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This work delineates the relation between logic and symmetric neural net-
works. The motivation is two-fold: 1) to study the capabilities and limitations of
connectionist networks with respect to knowledge representation; and 2) to de-
velop a new kind of inference engine that is expressive, massively parallel, capable
of coping with nonmonotonic or noisy knowledge and capable of learning. The
thesis shows that propositional logic can be implemented efficiently in networks
where hidden units allow the representation of arbitrary constraints. An inference
engine is constructed which can obtain its knowledge either by compiling sym-
bolic rules or by learning them inductively from examples. The approach is then
extended to support unrestricted first-order logic and nonmonotonic reasoning.
Experiments with large-scale, randomly generated satisfiability problems indicate
that the method is superior to other existing algorithms (when executed in par-
allel). Finally, the thesis studies the feasibility of finding sound solutions: a new
distributed algorithm is given that efficiently finds a global solution for certain
network topologies; negative results are proved for networks with less restricted
topologies.
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LOGICAL INFERENCE IN SYMMETRIC
CONNECTIONIST NETWORKS

1. INTRODUCTION

1.1. Backgrourd

Symbolic artificia: intelligence (AI) and connectionism both aim towards the ambi-
tious goals of crezting intelligent machines and understanding human cognition. The
two approaches start, however, from different positions. The traditional symbolic ap-
proach argues that algorithmic manipulation of symbol systems is a good framework
for modeling cogrition [Newell 80], [Fodor 76], [Pylyshyn 84]. Connectionists, on the
other hand, restrict themselves to architectures inspired by the brain and argue that
this approach has the potential to overcome the rigidity of symbolic systems and to
more accurately model cognitive tasks that may only be approximated, if at all, by the
symbolic paradigr) [Smolensky 88], [Churchland, Sejnowski 89].

Both approact.es have their successes and failures. To quote Minsky, “connection-
ist research has shown considerable promise in mimicking some of what we admire
in the behavior o lower animals ... However, their performance has been far weaker
in precisely the areas in which symbolic systems have successfully mimicked much of
what we admire in high-level human thinking” [Minsky 91]. It may be under debate
how much of language processing and other aspects of intelligence is better modeled
by symbolic structures; however, it is widely believed that some aspects of cogni-
tion such as goal-directed problem solving and logical reasoning require such structures
[Chandrasekaran ot al. 88], [Fodor, Pylyshyn 88], [Pinker, Prince 88].

It is my belief (shared with many others) that the solution lies somewhere in be-
tween the two extremes. The approaches should be integrated and unified, and more
research should be done in order to build a suitable bridge between them [Minsky 91],
[Hinton 90b]. In order to truly take advantage of the best of the two paradigms, we
should find ways which enable fully connectionist networks to have the representa-
tional powers of symbolic systems (for more elaborate discussions see [Smolensky 88],
[Smolensky 90], [fmolensky 91], [Hinton 90b]). This thesis concentrates on the ques-
tion of how to extract powerful symbolic representation and reasoning abilities out of a
connectionist architecture.



The focus will be on the problem of symbolic reasoning. The ability to reason
symbolically is central to many of the high-level cognitive processes and problem solving
skills that humans possess. It is believed to be fundamental to tasks like goal-directed
generation of plans, natural language understanding and explanation. Humans are able
to learn, acquire new knowledge, update it, resolve ambiguities and inconsistencies and,
most importantly, use it for obtaining goals and for inferring conclusions. This thesis
provides results on the ability of connectionist systems to reason and presents techniques
that allow networks to perform symbolic computation.

1.2. The Problem

The question we face is how to represent and reason with complez symbolic knowledge
in networks. The set of primitives available for the connectionist is so radically different
from what is usually assumed by symbolic algorithms that an answer to this question is
far from trivial. It is expected, therefore, that symbolic ability will be implemented in
“ways that have not been anticipated within the standard symbol processing tradition”
[Hinton 90b]. Such an implementation will potentially contribute to the theory and
practice of traditional symbolic processing as well as lead to a better understanding of
the capabilities of connectionist networks. The hope is that the connectionist approach
will have some added value in terms of speed, robustness, adjustability and flexibility.

Several key problems prevent us from using standard techniques when implementing
symbolic computation in connectionist networks: the network’s inability to perform
concatenations, its weak and static structure, and the lack of procedural control and
synchronization. The first problem is the inability of connectionist networks to perform
concatenations' in a natural way.? This inability is in contrast to symbolic systems,
which use concatenation extensively [Van Gelder 89]. The second problem is the weak
structure and the static nature of the network’s topology and weights. Weights (long-
term memory) are usually not allowed to change during run-time and the only dynamic
change that may occur is the pattern of unit activations (short-term memory).? The
weak structure assumed by many connectionist systems not only limits the ability of a
network to deal with complex knowledge and procedures, but also limits the amount
of parallelism that can be achieved [Minsky 91]. The third problem is that symbolic
systems have a procedural control mechanism to process the information expressed in the
representation, while connectionist models have no such mechanism. We need, therefore,
to find a connectionist representation that is capable of expressing the data as well as
the procedural knowledge that is needed for controlling the reasoning process. These
three differences enable symbolic systems to handle quite easily tasks that seem very
hard for networks. Some examples of such tasks are dynamic creation of complex data
structures (e.g., stacks, trees), performing ordered search (e.g., backtracking), dynamic

!The use of pointers to represent complex structures is viewed here as a technique to perform

concatenation.
2A unnatural way is to simulate traditional symbolic techniques (e.g., concatenation) using neurons.
®Fast weight updating is possible in certain cases but is not nsually assumed.



binding of variables to values or variables to other variables (e.g., unification), and
systematically using general rules {e.g., transitive closure).

This thesis attacks the above problems. It presents a general scheme that allows
one to implement both declarative and procedural knowledge on a structured, fully
connectionist architecture. The solutions proposed allow for variable binding, dynamic
creation of complex data structures and systematic usage of rules. However, they do
not use concatenations, pointers, recursion, synchronization, stacks, lists, trees or any
other of the primitives typically used in traditional sequential processing. Most of the
thesis is concerned with obtaining expressive power (declarative and procedural) out of
connectionist networks, thus allowing networks to have representational powers similar
to some of the most expressive symbolic systems available without paying too much
in space complexity. A smaller portion of the thesis complements the expressiveness
results by discussing issues such as learning, robustness, efficiency of computation and
experimental results.

1.3. The Engineering Prospect

The goal of performing symbolic computation in a connectionist architecture is not just
intellectually intriguing and scientifically justified, there is also a lot to gain from an
engineering perspective.

In the future, many believe that massively parallel computers will be much more
affordable and accessible than they are now. It is, therefore, important to study whether
symbolic computation (as opposed to scientific computation, which is currently the main
client of SIMD architectures) can utilize such architectures.

In this section I describe a pragmatic vision of a new kind of knowledge-based system,
which I conjecture will be feasible in the near future (unlike the ambitious long-term
goals of AI). The specifications for such a vision do not include all that may be achieved
in a unified approach; however, its strengths are in its engineering usefulness and in its
conjectured feasibility.

The motivation for this kind of knowledge system is clearly engineering; however,
its creation, I believe, will be a major step towards the scientific goal of bridging and
unifying the connectionist and symbolic approaches. The engineering vision is used in
this thesis as a medium-term desideratum that drives and guides the research to more
practical tracks.

A Connectionist Knowledge-based System
The new knowledge system will be based on a connectionist architecture and will have
the following properties:

1. Powerful representation: We would like the mechanism to be as expressive as
first-order predicate logic (FOL). In other words, the engine should have the ability
to represent unrestricted FOL rules and facts and reason with them. This ability
should be present even if tractability dictates that only a subset of the language is



used. The motivation is that an intelligent agent should have as few constraints as
possible on its ability to represent knowledge even if for some problem instances
performance degrades drastically. We would like the mechanism to be used as
a platform that is expressive and flexible enough so that many useful symbolic
systems may be mapped into it. The representation should be compacit, and the
size of the network should be linear in the size of the knowledge-base (KB).

. Ability to cope with conflict and inconsistency: The knowledge-base may
be inconsistent as a result of noisy, unreliable and redundant sources of infor-
mation. We would like the mechanism to produce rational conclusions despite
inconsistencies. The mechanism should also be able to cope with ambiguities
and conflicts that are generated by common sense domains. It should represent,
for example, frame axioms, defaults and exceptions and warrant intuitive, non-
monotonic conclusions from its knowledge-base. We would like the mechanism to
provide a flexible framework so that existing and hopefully future nonmonotonic
systems may use it as a platform.

. Incremental updating: When the knowledge-base (KB) is locally updated
(adding or deleting a single rule for example), the internal representation of our
mechanism should also be locally updated. An incremental change to the KB
should result in an incremental change to the representation since one does not
want to re-compile the entire KB when a minor deletion or addition occurs.

. Robustness: The mechanism should allow graceful degradation in system func-
tionality and performance as noise and hardware faults are introduced.

. Learning capabilities: Some (but not all) of the knowledge should be extracted
from examples, rather than be compiled from a symbolic representation. This
will allow the system to continuously adjust its knowledge in a changing environ-
ment. As new data are gathered and more training is done, the system should
become more fine-tuned to its actual environment and task. For example, in
the short-term, the system may allow the following: 1) grounding of low level
(primitive) predicates in the sensory data, i.e., the conditions under which a pred-
icate (grounded in sensory data) holds should be inductively learned; 2) simple
propositional rules should be learned from examples and immediately used in the
inference process.

. Fast execution: The massively-parallel architecture should give us a real per-
formance advantage over sequential approaches. Although we try to cope with an
inherently intractable problem, average-case performance should be good. To cope
with the inherent intractability of the problems, an any-time algorithm should be
adapted, i.e., the system should give an educated guess about a conclusion when
an arbitrary time limit is reached. The system should improve the probability of
providing a correct guess as more time resources are given. As an optimization
tool, the system should improve its approximation with time. The “any-time”
property is valuable for real-time decision making.



The work discussed in this thesis touches on all of the above specifications.® It
concentrates primarily on the first three properties: expressiveness, conflict and incon-
sistency resolution, and incremental updating; however, some aspects of robustness,
learning and fast execution are discussed as well.

1.4. The Thesis

1.4.1. Guidelines

Two principles guide the research:

1. Expressiveness: We would like to push the issue of the representational power
of connectionist networks to the extreme. The question that is asked is how
expressive (symbolically) can networks be made, regardless of speed and (time)
complexity considerations.” My goal is to represent and reason with unrestricted
FOL, which is one of the more expressive and ubiquitous formal languages known.

