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ABSTRACT OF THE DISSERTATION 

 

Cryptococcus neoformans is an environmental yeast and an opportunistic 

pathogen capable of causing a meningoencephalitis in human hosts. The organism 

produces an extensive polysaccharide capsule that is unique among pathogenic fungi and 

absolutely required for its virulence. Work in the Doering laboratory on the capsule and 

other glycoconjugates of C. neoformans has focused on the identification of 

glycosyltransferases, enzymes that catalyze the transfer of a sugar moiety from an active 

donor to a specific acceptor, creating a particular linkage. Previous work demonstrated 

that xylose residues, derived from the nucleotide sugar UDP-xylose, are necessary for 

cryptococcal virulence. An assay to detect xylosyltransferase activity was developed in 

the laboratory using a radiolabeled UDP-xylose donor, a dimannose acceptor, and protein 

fractions from C. neoformans as the source of enzymatic activity. Using this assay, 

several discrete xylosyltransferase activities have been detected, including one that 

depends on the presence of manganese cations as a cofactor. The identification and 

characterization of the protein responsible for this activity has been the focus of these 

dissertation studies. The product of the manganese-dependent xylosyltransferase activity 

was analyzed by mass spectrometry and NMR and found to be xylose-α-phosphate-6-

mannose-α-1,3-mannose, indicating that the enzyme responsible is, unexpectedly, a 

xylosylphosphotransferase (Xpt1p). There are no reports in the literature of similar 

glycan structures, suggesting that Xpt1p is a novel enzyme capable of generating a 

unique sugar linkage. The locus encoding Xpt1p activity was identified based on limited 
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homology to a known mammalian glycosylphosphotransferase and confirmed by activity 

studies of a deletion mutant. Xpt1p was subsequently shown to prefer the donor and 

acceptor molecules UDP-xylose and mannose, respectively. It was further found to play a 

role in the glycosylation of cellular proteins, in particular the synthesis of O-linked 

glycan structures, and has been suggested to exist in a multimeric protein complex. This 

thesis details these studies of Xpt1p and considers the future directions of this research. 

Altogether, this work has broadened our understanding of glycan synthesis in general and 

the synthesis of cryptococcal glycans in particular. 
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This introduction sets the stage for the main focus of my thesis, a unique xylosyl-

phosphotransferase that I discovered in the fungal pathogen Cryptococcus neoformans. 

The first section introduces the organism and the disease it causes. This is followed by an 

overview of the glycan and glycoconjugate structures found in fungi and their biosyn-

thetic pathways. Finally, I introduce the research of the Doering laboratory and the rea-

sons behind our particular interest in the xylosyltransferases of C. neoformans. 

 

CRYPTOCOCCUS AND CRYPTOCOCCOSIS 

Cryptococcus neoformans is a free-living, saprophytic yeast of the fungal phylum 

Basidiomycota. Unlike other members of the genus, C. neoformans regularly infects 

mammalian hosts and is considered an opportunistic pathogen of humans. Originally 

classified as a single species that could be differentiated into four serotypes (A-D), C. ne-

oformans is now referred to as a species complex consisting of separate species and va-

rieties (1): C. neoformans var. grubii (serotype A), C. neoformans var. neoformans (sero-

type D), and C. gattii (originally serotypes B and C). C. neoformans var. grubii and var. 

neoformans have been isolated worldwide from soil and avian excreta, and are often as-

sociated with disease in the immunocompromised population. In contrast, C. gattii is 

most often found in the tropical and sub-tropical regions of the world in association with 

certain trees, and characteristically infects immunocompetent individuals. Unless speci-

fied, the term C. neoformans when used here will collectively refer to members of all 

four historically defined serotypes. 
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Humans are colonized by C. neoformans via the inhalation of basidiospores or 

small yeast cells (2). During the primary infection of the lungs, the organism is typically 

isolated within a granuloma by the host immune system or eradicated completely without 

any symptomatic evidence of infection (3). If segregated within a granuloma, C. neofor-

mans may reactivate at a later time following a change in the host’s immune status. Al-

though healthy individuals rarely exhibit symptoms of infection, serological studies indi-

cate that a majority of adults have anti-cryptococcal antibodies and that most individuals 

are exposed in early childhood (4, 5). Depending on variables such as inoculum, isolate 

virulence, and host factors, the organism may disseminate (either acutely or following a 

period of latency) to extra-pulmonary sites throughout the human body. Although C. neo-

formans can cause localized infections in most organs, it demonstrates a particular tro-

pism for the central nervous system (2). This can result in a meningoencephalitis that is 

fatal if left untreated. 

The global incidence of cryptococcosis has risen markedly over the last several 

decades as a result of the HIV epidemic as well as the increasing use of immunosuppres-

sive therapies in medicine (4). Existing anti-fungal regimens (amphotericin B, flucyto-

sine, and fluconazole) have a limited ability to clear a C. neoformans infection and can 

have toxic side-effects (6). Thus even in developed countries the mortality from HIV-

associated cryptococcal meningitis remains high, at 10-30%; in developing nations, 

where patients tend to present for treatment later and resources are more limited, crypto-

coccosis accounts for 13-44% of all deaths in HIV-infected patients (3). It has recently 

been estimated that the annual global burden of cryptoccal infections is nearly 1x106 
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cases, with fatalities numbering over 6x105 (7). As these statistics clearly indicate, the 

need to study this ‘opportunistic’ pathogen should not be underestimated. 

C. neoformans has evolved a number of traits that allow it to survive within its 

mammalian hosts. The three classic virulence-associated phenotypes of C. neoformans 

are its ability to grow at higher (mammalian body) temperatures, the production of mela-

nin, and the generation of a polysaccharide capsule. Although the idea of temperature tol-

erance as a virulence factor is unconventional, it should be remembered that the vast ma-

jority of fungal species are environmental organisms. Even C. neoformans, which can 

reproduce asexually in the human body (8), cannot mate at higher temperatures (9). It is 

fundamentally an environmental yeast: studies have demonstrated that C. neoformans is 

better able to withstand inhospitable growth conditions or the presence of anti-fungal 

agents at 25°C rather than 37°C (10, 11). Yet members of the C. neoformans species 

complex can survive at these higher temperatures, making them the only members of 

their genus to act as pathogens. Numerous loci have been identified in serial analysis of 

gene expression (SAGE; (12)) or DNA microarray (13) surveys as being transcriptionally 

regulated in response to temperature. Studies have demonstrated the role of various cell 

signaling molecules in temperature tolerance, including Ras1p (14), Mpk1 (15), Rac1p 

(16), and Cdc24 (17). In addition, a number of proteins involved in stress response path-

ways, such as thiol peroxidases (18), manganese superoxide dismutase (19), and treha-

lose-6-phosphate synthase (20), have been shown to be temperature-regulated. In order to 

survive in an environment as different from the soil as a mammalian host, C. neoformans 
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has evolved such that many cellular pathways are regulated in response to changes in the 

yeast’s ambient temperature. 

C. neoformans is also distinguished from other members of the Cryptococcus ge-

nus by the production of melanin (a negatively charged pigment) when grown on media 

containing diphenolic compounds (21, 22). Melanin has been found to play a protective 

role both in the environment and in the host. In the environment, melanin protects the cell 

against temperature fluctuations (23), the ionizing radiation of ultra-violet light (24), 

heavy metal toxicity (25), and hydrolytic enzymes like those found in bird guano (26). 

Non-melanizing mutants of C. neoformans show inhibited growth at 37°C (27), do not 

accumulate in brain tissues (28), and fail to produce lethal infections in mice (29). Pheno-

types associated with melanin production include resistance to antibody-mediated phago-

cytosis (30) and protection from oxidation (31) as well as the inhibition of tumor necrosis 

factor alpha (TNFα) production and lymphoproliferation (32). Despite its link to viru-

lence, there has been some debate as to whether or not melanin is generated by C. neo-

formans during infection (33, 34). It may be that oxidation resistance (35), and possibly 

other traits previously linked to melanin production, can be attributed to the activities of 

laccase, the enzyme that generates melanin (36). Whether directly or indirectly, however, 

melanization is linked to virulence in C. neoformans. 

The most prominent virulence factor of C. neoformans is its extracellular capsule, 

which can be clearly seen in Figure 1. The capsule is primarily composed of two polysac-

charide structures along with some mannoproteins (the structure and synthesis of these 

glycans is described in the following section). The cryptococcal capsule contributes sig-
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nificantly to the organism’s evasion of the host’s immune response by interfering with 

elements of both cellular and humoral immunity. The capsule polysaccharides are able to 

prevent the host from developing an antibody response (37, 38). In the absence of opson-

ins, macrophages will not phagocytose encapsulated C. neoformans (39), thereby inhibit-

ing lymphocyte proliferation (40). Increased interleukin-10 (IL-10) production by mono-

cytes in response to C. neoformans suppresses expression of class II major histocompati-

bility complex (MHC) molecules on monocytes, the proliferative T-cell response, and 

cytokine production (41, 42). Both TNFα and IL-1β production are inhibited by the cap-

sule polysaccharides (43); leukocyte migration in response to infection is diminished (44) 

and the maturation and activation of dendritic cells is limited (45). Thus the capsule plays 

a major role in the survival of C. neoformans in its hosts. 

 
 
Figure 1. Images of C. neoformans. Panel A, differential interference contrast mi-

crograph of cells that were mixed with India ink after induction of capsule formation 

by growth in low-iron medium. Bar, 3 µM. Panel B, thin-section micrograph of a bud-

ding cell fixed in the presence of ruthenium red dye. Bar, 1 µM. Panel C, quick-freeze, 

deep-etch image of the edge of a cell, with an arc of cell wall separating the cell inte-

rior (lower left) from the capsule fibers emanating outwards (upper right). Bar,      

0.15 µM. Figure from (142). 
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FUNGAL GLYCAN SYNTHESIS 

Fungi produce a remarkable range of glycans and glycoconjugates. Here, I present 

an overview of fungal glycan biosynthesis, beginning with the precursor molecules util-

ized in the various biosynthetic pathways and proceeding to individual classes of glyco-

conjugates. The carbohydrate structures of the model yeast Saccharomyces cerevisiae, 

which have been extensively investigated, serve as the core of this section, with attention 

drawn to known variations on the biosynthetic processes as they occur in C. neoformans 

and other fungal species. Some of the glycosynthesis pathways of fungi present variations 

on general eukaryotic themes, while others are specific to these organisms. The latter is 

emphasized in the cases of pathogenic fungi given that unique aspects of biosynthesis 

may allow for the development of selective anti-fungal chemotherapies. 

 

Precursors for glycan synthesis 

In both eukaryotes and prokaryotes, glycan synthesis requires sugar donor mole-

cules. These active precursors are usually either nucleotide triphosphate sugars or doli-

chol-phosphate sugars, depending on the synthetic context. For the purpose of this back-

ground discussion, the focus will be on mannose (Man), one of the more common mono-

saccharides in fungal glycans and a moiety about which much is known. Specific discus-

sion of xylose (Xyl) precursors is included in final section of this chapter. 

Nucleotide-linked sugar synthesis and localization. The activated nucleotide 

sugar donor of Man, GDP-Man, is synthesized from GTP and Man-1-phosphate (Man-1-

P) in a reaction catalysed by GDP-mannose pyrophosphorylase. The Man-1-P is derived 
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either from the phosphorylation of Man obtained from the environment or originates 

within the cell when generated from other sugar phosphates or via other metabolic proc-

esses. 

