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Abstract

This chapter considers the problems of expressing logic and constructing proofs in fault
tolerant connectionist networks that are based on energy minimization. Given a first-order-
logic knowledge base and a bound &, a symmetric network is constructed (like a Boltzman
machine or a Hopfield network) that searches for a proof for a given query. If a resolution-
based proof of length no longer than & exists, then the global minima of the energy function
that is associated with the network represent such proofs. If no proof exist then the global
minima indicate the lack of a proof. The network that is generated is of size polynomial in
the bound % and the knowledge size. There are no restrictions on the type of logic formulas
that can be represented. Most of the chapter discusses the representation of propositional
formulas and proofs; however, an extension is presented that allows the representation of
unrestricted first-order logic formulas (predicate calculus). Fault tolerance is obtained using
a binding technique that dynamically assigns symbolic roles to winner takes all units.
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1. Imtroduction

The ability to reason from acquired knowledge is undoubtedly one of the basic and most
important components of human intelligence. Among the major tools for reasoning in the
area of Al are deductive proof techniques. However, traditional methods are plagued by
intractability, inability to learn and adjust, as well as by inability to cope with noise, faulty
hardware and incomsistency. A connectionist approach may be the missing link: fine grain,
massively parallel architecture may give us real-time approximation; networks are potentially
trainable and adjustable; and they may be made tolerant to noise or unit faults as a result of
their collective computation.

Most connectionist reasoning systems that implement parts of first-order logic (see for
examples: [Holldobler 90], [Shastri, Ajjanagadde 90]) use the spreading activation paradigm
and usually trade® expressiveness with time efficiency. In contrast, this chapter uses the energy
minimization paradigm (like [Derthick 88}, [Ballard 86], [Pinkas 91] and [Anandan et al. 89]),
representing an intractable problem, but trading time with correctness; i.e., as more time is
given, the probability of converging to a correct answer (a global minimum) increases.

Symmetric connectionist networks used for constraint satisfaction are the target platform
[Hopfield 82], [Hopfield 84], [Hinton, Sejnowski 86], [Peterson, Hartman 89], [Smolensky 86).
They are characterized by a symmetric matrix of weights and a quadratic energy function
that should be minimized. Each unit of the network asynchronously computes the gradient of
the energy function and changes its activation value so energy decreases and a stable state is
found. Some of the models in the family of symmetric networks perform simulated annealing
or deterministic annealing thus, they may be seen as performing a search for a global minimum
of their energy function.

The task is therefore to represent logic deduction that is bound by a finite proof length? as
energy minimization. The network should allow us to integrate in a unified way both knowledge
about facts and rules, and meta-knowledge about the reasoning process itself. The inference
mechanism (logic deduction) should be combined with the knowledge (predicate logic) into a
single network of polynomial size such that when global minimum is found, a proof (if one
exists) is also found. If no proof exists, the global minima represent the lack of a proof.

When a query is clamped, the network should search for a proof that supports the query.
If a proof to the query exists, then every global minimum of the energy function associated
with the network represents a proof. The network that is generated is of polynomial size in
the knowledge size and in the proof length.

Special consideration is given in this chapter to the goal of providing fault tolerance. In this
work I present a technique for composing complex structures that is inherently fault tolerant
and which is not based merely on duplicating components and generating redundancy.

The chapter® is organized in the following way: Section 2 sketches the main idea while
section 3 explains the binding g mechanism and how fault tolerance is obtained. Sections 4

! Trading complexity with expressive power is a well known tradeoff of symbolic systems [Levesque 84].
2Without a bound on the proof length, the problem is nndecidable.
3The chapter is an based on [Pinkas 92].i
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and 5 give the details of the representation and the constraints needed for the propositional
case. Section 6 extends the technique to first-order predicate logic (FOL). Section 7 discusses
soft constraints and section 8 concludes.

2. Main Idea

The idea is to construct a network whose visible units represent clauses and literals, and to
use paralle] constraint satisfaction to cause a proof for a posted query to emerge on the units.
The proof is based on resolution steps [Robinson 65]%; however, it is not by refutation and any
deductive step may be used instead of resolution. A proof is a list of clauses ending with the
query (goal) such that every clause used is either an original clause, a copy of a clause that
appears earlier in the proof, or a result of a resolution step of the two clauses that appeared
just earlier. At a global minimum, the activations of the visible units represent a list of clauses
and unifications that together form a proof.