2. Simplicity and Standardization: We would like to show that stendard net-
works can perform symbolic computation. Specialized ad-hoc architectures are
not required. To be loyal to this principle means that one should use simple, pop-
ular and general purpose connectionist models. Simplicity allows us to implement
the techniques on a wider range of models and makes the technique more easily
realized in hardware. Popularity enable us to take advantage of the larger bulk of
research done already (e.g., learning algorithms, hardware implementations, etc.),
which will not be available if an ad-hoc model is used.

1.4.2. On the Use of Logic

I have chosen logic as a representation language because of its expressive power, com-
pactness, mathematical neatness, elegance, lack of ambiguity, and long research history
and because it can be subjected to rigorous analysis (see [Hayes 77], [Moore 82] for much
more elaborated discussions). Nevertheless, this work has no particular commitment to
logic as a representation language or as an account for what actually is the nature of
the mind. Instead, this work is concerned with general schemes of how to represent and
reason with complex symbolic structures. Logic is used to evaluate the representational
power of the networks and to demonstrate how an extremely complex symbolic problem
(theorem proving for example) could be approached in a connectionist architecture.

*The issue of overcoming the rigidity of symbolic AT [Minsky 91], [Smolensky 88] is not explicitly
specified in the desideratum above. Nevertheless, properties that allow us to escape the briitleness of
symbols are definitely desired and are the natural future directions of this line of research.

5Space complexity is still an important consideration in evaluating expressiveness. A powerful rep-
resentation should be compact in space.



1.4.3. Main Contributions

o For the neural network researcher the thesis offers an elaborate and formal study
of the limitations and capabilities of connectionist models with respect to rep-
resentational powers. It offers an insight into the role of the hidden units and
high-order connections, provides constructions that allow the implementation of
arbitrary constraints, demonstrates how extremely complex problems can be rep-
resented, and explores the feasibility of finding sound algorithms (that search for
global solutions).

¢ For the cognitive scientist the thesis shows how powerful symbolic modeling can be
done in connectionist networks and opens the door for explaining phenomena that
need integration and unification of the two paradigms. The thesis provides yet
another answer to attacks on connectionism such as that of [Fodor, Pylyshyn 88|,
with the unique contribution of showing extreme expressive power. It demon-
strates how to construct connectionist systems that feature productivity, compo-
sitionality and systematicity similar (in representational power) to some of the
most powerful symbolic systems, yet, in a very different way.

e For automated reasoning and knowledge representation the thesis provides a new
look at automatic deduction and gives a scheme for how to use a massively parallel
architecture as an inference engine. It suggests a novel approach for representing
and building knowledge-based systems and for performing monotonic and non-
monotonic inferences.

¢ For the parallel algorithms researcher the thesis provides a general methodology
for mapping complex, discrete problems into massively parallel architectures and
discusses the feasibility of a connectionist algorithms for finding global sclution.
It provides a new and improved distributed, self-stabilizing algorithm that guar-
antees global solutions for certain network topologies and proves that no such
algorithm exists for less restricted networks.

¢ For those who are interested in constraint satisfaction and/or optimization, the
thesis provides a new motivation and new techniques for mapping problems into
constraint optimization. The work provides experimental evidence that the pro-
posed connectionist techniques may be used for solving hard, large-scale, satisfia-
bility problems with a surprisingly high speed.

¢ For the general computer scientist, the thesis provides a radically different tech-
nique for performing symbolic computation. The experimental resuits of this
thesis indicate that greedy algorithms inspired from connectionist networks may
well be the best so far (on average) for solving certain hard classical problems.

1.4.4. Related Work

Many researchers have been intrigued by the problem of performing high-level cognitive
tasks on a connectionist architecture. For examples see: [McClelland, Kawamoto 86]



[Touretzky, Geva 87], [Sumida et al. 88], [Dolan 89], [Lange, Dyer 89],
[Miikkulainen, Dyer 89], [Chalmers 90], [Dyer 90}, [Hinton 90a], [Kwasny, Faisal 90],
[Pollack 90], [Touretzky 90], [Sun 91], [Blank et al. 92].

Fewer attempts have been made to perform high-level reasoning with strong knowl-
edge level (symbolic) theory. Shastri’s work on evidential reasoning [Shastri 88]
encodes inheritance networks in a localist architecture of spreading activation. Shastri
uses the maximal entropy principle to combine evidence and to compute the probabili-
ties of the concepts in the network. DCPS [Touretzky, Hinton 88] uses a coarse-coded
distributed representation to perform rule matching and firing in a production sys-
tem based on a Boltzmann machine. Dolan and Smolensky later improved DCPS by
using tensor products [Dolan, Smolensky 89 ]. Conposit [Barnden 91] is another
rule-based system that is less restricted than DCPS. It is based on a localist archi-
tecture and takes an approach very similar to the one taken by traditional symbolic
techniques. Barnden later extended the approach of Conposit to handle case-based
reasoning [Barnden, Srinivas 91]. In p-Klone, Derthick presents a system which is
a restricted version of the frame-based system KL-ONE [Derthick 88]. ¥Frameville
is another frame-based system [Mjolsness et al. 89] that uses optimization and graph
matching to reason about hierarchies of frames.

Even fewer attempts have been made to directly implement logical reasoning in net-
works. The first were Ballard and Hayes who designed a restricted resolution-based the-
orem proving using the energy paradigm [Ballard 86]. Shastri and Ajjanagadde present
a very efficient system that allows goal-directed deduction from restricted forms of FOL
rules and facts [Shastri, Ajjanagadde 90]. Finally, CHCL [Hélldobler 90] presents an
inference system for Horn-logic that uses Bibel’s connection method.

Common to all the systems above is that they are able to implement only a restricted
subset of FOL. Yet, they provide us with insights on the problems that need to be solved
and on the possible techniques that may be used for solving them. Further discussions
on these systems and others are scattered among the pages of this work.

1.4.5. A Note for Theoreticians

Many of the problems discussed in this thesis are NP-complete. As such, complexity
theory anticipates the existence of polynomial time reductions between any pair of
them. When such reductions are discussed in this work, the emphasis® will be on the
technique of performing the mapping, the linearity of space and time, the efficiency of
the local heuristics, the robustness of the representation and the fine grain parallelism
that is obtained. In general, the contribution is in understanding the theory and the
techniques that allow us to represent well-known, difficult problems in neural networks
{and not in providing new theory regarding the problems themselves).

8The feasibility of these reductions is not surprising.



1.5. Outline of the Thesis

Chapter 2 gives an introduction to symmetric connectionist models, which are the
computational models used in this work.

In Chapter 3 high-order networks are introduced, and the first expressiveness result
about the equivalence of high-order and low-order symmetric models is proved.

Chapter 4 shows how to represent and learn arbitrary propositional constraints in
networks and how to perform model-theoretic inference with unrestricted propositional
logic. Experimental results are given for large-scale, randomly generated satisfiability
problems.

Chapter 5 discusses syntactic inferences and shows how a theorem-prover for first-
order logic can be constructed. The variable-binding problem is presented and a so-
lution is given, which handles general and dynamic unification of predicates, variables
and functions. The chapter discusses the robustness of the solution and compares the
solution to some recent connectionist systems for high-level symbolic reasoning.

Chapter 6 extends propositional logic and presents a nonmonotonic system that is
implemented very naturally in networks. A model theory and a proof theory are given,
and tight relationships to networks are identified.

Chapter 7 discusses the feasibility of finding massively parallel (connectionist style)
algorithms that are guaranteed to find global solutions, thus performing sound symbolic
reasoning. A positive result shows that an efficient algorithm exists for certain network
topologies and leads to a new and improved activation function designed for optimiza-
tion. Negative results show that there is no hope for guaranteeing a global solution for
networks under weaker assumptions.

Chapter 8 concludes and discusses future research.



2. SYMMETRIC MODELS

In this chapter I present the computational model used throughout the thesis and give
a brief tutorial of the family of models called symmetric models (SM).

2.1. Why Symmetric?

Among the different connectionist models, I choose to consider those with a symmetric
matrix of weights. This family of models includes Hopfield networks [Hopfield 82],
[Hopfield 84], Boltzmann machines [Hinton, Sejnowski 86], harmony networks
[Smolensky 86}, mean-field networks [Hinton 89], and other variations. The reasons for
selecting symmetric models are the following:

1. Symmetric networks can be characterized by energy functions, which make it eas-
ier to specify the desired behavior of the network in a declarative form [Feldman 85).

2. Symmetric networks are simple and popular. Vast research literature (about
them) exists and both silicon and optical implementations have been developed
[Alspector et al. 88], [Farhat et al. 85).

3. Symmetric networks were used successfully’ to express and approximate “hard”
problems [Hopfield, Tank 85]. Their ability to approximate “NP-hard” problems,
such as the traveling salesperson problem, and their “any-time” algorithm (see pre-
vious chapter) make them promising candidates for serving our “hard” problems.?

4, Symmetric networks are expressive enough to represent the behavior of any non-
oscillating recurrent network that is based on binary threshold units [Pinkas 91e].
They are, therefore, quite powerful, and we will not lose expressive power if we
restrict ourselves to the symmetric case.®

2.2. Networks for Optimization

The brain seems to solve perceptual and cognitive tasks very quickly. Apparently, it does
so by using parallel, analog hardware without synchronization. Many of these tasks are
“hard” from a computational point of view, yet need to be solved quickly. A reasonable

!Disappointing results also have been reported. It seems that success is very much dependent on
the mapping between the problem and the network.

2Reasoning is NP-hard in the propositional case and undecidable for FOL.

3Sometimes an asymmetric network will perform better than the symmetric form [Pinkas 91e]; there-
fore, for efficiency, we may consider not restricting ourselves to the symmetric case.
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conjecture is that humans do approzimation for many of these problems. This thesis
explores the possibility of representing and approximating such hard cognitive tasks
using parallel, analog architectures inspired by the brain.

A circuit that generates desired solutions can be designed to approximate a con-
strained optimization problem. The idea is that certain circuits may be viewed as
performing optimization; therefore, the design method proposed is to map the problem
into a constrained optimization problem and then implement it using parallel hardware
[Hopfield, Tank 85], [Platt 89]. The objective function needs to be minimized while the
state that is found needs to fulfill some desirable properties of the solution.