GDP-Mannose, like many other nucleotide sugars, is made in the cytosol. This 

presents a topological problem for cells that produce most of their glycoconjugates in the 

organelles of the secretory pathway. The cellular solution to this dilemma is to produce 

specific nucleotide sugar transporters (NSTs) to move these charged donor molecules 

across the membrane of the endoplasmic reticulum (ER) or Golgi apparatus. The NSTs 

are multi-membrane spanning proteins that act as antiporters, importing nucleotide sugars 

into an organelle in exchange for the corresponding nucleotide monophosphate. For ex-

ample, the Golgi-localized GDP-Man transporter (Vrg4p in S. cerevisiae; (46)) imports 

GDP-Man in exchange for GMP; the latter is derived from the cleavage of the GDP pro-

duced when Man is transferred from the nucleotide sugar to a growing glycoconjugate. 

The S. cerevisiae protein Vrg4p is essential, as are its homologs in the pathogens 

Candida albicans and Candida glabrata (47, 48). In contrast, Cryptococcus neoformans, 

a basidiomycetous fungal pathogen of humans with two functional GDP-Man transport-

ers, is able to survive, albeit with poor growth, even in the absence of both proteins (49). 

Importantly, higher eukaryotes have no such proteins as NSTs: mammalian Golgi man-

nosylation uses lipid-linked Man as the donor for comparable secretory protein modifica-

tion (see below). These transporters in pathogenic fungi thus represent potential drug tar-

gets. The occurrence and specificity of NSTs for other nucleotide sugars are discussed in 

several excellent reviews ((50-52). 
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Dolichol-linked sugar synthesis. Dolichol-linked sugars are critical donors of 

monosaccharide residues in the synthesis of eukaryotic glycan structures (reviewed in 

(53). Again using Man as an example, dolichol phosphate mannose (Dol-P-Man) is 

formed on the cytosolic leaflet of the ER membrane by the enzyme dolichol phosphate 

mannose synthase (Dpm1p), which catalyses the transfer of Man from cytosolic GDP-

Man to membrane-associated dolichol monophosphate (Dol-P). S. cerevisiae and the 

plant pathogen Ustilago maydis encode a Dpm1p with a hydrophobic region that local-

izes the protein to the ER. In contrast, the model fission yeast Schizosaccharomyces 

pombe encodes a Dpm1p without a transmembrane domain. To mediate the same reac-

tion, the S. pombe Dpm1p therefore requires the presence of two additional proteins, 

Dpm2p and Dpm3p, which are thought to stabilize and localize the catalytic subunit (53). 

The lipid moiety of Dol-P-Man allows an unidentified flippase to translocate the active 

sugar donor to the lumenal leaflet of the ER membrane where it is appropriately situated 

to participate in reactions of glycan synthesis. Dolichol may also be used as a platform 

for the assembly of larger biosynthetic intermediates; these compounds are discussed be-

low in the context of protein glycosylation. 

 

Glycosyltransferases 

Glycosyltransferases catalyse the specific transfer of a monosaccharide moiety 

from an activated sugar donor to a distinct acceptor molecule in a particular linkage. 

Common sugar donors include nucleotide monophosphosugars, nucleotide diphospho-

sugars and dolichol-linked sugars. As will be discussed below, both saccharides as well 
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as non-saccharides, such as proteins and lipids, can serve as acceptor molecules. In eu-

karyotes, the reactions catalysed by glycosyltransferases often take place within the en-

doplasmic reticulum (ER)-Golgi pathway. Resident glycosyltransferases of these organ-

elles exist as type II membrane proteins with a short N-terminal cytoplasmic domain, a 

membrane-spanning domain, a stem region, and a globular C-terminal luminal domain. 

The transfer of a glycosyl moiety from one molecule to another can occur via ei-

ther an inverting or retaining mechanism. In inverting glycosyltransferases, the deproto-

nated hydroxyl group of the acceptor attacks the C1 anomeric carbon of the sugar donor 

to form a glycosidic bond, resulting in an inversion of the configuration at C1 (54). The 

mechanism of retaining glycosyltransferases, in which a glycosidic bond is formed be-

tween the donor and acceptor while retaining the C1 configuration, is less clear. Glyco-

syltransferases typically require metal ion cofactors. Binding of the cofactor and/or the 

sugar donor molecule results in a conformational change in the protein. A number of 

these enzymes contain one or more flexible loop regions that re-order upon binding of the 

sugar donor to generate the acceptor-binding site. Once the glycosyl unit has transferred 

from the donor to the acceptor molecule, the saccharide product is released and the loop 

reverts to its native conformation, releasing any remaining moieties of the donor mole-

cule (54). 

Traditionally, glycosyltransferases were classified on the basis of their donor, ac-

ceptor, and product specificity, and identified by an Enzyme Commission (EC) number 

(55). With the availability of thousands of putative glycosyltransferase sequences from 

genome studies, a new classification scheme for these enzymes was proposed that did not 
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require knowledge of biochemical function. Instead, these enzymes are divided into fami-

lies based on similarities in amino acid sequence to one or more founding members that 

have been biochemically characterized (56). A database of enzymes involved in carbohy-

drate metabolism (CAZy, carbohydrate active enzymes) organized according to this clas-

sification scheme is maintained by the Glycobiology unit at AFMB-CNRS in Marseille, 

France, and can be found on the internet at http://www.cazy.org/index.html. As of No-

vember 2009, the CAZy database contained 92 glycosyltransferase families that included 

64 confirmed and putative enzymes from the C. neoformans var. neoformans JEC21 ge-

nome project. 

The primary amino acid sequences of glycosyltransferases are typically very di-

verse, although the predicted proteins exhibit overall structural similarities. All glycosyl-

transferases contain distinct donor and acceptor binding domains connected by a linker 

region that forms the active site. On the basis of broader structural patterns, glycosyl-

transferases have been primarily divided into two superfamilies, GT-A and GT-B. The 

GT-A enzymes have two dissimilar domains: an N-terminal sugar donor-binding domain 

composed of several β-strands that are each flanked by α-helices to form a Rossman-like 

fold, and a C-terminal acceptor binding domain made up largely of mixed β-sheets (54). 

Members of the GT-A family frequently have a three-residue DXD, EXD or equivalent 

motif that is involved in the binding of a metal ion (often Mg2+ or Mn2+), although not all 

GT-A enzymes require such a cofactor and some lack this motif. Enzymes of the GT-B 

superfamily typically have two Rossman-like folds that allow the acceptor molecule to 

bind at the N-terminus while the C-terminal domain is involved in binding the sugar do-
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nor (54). Although some GT-B enzymes utilize metal ion cofactors, most do not and thus 

GT-Bs lack a DXD motif or its equivalent, further distinguishing them from GT-A mole-

cules. Members of the GT-B superfamily do, however, exhibit a pattern of proline (Pro) 

and glycine (Gly) residues located within the donor-binding domain (57). In addition to 

the defined GT-A and GT-B superfamilies, there are a growing number of glycosyltrans-

ferases that do not fall into either of these categories on the basis of structural motifs or 

amino acid sequence (58-60). Although a number of authors have suggested the creation 

of additional glycosyltransferase superfamilies to accommodate these outliers, a consen-

sus within the field has not yet been reached. 

The formation of glycoconjugates often requires several glycosyltransferases 

working sequentially to generate the desired linear or branched structures. These glyco-

syltransferases may form large protein complexes, as with the S. cerevisiae M-Pol II en-

zyme complex discussed below (see 'N-linked glycan synthesis' section). Functional re-

dundancy of glycosyltransferases is also typical, as demonstrated by the S. cerevisiae 

PMT and Mnt families of mannosyltransferases that act in the O-linked glycosylation of 

proteins (see 'O-linked glycan synthesis' section). 

 

Protein glycosylation 

The carbohydrate modifications of a glycoprotein can contribute to the final con-

formation, stability, function, and localization of the polypeptide. Glycans are typically 

associated with fungal proteins in one of three ways: N-glycosylation (where the glycan 

is linked to an asparagine (Asn) residue), O-glycosylation (where the glycan is linked to 
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the hydroxy group of serine (Ser) or threonine (Thr)), and GPI anchors (where the glycol-

ipid is linked to a C-terminal amino acid). The transfer of these carbohydrate structures is 

initiated during or soon after the translocation of nascent polypeptide chains into the ER 

lumen. The core glycans are further elaborated by the actions of glycosidases and glyco-

syltransferases in the ER and Golgi as the protein traverses the secretory pathway, yield-

ing a diverse array of structures. 

N-linked glycan synthesis. N-glycosylation begins with the assembly of a doli-

chol-linked oligosaccharide precursor at the cytoplasmic leaflet of the ER membrane 

(Figure 2; recently reviewed in (61)). In S. cerevisiae, the glycosylphosphotransferase 

Alg7p first transfers N-acetylglucosamine (GlcNAc)-P from UDP-GlcNAc to membrane-

bound Dol-P to form Dol-PP-GlcNAc. A second GlcNAc residue is added by the dimer 

Alg13p/Alg14p (62, 63), and the structure is further modified by a series of 

mannosyltransferases (Alg1p, Alg2p and Alg11p) which add five mannose residues 

derived from GDP-Man (64). The resulting Dol-PP-GlcNAc2Man5 molecule is then 

translocated by the flippase Rft1p to the lumenal leaflet of the ER (65). 

Synthesis of the N-glycan precursor continues with the transfer of four Man resi-

dues from Dol-P-Man to the oligosaccharide core by the mannosyltransferases Alg3p, 

Alg12p, and Alg9p. Finally, the Dol-PP-GlcNAc2Man9 structure is capped with three 

glucose residues (from Dol-P-Glc) via the actions of the glucosyltransferases Alg6p, 

Alg8p, and Alg10p. The resulting Dol-PP-GlcNAc2Man9Glc3 structure contains the com-

plete core glycan that can be transferred from its dolichol anchor to a protein. This poly-

peptide modification occurs at the Asn residue of the sequence motif Asn-X-Ser/Thr 
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(where X is any amino acid except for Pro) and is catalysed by the oligosaccharyltrans-

ferase (OST) protein complex. In S. cerevisiae, the OST is comprised of at least eight 

proteins; the highly conserved Stt3p harbors the transferase activity of the complex and 

the other proteins mediate association of the diverse reaction substrates (66). 

Following transfer of the GlcNAc2Man9Glc3 core to the nascent polypeptide, two 

lumenal glucosidases act upon the core glycan (Figure 3, top): α-glucosidase I (encoded 

by CWH41) removes the terminal α-1,2-Glc while α-glucosidase II (encoded by ROT2)  

 
 
Figure 2. N-linked glycosylation in S. cerevisiae: core synthesis and transfer. Gray 

rectangle indicates the ER membrane; Dol, dolichol; P, phosphate; Asn, the acceptor 

amino acid of a schematically indicated nascent polypeptide. Other symbols are indi-

cated on the diagram. 
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removes the distal α-1,3-Glc to yield GlcNAc2Man9Glc (reviewed in (67)). In this mono-

glucosylated state, the unfolded polypeptide is recognized by molecular chaperones that 

assist in glycoprotein folding. (The role of N-linked glycans in protein quality control in 

the ER is an extensive subject that is beyond the scope of this chapter; the topic is thor-

 
 
Figure 3. N-linked glycosylation in S. cerevisiae: ER core processing (top) and 

Golgi processing of core-type structures (bottom). The spiral indicates that the 

polypeptide has been properly folded; the dashed arrow, protein folding; and the open-

headed arrow indicates progression to the Golgi. All other symbols are as in Figure 2. 
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oughly addressed in a review by (68).) Once the glycoprotein has achieved its proper 

conformation, it is released by the molecular chaperones and Rot2p removes the final Glc 

residue from the N-linked oligosaccharide. In S. cerevisiae, the resulting structure is fur-

ther trimmed by the mannosidase Mns1p, which removes a single α-1,2-Man residue. 

