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ABSTRACT OF THE DISSERTATION

Reconstruction Algorithms for Novel Joint Imaging Techniques in PET

by

Homayoon Ranjbar

Doctor of Philosophy in Engineering

Washington University in St. Louis, December 2017

Research Advisors: Joseph A. O’Sullivan and Yuan-Chuan Tai

Positron emission tomography (PET) is an important functional in vivo imaging modality

with many clinical applications. Its enormously wide range of applications has made both

research and industry combine it with other imaging modalities such as X-ray computed

tomography (CT) or magnetic resonance imaging (MRI). The general purpose of this work

is to study two cases in PET where the goal is to perform image reconstruction jointly on

two data types.

The first case is the Beta-Gamma image reconstruction. Positron emitting isotopes, such as

11C, 13N, and 18F, can be used to label molecules, and tracers, such as 11CO2, are delivered to

plants to study their biological processes, particularly metabolism and photosynthesis, which

may contribute to the development of plants that have higher yield of crops and biomass.

Measurements and resulting images from PET scanners are not quantitative in young plant

structures or in plant leaves due to low positron annihilation in thin objects. To address

this problem we have designed, assembled, modeled, and tested a nuclear imaging system

(Simultaneous Beta-Gamma Imager). The imager can simultaneously detect positrons (β+)

xii



and coincidence-gamma rays (γ). The imaging system employs two planar detectors; one is a

regular gamma detector which has a LYSO crystal array, and the other is a phoswich detector

which has an additional BC-404 plastic scintillator for beta detection. A forward model

for positrons is proposed along with a joint image reconstruction formulation to utilize the

beta and coincidence-gamma measurements for estimating radioactivity distribution in plant

leaves. The joint reconstruction algorithm first reconstructs the beta and gamma images

independently to estimate the thickness component of the beta forward model, and then

jointly estimates the radioactivity distribution in the object. We have validated the physics

model and the reconstruction framework through a phantom imaging study and imaging

a tomato leaf that has absorbed 11CO2. The results demonstrate that the simultaneously

acquired beta and coincidence-gamma data, combined with our proposed joint reconstruction

algorithm, improved the quantitative accuracy of estimating radioactivity distribution in thin

objects such as leaves. We used the Structural Similarity (SSIM) index for comparing the

leaf images from the Simultaneous Beta-Gamma Imager with the ground truth image. The

jointly reconstructed images yield SSIM indices of 0.69 and 0.63, whereas the separately

reconstructed beta alone and gamma alone images had indices of 0.33 and 0.52, respectively.

The second case is the virtual-pinhole PET technology, which has shown that higher res-

olution and contrast recovery can be gained by adding a high resolution PET insert with

smaller crystals to a conventional PET scanner. Such enhancements are obtained when the

insert is placed in proximity of the region of interest (ROI) and in coincidence with the

conventional PET scanner. Intuitively, the insert may be positioned within the scanner’s

axial field-of-view (FOV) and radially closer to the ROI than the scanner’s ring. One of

the complicating factors of this design is the insert’s blocking the scanner’s lines-of-response

(LORs). Such data may be compensated through attenuation and scatter correction in image

reconstruction. However, a potential solution is to place the insert outside of the scanner’s

xiii



axial FOV and to move the body to be in proximity of the insert. We call this imaging

strategy the surveillance mode. As the main focus of this work, we have developed an im-

age reconstruction framework for the surveillance mode imaging. The preliminary results

show improvement in spatial resolution and contrast recovery. Any improvement in contrast

recovery should result in enhancement in tumor detectability, which will be of high clinical

significance.

xiv



Chapter 1

Background

1.1 Positrons

Proton-rich isotopes such as 18F and 11C decay via positron emission, in which a proton in

the nucleus decays to a neutron, a positron, and a neutrino.

18
9 F →18

8 O + β+ + νe (1.1)

Equation 1.1 shows the positron-decay products of 18F.

The positron (β+) is the antiparticle counterpart of the electron; it has the same mass as the

electron and has the same electric charge as the electron but with positive sign. The positron

has some initial kinetic energy right after the nuclear decay. This kinetic energy is not a

single value but has a spectrum that is referred to as the beta energy spectrum. See Figure

1.1 for the theoretical energy spectra of some of the useful positron-emitting radionuclides.

For positrons with emission energy in the range of 10 − 10000 keV, they lose their kinetic

energy mainly by interacting with the atomic electrons of the surrounding medium. The

distance a positron travels before coming to a full stop, is referred to as positron range.

When a positron collides with an electron, it will annihilate and will produce two 511-keV

back-to-back gamma rays:

β+ + e− → γ + γ
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Figure 1.1. Theoretical positron emission energy spectra ([85]). Values are analyti-
cally calculated based on the method presented in [118]
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If the momentum of the positron, at the time of collision, is not zero then the angle between

the two gamma rays will be less than 180°. This discrepancy is referred to as annihilation non-

collinearity. Positron range and annihilation non-collinearity cause uncertainty for localizing

the origin of the radioactive decay.

1.2 Positron Emission Tomography

Positron Emission Tomography (PET) is a nuclear imaging technique. The first PET scanner

was developed by a group of scientists at Washington University School of Medicine [103, 86],

supposedly to improve the limitations attributed to previously existing nuclear medicine

imaging techniques, such as low contrast, low resolution, and non-uniformity of the system

response.

Modern PET scanners consist of multiple rings stacked in the axial direction or equivalently

of sectors arranged concentrically. Each ring consists of modular detectors, and each module

consists of an array of crystals, as depicted schematically in Figure 1.2.

The radiopharmaceutical used for a PET scan, is a chemical compound labeled with a

positron-emitting radionuclide such as 18F. The radionuclide decays and the emitted positron

annihilates with an electron, which produce two back-to-back gamma rays. If both of the

gamma rays hit a pair of opposing detectors of the scanner within a pre-defined time window

(typically a few nano seconds) then a coincidence event is registered and recorded as one

piece of measurement. After a particular period of data acquisition (e.g. 15 to 20 minutes),

the measurements are sorted and fed into the image reconstruction software (computer) to

create an image volume which is called a PET scan image (Figure 1.3).

Additional to its applications in a wide range of research (neuropsychiatry, cardiology, phar-

macy, etc.), PET’s major clinical application is in cancer diagnosis. Prior to a PET scan, a

radiopharmaceutical such as fluorodeoxyglucose (18F-FDG) is injected to the patient. 18F-

FDG is a glucose analog. Since cancerous cells have defective metabolic pathway, they

consume glucose as their primary energy source, and therefore, take up more FDG than the

normal cells under fasting condition. This contrast in the uptake value between the normal

3



Figure 1.2. Simplified schematic of the elements of a 52-ring PET scanner geometry

Figure 1.3. Simplified schematic of a PET scan data acquisition and image reconstruction

4



Table 1.1. Notations

Symbols Denoting
I Data space (i ∈ I)
J Image space (j ∈ J)
d Data
v Image intensity
di Data at the i-th data space unit
vj Image intensity at the j-th image space unit
H System matrix

and the canerous cells, is recovered in the PET image, making it possible to detect and

localize the tumors.

There is another nuclear medicine imaging modality called Single-Photon Emission Com-

puted Tomography (SPECT) that can provide metabolic and functional information like

PET. SPECT scanners are less expensive than PET scanners and require gamma emitting

radioisotopes such as 123I, 131I, and 99mTc. However, the contrast and spatial resolution of

SPECT images are inferior to those of PET images.

1.3 Image Reconstruction

1.3.1 Filtered Back-projection

In tomographic data acquisition, measurements are typically made from all angles in a 2π-

radian span. A widely-used realization of such acquisition is to define the measurements

in terms of line integrals that are indexed by an angle (θ) and a distance variable (s). If

the object function is defined as f(x, y) and the projection view is along the s-axis which is

rotated θ degrees counter-clock wise with respect to the x-axis.

x = r cos (θ + φ) = r cos θ cosφ− r sin θ sinφ = s cos θ − t sin θ

y = r sin (θ + φ) = r sin θ cosφ+ r cos θ sinφ = s sin θ + t cos θ

5



Where:

r2 = x2 + y2 = s2 + t2

Equivalently:

(s, t) = (x cos θ + y sin θ,−x sin θ + y cos θ) (1.2)

The projection of the 2-D function f(x, y) along the projection view, i.e. s-axis, is defined

by the projection function pθ(s):

pθ(s) =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ (s− (x cos θ + y sin θ)) dxdy

which can be written as:

pθ(s) =

∫ +∞

−∞
f (s cos θ − t sin θ, s sin θ + t cos θ) dt (1.3)

Equation 1.3 is a very useful operator in imaging science and is called Radon Transform.

In order to derive the filtered back-projection equation, we need to clearly note a fundamental

theorem:

Theorem 1 (Projection Slice Theorem). The 2-D Fourier transform of a 2-D function, if

sampled along a projection view in frequency domain, is equal to the 1-D Fourier transform

of the projection of the 2-D function along the projection view in space domain.

Proof. Now, let us consider the 2-D Fourier transform of the 2-D fucntion f(x, y):

F (kx, ky) =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−j2π(xkx+yky)dxdy

In order to sample the 2-D Fourier transform along the projection view in frequency domain,

we have:

kx = ρ cos θ
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ky = ρ sin θ

Thus:

F (ρ cos θ, ρ sin θ) =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−j2π(xρ cos θ+yρ sin θ)dxdy

=

∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−j2πρ(x cos θ+y sin θ)dxdy

By changing the coordinate system from (x, y) to (s, t), we will have:

F (ρ cos θ, ρ sin θ) =

∫ +∞

−∞

∫ +∞

−∞
f (s cos θ − t sin θ, s sin θ + t cos θ) e−j2πρsdsdt

Change the order of integrals and take out the exponential:

F (ρ cos θ, ρ sin θ) =

∫ +∞

−∞
e−j2πρs

(∫ +∞

−∞
f (s cos θ − t sin θ, s sin θ + t cos θ) dt

)
ds

Using 1.3:

F (ρ cos θ, ρ sin θ) =

∫ +∞

−∞
e−j2πρspθ(s)ds

= F1D {pθ(s)}

From the Fourier analysis we have: f(x, y) = F−1
2D{F2D{f(x, y)}}. Therefore we will have:

f(x, y) =

∫ +∞

−∞

∫ +∞

−∞
F (kx, ky)e

+j2π(xkx+yky) dkx dky

Changing the integral variable from Cartesian coordinate system to polar coordinate system,

i.e (kx, ky)→ (ρ, θ):

f(x, y) =

∫ 2π

0

∫ +∞

0

F (ρ cos θ, ρ sin θ)e+j2πρ(x cos θ+y sin θ)ρ dρ dθ
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Breaking down the above integral into four integrals, i.e.
∫ π

2

0
,
∫ π
π
2
,
∫ 3π

2

π
,
∫ 2π

3π
2

, we will then

have:

f(x, y) =

∫ π

0

∫ +∞

−∞
F (ρ cos θ, ρ sin θ)e+j2πρ(x cos θ+y sin θ)|ρ| dρ dθ

From Equation 1.2:

f(x, y) =

∫ π

0

∫ +∞

−∞
F (ρ cos θ, ρ sin θ)e+j2πρs|ρ| dρ dθ (1.4)

Equation 1.4 is the filtered back-projection equation. Modern PET scanners acquire data in

3-D mode which does not have interslice septa1. However, instead of using any 3-D filtered

backprojection image reconstruction algorithms [88, 63], PET scanner manufacturers, in

order to save computation time, opt to sort the 3-D data into 2-D first by means of rebinning

methods [37] and then apply the 2-D FBP image reconstruction to each slice.

1.3.2 Statistical image reconstruction

1.3.2.1 Expectation-Maximization Algorithm

Expectation maximization (EM) algorithm is an iterative method to calculate the maximum

likelihood estimate of a parameter. This parameter may underline a statistical model of a

random variable.

Let Y be a discrete random variable (We will consider, for the scope of this manuscript,

discrete random variables only) with probability mass function g(Y, θ), θ being the underlying

parameter. Realization of the latent random variable Y may be observed; however, Y is

a function of a broader random variable X, namely the complete data, with distribution

1Interslice septa are PET collimators that prevent the detection of cross-plane coincidence events.
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f(X, θ). The two distributions are related through:

g(Y, θ) =
∑
x∈X

f(X, θ) {X : Y = h(X)}

The EM algorithm consists of two steps: Expectation (E-step) and Maximization (M-step).

• In the E-step, the conditional expectation E
[
log f(X, θ)|Y, θ(n)

]
, where θ(n) is the

parameter at the n-th iteration, is computed.

• In the M-step, E
[
log f(X, θ)|Y, θ(n)

]
is maximized.

To show that the EM algorithm increases the likelihood function log g(Y, θ) at each iteration,

let us consider the function:

θ → H(θ|θ(n)) = E
[
log f(X, θ)|Y, θ(n)

]
− log g(Y, θ)

H(θ|θ(n)) attains its maximum at θ = θ(n), i.e. for any θ such as θ(n+1):

H(θ(n+1)|θ(n)) ≤ H(θ(n)|θ(n))

Which is a well-known consequence of Jensen’s inequality. See Lemma 1 in [39]. Thus, we

will have:

E
[
log f(X, θ(n+1))|Y, θ(n)

]
− log g(Y, θ(n+1)) ≤ E

[
log f(X, θ(n))|Y, θ(n)

]
− log g(Y, θ(n))

E
[
log f(X, θ(n+1))|Y, θ(n)

]
− E

[
log f(X, θ(n))|Y, θ(n)

]
≤ log g(Y, θ(n+1))− log g(Y, θ(n))

The EM algorithm maximizes the conditional expectation E
[
log f(X, θ)|Y, θ(n)

]
, at each

iteration in the M-step :

E
[
log f(X, θ(n+1))|Y, θ(n)

]
≥ E

[
log f(X, θ(n))|Y, θ(n)

]
E
[
log f(X, θ(n+1))|Y, θ(n)

]
− E

[
log f(X, θ(n))|Y, θ(n)

]
≥ 0

Therefore:

log g(Y, θ(n+1))− log g(Y, θ(n)) ≥ 0
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log g(Y, θ(n+1)) ≥ log g(Y, θ(n)) (1.5)

Equation 1.5 concludes that the EM algorithm monotonically increases the likelihood func-

tion of the random variable whose underlying parameter is to be estimated.

1.3.2.2 EM in Emission Computed Tomography

Let Xij (complete data) be the number of emissions originating from the j-th image space

unit and being detected by the detector pair corresponding to the i-th data space unit. Xij

is a Poisson random variable with mean hijvj, i.e. Xij ∼ Poiss(hijvj). vj is the number

of emissions originating from the j-th image space unit and hij is the probability that an

emission from the j-th image space unit, will be detected by the detector pair corresponding

to the i-th data space unit. The detected number of photons di (incomplete data) at the

i-th data space unit is a function of the complete data:

di =
∑
j∈Ji

Xij

Since di is the sum of independent Poisson random variables (Xij), then di itself is a Poisson

random variable (di ∼ Poiss(d̄i)) with mean equal to the sum of the individual means:

d̄i =
∑
j∈Ji

hijvj (1.6)

The EM algorithm computes the conditional expectation of the likelihood of the complete

data:

E
[
log f(X,v)|d,v(n)

]
= E

[∑
i

∑
j∈Ji

Xij log (hijvj)− hijvj|d,v(n)

]
(1.7)

=
∑
i

∑
j∈Ji

E
[
Xij|di,v(n)

]
log (hijvj)− hijvj (1.8)

In the above equations, we ignored the term Xij! becuase it is independent of v.
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The conditional distribution of Xij given
(
di,v

(n)
)

is multinomial with cell probability pi =
hijv

(n)
j∑

j′∈Ji
hij′v

(n)

j′
, therefore, its mean, namely Nij, is equal to pidi.