Symmetric models (SMs) may be viewed as performing a search for a minimum
of some energy function that is associated with the network’s topology and weights
[Hopfield 82]. The energy paradigm was suggested as a framework for the analysis and
specification of connectionist networks [Feldman 85]. The thrust of this paradigm has
been that it allows the specification of behavior of a network to be decomposed into two
distinct aspects: 1) specification of the desired states (for each input) as global minima,
and 2) characterization of algorithms which will drive the network into a state of deep
minimum (given an input). The two tasks can be dealt with separately: the first is
concerned with the declarative content of the model, and the second is concerned with
its dynamics.

In this thesis, I concentrate mainly on the declarative aspect.? The main questions
to be studied relate to the kind of knowledge that can be expressed in (symmetric)
networks and to the ways this knowledge can be used for reasoning.

2.3. Quadratic Energy Functions

I discuss a special family of objective functions that have a natural connectionist repre-
sentation. Quadratic energy functions are multi-linear polynomials with the following
general form:
EX)=~ Y wiXiX;- > wiX:.
1<i<j<n 1<i<n

The variables of an energy function can be divided into two sets:

1. Visible variables are usually of interest to an observer. An instantiation of these
variables by the system is considered to be an answer (output) to the problem.
In certain problems, the user may wish to clamp (instantiate) some of the visible
variables (inputs). After clamping is done, the task is to optimize the new function
that is obtained by replacing the clamped variables with the clamped values.

2. Hidden variables are usually not of interest to an external observer. Their task,
as we’ll see later, is merely to add expressive power.

*Chapter 7 is concerned with the dynamics.
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DEFINITION 2.3.1 The set of the minimizing vectors of the energy function, projected
onto the visible variables, is called the set of the visible solutions of the minimization
problem E with X visible variables and 7 hidden variables, i.e., T'g = {# | () E(Z,1) =
ming A B(7,)}).

2.4. What are Symmetric Networks?

A symmetric network (SN) is characterized by a weighted undirected graph whose nodes
represent processing units and whose arcs represent weighted connections (see Figure
2.1}, There are two kinds of arcs. Pairwise arcs link two nodes and monadic arcs are
each attached to a single node. A pairwise arc represents a weighted connection (wj ;),
while a monadic arc represents a bias (6;) given to a single unit. The weights of the

Figure 2.1: A quadratic network that represents the energy function £ = —-2NT —
25T - 2WT + 5T+ 2RN - WN +W+ 5~ R— N. T is a hidden unit.

connections can be stored in a symmetric matrix whose diagonal is zero. The value of
the ¢, 7 position within the matrix represents the weight of the connection that directs
the output of unit ¢ into unit j. The matrix is symmetric, since the weight from unit ¢
to unit 7 is equal to the weight from unit j to unit 7 (i.e., w;; = w;;).

There is a direct mapping between the quadratic energy functions described in the
previous subsections and the symmetric networks mentioned above, Given a function,
we can construct the network that tries to minimize it, and given a network, we can
generate the appropriate function that is minimized. The variables of the function map
into nodes in the graph: hidden variables are mapped into hidden units and visible
variables are mapped into visible units. Fach node is connected by symmetric arcs to
other units. Unit ¢ is connected to unit 7 by a weight w iff the energy function includes
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a term of the form —wa;z;. A unit 7 has a non-zero bias 6 (which is sometimes viewed
as the threshold —#@) iff the energy function includes a term of the form: —fz;.

A network is fully specified by its energy function. For the remainder of this thesis,
I will not distinguish between them. The terms “networks” and “energy functions” will
be used interchangeably.

EXAMPLE 2.4.1 The energy function Fr = —-2NT — 257 - 2WT 4 8T+ 2RN - WN +
W+ 5 — R — N is represented by the symmetric network that appears in Figure 2.1.

2.5. Dynamics

Fach unit computes an activation value {X;) between zero and one as follows. The unit
first computes the weighted sum of the inputs it receives from its neighbors, which is
the gradient of the energy function with reverse sign

dE e

met; = — o= = J:zl w; ;X + 0;

The sum is then used as the input for some activation function ¥ (usually non-linear
and non-decreasing)
X;=F (net;),

whose task is to change the activation value according to the energy steepness. The
network may be viewed, therefore, as performing a form of gradient descent on the
energy landscape. Some of the most popular symmetric models are described in the
following subsection.

2.5.1. The Discrete Hopfield Model

The discrete Hopfield model [Hopfield 82] uses binary-valued units whose activation
values are either zero or one. The decision function F is

X = 1 ifnet; >0
*7 1 0 otherwise

This model searches the corners of the hyper-cube corresponding to the possible values
of the units. The discrete Hopfield model finds a local minimum very quickly;® however,
many times this local minimum will be a shallow one, and the network will not be able
to escape to a deeper minimum.

5Fast on average but exponential in worst case [Kasif et al. 89].
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2.5.2, The Analog Model of Hopfield and Tank

In Hopfield and Tank networks [Hopfield 84] the activation values are continuous be-
tween zero and one and the search takes place in the interior of the hyper-cube. By
beginning near the center of the cube and searching using gradient descent, the network
has better chances of finding a global minimum. There are no guarantees that a global
minimum will be found, but good results have been reported for many problems. Hop-
fleld and Tank use an analog circuit for their implementation and, therefore the energy
function had to be modified slightly:

1 ) 1%
E= -5 E E w; ; X — E 8; X; + E/ﬂ g_l(y)d" )
i 3 i { +

where R; is the input resistance to unit 4, g(s) is the sigmoidal function with gain A

1
g(s) = Troan

and g~! is the inverse of g. The third term of this energy function approaches zero
when the values of the units approach a corner of the hyper-cube (zeros and ones). It is
minimized at X; = 1/2. The system is described by differential equations, one for each
unit:

dX; _ g_l(X,') dF

dt ~ RiC dX;
where C is a constant that determines the speed of convergence. At high (infinite) gain
the minima lie at the corners of the search space in the same locations as those of the
discrete model. The discrete and analog models collapse, therefore, into one at infinite
gain.

2.5.3. Boltzmann Machines

The Boltzmann machine [Hinton, Sejnowski 86] has binary units as in the discrete Hop-
field model. The important difference is that the decision rule is stochastic and the
system is annealed starting in a high temperature and slowly cooling it down to a lower
temperature. The energy gradient net; is used to determine the probability that a unit

adopts the one state:
1

where T is the temperature of the annealing. With this stochastic rule, the network
is more likely to adopt low energy states as the temperature cools down. The energy
does not decrease monotonically as in the previous models; instead, it will go uphill
randomly, with a frequency that is decreasing with the temperature. It can, therefore,
search several minima at the same time, exploring a wide range of possibilities at high
temperature but concentrating (spending more time) on deeper minima at lower tem-
perature. It has been proven by [Geman 84] that after searching long enough with slow
enough annealing, an equilibrium is obtained. At equilibrium the probabilities of the

P(X; = 1) =
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states are given by a function of the energy and the temperature, independently of the
topology

Po _ -(B()-E@)/T

Fp
A Boltzmann machine can theoretically be run long enough to guarantee that a global
minimum is found; however, in practice it is not easy to find such “sure” annealing

schedules.

An annealing schedule can be designed to fit a given time quota. Given a bound
on time resources, we can make the system obtain its lowest temperature within the
bound, thus providing the “any-time” property® that was mentioned in the desideratum
of Section 1.3. This system is not guaranteed to find a global minimum at the end of
such time quota; however, deeper minima will be found as more time is given, and the
probability of finding a global solution increases. Given enough time the network is
guaranteed to find a global solution.

2.5.4. Deterministic Boltzmann Machines

A new mean-field method suggested by [Peterson, Hartman 89] appears to reduce the
excessive time in Boltzmann machines that is wasted on the stochastic hill climbing.
The method is based on deterministically approximating the probability of a Boltzmann
unit to be one and encoding this probability in the activation function:

net;

T)'

Mean-field annealing is performed similarly to the annealing in Boltzmann machines,
but the process is not stochastic. Peterson and Anderson found this procedure to be
10-30 times faster than the stochastic process in Boltzmann machines and also reported
that somewhat better results (deeper minima) were found. As in Boltzmann machines,
mean-field annealing may be designed to fit the time resources, thus providing us with
the desired any-time property.

X; = tanh(

2.6. Parallel Relaxation

The process of relazation starts by assigning initial activation values to the units. After
initialization, each unit computes the new activation value and continues to do so until
a stable state (an equilibrium) is obtained, in which no more changes occur to the
activation values. If the units are scheduled for execution asynchronously, SMs are
guaranteed to arrive at a stable state and will not oscillate.

Inputs are given by clamping some of the visible units with fixed values. The output
is obtained at the end of the relaxation process by observing the activation values of

SThis is a “quantized” any-time algorithm. The algorithm performs many tries and in each try
annealing is made. The answer is updated after each annealing and the probability to find a correct
answer increases as more tries are performed.
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the visible units. One of the questions asked in this thesis is how much symbolic
computation can be done in a single parallel relaxation phase (as opposed to a sequence
of relaxations as in [Touretzky, Hinton 88] and [Ballard 86]).

The stable states of models such as the discrete Hopfield network are the local
minima of its energy function. However, models with simulated annealing or with
deterministic annealing may be viewed as performing a search for a global minimum,
Most of this thesis is, therefore, concerned with mappings between solutions of a specific
problem and the global minima of an energy function that represents this problem. For
many of the problems discussed in this thesis, I propose such mappings.
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3. HIGH-ORDER AND LOW-ORDER NETWORKS

3.1. Introduction

This chapter introduces high-order symmetric models and shows an equivalence between
them and the standard, quadratic models.

The main questions of this chapter are: What kind of meaning (semantics) can we
give to the knowledge encapsulated in a symmetric network? Are low-order symmetric
networks less expressive than high-order ones? What is the role of the hidden units? Are
there meaning-preserving transformations between high-order networks and low-order

networks?

The chapter is organized as follows. Section 3.2 introduces high-order networks.
Section 3.3 proves an equivalence between high-order networks and low-order networks
and provides transformations between them. Section 3.4 discusses the results.