The folded protein, with its GlcNAc2Man8 modification, is then transferred from the ER 

to the Golgi. 

Fungi do not generate the ‘complex-type’ N-glycans typical of mammalian sys-

tems (69). Instead, the core oligosaccharide structures of N-linked glycans are either 

minimally modified (‘core-type’) or receive extensive modifications (‘highly mannosy-

lated’). In S. cerevisiae, protein modifications involve Man addition exclusively. When a 

GlcNAc2Man8 modified polypeptide arrives in the Golgi apparatus, Och1p adds a single 

α-1,6-Man to the structure. A glycoprotein that will retain a core-type N-linked glycan 

structure is further modified at this new Man by an α-1,2-mannosyltransferase (the pro-

tein responsible has not yet been identified) that adds a single Man and by subsequent 

capping of secondary branches by the α-1,3-mannosyltransferase, Mnn1p (Figure 3, bot-

tom). In contrast to these modest alterations, highly mannosylated N-linked glycans re-

ceive extensive modifications beyond the actions of Och1p (Figure 4). First, the enzyme 

complex mannan polymerase I (M-Pol I) modifies the new Man with a linear branch of 

α-1,6-linked Man that is upwards of ten residues in length; a second mannan polymerase 

complex (M-Pol II) extends this branch with up to fifty more α-1,6-Man residues. These 

α-1,6-Man are elaborated by the addition of α-1,2-Man by Mnn2p or Mnn5p, and Man-P 

by the oligomer Mnn4p/Mnn6p. Finally, the secondary branches of these extensive Man 
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chains are capped with an α-1,3-linked Man residue by Mnn1p. Proteins that receive 

extensive Man chains (mannans) frequently localize to the cell wall where covalent 

linkages form between mannan and other cell wall glycan polymers (see below). 

While most N-glycan synthetic events are conserved among fungi, there is some 

variation between species. With regard to the core oligosaccharide, for example, the ge-

nome of C. neoformans lacks any homologs of the Alg6p, Alg8p, and Alg10p glucosyl-

transferases and the organism accordingly generates a truncated core glycan (70). S. 

 
 
Figure 4. N-linked glycosylation in S. cerevisiae: Golgi processing of highly man-

nosylated structures. Typically, M-Pol I adds upwards of ten Man residues and M-

Pol II adds upwards of fifty Man residues; for the purposes of this illustration, only 

four Man are shown for each. Modifications by Mnn5p, Mnn6p, and Mnn1p are vari-

able; a sample structure is shown. Symbols are indicated on the diagram. 
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pombe and Kluyveromyces lactis, a yeast used in industry, do not appear to have a func-

tional homolog of the mannosidase Mns1p, such that proteins are transferred from the ER 

to the Golgi with intact GlcNAc2Man9 structures. The greatest diversity with regard to the 

number and linkages of Man residues occurs within the Golgi apparatus, where elabora-

tion of the linear α-1,6-Man branch can create a structure of up to two hundred Man resi-

dues. Here, the model mold Neurospora crassa and several members of the Aspergillus 

genus are unusual in their incorporation of galactofuranose residues into some N-linked 

glycan structures (71-73). 

O-linked glycan synthesis. Fungal O-glycosylation is initiated in the ER lumen 

with the transfer of a Man residue from Dol-P-Man to a Ser or Thr residue by protein O-

mannosyltransferases (PMTs; Figure 5, top). Unlike N-glycosylation, no consensus se-

quence dictating which residues in a polypeptide will be O-glycosylated has been eluci-

dated. Seven PMTs have been identified in S. cerevisiae. These integral membrane pro-

teins exhibit 50-80% homology and are classified into three major subfamilies based on 

similarities in hydropathy profiles: the PMT1 family (Pmt1p and Pmt5), the PMT2 family 

(Pmt2p, Pmt3p and Pmt6p) and the PMT4 family (Pmt4p) (detailed in (74, 75). Members 

of the PMT1 and PMT2 families dimerize with one another while Pmt4p forms ho-

momeric complexes; the resulting Pmt complexes exhibit varying substrate specificities. 

In S. cerevisiae, PMT activity is essential, although redundancy in the proteins allows 

viability of some single and double mutants (discussed in (75)). Attesting to the impor-

tance of O-glycosylation in fungi, strains with PMT defects exhibit alterations in growth, 

cell wall integrity, morphology, development, and virulence. These effects may be a di-
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rect consequence of glycan loss or may be due to the role of these modifications in medi-

ating protein stability, localization, or function. 

Echoing the progress of N-glycosylation, the core Man of O-glycans that is added 

to protein in the ER is elaborated in the Golgi apparatus, where one to six Man residues 

derived from GDP-Man may be added to extend the linear chain (Figure 5, bottom). 

Mannose may be added in α-1,2-linkages through the actions of the KTR family (Ktr1p, 

Ktr3p and Kre2p) or in α-1,3-linkages by the MNN1 family (Mnn1p, Mnt2p and Mnt3p). 

S. cerevisiae also links Man-P to the second Man in some O-glycan structures (76). 

The process of O-glycosylation described above for S. cerevisiae is thought to 

proceed similarly in other fungal species, although some variations have been identified. 

For example, while all fungi have members of each of the three PMT subfamilies identi-

 
 
Figure 5. O-linked glycosylation in S. cerevisiae. ER (top) and Golgi (bottom) steps 

in synthesis of a Ser-linked glycan are shown. Symbols are as in Figure 3 or indicated 

on the diagram. 
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fied in S. cerevisiae, many do not exhibit the same extent of redundancy. In contrast to S. 

cerevisiae, C. albicans has only five PMTs; other species, including S. pombe and the 

filamentous fungus Aspergillus nidulans, encode just one enzyme in each subfamily (77). 

The genome of C. neoformans contains a single homologue each of PMT1, PMT2, and 

PMT4; PMT2 is an essential gene while deletion of either PMT1 or PMT4 leads to seri-

ous defects in the morphology and integrity of the cell(78, 79). 

Variation in O-glycan structures suggests that O-glycan synthesis in many fungi 

involves enzymes beyond those identified in S. cerevisiae, which tends to utilize a simple 

repertoire of sugars. For example, S. pombe adds Gal residues to the non-reducing end of 

short α-1,2-Man chains (80). Studies of the environmental yeast Cryptococcus laurentii 

have defined three O-linked glycans: [Gal-α(1→6)]10-Gal-β-Man; Man-α(1→2)-Man-

α(1→2)-Man; and Man-α(1→2)-Man-α(1→6)-Man-α(1→3)[Xyl-β(1→2)]-Man. Bio-

chemical studies have allowed detection of enzyme activities potentially involved in most 

of the synthetic steps required to generate these structures (reviewed in (81)). In contrast, 

simple O-glycans containing only α-1,2-Man residues are found in C. albicans and the 

methylotrophic yeast Pichia pastoris (80). 

GPI anchor synthesis. A third major form of protein glycosylation that occurs in 

fungi is the addition of glycosylphosphatidylinositol (GPI) anchors (for a detailed review, 

see (82)). The basic structure of GPI anchors is conserved across all eukaryotes. In fungi, 

these glycoconjugates undergo several unique processing events, including remodeling of 

the GPI lipid to ceramide (Cer) and transfer of anchored polypeptides from the GPI moi-

ety to covalent linkage with cell wall glycans. 
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Synthesis of the GPI anchor begins in the cytoplasmic leaflet of the ER mem-

brane, where GlcNAc is transferred from UDP-GlcNAc to phosphatidylinositol (PI) 

(Figure 6). This process is catalysed in S. cerevisiae by the transmembrane protein Gpi3p 

in association with five other polypeptides that form the GPI-GlcNAc transferase com-

plex. The resulting GlcNAc-PI is then de-N-acetylated by Gpi12p to yield GlcN-PI and 

transferred to the lumenal leaflet of the ER membrane by an unidentified flippase. Once 

in the lumen, the inositol moiety is palmitoylated by Gwt1p. This is followed by the addi-

tion of up to four Man residues (from Dol-P-Man) and up to three phosphoethanolamine 

 
 
Figure 6. S. cerevisiae GPI-anchor synthesis and addition to protein. Gray rectan-

gle indicates the ER membrane and the dark line in the last structure indicates the pro-

tein being anchored. * indicates the catalytic protein of a larger complex described in 

the text and other symbols are indicated on the diagram. Variations in the precise or-

der of lumenal reactions not shown; for a review see (82). 



 22 

(EtnP) moieties. The presence of EtnP on the third Man is absolutely required for the as-

sociation of the GPI anchor with a protein. Therefore, both Gpi13p (which adds this 

EtnP) and Smp3p (which adds the fourth Man, whose presence is required for the actions 

of Gpi13p) are essential. This is not the case in mammalian cells, which require only 

three Man residues for EtnP addition. 

There is no specific amino acid sequence that directs GPI anchorage of a protein, 

but the residues at and near the addition site (termed the ‘ω’ site) have been analysed in 

detail. The C-terminus of a protein that will receive a GPI anchor consists of a sequence 

of ten polar amino acids preceding ω; a Gly, alanine (Ala), Ser, Asn, aspartic acide (Asp), 

or Cys at ω; a Gly, Ala, or Ser at ω+1; six or more moderately polar amino acids; and a 

final stretch of hydrophobic residues that form a transmembrane region. This pattern is 

recognized by GPI transamidase, a complex of five membrane proteins. The catalytic 

protein of this complex, Gpi8p, displaces the GPI signal sequence from the target protein 

(which is initially anchored to the ER membrane by its C-terminal hydrophobic se-

quence) and transfers the protein molecule to the GPI structure. 

Both the lipid and glycan components of S. cerevisiae GPI anchors are subject to 

modification. Lipid remodeling promotes the efficient transport and membrane localiza-

tion of anchored proteins. These steps occur in the ER, beginning with the deacylation of 

inositol by Bst1p. One fatty acid of the diacylglycerol moiety is then removed by Per1p 

and replaced with a longer fatty acid by Gup1p; a similar replacement may occur at the 

other fatty acid chain of the diacylglycerol. In a fungal-specific process, most GPI di-

acylglycerol moieties are replaced by phytoceramide, though the enzymes responsible 
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have not yet been identified. Further modifications occur following the transport of the 

GPI-associated protein from the ER to the Golgi apparatus, such as the replacement of 

the phytoceramide with other Cer species (83). The glycan portion of GPIs are also some-

times modified by the addition of another α-1,2- or α-1,3-Man to the fourth Man of the 

anchor by an unknown mannosyltransferase. 

Glypiated proteins in fungi frequently undergo one final transformation, whereby 

the polypeptide and most of the GPI glycan are transferred from the anchor to a covalent 

linkage with cell wall glucans. This process has been demonstrated in multiple fungi, in-

cluding C. albicans, S. pombe, Aspergillus niger, C. glabrata and C. neoformans as well 

as in S. cerevisiae, and serves to localize proteins to the cell wall. This transglycosylation 

process does not occur outside of the fungal kingdom and has yet to be defined in terms 

of enzymology and regulation . 