E
[
log f(X,v)|d,v(n)

]
=
∑
i

∑
j∈Ji

hijv
(n)
j di∑

j′∈Ji hij′v
(n)
j′

log (hijvj)− hijvj (1.9)

Now the M-step maximizes E
[
log f(X,v)|d,v(n)

]
. Take the the second partial derivatives:

∂2E

∂vp∂vq
=


∑

i
hipv

(n)
p di∑

j′∈Ji
hij′v

(n)

j′

−1
v2p

p = q

0 p 6= q

The second partial derivative is strictly negative given v
(n)
j is positive for all j ∈ J , therefore,

E
[
log f(X,v)|d,v(n)

]
is concave and maximizing it, is trivial. Simply take the first partial

derivative:

∂E

∂vj
=
∑
i∈Ij

hijv
(n)
j di∑

j′∈Ji hij′v
(n)
j′

1

vj
− hij (1.10)

And set it equal to zero and solve. The result will be as follows:

v
(n+1)
j =

v
(n)
j∑

i∈Ij hij

∑
i∈Ij

hij
di∑

j′∈Ji hij′v
(n)
j′

(1.11)

1.3.2.3 Notes

Equation 1.11 is the Maximum Likelihood Expectation Maximization (ML-EM) algorithm

in PET and there are several interpretations to it. We will discuss two of them here.

11



By rewriting Equation 1.11 as

∑
i∈Ij

hijv
(n+1)
j =

∑
i∈Ij

hijv
(n)
j di∑

k∈Ji hikv
(n)
k

one can easily see ∑
i∈Ij

hijv
(n+1)
j =

∑
i∈Ij

Nij

The sum of Nij over all projections associated with the j-th image space unit (i ∈ Ij) is the

best current estimate of the number of photons that originated from the j-th image space

unit. The ML-EM algorithm tends to equate the expected number of photons, orginating

from the j-th image space unit (
∑

i∈Ij hijv
(n+1)
j ), to this best current estimate.

Another interpretation can be made by considering Equation 1.11 as an iterative multiplica-

tive process, in which at every iteration, vj is calculated by multiplying the previous value

of vj by a scaling factor, which is:

∑
i∈Ij hij

di∑
k∈Ji

hikv
(n)
k∑

i∈Ij hij
(1.12)

The scaling factor consists of two operators, forward projection operator (
∑

j∈Ji hij) and

backprojection operator (
∑

i∈Ij hij). Each iteration of the ML-EM algorithm consists of one

forward projection of all the image voxels and one backprojection of all the LORs. Please

note that the backprojection of ones (called the sensitivity image) is calculated once and

prior to the EM iterations. Convergence is reached when this scaling factor asymptotically

approaches one. This means that, at each iteration, v is calculated such that the ratio
di∑

j∈Ji
hijvj

approaches unity. This is consistent with the first interpretation.

1.3.3 Maximum a posteriori algorithm

The PET data inherently have limited counts, which is due to the low radio-tracer dosage and

short acquisition time in PET. In statistical image reconstruction, the underlying assumption

is that the measurements have Poisson distribution. In Poisson noise model, lower count
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equals lower signal-to-noise ratio (SNR). Moreover, the variance of the reconstructed images

using ML-EM algorithm (Equation 1.11) increases rapidly with iteration number at first,

and then will plateau out when reaching convergence [16].

A convex-optimization-friendly interpretation is that using Equation 1.11, to maximize the

term in Equation 1.9 by no means of any regularizer, will result in over-fitting because the

data are noisy.

In order to solve the above-mentioned problem, one can add smoothing steps [94], sieves

[96], stopping rules [111], and separable priors [66, 70], or can use penalized least sqaures

[47].

Maximum a posteriori (MAP) or equivalently penalized ML-EM based methods are more

popular because of their flexibility in terms of implementation such as parallel implementa-

tion [22]. The MAP method introduces a penalty term to the maximization of the likelihood

function:

v̂ = arg max
v

L(d|v)− βΦ(v) (1.13)

= arg max
v

∑
i

(
di log (

∑
j∈Ji

hijvj)− hijvj

)
− β

∑
j

∑
k∈Nj
k 6=j

ηjkφ

(
vj − vk
δ

)
(1.14)

Φ(v) is the prior on the image being reconstructed iteratively and β, ηjk, δ > 0

• β controls the relative weight of the penalty term with respect to the likelihood function

(data-fitting term).

• ηjk defines how adjacent voxels in the image are related.

• φ(vj) is an even function called the potential function and φ(vj) ≥ 0.

• δ controls the variance imposed on the reconstructed image v̂.
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One class of priors popular in emission tomography image reconstruction is the function

f(x) = log (cosh (x)), i.e. φ(vj) = log (cosh (vj)) , ∀j ∈ J . We will explain two ways of

implementing the penalized ML-EM algorithm.

1.3.3.1 One Step Late

This method doesn’t have a convergence proof, however, it has been shown by empirical

evidence [51], that by proper choice of Φ(v) and the value of its parameters, and that if β is

not too large, the algorithm will converge. In this case the ML-EM update equation will be:

v
(n+1)
j =

v
(n)
j∑

i∈Ij hij + β ∂
∂vj

Φ(v)|
v
(n)
j

∑
i∈Ij

hij
di∑

k∈Ji hikv
(n)
k

(1.15)

Equation 1.15 is derived following the same steps as to drive Equation 1.11. It’s called

one step late because in Equation 1.15, the penalty is applied (see the second term in the

denominator) to the image of the previous iteration (n) as opposed to the current iteration

(n+ 1).

1.3.3.2 De-coupling the potential function

This method takes advantage of the convexity of the potential function φ(vj):

φ(αvj + (1− α)vk) ≤ αφ(vj) + (1− α)φ(vk) (1.16)

0 ≤ α ≤ 1

Using Equation 1.16:
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φ(vj − vk) = φ

(
α

[
1

α
(vj − v̂j) + (v̂j − v̂k)

]
+ (1− α)

[
−1

1− α
(vk − v̂k) + (v̂j − v̂k)

])
≤ αφ

(
1

α
(vj − v̂j) + (v̂j − v̂k)

)
+ (1− α)φ

(
−1

1− α
(vk − v̂k) + (v̂j − v̂k)

)

Setting α = 1
2
:

φ(vj − vk) ≤
1

2
φ (2(vj − v̂j) + (v̂j − v̂k)) +

1

2
φ (−2(vk − v̂k) + (v̂j − v̂k)) (1.17)

≤ 1

2
φ(2vj − v̂j − v̂k) +

1

2
φ(v̂j + v̂k − 2vk) (1.18)

Since one is minimizing the penalty term (maximizing its negative), then they may use the

surrogate in Equation 1.18 instead of φ(
vj−vk
δ

) in Equation 1.14. Revisiting Section 1.3.2.2,

the E-step (Equation 1.9) of the EM algorithm will be modified to:

Epenalized
[
log f(X,v)|d,v(n)

]
=
∑
i

∑
j∈Ji

hijv
(n)
j di∑

k∈Ji hikv
(n)
k

log (hijvj)− hijvj

− β

2

∑
j

∑
k∈Nj

ηjk

[
φ(2vj − v(n)

j − v
(n)
k ) + φ(v

(n)
j + v

(n)
k − 2vk)

]
Accordingly, the M-step (Equation 1.10) will be modified to:

∂Ep
∂vj

=
∑
i∈Ij

hijv
(n)
j di∑

k∈Ji hikv
(n)
k

1

vj
− hij − β

∑
j

∑
k∈Nj

ηjk

[
∂

∂vj
φ(2vj − v̂j − v̂k)

]
= 0

One may use the Newton-Raphson method or other gradient ascent methods to solve for v

[79]. In Section 3.6.1, we have used Trust Region Newton’s method to solve for v.
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1.3.4 List-mode ML-EM

After the developement of ML-EM algorithm for PET image reconstruction, it did not take

long to develope the list-mode image reconstruction algorithm for PET [98, 15]. The list-

mode reconstruction adequately fits the nature of PET, because in PET the data are acquired

sequentially. The list-mode reconstruction algorithm is similar to Equation 1.11 except that

the back-projection operator in the numerator of Equation 1.11 sums over the conicidence

events as opposed to summing over the LORs. The ML-EM update step for list-mode image

reconstruction for PET is given by Equation 1.19.

v
(n+1)
j =

v
(n)
j∑

i∈Ij hij

∑
m

himj
1∑

j′∈Ji himj′v
(n)
j′

(1.19)

im indexes the LOR to which the m-th coincidence event belongs.

Similar to sinogram mode ML-EM, the penalized version of the list-mode ML-EM has been

proposed [23] where as in Section 1.3.3 the penalty term is added in the E-step (see Equation

3.1).

1.4 Corrections in PET

Obtaining quantitative PET images in which voxel values represent the true distribution of

radioactivity in the object, requires accurate corrections of various physical processes that

affect the accuracy of our model for the imaging system.

1.4.1 Normalization

Some elements in the system matrix (forward model) are neglected in the calculation of the

system matrix. They eventually cause artifacts in the reconstructed image. This imperfection

in the calculation stems either from the incomplete physical model, such as failing to take

into account the angle at which a line-of-response (LOR) enters the surface of a crystal,

16



or from the gradual variation in the real system, such as crystal/detector degradation and

failing. By scanning an exactly known emission phantom, called normalization phantom,

one may estimate the neglected elements in the system matrix by comparing the acquired

data from the phantom with the data from the digital phantom2 being forward projected

using the system matrix. This process is called normalization and the neglected elements

are compensated for through the multiplicative factors called the normalization factors (ηk

in Equation 1.20).

The normalization procedure described here, and also which most image reconstruction

implementations follow, is the model based normalization presented in [12, 74]. A successful

normalization in PET has two main requirements:

• The activity distribution of the normalization source must be known: the amount of

radioactivity and the map of the normalization source must be known exactly with

respect to some standard precision, e.g. nCi
cc

.

• The activity distribution of the normalization source must provide sufficient number

of coincidence events to estimate the normalization factors: the normalization source

must cover the imaging field-of-view (FOV) so that the resulting coincidence events

span all of the LORs.

Typical PET scanners have detectors with identical crystals, however, if the imaging system

consists of more than one type of detector, either crystals of different sizes, as in [73],

or crystals of different materials, as in [84] where solid-state silicon detectors have been

integrated into a conventional BGO PET detector, then there are more than one type of

LORs in terms of detection efficiency.

The LORs connecting detectors of the same type, as opposed to LORs connecting detectors

of different types, must be properly modeled. If such property is not modeled in the for-

ward model, then it has to be estimated by means of normalization. For example, in the

virtual-pinhole PET technology (Chapter 3), scanner-scanner LORs, scanner-insert LORs,

and insert-insert LORs have different detection efficiencies because the PET insert’s crystals

2Also known as the emission decay map, which is the known true 3-D radioactivity distribution of the
phantom.
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have different detection efficiency as opposed to the scanner’s crystals. It will be elaborated

in Section 3.6.2.

Normalization components, namely ni : ∀i ∈ I, are the product of all the normalization

factors associated with the i-th LOR.

ni =
∏
k∈Ki

ηk (1.20)

We define Ki as the set of indices of the normalization factors associated with the i-th LOR.

To estimate the normalization factors, Poisson log-likelihood function will be maximized:

η̂ = arg max
η

L(η) (1.21)

= arg max
η

∑
i

di log

(∏
k∈Ki

ηk
∑
j

hijvj

)
−
∏
k∈Ki

ηk
∑
j

hijvj (1.22)

Subject to − ηk ≤ 0 ,∀k ∈ Ki,∀i ∈ I

v is the known normalization emission distribution and d is the normalization data. We

enforce non-negativity constraints on the normalization factors that appear in 1.22.

The Newton method could be used to solve the problem in Equation 1.22 under non-

negativity constraints. For instance one may use a limited memory quasi-Newton method

described in [72] and use the publicly availabe L-BFGS optimization library. The L-BFGC

library requires only the gradient of the log-likelihood function in Equation 1.22.

Therfore, the unconstrained objective function is:

L(η) =
∑
i

di log

(∏
k∈Ki

ηk
∑
j

hijvj

)
−
∏
k∈Ki

ηk
∑
j

hijvj −
∑
k∈Ki

µkηk (1.23)

18



Since the second derivative of Equation 1.23 is strictly negative, then in order to find the

maximum it suffices to take the derivative and satisfy the complimentary slackness condition:

∂L

∂ηk
=
∑
i:k∈Ki

di
ηk
−
∏
k′∈Ki
k′ 6=k

ηk′
∑
j

hijvj − µk (1.24)

And the complimentary slackness condition for inequality constraint requires that:

ηk

 ∑
i:k∈Ki

di
ηk
−
∏
k′∈Ki
k′ 6=k

ηk′
∑
j

hijvj

 = 0 (1.25)

By pre-defining line-search parameters, maximum number of iterations and proper stopping

criterion, the algorithm may converge and the normalization factors are estimated.

One the normalization factors are computed, then we use Equation 1.20 to find the nor-

malization components. Including the normalization components in the computation of the

sensitivity image (denominator in Equation 1.12), will correct for normalization and Equa-

tion 1.11 will upgrade to:

v
(n+1)
j =

v
(n)
j∑

i∈Ij hijni

∑
i∈Ij

hij
di∑

j′∈Ji hij′v
(n)
j′

(1.26)

1.4.2 Randoms Correction

Accidental coincidences (randoms) are coincidence events that have been falsely registered

by the coincidence processing unit. A random event occurs when two single events from two

different annihilation events, are registered as a coincidence event, simply just because they

fall in a coincidence time window.
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Figure 1.4. Schematic of a random event in a PET scanner [112].

If randoms are not corrected before image reconstruction, they will affect the quality of

images by adding to the uncorrelated background counts in the data space. The mean of the

random events can be estimated by means of particular techniques during data collection.

We define such mean as r̄i.

1.4.2.1 Singles rate

The rate of random coincidences on a given LOR, i ∈ I, is given by Equation 1.27:

r̄i = 2τ r̄i1 r̄i2 (1.27)

where r̄i1 and r̄i2 are the singles rates on the two channels constituting the i-th LOR, and τ

is the time coincidence window [31]. Since the count rate of singles events is generally much

higer than that of the coincidence events, the above method of estimating the randoms rate,

which is proportional to the product of singles rate, is statistically closer to the true mean;

it is so because, in fact, the sample mean is computed as a representative of the true mean.
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1.4.2.2 Delayed time window

Another method for estimating the randoms rate in PET is delayed coincidence time window.

In this method, the timing signal of a particular detector is delayed by an amount significanlty

greater than the system’s coincidence time window. The coincidence rate of such detector,

found in this mode, is an estimate of its randoms rate. This estimate can be subtracted

from the prompt coincidence rate on the fly or could be stored as a separate sinogram to be

used in image reconstruction as summarized in Equation 1.28. The advantage of the delayed

time window method is that the dead time (explained in Section 1.4.5) properties of the

delayed time window and prompt time window are identical. The disadvantage is that the

estimate is statistically poor due to the relatively low count rate compared to the singles

rate method. Discussing the methods to improve the statistical property of this method is

beyond the scope of this chapter and interested reader may refere to [25, 11].