3.2. High-Order Networks

3.2.1. Background

High-order connectionist networks use sigma-pi units with high-order multiplicative
connections [Rumelhart et al. 86]. Each of the weights in a sigma-pi unit is asso-
ciated with a subset of neighboring units (instead of a single neighbor). The unit
computes the weighted product of the activation values of all the units in the subset
(wX;, Xi,...X;;) and sums 2ll these products. It is common intuition that high-order
networks (HONSs) can better express high-order problems [Sejnowski 86] and may com-
pute functions that are not trivially computable if only pairwise connections are allowed
[Fahner 90], [Williams 86]. It is indeed easy to see that any boolean function can be
computed using only one (linear) unit with high-order connections, since any boolean
function can be implemented as a high-order polynomial. For further discussions on
HONSs see, for example, [Giles, Maxwell 87].

Symmelric networks, in particular, can be extended to handle high-order connections
[Sejnowski 86]. Indeed, symmetric HONs were shown to have better memory capacity
than standard quadratic networks [Bak, Little 88], [Lee et al. 86]. They also possess
other advantages, such as faster learning and the ability to store higher-order predicates
[Sejnowski 86]. Geffner and Pearl showed that symmetric networks with high-order con-
nections are able to represent any probability distribution and thus have an expressive
power equivalent to Bayes networks and Markov networks [Geffner, Pearl 87).
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It is common knowledge that hidden units can increase the expressiveness of a
network in some cases. Pearl showed (within the context of Bayes networks) that hidden
units further increase the expressive power of second-order Bayes networks [Pear] 86]. A
surprising negative result shown for constraint satisfaction networks proves that binary
networks of constraints (i.e., with zero/one nodes) cannot express arbitrary constraints
even if hidden nodes are added [Dechter 90].

This chapter explores the expressive power of high-order networks. It shows that
second-order (quadratic) networks are equivalent to HONs if hidden units are added.
There is nothing that can be expressed in high-order symmetric networks that cannot
be expressed in low-order networks, if additional hidden units are used.

3.2.2. High-Order Energy Functions and Networks

A k-order energy function is a multi-linear polynomial F : {0,1}* — R that can be
expressed as a weighted sum of products such that each product contains up to k vari-
ables. The sum of products for a k-order energy function is denoted by:

k = . ¥, Y. .
E (Xl, .. -,Xn) — - 215£1<52<"'<ikfn w’l"":szilXiz - .Xlk —
Elgi;<---<ik_1 <n Wiy yeyipmg Ky Xig ++ Ky
= D 1<i<n WiKi

Symmetric models may be extended to minimize high-order functions [Sejnowski 86]. In
the extended model the variables become nodes in a hyper-graph, and a weighted term
—Wj, iy Xiy + X, of the function becomes a weight w;, . ;. of a symmetric hyper-
arc that connects the nodes: X;,...,X;. Each node is a sigma-pi processing unit
[Rumelhart et al. 86] that computes the energy gradient:

dFE
net; = — X Z Wiy odyds 11 Xije

PR 1<j<k,iji

The unit then changes its activation value using:
a; = F(net;),

where F' is the same activation rule (threshold, sigmoidal, stochastic, etc.) that is
used in the specific model that was chosen for extension (discrete Hopfield, analog
Hopfield, Boltzmann machine, etc.). For example , the discrete Hopfield model will set
the activation value to one if net; > 0; it will set it to zero if net; < 0; no change occurs
when net; = 0.

A sigma-pi unit with hyper-arcs of order k& multiplies up to £ — 1 inputs for each of
its hyper-arcs. It is possible to show that in the extended model (as in the quadratic
model), a stable state is guaranteed at either global or local minima [Sejnowski 86]. The
multi-linearity (i.e., the lack of terms with powers of variables such as wXY?2Z or w¥?),
causes the minimizing solutions to always be at the corners of the unit hyper-cube, even
if the activation values are continuous between zero and one.



18

ExAMPLE 3.2.1 The cubic energy function £ = —-NSW+2RN-WN+W+5-R-N
is represented by the hyper-graph of Figure 3.1. The units N, 5, and W are connected
by a hyper-arc and therefore they are sigma-pi units.

Figure 3.1: A cubic network that represents £ = - NSWH42RN-WN+W+S5-R-N
using sigma-pi units.

3.3. The Equivalence Between High-Order and Low-Order Models

The next step is to show that high-order networks (HONs) and low-order networks
(LONs) are strongly equivalent. In this section, an efficient algorithm is presented that
transforms any HON into an equivalent LON by adding a maximum of } ;¢ ..,(ki — 2)
hidden units, where k; is the order of the arc 7. I also give an algorithm to eliminate
hidden units by introducing higher level connections, generating an equivalent high-
order network that has no hidden units.

3.3.1. Possible Semantics for SNs

First, we need to define in what sense two networks may be considered equivalent. The
definition should reflect the equivalence of the knowledge encapsulated in the networks.
This knowledge is the interpretation (the meaning) we assign to the network’s topology
and weights.

Assume first that every visible unit represents a proposition. The activation values
in this case represent the truth values assigned to the propositions. An activation value
X; = 1 means that the proposition 7 is true, while X; = () means that the proposition is
false. The possible states of the visible units correspond to the possible models {truth
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assignments).l A network applies constraints on the possible models. This knowledge
may be obtained by looking at the energy function associated with the network.

Let us define the characteristic function of a network:

DeFINITION 3.3.1 The characteristic function of an energy function E(X,T) with X
visible variables and 7" hidden variables is the function

rankg(X) = mz'nf{E(X", ™.

Thus, the rank of a model is the energy level obtained by clamping the visible units
with the truth values specified by the model and letting the hidden units be free to
settle so that the minimum is obtained. It is thus capable of capturing the behavior of
the network independent of the hidden units.

Let us consider three ways of interpreting this rank information:

1. We may assign meaning to the magnitude of the rank of each model. One pos-
sibility is to interpret the rank as a likelihood measure as in [Derthick 88], for
example, the probability ratio of two states is a function of their energy differ-
ence; i.e., %Ef = erenkz(e)-renkz(f)  This js similar to the way the likelihood of
the states of a Boltzmann machine at equilibrium is computed.

2. We may consider the order among the models which is induced by the rank func-
tion as the important information. The order gives us qualitative knowledge
about preference of models. We prefer a model & over a model 7 iff rankg(f) <
rankg(y). This interpretation is called preferential semantics and is used fre-
quently for nonmonotonic model-theories [Shoham 88].

3. We may interpret the rank function as a mechanism that determines the set of
“good” (preferred) models as opposed to the set of “bad” models. The good
models are those that minimize the rank function. This interpretation is similar
to the semantics which is usually given to standard propositional logic (truth
tables).

Corresponding to the three possible types of interpretations, I define now three types
of equivalence relations between networks.

DEFINITION 3.3.2 Let E; and E; be energy functions/networks that have the same set
of hidden variables.

1. E; is strongly equivalent to F5 (EléEg) iff their corresponding characteristic func-
tions are equal, up to a constant difference; i.e., rankg, = rankg, +¢. This equiv-
alence is called “magnitude preserving” since the two strongly equivalent networks
have the same probabilistic interpretation.

'l use interchangeably the terms “model” and “truth-assignment”, which are synonymous in this
context.
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2. E; is p-equivalent to Fy (E]_%Eg) iff their associated characteristic functions in-
duce the same ordering over the set of truth assignments; i.e., VZ, ¥, rankg, (Z) <
rankg, (§) iff rankg,(£) < rankg, (7). This equivalence is called “preference pre-
serving”, since both Fy and Fs induce the same partial order over the models.

3. Fy is weakly equivalent to F, (Ef‘”&'Eg) iff their corresponding characteristic func-
tions have the same set of minimizing models; i.e., I'g, = I'g,. This equivalence is
called “minima preserving”, since both £; and E; have the same global minima.

The next observation assures us that if the transformation is magnitude preserving,
then the other two interpretations are also preserved. In addition, if a transformation
is preference preserving, then it is also minima preserving.

(OBSERVATION:

1. If two networks are p-equivalent then they are also weakly equivalent.

2. If two networks are strongly equivalent, then they are also p-equivalent.
Proof:

1) K EyAE, then rankg,(a) < rankg,(B) iff rankg,(a) < rankp,(8). Therefore,
the set of minimizing models of ¥y is exactly equal to the minimizing models of Eq.

2) If Ey~E; then rankg, = rankg, + c. Therefore, rankg, (a) < rankg,(8) iff
rankg, (a) < rankg,(5). []

The following example shows two strongly equivalent energy functions (X, Y, Z are
the visible variables, T is hidden).

EXAMPLE 3.3.1 Ey approzFy where

By =58XY -3YZ-XYZ

By =5XY -3YZ —-2XT-2YT —-2ZT 4 571,

Ei=bXY-3YZ-XYZ~5XY ~3YZ ~2XT —-2YT 22T 4 5T = E,.

The following table shows the values of £, and E; for all possible instantiations of the
variables X,Y, Z,T:
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| XYZ|E | XYZT | E, ||

000 0 0000 0
0001 bl
001 0 0010 0
0011 3
010 0 0100 0
0101 3
011 | -3 0110 | -3
0111 | -2
100 0 1060 0
1001 3
101 0 1010 0
1011 1
110 d 1100 5
1101 6
111 1 1110 2
1111 1

From the table we can conclude that rankg, = rankg, and therefore the two func-
tions are strongly equivalent. It is also possible to see that the order among the states is
preserved and that the two functions have the same set of minimizing solutions {(011)}.

One of the most important operations we would like to use on networks is update.
Adding energy terms to a given energy function enables us to change the constraints
that are implemented by the network. In the next chapter we’ll see that updating
the knowledge encapsulated in a network is done by adding or deleting energy terms.
Even a simple clamping operation can be interpreted as an addition of some large energy
terms. Addition is therefore an important operation. We would like equivalent networks
to remain equivalent after they are updated by addition.

The three types of equivalence differ in their behavior under the addition operation:
OBSERVATION:

1. If two networks FEy, Ey are strongly equivalent, then for any given function e,
(E1 + €)2(E; + €). This means that two strongly equivalent networks remain
strongly equivalent after an arbitrary update.

2. A function e is strict iff range(e) = {0, 00}, i.e., the function e produces only zero
or infinity. If two networks are p-equivalent, then for every strict function e we
add, the two updated networks are still p-equivalent; i.e., if dom(e) = {0,000} and
E1&E,, then (Ey + €)%(E; -+ €). Note that as a special case, clamping unit X;
with either zero or one can be considered as adding the strict function —coX; or
00X;. Thus, networks that are p-equivalent remain so after clamping. We cannot
guarantee this property for non-strict functions.
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3. If two networks Fy, Fy are only weakly equivalent, then we cannot guarantee that
they will remain equivalent after any addition, even when we just clamp some
units.