The structure and biosynthesis of GPIs in fungi other than S. cerevisiae appears 

for the most part to be well-conserved. Still, work by Franzot and Doering (84) deter-

mined that a range of fatty acids beyond palmitate can modify the inositol group in both 

C. neoformans and S. cerevisiae. Fontaine and colleagues (85) have also reported that the 

glycan portion of Aspergillus fumigatus GPI anchors consistently contains a fifth Man 

residue (Man5GlcN), one more than typically found in S. cerevisiae. 

 

Glycolipids 

The major glycolipids in fungi are glycosphingolipids. These glycoconjugates 

function as essential components of the yeast cell membrane, contributing to its fluidity 
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and permeability. Fungal glycosphingolipids consist of one or more monosaccharide 

residues joined to Cer, a fatty acid linked to a sphingosine (a long-chain aliphatic amino 

alcohol). Glycosphingolipids can be divided into two classes: one in which the glycosyl 

moiety is linked to Cer via inositol phosphate (glycosylinositol phosphorylceramide or 

GIPC) and another in which the glycosyl moiety is linked directly to Cer (glycosylcer-

amide). GIPCs occur as free membrane lipids and as membrane anchors of covalently 

bound proteins (see discussion of GPI anchors above) while glycosylceramides are asso-

ciated with the fungal cell wall and are thought to play a role in cell cycle and differentia-

tion (86). Importantly, there are significant differences between the structures, and thus 

the biosynthetic pathways, of fungal glycosphingolipids and those of mammals. This 

suggests that glycosphingolipid synthesis has potential as a target for antifungal com-

pounds. 

GIPC synthesis. Synthesis of S. cerevisiae glycosphingolipids (Figure 7) begins 

in the ER with the actions of the serine palmitoyltransferase (SPT) complex. This com-

plex catalyzes the condensation of palmitoyl-CoA and serine to generate 3-

ketosphinganine. The ketone group of 3-ketosphinganine is reduced in an NADPH-

dependent reaction by Tsc10p to produce sphinganine, and this molecule can then be hy-

droxylated by Sur2p to form phytosphingosine. The ceramide synthase complex (Lip1p 

in combination with either Lac1p or Lag1p) next adds a very long chain fatty acid (C24-

C26) to phytosphingosine, generating phytoceramide. Alternatively, sphinganine may first 

be acylated by the ceramide synthase complex to form dihydroceramide and subsequently 

hydroxylated by Sur2p to form phytoceramide. 
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Phytoceramide made in the ER is transported to the Golgi where, in a synthetic 

step unique to fungi, inositol phosphate is transferred by IPC synthase (Aur1p) from 

phosphatidylinositol to the Cer. The resulting inositol phosphorylceramide (IPC) is then 

 
 
Figure 7. GIPC synthesis in S. cerevisiae. Biosynthetic intermediates are boxed and 

gene names are indicated in parentheses. Open hexagon indicates inositol; shaded cir-

cle indicates mannose. Abbreviations: GDP, guanosine diphosphate; NADPH, nicotin-

amide adenine diculseotide phosphate. 
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acted upon by one of two mannosylation complexes (Sur1p and Csg2 or Csh1p and Csg2) 

that catalyses the transfer of Man from GDP-Man to form mannosylinositol phosphoryl-

ceramide (MIPC). Finally, a second inositol phosphate can be transferred from phos-

phatidylinositol to form mannosyl di-inositol phosphorylceramide (M(IP)2C) in a reaction 

that requires the products of the IPT1 and SKN1 genes. From the Golgi, GIPCs are trans-

ported to the outer leaflet of the plasma membrane. The reactions of GIPC synthesis are 

reviewed elsewhere (87, 88). 

Some fungal species have evolved variations on the GIPC synthesis pathway out-

lined above. For example, while the proteins Lcb1p, Lcb2p, and Tsc3p are necessary for 

optimal activity of the SPT complex in S. cerevisiae, other fungal species do not appear 

to require Tsc3p. With regard to variations in structure, the pathogen Sporothrix shenckii 

synthesizes glucosaminyl IPC in addition to MIPC (89), and several fungi, including C. 

neoformans and A. fumigatus, generate derivatives of MIPC with additional sugar resi-

dues such as Man, Xyl, galactofuranose, and glucosamine (89, 90). C. albicans incorpo-

rates additional phosphate residues into GIPCs: Man-P is added to the Man of MIPC and 

afterwards modified with a linear chain of β-linked Man residues, generating a surface 

molecule referred to as phospholipomannan (PLM) (91). Significantly, C. albicans yeast 

that are deficient in this pathway are unable to avoid macrophage lysis in vitro and ex-

hibit reduced pathogenicity in animal models of candidiasis (92). 

Glycosylceramide synthesis. The generation of glycosylceramides proceeds as 

described above for GIPCs through the generation of phytosphingosine (Figure 7, third 

step). The pathways then diverge upon the addition of a shorter fatty acid (C16-C18) by the 
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ceramide synthase complex (Figure 8). The resulting phytoceramide undergoes additional 

lipid modifications of desaturation and methylation, and ultimately is glycosylated. Help-

ful reviews of fungal glycosphingolipid synthesis include (93, 94). 

There are numerous variations on the synthesis of fungal glycosylceramides. Most 

fungi incorporate a Glc residue in the last step of synthesis through the actions of Gsc1p, 

a glucosylceramide synthase (Figure 8). However, a subset of species, including S. cere-

visiae, instead utilizes an unidentified ceramide galactosyltransferase to attach a Gal resi-

due. The monosaccharide headgroups can also be elongated, as when unidentified gluco-

 
 
Figure 8. Glycosylceramide synthesis in fungi. Biosynthetic intermediates are 

boxed. Shaded diamond indicates glucose. 
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sylceramide galactosyltransferases form GalGlcCer in the plant pathogen Magnaporthe 

griseae (95) or Gal3GlcCer in N. crassa (96). In addition, the lipid portions of fungal gly-

cosylceramides may be varied, as by the actions of a fatty acid Δ3-desaturase (93). Crea-

tive studies by (97) in which endogenous GCS1 of P. pastoris was replaced with ho-

mologs from other fungi demonstrated the ability of these enzymes to glycosylate sphin-

golipids with longer chain fatty acids (C24-C26); similar structures containing elongated 

fatty acids were seen when GCS1 homologs were expressed in S. cerevisiae (which can-

not synthesize GlcCer de novo). The utilization of these compounds, which in S. cere-

visiae are generally directed to GIPC synthesis, further increases glycosylceramide diver-

sity. Broader investigation of fungal glycolipids will undoubtedly expose additional 

variations on this synthetic theme. 

 

Cell wall polymers 

The fungal cell wall is a complex and dynamic structure of glycans and glycopro-

teins. It is primarily composed of polymers of Glc, Man, and GlcNAc (glucans, mannans, 

and chitin, respectively), with extensive cross-linking between these elements. Both the 

degree of interconnection and the distribution of the wall components depend on the fun-

gal species, developmental stage, and growth conditions. An overview of the synthesis of 

the major glycan components of fungal cell walls (reviewed in detail in (98, 99)) is pre-

sented. 

β-1,3-glucan synthesis. The dominant fungal cell wall component is β-1,3-

glucan, a polymer of ~1,500 Glc residues that is branched via β-1,6-linkages (99). This 
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polymer is notably absent in mammals yet required for viability in yeast, a combination 

that has led to the development of effective anti-fungal drugs targeting its synthesis (100). 

Despite its relevance, there is much that is not understood about the synthesis of β-1,3-

glucan, including whether this process requires a primer molecule and how polymer 

length is regulated. The Glc donor for synthesis is likely cytoplasmic UDP-Glc, which is 

utilized by plasma membrane bound enzymes under the regulatory control of GTP-

binding proteins. The catalytic subunits of the activity in S. cerevisiae are believed to be 

Fks1p and Gsc2p. These integral membrane proteins localize to the plasma membrane at 

sites of polar growth and enable nascent glucan chains to be transported across the mem-

brane for incorporation into the cell wall. In S. cerevisiae, Fks1p is the dominant β-1,3-

glucan synthase, and is expressed during mitotic growth, while Gsc2p is active under 

conditions of nutritional or environmental stress. A third homolog, Fks3p, may be in-

volved in cell wall construction during developmental processes such as mating and spore 

formation. 

Genome analysis has identified sequences encoding multiple FKS homologs in 

fungi including C. albicans, S. pombe, the cotton pathogen Ashbya gossypii, and mem-

bers of the Saccharomyces genus. In contrast, only a single, essential FKS1 has been 

identified in Yarrowia lipolytica, C. neoformans, the dimorphic pathogen Coccidioides 

posadasii, and the AIDS-defining pathogen Pneumocystis carinii. Excellent reviews of β-

1,3-glucan synthesis are found in (99, 101). An unusual variation related to β-1,3-glucan 

is the linear β-1,3-/β-1,4-glucan found in A. fumigatus (102). Although not previously 

described in fungi, this glycan represents 10% of total β-glucan in that organism. 
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β-1,6-glucan synthesis. β-1,6-glucan interconnects other cell wall components in 

S. cerevisiae, thus playing a central role in cell wall structure. The degree of polymeriza-

tion of this glucan is generally lower than that of β-1,3-glucan, with ~350 Glc resi-

dues/chain. The structure is highly branched by the introduction of β-1,3-linkages; the 

frequency of these branches ranges from 7% of the backbone residues in C. albicans to 

ten-fold that frequency in S. pombe, suggesting species-dependent variation in branching 

or cross-linking activities (99). The synthesis of β-1,6-glucans (reviewed in (103)) pre-

sents numerous questions, starting with its localization. Genetic manipulation of S. cere-

visiae and analysis of the resulting levels of β-1,6-glucan has implicated a broad array of 

genes in this pathway, including genes encoding proteins of the secretory pathway and at 

the cell surface. Supporting the resulting hypothesis that β-1,6-glucan is made intracellu-

larly, immuno-EM studies have detected this polymer in the Golgi and secretory vesicles 

of S. pombe (104), but the degree of polymerization and form of the glucan represented 

by this localization is not clear. Cell-free synthesis of β-1,6-glucan has been achieved in 

crude membrane preparations from S. cerevisiae (105); continued effort in this biochemi-

cal direction should help clarify this intriguing research area. 

Synthesis of other cell wall glucans. Beyond the β-glucans described above, 

many fungal cell walls also include α-glucans. These compounds do not occur in S. cere-

visiae or C. albicans, but are highly abundant (up to 95% of the glucans) in the cell wall 

of other yeasts, such as the pathogens Paracoccidioides brasiliensis and Blastomyces 

dermatitidis. Synthesis of α-1,3-glucan has been studied in S. pombe, where it exists as a 

linear polymer of ~200 Glc residues/chain (106). This compound is synthesized by the 
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product of a single essential gene, AGS1 (alpha-glucan synthase 1), which may further 

join polymer chains by linkers of α-1,4-glucan (107). Three homologs of Ags1p are re-

quired for S. pombe spore wall maturation. 

Similar to S. pombe, an AGS gene family is also found in A. fumigatus, with data 

suggesting the homologs have distinct roles in growth, development, and virulence (108). 

Simpler synthetic machinery is present in H. capsulatum and C. neoformans, where a 

single AGS1 gene is required for normal virulence (109, 110). α-1,3-glucan plays a spe-

cial role in the latter pathogen, where it is required for association of the fungal capsule 

with the cell wall (111). 