Therefore, a more accurate formulation for the mean of the Poisson model in PET must

include the randoms:

di ∼ Poiss
(
d̄i + r̄i

)
(1.28)

di is the detected number of photons at the i-th data space unit (i-th LOR).

1.4.3 Attenuation Correction

The 511 keV gamma rays, generated by the annihilation process get attenuated by the

anatomical structures encompassing or surrounding the decay source. It causes loss of coin-

cidence counts detected by the system and will subsequently result in degradation of image

quality. Such loss of counts can be restored and the quality of the images reconstructed from

PET data, can be significantly improved if attenuation is taken into account and corrected

for. An attenuation map, also known as µ-map, µj : ∀j ∈ J , may be acquired by means

of a X-ray CT or MRI scan prior to or at the time of the PET scan. If an X-ray CT scan

is obtained, one way to estimate the µ-map is to multiply the CT image by the ratio of

attenuation coefficients of water at CT and PET energies. Subsequently, the the attenuation
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correction factor (ACF), µi : ∀i ∈ I, is calculated as:

µi = e−
∑
j∈Ji

hijµj

Including the ACF in the computation of the sensitivity image will correct for attenuation

in PET. Thus Equation 1.26 will upgrade to:

v
(n+1)
j =

v
(n)
j∑

i∈Ij hijniµi

∑
i∈Ij

hij
di∑

j′∈Ji hij′v
(n)
j′

(1.29)

Moreover, from the attenuation map one may obtain an attenuation matrix, A, whose ele-

ments, aij, are defined as the survival probability for an annihilation at j-th image space unit

being detected at i-th data space unit ([87]). Therefore, an even more precise formulation

for 1.6 must include attenuation, too:

d̄i =
∑
j

aijhijvj (1.30)

Pollite and Snyder derive, in [87], the EM sequence which includes randoms and attenuation

correction to be:

v
(n+1)
j =

v
(n)
j∑

i∈I aijhij

∑
i∈I

aijhij
di∑

j′∈J aij′hij′v
(n)
j′ + r̄i

(1.31)

1.4.4 Scatter Correction

The scattering considered in PET is Compton Scattering. The phenomenon of Compton

scattering in PET is very simple: the 511-keV photon is deflected by an electron and loses

some of its energy which can be calculated by Equation 1.32. For example a 511-keV photon

loses approximately 200 keV for a 70° deflection. This is illustrated in Figure 1.5.
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Figure 1.5. Schematic of a scattered event: The black solid
circle shows the origin of annihilation, the arrow shows the point
of interaction that caused the scattering, and the dashed line is
the erroneously ascribed line of response.

Ed =
511

2− cos θ
(1.32)

Ed is the energy of the deflected photon in keV and θ is the deflection angle.

Scatter fraction (ratio of scattered events to the scattered plus unscattered events as cal-

culated by Equation 1.33) in a PET tomograph depends on the collimator size and shape

[104]. Performance characteristics of a whole-body PET scanner (Advance, General Electric

Medical Systems®, Milwaukee, WI) are reported by DeGrado [38] to have, for 2-D data ac-

quisition, a scatter fraction (SF) of 9.4% and 10.2% for direct and cross slices, respectively,

and an average SF of 34% for 3-D data acquisition. As far as scattering is considered the

prompt events follow a purely additive model:

d0 = d + s
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SF =

∑
i si∑
i′ d0i′

(1.33)

Where d is the photo-peak (unscattered) events and s is the scattered events. Several

methods have been proposed to correct for scattering in 3D PET; Here we briefly describe

them.

1.4.4.1 Convolution Subtraction

Similar to the scatter correction methods in Single-Photon Emission Computed Tomography

(SPECT), [10, 49], de-convolving a scatter function with the prompt data, has been proposed

for PET data as a method to correct for Compton scattering [13, 19].

In this method the underlying assumption is that there is a spatial relationship between the

scattered events, s, and the photo peak events, d, meaning that the scattered events are the

convolution of the measured events and a spatially variant and radially symmetric scatter

function κ(r) = e−αr:

s = d ∗ κ

Once the scatter function κ and the scatter fraction k have been estimated, then d is com-

puted iteratively as in Equation 1.34.

d(n+1) = d0 − k
(
d(n) ∗ κ

)
(1.34)

n indexes the iteration.

1.4.4.2 Direct measurement

This method requires PET scanners with retractable interslice septa [28] or in other words,

PET scanner capable of acquiring data both in 2-D and 3-D modes.

A short 2-D acquisition is done prior to the 3-D acquisition and the scatter distribution is

esitmated by comparing the LORs common between the two datasets. The phantom used
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in this experiment, must have activity concentration and density varying both axially and

radially.

Another similar method is to fit a Gaussian function to the scatter distribution outside of

the activity-containing regions as a means of estimating the scatter distribution inside the

object [99, 27].

1.4.4.3 Monte-Carlo simulation model

In this method, the reconstructed image (without scatter correction) volume is used as an

input to the Monte Carlo simulation software. The intensity of each voxel in the image vol-

ume is assumed to represent the radioactivity concentration, therefore proper normalization

and attenuation correction are necessary. Then the annihilation photon’s interaction with

the scattering medium is simulated. If both photons are detected by a pair of detector then

it is saved as a coincidence event. If any of the photon has been scattered it will be saved

in the scattered events sinogram, otherwise will be saved in the unscattered event sinogram.

After proper scaling, the scattered events rate will be subtracted from the original data for

image reconstruction. Successful results have been reported for 3-D PET brain imaging [68].

1.4.4.4 Multiple energy windows

With the improvement in BGO detectors with better energy discrimination and the advent

of NaI(Tl) detectors, an energy-based scatter correction technique was proposed [90, 53].

In this method the coincidence events are grouped into two energy windows: lower energy

window in which one or both photons deposit energy between 200 keV and 380 keV, and

upper energy window in which both photons deposit energy between 380 keV and 850 keV.

A weighted sum of the two energy windows are subtracted from the upper energy windows

to compensate for scattered events. These weights are computed based on the ratio of counts

of scattered events and unscattered events in the line source phantom data.
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1.4.4.5 Model-based

In this method, the mean number of scattered events, s, is estimated by means of finding

the probability of a photon to undergo a single Compton scattering event. A transmission

scan, an emission scan, and the scanner’s forward model are used to calculate this quantity

[81, 115]. Subsequently, multiple scattering will be a linear transformation of the single-

scatter distribution.

In all of the above methods the goal was to estimate the mean number of scattered events.

Once this value is found, then the Poisson mean in Equation 1.28 must include the mean of

the scattered events s̄i:

di ∼ Poiss
(
d̄i + r̄i + s̄i

)
(1.35)

1.4.5 Deadtime

Deadtime can cause up to 32% resolution loss with a PET system that has 2-D data acqui-

sition [50].

In 3-D PET, however, in order to obtain quantitative images, one has to correct for the

losses associated with detector and system dead-time. The deadtime issue is due to either

singles loss or coincidence loss.

• Singles loss occurs when the block detector is performing energy discrimination and

does not find sufficient time to return to the quiescent state. In other words, two

or more photons strike the scintillation crystal within the electronic integration time.

This is also called pile-up effect. Moreover mis-positioning can occure when the in-

cident photon in one crystal, penetrates another crystal or is scattered prior to light

integration.

• Coincidence loss occurs when the coincidence processing circuitry discards the coinci-

dence event to avoid registering triple coincidences.

Both of the above-mentioned losses can be properly modeled and compensated for as de-

scribed in [33].
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1.5 Image Quality

Image quality refers to the faithfulness with which an image represents the imaged object

[29]. PET images must be accurate and this “accuracy” is interpreted as conformity both to

the radioactivity uptake in the tissue and to the specific medical application or clinical utility

of interest. In order to most reliably define image quality, one must take into account the

purpose or the goal the medical image is intended to serve. This is referred to as the task-

based assessment of image quality. Here in Section 1.5, we will introduce some of the popular

figures-of-merit (FOMs) that quantify characterization of an imaging system, however, the

choice of the FOM depends on the selected ensemble of patients if, for example, the taks is

diagnosis or treatement planning.

1.5.1 Resolution

The spatial resolution of a PET scanner may be defined as how well the scanner can reproduce

the radioactivity distribution in the object so that variations in the image are well percepted.

Empirically speaking, spatial resolution of a PET scanner is the minimum distance between

two points in the image that can be resolved.

Spatial resolution of a PET scanner is affected by its crystal size, positron range, annihilation

non-collinearity, the reconstruction method, and localization in the detectors.

One way to quantify the spatial resolution, is to compute the full-width at half-maximum

(FWHM) of the line profile of the reconstructed image of a point source. Another way is to

assess the ability of the reconstructed image to resolve spherical or cylindrical sources with

varying diameters and find the minimum size at which the system can resolve.

1.5.2 Contrast

The contrast of an image stems from the relative value of the regions in the image that

contain tumors radioactivity distribution (signal) to the regions that contain the background

radioactivity distribution (background). Contrast can be expressed as in Equation 1.36.
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C =
S −B
B

(1.36)

S = image intensity in the lesion tissue (signal)

B = image intensity in the normal tissue (background)

Therefore, a contrast of 7:1 (reads seven to one) means that the radioactivity uptake in the

abnormal region is 8 times the radioactivity uptake in the surrounding background region.

1.5.3 Noise

Image noise is of random nature, and is defined as the variation in the image voxels across

the image. Signal-to-noise ratio (SNR) can be improved by means of acquiring more counts,

however, obtaining more counts is limited by radiation dose or acquisition time in a PET

scan.

1.6 Statement of Contributions

In this work, I will study two joint reconstruction algorithms in PET: one is the joint image

reconstruction of beta and coincidence-gamma data, and the other one is the joint recon-

struction of scanner-scanner and scanner-insert data from two spatial positions.

1.6.1 Beta-Gamma Imager

The Beta-Gamma Imager has been designed, built, and integrated to achieve higher quanti-

tation accuracy of radioactivity concentration uptake in thin tissues such as plant leaves. I

have:
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• proposed, tested, and validated the physics model for positrons’ movement in media.

• introduced the joint data model and image reconstruction framework.

• developed the image reconstruction software.

• undertook validation experiments on plant leaves, and applied a proper image quality

metrics to make an informed comparison between the resulted images and the ground-

truth image.

All of the above are comprehensively discussed in Chapter 2.

1.6.2 Virtual pinhole PET technology

Building upon the valuable contributions of the former PhD students of our group, I have

contributed to the VP-PET technology [102] by:

• developing an image reconstruction framework under the proposed imaging protocol

and system geometry

• implementing the reconstruction software and applying proper normalization

• testing the image reconstruction by means of Monte-Carlo simulation

• showing the effect of scanner-insert data and the location of the insert on spatial

resolution, contrast recovery, and SNR of the system

Which are extensively discussed in details in Chapter 3.
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Chapter 2

The Beta-Gamma Imager

2.1 Introduction

2.1.1 Background

Now faster growing population and global climate change have made many people reconsider

sustainability of their food supply. This means that the challenge of higher crop yield is

more important today than it was a few decades ago. Understanding the fundamentals

of plant metabolism, such as the biological mechanism by which leaves capture, convert,

and store carbon is important for agricultural productivity. Plants harvest the energy of

light to convert water and carbon dioxide into sugar and oxygen. This process is called

photosynthesis and is carried out by the green pigments in the leaf called chlorophyll.

Carbon is abundant in the atmosphere in the form of CO2. Increasing levels of atmo-

spheric CO2 [56] may improve crop productivity if carbon assimilation is increased [46, 45].

Some research groups have adopted carbon isotopes (11C,13C, and 14C) labeling to study the

metabolism of plant leaves [78, 82, 41, 42]. Moreover to carbon assimilation, other advances

in plant sciences have take place to produce crops that can cope better with biotic stresses

such as insects, viruses, and micro-organisms and abiotic stresses such as drought, abrupt

temperature changes, and nutrient limitations. One of such advances is phenotyping. Vis-

ible light-based imaging techniques have been mostly used in phenomics, however, imaging
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modalities such as X-ray computed tomography (X-ray CT) and magnetic resonance ima-

gaging (MRI) have been used to non-invasively image the inner structures of the plants and

study their roots under soil [77, 20].

Researchers employed Positron Emission Tomography (PET) to provide in vivo and non-

invasive measurements of radioactivity distribution in plants [80, 65, 58, 36, 2, 113]. Plant

leaves are typically very thin (less than 0.2 mm for many species of seedlings) and thus have

insufficient material for the emitted positrons to undergo an annihilation event within the

tissue. Additionally, positrons have a relatively large range in the air because positron range

is inversely proportional to the density of the absorber [29, p.314]. Therefore, radioactivity

distribution estimation in plant leaves, using coincidence-gamma measurements, is challeng-

ing. Weisenberger has proposed a possible solution by developing a compact beta-positive,

beta-minus particle imager (PhytoBeta Imager) for 11CO2 [117]. In a feasibility study, Stolin

[100] has shown that the ratio of positron detection rate to that of coincidence-gamma de-

tection may vary from 650 to 1600. This ratio depends on many factors such as type and

geometry of the detectors and thickness and geometry of the sources. However, it is gen-

erally true that beta imaging offers higher detection efficiency than PET when the emitted

positrons can escape a thin object with high probability.

The use of measurements from other imaging modalities to improve the PET physics model

and image reconstruction may be compared to using X-ray CT measurements to correct for

attenuation in PET data [64] or to using MRI measurements for the same purpose [61]. One

of the advantages of simultaneous beta-gamma imaging is to acquire more counts from the

thin parts of the object. This can be useful when using short-lived isotopes such as 11C

[76, 18].

Tornai [108] demonstrated the initial performance of a beta imaging probe, but later modified

the beta imaging intra-operative probe and created a combined γ-ray probe/β± imaging

detector for medical purposes and compared different phoswich detector configurations [107].

A challenge in positron measurement is the non-uniformity in the thickness of leaf tissue.

Alexoff [4] showed that positron escape fractions were lower in thicker leaf areas like the

midrib. This causes an underestimation of radioactivity distribution from either the beta

or the coincidence-gamma measurements alone. For imaging thin objects, Wu [119] has

developed a detector that simultaneously measures the positrons that did not annihilate

31



Table 2.1. Notations

Symbols Denoting
B Beta data space (i ∈ B)
Γ Coincidence-gamma data space (i ∈ Γ)
J Image space (j ∈ J)
wi i-th data space unit
sj j-th image space unit
uk k-th intermediate space unit
Rjk Distance between sj and uk
θjk Angle between sj and uk
dβ Beta data
dγ Coincidence-gamma data
Hβ Beta system matrix
Hγ Coincidence-gamma system matrix

(x, y, z) Cartesian Coordinate system
|.| Cardinality of a space

L(d|v) Poisson log likelihood function
α Joint reconstruction hyperparameter

inside the leaf (beta data) and the positrons that did annihilate inside the leaf (gamma

data).

We introduce the Simultaneous Beta-Gamma Imager in Section 2.2. Therein we explain

the detector design, system geometry, data acquisition, and how positron and coincidence-

gamma measurements are classified. The spatial response linearity, spatial resolution, and

count rate dependency of the detectors are evaluated in Section 2.2.2. The proposed model for

positrons is in Section 2.3. The corresponding image reconstruction framework is described

in Section 2.4, and further mathematical derivation is left for 2.4.2. In order to validate

the proposed framework, we have conducted a phantom study and a plant leaf experiment;

the results are presented in Sections 2.5 and 2.6. Potential improvements and investigations

are discussed in Section 2.7. We make a conclusion based on the results from the imaging

studies in Section 2.8.
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2.1.2 Direct measurement of Positrons

As introduced in Section 1.1, while positrons travel through an attenuating medium their

kinetic energy dissipates and once thermalized they become more likely to annihilate with

an electron to produce two back-to-back 511 keV gamma rays.