When we transflorin one network into another, we need to be aware of the need for up-
dating. To be able to combine strict knowledge to our transformed knowledge, we will
need to perform preference-preserving transformations. We will need “magnitude pre-
serving” transformations (strong equivalence) if we want to perform arbitrary update
or give a probabilistic interpretation to our transformed knowledge, The transforma-
tions in the remainder of this chapter are “magnitude preserving”; thus, additivity is
preserved for any update. In the next chapter we will discuss transformations that are
only minima-preserving (weak).

The next step is to show that there are magnitude preserving transformations be-
tween HONs and LONs.

3.3.2. Converting a High-Order Energy Function into a Lower-Order Funec-
tion

Every k-order energy function F can be transformed into a strongly equivalent (k— 1)-
order energy function by adding extra hidden variables. The transformation is done by
replacing each of the k-order terms in F with a sum of at most (k- 1)-order expressions:

LEMMA 3.3.1 Any k-order term (a[[%, X;), with a NEGATIVE coefficient o, can be
replaced by a sum of quadratic terms of the form E:;l 20 X;T ~ (2k — 1)oT generating
a strongly equivalent energy function with one additional hidden variable.

Proof:
See Appendix A.1 []

ExaMPLE 3.3.2

XY -3XYZU ~ XY - 6XT-6YT - 62T — 6UT + 21T

LEMMA 3.3.2 Any k-order term (QH§=1 X:), with a POSITIVE coefficient o, can be
replaced by a sum of terms (of order (k — 1)) of the form a Hf__’_‘ll T — E‘;‘;} 2aX;T +
20X T+(2k—3)aT, generating a strongly equivalent energy function with one additional
hidden variable.?

Proof:
See Appendix A.2 []

2A symmetric transformation is also possible at the cost of three hidden units (instead of just one).



23

ExampPrLe 3.3.3

—XY+XYZU =-XY+XYZ-2XT-2YT -2Z2T +2UT + 5T
~—XY + XY - 2XT' - 2YT' 4+ 227" + 37" - 2XT - 2YT—
22T +2UT + 5T
= —2XT' -2YT' +2ZT' + 3T - 2XT - 2YT — 22T + 2UT + 5T

THEOREM 3.3.1 EVERY k-ORDER ENERGY FUNCTION F CAN BE TRANSFORMED INTO
A STRONGLY EQUIVALENT (k — 1)-ORDER ENERGY FUNCTION BY ADDING EXTRA HID-
DEN VARIABLES. TRANSFORMATION IS DONE BY REPLACING EACH OF THE k-ORDER
TERMS IN E BY A (k —1)-ORDER EXPRESSION, WHICH IS SPECIFIED BY LEMMA 3.3.1

AND LEMMA 3.3.2.

Proof:
Using the previous lemmas, we can reduce any k-order term of F into an expression of
at most (k — 1)-order. In each step we obtain a strongly equivalent function. D

EXAMPLE 3.3.4 The cubic energy function £ = ~-NSW+2RN-WN+W+5-R-N
is equivalent to —2NT — 257 - 2WT + 57+ 2RN — WN + W + 5§ — R — N by using
additional hidden variable T. The corresponding networks appear in Figure 3.1 and
Figure 2.1.

3.3.3. Eliminating Hidden Variables

The symmetric transformation, from low-order into high-order energy by eliminating
hidden variables, is also possible.

THEOREM 3.3.2 EVERY k-ORDER ENERGY FUNCTION WITH ONE HIDDEN VARIABLE
T, CAN BE TRANSFORMED INTO AN EQUIVALENT HIGHER ORDER ENERGY FUNCTION
THAT DOES NOT INCLUDE T.

Method: Alssume T is a hidden variable to be eliminated.
Let o;TTI.L; X be a (I; + 1)-order term which connects the unit 7.

Combine all these terms to form (Y5 a; ]'Ii-f__l X;;)T and call it “old-term”.
Replace this “old-term” with a new term that is generated using the following procedure:

Consider all assignments § = (z;,,...,z;,), to the variables X; ,...X; such that

k i

Bs = E%H“’je <0.

=1 =1
An assignment S with Bg < 0 is called a negative assignment.

If we clamp the visible variables using a negative assignment S, the unit T" will settle
on the value one (generating a negative energy contribution). All other instantiations
will cause T to settle on zero (generating zero energy).
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Let us now create a new term (without T') that generates the same energy (fs) for
the negative assignments, and zero energy for all other assignments.

For every instantiation (z;,,...,2;) obtained by assignment S, let the function L'fg

be:
PN X, ifz; =1
J —_ 1 i
Ls(X)‘{ 1-X;, if 2= 0.

Then, generate the term:

!
newterm = > Bs [ L%(X).
S such that fs <0 =1

If we replace the old term: (z;-’;l a; [I%, X;,)T in E with the new term above, we
obtain a function E', without the hidden variable 7', which is strongly equivalent to E.

Proof sketch: The term I’[;-__;l Lfg(X' ) is one for assignment § and zero for all the other
assignments. Thus, the new term generates the same energy values (8s) as the old term
for all the assignments that cause T to be one. The rest of the assignments cause both
terms to be zero. Therefore, if we instantiate all the variables (except T') and let T
settle so that F is minimized, we obtain the same energy rank as was obtained from
E' using the same instantiation. Therefore rankp = rankg:, and the two functions are

strongly equivalent. []

ExaMPLE 3.3.5 Let T be the hidden variable to be eliminated.

AB+TAC -TA+2TB-T=AB+T(AC—-A+2B-1)

The following assignments for (4, B, C) cause # to be less than zero:

Bo0 = =1L Bopy = =1

ﬁ(l,o,o) = -2 ﬁ(i,o,l) = -1

The new term equals:
~(1-A)(1-B)(1-C)-(1~A)(1-B)C-24(1-B)1-C)-A(l-B)C
=—ABC+AB+AC—-A+B-1

Therefore: AB+TAC —-TA+2TB -T =~ —-ABC +2AB+ AC— A+ B.

Note that (1,0,0) uniquely minimizes both functions, ,and the energy of the two
functions is equal for all assignments of the visible variables.

3.3.4. Analysis

Space Complexity. A tradeoff exists between the order of the connections and the
number of hidden units needed to replace them. We saw that one k-order term can
be converted into O(k) terms of lower order with a single additional hidden variable
that has a fan-out of k. To convert any k-order function into a quadratic one we may
need Y% 5(%) new variables; therefore the worst case to convert any n-order function
into a quadratic one uses O(2") new variables.®> When the HON has / connections of

3Note that the original function may have an exponential number of terms.



25

maximal k-order, the equivalent quadratic network has maximum [{k — 2) hidden units
and O(Ik?) pairwise connections.

A tradeoff also exists between the order of the connections and the connectivity of
the hidden units (the number of units that share an arc with a hidden unit) of the
variables. Eliminating a variable with a connectivity of £ may result in the creation of
k-order connections, while reducing the order of a k-order term results in adding new
variables with connectivity of k.

Time Complexity. The algorithm to convert HONs to LONs has time complexity
O(Ik?). It is linear in the number of connections, but it is quadratic in their order.

The algorithm to eliminate hidden units is O(h2™), where & is the number of hidden
units to eliminate and m is their connectivity.

3.4. Discussion

The main result of this chapter is the identification of procedures to transform high-
order energy functions into quadratic energy functions and vice versa, by adding or
eliminating hidden variables. The process reveals a tradeoff between hidden units and
the order of the connections in the network. We may conclude that sigma-pi units are
not needed if we agree to add more hidden units to the network. Similarly, hidden units
are not needed if sigma-pi capabilities are added to the visible units. As a result, all the
networks presented in this thesis can be implemented using quadratic architectures.

We can construct a high-order architecture where all the units are connected to each
other, but each unit maintains weights that are associated with subsets of the neighbor-
nodes. Despite the equivalence of high-order and low-order connections, this high-order
architecture has some properties that make it attractive:

1. The state space for HONs is smaller (fewer units) than that of the equivalent
quadratic architectures. As a result, fewer spurious local minima exist.

2. The high-order architecture is universal; every function and arbitrary constraints
(see next chapter) can be implemented in such architecture without changing its

topology.

The problems with a universal high-order network are: 1) the need for an exponential
number of weights, e.g., if we want to implement any boolean function?; 2) the difficulty
in implementing multiplicative connections in analog hardware.

Using digital technology, however, we can implement a universal high-order circuit
by wiring only pairs of units and storing multiplicative weights in the memory of each
of the processing units. Although in theory we need exponential memory, a polynomial-
size memory is enough for implementing any polynomial size energy function.

*Note that exponential number of weights is also needed in the quadratic case.
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The transformations from HONs to LONs and from L.ONs to HONs preserve three
possible interpretations that we may give to a network. One important property that is
preserved is the ability to combine networks and to update their knowledge by adding
or deleting energy terms. The result of an update applied to a transformed network is
equivalent to the result of applying the same update to the original network. We will
see later that this property is important for incrementally updating knowledge, one of
the properties mentioned in the engineering desideratum of Section 1.3.
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4. REPRESENTING AND LEARNING PROPOSITIONAL IL.OGIC

4.1. Introduction

The goal of this chapter is to start building formal foundations for possible mappings
between symbolic mechanisms and connectionist networks. These foundations are based
on a simple and well understood logical system: propositional calculus. The results of
this chapter show tight relationships between propositional logic and symmetric net-
works (SNs).

The main questions to be answered in this chapter are: Can we efficiently express
propositional logic formulas in SNs? Can we specify and describe a SN using the
language of propositional logic? Can we construct a network to perform inferences in
propositional logic? Can we incrementally update the knowledge captured in a network
by local changes? Can SNs learn representations of propositional formulas inductively?

My purpose is to show that: 1) Propositional logic can be represented efficiently in
symmetric networks and SNs can be used for inference. 2) SNs can learn representa-
tions of unknown formulas by observing examples that satisfy these formulas. 3) The
knowledge that is captured in SNs can be described by propositional formulas. 4) A
connectionist implementation of a satisfiability problem solver has a better performance
on average than standard approaches.

The chapter is organized as follows. Section 4.2 shows that propositional logic can
be represented in SNs and that every SN can be described by a propositional formula.
Networks are viewed as satisfiability problem solvers that search for an assignment
that satisfies the constraints imposed by the formula. Section 4.3 provides surprising
experimental data. Section 4.4 describes a learning algorithm that enables a network
to obtain representations of formulas by observing examples, and Section 4.5 discusses
the results and related work.