The network that is constructed is a set of units and weights that impose constraints upon
these units.

The constraints encoded are of three classes: 1) Proof constraints: impose a resolution-
based proof (resolution steps, copy steps and urifications); 2) XKnowledge base constraints:
impose the proof to use syntax of clauses from the knowledge base; 3) Soft constraints: cause
“better” proofs to be preferred over not so “good” proofs (“better” will be defined later).

The first two groups are hard constraints that should be satisfied by exactly all valid proofs
of length not higher than the given bound. The network performs a constraint optimization;
it minimizes the violation of the soft constraint, while satisfying the hard constraints. When a
state of the units is found that satisfies all the hard constraints and as many soft constraints as
possible, then this state is a global minimum and it represents a valid and most desired proof.
If no state satisfies all the hard constraints then no proof exists. If only the hard constraints
are satisfied but the number of the satisfied soft constraints is not maximized, then we have
a valid proof that may not be the “best” proof available; i.e., not the most general, not the
shortest, etc,.

A matrix of units constitutes the proof area and functions as a clause list (see C' in figure
2). This list represents an ordered set of clauses that form the proof. The query clauses are
clamped onto this area and activate hard constraints that force the rest of the units of the
matrix to form a valid proof (if it exists).

3. Structure Composition, Binding and Fault Tolerance

Creating complex data structures by binding objects together is a fundamental tool which is
available in most programming languages and certainly in those used for symbolic computa-
tion. Of special importance for inference is the ability to perform dynamic variable binding

*Resolution is used for its simplicity and completeness. Other deduction steps may be used (like modus
ponens} to gain efficiency.



Faurr TOLERANT LoGIC PROOFS 3

{(e.g. as in unification), where data structures need to be constructed and matched during
run-time. Traditionally, dynamic generation of complex structures and variable bindings use
pointers and concatenations. Unfortunately, such primitives are not available in our connec-
tionist paradigm. Many connectionist variable bindings methods have been proposed recently
(e.g., [Touretzky, Hinton 88|, [Smolensky 87}, [Lange, Dyer 89], [Shastri, Ajjanagadde 90])%;
however, I found most of them not flexible encugh for the dynamics and complexity of a
logic reasoner.

The binding technique used is an extension of the method in [Anandan et al. 89] and may
be viewed also as related to the variable binding technique used in [Barnden 91a]. In this
technique, if two symbols need to be bound together, an instance is allocated from a pool of
general purpose instances, and this instance is connected to both symbols. An instance can be
connected to a literal in a clause, to a predicate type, to a constant, to a function or to a slot
of another instance (for example, a constant may be bound to the first slot of a predicate).
Variables are just slots of predicates or functions that are not bound by the user at query time.

In one simple form of the technique, a single matrix is used to bind two {(or more) objects.
We assume that no more than k different bindings will be needed at the same time in a proof,®
and therefore, to handle bindings among n objects, we use a matrix of nk units. In Figure 1
the rows represent the objects and the columns represent instances. An object i allocates an
instance J by setting the unit in row ¢ and column j. The dark circles indicate units that are
set. Two objects are bound if they share the same instance column; e.g., objects ¢ and 7 are
considered bound once they allocate the same instance I.

The rows of the matrix are winner-takes-all (WTA) networks that allow only one instance
to be allocated per object.” By biasing each of the units in rows i and j we cause objects 7 and
7 to allocate an instance each. By specifying the hard constraint that rows ¢ and § are equal,
the two objects are forced to allocate the same instance and therefore to be bound. Note that
any one of the & instances may be used for binding purposes. This property leads to robustness
of the solution; if some of the units are faulty (stuck on either zero or one) and cannot satisfy
the constraints, other units may be allocated that do satisfy the constraints. For example, if
the unit at row 7 and column £ is stuck on the value “zero”, the system, in order to satisfy the
constraints, may use the instance &' instead of k.8