If the attenuating medium was a scintillator then it would absorb the energy of the positron

and would emit the absorbed energy in the form of light. Plastic scintillators are luminescent

materials that can absorb the kinetic energy of positrons and emit light. Such light emission,

if properly quantified, can be considered as a direct detection of positrons. This detection

occurs prior to positron annihilation and is not a coincidence detection. We refer to this

detection as beta detection.

2.1.2.1 Photomultiplier tube (PMT)

Interaction of positrons with the plastic scintillator cause scintillation which will generate

electric current by means of a photo multiplier tube (PMT).

A PMT is a photoemissive device that generates electric charge by multiplying the electrons,

produced by incident light, as much as 100 million times. It mainly has an evacuated

glass containing a cathode, several dynodes, and an anode. Incident photons strike the

cathode that will cause electrons being ejected through photoelectric effect3. The electrons

are directed towards the electron multiplier by the focusing electrode. Then the dynodes,

arranged in multiple stages, will multiply the electrons by means of secondary emission4

process. Figure 2.1 shows a simplified schematic of a PMT.

The output of the PMT may be encoded to find the point of interaction.

3Phtotoelectric effect is the ejection of electrons when photons strike a material.
4Secondary emission is a phenomenon where charged particles like electrons or ions strike a material and

induce the emission of a secondary electron.

33



Figure 2.1. Schematic of a photomultiplier tube. Courtesy of Nathan R. Finney.

2.2 System

2.2.1 System Geometry and Detectors

The Simultaneous Beta-Gamma Imager employs two planar detectors: a phoswich detector

(hybrid detector) and a gamma detector. The two detectors are positioned 9.4 cm apart

facing each other vertically, as shown schematically in Figure 2.2. The three-dimensional

imaging field of view (FOV) includes the 4.8 cm × 4.8 cm area in the x-y plane (detector’s

surface plane).

The detector set-up is secured and aligned by a custom made holder (Figure 2.3).

The phoswich detector uses a BC-404 (Saint-Gobain Crystals, Hiram, OH) plastic scintil-

lator sheet and a lutetium-yttrium oxyorthosilicate (LYSO) crystal array [32], as presented

schematically in Figure 2.4a. The phoswich detector is designed to be in direct contact with

the object to be imaged. The top layer is the 4.8 cm × 4.8 cm × 0.1 cm plastic scintillator

for detecting positrons. To couple the plastic scintillator to the front surface LYSO crystal

array, we used room temperature vulcanization (RTV) optical glue, RTV615A (Momentive,

Newark, OH) and RTV615B (GE Silicones, Huntersville, NC). The LYSO crystal array con-

sists of 48 × 48 crystals of size 0.1 cm × 0.1 cm × 1 cm for detecting gamma rays. The light

detecting unit is a Hamamatsu H8500 position sensitive photo multiplier tube (PS-PMT).

The gamma detector is identical to the phoswich detector, except that it does not have the

plastic scintillator (Figure 2.4b).
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Figure 2.2. Schematic of the detector pair set-up of the
Beta-Gamma Imager. The two detector heads are 9.4 cm
apart in z-axis. Each head has 2 × 2 modules. Each module
has 24 × 24 crystals. The crystal size is 0.1 cm × 0.1 cm
× 1 cm.

Figure 2.3. The
Simultaneous Beta-
Gamma Imager
used for plant leaf
imaging.
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(a) A schematic of the phoswich detector (b) A photograph of the
gamma detector

Figure 2.4. The detectors developed for the beta and coincidence-gamma imaging.
For the phoswich detector, the top layer is a BC-404 plastic scintillator. The gamma
detector is identical to the phoswich detector but without the plastic scintillator. Each
has four 24 × 24 LYSO crystal arrays arranged in a 2 × 2 grid. Crystal size is 0.1 cm
× 0.1 cm × 1 cm. The scintillation light is detected by a H8500 PS-PMT. The electric
signal is then conditioned by a custom designed filter circuit.

In vivo plant study typically requires bright environment, therefore the detector modules

should be lightproof. Since high-energy gamma rays rarely interact with low-density mate-

rials, a 0.1 mm thick aluminum foil with black coating (Thorlabs Inc, Newton, NJ) is used

to make the gamma detector lightproof.

For the phoswich detector, the light-blocking material needs to be thin because beta particles

interacting with such material, before they interact with the plastic scintillator, should be

minimized. Therefore, a 0.025 mm thick aluminized Mylar covers the upper surface of the

plastic scintillator and side surfaces of both the plastic scintillator and the LYSO crystal

array in the phoswich detector. The thin Mylar provides sufficient light blockage is not too

thick to cause significant beta energy loss.

2.2.1.1 Data acquisition

The signal from the 64 anodes of the PMT is fed into a resistive multiplexer circuit which

reduces the total analog outputs of the detector to 4 channels. Figure 2.5 shows the signal
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Figure 2.5. Signal flow diagram of the system. Custom designed readout circuit
sends out fast signals for triggering purposes, and filters slow signals for the
event classifier. The fast signals are fed into an Ortec 935 CFD module. The
trigger signals are sent into the custom logic to initiate data acquisition and
event classification.

flow diagram. The multiplexed signal goes into a charge-sensitive amplifier, and then into a

two-stage Sallen-Key filtering circuit [89] so that the pulse signal matches the input band-

width and sampling frequency of the analog-to-digital converter (ADC). The height of the

conditioned pulse is proportional to the input charge, and the width of the pulse correlates to

the width of the input signal. A timing constant of 250 ns for the filtering circuit is optimal

regarding the input parameters of the ADC. The filtered pulse keeps the information of the

input pulse height and the pulse shape; however, the time of interaction is lost.

In order to provide an accurate timing reference, one path of the signal is reserved to be fed

into a constant fraction discriminator (CFD, ORTEC 935), which is a nuclear instrumenta-

tion module (NIM), to generate a trigger that drives the custom logic in the data acquisition

(DAQ) system. Coincidence-gamma detection is also formed by applying coincidence logic

between the triggering signals from both of the detectors.

The DAQ system, Lyrtech System, is a 16-channel ADC array (NUTAQ Inc. VHS-ADC)

with a custom configurable field-programmable gate array (FPGA) on board. The ADC

features a sample rate of 105 MHz and a resolution of 14 bits over ±1.25 V input range.

The two detectors are connected to the DAQ system, and each occupies four ADC channels

by their filtered outputs. The trigger signal generated by the NIM module is connected to

the digital port of the DAQ system and then passed into the internal logic to initiate data
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(a) Typical PMT output signals of events from
plastic scintillator and LYSO crystal

(b) Typical output waveforms shaped by the fil-
tering circuit.

Figure 2.6. Signals and waveforms from the phoswich detector. The filtering circuit conditions
the signals to match the ADC sampling frequency of 105 MHz. T1 and T2 are time points used in
characterizing the different time constants of pulses from plastic scintillator and LYSO crystal.

acquisition. The internal logic determines the event type by applying the event classifier,

which is discussed in Section 2.2.1.2. Based on the result of the event classifier, the events

are packed and streamed out to the host computer via a Compact Peripheral Component

Interconnect (CompactPCI or cPCI) bus.

2.2.1.2 Event classifier

The rising edge of the light pulses both from the plastic scintillator and the LYSO crystal is

0.7 to 0.8 ns. The falling edge of a light pulse from the plastic scintillator is 2.1 ns, while it

is 40 ns for the LYSO crystal. The output signals of the PMT for the two different pulses

are shown in Figure 2.6a. It can be clearly seen that the rising edges of the pulses from the

two types of scintillators are similar while their falling tails are significantly different.

The event classifier is implemented on custom configurable FPGA within the data acquisition

system. Pulse shape discrimination is applied to the output waveforms from the phoswich

detector, and the event type is determined by evaluating the timing characteristics. As

shown in Figure 2.6b, events from the plastic scintillator generate a faster signal compared

to the events from LYSO crystal. By selecting two appropriate time points T1 and T2 with

an interval close to the rise time of LYSO crystal event, a test can be formed that involves

the waveform values only at the two time points.
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Figure 2.7. A scatter plot with the
waveform values at the first time point
T1 on the Y-axis and the second time
point T2 on the X-axis. The two clus-
ters are shown, and the thresholds used
in the event classifier are chosen based
on this scatter plot.

By generating a scatter plot with these two values, we observe a clear separation regarding

the source of the events. The points fall into two groups: one corresponds to the plastic

scintillator events and the other to the LYSO crystal events. The quality of the selected T1-

T2 pair can be evaluated by checking the distance from the two highlighted clusters. Then,

based on the scatter plot of the optimal T1-T2 pair, two threshold lines are used to define

the regions in which the events, from either the plastic scintillator or the LYSO crystal, fall

(see Figure 2.7). Any event with a T1
T2

ratio above Threshold 2 will be classified as a plastic

scintillator event, and any event with a T1
T2

ratio below Threshold 1 will be classified as a

LYSO event.

Any other event is likely to have gone through a more complicated interactions with matter

and is inconclusive for this study, and thus, is discarded. We call these events contaminated

events. An example of these events is when the light produced by the plastic scintillator is

overlaid by the light produced by the scintillation crystals, because the positron detected by

the plastic scintillator has annihilated with an electron and (at least one of) the gamma rays

have been detected by the scintillation crystals.
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Figure 2.8. The actual physical position of the tube phantom versus the
detector’s measured physical position of the phantom. The solid line shows
the linear fitting of the measurements.

2.2.2 System Evaluation

2.2.2.1 Beta detector spatial response linearity

A plastic tube with 0.2 mm inner diameter and 0.35 mm outer diameter was used as a line

phantom. It was filled with 64Cu solution5 and moved over the detector surface by a linear

translation stage in 0.2 cm long steps. The detector response to the phantom at different

physical positions is evaluated using the beta data. We repeat the same measurement at

different heights over the plastic scintillator surface. Figure 2.8 shows a linear relationship

between the actual and the measured physical location of the phantom in the central region

of the detector. Additionally, the response is almost independent of the height above the

detector surface within short ranges.

However, the edge events are mixed together in the detector’s response, which prevents

a precise recovery of the event’s actual position in the edges of the beta data. This is

5 64Cu is a positron emitting isotope of Copper, its half-life is 12.7 hours and decays by 17.60% by positron
emission to 64Ni (see National Nuclear Data Center at www.nndc.bnl.gov ).
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potentially due to the complicated light path near the edge of the plastic scintillator and the

light coupling with the LYSO crystals.

We measured the responses along the X-axis. Since the system is symmetric in the plastic

scintillator and the electronic readout circuit, it is reasonable to assume that the response

along the two axes X and Y are the same. As a result, the center 3.6 cm × 3.6 cm of the

detector surface is useful for imaging purposes.

2.2.2.2 Intrinsic beta and gamma resolution

Data from a 18F point source is used to characterize the system intrinsic resolution. This

phantom is made by depositing 18F solution onto a piece of 0.08 mm thick plastic film in

a grid pattern and covered by a layer of 0.02 mm thick transparent adhesive tape (Figure

2.9a). The size of the points in the grid pattern is approximately 0.5 mm.

Points in the beta data are evaluated to obtain system intrinsic resolution for beta. Points

in coincidence-gamma image (reconstructed as described in Section 2.4.1) are evaluated to

obtain system intrinsic resolution for gamma.

For the beta data shown in Figure 2.9b, a line profile is drawn through the center of the two

points in the first row as shown in Figure 2.9c. The resolution is calculated by measuring

the full width at half maximum (FWHM) of the line profile and is found to be 2.45 mm

FWHM.

For coincidence-gamma image (Figure 2.9d), a profile across the same two points is drawn

and the resolution, similarly calculated, is 1.45 mm FWHM (Figure 2.9e)

2.2.2.3 System count rate dependency measurement

High beta detection efficiency combined with high event rate, may cause dead time issues

in the detector. Since our goal is to develop an accurate imaging system, any count rate

dependency needs to be experimentally verified.
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(a) Photograph of the
point grid phantom
used in the experiment

(b) Beta data (c) Line profile and resolution
calculation of the beta data

(d) Coincidence-gamma image (e) Line profile and resolution
calculation of the coincidence
gamma image

Figure 2.9. System resolution measurements

42



A point source phantom was made with 18F. The initial activity was 30.38 µCi. I acquired

data for 12 hours to investigate the behavior of the detector over a relatively wide range of

radioactivity levels.

Figure 2.10 shows the event count rate (measured and calculated) versus activity. Each

dot represents the number of events measured over one second. The background event rate

from LYSO is measured separately and is subtracted from the measured count rate. The

calculated count rate is based on the final activity (0.30 µCi) measured by a dose calibrator

at the end of the experiment and computing the activity for all the time points during the

experiment according to the decay constant. Figure 2.10a shows the PMT trigger rate for

the phoswich detector. There is a discrepancy between the measured data and the calculated

activity of 18F when the activity level is relatively high, i.e. above 20 µCi. However, at low

activity levels the measured data and the calculated activity match. Figures 2.10b and 2.10c

show the classified event trigger rate after the pulse shape discrimination is applied. A more

accurate fit to the 18F decay can be observed when the activity level is below 12 µCi.

In order to investigate the dependency of the classified events on the total radioactivity, I

measured the percentage of each kind of event out of the event classifier as a function of

activity level (Figure 2.11). The part of the curve that belongs to the higher activity levels

is bent due to detector dead time issues under high count rate.

The count rate of beta events, as shown in Figure 2.10, has a smaller upper-bound threshold

(12 µCi) than that of gamma events (20 µCi), because, at higher activity levels, a portion of

beta events are misclassified as contaminated events and a portion of contaminated events

are misclassified as gamma events. This can be better observed in Figure 2.11a where the

curves for both beta and gamma events start to diverge from the black line at approximately

the same activity level. Moreover, the phantom that we used, had a relatively smaller

attenuation of positrons than the typical imaging objects, in order to find the worst-case

count-rate-dependency threshold for beta detection.
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(a) Phoswich detector count rate

(b) Gamma detection count rate (c) Beta detection count rate

Figure 2.10. System count rate dependency measurements
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(a) Gamma and Beta events ratio (b) Contaminated events ratio

Figure 2.11. Event statistics measurement. The ratio is the rate of each kind of events divided
by the total rate of the phoswich detector. Black line is the average value from classification of
signal waveforms in debugging mode: 0.73, 0.2, and 0.07 for gamma, beta, and contaminated
events, respectively.

2.3 Physics model

The energy-weighted positioning technique [93] is directly used to map the point of interac-

tion of all the events, meaning that the Anger Circuit [8] outputs of PMT are multiplexed to

obtain the horizontal and vertical Cartesian location of the interaction. Beta and coincidence-

gamma data are separately sorted into data arrays. We obtain the beta data (dβ), from the

plastic scintillator events using Anger-logic. Similarly, the coincidence-gamma data (dγ) is

obtained from coincidence-gamma pair events. For gamma image reconstruction, the stan-

dard system matrix is used as described in Section 2.4.1. We propose a separate system

matrix for beta, i.e., Hβ. In our imaging set-up, since positrons move within two media: leaf

(object) and the plastic scintillator, the beta system matrix consists of a medium-dependent

component, namely, H2 and the plastic scintillator point spread function (PSF), namely,

H1. Therefore, the overall beta system matrix is modeled using a factored matrix approach:

Hβ = H1 ·H2.
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2.3.1 Medium-dependent Component (H2)

Based on the existing models on positron trajectories in water-equivalent media, Levin [69]

has calculated, by means of Monte Carlo calculations, the end point distribution of positron

in water for some of the most popular isotopes in PET, such as 18F and 13N. Furthermore,

Derenzo modeled [40] the ratio of the number of positrons that survive passing through a

particular distance from the origin of decay to the total number of positrons as a sum of two

exponential functions of that distance. This work assumes the same model.