4.2. Propositional Logic and Energy Functions

4.2.1. Propositional Logic - A Review

DEFINITION 4.2.1 A well formed formule (a WFF) is an expression that combines
atomic propositions (variables) and connectives (V, A, -, —,(,)).

A WFF is defined recursively:

- if ¢ is an atomic proposition (a single variable), then ¢ is a WFF;

- if ) and g, are WFFs, then so are: (91 V 92), (1 A @2), (p1—02), 71 and ()5

- nothing else is a WFF.
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For example, ((AV ~B)—(C) is a WFF.

DEFINITION 4.2.2 The characteristic function of a formula ¢ in n variables is defined
to be H, : 2" — {0,1} such that:

oHx,(X1,...,Xn) = X;

CH“(‘Q(X:[, .. .,Xn) =1- HSO(Xla .. .,Xn)

.‘H((PIV‘PZ)(XI’ .. .,Xn) - H(Pl(Xl" . .,Xn) + H‘pg(le e ,Xn)

- Hep (X1,..., Xn) X Hpo( X1, ., Xn)
.H(§D1A902)(X1’ ‘e .,Xn) = Htpl(Xla .en ,Xn) X Hggz(xl, - .,Xn)
$H (o1 —p2) (K11 > Xn) = H-gpyvipg) (X1, - - -, Xn)

DEFINITION 4.2.3 A model (or truth assignment) is a vector of binary values that
assigns 1 (“true”) or 0 (“false”) to each of the atomic propositions.

A model & satisfies a WFT ¢, iff its characteristic function H¢ is evaluated to “one”
given the vector £.

A model that satisfies a formula ¢ is a truth assignment that satisfies the constraints
imposed by the formula. For example, given AV -B, the satisfying models will be those
that assign 1 to A or 0 to B or both.

DEFINITION 4.2.4 The satisfiability search problem for a WFF ¢ is to find an £, if one
exists, such that H@(i.—) =1.

The decision problem of whether a formula has a satisfiable model is known to be
NP-complete; the satisfiability search is NP-complete [Garey,Johnson79].

DEFINITION 4.2.5 Semantic entailment in propositional logic is denoted by the relation
k=. A formula 4 entails a formula ¢ (¥ |= ) iff all the models that satisfy ¢ also satisfy

.

For example ((AV ~B)A B) | A

Note that the meaning assigned to a formula is weak in the sense that the characteristic
function distinguishes only between models that satisfy the formula or that violate it
(the third type of Section 3.3.1). A propositional formula does not induce a rank over
the models nor an order.

4.2.2, Equivalence between Propositional Formulas

In order to convert a WEFF efficiently into an energy function, we need an intermediate
step. The WFF must be transformed first into an equivalent form called Conjunction
of Triples Form (CTF).

The atomic propositions of a WEF can be divided into visible and hidden proposi-
tions (like the division of the variables of an energy function in the previous chapters).
Atomic propositions that are of interest for a certain application are called “visible
variables” and are denoted by X. Additional atomic hidden propositions (denoted by
f) may be added without changing the set of relevant models that satisfy the WFFE.
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DEFINITION 4.2.6 The set of models that satisfy ¢ projected onto the visible variables
is then called the visible satisfying models; i.e., { | (F)Hop(%,1) = 1}.

DEFINITION 4.2.7 Two WFFs are equivalent if the set of visible satisfying models of
one is equal to the set of visible satisfying models of the other.

DEFINITION 4.2.8 A WFF ¢ is in Conjunction of Triples Form (CTF)if ¢ = A% ¢;
and every ¢; is a sub-formula of at most three variables.!

If we can convert any WFF to a CTF of the same order of size, we will then be able
to convert the CTF into a quadratic energy function that preserves the size. Thus, the
motivation for CTF is only technical; it guarantees that the generated network is of the
same order of size as the original formula.

Every WFF can be converted into an equivalent WFF in CTF by adding hidden
variables. Intuitively, a new hidden variable is generated for every binary connective
(e.g. V,—) except for the top-most one, and this logical operation is “named” with the
new variable by using the connective («). A formal algorithm and its proof are given
in Appendix A.3.

The number of hidden variables and new connections needed is on the order of the
number of binary connectives in the original formula. The size of the new formula (in
CTF}) is therefore linear in the size of the original formula.

ExAMPLE 4.2.1 Converting ¢ = (=({(-A4) A B) - (-C ~ D)) into CTF:

From (-((=A) A B)) we generate {(~{~AA B)~T]) by adding a new hidden variable 73.
From (~C — D) we generate ((~C — D)«T3,) by adding a new hidden variable T5.
For the top-most connective (—), (I1 — T3) is generated.

The conjunction of these sub-formulas is therefore: (=(=AAB)—=T1)A((-C — D)=T)A
(Th — T2). It is in CTTF and is equivalent to ¢.

The next subsection shows how to reduce a conjunction of triples into energy terms.

4.2.3. Constructing Energy Functions from WFFs

Let us associate the visible variables of an energy function with the visible atomic
variables of a WFF.

DEFINITION 4.2.9 A WFF ¢ describes an energy function E if the set of visible sat-
isfying models of ¢ is equal to the set of visible solutions of the minimization of E.
Formally, ¢ describes E iff Tp = {& | () Hp(F,1) = 1}

= {¢] (3D E(#,9) = MINAE®@}} = L.

'CTT differs from the familiar Conjunctive Normal Form (3-CNF). The ¢,’s ate WEFFs of up to 3
variables that may include any logical connectives and are not necessarily a disjunction of three literals
as in 3-CNF. As a result, the CTT is more compact than its 3-CNF equivalent. For example, the CTF
formula (A~({B ¥V C)) is translated into a 3-CNF with five dauses (~AVBVCIA(AV-BVCIA{AV
“B-CYA(AVBV=-C)A(AV-BvV-=C).
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If o describes F, then ¢ preserves the weak meaning of F by distinguishing the visible
solutions of £ as the visible satisfying models of ¢.

Assume ¢ = AZ; ¢;. The ;s are called sub-formulas. The energy function of a
WEF ¢ is a function E, : {0,1}" — N, that for every model Z, penalizes sub-formulas
of the WFF that are not satisfied by £. It computes the characteristic of the negation
of every sub-formula ¢; (in the upper level of the WFF’s conjunctive structure):

Bp(%) = 3 (Hoip(B)) = 31 Hop, ()

i=1 =1

If & does not satisfy ¢; then & satisfies —-¢; and therefore H.y (£} = 1. Similarly, if £
satisfies ¢; then H_, (%) = 0. If all the sub-formulas are satisfied, Ey has the value
zero; otherwise, the function computes the number of sub-formulas that are unsatisfied.

LEMMA 4.2.1 ¢ is satisfied by ¥ iff E, is minimized by & and the global minimum is
zero.

Proof:
By induction on the level (k) of nesting of ¢
Base: k=1

Ex, =1—-Hy,=1-X;=0iff X; =1 (satisfied)

Similarly, Ex, = 1 iff X; = 0 (unsatisfied)
Induction Step:
~p is satisfied by & iff Hyp = 0 iff E_p = Hp is minimized to zero.
P1 V(pg is satisfied by S, iff H(P1V<P2 =1if H_'((PIV‘P?) = 0iff H—.(pl/\—.(pz =0iff E(PlV()Og
is minimized to zero by Z.
01 A o is satisfied by S, iff Hpjap, = 1T Hogpiapy) = 0 iff Hogpvag, = 0 iff
Hopy + Hapy =0 iff Epinp, 18 minimized to zero by &.
w1 — 2 is satisfied iff -1 V oo is satisfied, iff - V g is satisfied iff Eop v, is
minimized to zero. []

We may conclude therefore, that every satisfiable WFF ¢ has a function Ey, such
that Eyp describes .

ExaMmpPLE 4.2.2

E(NAS)=W)A(R=-N)ANV-W) = Ho(WAs)=W) + Ho(Res (=) + Havv(-w))
= Hyasa(-wy + Hran + Hi-nyaw
= (NS(1-W))+(BN)+((1- N)W)
=~-NSW+NS+RN-WN+W

The corresponding high-order network appears in Figure 4.1. Note, that the symbols
of the atomic propositions of ¢ are overloaded and used also as the variables of E.?

*This deliberately confuses the symbols in the WFF with the corresponding variables in the energy
function.
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Figure 4.1: The network (cubic) that represents ((N A §)—=W)A(R—-N)A(N V-W).

Both (—Hy) and E, may be used as the multilinear function whose minima corre-
spond to the satisfying models. The function E, is preferred because it has heuristic
knowledge about how “far” the energy of the current state is from a global minimum.
Ey counts the number of conjunctive sub-expressions that have not yet been satisfied.
A direct use of —H with gradient descent will increase the chances of falling into a
local minimum because the characteristic function does not give any indication for the
direction in which to step when some constraints are not met. The function [, on the
other hand, suggests the direction that will satisfy as many subexpressions as possible.
Another reason to prefer Eyp is that it generates lower-order energy terms.

THEOREM 4.2.1 IF ¢ IS SATISFIABLE THEN { DESCRIBES K.

Proof:
Immediately from Lemma 4.2.1 []

COROLLARY 4.2.1 ¢ is a tautology iff £, = 0.

Proof:

i Ep = 0, then for every instantiation £, E(%) = 0.

Since E¢p describes ¢, then every instantiation & satisfies ¢ and therefore ¢ is a tautol-
ogy.

If ¢ is a tautology then any # satisfies ¢. From Lemma 4.2.1, for all £ E,(F) = 0.

Let us now prove by induction that all the coefficients of the sum of products are 0.
Assume E(‘_g’ =0}, i e X

By taking 0 (the zero instantiation) all the variables become zero, and we can conclude
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that the constant (w®) in the sum of product is zero.
By induction, assume that 'wfl___,,-j = 0 for § < k. We can select an instantiation & that

instantiates to zero all variables except zi;,...,%;,. Since E(Z) = 0 we can conclude
that wfj .. =0 []

EXaMPLE 4.2.3

Elav-a)y = H(=aynn)
=(1-A)A=A4—A4d=0

COROLLARY 4.2.2 If  is a satisfiable conjunction of WFFs, each of mazimum k vari-
ables, then ¢ describes a k-order (at most) energy function with no hidden variables.

