figure 4.10: The optimal ensemble pulses (right) effectively compensate for all varia-
tions of ξ on the interval [0, 2] with only minor losses in transfer efficiency (left) when
compared to each analytic ROPE [32] efficiency for a single value of ξ (N = 28 and
Nξ = 8). The top optimal ensemble pulse was developed by maximizing the average
transfer efficiency and the pulse beneath was developed by maximizing the average
transfer efficiency and minimizing energy. The transfer efficiency plot corresponds to
the latter.

Figure 4.11: The optimal ensemble pulse shown in (right) effectively compensates for
all variations of ξ ∈ [0, 2] and J ∈ [0.5, 1.5] with comparable efficiency (left) to each
ROPE pulse [32] for a specific ξ and J . This optimal ensemble pulse was developed by
maximizing average transfer efficiency and minimizing energy with N = 24, Nξ = 8,
and NJ = 4.

intuitive pulse. In most cases there are a large (possibly uncountable) number of feasi-

ble solutions that achieve a similar performance and it is experimentally advantageous

to select from this large number the one that also minimizes energy.
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Figure 4.11 shows a solution to the problem posed in (4.8) and corresponding co-

herence transfer for the two-dimensional ensemble problem with ξ ∈ [0, 2] and J ∈

[0.5, 1.5] using the same hybrid objective defined above. The transfer of the ensemble

pulse derived with the pseudospectral method is robust to both parameter variations

and still compares favorably with the upper bound achieved by the ROPE pulses.

4.4.2 Polarization Transfer with Cross-Correlated Relaxation

If DD-CSA cross-correlated relaxation cannot be neglected, the master equation as

in (4.5) is then modified to incorporate it as [30]

ρ̇ =− iJ [2I1zI2z, ρ]− kDD[2I1zI2z, [2I1zI2z, ρ ]]

− k1
CSA[I1z, [I1z, ρ ]]− k2

CSA[I2z, [I2z, ρ ]]

− k1
DD/CSA[2I1zI2z, [I1z, ρ ]]− k2

DD/CSA[2I1zI2z , [I2z, ρ ]],

where kDD, k1
CSA, k2

CSA are auto-relaxation rates due to DD relaxation, CSA relaxation

of spin I1, CSA relaxation of spin I2 and k1
DD/CSA, k2

DD/CSA are cross-correlation rates

of spins I1 and I2 due to interference between DD and CSA relaxation mechanisms.

Using this master equation, we can find the corresponding matrix equation, which

requires a larger state space to represent it. Here we jump directly to the ensemble

case where we consider variation in the autocorrelated relaxation rate,

max Javg =
1

(ξ2 − ξ1)

∫ ξ2

ξ1

x6(T, ξa) dξa

s.t.
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

,

x(0) = [1, 0, 0, 0, 0, 0]′,
√

u2
1(t) + u2

2(t) ≤ A, ∀t ∈ [0, T ], (4.9)
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Figure 4.12: The efficiency (left) of the transfer x1 → x6 in system (4.9) without
variation achieved by the pseudospectral method, as a function of the relaxation
parameter ξa in the range [0, 1], with ξc = 0.75ξa. The efficiency (right) of the
ensemble case closely reproduces the optimal efficiency with a single pulse for the
entire [0, 1] range.

where x1 = 〈I1z〉, x2 = 〈I1x〉, x3 = 〈I1y〉, x4 = 〈2I1yI2z〉, x5 = 〈2I1xI2z〉, x6 = 〈2I1zI2z〉;

ξa = (kDD + k1
CSA)/J ∈ [ξ1, ξ2]; ξc = k1

DD/CSA/J ; and u1(t), u2(t) are the available

controls as before [56]. Starting from x(0) = (1, 0, 0, 0, 0, 0)′, we want to design u1(t)

and u2(t) that maximize x6(T ) subject to the dynamics given above.

This problem has also been solved analytically and the analytical pulse was denoted

as CROP [30], which attains the maximum achievable value of x6, i.e., the efficiency

η2 of the transfer is given by the same form as before

η2 =
√

ξ2 + 1− ξ , (4.10)

but now

ξ =

√

ξ2
a − ξ2

c

1 + ξ2
c

. (4.11)

Similar to the previous problem, the pseudospectral and multidimensional pseu-

dospectral method performs well, matching the analytic efficiency in both cases, see

Figure 4.12. The optimization considering the ensemble variation achieves a level

of polarization transfer with an average of 3 × 10−3 deviation from the optimal up-

per bound with only N = 16 and Nξa
= 2. Maintaing low sampling numbers is of
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particular interest as the computational complexity of an ensemble problem of high

dimension grows quickly.
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Chapter 5

Convergence of the Pseudospectral

Method

By accepting and implementing a numerical method, we implicitly assume that the

transformations and discretization used to prepare the problem for computational

work does not fundamentally alter the nature of the problem. It is then critically im-

portant to show that this assumption is justified. Here we do so by both empirical and

theoretical means. More specifically, we show that as the number of discretizations

in the pseudospectral method (and samples in the multidimensional pseudospectral

method) increases the solution of the algebraic nonlinear programming problem con-

verges to the solution of the original continuous-time optimal control problem. For

this argument, we consider a modified nonlinear programming problem statement.

Without loss of generality, we consider a general continuous-time optimal control

problem defined on the time interval Ω = [−1, 1], which can be achieved by a simple

affine transformation.