We may use higher-dimensional matrices to represent attributes of the binding. For exam-
ple, in a resolution-based proof, literals should be bound to clauses; however, each literal in a
clause may be negated (negative) or unnegated (positive). Instead of maintaining two versions
of every atomic proposition or predicate (as in [Ballard 86]), our solution is to assign a sign
(negative/positive) as an attribute of the binding itself. Thus, positive and negative instances
are used to bind literals to clauses, The sign attributes indicate whether the literal allocated
via an instance is negated or unnegated. Matrix C of Figure 2 enables such bindings. The
rows of the matrix represent clauses. Each instance that is active is allocated to a proposition
(in matrix P), and the third dimension of C tells us whether this proposition is negated or
not. The “+” sign inside the unit in row 3 and column 4 means that C34; is active; i.e., a

5 Almost every connectionist system for high-level reasoning must cope with the problem.

®In a proof whose length is bounded by k, the maximum number of bindings is also bounded by O(k).
7 Actually, the rows need not to be WTA; the WTA assumption is just a convenience.

81f the unit is stuck on “one”, k is forced to be used as the binding instance.
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" Figure 1: Simple binding: object : and cbject 7 are bound via instance {.

positive literal which is connected via instance 4, participates in clause 3. Similarly, the unit
C3,1,2 is active, which means that a negative literal also participates in clause 3.

Another example of the use of a three-dimensional matrix is for representation of nested
structures, Here we bind together instances to slots of other instances. The objects are
instances that are allocated to predicates and functions (in a different table). Each of the
predicates/functions may have several slots where other functions may be bound. In matrix
NEST in Figure 4 the compound structure R( f(b,a), b)is represented. The columns of NEST
represent instances allocated to predicates whose slots must be filled. The rows of NEST
represent instances that should fill these slots. The third dimension represents the slots that
need to be filled. For example, the objects a, b, f, R allocate the instances 2,6,5,1 respectively in
matrix P. The matrix N EST is responsible for the binding of an instance to a slot of another
instance. In the example, N EST; 5 2 means that the constant a (instance 2) is bound to the
second slot of the function f (instance 5). Instance 5, which represents f(#,a), is bound to the
first slot of instance 1 (predicate R) by activating unit N EST}; ;. Similarly, the constant b is
bound to the second slot of R by activating NESTg 1 5.

The mechanism that allows nesting is robust to hardware failures in the same sense as the
simple case described earlier in this section. When a unit is stuck on zero, it cannot be used for
binding purposes and another instance needs to be activated. Similarly, when a unit is stuck
on one, it may still be used for binding. The system will try to satisfy the constraints that
are imposed, with faulty units treated as additional constraints. Of course, some combinations
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of faulty units may contradict constraints and harm the system; however, the probability for
such unique combinations of faults seems to be small. As a result, the number of instances
available for binding will shrink gracefully as more random faults are introduced. Few random
faulty units are unlikely to harm the system.

4, Representing proofs of propositional logic

I’ll start by assuming that the knowledge base is propositional; i.e., each clause in the knowledge
basge is a list of positive and negative literals and each literal is an atomic proposition. Section
6 extends the mechanism to first-order predicate logic.

4.1. The proof area

The clauses that participate in the proof are represented using a 3-dimensional matrix (C; ;)
and a 2-dimensional matrix (P ;} as illustrated in figure 2. The rows of C represent clauses of
the proof, while the rows of P represent atomic propositions. The columns of both matrices
are the pool of instances used for binding propositions to clauses.

A clause is a list of negative and positive instances that represent literals. The instance
thus behaves as a two-way pointer that binds composite structures like clauses with their
constituents (the atomic propositions). If the same instance is allocated both to a clause and
to an atomic proposition we say that the clause and the proposition are bound.

A row 7 in the matrix C, represents a clause which is composed of pairs of instances. If the
unit Cy ;; is set, then the matrix represents a positive literal in clause ¢, If P4 ; is also set,
then Cj ;; represents a positive literal of clause ¢ that is bound to the atomic proposition A.
Similarly C_ ; ; represents a negative literal.

A proof is a list of clauses that satisfies certain constraints. For example: given a knowledge
base of the following clauses:

1) A

2)"AVBVC(C

3).BVD

4)-CvD

we would like to prove the query D, by generating the following list of clauses (the order is the
reverse of the common practice):

1) D (obtained by resolution of clauses 2 and 3 by canceling A).
2) 4 (original clause no. 1).
3)-AvD (obtained by resolution of clauses 4 and 5 by canceling C).
4)-CvD (original clause no. 4).
5)=“AVCVD (obtained by resolution of clauses 6 and 7 by canceling B).
6) ~BvD (original clause no. 3).