Proof:
From the definition of Ey, the penalty of a conjunction of sub-formulas is equal to
the sum of the penalties of each sub-formula. Each sub-formula has a maximum of

variables, and therefore its penalty is of order £ (at most). []

IIXAMPLE 4.2.4

EsnBv(-cy) = Ba+ Emv-cy)
= (1 - 4) + H(-B)jnc)
=(1-A4)+(1-B)C=1-A+C—BC

THEOREM 4.2.2 EVERY SATISFIABLE WFTF DESCRIBES SOME QUADRATIC ENERGY
FUNCTION.

The following algorithm transforms a WFF into a quadratic energy function, generating
O(length(p)) hidden variables:

1. Convert  into CTF ¢’ (Section 4.2.2).

2. Convert the CTF ¢ into a cubic energy function Ey and simplify it to a sum of
products form (Section 4.2.3).

3. Convert the cubic terms in Eyr into quadratic terms. Each of the triples generates
only one new variable (Section 3.3.2 of the previous chapter).

The algorithm generates a network whose size is linear in the number of binary
connectives of the original WFF. The number of connections (fan-out) associated with
a single hidden unit is bounded by a constant.
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ExaMpLE 4.2.5 Converting

(M= A A (T BY)) A (T3 (T1 AT2))) A (T (-C))) A (T3 V Ty))
Fliminating

((‘1‘:&) v A) A (Tl v (‘!A)) A ((—sz) \% B) A (Tg v (—IB)) A ((—1T3 V Tl) A ((—lTs) Vv Tg)/\
(TzV (T V (TN ATV (CCN A (TaV C)A (T3 V Ty)

Generating the cubic (3-order) energy function:

TH(1-A)+(1-T)A+Te(1- B+ (1-T3)B+T3(1 —T1) + T5(1 — Ta)
+(1 - T3)T1T2 + CTs + (1 - T4)(1 - C) + (1 - Tg)(l - T4)

T1—2AN+ A+ T - 2B, + B+ Ty — 1115 — 1o
+NT =TT+ 20T+ 2 - C — 2T, + 13Ty

Converting into a quadratic function:

T 24T+ A+ T, — 2B+ B4+ T3 — T3 —ToTs+ s
=9 T — 21T — 215315 + 615 + 20Ty + 2 — C — 2Ty + 13Ty

COROLLARY 4.2.3 Any boolean function h may be implemented in a quadratic energy
minimization network of size that is proportional to the length of the boolean expression
@ that is characterized by h.

Proof:

The conversion of the WFF (out«¢), generates a network that sets the unit out to one
iff the output of the function % given # is one. This is true since A(%) = 1iff Hp(F) =1
iff € satisfies @ Iff & satisfies out. []

Complexity analysis. The algorithm described above transforms a WFF info a
quadratic energy function in time linear in the length of the WFF: The conversion
into conjunction of triples and the conversion into the cubic energy function are opera-
tions that parse the nested structure of the WFF in linear time. Simplifying a 3-variable
subexpression takes a constant time, and conversion of all the cubic terms into quadratic
terms is linear in their number (the number of terms is on the order of the number of

binary connectives).

The number of hidden units that are generated is linear in the length of the original
WFF: Conversion into triples generates new variables as the number of binary con-
nectives in the WFF. The conversion of triples into quadratic terms generates hidden
variables in the same order (only triples of three variables may generate a cubic term).

The connectivity (fan-out) of all these hidden variables is at most four for those
generated by the conversion into triples and at most three for those generated by the
conversion into a quadratic function. The visible variables may have a fan-out of O(n).
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4.2.4. Every Energy Function Describes Some Satisfiable WFF

This subsection shows that for any energy function F with no hidden variables, there
exists a satisfiable WFF ¢ that describes E.

The procedure is first to find the set p( £) of minimum energy states (the assignments
& that minimize ). For each such state & create an n-way conjunctive formula of the
variables or their negations depending on whether the variable is assigned 1 or 0 in that
state. Each such conjunction A=, L'.f represents a minimum energy state, where

g ex o =1
ET) “=X:) ifzi=0

Finally the WFF is constructed by taking the disjunction of all the conjunctions:

ep= \ (/\L;-;)-

:EE;.&(E) i=1

The satisfying truth assignments of ¢ correspond directly to the energy states of the
network. The procedure is not efficient, but it does show the existence of such a formula

for every network.

LEMMA 4.2.2 For any k-order energy function I with no hidden variables there exisis
a salisfiable WFF @p that describes .

Proaof:
% € u(E) iff Niy L is satisfied by & iff Vge, g(Aley L) is satisfied by & []
We therefore conclude:

THEOREM 4.2.3 EVERY ENERGY FUNCTION DESCRIBES sOoME WFF.

The conversion is done by first eliminating the hidden variables using Theorem 3.3.2 of
the previous chapter, and then computing the WFF by locking at the global minima
as in Lemma 4.2.2.

Proof:

The elimination of hidden variables generates a strongly equivalent energy function E’
that has no hidden variables. The function E’ is then converted into the WFF g
that is satisfied for the same assignments that minimize E’. Since £ = E’ + ¢ (strong
equivalence) & minimizes E' iff ¥ minimizes E. []

EXAMPLE 4.2.6 Let the energy function be:
EX,Y)=-XY +15X

Trying all instantiations:
E(0,0)=0
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E(0,1)=0

E(1,0)=15

E(1,1)=0.5

The characteristic function of the WEF is:
H(0,0)=1

H(0,1)=1

H(1,0)=0

H(1,1)=0

The WFF that is described by E is therefore:
((—'X A —lY) v (—IX A Y))

4.3. Experimental Results

Experiments have been made on randomly generated satisfiability problems (3-SAT).
The simulations have managed to find satisfying solutions to large-scale 3-SAT problems
with remarkable speed. I have tried three types of algorithms inspired from Hopfield
networks, Boltzmann machines and Mean-Field networks.?

4.3.1. Simulations

The Hopfield Version:

Do until MAXT tries or until a solution is found:

In each try:

- Assign random (zero/one) values to the units.

- Perform Hopfield cycles until either MAXC cycles have been executed, a solution
is found or until MAXP continuous cycles have been performed without reducing the

energy.

A Hopfield cycle is one that asynchronously updates all the units that need to be
updated (each unit is updated only once) by randomly selecting a unit that has not
been selected before in this cycle, and updating its value in the following way:

- If net; > 0, the unit becomes one;
- If net; < 0, the unit becomes zero;
- If net; = 0, the unit is flipped.

The Boltzmann Version:
Do until MAXT tries or until a solution is found:
In each try:
- Assign random (zero/one) values to the units.
- Starting with temp=1 until temp=0:
- Perform a Boltzmann cycle;
- Reduce temp by 1/STEPS.
When the temperature is zero, Hopfleld cycles are executed until either MAXC tries

*William Chen assisted me during the experiments both with ideas and with the programming.
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have been performed,* a solution has been found, or MAXP continuous cycles could

not reduce the energy.
- If MAXT tries have not been executed and a solution hasn’t been found, another

annealing begins with STEPS=STEPS+DELTA (annealing slows).

A Boltzmann cycle is an asynchronous update of all the units (every unit is visited
in random order but only once), flipping their value stochastically with a probability
which is a function of net; and the temperature (see Chapter 2.5.3).

The Mean-Iield Version:
As in the Boltzmann version, the simulator tries MAXT annealings (each time the
annealing is slower); however, the first annealing is done using Mean-Field thecry (MFT)
cycles (see Chapter 2.5.4), while the rest of the annealings are done using Boltzmann
cycles.®

A MFT cycle is an asynchronous update of all the units (as in Boltzmann cycle).
The units are selected in random order , and each unit in its turn updates its own
activation value using the activation function for MFT (described in Chapter 2.5.4).

4.3.2. The Experiments

Random 3-SAT formulas of n variables and m clauses were generated in the following
way:

¢ Generate a random truth assignment; i.e., zero/one vector of n bits. The formula
to be generated will be satisfied by this assignment.

¢ Starting with an empty formula, until m clauses are added:

— Randomly generate a 3-variable clause (selection of 3 out of n variables).

— If the clanse is new and is satisfied by the assignment, then add the new
clause to the formula.

In the experiments conducted, a ratio of 4.3 between the number of clauses and the
number of variables (m/n) was kept. This ratio was found to generate “hard” satisfia-
bility problems [Mitchell et al. 92].° One hundred formulas were generated for each of
50, 70, 100, 120 and 200 variables, and only 50 formulas were generated for 300, 400
and 500 variables. The parameters used for the simulations appear in the table below.

“The number of cycles includes those executed during the annealing.

5Trying more MFT cycles is not a good strategy because MFT is deterministic.

®The way we generate the formulas is different from [Mitchell et al. 92]. Our generator forces the
formulas to be satisfiable, whereas in [Mitchell et al. 92], random formulas are generated that are not
forced to be satisfiable and later the Davis-Putnam algorithm [Davis, Putnam 60] (which is based on
resolution} is used to eliminate the unsatisfiable formulas. Our approach seems to make the distribution
generated easier than that of [Mitchell et al. 92} (B. Selman, private communication). Experiments with
the “unforced” version of the generator are in process but are not reported in this thesis.
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[ n [ m | MAXT | MAXC | MAXP | STEPS | DELTA ||

50 | 215 50 250 20 8 1
70 | 301 50 350 20 11 1
100 | 430 160 500 60 15 1
120 | 516 250 600 60 14 1
200 | 860 500 200 60 28 2
300 | 1275 | 2000 6000 120 35 5
400 | 1700 | 2500 8000 170 50 5
500 | 2150 | 3000 10000 200 77 5

During the final stages of experiments’ two recent algorithms that perform a very
similar local search for satisfiability and may be seen as variations of Hopfield networks
became known to us [Selman et al. 92], [Gu 92]. In GSAT [Selman et al. 92], maxi-
mum MAXT tries are executed. In each try a random truth assignment is generated
and variable “flips” are performed until either a solution is found or MAXT flips were
performed. In each flip, only one of the variables is selected for flipping. The variable
to be flipped is selected randomly among the variables which when flipped cause the
lurgest increase in satisfied clauses (largest absolute gradient). GSAT has been reported
to perform significantly better than the Davis-Putnam algorithm which is one of the
most popular algorithms for satisfiability [Davis, Putnam 60]. We have implemented
GSAT for the purpose of comparing the approaches. In [Gu 92}, all the variables which
increase the number of satisfied clauses are flipped. The algorithm of [Gu 92} was not
directly implemented by us because of its close similarity to the Hopfield version.® For
the purpose of fair comparison with GSAT, the values for n, m and the MAXT and
MAXC parameters were taken from the experiments reported in [Selman et al. 92]. The
rest of the parameters (MAXP, STEPS and DELTA) were intuitively taken according
to the size of the problem.® No fine tuning of these parameters was done.