Chitin synthesis. Chitin is a polymer of β-1,4-linked GlcNAc, typically composed 

of more than 1,000 residues, which self-associates to form microfibrils. This relatively 

minor but critical component of the cell wall is deposited at the bud neck of yeast and at 

fungal septa in a highly regulated manner, and can be deacetylated to form another cell 

wall polymer, chitosan. Chitin is generated from UDP-GlcNAc by synthases that translo-

cate the polymeric product through the plasma membrane (112). In accordance with their 

function, these enzymes are integral proteins of the cytoplasmic leaflet of the plasma 

membrane. Because chitin synthesis primarily occurs at sites of active growth and cell 

wall remodeling, it is both temporally and spatially regulated. In S. cerevisiae three chitin 

synthases (Chs1p, Chs2p, and Chs3p) have been described, which play specific roles in 

cell growth: Chs1p repairs the site of daughter cell separation from the parent, Chs2p 

forms chitin in the septum during cell division, and Chs3p makes chitin at the bud neck, 

the lateral cell wall, and spore cell walls. Interestingly, the activity of Chs3p is regulated 
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by subcellular localization: it is stored in small microsomal vesicles (chitosomes) that de-

liver it to the plasma membrane as needed. Multiple gene products have been implicated 

in the regulation and localization of chitin synthesis in S. cerevisiae, but describing them 

is beyond the scope of this chapter; useful reviews of chitin synthesis include (113, 114). 

Most fungi have multiple chitin synthase genes, which appear to have distinct al-

though occasionally overlapping functions (reviewed in (114)). S. cerevisiae offers a rela-

tively simple case, compared to the eight Chs proteins in C. neoformans (115), or the 

seven in A. fumigatus (116). These enzymes have been classified based on sequence mo-

tifs and homology; notably, some families are restricted to filamentous fungi. Deletion of 

the genes encoding many of these enzymes yields striking phenotypic changes, including 

altered morphology, stress resistance, or virulence in animal and plant pathogens (115). 

Some fungi secrete deacetylases that modify chitin to chitosan, a more soluble cationic 

polymer. The genes encoding two such enzymes in S. cerevisiae (CDA1 and CDA2) are 

expressed only during sporulation and contribute to spore wall formation. In contrast, chi-

tosan is a normal cell wall component of C. neoformans and the three cryptococcal chitin 

deacetylases are required for normal cell integrity and bud separation (117). 

 

Intracellular glycans 

Glycogen and trehalose are the main stores of glucose in S. cerevisiae. Glycogen 

functions as a reserve carbohydrate that is synthesized and stored under nutrient-rich 

conditions and then degraded during periods of nutrient deprivation. Trehalose has been 

postulated to serve as a chemical chaperone that protects proteins and membranes from 
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stress-induced denaturation (reviewed in (118). Synthesis of both glycogen and trehalose 

is reviewed extensively elsewhere (119). 

Glycogen synthesis. Glycogen is a branched polymer of up to 100,000 Glc resi-

dues that is distributed throughout the fungal cytosol. Synthesis (reviewed in (119, 120)) 

occurs in the cytosol, beginning with the actions of the protein glycogenin (either Glg1p 

or Glg2p in S. cerevisiae). Interestingly, glycogenin itself serves as the primer for glyco-

gen polymerization: Glg1p and Glg2p are each capable of utilizing UDP-Glc as a donor 

for auto-glucosylation at one of several tyrosine (Tyr) residues, generating a short α-1,4-

Glc chain. Although Glg1p and Glg2p are capable of auto-glucosylating, the proteins ex-

ist as a dimer in vivo and the reaction is believed to occur intermolecularly. The protein-

linked chain of up to ten Glc residues generated by glycogenin is elongated by the action 

of Gsy1p or the more dominant Gsy2p (glycogen synthase isoforms 1 and 2, respec-

tively), which adds Glc in an α-1,4-linkage to the non-reducing end of the initial oli-

gomer. Following elongation, the linear α-1,4-glucans are ramified by Glc3p, a branching 

enzyme that adds seven α-1,4-Glc residues in an α-1,6-linkage. In a departure from the 

glycogen synthesis pathway of S. cerevisiae, the glycogenin and glycogen synthase en-

zymes of N. crassa are each encoded by just one protein (121). 

Trehalose synthesis. Trehalose is an unusual disaccharide of glucose linked ‘head 

to head’ in an α-1,1-linkage, and notably is absent from mammalian cells. Trehalose syn-

thesis in S. cerevisiae proceeds by two sequential reactions: first, trehalose-phosphate 

synthase (Tps1p) catalyses the transfer of Glc from UDP-Glc to Glc-6-phosphate, form-

ing trehalose-6-phosphate. In a subsequent reaction, trehalose-6-phosphate phosphatase 
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(Tps2p) acts on this product to generate free trehalose. Together these enzymes form a 

complex with two other proteins, Tps3p and Tsl1p, which are thought to have regulatory 

functions. C. neoformans strains that lack Tps1p and Tps2p are temperature sensitive and 

a tps1 mutant is avirulent (20). 

 

Exopolysaccharides 

The processes described earlier in this section broadly apply to all fungi. Some 

fungi, however, are unique in their generation of additional extracellular glycan structures 

(exopolysaccharides). One example is the extensive polysaccharide capsule of C. neo-

formans, the organism’s main virulence factor (reviewed in (122)). This structure consists 

primarily of two polysaccharides: glucuronoxylomannogalactan (GXMGal; polymer size 

of ~1x105 Da) and glucuronoxylomannan (GXM; polymer size of ~1-7x106 Da). Both 

polymers are composed of repeating subunits (Figure 9). GXMGal has a linear backbone 

of α-1,6-linked Gal residues with oligomeric side-chains of Gal, glucuronic acid (GlcA), 

Man, and Xyl ((123); similar polymers are reported in other cryptococcal species. The 

GXM polysaccharide has a linear backbone of α-1,3-Man residues that are 6-O-

acetylated (124) and are substituted with residues of Xyl (linked β-1,2 and β-1,4), and 

GlcA (linked β-1,2). The pattern of GXM modifications varies among different serotypes 

of C. neoformans (Figure 9) and between related species. For example, studies of Crypto-

coccus flavescens reveal a similar high molecular mass polymer that is substituted more 

frequently with GlcA (125). This polymer is also substituted at the 6-position of Man 

with chains consisting of Man-β(1→4)-Xyl or Man-β(1→4)-Xyl-β(1→4)-Xyl. 
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The cryptococcal polysaccharides are of interest because of their unique structures 

and the role of the capsule in disease. Studies of mutant C. neoformans that are deficient 

in secretion suggest that GXM biosynthesis begins within the cell, with products exported 

via the secretory pathway, but the nature of these products remains to be established 

(126). Little is known about specific enzymes involved in synthesis of capsule polymers. 

A mannosyltransferase activity capable of modifying Xylα-CH3 has been described in 

membrane preparations of C. laurentii (127); this could potentially be involved in the 

formation of GXM structures like those of C. flavascens described above, although the 

linkage formed has not been determined. Recently, a β-1,2-xylosyltransferase that par-

ticipates in synthesis of both GXM and GXMGal has been purified and cloned from C. 

neoformans (128, 129). Intriguingly, this enzyme is also required for cryptococcal GIPC 

 
 
Figure 9. Repeating units of GXM and GXMGal capsular polysaccharides in C. 

neoformans. Symbols are indicated on the diagram. 
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synthesis (130), raising the possibility that the two biosynthetic pathways are linked. The 

enzymes required for other capsule biosynthetic steps are not yet known. Once capsule 

polymers are made and exported they become associated with the cell surface in a proc-

ess that is dependent on cell wall α-1,3-glucan (110, 111), but the mechanism of this as-

sociation has not been defined. Future investigations are clearly required to determine the 

biosynthetic pathways of cryptococcal capsule polysaccharides. 
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XYLOSE IN THE CRYPTOCOCCAL CELL 

Studies in the Doering laboratory address various aspects of glycan synthesis in 

the cryptococcal cell. This includes the generation of nucleotide sugar donor molecules in 

the cytoplasm (131-133) and their subsequent transport into the ER and Golgi (49). Re-

search has also addressed the assembly of glycan polymers (128, 129, 134, 135) and, in 

the case of the capsule polysaccharides, their export to the cell surface (126). Our particu-

lar interest in the Xyl residues of cellular glycans stemmed from studies addressing the 

synthesis of UDP-Xyl (the sole source of Xyl residues in the cell; (136)); from this, our 

work naturally extended to the study of the xylosyltransferases involved in the assembly 

of cellular glycans. As noted in the preceding Fungal Glycan Synthesis section, Xyl resi-

dues have been detected in the O-linked glycans of the related yeast, C. laurentii (81), in 

the GIPCs of C. neoformans (90), and in the cryptococcal capsular polysaccharides, 

GXM and GXMGal (124, 137). With each of these glycans, the fungal structures differ 

significantly from those generated by humans, making them potentially interesting drug 

targets. 

 

Synthesis of UDP-Xyl 

UDP-Xyl is derived from UDP-GlcA through the actions of an UDP-glucuronic 

acid decarboxylase (see Figure 10). In C. neoformans this enzyme was identified based 

on its homology to a putative aminoarabinose synthesis protein encoded by the bacterium 

Salmonella typhimurium (131) and was named Uxs1p (UDP-xylose synthase 1). Expres-

sion of the coding sequence of UXS1 in Escherichia coli allowed for detection of an ac-
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tivity that converted UDP-GlcA to UDP-Xyl (131). The activity of Uxs1p is not essential 

to C. neoformans as the corresponding locus could be deleted and the resulting mutant 

strain (uxs1Δ) showed no difference in growth compared to the wild-type parental strain 

(133, 138)). In uxs1Δ cells, levels of UDP-Xyl fell below the limit of detection while 

UDP-GlcA accumulated to high levels because it could no longer be converted to UDP-

Xyl (133). 

The uxs1Δ strain was still able to generate capsule as assessed by India Ink stain-

ing, but the polysaccharide coating surrounding the uxs1Δ cells appeared thinner than that 

of wild-type (138). Studies performed using transmission electron microscopy found that 

the capsule fibers of an uxs1Δ strain appeared truncated and thickened compared to wild-

type (133). Analysis of GXM purified from the uxs1Δ strain confirmed an absence of Xyl 

residues in GXM, but found no other apparent change in either the structure (ratio of Man 

and GlcA residues) or modification (acetylation patterns) of the polysaccharide. The loss 

of Xyl residues in the capsule’s structure led to differences in the binding pattern of most 

monoclonal anti-capsular antibodies (138, 139). 

Studies performed using the uxs1Δ strain demonstrated that the mutant strain was 

able to bind complement component 3 (C3) factor more quickly than wild-type (139). 

 
 
Figure 10. Synthesis of UDP-Xyl. Enzymatic functions given above arrows; C. neo-

formans proteins given below arrows. Triangle, Glc; hexagon, GlcA; star, Xyl. 
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This was unexpected as earlier studies comparing complement binding among the differ-

ent serotypes of C. neoformans found C3b capture increased in correlation with the num-

ber of Xyl residues found in GXM (140). Although accelerated C3 deposition did not 

translate to increased interactions with polymorphonuclear neutrophils (PMNs) following 

pre-opsonization (139), the uxs1Δ strain was avirulent in a tail vein injection model of 

cryptococcal infection and could not be isolated from the animal following inoculation 

(138). It was this loss of virulence in the uxs1Δ strain that directed our interest towards 

the synthesis of Xyl-containing glycans in the cryptococcal cell. 