I assume H2 to have a distance-dependent element and a thickness-dependent element as

shown in Equation 2.1, and model the distance-dependent element by the inverse square law

and obliquity. Define [H2]kj as the probability of a positron from the j-th object voxel to be

incident on the k-th unit, namely uk, on the top of the plastic scintillator as an intermediate

plane, namely K (k ∈ K).

[H2]kj ∝ (hj) ·

(
1

R2
kj

· cos θkj

)
(2.1)

where:

R2
kj = (x(sj)− x(uk))

2 + (y(sj)− y(uk))
2 + (z(sj)− z(uk))

2

cos θkj =
z(sj)− z(uk)

Rkj

[H2]jj = hj

See Table 2.1 for the definition of the variables. Please note that x(sj) is the x coordinate

of sj, y(sj) is the y coordinate of sj, and z(sj) is the z coordinate of sj.

2.3.1.1 Validation

As part of our method to compute the thickness-dependent element of H2, i.e. hj, a 18F

point source was embedded between two layers of 0.05 mm thick transparent adhesive tape

(as a water-equivalent medium) of equal thickness. Additional layers of tape were added in
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Figure 2.12. Beta image, point source of 18F embedded in a water-
equivalent medium for increasing variations of medium thickness: a) 0.05
mm, b) 0.15 mm, c) 0.25 mm, d) 0.45 mm, e) 0.65 mm, f) 0.85 mm. Color
bars have unit of dps per image pixel.

increments of 0.05 mm to mimic medium thickness. We acquired data for each configuration

of medium thickness.

Beta alone images, reconstructed using the beta data only and using the beta system matrix

with hj = 1, ∀j ∈ J (as explained in Section 2.4.1), are shown in Figure 2.12 for 6 medium

thickness variations. The line profile of each image was drawn and fitted to a Gaussian kernel

of the form a · e
−(x−b)2

2c2 . a is the height of the curve’s peak, b is the position of the center of

the peak, and c controls the width of the “bell” 6. The fitting parameters are listed in Table

2.2. From the value of a it can be seen that the intensity of the beta images consistently

decreases as medium thickness increases. However, the value of c almost does not change

for the first four configurations, and slightly changes for the last two ones (10%, and 15%).

Since c is proportional to the FWHM of the Gaussian curve 7, this validates the assumption

that the medium thickness mainly causes a reduction in the number of escaping positrons,

and the blurring effect of medium thickness can be deconvolved by the distance-dependent

element of H2.

6The graph of a Gaussian kernel resembles a bell shaped curve
7FWHM = 2c

√
2 ln 2 ≈ 2.3548c
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Table 2.2. Medium thickness values and fitting parameters in y = a · e
−(x−b)2

2c2

for line profiles of beta images in Figure 2.12

Label a b c d e f
Medium Thickness (mm) 0.05 0.15 0.25 0.45 0.65 0.85

a 18148 7054 3439 504 194 63
c (mm) 0.93 0.94 0.92 0.92 1.04 1.09

2.3.1.2 Procedure

From the beta data, using only H1, and the distance-dependent part of H2, and ignoring

the thickness-dependent part of H2, I reconstructed the beta images. From the coincidence-

gamma data, I reconstructed the gamma images (both explained in Section 2.4.1). Ideally,

a known medium thickness map for all image voxels is needed in order to compute hj. Since

all of the voxels of both images have the same medium thickness (phantom design), they all

have the same hj for all image voxels. Thus, one can use the total activity (
∑

j vj), instead

of activity of a voxel (vj), in order to find hj. Define β
β0

as the ratio of total activity of the

beta image to that of the smallest medium thickness configuration, and β
γ

as the ratio of

total activity of the beta image to that of the gamma image. The values of β
β0

versus medium

thickness (Figure 2.13a) can be fitted to a sum of two exponential functions similar to the

results of Levin’s Monte Carlo simulations for the histogram of x coordinate from positron

annihilation point distribution 8 (Equation 16 in [69]). Also, I fit medium thickness versus

the values of β
γ

to a sum of two exponential functions (Figure 2.13b).

hj is a function of only medium thickness. In an imaging experiment of an object of unknown

thickness distribution, one can compute hj using the two plots in Figure 2.13. Initially, the

two types of separate reconstruction tasks are executed, as they will be discussed in Section

2.4.1. Having two images (one beta vβ and one gamma vγ), for each image voxel (j ∈ J),

• first compute the thickness from ratio of beta image value to gamma image value

(
(

vβ
vγ

)
j
) by looking up the curve in Figure 2.13b

• Secondly, compute the normalized ratio of beta image value by looking up the fitted

curve in Figure 2.13a. This ratio is the computed value for hj.

8P (x) = Ce−k1x + (1− C)e−k2x x ≥ 0
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(a) The normalized ratio of beta image
value versus medium thickness.

(b) The medium thickness versus the
ratio of beta image value over gamma
image value.

Figure 2.13. Calibration experiment. The experimental measurements are fitted
to a sum of two exponential functions, i.e. y = aebx + cedx.

For example, if
(

vβ
vγ

)
j

is equal to 0.26 then the plot of Figure 2.13b gives a thickness of 0.4

mm, and the plot of Figure 2.13a gives hj = 0.22.

2.3.2 Plastic Scintillator Component (H1)

We use the Point Spread Function of the plastic scintillator to compute H1. As part of my

method to find the PSF of the plastic scintillator, the beta data from a 18F point source was

used. The point source was less than 0.1 cm in diameter, had almost zero medium thickness,

and was placed right on top of the plastic scintillator. In this set up the primary factor

of blurring is the plastic scintillator’s response. A weighted sum of two Gaussian kernels,

defined in 2D, best fits my experimental beta data. Define:

[H1]ik =
p3√
2πp1

exp

(
−(x(uk)− x(wi))

2 + (y(uk)− y(wi))
2

2p2
1

)

+
1− p3√

2πp2

exp

(
−(x(uk)− x(wi))

2 + (y(uk)− y(wi))
2

2p2
2

)
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See Table 2.1 for the definition of the variables. Please note that x(sj) is the x coordinate

of sj, y(sj) is the y coordinate of sj, and z(sj) is the z coordinate of sj.

Then [H1]ik · ∆x∆y is the probability of an incident positron on the plastic scintillator at

the intermediate space unit uk to be detected at data space unit wi. Subsequently, one has

to find the parameters p1, p2, and p3 by data fitting and taking into account the emission

map of the source.

2.4 Image Reconstruction

For all types of reconstruction, Maximum-Likelihood Expectation Maximization (ML-EM)

algorithm is used for 10 iterations. Image voxel size is 0.25 × 0.25 × 0.1 mm3.

2.4.1 Separate Reconstruction

Beta alone

The beta data (i ∈ {B}) and an incomplete beta system matrix, i.e., Hβ = H1 · H2 where

hj = 1 for ∀j ∈ J , are used in ML-EM algorithm to reconstruct the beta image.

Gamma alone

The coincidence-gamma data (i ∈ {Γ}) and the typical coincidence-gamma system matrix

[92] are used in ML-EM algorithm to reconstruct the gamma image.

2.4.2 Joint Reconstruction

Two ways of combining the two sets of beta and coincidence-gamma data are proposed.
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Complete beta reconstruction.

The beta data (i ∈ {B}) and a complete beta system matrix, i.e., Hβ = H1 ·H2, are used in

ML-EM algorithm to reconstruct the complete beta image.

Therefore, images from the two separate reconstruction methods (Section 2.4.1) are used to

calculate H2, as explained in Section 2.3.1.

Joint beta and gamma reconstruction.

We use both beta and coincidence-gamma data, a complete beta system matrix, and the

coincidence-gamma system matrix in ML-EM algorithm to reconstruct the joint image.

Upon the common emission tomography statistical image reconstruction framework [91, 67],

We derive the joint beta and gamma image reconstruction in which a weighted sum of two

likelihood functions is maximized under non-negativity constraints.

v̂ = arg max
v

L(dγ|v) + αL(dβ|v)

= arg max
v

∑
i∈Γ

di log [Hv]i − [Hv]i + α

(∑
i∈B

di log [Hv]i − [Hv]i

)

= arg max
v

∑
i∈Γ

di log

(∑
j

hijvj

)
−

(∑
j

hijvj

)

+ α

(∑
i∈B

di log

(∑
j

hijvj

)
−

(∑
j

hijvj

))

Subject to − vj ≤ 0

Where H =

[
Hγ

Hβ

]
and the above formulation is an immediate result of assuming

[
dγ

dβ

]
∼

Poisson

([
Hγ

Hβ

]
v

)
. Following the same procedure as O’Sullivan [83] in the derivation of the

alternating minimization algorithm for transmission tomography, which in general is similar
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to the work of De Pierro [34, 35] for emission tomography, we lift the primary problem to a

double optimization problem using the following lemma.

Lemma 1 (Convex Decomposition Lemma).

log

(∑
i

qi

)
= max

p∈P

∑
i

pi log

(
qi
pi

)
; P =

{
p|pi ≥ 0,

∑
i

pi = 1

}

Using lemma 1 write log
(∑

j hijvj

)
= max

πi

∑
j πij log

hijvj
πij

such that
∑

j πij = 1 ∀i. So

the optimization problem will be lifted to a double maximization problem over v and the

auxiliary variable π:

max
v

∑
i∈Γ

di max
π

∑
j

πij log
hijvj
πij
− hijvj + α

(∑
i∈B

di max
π

∑
j

πij log
hijvj
πij
− hijvj

)

Equivalently:

max
v

max
π

∑
i∈Γ

∑
j

diπij log
hijvj
πij
− hijvj + α

(∑
i∈B

∑
j

diπij log
hijvj
πij
− hijvj

)

−vj ≤ 0 ∀j∑
j

πij = 1 ∀i

Construct the Lagrangian for the auxiliary parameter π:

L =
∑
i∈Γ

∑
j

diπij log
hijvj
πij
− hijvj + α

(∑
i∈B

∑
j

diπij log
hijvj
πij
− hijvj

)

+
∑
i

λi

(∑
j

πij − 1

)
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Take the gradient with respect to πij and equate to zero:

∂

∂πij
L = 0 ⇒

di
(

log
hijvj
πij
− 1
)

= λi i ∈ Γ

di

(
log

hijvj
πij
− 1
)

= λi
α

i ∈ B
⇒


πij =

hijvj

e
1+

λi
di

i ∈ Γ

πij =
hijvj

e
1+

λi
αdi

i ∈ B

Enforce the equality constraint on π:

∑
j

πij = 1⇒ πij =
hijvj∑
j′ hij′vj′

Similarly for v:

L =
∑
i∈Γ

∑
j

diπij log
hijvj
πij
− hijvj + α

(∑
i∈B

∑
j

diπij log
hijvj
πij
− hijvj

)
−
∑
j

µjvj

∂

∂vj
L = 0 ⇒

∑
i∈Γ

diπij
vj
− hij + α

(∑
i∈B

diπij
vj
− hij

)
= µj

Complementary slackness condition for the inequality constraint requires that:

µjvj = 0 ∀j ∈ J

⇒

(∑
i∈Γ

diπij
vj
− hij + α

(∑
i∈B

diπij
vj
− hij

))
vj = 0

Meaning that if vj 6= 0, then:

vj =
1∑

i∈Γ hij + α
∑

i∈B hij

(∑
i∈Γ

diπij + α
∑
i∈B

diπij

)
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This is an alternating algorithm which starts with an initial value for v and will alternate

between π and v in the following manner:

π
(k)
ij =

hijv
(k)
j∑

j′ hij′v
(k)
j′

v
(k+1)
j =

1∑
i∈Γ hij + α

∑
i∈B hij

(∑
i∈Γ

diπ
(k)
ij + α

∑
i∈B

diπ
(k)
ij

)

The above two steps can be summarized into one single step.

v
(k+1)
j =

1∑
i∈Γ hij + α

∑
i∈B hij

(∑
i∈Γ

di
hijv

(k)
j∑

j′ hij′v
(k)
j′

+ α
∑
i∈B

di
hijv

(k)
j∑

j′ hij′v
(k)
j′

)

The final ML-EM step is :

v
(k+1)
j =

v
(k)
j∑

i∈Γ hij + α
∑

i∈B hij

(∑
i∈Γ

hij
di∑

j′ hij′v
(k)
j′

+ α
∑
i∈B

hij
di∑

j′ hij′v
(k)
j′

)
(2.2)

First-order 9 KKT 10 conditions for L(d|v) require that:

0 = −vj ·
∂L(d|v)

∂vj
= vj ·

(∑
i∈Γ

hij −
∑
i∈Γ

dihij∑
j′ hij′vj′

+ α

(∑
i∈B

hij −
∑
i∈B

dihij∑
j′ hij′vj′

))

⇒


∑

i∈Γ hij −
∑

i∈Γ
dihij∑
j′ hij′vj′

+ α
(∑

i∈B hij −
∑

i∈B
dihij∑
j′ hij′vj′

)
= 0 if vj > 0∑

i∈Γ hij −
∑

i∈Γ
dihij∑
j′ hij′vj′

+ α
(∑

i∈B hij −
∑

i∈B
dihij∑
j′ hij′vj′

)
≥ 0 if vj = 0

(2.3)

Now if v
(k)
j is a fixed point of equation 2.2, then v

(k)
j = v

(k+1)
j , that yields:

⇒


∑

i∈Γ
dihij∑
j′ hij′v

(k)

j′
+ α

∑
i∈B

dihij∑
j′ hij′v

(k)

j′
=
∑

i∈Γ hij + α
∑

i∈B hij if v
(k)
j > 0∑

i∈Γ
dihij∑
j′ hij′v

(k)

j′
+ α

∑
i∈B

dihij∑
j′ hij′v

(k)

j′
≥
∑

i∈Γ hij + α
∑

i∈B hij if v
(k)
j = 0

9Necessary conditions
10Karush-Kuhn-Tucker
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Which are equal to 2.3 if vj is replaced with v
(k)
j

See Tables 1.1 and 2.1 for the definition of the variables.

2.4.3 Structural Similarity (SSIM)

An objective assessment of the image quantification of the jointly reconstructed image can

be achieved by using the structural similarity (SSIM) approach [114]. The SSIM index

employs a full reference method for assessing perceptual difference between two images. It

compares the local patterns of pixel intensities. The SSIM index is composed of a luminance

comparison index, a contrast comparison index, and a structural comparison index. In this

study, all three terms are weighted equally. The SSIM index between image 1 (v1) and image

2 (v2) is formulated in Equation 2.4, where σ1,2 is the correlation between the two images

and is defined as 1
|J |−1

∑
j(v1j − µ1)(v2j − µ2).