Problem 1 (Continuous-Time Optimal Control).

min J(x, u) = ϕ(x(1)) +

∫ 1

−1

L(x(t), u(t)) dt, (5.1)

s.t.
d

dt
x(t) = f(t, x(t), u(t)), (5.2)

e(x(−1), x(1)) = 0, (5.3)

g(x(t), u(t)) ≤ 0, (5.4)

‖u(t)‖∞ ≤ A, u ∈ Hα
m(Ω), α > 2 (5.5)
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where ϕ ∈ C0 is the terminal cost; the running cost, L ∈ Cα, where Cα is the space

of continuous functions with α classical derivatives, and dynamics, f ∈ Cα−1
n , where

Cα−1
n is the space of n-vector valued Cα−1 functions, with respect to the state, x(t) ∈

R
n, and control, u(t) ∈ R

m; e and g are terminal and path constraints, respectively;

Hα
m(Ω) is the m-vector valued Sobolev space. The norm associated with the Sobolev

space with m = 1, Hα(Ω), is given with respect to the L2(Ω) norm [10],

‖h‖(α) =

( α∑

k=0

∣
∣
∣
∣h(k)

∣
∣
∣
∣
2

2

)1/2

.

Problem 2 (Algebraic Nonlinear Programming).

min J̄(x̄, ū) = ϕ(x̄N) +
N∑

k=0

L(x̄k, ūk)wk (5.6)

s.t.
∣
∣
∣
∣f(INx, INu)−DNx

∣
∣
∣
∣
N
≤ cdN

1−α (5.7)

e(x̄0, x̄N) = 0 (5.8)

g(x̄k, ūk) ≤ 0 (5.9)

‖uk‖ ≤ A ∀ k = 0, 1, . . . , N (5.10)

where cd is a positive constant; we define the discrete L2
n(Ω) norm ‖h‖N =

√

〈h, h〉N ,

for h, h1, h2 ∈ L2
n(Ω), Ω = [−1, 1], with,

〈h1, h2〉N =
N∑

k=0

h′
1(tk)h2(tk)wk,

where wk is the Gauss quadrature weight from (3.1).

Remark 1. The dynamics in (5.7) have been relaxed from the equality in (3.9) to

ensure the feasibility of the discrete problem, which is used in Proposition 1. It is

trivial to show that in the limit, as N →∞, these two conditions coincide.

We seek to address three questions related to solving the continuous-time optimal

control (Problem 1) by solving the pseudospectral discretized constrained optimiza-

tion (Problem 2). Suppose a feasible solution (x, u) exists to Problem 1. Under what

conditions:

57



1. Feasibility: For a given order of approximation, N , does Problem 2 have a

feasible solution, (x̄, ū), which are the interpolation coefficients given in (3.4)

and (3.5)?

2. Convergence: As N increases, does the sequence of optimal solutions, {(x̄†, ū†)},

to Problem 2 have a corresponding sequence of interpolating polynomials which

converges to a feasible solution of Problem 1? Namely,

lim
N→∞

(INx†, INu†) = (x, u)

3. Consistency: As N increases, does the convergent sequence of interpolating

polynomials corresponding to the optimal solutions of Problem 2 converge to

an optimal solution of Problem 1? Namely,

lim
N→∞

(INx†, INu†) = (x∗, u∗)

Remark 2. It is possible that Problem 1 has more than one optimal solution, i.e.,

there is more than one solution with the same optimal cost J(x∗, u∗) = J∗. Therefore,

to show that the sequence of discrete solutions converges to an optimal solution, we

can instead show that the cost of the discrete solution, J̄ , converges to the optimal

cost J∗.

Previous work has been done in the area of convergence of the pseudospectral method

and we aim to augment this literature with several key insights that make conver-

gence results applicable to a wider class of systems and relax the conditions on which

the current proofs are based. Rather complete analysis has been done for the class of

nonlinear systems which can be feedback linearized, including convergence rates [21].

We show below that ensemble quantum systems of interest do not fall within the class

of feedback linearizable systems. Work has also included general nonlinear systems,

but with the assumption that the solutions of the algebraic nonlinear programming

problem have a limit point (i.e., have a convergent subsequence) [22]. In the language

used above, this is very close to assuming “Convergence”, which in this presentation

we relax and prove Feasibility, Convergence, and Consistency directly. Finally, we

examine the convergence of the multidimensional pseudospectral method as applied
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to ensemble optimal control problems. In what follows we consider first the conver-

gence of the standard pseudospectral method and then discuss the convergence of the

ensemble case.

We first observe that ensemble control systems of interest are not feedback linearizable

[26], which motivates a need for a more general convergence proof. Consider the

bilinear Bloch equations in (4.3) without variation in rf inhomogeneity (i.e., ǫ = 1).

The ability to feedback linearize a general nonlinear system is given by the Lie algebra

generated by the drift and control vector fields (the conditions on this algebra must

hold for each control term individually; here we consider the case for u). In particular,

the terms ad0
ωΩz

Ωy = Ωy, ad1
ωΩz

Ωy = −ωΩx, ad2
ωΩz

Ωy = −ω2Ωy, . . ., and,

ad2k−1
ωΩz

Ωy = (−1)kω2k−1Ωx,

ad2k
ωΩz

Ωy = (−1)kω2kΩy,

where k = 1, 2, . . ., and ω is any value in the interval S ⊂ R. It is clear that this

Lie algebra, with increasing powers of the parameter ω, is never closed. Therefore,

the span of the appropriate Lie brackets is not involutive, which indicates that such

a system is not feedback linearizable.

5.1 Empirical Convergence

Here we present convergence results for the pseudospectral optimizations presented

in this paper. The convergence property is related to the conditions under which

a sequence of discretized optimization solutions, provided existing, converges to the

original optimal control solution as the number of nodes (discretizations) increases.

Since analytic convergence results are challenging to identify for general systems, we

first analyze the convergence numerically to guarantee that solutions do converge as

the number of nodes, N , increases.