 

Xylosyltransferases 

An assay was developed in our laboratory to detect xylosyltransferase activities 

that might be involved in the synthesis of capsule or other cellular glycans. The assay 

utilized a radiolabeled UDP-[14C]Xyl donor and a Man-α(1→3)-Man oligosaccharide as 

the substrate; this dimannose resembles the backbone of GXM and the side-chains of 

GXMGal as well as some O-glycan and GIPC structures. With this assay, a single domi-

nant activity was detected in the membrane proteins of C. neoformans (128). This activity 

was enriched using a combination of ion exchange, gel filtration, and affinity resins, 

eventually leading to the isolation of a ~90 kDa protein. The protein was identified as 

Cap3p (one of five homologs to the acapsular-associated protein Cap10) and renamed 

Cxt1p for cryptococcal xylosyltransferase 1. Interestingly, even though detection of the 

Cxt1p activity was not dependent on the inclusion of metal ions in the reaction, the muta-
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tion of DXD sites within the protein resulted in a dramatic reduction of xylosyltransferase 

activity (128). 

The product of Cxt1p was identified as a trisaccharide with Xyl linked to the re-

ducing Man of the acceptor substrate: Man-α(1→3)[Xyl-β(1→2)]-Man (128). This motif 

resembled elements of several cryptococcal glycans. Although no differences in the cap-

sule of a cxt1Δ strain could be detected by immunofluorescence using monoclonal anti-

bodies, structural analysis indicated a ~30% reduction in Xyl residues in GXM while 

GXMGal demonstrated almost a complete loss of all Xyl residues (129). Studies of C. 

neoformans glycolipid structures found that the major GIPC of cxt1Δ cells also lacked its 

normal Xyl residue and was truncated (130). Intriguingly, growth of C. neoformans in 

murine lungs was attenuated in the absence of CXT1 in an inhalational model of infection 

(129) yet no difference in infectivity was seen in the mutant using an intravenous model 

(141). 

Work in the Doering laboratory on the xylosyltransferases of C. neoformans has 

continued beyond the study of Cxt1p. In cxt1Δ cell lines, a minor amount of residual ac-

tivity was observed (129) and has since been correlated with CAP5 (another of the 

CAP10 homologues in the genome) and renamed CXT2.1 A third xylosyltransferase activ-

ity was seen following the addition of metal ions to the xylosyltransferase reaction out-

lined above; it is this activity that is explored in this dissertation. 

The following chapters detail the detection, identification, and characterization of 

a cation-dependent xylosylphosphotransferase activity in C. neoformans that modifies 

                                                
1 J.S. Klutts and T.L. Doering, in preparation 
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Man substrates. The next chapter describes the initial observation of this activity, the 

product analysis that identified it as a novel enzyme able to link xylose-phosphate to 

Man, and the identification of the corresponding gene. Chapter III further explores the 

occurrence of this enzyme in cryptococcal strains and describes studies that determined 

its involvement in the synthesis of O-linked protein glycans. Additional work presented 

in Chapter IV suggests that this enzyme functions in association with other proteins. This 

is followed by a chapter that briefly considers the future directions of this research. My 

studies have identified and characterized a completely novel glycoactive enzyme and, in 

conjunction with other investigations of the xylosyltransferases of C. neoformans, have 

contributed significantly to our understanding of the unique glycobiology of this envi-

ronmental yeast and opportunistic pathogen. 
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Cer, ceramide; C3, complement component 3; Dol, dolichol; Dol-P, dolichol-

phosphate; ER, endoplasmic reticulum; EtnP, phosphoethanolamine; Gal, galactose; 

GIPC, glycosylinositol phosphorylceramide; Glc, glucose; GlcA, glucuronic acid; 

GlcNAc, N-acetylglucosamine; GPI, glycosylphosphatidylinositol; GXM, glucuronoxy-

lomannan; GXMGal, glucuronoxylomannogalactan; IL, interleukin; Man, mannose; 

Man-P, mannose-phosphate; MHC, major histocompatibility complex; MIPC, mannosy-

linositol phosphorylceramide; M-Pol, mannan polymerase complex; NST, nucleotide 

sugar transporter; OST, oligosaccharyltransferase; PI, phosphatidylinositol; PLM, phos-

pholipomannan; PMNs, polymorphonuclear neutrophils; PMT, protein O-

mannosyltransferase; SAGE, serial analysis of gene expression; SPT, serine palmitoyl-

transferase; TNF; tumor neucrosis factor; Xyl, xylose. 
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ABSTRACT 

Cryptococcus neoformans is a fungal pathogen that causes serious disease in 

immunocompromised individuals. The organism produces a distinctive polysaccha-

ride capsule that is necessary for its virulence, a predominantly polysaccharide cell 

wall, and a variety of protein- and lipid-linked glycans. The glycan synthetic path-

ways of this pathogen are of great interest. Here we report the detection of a novel 

glycosylphosphotransferase activity in C. neoformans, identification of the corre-

sponding gene, and characterization of the encoded protein. The observed activity is 

specific for UDP-xylose as a donor and for mannose acceptors, and forms a xylose-

α-1-phosphate-6-mannose linkage. This is the first report of a xylosylphosphotrans-

ferase activity in any system. 
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INTRODUCTION 

Fungi generate a wide variety of glycans, many of which differ from those of 

higher eukaryotes. In pathogenic fungal species, these unique structures and their syn-

thetic pathways represent possible drug targets. One example of these distinctive cellular 

glycans is the extensive polysaccharide capsule of the basidiomycete, Cryptococcus neo-

formans. An environmental yeast, C. neoformans can be isolated from soil, avian excreta, 

and certain trees, but is also capable of causing disease in mammals following the inhala-

tion of spores or small yeast cells (1). C. neoformans is typically neutralized within the 

lung by the immune system without any symptomatic evidence of infection. Under condi-

tions of compromised host immunity, however, the organism may disseminate from its 

primary site of infection in the lungs to more distal sites in the body, demonstrating a par-

ticular tropism for the central nervous system. If C. neoformans reaches the brain, it can 

form lesions called cryptococcomas and cause a meningoencephalitis that is fatal if not 

treated. 

Although other yeasts bear polysaccharide capsules, members of the C. neofor-

mans species complex are the only known pathogenic fungi with this feature. The cap-

sule, which is required for virulence (2), is primarily composed of two polysaccharides: 

glucuronoxylomannan and glucuronoxylomannogalactan (GXM (3) and GXMGal (4, 5), 

respectively). In addition to this distinguishing structure, C. neoformans synthesizes a 

diverse array of glycans, which differ from those of its mammalian host as well as the 

‘model’ yeast Saccharomyces cerevisiae. For example, the core oligosaccharide of N-

glycans is truncated in C. neoformans such that it lacks the three terminal glucose (Glc) 
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residues present on the same structure in most eukaryotes, including S. cerevisiae and 

mammals (6). Cryptococcal O-glycans also differ from the oligomannose structures 

found in S. cerevisiae (7): studies in the environmental yeast Cryptococcus laurentii have 

identified O-glycans that are branched and contain galactose (Gal), xylose (Xyl), and 

mannose (Man) residues (8). These oligosaccharides are thus more like mammalian O-

glycans in complexity, although the array of components is quite distinct (9). In addition, 

some glycan structures found in fungi do not have an equivalent in mammalian cells, 

such as the lipid-linked glycosylinositol phosphorylceramides (GIPCs). In S. cerevisiae, 

GIPCs contain only a single Man residue while cyptococcal GIPCs contain residues of 

Man, Xyl, Gal, and glucosamine (10). Despite the obvious significance of glycan biosyn-

thetic pathways as potential drug targets among pathogenic fungi, however, few have 

been studied in detail. 

In order to investigate glycan biosynthesis, our laboratory studies the central en-

zymes in these pathways, known as glycosyltransferases. These enzymes generally cata-

lyze the transfer of a monosaccharide moiety from an activated sugar donor to a specific 

acceptor molecule, forming a particular linkage. Donors of sugar molecules can include 

nucleotide mono- and diphosphosugars, sugar phosphates, and dolichol-linked sugars; 

proteins, lipids, and other saccharides can all serve as acceptors in transferase reactions. 

Glycosyltransferases are divided into families based on their tertiary structure and cata-

lytic mechanism, including their requirements for metal ion cofactors (11). Conservation 

in sequence at the amino acid level occurs only between some closely related glycosyl-

transferases. 
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We are particularly interested in the addition of Xyl residues to the cellular gly-

cans of C. neoformans. This stems from a series of studies on the synthesis of UDP-

xylose (UDP-Xyl), the Xyl donor in eukaryotic cells, which is formed upon the decar-

boxylation of UDP-glucuronic acid (UDP-GlcA) by Uxs1p. The cryptococcal gene en-

coding Uxs1p was identified in our laboratory (12). Deletion of UXS1 in C. neoformans 

yields a strain that generated no UDP-Xyl (13); as a consequence, isolated GXM contains 

no detectable Xyl (14), capsule fibers appear short and thickened when viewed by elec-

tron microscopy (13), and cellular GIPCs lack Xyl and are truncated (15, 16). Impor-

tantly, uxs1Δ strains are avirulent in a murine model of cryptococcal infection (14), indi-

cating that the incorporation of Xyl residues into cellular glycans is required for C. neo-

formans to cause disease. This compelling result led us to investigate xylosyltransferases 

in C. neoformans. 

In this report, we document the discovery of a novel xylosyltransferase activity in 

C. neoformans that generates a highly unusual product, xylosylphosphomannose. Below, 

we describe the initial identification of this activity, our determination of the correspond-

ing gene, and our characterization of this unique and intriguing enzyme. 
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EXPERIMENTAL PROCEDURES 

Materials. DNA polymerases (Taq and AccuPrimeTM Pfx) and oligos used for 

PCR (Supplemental Table 1) were from Invitrogen; DNA purification kits were from 

Qiagen. GDP-[2-3H(N)]mannose (22.2 Ci/mmol), UDP-[1-3H(N)]glucuronic acid      

(10.2 Ci/mmol), and UDP-[14C(U)]xylose (151 mCi/mmol) were from PerkinElmer; 

UDP-[6-3H(N)]galactose (60 Ci/mmol), UDP-[1-3H(N)]glucose (15 Ci/mmol), and UDP-

[6-3H(N)]N-acetylglucosamine (34.8 Ci/mmol) were from American Radiolabeled 

Supplemental Table 1. Primers used in these studies. 
 

Name  Sequence (5' to 3')a,b 
CNJ001  GGACTAGTCCCCAGCGAGCAAAACGAGCTGGTCCACTCG 
CNJ002  GGACTAGTCCCCTTCTTCTTCCACTCATTTTCC 
MCR035  GGACTAGTCCTCACGCCGACATGGCATGAAGCC 
MCR036  GGACTAGTCCGGATCCCAATCTCTTTCCCATACCG 
MCR063  CGAATCAAAGGCAAGTGTTTGATCC 
MCR101  CATGGTCATAGCTGTTTCCTGAGAAGATGCAAAAGAGGATG 

     GACG 
MCR068  CGACTACATCGATTTGTTCAATCAATACG 
MCR104  CACTGGCCGTCGTTTTACAACAAAGGTTGATAAACCGAATG 

     CATG 
MCR102  CCATCCTCTTTTGCATCTTCTCAGGAAACAGCTATGACCATG 
MCR103  GCATTCGGTTTATCAACCTTTGTTGTAAAACGACGGCCAGTG 
MCR069  GGATAACTGACAATTATTATATCAGTGC 
MCR070  CTGTTGTCCATTGATTATGATTCG 
MCR127  CCTTAATTAAGGCCTCACAAACTATCCAACTGACATGG 
MCR120  TTAAGCGTAGTCTGGGACGTCGTATGGGTAATCATTATACCT 

     ATCTTTTACAGGATCCC 
MCR121  TACCCATACGACGTCCCAGACTACGCTTAAACATAGAACGT 

     AGAAGGAGATGGAGG 
MCR149  CCATCGGTTCTTACAACGGCTGG 

 
a Underlined sequences indicate SpeI restriction sites 
 
b Bold-underlined sequences encode HA epitope tag 
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Chemicals. α-1,2-D-mannobiose and α-1,6-D-mannobiose were from Sigma Aldrich; α-

1,3-D-mannobiose was from Carbohydrate Synthesis (Oxford, United Kingdom); α-1,4-

D-mannobiose was from V-Labs. Restriction enzymes were from New England BioLabs. 