SSIM(v1,v2) =

[
2µ1µ2

µ1
2 + µ2

2

]
·
[

2σ1σ2

σ1
2 + σ2

2

]
·
[
σ1,2

σ1σ2

]
=

[
2µ1µ2

µ1
2 + µ2

2

]
·
[

2σ1,2

σ1
2 + σ2

2

]
(2.4)

Where:

µ =
1

|J |
∑
j

vj

σ =

√√√√( 1

|J | − 1

∑
j

(vj − µ)2

)

Are, in order, the mean and standard deviation of an image. See Tables 1.1 and 2.1 for the

definition of the variables.
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(a) True map (b) Beta alone re-
construction

(c) Gamma alone
reconstruction

(d) Complete
beta reconstruc-
tion

(e) Joint beta
and gamma
reconstruction

Figure 2.14. Point source images are reconstructed from simultane-
ous beta and coincidence-gamma data, using ML-EM algorithm. Color
bars have unit of nCi per image pixel.

2.5 Physics Model Validation

As it is claimed, the two pieces of data, the beta and coincidence-gamma data, collectively

should yield more quantitative images than either of the two considered alone. To show that,

we have done a phantom imaging study as well as a plant imaging study to investigate the

validity of the physics model and the joint image reconstruction framework.

To cross-check the potential quantification improvement achievable by our model, a simple

phantom is made of four point sources of 18F embedded inside a water equivalent medium

(transparent adhesive tape) of four thickness variations. The true emission map and the

images, reconstructed from the beta and coincidence-gamma data according to the recon-

struction schemes described in Section 2.4, are shown in Figure 2.14.

The true and the estimated activity values are shown in Table 2.3. The true activity of

each point source is measured using a gamma counter. For each reconstruction method, the

estimated activity values are normalized by the maximum value (out of four) and scaled to

the true activity of the maximum point source. This is why for each reconstruction method,
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Table 2.3. Quantification results for estimated radioactivity of each point source shown in
Figure 2.14

Phantom Beta Gamma Complet beta Joint(α=1.9)
True Medium Estimated Error Estimated Error Estimated Error Estimated Error

# activity thickness activity % activity % activity % activity %
(µCi) (mm) (µCi) (µCi) (µCi) (µCi)

1 3.398 0.10 3.398 0 1.987 42 3.398 0 3.025 11
2 2.858 0.25 1.745 39 2.179 24 3.114 9 2.734 4.4
3 3.016 0.40 1.118 63 2.792 7 2.913 3.4 2.638 12
4 3.026 0.55 0.958 70 3.206 0 3.188 0.6 3.206 0

the maximum estimated activity is equal to the true activity. Quantification of each image

in Figure 2.14 can be evaluated by the difference between the estimated activity and the

true activity. Percent error values for the estimated activity is equal to the absolute value

of difference between true activity and the estimated activity divided by the true activity.

The beta alone image becomes less accurate when medium thickness increases as opposed

to the gamma alone image, which becomes less accurate when medium thickness decreases.

Both separate reconstruction methods are inaccurate. The complete beta and the joint beta

and gamma reconstruction methods (as explained in Section 2.4.2) yield relatively accurate

estimations of activity.

2.6 Plant Leaf Study

The plant leaf experiment consists of three steps: 1) Have a tomato plant absorb 11CO2. 2)

Cut the desired leaf, submerge it in water 11 and image it by the PlantPET Imager [113]. 3)

Image the leaf by the Simultaneous Beta-Gamma Imager.

A tomato plant was exposed to 6.5 mCi of 11CO2 injected into a sealed labeling chamber

of ∼ 1 L in volume. The tomato plant absorbed the gas for 10 minutes and then the gas

was flushed out with fresh air for 10 minutes. For the following PET imaging, the leaf was

sandwiched between two 3 mm thick layers of plastic and submerged into water, to effectively

eliminate positron escape, and was scanned for 5.5 minutes. The image from the PlantPET

Imager serves as our ground truth image for quantitative performance evaluation of the

Simultaneous Beta-Gamma Imager and therefore the PET image must be quantitative.

11The leaf is submerged in water to enforce higher positron annihilation
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Figure 2.15. PET image of the tomato leaf
obtained from the PlantPET Imager, using
ML-EM algorithm. The image voxel size is
0.8 mm × 0.8 mm × 0.8 mm. Color bar has
unit of normalized value (normalized to the
maximum value).

Figure 2.16. The tomato leaf is placed on
the Simultaneous Beta-Gamma Imager and
data is collected for approximately 2 hours.

Figure 2.15 shows the ground truth image as reconstructed using the ML-EM algorithm with

image voxel size of 0.8 mm × 0.8 mm × 0.8 mm [74]. Due to the use of large LSO crystals

in the PlantPET scanner and larger voxel size, this image has lower resolution compared

to the images from the Simultaneous Beta-Gamma Imager but it has better quantification

because of positron escape elimination.

For Beta-Gamma imaging, we placed the leaf on the surface of the phoswich detector (as

shown in Figure 2.16) and acquired data for 2 hours. The images are shown in Figure 2.17.

It can be seen from the images shown in Figure 2.17, the joint beta and gamma reconstruction

image (Figure 2.17e) and complete beta reconstruction image (Figure 2.17d) resemble the

ground truth image in Figure 2.15 better than either of the two separate reconstruction

images, i.e., beta alone and gamma alone (Figures 2.17b and 2.17c, respectively). The beta

image captures the dominant 11CO2 uptake in the leaf but has relatively lower resolution.

58



(a) The ground truth image.

(b) Beta alone reconstruction.
SSIM index = 0.33

(c) Gamma alone reconstruc-
tion. SSIM index = 0.52

(d) Complete beta reconstruc-
tion. SSIM index = 0.69

(e) Joint beta and gamma re-
construction (α=0.45). SSIM
index = 0.63

Figure 2.17. Tomato leaf images are reconstructed from the beta
and coincidence-gamma data collected by the Simultaneous Beta-
Gamma Imager, using ML-EM algorithm. Color bars have unit of
normalized value (normalized to the maximum value).
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Also it fails to capture the structural features on the midrib and the 11CO2 uptake in the

veins as opposed to the gamma image in which the veins are visible. The gamma image

gives a misleading indication of how the true radioactivity is distributed in the relatively

thin regions of the leaf such as the top right edge and the side lobes. The joint beta and

gamma image captures both the structural features and 11CO2 uptake distribution in the

leaf.

The ground truth image in Figure 2.15, co-registered (rotated and resized) with the beta-

gamma images (Figure 2.17), was used as the reference image. The SSIM index for each of

the images reconstructed from the data acquired by the Simultaneous Beta-Gamma Imager is

found to be 0.33, 0.52, 0.69, and 0.63 for beta, gamma, complete beta, and joint, respectively.

This indicates that the complete beta image and the joint image are more similar to the

ground truth image than the beta alone and gamma alone images in terms of structural

features.

The complete beta image has a higher SSIM index than the joint image. However, the joint

image has a higher resolution than the complete beta image.

2.7 Discussion and Future Work

2.7.1 Increasing the imaging FOV of the beta detector

The non-linearity between the detector response and the physical location for the edge crys-

tals discussed in Section 2.2.2.1 may be corrected by using a look-up table for beta detection.

Similar to a flood image experiment and making a look-up table for crystal peak locations

for gamma, a collimated beta source can be used to scan the plastic scintillator’s entire sur-

face at small increments (e.g. 0.25 mm) in 2D to acquire a histogram and subsequently to

find the mapping from the plastic scintillator response to the physical location of the beta

source. Using this look-up table for beta, one can increase the imaging FOV of the beta

detector, however utilizing the 4.8 cm × 4.8 cm imaging FOV of the beta detector requires

optimization of light path from the plastic scintillator to the PMT. Additionally, one may

combine multiple phoswich detectors of the same kind to create a large-area simultaneous
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beta-gamma imager. The system should employ modular design and read out phoswich de-

tectors independently in order to limit (or reduce) dead time and preserve (or even improve)

the system count rate capability.

2.7.2 Event classification

Our pulse shape discrimination procedure is not capable of classifying the mixed events from

both the plastic scintillator and the LYSO crystal at the same time. The system marks the

events falling in between the two thresholds described in Section 2.2.1.2 as contaminated

events and discards them without any further processing. Classifying contaminated events

requires a more complicated algorithm in order to maximize the efficiency of the Simultaneous

Beta-Gamma Imager. In this sense, beta events are the ones induced by positrons which

escaped from the leaf and interacted with the plastic scintillator. Also, this interaction

should not be followed by an annihilation gamma ray being detected by the LYSO crystal

or it may result in a contaminated event. In the current implementation, the contaminated

events account for 7% of the CFD triggered events. A more sophisticated classifier may

improve counting statistics and efficiency of the Simultaneous Beta-Gamma Imager.

2.7.3 H1 characterization

Modeling and characterization of the plastic scintillator’s PSF is worth investigating. Gener-

ally H1 should be such that for a known emission map v and its corresponding measurement

d, the Poisson log likelihood function between the source emission map and the measure-

ment be maximized. If H1 is modeled as a sum of two 2D Gaussian kernels with parameter

p = (p1, p2, p3), then:

p̂ = arg max
p

∑
i

di log

(∑
j

hijvj

)
−
∑
j

hijvj

In the above optimization problem, hij must be equal to
∑

k [H1]ik [H2]kj; however, since the

PSF of the plastic scintillator is needed in order to compute the thickness-dependent element

of H2, the source emission map should be designed so that such element be unity.
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2.7.4 Joint reconstruction hyperparameter α

The choice of the hyperparameter α that originally appears in the formulation of the op-

timization problem developed in 2.4.2 may be the topic of a separate study. This value

controls the contribution of beta data to the joint beta and gamma reconstruction.

2.8 Conclusion

In this work, we introduce a new imaging modality, Simultaneous Beta-Gamma Imaging. We

have designed, assembled, modeled, and tested a prototype. While the application presented

for our Simultaneous Beta-Gamma Imager was a quantitative imaging of leaves, the same

system can be used to image other thin objects that are challenging for PET systems.

The phantom study results shown in Section 2.5 demonstrate that the physics model pro-

posed in Section 2.3 along with joint image reconstruction framework proposed in Section

2.4 provide more quantification in estimating radioactivity concentration.

Moreover, in a plant leaf study (Section 2.6), we showed that the physics model and the joint

image reconstruction are capable of producing images that are both subjectively (visually)

and objectively (Structural Similarity Index) more quantitative than gamma alone and beta

alone images.
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Chapter 3

Virtual-pinhole PET Technology:

Surveillance Mode

3.1 Introduction

Since PET spatial resolution can be limited by the detector intrinsic resolution, one way to

enhance it, is to reduce the size of the crystals. However, clinical PET scanner manufac-

turers refrain from using too small scintillation crystals, because the improvement in spatial

resolution is limited due to positron annihilation non-collinearity. For a scanner that has a

ring diameter of ≥ 80 cm, the annihilation non-collinearity effect will limit the resolution

to be no better than 0.2 cm FWHM. As a result, using very small scintillation crystals to

improve the resolution is not cost-effective. For instance, Siemens uses 0.4 cm × 0.4 cm ×
2 cm LSO crystals in Biograph TruePoint®PET-CT scanners.

The clinical desire for higher resolution PET imaging in specific applications, has caused

development of PET systems with modified or adjusted geometries such as Positron Emission

Mammography (PEM). Thompson et al [106, 105] built a dedicated BGO-based PAM device

and demonstrated that spatial resolution of about 2 mm and efficiency of about ten times

that of a conventional brain scanner were acheivable. Doshi et al [43] built a LSO-based

modular PET detector for breast imaging and later developed a high-performance PET

camera (maxPET) for imaging breast and axilla [44].
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Adjusting the PET geometry for particular applications, such as breast and brain imaging, is

not the only way to achieve higer resolution and sensitivity. Tai et al proposed the Virtual-

pinhole (VP) PET [102] in order to investigate an enhancement in spatial resolution and

sensitivity. In VP-PET technology, one or more high-resolution PET detector units are

integrated into and operate in coincidence with a conventional PET scanner that has lower-

resolution detectors. Our group designed, built, and tested 4 VP-PET detectors (inserts)

and reported 2.40− 3.24 mm FWHM spatial resolution [102]. VP-PET effect improves the

spatial resolution in the region of interest (ROI) near where the higher-resolution insert has

been placed. Mathews et al built a half-ring PET insert and demonstrated improvement in

image resolution and contrast recovery for breast imaging applications [73].

3.2 Virtual-pinhole PET: Active Mode

In the active mode, the PET insert is located inside the scanner’s FOV, as shown in Figure

3.1. One of the downsides of the active mode is that the insert, being inside the scanner’s

FOV, will block some of the scanner’s LORs and therefore is considered an attenuating

medium that imposes attenuation and scattering on the scanner’s LORs. However, high-

resolution scanner-insert LORs, obtained from the region of interest, will complement the

scanner’s loss of LOR.

Since the insert attenuates some of the scanner’s LORs, then it must be considered in

the attenuation correction of the image reconstruction algorithm. Therefore, the insert’s

geometry must be included in the attenuation map12, as shown in Figure 3.2. Overall, the

attenuation map is composed of the attenuation map of the patient’s body derived from

a X-ray CT image and the calculated attenuation map of the VP-PET insert device, as

illustrated in Sections 4.2 and 4.3 of [62].

12The attenuation coefficient map of image voxels at 511 keV.
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Figure 3.1. Schematic of the
PET scanner and the insert in the
active mode. The insert is placed
inside the scanner’s bore.
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Figure 3.2. Attenuation map used for attenuation correction in the active
PET geometry. Attenuation coefficient (at 511 keV) used for the insert is
0.831 cm−1 as opposed to 0.096 cm−1 for the body. Note that the image
voxel size is 0.1 cm × 0.1 cm × 0.1 cm, therfore, 0.831 cm−1 = 0.0831 mm−1.
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Figure 3.3. Schematic of the surveillance mode imaging setup. The robotic arm holds the PET insert
under the bed. The insert collects coincidence events with the scanner from different regions in the
patient’s body as the bed moves.

3.3 Motivation

The medical application of interest in Chapter 3 is tumor detectability. Virtual-pinhole

PET insert has the potential to increase tumor detectability by improving the spatial res-

olution and the contrast recovery of a conventional PET scanner. However, placing the

high-resolution PET insert in the scanner’s FOV will introduce other inevitable issues to

deal with such as attenuation or handling the insert compliant with clinical standards.

When the PET insert is inside the PET scanner’s bore, it shadows a portion of the scan-

ner’s crystals, so the number of counts from that portion of the scanner-scanner LORs is

significantly attenuated. This has motivated us to propose a new mode of imaging to which

we refer as surveillance mode. In the surveillance mode imaging regime, the PET insert is

placed13 fixed outside of the PET scanner’s gantry and will “closely observe” the regions of

interest as the bed moves the patient towards the insert. This illustrated in Figure 3.3.

13The initial design is to place the insert under the bed mainly because of patient’s safety issues. The
robotic arm can move the insert to the top in which case the insert is positioned even closer to the body
surface.

67



In this Chapter, we describe a procedure as to achieve a solution to the above task, and

details are discussed more specifically in Section 3.5.

Although Chapter 3 is about the surveillance mode of the virtual-pinhole PET technology,

the reason we described the active mode in Section 3.2 is because of its analogy to the

surveillance mode.

3.4 Simulation study

3.4.1 Monte Carlo Simulation Package

Among various simulation packages for emission tomography, SimSET (Simulation System

for Emission Tomography) is a dedicated code for PET and SPECT simulations [54]. It uses

a simplified physics model that is accurate and fast. It is capable of modeling basic detector

design. However, it has its own stumbling blocks for users who are willing to explore more

than the conventional detector geometries. Also, in SimSET, like all of the other publicly

available simulation codes, time is not modeled, which makes it impractical for many time-

dependent applications such as kinetics.