The orthogonal polynomials of the pseudospectral method provide spectral conver-

gence rates similar to Fourier series approximations for periodic functions, which can

easily be seen in practice. Figure 5.1 demonstrates the characteristic convergence
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Figure 5.1: Numerical results are shown for the convergence of the pseudospectral
transfer efficiency to the optimal transfer efficiency in the cases of the polarization
transfer problems (4.8) for ξ = 1 (left), and (4.9) for ξa = 1 and ξc = 0.75 (right). The
error in these examples is the difference between the pseudospectral transfer efficiency
and the analytic optimal efficiency.
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Figure 5.2: The numerical convergence of the Bloch system is shown in both the time
and parameter domains. The performance of the optimal broadband π/2 pulse con-
verges to unity as the number of discretizations, N , or samples, Nω, independently get
large. (Parameter values: maximum rf amplitude = 20 kHz; bandwidth = [−20, 20]
kHz; duration = 100µs; fixed Nω = 8, left; fixed N = 30, right ).

of the pseudospectral method for optimal control, when implemented for the prob-

lems of polarization transfer given by (4.8) and (4.9). The error, when compared to

the analytic ROPE and CROP solutions, respectively, the error quickly decreases to

zero. Figure 5.2 shows the rapid convergence of the multidimensional pseudospectral

method in both the discretization (time) and sampling (parameter) dimensions for a

broadband π/2 pulse maximizing the terminal x value across the ensemble, see (4.4)

for α1 = 1, α2 = 0. As the order of discretization (N) and/or sampling (Ns) increase,

the method yields an objective (ϕ(T ) = Mx(T, ω, 1)) that converges to the maximum

value of unity. The low order of approximation is a characteristic of the orthogo-

nal approximations at the heart of the numerical method. Although such empirical

figures are convincing, we now show this convergence in a more rigorous fashion.

60



5.2 Preliminaries

The results in this section will provide the foundation on which we can analyze the

feasibility, convergence, and consistency of the pseudospectral approximation method

for optimal control problems. We begin by presenting several key established results

in polynomial approximation theory and the natural vector extensions. With these

inequalities, we are able then to prove feasibility and convergence. We define an op-

timal solution to Problem 1 as any feasible solution that achieves the optimal cost

J(x∗, u∗) = J∗. We use this definition of an optimal solution within the subsequent

preliminaries and the main result. To this end, the last lemma of this section intro-

duces the error in the cost due to interpolation.

Remark 3. Given Problem 1, x ∈ Hα
n (Ω). Since x(t) exists and f ∈ Cα−1

n , all the

derivatives x(k) ∈ C0
n, ∀ k = 0, 1, . . . , α exist and are square integrable on the compact

domain Ω, x(k) ∈ L2
n(Ω). Therefore, x ∈ Hα

n (Ω).

Lemma 1 (Interpolation Error Bounds [10], p. 289). If h ∈ Hα(Ω), the following

hold with c1, c2, c3, c > 0.

(a) The interpolation error is bounded,

‖h− INh‖2 ≤ c1N
−α‖h‖(α).

(b) The error between the exact derivative and the derivative of the interpolation is

bounded,

‖ḣ−DNh‖2 ≤ c2N
1−α‖h‖(α).

The same bound holds for the discrete L2(Ω) norm,

‖ḣ−DNh‖N ≤ c3N
1−α‖h‖(α).

(c) The error due to quadrature integration is bounded,

∣
∣
∣
∣

∫ 1

−1

h(t)dt−

N∑

k=0

h(tk)wk

∣
∣
∣
∣
≤ cN−α‖h‖(α),
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where tk is the kth LGL node and wk is the corresponding kth weight for LGL

quadrature.

Lemma 2. If h ∈ Hα
n (Ω), i.e., an n-vector valued Sobolev space, h = (h1 h2 . . . hn)T ,

hi ∈ Hα(Ω), i = 1, 2, . . . , n.

(a) The vector-valued extension of Lemma 1a is, by the triangular inequality on the

L2
n(Ω) norm,

‖h− INh‖2 ≤

n∑

i=1

‖hi − INhi‖2 ≤

n∑

i=1

ciN
−α‖hi‖(α).

(b) Similarly, 1b can be extended,

‖ḣ−DNh‖2 ≤

n∑

i=1

‖ḣ−DNh‖2 ≤

n∑

i=1

ciN
1−α‖hi‖(α)

≤ cN1−α,

which again also holds for the discrete L2
n(Ω) norm.

Proposition 1 (Feasibility). Given a solution (x, u) of Problem 1, then Problem 2

has a feasible solution, (x̄, ū), which are the corresponding interpolation coefficients.

Proof. Given the feasible solution (x, u), let (INx, INu) be the polynomial interpo-

lation of this solution at the LGL nodes. Our aim is to show that the coefficients

of this interpolation satisfy (5.7)-(5.9) of Problem 2. Consider the constraints im-

posed by the dynamics in (5.7). Because the discrete norm is evaluated only at the

interpolation points,

‖f(INx, INu)−DNx‖N = ‖f(x, u)−DNx‖N

= ‖ẋ−DNx‖N

≤ cdN
1−α

where the last step is given by Lemma 2b. Therefore, the interpolation coefficients

(x̄, ū) satisfy the dynamics of Problem 2 in (5.7). We can easily show that the path

62



constraints are also satisfied because g(x(t), u(t)) ≤ 0 for all t ∈ Ω by (5.4). Because

this holds for all t ∈ Ω, it also holds for all LGL nodes tk ∈ ΓLGL, i.e.,

g(x̄k, ūk) = g(x(tk), u(tk)) ≤ 0,

which gives (5.9). The endpoint constraints are trivially satisfied by the definition of

interpolation and the presence of interpolation nodes at both endpoints. Therefore,

(x̄, ū) is a feasible solution to Problem 2.

Proposition 2 (Convergence). Given the sequence of solutions to Problem 2, {(x̄, ū)}N ,

then the sequence of corresponding interpolation polynomials, {(INx, INu)}, has a

convergent subsequence, such that

lim
Nj→∞

(INx, INu) = (I∞x, I∞u),

which is a feasible solution to Problem 1.