Unless specified, all other chemicals or reagents were obtained from Sigma Aldrich. 

Strains and cell growth. C. neoformans strains (Table 1) were grown in liquid cul-

ture at 30°C in YPD medium (1% w/v yeast extract, 2% w/v peptone, 2% w/v dextrose) 

with shaking (230 rpm) or at 30°C on YPD agar plates (YPD medium with 2% w/v agar). 

As appropriate, media included 100 µg/ml nourseothricin (NAT; from Werner Bio-

Agents) or Geneticin® (G418; from Invitrogen). For RNA interference (RNAi) studies, 

strains were cultured at 30°C in a Gal-5FOA Minimal Medium (1.34% w/v yeast nitro-

Table 1. C. neoformans strains used in these studies. 
 

Namea,b  Origin 
CAP67  Jacobson et al. 1982 (26) 
CAP67 cxt1Δ  Klutts et al. 2007 (17) 
CAP67 cxt2Δ  J.S. Klutts and T.L. Doering, manuscript in preparation 
CAP67 cxt1Δ cxt2Δ  J.S. Klutts and T.L. Doering, manuscript in preparation 
CAP67 cxt1Δ pIBP103  This study 
CAP67 cxt1Δ pXPT1i  This study 
JEC21  Kwon-Chung et al. 1992 (43) 
KN99α  Nielsen et al. 2003 (44) 
KN99a  Nielsen et al. 2003 (44) 
KN99α cxt1Δ cxt2Δ  J.S. Klutts and T.L. Doering, manuscript in preparation 
KN99α xpt1Δ  This study 
KN99α xpt1Δ pXTP1  This study 
KN99α xpt1Δ pXTP1-HA  This study 
 
a All strains are MATα, except for KN99a is MATa 
 
b All KN99 strains are serotype A; all other strains are serotype D 
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gen base without amino acids, 2% w/v galactose, 0.087% w/v complete dropout mix 

without uracil, 1.2% w/v uracil, 1 mg/ml 5-fluoroorotic acid (5-FOA), 1 mM NaOH) or at 

30°C on Gal-5FOA agar plates (Gal-5FOA Minimal Media with 2.5% w/v agar). Genetic 

crosses were performed at room temperature on V8 agar plates (5% v/v V8 juice, 0.05% 

KH2PO4 pH 7.0, 4% w/v agar). 

Escherichia coli strains were grown in liquid culture at 37°C in LB medium (1% 

w/v tryptone, 0.5% w/v yeast extract, 1% w/v NaCl) with shaking (250 rpm) or at 37°C 

on LB agar plates (LB medium with 2% w/v agar). As appropriate, media included      

100 µg/ml ampicillin or 60 µg/ml kanamycin. 

Total membrane preparation and detergent extraction. For membrane preparation 

and detergent extraction all steps were performed at 4°C. C. neoformans was cultured 

overnight in 50 ml YPD to late log phase (~1×108 cells/ml), harvested by centrifugation 

(3,000 × g; 10 min), and washed in 40 ml Tris-EDTA Buffer (100 mM Tris-HCl pH 8.0, 

0.1 mM EDTA). The washed cell pellet was resuspended in an equal volume of Tris-

EDTA Buffer and 800 µl aliquots were transferred to 2-ml screw-cap microcentrifuge 

tubes. Samples were bead-beaten with 800-µl 0.5-mm glass beads (BioSpec Products) in 

1 min bursts on a Mini-Bead Beater (BioSpec Products), alternating with 2 min on ice. 

Once ~75% of the cells were disrupted (as assessed by microscopy), the lysate was trans-

ferred to a 15-ml conical tube and the glass beads rinsed with 800 µl Tris-EDTA Buffer; 

this buffer and three more rinses were pooled with the lysate. The pooled material was 

subjected to a clearing centrifugation step (1,000 × g; 20 min) and the resulting super-

natant fraction transferred to an ultracentrifuge tube. Total membranes were isolated by 
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ultracentrifugation (60,000 × g; 45 min), resuspended in 50-200 µl Tris Buffer (100 mM 

Tris-HCl pH 8.0), and stored at 4°C. Protein concentrations of the total membrane sam-

ples were determined using the Bio-Rad Protein Assay (Bio-Rad Laboratories). 

For detergent extraction, Triton X-100 was added to the membranes to a final 

concentration of 1% and the sample was incubated on ice for 30 min with vortex mixing 

every 5 min. Particulate material was removed by ultracentrifugation (75,000 × g;          

30 min) and the supernatant stored at 4°C. Protein concentrations of the detergent-

extracted cellular membrane samples were determined using the Bio-Rad Detergent-

Compatible Protein Assay (Bio-Rad Laboratories). 

For substrate titration studies, Triton X-100-extracts were prepared in bulk to 

minimize any variability in manganese-dependent xylosyltransferase activity levels be-

tween membrane preparations. Detergent extracts were prepared as above from a 1-L cul-

ture of KN99α cxt1Δ cxt2Δ; glycerol was added to a final concentration of 15% and the 

material was stored in aliquots at -80°C. For xylosyltransferase reactions, an aliquot of 

this extract was thawed at 37°C and immediately placed on ice. Glycerol was removed by 

subjecting the sample to two rounds of 10-fold dilution with Tris Buffer and concentra-

tion using an Amicon® Ultra-15 Centrifugal Filter Device (30,000 MWCO; from Milli-

pore), and protein concentration was determined using the Bio-Rad Detergent-

Compatible Protein Assay. 

Xylosyltransferase activity assays. Enzyme activity was assayed by monitoring 

the transfer of [14C]Xyl from a UDP-[14C]Xyl donor to an α-1,3-D-mannobiose acceptor 

(α-1,3-Man2). Standard reactions included 625 µg protein (from total membranes or Tri-
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ton X-100-extracts), 1 µM UDP-[14C]Xyl, 8.8 mM α-1,3-Man2, and 7.5 mM MnCl2 in 

100 mM Tris-HCl pH 6.5 and were incubated at 20°C for either 4 hrs (for substrate titra-

tion) or overnight (for other studies). The reaction products were isolated and visualized 

as described in (17). Briefly, unincorporated UDP-[14C]Xyl was removed by passing the 

sample over an 800-µl column of AG® 2-X8 resin (Bio-Rad) with water elution. The 

product was resolved by thin layer chromatography (TLC) using Silica Gel 60 plates (EM 

Sciences) and developed in a solvent system of 5:4:1 1-propanol:acetone:water; plates 

were sprayed with En3Hance® Spray (PerkinElmer) and radiolabeled products visualized 

by autoradiography. 

Isolation of the manganese-dependent reaction product. Xylosyltransferase reac-

tions using Triton X-100-extracts of CAP67 cxt1Δ membranes were performed with     

0.5 µM UDP-[14C]Xyl plus 14.7 mM non-radioactive UDP-Xyl and incubated at 20°C 

for 36 hrs. Samples were processed and resolved by TLC as above and the product of in-

terest localized using a System 200A Imaging Scanner (Bioscan Inc). The appropriate 

region of silica was scraped from the plate, and the product eluted from the silica with 

water and purified using an Envi-Carb solid phase extraction column (Supelco) as in (17). 

Additional product analysis. For some studies, the products of standard xylosyl-

transferase reactions were treated with or without acetic acid (final concentration of 1%) 

at 100°C for 1 hr. For others, samples were incubated at 25°C overnight with or without 

Jack Bean mannosidase (final concentration of 21 µg/ml in 150 mM citric acid pH 5.0). 

Treated samples were resolved by TLC and visualized by autoradiography as above. 
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One-dimensional 1H and two-dimensional 1H-1H nuclear magnetic resonance 

spectroscopy. The product of the manganese-dependent xylosyltransferase reaction   

(~0.5 mg) was deuterium-exchanged by repeated lyophilization from D2O, and then dis-

solved in 0.5 ml D2O for NMR analysis. One-dimensional 1H-NMR, two-dimensional 

1H-1H-gCOSY, and two-dimensional 1H-1H-TOCSY spectra were acquired at 25°C on a 

Varian Unity Inova 500-MHz spectrometer (Varian Inc), using standard acquisition soft-

ware available in the Varian VNMR software package. Proton chemical shifts were refer-

enced to internal acetone (δ = 2.225 ppm). 

Electrospray-ionization mass spectrometry. Mass spectrometry was performed in 

both positive and negative ion modes on a linear ion trap (LTQ; from Thermo Fisher Sci-

entific), with sample introduction via direct infusion in 50% methanol in water (for the 

native manganese-dependent xylosyltransferase reaction product) or 100% methanol (for 

the permethylated manganese-dependent xylosyltransferase reaction product), and sample 

concentration of ~100 ng/µl. 

RNAi targeting. The construct for RNAi in C. neoformans, pIB103, is dia-

grammed in Supplemental Figure 1; its construction is described elsewhere.1 The plasmid 

contains two opposing pairs of promoters and terminators cloned from the GAL7 locus 

(NCBI accession number U16994) flanking a ~250 bp fragment of the URA5 gene (NCBI 

accession number AF140188). Bidirectional transcription across this segment produces 

double-stranded RNA that effectively silences URA5, allowing cell growth in the pres-

                                                
1 I. Bose and T.L. Doering manuscript in preparation 
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ence of 5-FOA. I-SceI digestion linearizes the plasmid while exposing telomeric se-

quences (18). 

To isolate total RNA, an overnight culture of the C. neoformans strain JEC21 was 

harvested by centrifugation (3,000 × g; 10 min) and washed with 50 ml diethylpyrocar-

bonate-treated water; the pellet was frozen in a dry ice / methanol bath and lyophilized 

 
 
Supplemental Figure 1. Plasmid for RNA interference in C. neoformans. P1 and 

P2, GAL7 promoter; T1 and T2, GAL7 terminator; URA5, URA5 fragment (see text); 

G418R, G418 resistance cassette; AmpR, ampicillin resistance cassette; Origin, bacte-

rial plasmid origin of replication; black wedges, telomeric sequences. The P1 and T1 

sequences are in the same orientation (indicated by the arrow on P1); the P2 and T2 

sequences are both in the opposite orientation. Restriction enzyme sites mentioned in 

the text are indicated. Not drawn to scale. 
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overnight. Four milliliters of 0.5-mm glass beads were added to the dried pellet and the 

sample was beaten to a fine powder using a vortex mixer, mixed with 4 ml TRIzol® (Invi-

trogen), and incubated at room temperature for 5 min. Next, the sample was mixed with 

800 µl chloroform, incubated at room temperature for 3 min, and centrifuged at 3,000 × g 

for 30 min. The upper aqueous phase was mixed with an equal volume of 70% ethanol 

and applied to an RNeasy® maxi column (RNeasy® Maxi Kit; from Qiagen). Total RNA 

was isolated according to the manufacturer’s protocol and used to generate cDNA using 

the Superscript™ First-Strand Synthesis System for RT-PCR (Invitrogen). 