7) AV BvVC (original clause no. 2).
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Figure 2: The proof area for a propositional case

Each clause in the proof is either an original clause, a copy of a clause from earlier in the proof,
or a resolution step. The full representation of the above proof appears in figure 2.

In figure 2, the first row of matrix C is the query® clause D. It contains only one positive
literal that is bound to atomic proposition D via instance 4. The third row of the matrix
represents a clause of two literals: a positive one that is bound to D via instance 4, and a
negative one bound to A via instance 1 (this is the clause A v D); it is generated as a result
of a resolution step.

4.2. Posting a query

A query is posted by clamping its clauses onto the first rows of C and setting the appropriate
IN units. This indicates that the query clauses participate in the proof and should be proved
by either a resolution step, a copy or an original clause.

Figure 2 represents the complete proof for D (the query). We start by allocating an instance
(4) for D in the P matrix, and clamping a positive literal D in the first row of C' (Cy.14); the

°If the query consists of more than one ciause then it uses the first few rows of C.
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rest of the row’s units are clamped zero. The unit /N; is biased (to have the value of one) to
indicate that the query is in the proof. If no proof exists, the 7Ny unit will become zero; i.e.,
the global minima is obtained by setting N to zero despite the bias.

Once a clause is in the proof, it must itself be proved and so on.

4.3. Participation in the proof

The vector I N represents whether a clause ¢ participates in the proof. In our example, all the
clauses are in the proof; however, in the general case some of the rows of C' may be meaningless.
When IN; is on, it means that the clause 7 is in the proof and must be proved as well.

Every clause that participates in the proof is either a result of a resolution step (RES; is
set), a copy!? of a some clause (C'PY; is set), or it is an original clause from the knowledge
base (K B; is set), Clause C3 in figure 2 for example is an original clause of the knowledge
base. If a clause j is copied it must be in the proof itself and therefore IN; is set. Similarly,
if it is a result of a resolution step (as in the case of figure 2) then the two clauses must also
be in the proof (JNiy;,; and IN; 0 ;) and therefore must be themselves resolvents, copies or
originals. This chain of constraints continues until all constraints are satisfied and a valid proof
is generated.

4.4. Representing resolutions steps

The vector RES is a structure of units that indicates which are the clauses in C that are
obtained by a resolution step; i.e., If RES; is set, then the ith row is obtained by resolving
row i 4 1 of C with row ¢ 4 2. Thus, the unit RES; in figure 2 indicates that the clause D in
the first row of (' is a resolvent of the second and the third rows of C representing =Av D and
A respectfully. Two literals cancel each other if they have opposite signs and are represented
by the same instance. In figure 2, the literal A in the third row of C and the literal ~A of the
second row cancel each other generating the clause of the first row.

4.5. Representing canceled literals

The rows of matrix R represent literals canceled by resolution steps. If C; is the result of a
resolution step, there must be one and only one instance j such that both clause 7 + I and
clause ¢4 2 include it with opposite signs. For example (figure 2): the clause D in the first row
of (' is the result of resolving the clause A with the clause =4V D which are in the second and
third rows of C respectfully. Instance 1, representing atomic proposition 4, is the one that is
canceled; R;; is set therefore, indicating that clause 1 is the result of a resolution step that
cancels the literals of instance 1.

The proof example in figure 2 does not need copy steps; however, in general such copies are needed, if we
want our proof mechanism to be complete,
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4.6. Copied and original clauses

The matrix D indicates which clauses are copied to other clauses in the proof area. Setting
D; ; means that clause ¢ is obtained by copying clause j into clause ¢ (figure 2 does not use
any copy step).

The matrix X indicates which original knowledge-base clauses participate in the proof.
The unit K;; indicates that a clause ¢ in the proof area is an original clause, and the syntax
of the j-th clause in the knowledge base must be imposed on the units of clause 7. In figure 2
for example, clause 2 in the proof assumes the identity of clause number 1 in the knowledge
base and therefore Kj 5 is set.

5. Hard constraints

We are now ready to specify the hard constraints that must be satisfied by the units so that a
proof is found. The constraints are specified as well formed logic formulas (boolean formulas).
For example the formula (A V B) A C imposes a constraint over the units (4, B, C) such that
the only possible valid assignments to those units are (011),(101),(111). A general method to
implement an arbitrary logical constraint on connectionist networks is shown in [Pinkas 90].1!