Proof. Given that (x̄, ū) is a feasible solution of Problem 2, it satisfies (5.7)-(5.9). Our

goal is to show (i) that the sequence of solutions, {(INx, INu)}N , has a convergent

subsequence and (ii) that its limit is a feasible solution of Problem 1, satisfying (5.2)-

(5.4). We first show (ii) by the assumption of (i).

(ii) Explicitly writing out the discrete norm in (5.7) gives

(
N∑

k=0

n∑

i=1

(fi(INx, INu)−DNxi)
2(tk)

)1/2

≤ cdN
1−α.

Because f is continuous, it satisfies

lim
N→∞

(
fi(INx, INu)−DNx

)
(tk)

=
(
fi(I∞x, I∞u)− (I∞x)′

)
(tk) = 0,

therefore,
d

dt
(I∞x)(tk) = f(I∞x, I∞u)(tk), (5.11)

which states that (I∞x, I∞u) satisfies the dynamics in (5.2) at the interpolation

nodes. Moreover, as N →∞, the LGL nodes tk ∈ ΓLGL are dense in Ω, which further
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shows that (I∞x, I∞u) satisfies the dynamics of Problem 1 at all points on the interval

Ω. Similarly, one can prove that this solution satisfies the path constraints because

the LGL nodes become dense in Ω as N → ∞ and g(x̄k, ūk) = g(x(tk), u(tk)) ≤ 0

at all LGL nodes. Again, the endpoint constraints are met exactly because the LGL

grid has nodes at the endpoints.

(i) We now return to establish the existence of a convergent subsequence. The se-

quence {INx} is a sequence of bounded polynomials on a compact domain, therefore,

for each finite N , INx ∈ Hα
n (Ω). In the limit, we showed above in (5.11) that d/dt I∞x

matches f(I∞x, I∞u) across the entire interval so that I∞x ∈ Cα
n . With the bound-

edness of the interpolating polynomials and the compactness of Ω, Rellich’s Theorem

(cf., e.g., [17], p. 272) gives that there is a subsequence {INj
x} which converges in

Hα−1
n (Ω). The same is true for the control interpolating polynomial. Therefore, there

exists at least one limit point of the function sequence {(INx, INu)} which we denote

(I∞x, I∞u).

Lemma 3. Given (x, u), where x ∈ Hα
n (Ω) and u ∈ Hα

m(Ω), and the corresponding

interpolation coefficients, (x̄, ū), then the error in the cost functionals defined in (5.1)

and (5.6) due to interpolation is given by,

|J(x, u)− J̄(x̄, ū)| ≤ cN−α.

Remark 4. Notice that (x, u) and (x̄, ū) are not required to be a feasible solutions to

Problem 1 and 2, respectively. This result characterizes the error due to interpolation.

Proof. From (5.2) and (5.7) since ϕ(x(1)) = ϕ(x̄N ),

|J(x, u)− J̄(x̄, ū)| =

∣
∣
∣
∣

∫ 1

−1

L(x, u)dt−

N∑

k=0

L(x̄k, ūk)wk

∣
∣
∣
∣
.

Since L ∈ Cα, x ∈ Hα
n (Ω), and u ∈ Hα

m(Ω), the composite function L̃(t) = L(x(t), u(t)) ∈

Hα(Ω). Let Lk = L(x̄k, ūk). Substituting these definitions and employing Lemma 1c,

we obtain
∣
∣
∣
∣

∫ 1

−1

L̃(t)dt−
N∑

k=0

Lkwk

∣
∣
∣
∣
≤ cN−α‖L̃(t)‖(α).

Because L̃ ∈ Hα(Ω), ‖L̃(t)‖(α) is bounded, from which the result follows.
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5.3 Main Result

Theorem 2 (Consistency). Suppose Problem 1 has an optimal solution (x∗, u∗).

Given a sequence of optimal solutions to Problem 2, {(x̄†, ū†)}N , then the corre-

sponding sequence of interpolating polynomials, {(INx†, INu†)}N , has a limit point,

(I∞x†, I∞u†) which is an optimal solution to the original optimal control problem.

Proof. We break the proof into four sections, employing the results from the previous

section.

(i) By Proposition 1, since (x∗, u∗) is a solution to Problem 1, then for each choice

of N , the corresponding interpolation coefficients, (x̄∗, ū∗), are a feasible solution to

Problem 2. By the definition of optimality of (x̄†, ū†),

J̄(x̄†, ū†) ≤ J̄(x̄∗, ū∗). (5.12)

(ii) By Proposition 2, the limit point of the polynomial interpolation of the discrete

optimal solution to Problem 2, limN→∞(INx†, INu†) = (I∞x†, I∞u†), is a feasible

solution of Problem 1. Therefore, we have, by the definition of the optimality of

(x∗, u∗) and the continuity of J ,

J(x∗, u∗) ≤ lim
N→∞

J(INx†, INu†) (5.13)

= J(I∞x†, I∞u†).

(iii) Using Lemma 3, we can bound the error in the cost between the optimal solution

of Problem 1, (x∗, u∗), and the corresponding interpolating coefficients, (x̄∗, ū∗), as

|J(x∗, u∗)− J̄(x̄∗, ū∗)| ≤ c1N
−α. (5.14)

Similarly, we can bound the error in the cost between the optimal solution of Problem

2, (x̄†, ū†), and the polynomial interpolation of this solution, (INx†, INu†), as

|J(INx†, INu†)− J̄(x̄†, ū†)| ≤ c2N
−α. (5.15)
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Recall that Lemma 3 does not require (INx†, INu†) to be a feasible solution of Problem

1. From (5.14) and (5.15),

lim
N→∞

J̄(x̄∗, ū∗) = J(x∗, u∗), (5.16)

lim
N→∞

[
J(INx†, INu†)− J̄(x̄†, ū†)

]
= 0. (5.17)

(iv) We are now ready to assemble the various pieces of this proof. Combining (5.16)

and (5.12) we have,

lim
N→∞

J̄(x̄†, ū†) ≤ lim
N→∞

J̄(x̄∗, ū∗) = J(x∗, u∗).