The Geant4 package [1, 5, 6] is a more generic Monte Carlo toolkit that simulates the

passage of subatomic particles through matter. It is widely used in high-energy, nuclear, and

accelerator physics studies. Built on top of Geant4 libraries, GATE (Geant4 Application for

Emission Tomography) is a modular, versatile, and scripted Monte Carlo simulation toolkit

that overcomes all of the limitations mentioned above. GATE has become the standard for

Monte Carlo simulation in the field of nuclear medicine [60, 59].

The user can define the geometry of the PET system as accurately as the position and

orientation of the LSO crystals in scripts called GATE macros. It is also possible to define

new systems integrated in the coincidence detection wiring of the computer simulation. This

has enabled us to define the geometry of the flat-panel insert functioning in coincidence with

the PET system.
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Furthermore, the user can take advantage of the HepRep (for High Energy Physics REP-

resentables) file to extract the size, position, and orientation of the detector elements in a

hierarchical format. After running the geometry initialization, the following GATE com-

mands are run:

Idle> /vis/open HepRepFile

Idle> /vis/viewer flush

All the geometrical information will be saved in a file with heprep extension. The HepRep

file is in XML format and can be displayed by most web browsers with colorful indenting

and coding. HepRep is a hierarchical format: Geant4 volumes have sub-volumes, etc. For

example a PET system consists of sectors, sectors have modules, modules have crystals,

and cyrstals have LSO (cerium-doped lutetium oxyorthosilicate14) or BGO (bismuth ger-

manate15) elements. The following tree shows the hierarchy for the geometry used in this

study:

14Lu2SiO5(Ce)
15Bi4Ge3O12
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World

Scanner

Sector 1

Module 1

Crystal 1

LSO

Crystal 2

Crystal 169

Module 2

Module 3

Module 4

Sector 2

Sector 48

Insert

Sector

Module 1

Crystal 1

LSO

Crystal 256

Module 2

Module 32

HepRep was not initially developed for Geant4 but it is a generic interface for displaying the

detector elements of a GATE simulation.

To read the XML file we utilized the MATLAB® built-in function:

DOMnode = xmlread('G4Data0.heprep');
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Figure 3.4. Spherical sources of 18F embedded in
the background phantom used in the simulation.
The background phantom has an elliptical tube
shape that is 22 cm long. The base of the tube is
an ellipse, which is 40 cm in major axis diameter
and 26 cm in minor axis diameter.

Which returns a Document Object Model node (DOMnode). In a Document Object Model,

every item in an XML file corresponds to a node. The properties and methods for DOM

nodes such as getElementsByTagName('heprep:instance') and getChildNodes are

used to extract the geometry information from the scanner all the way down to the LSO

elements.

3.4.2 Geometry

All the measurements in Chapter 3 were made using GATE simulation. For both GATE

simulation and image reconstruction, the origin of the coordinate system is always in the

center of the PET scanner’s FOV.

3.4.2.1 Phantom

The phantom consists of spherical sources of 18F embedded in an elliptical cylinder (elliptical

tube) with uniform background activity similar to what is shown in Figure 3.4. The size of

the elliptical tube is 40 cm × 26 cm × 22 cm in x, y, and z direction, respectively. The

cylinder is along the scanner’s axial direction. The shape of the phantom resembles the

transverse view of a patient’s torso lying on the scanner’s bed.

The imaging field of view (FOV) is a rectangular box of dimensions: 40 cm × 40 cm × 22.4

cm, as shown in Figure 3.5.

71



Figure 3.5. The imaging field-of-view (FOV) used
for image reconstruction.

3.4.2.2 PET Insert

The PET insert is a flat-panel PET detector with 8 × 4 detector modules. Each module

contains 16 × 16 high resolution crystals of size 0.1 cm × 0.1 cm × 0.3 cm. The choice of

the crystal size (dimensions) was based on the available detectors in our lab. This insert is

shown in Figure 3.6.

3.4.2.3 PET Scanner

The scanner models Siemens Biograph 40 TruePoint® PET/CT with the following geomet-

rical specifications:

• Number of rings: 52

• Ring diameter: 84.2 cm

• Number of crystals: 32,448

• Crystal size: 0.4 cm × 0.4 cm × 2 cm

• Axial field of view: 21.6 cm
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Figure 3.6. The schematic of the flat-panel insert.
There are 8 × 4 modules. Each module contains 16 ×
16 crystals of size 0.1 cm × 0.1 cm × 0.3 cm.

The imaging FOV is centered with the scanner’s coordinate system and the PET insert is

positioned in front of the scanner as depicted in Figure 3.7.

3.4.3 Data

The data generated by GATE are singles events from both the scanner and the insert. Since

GATE is not capable of generating a coincidence file for the coincidence events between the

scanner and the extra system added to the geometry (insert), we have developed our own

sorting code that finds the coincidence events in the scanner’s singles file and the coincidence

events between the scanner’s singles file and the insert’s singles file. The time window that

we have used is 4 nano seconds.

There is coincidence both between the scanner’s detectors and between the scanner’s detec-

tors and the insert’s detectors. we refer to

• the coincidence events between the scanner’s crystals as scanner-scanner (SS) events
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Figure 3.7. The simulation geometry including the PET scanner, the flat-panel insert,
the imaging FOV, and a phantom.
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• and the coincidence events between the scanner’s crystals and insert’s crystals as insert-

scanner (IS) events.

If the insert had a different shape such that its crystals could constitute any LORs, insert-

insert (II) events would exist, too.

3.5 Imaging Regime

The clinical whole-body PET/CT imaging protocol dictates that the patient be scanned in

multiple bed positions that are slightly over-lapping and have the same scan duration, e.g.

7 bed positions each taking 3 minutes.

The surveillance mode imaging is fully compliant with the above imaging protocol. The insert

is positioned outside of the scanner’s axial FOV, and as the patient (bed) moves towards

the insert, it collects coincidence events. These coincidence events are marked according to

their correspondence with the bed positions. After the full scan, insert data are combined

with the scanner data to jointly reconstruct the image.

3.5.1 Detectors set-up

In the surveillance mode imaging, the PET insert is located outside of the PET scanner’s

FOV. To maximize the sensitivity of the insert device which is to minimize the distance

between the insert and the patient’s body, and also yet, to keep the insert outside of the

scanner’s gantry, the insert has been placed right on the edge outside of the scanner’s bore

(Figure 3.8).

3.5.2 Implementing Surveillance Mode Imaging

In order to demonstrate the feasibility of the surveillance mode imaging technique, I have

considered two bed positions that are 12 cm apart along the z-axis:
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Figure 3.8. The sagittal view
of the PET scanner and insert.
The insert is placed right on
the edge outside of the scanner’s
bore. The bed moves towards +z-
axis
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• In step 1, the background phantom, described in Section 3.4.2.1, is centered at z = 0

cm. Data are acquired for a known time duration, e.g. 3 minutes.

• Then the scanner’s bed moves 12 cm towards the positive z-axis. This is step 2 and

the background phantom is now centered at z = 12 cm. In this step, data are acquired

for the same duration as in step 1.

Data from both steps are combined to jointly reconstruct one image into a common image

space, as shown in Figure 3.5. The data from step 2 are added to data from step 1 by shifting

the LORs of step 2. The LORs from step 2 are shifted towards negative z-axis (away from

the insert) by the same amount as the bed moved towards positive z-axis, i.e. 12 cm.

3.5.3 Virtual Detectors

In Section 3.5.2, axial shifting of the LORs, acquired in step 2, was proposed as a way to

add them to the LORs acquired in step 1. We have implemented this axial shift by means

of virtual detectors: virtual scanner and virtual insert. The virtual detectors are shown in

Figure 3.9.

The virtual detectors are identical to the real detectors but are positioned by an axial offset

with respect to them. This offset is equal to the bed movement of 12 cm. The reason they

are called “virtual” is because they do not exist in data acquisition (simulation) and that

they only represent the detectors which constitute the LORs from step 2.

We introduced the coincidence data types in Section 3.4.3, i.e. SS and IS events, however,

after adding the virtual detectors to the system geometry, one has to differentiate between the

coincidence events of the real detectors and the coincidence events of the virtual detectors.

We define, similarly:

• the coincidence events between the virtual scanner’s crystals as virtual scanner-scanner

(vSS) events

• and the coincidence events between the virtual scanner’s crystals and the virtual insert’s

crystals as virtual insert-scanner (vIS) events.
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Figure 3.9. Positioning of the virtual detectors: The virtual scanner and the virtual insert
are positioned 12 cm, in axial direction, from the scanner and the insert, respectively. Virtual
detectors are visualized in hollow red modules. Note that the origin of the coordinate system is
always in the center of the scanner’s FOV
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Therefore, we have 4 types of events: SS, IS, vSS, and vIS. Although we have defined four

types of events, we won’t use all of the four types for joint image reconstruction at the same

time. This is because, when the bed moves to step 2, the insert is now imaging the section of

the body which was previously centered in the scanner’s FOV and which now is moved to a

new location viewable by the insert detectors , while the scanner detectors are now imaging

a new section of the body.

Therefore, the SS data from step 1 and the vIS data from step 2 are used jointly to recon-

struct the image for the body section that was initially centered in the scanner’s FOV in

step 1. We currently limit the image reconstruction only to SS and vIS events for all the

results presented in Section 3.7.

3.6 Image Reconstruction

The image reconstruction framework used here is a penalized version of the list-mode ML-EM

reconstruction algorithm described in Section 1.3.4.

3.6.1 Regularization

Regularization is considered as it is described in Section 1.3.3 and the implementation of the

penalty term follows the same procedure as in Section 1.3.3.2. More specifically, using Trust

Region Newton’s method, the objective function in Equation 3.1 bellow is maximized over

all image voxels.

Epenalized(d|v) =
∑
j

v
(n)
j u

(n)
j log (vj)−

∑
j

sjvj − β
∑
j

∑
k∈Nj
k 6=j

ηjkφ

(
vj − vk
δ

)
(3.1)

In Equation 3.1, s is the sensitivity image, i.e. sj =
∑

i hij, and u(n) is referred to as the

update image at the n-th iteration which is defined in Equations 3.2 and 3.3.
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• Histogram

u
(n)
j =

∑
i

hij
di∑

j′∈Ji hij′v
(n)
j′

(3.2)

• List-mode

u
(n)
j =

∑
m

himj
1∑

j′∈Ji himj′v
(n)
j′

(3.3)

Aside from implementing the maximization of Equation 3.1, choosing the penalty parameters,

β and δ are effectively equally important. As mentioned in Section 1.3.3, β controls the

relative weight of the penalty term versus the data-fitting term. There is not a systematic

procedure to compute the optimal value for β, however, depending on the application or the

goal the reconstructed images are supposed to serve, the trade-off between bias and variance

has been used to tune β [71]. In list-mode reconstruction, the numerical value of the update

image u(n) in Equation 3.1 depends on the number of coincidence events (as seen in Equation

3.3), therefore, if one seeks the same regularization effect on the reconstructed image from a

higher number of coincidence events, they should use a larger value for β.

As mentioned in Section 1.3.3, δ controls the variance (smoothness) imposed on the recon-

structed image. This gives us a clue about choosing a proper value for δ. So in order find a

proper value for δ, we have used a reconstruction from the background data. The background

data are the simulated data from the background phantom described in Section 3.4.2.1 with

no tumor sources (background only). The emission decay map16 of the uniform background

is shown in Figure 3.10a.

Using the background data, we reconstruct images with no penalty and study the variations

in the image voxels. The attenuation map, used in reconstruction for attenuation correction,

is shown in Figure 3.10b. The image at iteration 20 is shown in Figure 3.10c. In order to

study the variations in the image voxels, we select only the voxels in the reconstructed image

which has non-zero activity by means of the background activity emission decay map shown

in Figure 3.10a, and calculate the standard deviation of the reconstructed image. This is

conveniently implemented in MATLAB® by:

16An emission decay map is the true 3-D positions of the origin of all detected counts, obtained from GATE
simulation data. We don’t use the emission map for image reconstruction but we use it for illustration and
image quality analysis purposes.
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(a) Emission decay map. The
color bar represents number of de-
cays per image voxel.

(b) Phantom attenuation map.
The color bar represents attenu-
ation coefficient in mm−1.

(c) Reconsrtucted image at iter-
ation 20. The color bar has unit
of dps per image voxel.

Figure 3.10. Uniform background phantom. Image voxel size is 0.1 cm × 0.1 cm × 0.1 cm.

std(reconMap(decayMap>0));

which returns the mathematical value:

√√√√√ 1∑
j∈J
λj>0
−1

∑
j∈J
λj>0

(vj −m)2

where m is the mean of the image:

m =
1∑
j∈J
λj>0

∑
j∈J
λj>0

vj

where λj is the emission decay map and vj is the reconstructed image shown in Figure 3.10c.

When we analyze the recontructed images of tumor plus background activity (Section 3.7.2),

we exclude (mask out) the tumor voxels in the computation of the mean and variance of the

background.

3.6.2 Normalization

In the implementation of the VP-PET imaging, normalization is so essential that one would

not be able to obtain a meaningful image if the sensitivity image s is not properly normalized.
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This is because the efficiencies of the two types of detectors, i.e. scanner and insert, in

detecting 511-keV gamma rays, are so different that one could not simply use sj =
∑

i∈Ij hij

in the ML-EM algorithm (Equation 1.11).

The normalization described in Section 1.4.1, is comprehensive and includes all elements of

normalization such as crystal efficiency and gamma ray interaction angle. However, in this

preliminary study, we did not apply normalization in its common sense but only applied

crystal efficiencies of two or more types. This crystal efficiency should not be confused

with that of the scintillation crystals degrading over time. The two types include scanner’s

crystals and insert crystals. Therefore, ni in Equation 1.26, will have as many values as the

number of types of coincidence events, in which case is equal to four, because we have SS,

IS, vSS, and vIS coincidence events.

ni =



αSS i ∈ ISS

αIS i ∈ IIS

αvSS i ∈ IvSS

αvIS i ∈ IvIS

(3.4)

Using Equation 3.4 in the definition of the the sensitivity image yields:

sj =
∑
i

hijni (3.5)

= αSS

∑
i∈ISS

hij + αIS

∑
i∈IIS

hij + αvSS

∑
i∈IvSS

hij + αvIS

∑
i∈IvIS

hij (3.6)

which means the sensitivity image is a weighted sum of the individual sensitivity images sSS,

sIS, svSS, and svIS:

s = αSSs
SS + αISs

IS + αvSSs
vSS + αvISs

vIS

The weights in Equation 3.6 are determined by means of a normalization dataset and will

be discussed in details in Section 3.6.2.2. Note that in the case that we only use SS and vIS
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(a) Schematic of the normalization phantom in the
center of the scanner.

(b) A xy-plane (z-slice) of the emis-
sion map of the normalization phan-
tom. Color bar has unit of dps per im-
age voxel.

Figure 3.11. Normalization phantom: The diameter of the cylinder is 20 cm and its height is 22
cm. Radioactivity is uniformly distributed in the volume and the attenuation medium is water.

coincidence events for joint image reconstruction, as explained in Section 3.5.3, Equation 3.6

may be simplified to:

sj = αSS

∑
i∈ISS

hij + αvIS

∑
i∈IvIS

hij

3.6.2.1 Normalization phantom

The normalization phantom, used here, has a cylindrical tube shape with a height of 22 cm

and a radius of 10 cm. This phantom is schematically shown in Figure 3.11a.