5.1. In-proof constraints

If a clause participates in the proof, it must be either a result of a resolution step, a copy step
or an original clause. In logic, the constraints may be expressed as:

YVi:IN;—RES; v CPY;V KB;

The three units (per clause ) consist a winner takes all subnetwork (WTA). This means that
only one of the three units is actually set. The WTA constraints may be expressed as:
RES;—~~CPY; A=K B;

CPY;——RES; A=K B;

K B;—-RES; A -CPY;

The WTA property may be enforced by inhibitory connections between every pair of the three
units. Figure 3 illustrates an implementation of such subnetwork.!?

5.2. Copy constraints

If CPY; is set then clause { must be a copy of another clause j in the proof. This can be
expressed as
Vi: CPY;~ \/(_D,;‘j A IN;).

2

" The algorithm in {Pinkas 90] may generate hidden units if the constraint involve more than two units. The
number of hidden units generated is in the order of the size of the formula,

12This is a general technigue to implement a disjunctive constraint on WTA units. Many of the constraints
in this chapter may be implemented in a similar way. Other techniques (not necessarily symmetric) may also
be used.
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Figure 3: A disjunctive constraint on a WTA network (IN;—(RES; Vv CPY; V K B;)).

The rows of D are WTA allowing ¢ to be a copy of only one j; thus, the constraint may be
implemented like the “in-proof” constraint mentioned earlier. In addition, if clause j is copied
into clause 7 then every unit set in clause 7 must also be set in clause .13 This may be specified
as:

Vi, o1 Dij~((Cait = Ca ) A(C_jig = C i)

5.3. Resolution constraints

If a clause ¢ is a result of resolving the two clauses i 4+ 1 and ¢ + 2, then there must be one
and only one instance (J) that is canceled (represented by R; ;), and C; is obtained by copying
both the instances of €41 and Ciyz, without the instance 7.

These constraints may be expressed as:

Vi: RES;—V; Ri; at least one instance is canceled

Vi, 5,53 # 5 Rij—Rij only one instance is canceled (WTA)

Vi, 5 Bii—{Coiv1, A Civ2,5) V (C-jiga,j A Cyiga,j) cancel literals with opposite signs.

Vi: RESi—INy1 AIN42 the two resolvents are also in proof

Vi: RES;—(Cyi;j(Ciit1,; V Chiva,j) A Rij copy positive literals without the canceled
Vi:RES;—(C_;;o(C_ip1;V Coiyaj) A =Ry copy negative literals without the canceled

5.4. Clause-instance constraints

The sign of an instance in a clause should be unique; therefore, any instance pair in the matrix

C is WTA:
Vi’j : C’*‘r"sj_)-_‘C"';"lj

*3Clause i is either copied or weakened; i.e., more literals are added to the clause 7 in addition to the literals
of ;.
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The columns of matrix P are WTA since an instance is allowed to represent only one atomic

proposition:
VA,i,B# A: Py;—-Pg;.

The rows of P may be WTA:!*

VA, i,j -;é 13 PA,,'—r-lPA,J'.

5.5. Knowledge base constraints

If a clause ¢ is an original knowledge base clause, then there must be a clause 7 (out of the
m original clauses) whose syntax is forced upon the units of the i-th row of matrix C. This
constraint can be expressed as:

m

Yi: KB;— v K;;

J
The rows of K are WTA networks so that only one original clause is forced on the units of
clause z:

Vi, 5,7 # 71 Kij—-K; .

The only constraints that are left are those that force the syntax of a particular clause from
the knowledge base. Assume for example that K;4 is set, meaning that clause 7 in C' must
have the syntax of the fourth clause in the knowledge base (~C Vv D). Instances 7 and j' must
be allocated to the atomic propositions C' and D respectfully, and must appear also in clause
i as the literals C_ ; j and Cy; jr.

The following constraints capture the syntax of (-C v D):

Vi:K;4—V;(C-iiN Poj)  there exists a negative literal that is bound to C;
Vi: Kis— V(D4 A Pec;)  there exists a positive literal bound to D.

Note that because the rows of P are WTA, it is possible to implement the constraints using :
Vi, j: Kig—(C-i; A Pp,;)

Vi, j: Kig—(Cyij A Poj).