Adding the result from (5.13),

lim
N→∞

J̄(x̄†, ū†) ≤ J(x∗, u∗) ≤ lim
N→∞

J(INx†, INu†). (5.18)

Since the difference between the left and right sides, as given by (5.17), decreases to

zero as N → ∞, the quantities J̄(x̄†, ū†) and J(INx†, INu†) converge to J(x∗, u∗),

i.e.,

0 ≤ lim
N→∞

[
J(x∗, u∗)− J̄(x̄†, ū†)

]

≤ lim
N→∞

[
J(INx†, INu†)− J̄(x̄†, ū†)

]
= 0.

Thus the optimal discrete cost J̄(x̄†, ū†) of Problem 2 and the continuous cost J(INx†, INu†)

of the corresponding interpolation polynomials converge to the optimal cost J(x∗, u∗)

of Problem 1. Moreover, (I∞x†, I∞u†) is a feasible solution to Problem 1 and achieves

the optimal cost. Therefore, (I∞x†, I∞u†) is an optimal solution to Problem 1.

5.4 Ensemble Extension

Ensemble Control pertains to the study of a continuum of dynamical systems of the

form [39],
d

dt
x(t, s) = F

(
t, s, x(t, s), u(t)

)
, (5.19)
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which is indexed by a parameter vector that exhibits variation within an interval,

s ∈ S ⊂ R
d but controlled by the open loop input u(t). Such systems arise from

environmental interactions, uncertainty, or inherent variability that induces inho-

mogeneity in the characteristic parameters of the dynamics. An optimal ensemble

control problem is formulated by replacing the dynamics with the ensemble dynamics

in (5.19) and the cost with,

J =
(∫

S

ϕ(x(1, s)) +

∫ 1

−1

L(x(t, s), u(t)) dt
)

ds, (5.20)

and the end and path constraints are extended in a straightforward manner. The

method employs d + 1 dimensional interpolating polynomials to represent x and u

with the approximate dynamics (compare to (3.7)) given by [56],

d

dt
IN×Ns1

×···×Nsd
x(t, sj) =

N∑

k=0

Dikx̄kj1...jd
, (5.21)

where s = (s1, s2, . . . , sd)
′ ∈ S ⊂ R

d. This extension hinges upon the lack of time

dependence in the new dimensions of the problem (d parameter dimensions). Propo-

sitions 1 and 2 can then be extended in a straightforward manner by incorporating

additional dynamics constraints that act in parallel. Lemma 3 will include gaussian

quadrature approximations of both the s and t integrals. With these limited mod-

ifications, the approach above guarantees the convergence of the multidimensional

pseudospectral method applied to optimal ensemble control problems.
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Chapter 6

Conclusions

This thesis has presented a computational framework for optimal control of inhomo-

geneous ensembles. A framework implies an approach that includes interconnected

components of theory, computation, and application. In this work the innovations

in computation are mutually motivated by theory and application creating a system-

atic and mathematically directed implementation of control and systems theory to

applications in the natural sciences and engineering.

We began by motivating the study of inhomogeneous ensembles through applications

arising in - but not limited to - the control of quantum, biological, and uncertain

systems. These large-scale complex systems can be best modeled as a family of dy-

namical systems, which are structurally similar, but exhibit variation in characteristic

parameters. In these applications direct control of each sub-member is not possible

and only a single global control is available to steer these systems along a desired

state evolution. Moreover, it is either expensive or infeasible to observe the full-state

for feedback control. Practical problems for these applications yield a novel optimal

ensemble control problem to design open-loop controls to minimize an adapted Bolza

cost functional subject to the dispersive dynamics of the ensemble system. Solving

such optimal ensemble control problems is, in general, analytically intractable, which

requires us to develop a robust computational approach.

In the review of ensemble control literature we indicated that the controllability analy-

sis of ensemble Bloch systems was based on the concept of polynomial approximation.

This dependence on polynomial approximation is then reflected in the pseudospectral

computational method chosen, adapted, and developed to solve optimal ensemble con-

trol problems. This method employs both orthogonal and interpolating polynomial
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expansions to represent and discretize the states and controls of the continuous-time

optimal control problem. The method approximates the original problem with a

nonlinear programming problem, which can be solved with any choice of nonlinear

optimization solver.

We then presented several results from the control of quantum systems that highlight

the ease and effectiveness of the computational framework. In problems of broad-

band excitation and inversion, modeled by the inhomogeneous Bloch equations, we

designed several high performing controls, or pulses, that were faithfully reproduced

in experiments for NMR in liquids. When a single inversion pulse was incorporated

in a real protein experiment (HSQC 2D spectra), the sensitivity enhancement was

20 times higher than conventional methods. In relaxation optimized quantum sys-

tems we were able to recover very closely the analytically derived optimal efficiency

of polarization transfer.

We then outlined a novel proof for the convergence of the pseudospectral method for

general systems. A convergence proof and rates had, prior to our work, only been

available for certain classes of systems, which did not include the bilinear form of

quantum control problems. We generalize the approach for this analysis by showing

that the sequence of solutions to the nonlinear programming problem created by the

multidimensional pseudospectral approximations, as the order of approximation (N)

increases, converges to the optimal solution of the original optimal control problem.

6.1 Future Work

Ensemble control is a very new area of research and promises to deliver advancements

in systems and control theory as well as to a wide variety of applications across science

and engineering.

Ensemble controllability has been studied for bilinear systems, as arising from the

control of quantum systems, and time-varying linear systems. The approaches taken

for these two classes of systems are substantially different and suggests that the further

analysis for general nonlinear systems will require a new techniques and fundamental
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theory. In addition the notion of approximate controllability and reachable sets are

of particular interest in the case where full state-space controllability is unavailable.