The table below gives the average number of cycles in which each of the algorithms
found a solution.

"Our experimental design which began after the presentation of the connectionist approach in the
AAAY spring symposium of 1991, had a different idea for random generation of satisfiability problems.
We changed our benchmark design to meet the ratio reported in {Mitchell et al. 92].

8The difference is that in [Gu 92] rodes are visited in a predefined order, and the vector that is
generated when the algorithm fails is not truly random.

®The STEPS parameter was taken to be 0.75 of the average number of cycles which Hopfield had in

a successful try.
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[ » | m | GSAT | Hopfield | Boltzmann | MFT ||

50 | 215 | 268.22 24.64 24.04 18.73
70 | 301 | 436.43 33.37 28.36 13.14
100 | 430 | 10956.35 | 69.43 83.89 55.59
120 | 516 | 1374.47 | 49.99 59.04 33.05
200 | 860 4817 85.92 88.39 46.78

300 | 1275 | 8771.8 105.2 101.68 55.92
400 | 1700 | 16247 154.32 129.14 106.26
500 | 2150 | 50664 | 297.82 233.54 152.06

The next table shows the percentage of experiments in which each of the algorithms
managed to find a solution in the first trial:

| » | m | GSAT | Hopfield | Boltzmann | MFT |

50 | 215 | 59% 69% 81% 94%
70 | 301 | 15% 61% 83% 94%
100 | 430 | 58% 68% 70% 93%
120 | 516 | 45% 65% 71% 87%
200 | 860 | 44% 66% 83% 96%
300} 1275 | 54% 4% 90% 96%
400 | 1700 | 60% 80% 88% 94%
500 | 2150 | 22% 66% 86% 92%

The reader should note that the comparison with GSAT is based on parallel execu-
tion. A cycle (a GSAT flip or a single update of all the units) is assumed to run on
parallel architecture and to take a constant time.l?

The connectionist approaches are clearly leading. Not surprisingly, MFT has the
best performance for first-hit. Based on preliminary studies, it is conjectured that the

first hit scores improve as more annealing time is given to MFT.

4.4. Learning Representations of Formulas

So far we have seen that networks can be compiled from logic formulas. However,
much of the appeal of connectionist models is their ability to learn from examples. This
section shows that SNs can learn energy functions that represent unknown propositional
formulas inductively and develop a representation that is equal to the the representations
generated by compiling the formulas.

Assume the network tries to learn an unknown formula ¢ by looking at the set of

the satisfying truth-assignments of . For simplicity, let us assume that the formula
to be learned is a satisfiable WFF. The task of the network is to update its weights in

1°Constant time for a cycle is certainly true for the connectionist approaches; however, a constant
time for parallel GSAT cycles is not so obvicus. I conjecture however, that a GSAT cycle can be
computed in a constant average time with a suitable parallel architecture.
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such a way that at the end of the learning process the energy function is equal to the
one obtained by translating ¢ into Eyp. Clearly, by doing so, the set of global minima
of the energy function is equal to the set of satisfying models of ¢ ('), which is the
fraining set.

We may lock at the process as learning a content-addressable memory. Given a
set of vectors to be stored as memory, assuming that those vectors are the satisfying
models of some unknown formula, we would like to construct a network such that the
global minima of its energy function are exactly equal to the vectors presented!! with
size linear in the length of the unknown formula.

The algorithm that will be described uses high-order units (sigma-pi) and connec-
tions that are hyper-arcs. The reader should remember, however, that it is always
possible to convert the hyper-arcs into pairwise connections by adding hidden units (see
previous chapter).

DEFINITION 4.4.1 A k-CNF is a WFF that is formed as a conjunction of clauses, where
each clause is a disjunction of up to k literals. A literal is either an atomic proposition
or a negated (—) atomic proposition.

For example (AV ~B) A (mAV =C V D) is a 3-CNF that is composed of two clauses:
the first contains two literals and the second contains three.

I now present a2 new update rule for symmetric connections and a fast algorithm that
learns a representation of an unknown k-CNF formula from the truth assignments that
satisfy the formula. These truth assignments represent the possible realities that satisfy
the unknown rule, and they are also called (in this context) ezamples or presentations.

After each presentation, the network is updated, and the corresponding energy func-
tion is guaranteed to have a set of global minima that is exactly equal to the set of
presentations seen so far. Therefore, assuming we know the k value of the unknown
k-CNF formula, the desired network is generated after a single scan over the training
set.

Note that every formula can be expressed in &-CNF form; thus, the algorithm works

in theory for every set of presentations and any unknown formula ¢. It is exponential
in k and therefore not practical when k is too large.l?

4.4.1. A Learning Rule for High-Order Symmetric Connections

Let an instantiation of the visible units Xy,...,X, be a vector & = (z1,...z,), such
that z; € {0,1}. A presentation is an instantiation of the visible units, introduced by
clamping the visible units X; with the values z;. The learning rule soon to be described

" The memories in such a network are content addressable: given a partial description of a stored
vector clamped on some of the visible units, the network searches to complete the rest of the visible

units with the stored vectors.
2Fortunately, expert domains are regulated by relatively short rules and therefore small k is sufficient

for many practical domains.
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is responsible for the update of the weight of a single l-order hyper-arc. The rule is
composed of two parts: the first part checks whether an arc should be updated as a
result of the current presentation, while the second part updates the weight.

Checking whether to update the arc:
The idea is that certain bit-patterns in the training set should cause an update of some
weights, if they are seen for the first time.'® A new bit-pattern of % bits in the training
set causes the updating of arcs that connect units involved in this bit-pattern. A hyper-
arc is updated only if all the units it connects participate in the new pattern, while
the rest of the units of the pattern are not active; i.e., units of the pattern that do not
appear in the arc should be instantiated as zeros.

Updating the weight:
Once it has been determined that the arc needs to be updated, the procedure to update
a weight may be viewed as an extension of the Hebbian rule for high-order connections.
If the number of activated units that participate in the hyper-arc is even, the weight
is increased; otherwise, it is decreased. For the special case of a pairwise connection,
we get the familiar Hebbian rule that increases the weight if the two units have the
same activation value (both active or both inactive) and decreases the weight otherwise

[Hebb 49].

The k-clause learning rule (formally):
Let Are = {X;,,...,X;} be an l-order undirected arc.
Given a presentation & = (21, ..., 2,) that instantiates the visible units to 0/1 values,
the [-order arc Arc is updated iff there exists a k-bit pattern P = (X;, = z4,...X;, =
zi, X = 0,..., Xj,_, = 0) that has never been seen in one of the earlier presentations
i.e., the new pattern must include the units of Arc, and the rest of the units (Xj;,,..X;,_,)
must be zero-instantiated.
If this condition holds, then the weight of Arc is incremented {+1) if the number of
zero units in Are is even (including the all ones case), and is decremented (—1) if the
number of zeros is odd.

ExXAMPLE 4.4.1 Given the presentation ABC = 011, a 2-clause rule causes the follow-
ing updates:

- The weight of arc {AB} is decremented (A4p = —1), since the 2-bit pattern (A =
0, B = 1) is new and the arc contains an odd number of zeros.

- The weight of {BCY} is incremented (Ape = +1), since the 2-bit pattern (B =1,C =
1) is new to the arc and the arc contains no zeros {even).

- The bias of unit B (which is the singleton arc {B}) is incremented (Ag = +1), since
the 2-bit pattern A = 0, B = 1 is new, the units of the pattern that are not in {B} are
zero-instantiated and the arc B includes no zeros (even).

The bias of A is not updated since no 2-bit pattern contains a zero instantiated unit

13This is one-shot learning: once a pattern is seen, it is captured completely and is not needed any
longer; i.e., multiple occurrences of the same patiern do not provide us with more information. In
contrast to Bayesian learning, the probability with which a bit-pattern occurs is irrelevant to the rule
we want to learn.
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other than A.
In a similar way, the arc {AC} is decremented, and the bias C is incremented.

4.4.2. Learning k-CNF

We have seen an update rule that changes weights of hyper-arcs; however, the question
is how do we start the process and how can we guarantee that all examples are learned.

The idea is to start with the set of visible units disconnected, and construct and
update connections using the update rule as more examples are presented. Each time
an example appears, the weights change so that the set of global minima includes the
new example.

Algorithm to learn a k-CNF formula:
Initialize all weights to zero.
For all the presentations in the training set
use the k—clause rule to update the weights of all the l-order arcs (0 < I < k)

that need to be updated.

THEOREM 4.4.1 IF THE PRESENTATIONS ARE TRUTH ASSIGNMENTS THAT SATISFY
SOME UNKNOWN k-CNF FORMULA @, THEN THE ALGORITHM GENERATES A NETWORK
WHOSE GLOBAL MINIMA ARE EXACTLY THE SET OF PRESENTATIONS. THE NETWORK
IS GENERATED AFTER A SINGLE PASS OVER THE PRESENTATIONS.

Proof:
See Appendix A.4 D

The network, however does not grow linearly with the presentations. Rather, it
remains compact, and its size at the end of the process is not greater than the size of
the unknown formula. The network is generated after one pass over the training set,
and there may be O(2F) weight updates for each new bit pattern (worst case).

EXAMPLE 4.4.2 Learning the XOR formula ((A @ B)~C) by looking at the four sat-
isfying truth-assignments ABC €{011, 101,000, 110}.
We need a 3-clause rule since we cannot express the formula in less than 3-CNF. The
patterns we look for are therefore 3-bit patterns (the presentations themselves).
Given the presentation ABC = 011:

Aape = —1 (odd number of zeros); Age = -+1 (even number of zeros);
Given ABC =101:

Appe = —1 {odd); Ayge = +1 (even) ;
Given ABC = 000:

Oape = ~1;Aac =+ Ape =+ Aup =+ 84 = -1;Ap = -1;A¢c = -1
Given ABC =110 :

Aape = —1;Aap = +1;

The energy function obtained by summing the updates (after reversing signs) is £ =
4ABC —2AC -2BC -2AB + A+ B +C and is shown as a network in Figure 4.2(a). Its
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