6. FOL extension

In first-order predicate logic instead of atomic propositions we must deal with predicates. As
in the propositional case, a literal is represented by a positive or negative instance; however,
an instance must be allocated fo a predicate name and may have slots to be filled by other
instances (representing functions and constants).

14This is not mandatory, but helpful in specify the syntactic constraints of the next subsection.
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For example, an instance for the literal R(f(X, a), X'} must satisfy the following constraints:
the instance (¢) must be connected to a predicate type R; a second instance (§) that is connected
to the function f must be connected also to the first slot of the instance of 7. A third instance
(k) that is connected to the constant a, must be also connected to the second slot of j, Finally,
any instance that is connected to the first slot of § must also be connected to the second slot
of i. To accommodate such complexity a new matrix (N EST) is added, and the role of matrix
P is revised (see figure 4).

The matrix P must accommodate now function names, predicate names and constant
names instead of just atomic propositions. Each row of P represents a name, and the columns
represent instances that are allocated to those names. The rows of P that are associated
with predicates and functions may contain several different instances of the same predicate or
function, thus, they are not WTA anymore.

N 7 ¢ RESKB CPY R
2 3 ko 1 2 3 k
Qey: RGN 1 [O]|O ... O O
PEwy 2 |0 @ O
REXa0Ov-,LN 3 |OH@ {9 O
k e
1 2 3 4 5 6 k 1 5
1 2 3 4 k
O 1
R O
fl.a) 2 @
2 O
f o 3
b (9] )
R L) ) 5
) ¢ ) 0
6 @ o O
P k
NEST

Figure 4: The proof area for a FOL example: proving R(f(b,U),V) from P(Z,W) and
R(f(X,a), X)V ~P(X,Y).

In order to represent compound terms and predicates, instances may be bound to slots
of other instances. The new matrix (N EST; ;) is capable of representing such bindings. If
NEST; ;p is set, then instance i is bound to the p slot of instance j. Instance 1 in figure 4
for example, represents the predicate R(f(X,a),X): instance 1 is allocated to predicate R;
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instance 5 is allocated to the function f; instance 2 is allocated to the constant a and 6 is used
as an instantiation of the variable X. Instance § (the function f) is bound to the first slot of
instance 1 using the unit ¥ ES5T5 1 1; the constant a represented by instance 2 is bound to the
second slot of 5 (NESTy52). The variable X represented by instance 6 is bound to the first
slot of instance 5 and to the second slot of instance 1 (NESTs 51 and N ESTs12). Note that
the columns of NEST are WTA, allowing only one instance to be bound to a certain slot of
another instance.

When a clause i is forced to have the syntax of some original clause [, syntactic constraints
are triggered so that the literals of clause ¢ become instantiated by the relevant predicates,
functions, constants and variables irnposed by clause ..

For example, assume that clause m in the knowledge base is of the form: R(f(X,a), X)V
~P(X,Y). If clause 7 in C' must have the syntax of clause m of the knowledge base, there
must be some positive literal (instance j) of predicate R; and a negative literal (instance /) of
predicate P. The first slot of j must be instantiated by some instance j/ representing f. Some
instance j” representing the constant a must instantiate the second slot of 7', In addition, any
instance that fills either the first slot of j/, the second slot of j or the first slot of !, must fill all
of these slots (representing the variable X'). This compound constraint can be expressed as:

Vit Kiym— Vi(Chij A Pryj) there exists a positive literal R in ;
Vii: Kim— V;(Coi; A Ppj) there exists a negative literal - P;
Vi,j: Kim ACh ;A Prj— VJ-:(NESTJ-:‘J;J A Pg 1)
there exists a function f in the first slot of R;
Vi, 5,7 1 Kigm AC4ij NNEST; ;1 A Pp;— Vju(N.ESTjU’jI'g A P,
there exists a constant ¢ in the second slot of f in R;
Vi, 5,551 : Kim A Chij A Prj ANEST; ;10— (NESTy j11 o NESTu j2)
whatever instantiates the first slot of f in R also instantiates
the second slot of R and vice versa (R(f(X,), X));
Vi, j 0 : Kim ACi s APRi AC_ ;i A Ppi—(NESTy ;2 NESTy 1)
whatever instantiates the second slot of R also instantiates
the first slot of P and vice versa (R(, X)V P(X,)).