There are also many avenues of future research to explore in the area of computational

methods for ensemble control. Even within the class of spectral and pseudospectral

methods, the choice of orthogonal function family and interpolation nodes can make

a difference in the effectiveness of a method. There are opportunities to develop

approaches based on new geometries, such as spherical spectral methods for optimal

ensemble control.

One of the most exciting frontiers of ensemble control is the wide array of new ap-

plications. In biological systems, we find ensembles of interconnected entities, which

inspires new theoretical analysis of connected inhomogeneous ensembles. The con-

trol of uncertain systems with ensemble control can contribute to, for example, flight

control and robotic manufacturing. As we push the limits of our understanding of

large-scale nano- and micro-leveled systems, ensemble control will continue to find

new areas of application and the practical constraints of these systems will require a

strong computational framework based on optimal control of inhomogeneous ensem-

bles.
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Appendix A

Pseudospectral Method

Supplement

A.1 Orthogonal Polynomials

Given a non-negative weight function w(t) ≥ 0,
∫ b

a
w(t)dt > 0, and a weighted inner

product f, g ∈ L2
w(a, b),

〈f, g〉w =

∫ b

a

f(t)g(t)w(t)dt,

it is possible to create an orthogonal basis, {φk}, using the Gram-Schmidt process,

i.e.,

〈φi, φj〉w ∝ δij .

Furthermore, orthogonalizing the non-negative powers of t yields a set of orthogonal

polynomials,

(1, t, t2, . . . , tN ; w(t))⇒ {pk}

where pk ∈ PN. Legendre polynomials, {Lk(t)}, are derived with unit weight function,

w(t) = 1. Therefore, the Gram-Schmidt process for the Legendre polynomials is given

by L0(t) = 1 and

Lk(t) = tk −
k−1∑

i=0

〈tk, Li(t)〉

〈Li(t), Li(t)〉
︸ ︷︷ ︸

project tk onto Li(t)

Li(t) = tk −
k−1∑

i=0

∫ 1

−1
tkLi(t)dt

∫ 1

−1
L2

i (t)dt
Li(t)
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for k > 0. A different orthogonal polynomial family would use a different weight, w,

but the process would be similar.

A.2 Legendre Polynomial Properties for Optimal

Control

Recall that the ability of spectral methods to convert a differential equation into an

algebraic equation is the feature which makes them powerful tools for problems such

as those of optimal control. Legendre polynomials, Lk(t), obey a recursion relation,

Lk+1(t) =
2k + 1

k + 1
tLk(t)−

k

k + 1
Lk−1(t) (A.1)

and also the differential relation,

[(1− t2)L′
k(t)]

′ + k(k + 1)Lk(t) = 0 (A.2)

These two relations illustrate how for function x expanded in terms of Lk, we can

express x′(t) = ẋ in terms of Lk as well - rather than in terms of L′
k. Hence, ẋ = f(x)

is now an algebraic equation since both sides can be written as an expansion using

Lk as basis functions. Other useful properties of Legendre polynomials are

Lk(±1) = (±1)k (A.3)

L′
k(±1) =

(±1)k+1k(k + 1)

2
(A.4)
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A.3 Lagrange Interpolating Polynomials

Any interpolating polynomial can be represented by the Lagrange polynomial basis.

The kth Lagrange polynomial is characterized by taking unit value at the kth inter-

polation node and zero at all other nodes, which is effectively a shifted Kronecker

delta function, i.e. ℓk(ti) = δki. The Lagrange polynomials can be written in several

ways, but the most transparent is the following fractional product of the interpolation

nodes,

ℓk(t) =
(t− t0) · · · (t− tk−1)(t− tk+1) · · · (t− tN )

(tk − t0) · · · (tk − tk−1)(tk − tk+1) · · · (tk − tN)
(A.5)

=
N∏

i=0

i6=k

(t− ti)

(tk − ti)
. (A.6)

A.4 Optimal Interpolation Nodes

The optimality of a specific choice of interpolation nodes can been quantified by

||x− INx||∞ ≤ (1 + ΛN(Γ))||x− p∗N(x)||∞ , (A.7)
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1

Figure A.1: Interpolation approximations of the function f(t) = 1/(16t2 + 1) using
an LGL and uniform grid, respectively, with N = 16.
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Figure A.2: The dramatic difference in interpolation error apparent in the Lebesgue
constant for interpolations based on LGL and uniform grids.

where p∗N(x) is the best approximating polynomial with respect to the uniform norm

and ΛN(Γ) is the Lebesgue constant defined by

ΛN(Γ) = max
t∈[−1,1]

N∑

k=0

|ℓk(t)| , (A.8)

with ℓk(t) the kth Lagrange polynomial for the interpolation grid Γ. The Lebesgue

constant, then, gives the maximum cumulative excursion from zero of the Lagrange

polynomial family along the time axis. An example for the characteristically difficult

function

f(t) =
1

16t2 + 1
,

is shown in terms of the interpolation (Figure A.1) and Lebesgue constant (Figure

A.2).

Although a closed form for the Lebesgue constant is not in the literature, as N →∞

the Chebychev-Gauss grid (close to the LGL nodes) yields,

ΛN(ΓCG) =
2

π
log N +

2

π

(

γ + log
8

π
−

2

3

)

+ O
( 1

log N

)
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which in this limit is asymptotic to the Lebesgue constant of the optimal interpolation

grid [62],

ΛN(ΓCG) =
2

π
log N +

2

π

(

γ + log
4

π

)

+ O

(( log log N

log N

)2
)

.