The radioactivity concentration is 100 nCi
cc

. The phantom is placed in the center of the

scanner and data are acquired for 10 minutes per step (step is the same concept as was

introduced in Section 3.5.2).

• In step 1, the normalization phantom is placed at x = 0 cm, y = 0 cm, and z = 0 cm

and data are aquired for 10 minutes. This dataset is used to compute αSS and αIS.
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• In step 2, the normalization phantom is placed at x = 0 cm,y = 0 cm, and z = 12 cm

and data are aquired for 10 minutes. This dataset is used to compute αvSS and αvIS.

3.6.2.2 Computing Weights of Sensitivity Image

In order to calculate the weights in the computation of the sensitivity image as formulated

in Equation 3.6, we review our understanding of the sensitivity image based on its definition:

sj =
∑

i hij. sj is fundamentally proportional to the probability of detection of events in

the j-th image voxel of a decay. Thus, for each of the four types of event (SS, IS, vSS,

and vIS), the weight will be proportional to the mean number of coincidence counts in the

normalization dataset. Therefore, the most intuitive definition for the normalization factors,

ni, is the ratio of the mean number of measured counts (N) divided by the expected mean

number of counts (n̄i).

ni =
N

n̄i

where:

n̄i =
∑
j

hijv
norm
j

n̄ = Hvnorm is the mean forward projected value of the emission map shown in Figure 3.11b.

Following the same procedure for the 4 types of coincidence events, the weights are calculated

as:
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αSS =
NSS∑
i∈ISS n̄i

αIS =
NIS∑
i∈IIS n̄i

αvSS =
NvSS∑
i∈IvSS n̄i

αvIS =
NvIS∑
i∈IvIS n̄i

where NSS, NIS, NvSS, and NvIS are the mean number of measured SS, IS, vSS, and vIS

coincidence events, respectively, from the normalization dataset.

The unscaled individual sensitivity images sSS, sIS, svSS, and svIS, already have attenuation

correction included, as explained in Section 1.4.3, and more specifically in the denominator

of Equation 1.29. Scatter correction is not performed for any of the image reconstruction

jobs in this project.

3.7 Results

3.7.1 Resolution

One common way to assess the spatial resolution of a PET scanner is to use spherical sources

of various radii in the object being imaged.

The phantom, used in Section 3.7.1, follows the same idea as to demonstrate how “well” one

can differentiate the variations in adjacent voxels of the reconstructed image. We evaluate

the line profiles of the spherical sources in one plane of the reconstructed image volume.

The plane of the image volume, where all the spherical sources are centered (z0), is selected for

extracting the one-dimensional profiles. In order to demonstrate the resolution enhancement

of the surveillance mode image reconstruction, a Derenzo-like-pattern phantom has been
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(a) Diameter = 0.2 cm (b) Diameter = 0.3 cm

Figure 3.12. Emission decay maps for the spherical-source Derenzo-like-pattern phantoms. The
three phantoms are positioned at three vertical locations, 8.45 cm, 14.15 cm, and 20.05 cm from
the surface of the insert. The insert is not shown in the maps but is located at the bottom. The
distance between the surface of the insert to the body (the oval contour in the figure) is 7 cm.
Spacing between the centers of the adjacent spheres, is twice the diameter.

designed and the phantom has been positioned in three distances from the surface of the

insert. Figure 3.12 shows all the three locations in one emission decay map.

Figures 3.13 and 3.14 show the reconstructed images and their line profiles through the row

with five tumors on it for the phantom shown in Figure 3.12a.

Similarly, Figures 3.15 and 3.16 show the reconstructed images and their line profiles through

the row with five tumors on it for the phantom shown in Figure 3.12b. Results show that

the resolution of the jointly reconstructed images is the highest for regions close to the flat-

panel insert, and the improvement diminishes at a distance of approximately 20 cm from the

surface of the flat-panel insert.
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(a) scanner only (b) joint

Figure 3.13. Reconstructed images (iteration 30) of the data shown in Figure 3.12a. Diameter
of the spheres is 0.2 cm. Color bars have unit of nCi.
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(a) Distance = 8.45 cm

(b) Distance = 14.15 cm

(c) Distance = 20.05 cm

Figure 3.14. The line profiles of the reconstructed images shown in Figure
3.13 along the row with five spheres. Diameter of the spheres is 0.2 cm.
Color bars have unit of nCi.
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(a) scanner only (b) joint

Figure 3.15. Reconstructed images (iteration 30) of the data shown in Figure 3.12b. Diameter
of the spheres is 0.3 cm. Color bars have unit of nCi.
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(a) Distance = 8.45 cm

(b) Distance = 14.15 cm

(c) Distance = 20.05 cm

Figure 3.16. The line profiles of the reconstructed images shown in Figure
3.15 along the row with five spheres. Diameter of the spheres is 0.3 cm.
Color bars have unit of nCi.
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3.7.2 Contrast Recovery

In a real world imaging experiment, there always is background activity. That’s why in every

imaging study (both experiment and simulation) including the imaging study presented here,

the background activity phantom/source is considered.

In order to find the contrast of a reconstructed image, I divide the image voxels into three

non-overlapping groups:

• Tumor voxels: The voxels that contain the tumors.

• Background voxels: The voxels that contain the background activity minus the voxels

that contain the tumors.

• Outside voxels: All the remaining voxels of the image volume that contain no acivity.

All of the above groups of voxels can be masked out according to the emission decay map

shown in Figure 3.17.

We use the mean value of tumor voxels, m1, and the mean value of background voxels, m0,

in Equation 3.7 to calculate the contrast.

Contrast =
m1 −m0

m0

(3.7)

m0 and m1 are defined in Equations 3.8 and 3.9, respectively.

m0 =
1∑
j∈J
λbj>0
λtj=0

∑
j∈J
λbj>0
λtj=0

vj (3.8)

m1 =
1∑
j∈J
λbj>0
λtj>0

∑
j∈J
λbj>0
λtj>0

vj (3.9)
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Figure 3.17. The emission decay map of the spherical sources
placed near the edge of the body closer to the insert. The diam-
eters of the spherical sources (left to right) are 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, and 0.9 cm. The vertical distance between the centers
of the spheres and the surface of the flat-panel insert is 8.5 cm.
The tumor-to-background contrast ratio is 12:1.

Note that λb (λbj : j ∈ J) is the background emission decay map and λt (λtj : j ∈ J)

is the tumor emission decay map. Also, note that λb and λt are readily available only in

a simulation study, however for experimental data, one may use a primarily reconstructed

image to obtain estimates for λb and λt
17.

Contrast recovery is defined as the percentage ratio of the contrast of the output to the

contrast of the input. Here in Monte Carlo simulation the input is the emission decay map

and the output is the reconstructed image. The contrast recovery is defined in Equation

3.10.

Contrast Recovery (%) =
Co

Ci

× 100 (3.10)

• Co is the contrast of the reconstructed image.

• Ci is the tumor-to-background contrast ratio specified in the simulations.

17Only for the tumors that can be confidently perceived.
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In order to study contrast recovery enhancement brought by the insert, a simple phantom

has been simulated which consists of a row of spherical sources lined up horizontally. The

diameters of the spherical sources range from 0.3 cm to 0.9 cm in increments of 0.1 cm, and

the distance between the centers of the adjacent spheres is twice the diameter of the larger

one. This phantom is shown in Figure 3.17.

Figure 3.18 shows the reconstructed images in surveillance mode, as well as the contrast

recovery as a function of spherical tumor size.

The reconstructed images (displayed in Figure 3.18) show that the main challenge is to detect

tumors (spheres) of diameters 0.4 cm, 0.5 cm, and 0.6 cm. Therefore, phantoms of spherical

sources of the same diameter have been simulated where the spheres are arranged in three

rows of 5 spheres, a total of 15 spheres. The rows, in order, are positioned 8.5 cm, 14.5 cm,

and 20 cm from the surface of the insert. The phantoms are shown in Figure 3.19.

Using the data set shown in Figure 3.19 for two tumor-to-background contrast ratios of 12:1

and 6:1, we have reconstructed images for step 1, and jointly step 1 and step 2 together.

Figure 3.20 shows the reconstructed images for 12:1 contrast.

Also, Figure 3.21 shows the reconstructed images for 6:1 contrast.

In order to more quantitatively assess the contrast recovery enhancement of images shown

in Figures 3.20 and 3.21, contrast recovery is calculated for each of the spherical sources as

described in Section 3.7.2 and mainly by Equations 3.7 and 3.10. Figure 3.22 shows contrast

recovery versus size of the sphere.

Similar to Section 3.7.1, in order to examine the effect of distance between the tumors and

the insert on, in this case, contrast recovery, Figure 3.23 shows contrast recovery versus the

distance between the centers of the tumors and the surface of the flat-panel insert.
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(a) Scanner only (b) Joint

(c) Contrast recovery plot

Figure 3.18. Recontructed images and the contrast recovery plot for the phantom shown in
Figure 3.17. Tumor-to-background contrast ratio is 12:1 and reconstruction iteration is 30.
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(a) Diameter = 0.4 cm (b) Diameter = 0.5 cm (c) Diameter = 0.6 cm

Figure 3.19. The emission decay maps for the spherical sources phantom.

3.7.3 SNR

None of the metrics, used in Sections 3.7.1 and 3.7.2, takes into account the image noise. As

mentioned in Section 1.5.3, image noise is associated with the variations in the neighboring

voxels across the image volume.

The reconstructed image of a uniform source must ideally have flat profiles across the image

volume. However, in a real world scenario where noise exists, there are fluctuations in the

values of neighboring image voxels. I have used the standard deviation of the background

voxels as the representative of the image noise.

Similar to Section 3.7.2, there will be two standard deviation values for each image. One is

for the background voxels, that I refer to as δ0, and one is for the tumor voxels, namely δ1.

The standard deviations are calculated in Equations 3.11 and 3.12 in the same manner as

Equations 3.8 and 3.9.
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(a) Diameter = 0.4 cm , scanner
only.

(b) Diameter = 0.4 cm , joint.

(c) Diameter = 0.5 cm , scanner only. (d) Diameter = 0.5 cm , joint.

(e) Diameter = 0.6 cm , scanner only. (f) Diameter = 0.6 cm , joint.

Figure 3.20. Reconstructed images of data set shown in Figure 3.19. Tumor-to-
background contrast ratio is 12:1, reconstruction iteration is 30, and the color bar has
unit of nCi.
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(a) Diameter = 0.4 cm , scanner
only.

(b) Diameter = 0.4 cm , joint.

(c) Diameter = 0.5 cm , scanner only. (d) Diameter = 0.5 cm , joint.

(e) Diameter = 0.6 cm , scanner only. (f) Diameter = 0.6 cm , joint.

Figure 3.21. Reconstructed images of data set shown in Figure 3.19. Tumor-to-
background contrast ratio is 6:1, reconstruction iteration is 30, and the color bar has
unit of nCi.
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(a) 12:1 contrast (b) 6:1 contrast

Figure 3.22. Contrast recovery of the reconstructions shown in Figures 3.20 and 3.21, for the
spheres in only the closest row to the flat-panel insert, as a function of sphere size. The error bars
are derived by averaging over the five spheres in the row.

δ0 =

√√√√√√
1∑

j∈J
λbj>0
λtj=0

−1

∑
j∈J
λbj>0
λtj=0

(vj −m0)2 (3.11)

δ1 =

√√√√√√
1∑

j∈J
λbj>0
λtj>0

−1

∑
j∈J
λbj>0
λtj>0

(vj −m1)2 (3.12)

Using the standard deviation as a measure of noise in the image, and mean as a measure of

the signal in the image, one may define the signal-to-noise (SNR) ratio as in Equation 3.13.

SNR =
m1 −m0

1
2
δ1 + 1

2
δ0

(3.13)

Using Equation 3.13, the SNR is calculated for the spherical sources in the reconstructed

images in Figures 3.20 and 3.21. Figure 3.24 shows SNR versus the tumor size.

Similarly, Figure 3.25 shows SNR versus the vertical distance between the centers of the

spherical sources and the surface of the flat-panel insert.
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(a) Diameter = 0.4 cm , 12:1 contrast. (b) Diameter = 0.4 cm , 6:1 contrast.

(c) Diameter = 0.5 cm , 12:1 contrast. (d) Diameter = 0.5 cm , 6:1 contrast.

(e) Diameter = 0.6 cm , 12:1 contrast. (f) Diameter = 0.6 cm , 6:1 contrast.

Figure 3.23. Contrast recovery of the reconstructions shown in Figures 3.20 and 3.21 as a
function of the distance between the centers of the spheres and the surface of the flat-panel
insert. The error bars are derived by averaging over the five spheres in the row.
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(a) 12:1 contrast (b) 6:1 contrast

Figure 3.24. SNR of the reconstructions shown in Figures 3.20 and 3.21, for the spheres
in only the closest row to the flat-panel insert, as a function of sphere size. The error bars
are derived by averaging the SNR values over the five spheres in the row.

3.8 Discussion and Conclusion

The results presented in Section 3.7 demonstrate that by adding the insert data to the

scanner data, one can achieve enhancement in resolution, contrast recovery and SNR “near”

the surface of the flat-panel insert. The term “near” is ambiguous, however, empirically

our simulation results have suggested that nearness usually translates into distances ranging

from 8 cm to 15 cm when using the geometry of the Biograph TruePoint®PET-CT scanner.

The improvement from one small flat panel insert is very limited. This is mainly because the

number of IS counts acquired, is much less than that of the SS counts. In the configuration

used in the simulations and reconstructions presented in Chapter 3, where the insert is made

of 0.3 cm thick crystals and is located 20 cm from the center of the scanner, the insert picks

up only less than 4% of total coincidence counts and the remaining 96% and more are SS

counts. One way to improve the overall sensitivity of the insert device is to use thicker

crystals. Additional studies are needed in order to find the optimal design that balances the

resolution and sensitivity characteristics.

Other, yet unmet, challenges include scatter correction which is more essential in larger body

phantoms simulation. Previous works of our lab have demonstrated that a small flat-panel

insert with limited number of angles of data acquisition, works better for brain-size phantoms

as opposed to torso-size ones. Additional investigations to evaluate the optimal geometry

and the number of panel detectors will be left for future studies.
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(a) Diameter = 0.4 cm , 12:1 contrast. (b) Diameter = 0.4 cm , 6:1 contrast.

(c) Diameter = 0.5 cm , 12:1 contrast. (d) Diameter = 0.5 cm , 6:1 contrast.

(e) Diameter = 0.6 cm , 12:1 contrast. (f) Diameter = 0.6 cm , 6:1 contrast.

Figure 3.25. SNR of the reconstructions shown in Figures 3.20 and 3.21 as a function of
the distance between the centers of the spheres and the surface of the flat-panel insert. The
error bars are derived by averaging over the five spheres in the row.
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All the phantoms designed and tested in Chapter 3, seem to be horizontally aligned. This

is because the focus and main purpose were to implement and test the surveillance mode

imaging regime and reconstruction framework. More realistic phantom designs should have

the tumors more variably distributed in the body phantom. This makes more sense when

the insert effectively acquires data from more than one azimuthal angle18 (in-plane angles),

so the the IS (or vIS) counts become more tomographic.

18Either from multiple panel inserts forming an arc or forming a semicircle, or from one single panel insert
that moves in semicircular steps.
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