The second slot of [ represents an unbounded free variable Y. There is no constraint on
this slot and it can be instantiated later by dynamic unification (or not be instantiated at all).

Unification is implicitly obtained if two predicates are instantiated using the same instance
while still satisfying the constraints. When a resolution step is needed, the network tries to
allocate the same instance to the two literals that need to cancel each other. If the syntactic
constraints on the literals permit such sharing of an instance, then the attempt to share the
instance is successful and a unification occurs.!®

15Note that occar check is done implicitly since it is impossible to generate infinite nested irees when there
is a bound on the number of instances.
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6.1. An example

Figure 4 represents the proof of the query R(f(,U),V) (where U,V are existentially quanti-
fied), in one resolution step using the clauses: P(Z,W) and R(f(X,a),X)V -P(X,Y). The
state of the proof area in figure 4 represents the proof with the necessary unifications (after a
global minimum was reached):

1)R(f(b,a),b) The query is obtained by resolving 2 and 3;
2)P(b, W) an original clause;
DR(f(b,a),b)V ~P(b,W) an original clause.

The query is clamped by allocating an instance (1) to R, and two other instances (5,6) to f
and b respectfully (Pr 1, Py s, Pog). By clamping N ESTg 5.1 we specify that the constant b fills
the first slot of f . By clamping N ES5T5 1, we specify that the function f fills the first slot of
R. The first clause of the proof area is clamped by setting C 1 ; while the rest of the units in
the first clause are clamped to zero. To initiate the search, IN; is clamped.®

The system attempts to prove the query by allocating instance 1 (of the query) also to
the literal R{f(X,a),X). This causes instance 6 (the constant 4) to fill also the second slot
of 1 and the first slot of 3 which is the instance that happened to be allocated to the literal
~P(X,Y). This last instance (3) is shared with P(Z,W), the two literals cancel each other
and the query (represented by instance 1) is proved.

7. Optimization and soft constraints

The constraints discussed in the previous section are sufficient to force valid proofs on the
anits of the proof area; however, among the valid proofs some are preferable to others. By
means of soft constraints and optimization it is possible to encourage the network to search for
the preferred proofs. Theorem-proving thus is viewed as a constraint optimization problem.
A weight may be assigned to each of the constraints!” and the network tries to minimize the
weighted sum of the violated constraints, so that the set of the optimized solutions is exactly
the set of the preferred proofs. The following are some examples where this approach is useful.

7.1. Most general unifications

T'wo literals of different sign are unified iff they are instantiated by the same instance. The
hard constraints imposed on the instances are enough to assure that the unification is correct
if the constraints are satisfied. However, the unification that is obtained is not necessarily the
most general one (MGU).

1%Note that existentially quantified variables in the query are left with no constraints to limit them. Universally
quantified query variables should be skolemized; i.e., instantiated by a unique constant that cannot be matched
by any constant in the knowledge base. Remember that unlike standard resolution, the query is not negated
and this is the reason we skolemize universal quantifiers and not existential quantifiers.

"For a general method for expressing weighted soft constraints on symmetric networks see [Pinkas 91].
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The assignment of small penalties (negative bias) to every binding of a function (or a
constant) to a position of another instance (in NEST), causes the network to search for a
proof that uses as few bindings as possible:

¥i,j,s: e( Py~ NEST; ;).

The penalty (¢) is small enough not to interfere with the hard constraints; it is sufficient
however, to cause the network to prefer unifications with fewer bindings. It is easy to show
that a unification with as few variable bindings as possible is a MGU.

7.2. Parsimony, minimizing cost of plans and reliability

If shorter proofs should be preferred, soft constraints may be added that penalize every clause

that participates in the proof:
Vi : e(—IN;).

Minimizing the penalty thus corresponds to finding the shortest proof.

If the knowledge is used to reason about plans (for example, in situation calculus), each
of the actions is represented by a function and may be penalized using its cost. Let f be an
action and let ps be the cost of this action (eg., the time it takes to perform the action): the

constraints
Vf € ACTIONS, i: pg(—Ps,).

cause the network to search for plans that have minimal sum of costs.