A.5 Lagrange Polynomial written in terms of Leg-

endre Polynomial

Define w(t) =
∏N

i=0(t− ti). Taking the derivative,

w′(t) =

N∑

k=0

N∏

i=0

i6=k

(t− ti) ⇒ w′(tk) =

N∏

i=0

i6=k

(tk − ti) (A.9)

We can now express (A.5) from Appendix A.3 as,

ℓk(t) =
w(t)

(t− tk)w′(tk)
(A.10)

Recall that the LG nodes (LGL nodes excluding the endpoints) {t1, . . . , tN−1} are

zeros of L′
N (t), therefore L′

N (t) = (t − t1) . . . (t − tN−1). We can then write w(t) in

terms of the N degree Legendre polynomial.

w(t) = (t− t0) (t− t1) . . . (t− tN−1)
︸ ︷︷ ︸

L′
N

(t)

(t− tN )

= (t2 − 1)L′
N(t) (A.11)

Combining (A.11) with the Legendre derivative relation (A.2) from Appendix A.2,

w′(tk) = [(t2k − 1)L′
N (tk)]

′ = N(N + 1)LN(tk) (A.12)
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Substituting (A.11) and (A.12) into (A.10) we yield an expression for the Lagrange

interpolating functions in terms of the Legendre polynomials.

ℓk(t) =
1

N(N + 1)LN(tk)

(t2 − 1)L′
N(t)

t− tk

Once we have the Lagrange polynomials in terms of the Legendre polynomials we can

analytically compute the weights for LGL quadrature integration,

wk =

∫ 1

−1

ℓk(t)dt =
2

N(N + 1)

1

[LN (tk)]2
, i = 0, 1, . . . , N. (A.13)

A.6 Derivative Matrix

Dik = ℓ̇k(ti) is an (N + 1) × (N + 1) matrix. Taking the time derivative of (3.6),

and using the Legendre relation (A.2) from Appendix A.2 for the derivative of the

numerator yields,

[ ∂

∂t
ℓk(t)

]

t=ti
=

1

N(N + 1)LN(tk)

[
N(N + 1)LN (ti)

ti − tk
−

(t2i − 1)L′
N(ti)

(ti − tk)2

]

(A.14)

For any i 6= k, the second term in the brackets is zero, since t = ti is a zero of

(t2 − 1)L′
N(t). Canceling terms, yields the first component of the derivative matrix

in (3.8). For i = k, we utilize l’Hopital’s rule for each term (we use the rule twice for

the second term).

lim
t→tk

N(N + 1)LN(t)

(t− tk)
= lim

t→tk

N(N + 1)L′
N (t)

1
= N(N + 1)L′

N(tk) (A.15)
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lim
t→tk

(t2 − 1)L′
N (t)

(t− tk)2
= lim

t→tk

N(N + 1)LN(t)

2(t− tk)
= lim

t→tk

N(N + 1)L′
N (t)

2
=

N(N + 1)L′
N (tk)

2
(A.16)

For i = k 6= 0, N , L′
N(tk) = 0 which indicates that ℓ̇k(tk) = 0 if k 6= 0, N . Substituting

the values of LN (±1) and L′
N (±1) given by equations (A.3-A.4) in Appendix A.2 and

combining these two terms,

∂ℓk(tk)

∂t
= (±1)

N(N + 1)

4
k ∈ {0, N} (A.17)

Therefore, the elements of D are as given in (3.8),

Dik =







LN (ti)
LN (tk)

1
ti−tk

i 6= k

−N(N+1)
4

i = k = 0

N(N+1)
4

i = k = N

0 otherwise.

The matrix D is the first differentiation matrix. Optimal control requires only the

first derivative, as the differential equation is of order 1. Similar expressions can be

computed for second, third, etc. differentiation matrices.
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Appendix B

AMPL Examples

B.1 Single Spin Bloch Optimization

Problem Definition: max x(T ), T = π/2, subject to u(t)2 + v(t)2 ≤ 1, t ∈ [0, T ]

and

d

dt






x

y

z




 =






0 0 u

0 0 −v

−u v 0











x

y

z




 ,






x(0)

y(0)

z(0)




 =






0

0

1




 . (B.1)

param N > 0 integer;

param A > 0;

param T > 0;

param x0;

param y0;

param z0;

set nodes := 1..(N+1);

param D {nodes,nodes};

var x {nodes} >= -1, <= 1;

var y {nodes} >= -1, <= 1;

var z {nodes} >= -1, <= 1;
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var u {nodes} >=-A, <=A;

var v {nodes} >=-A, <=A;

maximize cost: x[N+1];

subject to dynamics_x {t in nodes}:

u[t]*z[t] = (2/T)*(sum{k in nodes} D[t,k]*x[k]);

subject to dynamics_y {t in nodes}:

-v[t]*z[t] = (2/T)*(sum{k in nodes} D[t,k]*y[k]);

subject to dynamics_z {t in nodes}:

-u[t]*x[t] + v[t]*y[t] = (2/T)*(sum{k in nodes} D[t,k]*z[k]);

subject to initialConditions_x: x[1] = x0;

subject to initialConditions_y: y[1] = y0;

subject to initialConditions_z: z[1] = z0;

subject to amplitudeBound {t in nodes}: u[t]^2+v[t]^2 <= A^2;

data;

param N := 10;

param A := 1;

param T := pi/2;

param x0 := 0;

param y0 := 0;

param z0 := 1;

param D :

1 2 3 4 5 6 7 8 9 10 11 :=

1 -27.50 37.20 -14.88 8.49 -5.64 4.06 -3.06 ...

2 -6.17 0.00 8.73 -4.07 2.53 -1.77 1.31 ...

3 1.44 -5.11 0.00 5.25 -2.53 1.61 -1.14 ...
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4 ...

5 ...

6 ...

7 ...

8 ...

9 ...

10 ...

11 0.50 -1.26 1.79 -2.35 3.06 -4.06 5.64 ...