Each of the clauses in the knowledge base may have a reliability (or certainty) associated
with it. We can therefore rank all possible proofs according to their reliability. Let p; be a
reliability measure that is associated with the ith clause; the constraint

Vi, 7 :1/pi(—Ki ;)

causes the network to search for proofs that are based on more reliable clauses.® Attaching
penalties to beliefs is a useful techniques to represent nonmonotonic knowledge (see [Derthick 88],
[Goldszmidt, et al. 90], [Pinkas 91]).

7.3. Coping with inconsistency

The last approach of having reliability measures (certainties) attached to beliefs may be ex-
tended for dealing with inconsistent knowledge bases. Thus, consistent subsets of the beliefs
in the knowledge base may be used to prove contradicting conclusions. The ranking among
proofs determined by the certainties may be used for preferring one possible conclusion rather
than its negation. It is possible to build an inference mechanism that entails ¢ iff there ex-
ists a proof that supports ¢ and no better (or equally good) proof exists that contradicts ¢.

18 The reliability rank of a proof is the sum of —1/p; of all the clauses that participate in the proof. A proof
is better iff its reliability is higher.
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This notion of competition among contradicting proofs enables us to express defeasible rules,
defaults, and exceptions, as well as to reason with noisy knowledge.

To construct this nonmonotonic mechanism we may use the same constraints that introduce
certainties to beliefs are used. In addition, two subnetworks are constructed: one that searches
for a proof for the query and the other that tries to prove its negation. Using the hard constraint
() =~} the combined network is forced to either prove @ or its negation. By biasing ~Q a bit
more than the biasing for @, we cause the proof for @ to win if and only if it is strictly better
than any proof for ~(.1°

8. Summary

Given a finite set T of m clauses, where n is the number of different predicates, functions
and constants, and given also a bound & over the proof length, we can generate a network
that searches for a proof with length not longer?® then k, for a clamped query Q. If a global
minimum is found then an answer is given as to whether there exists such a proof and the
proof (with MGU’s) may be extracted from the state of the visible units. A nonmonotonic
extension of the technique allows proving @ from an inconsistent knowledge base, if a proof
for @ is found and no “better” proof exists that contradicts Q).

In the propositional case the network that is generated is of O(k% + km + kn) units and
O(k® + km + kn) connections.”! For predicate logic there are O(k® + km + kn) units and
connections, and we need to add O(k*m) connections and hidden units, where 7 is the maximal
complexity-level®? of the syntactic constraints. Note that if the the maximal proof length (k)
is a small constant, the size of the network becomes linear in the size of the original knowledge
base.

Most of the problems in an earlier approach [Ballard 86] are fixed: 1) We are not limited
to unit resolution and the syntax of the FOL clauses is not restricted at all; 2) the network is
compact and the representation of bindings (unifications) is efficient; 3) nesting of functions
and multiple uses of rules are allowed; 4) only one relaxation phase is needed (and not two
as in [Ballard 86]); 5) the network is capable of coping with inconsistency; 6) the query does
not need to be negated and pre-wired; it can be clamped during query time; and 7) global
minimum always corresponds to a proof if one exists (no loops).

As for performance, local minima still exist, so the task of finding a globa/ minimum may
be hard (note that we are trying to solve an inherently intractable problem). Hopes for an
improved average-case performance are based on the massively parallel architecture, on training

*The approach can be implemented easily for the propositional case; however, in FOL an inconsistent set of
clauses may be used to form a faulty argument. I have not found a way yet to integrate a consistency check on
a FOL “proof” so that a consistent proof is found in a single relaxation phase.

**The bound k limits the number of clauses in the proof the number of literals that participate in the proofl
and the number of sub-terms that participate; i.e., the number of bindings.

'Jf only pairwise connections are allowed, more hidden units (O(X> + km + kn)) are needed.

22The complexity level of a syntactic constraint is determined by the number of different instances involved
in it. It is a function of the nesting level of the terms within the clause and of the interdependencies among
them.
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algorithms that re-shape the energy surface, and on other advances in the dynamics of neural
and constraint satisfaction networks.

The architecture discussed has a natural fault-tolerance capability: the units in matrices C,
P, R and NEST, are dynamically allocated for binding purposes. When a unit becomes faulty,
it simply cannot assume a role in the proof, and other units are allocated instead. Similarly,
instances (like in matrices K, D) or clauses (like in C,IN, RES, K B) are simply ignored if they
cannot be used, and other instances/clauses are used instead.
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number: R-9008012.
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