;

B.2 Broadband Spin Bloch Optimization

Problem Definition: max
∫

S
x(T, ω)dω, 0 ≤ T ≤ 2π, S = [−1, 1] subject to

u(t)2 + v(t)2 ≤ 1, t ∈ [0, T ],

d

dt






x(t, ω)

y(t, ω)

z(t, ω)




 =






0 −ω u

ω 0 −v

−u v 0











x(t, ω)

y(t, ω)

z(t, ω)




 ,






x(0, ω)

y(0, ω)

z(0, ω)




 =






0

0

1




 . (B.2)

param N > 0 integer;

param Nw > 0 integer;

param A > 0;

param B > 0;

param Tmax > 0;

param x0;

param y0;

param z0;

set states := 1..3;

set nodes := 1..(N+1);

set dispersion := 1..(Nw+1)
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param D {nodes,nodes};

param w {dispersion};

param wwts {dispersion};

var T >= 0 <= Tmax;

var M {states,dispersion,nodes} >= -1, <= 1;

var u {nodes} >=-A, <=A;

var v {nodes} >=-A, <=A;

maximize cost: ((2*B)/2)*(sum{i in dispersion} M[1,i,N+1]*wwts[i]);

subject to dynamics_x {i in dispersion, t in nodes}:

-w[i]*M[2,i,t] + u[t]*M[3,i,t]

= (2/T)*(sum{k in nodes} D[t,k]*M[1,i,k]);

subject to dynamics_y {i in dispersion, t in nodes}:

w[i]*M[1,i,t] - v[t]*M[3,i,t]

= (2/T)*(sum{k in nodes} D[t,k]*M[2,i,k]);

subject to dynamics_z {i in dispersion, t in nodes}:

-u[t]*M[1,i,t] + v[t]*M[2,i,t]

= (2/T)*(sum{k in nodes} D[t,k]*M[3,i,k]);

subject to initialConditions_x {i in dispersion}:

M[1,i,1] = x0;

subject to initialConditions_y {i in dispersion}:

M[2,i,1] = y0;

subject to initialConditions_z {i in dispersion}:

M[3,i,1] = z0;

subject to amplitudeBound {t in nodes}: u[t]^2+v[t]^2 <= A^2;

data;
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param N := 10;

param Nw := 4;

param A := 1;

param B := 1;

param Tmax := 2*pi;

param x0 := 0;

param y0 := 0;

param z0 := 1;

param w :=

1 -1

2 -0.5

3 0

4 0.5

5 1

;

param wwts :=

1 0.1

2 0.54

3 0.71

4 0.54

5 0.1

;

param D :

...

;
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Appendix C

Bloch Equations

The Bloch equations without relaxation, Ṁ = M × γBeff, utilizes the classical

description of interacting electromagnetic forces, where M is the spin magnetiza-

tion vector, γ is the gyromagnetic ratio, the effective externally applied field is

Beff = (B1 cos(ω0t + φ), B1 sin(ω0t + φ), B0)
′, B1(t) and B0 are the amplitudes of the

applied fields in the transverse plane and z direction respectively, and φ(t) is the phase

angle [15]. Conventionally, the fields are given as frequencies γBeff = (ω1x, ω1y, ω0)

and measured in units of Hertz. Using the generators of rotation,

Ωx =






0 0 0

0 0 −1

0 1 0




 Ωy =






0 0 1

0 0 0

−1 0 0




 Ωz =






0 −1 0

1 0 0

0 0 0






the Bloch equations are be given by

d

dt
M(t) =

[

ω0Ωz + ω1y(t)Ωy + ω1x(t)Ωx

]

M(t). (C.1)

If we consider variation in the applied electromagnetic fields B0 and B1, we can

express (C.1) in matrix form,
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d

dt






Mx(t, ω, ǫ)

My(t, ω, ǫ)

Mz(t, ω, ǫ)






=






0 −(ω0 + ω) ǫω1 sin(ω0t + φ)

ω0 + ω 0 −ǫω1 cos(ω0t + φ)

−ǫω1 sin(ω0t + φ) ǫω1 cos(ω0t + φ) 0











Mx(t, ω, ǫ)

My(t, ω, ǫ)

Mz(t, ω, ǫ)






where ω ∈ [−β, β] and ǫ ∈ [1− δ, 1 + δ], 0 ≤ δ ≤ 1. For calculation and computation,

it is useful to transform the Bloch equations into the so-called rotating frame and

normalize the system by a nominal pulse amplitude A0 to yield a dimensionless equa-

tion. Solutions based on the dimensionless equation can then be scaled for a specific

choice of nominal amplitude. Consider a transformation M = exp(−ω0Ωzt)M. In

addition we scale time with τ = A0t. It is straightforward to show that the new state

equation is given by,

d

dτ
M(τ, ω, ǫ) =

[

ωΩz + ǫu(τ)Ωy + ǫv(τ)Ωx

]

M(τ, ω, ǫ),

where τ ∈ [0, AT × 2π], ω ∈ [−B, B], B = β/A0, and

u(τ) =
γB1(τ/A0)

A0
cos
(
φ(τ/A0)

)
v(τ) =

γB1(τ/A0)

A0
sin
(
φ(τ/A0)

)
,

(all dimensionless). Note the 2π factor in the time scaling is introduced to convert

from units of Hertz to radians/second. Designing the time-varying controls u(τ) and

v(τ) is equivalent to the original design of amplitude B1(t) and phase φ(t).

C.1 Conversion

To be absolutely clear regarding the normalization of the Bloch equation and how

to easily convert between physically meaningful parameter values and those used for

computation, below is a conversion guide. In most cases the nominal amplitude A0

is chosen as the maximum amplitude.
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→ Given real values corresponding to maximum amplitude, A (Hz); half band-

width, B (Hz); and duration T (s),

Ã = A/A0

B̃ = B/A0

T̃ = T ∗ A0 × 2π

← Given normalized dimensionless values corresponding to maximum amplitude,

Ã; half bandwidth, B̃; and duration T̃ ,

A = Ã ∗ A0

B = B̃ ∗ A0

T =
T̃

2πA0
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