Two regions of XPT1 (nucleotides 724-1267 and 2551-2966) were targeted for 

RNAi. Each was PCR-amplified from JEC21 cDNA using primer pairs that introduced 

SpeI restriction sites at both ends (CNJ001/CNJ002 and MCR035/MCR036). When the 

CNJ001/CNJ002 amplicon was cloned into the pCR®2.1-TOPO® vector (TOPO TA 

Cloning® Kit; from Invitrogen) it formed the plasmid TOPO XPT1 RNAi, which was 

then transformed into TOP10 E. coli cells. The pTOPO XPT1 RNAi and pIB103 plas-

mids were isolated and digested with SpeI; the latter was also treated with Calf Intestinal 

Alkaline Phosphatase (CIAP; from Fisher). The RNAi target insert and the linearized 

vector were purified, and the fragments ligated with T4 DNA Ligase (Roche) to form the 

XPT1 RNAi construct pXTP1i, which was then transformed into DH5α E. coli cells (In-

vitrogen). 

Purified pXPT1i was linearized with I-SceI and transformed into the C. neofor-

mans strain CAP67 cxt1Δ by electroporation (19). Colonies were selected on YPD G418 

agar and then screened for growth on Gal 5-FOA agar. 
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Confirmation of the XPT1 transcript. The coding sequence of XPT1 was PCR-

amplified in overlapping fragments using primers directed against predicted exon se-

quences (C. neoformans var. grubii H99 Database maintained by the Broad Institute) and 

cDNA generated as above but from strain KN99α. The resulting DNA segments were 

cloned into the pCR®2.1-TOPO® vector and sequenced. The 5' and 3' untranslated re-

gions (UTRs) of the XPT1 transcript were verified using the GeneRacer™ Kit (Invitro-

gen). The XPT1 transcript sequence has been submitted to the NCBI database (accession 

number GQ403790). 

XPT1 deletion strain and complementation. Regions of ~1 kb immediately 5' to 

the start codon of XPT1 (5'UTR) and immediately 3' to the stop codon of XPT1 (3'UTR) 

were PCR-amplified from KN99α genomic DNA prepared as in (20) using the primer 

pairs MCR063/MCR101 and MCR104/MCR068, respectively. The NAT resistance cas-

sette (NATR) was amplified from the plasmid pGMC200-MCS (13) by PCR using prim-

ers MCR102 and MCR103. To form the XPT1 deletion (xpt1Δ) construct, the purified 

5'UTR, NATR, and 3'UTR amplicons were assembled into a single sequence by overlap-

PCR (21) using primers MCR069 and MCR070. 

The xpt1Δ construct was biolistically transformed into KN99α cells (22). Ge-

nomic DNA was prepared from NAT-resistant transformants and screened by PCR for 

loss of the native XPT1 locus and presence of the xpt1Δ construct. Finally, candidate de-

letion strains were confirmed by Southern blot analysis (23). Verified KN99α xpt1Δ 

strains were crossed to KN99a on V8 agar as described in (24) and the resulting spores 

plated on YPD NAT plates; a NATR MATa progeny strain was then back-crossed to 
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KN99α.  This crossing procedure (switching mating type) was repeated three times with 

spore selection on YPD NAT plates. The progeny of two independent KN99α xpt1Δ 

strains were confirmed to lack Xpt1p activity and used for further study. 

For plasmid-based complementation of the xpt1Δ strain, XPT1 with ~1 kb of 

flanking sequence on either side was PCR-amplified using primers MCR063 and 

MCR068 from KN99α genomic DNA prepared as above. The amplicon was cloned into 

the PCR®-XL-TOPO® vector (TOPO® XL PCR Cloning Kit; from Invitrogen) to form 

the plasmid pXL-TOPO XPT1, which was then transformed into TOP10 E. coli cells, pu-

rified, and sequenced to ensure that no errors were introduced during PCR. Confirmed 

XPT1 was released from pXL-TOPO XPT1 by digestion with SpeI and XbaI, blunted 

with T4 DNA Polymerase (from New England Biolabs), and cloned into KpnI-digested 

and CIAP-treated pIB103; the resulting pXPT1 plasmid was then transformed into DH5α 

E. coli cells. pXPT1 was isolated, linearized with I-SceI, and transformed into the C. neo-

formans strain KN99α xpt1Δ by electroporation (25). Genomic DNA prepared from 

G418-resistant transformants was screened by PCR and candidate KN99α xpt1Δ pXPT1 

clones were assayed for recovery of xylosyltransferase activity as above. 

Generation of epitope-tagged XPT1 strains. Xpt1p was epitope-tagged by replac-

ing a region extending from the middle of the gene through the 3'UTR with the same se-

quences modified to incorporate hemagglutinin (HA) at the C-terminus. The replacement 

cassette was created by overlap-PCR (21), which combined two PCR products: a ~1.5 kb 

region immediately 5' to the stop codon of XPT1 (PCR-amplified from the plasmid pXL-

TOPO XPT1 using the primer pair MRC127 and MCR120) and a ~650 bp region includ-
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ing and immediately 3' to the stop codon of XPT1 (PCR-amplified from pXL-TOPO 

XPT1 using the primer pair MCR121 and MCR149). Primers MCR120 and MCR121 

each introduced sequence encoding the HA epitope, enabling fragment joining by over-

lap-PCR using primers MCR127 and MCR149. The resulting product and pXL-TOPO 

XPT1 were both digested with SacII and NheI; the insert and the linearized vector were 

purified and the fragments ligated with T4 DNA Ligase to form pXL-TOPO XPT1-HA, 

containing the complete and tagged sequence.  This was transformed into DH5α E. coli 

cells and confirmed by sequencing. 

To express XPT1-HA in C. neoformans, the complete tagged sequence was re-

leased from pXL-TOPO XPT1-HA by digestion with SpeI and XbaI, blunted with T4 

DNA Polymerase, and cloned into KpnI-digested and CIAP-treated pIB103. The result-

ing pXPT1-HA plasmid was linearized with I-SceI and transformed into the C. neofor-

mans strain KN99α xpt1Δ by electroporation (25). G418-resistant transformants were 

screened by PCR and candidate KN99α xpt1Δ pXPT1-HA clones were assayed for recov-

ery of xylosyltransferase activity as above. 

Immunoprecipitation studies. Detergent-extracts of total membranes from KN99α 

xpt1Δ pXPT1 and KN99α xpt1Δ pXPT1-HA were prepared as above. Total protein (5 mg) 

was rotated at 4°C for 1 hr with 50 µl Anti-HA MicroBeads from the µMACS™ HA Epi-

tope Tag Protein Isolation Kit (Miltenyi Biotec) in a total of 500 µl Tris-EDTA Buffer. 

The samples were then applied to µColumns placed in the magnetic field of a µMACS 

Separator and the columns washed with 200 µl Tris Buffer five times. The µColumns 

were removed from the magnetic field of the µMACS Separator and 100 µl Tris Buffer 



78 

applied to each column to elute the Anti-HA MicroBeads and associated material. The 

eluates were assayed for xylosyltransferase activity as above. 
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RESULTS 

Xylosyltransferase activities in C. neoformans. We are interested in identifying 

and characterizing glycosyltransferases that synthesize the unique glycan structures of C. 

neoformans in order to better understand these fungal-specific processes. We have fo-

cused in particular on the transfer of Xyl residues because of the requirement for this 

moiety in virulence (14). In one assay of Xyl modification, we monitored the transfer of 

[14C]Xyl from UDP-[14C]Xyl to an α-1,3-Man2 acceptor. As shown in track 1 of Figure 

1, this assay yielded two distinct products (indicated by the arrowheads), as well as a 

small amount of free Xyl near the solvent front, presumably formed by degradation of the 

radiolabeled precursor. The generation of both products depended on the presence of α-

1,3-Man2 (Figure 1, compare tracks 1 and 3); the slower migrating product (filled arrow-

head) additionally required MnCl2 for its formation (Figure 1, compare tracks 1 and 2). 

CAP67, an acapsular strain mutated in the CAP59 gene (26), was used here because these 

cells are more readily lysed than wild-type. Deletion of CAP59 or several other genes 

(CAP10, 60, and 64 (27-29)) that are required for capsule synthesis and suggested to be 

glycosyltransferases (30) did not affect the formation of either product (data not shown). 

In previous work, we identified a protein responsible for the formation of the ma-

jority of the manganese-independent product (Figure 1, open arrowhead) as Cxt1p (17). 

Deletion of the corresponding gene (CXT1) significantly reduced this signal (Figure 2, 

compare tracks 2 and 4). The small amount of similarly migrating product seen in a cxt1Δ 

strain  is  generated  by  a  related  enzyme,  Cxt2p,2  and  disappeared  in  a  cxt2Δ  strain 

                                                
2 J.S. Klutts and T.L. Doering, manuscript in preparation. 
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Figure 1. Xylosyltransferase activities of C. neoformans. Total membranes prepared 

from CAP67 cells were assayed as described in the Experimental Procedures with 

UDP-[14C]Xyl in the presence (+) or absence (–) of the α-1,3-Man2 acceptor and 

MnCl2 cofactor as indicated. An autoradiograph of the products resolved by TLC is 

shown, with the migration positions of free Xyl and α-1,3-Man2 standards indicated at 

the right. O, origin; F, solvent front. In this and subsequent figures, the filled arrow-

head indicates the product of the manganese-dependent xylosyltransferase activity and 

the open arrowhead indicates the products of unrelated xylosyltransferase activities 

(refer to Results). 
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(Figure 2, compare tracks 4 and 8). In this investigation, we focused on the activity re-

sponsible for forming the manganese-dependent assay product (Figure 2, filled arrow-

head). The migration of this product in our TLC system differed significantly from that of 

the Cxt1p/Cxt2p product (open arrowhead), indicating that the carbohydrate structure is 

not the same. Further, the manganese requirement for its formation suggested that it is 

made by a distinct enzymatic activity. To confirm this hypothesis, we assessed formation 

of the lower mobility material in strains deleted for CXT1 and CXT2. As shown in Figure 

2 (compare tracks 1 and 7), these deletions did not compromise formation of the manga-

nese-dependent product, but rather enhanced it, presumably by eliminating competition 

for the reaction donor or substrate. Targeting other members of the Cxt1p enzyme family 

 
 
Figure 2. Xylosyltransferase activities in CXT1 and CXT2 mutants. Xylosyltrans-

ferase activity assays of membranes from the strains indicated were performed with 

UDP-[14C]Xyl and α-1,3-Man2 in the presence (+) or absence (–) of MnCl2. Only the 

relevant region of the TLC plate is shown; no signal was detected in other regions be-

yond minor amounts of free Xyl (see Figure 1). Symbols are as in Figure 1. 



82 

(31) by RNA interference (RNAi) also failed to alter production of the Xpt1p product 

(data not shown). These studies confirmed the novelty of the activity under investigation. 

The increased formation of the manganese-dependent product by cxt1Δ membranes also 

suggested that these cells would be useful in additional studies; this strain is used in sev-

eral experiments below. 

The manganese-dependent xylosyltransferase product is formed over a broad pH 

range (4-7) and at temperatures of 4-30°C (data not shown). For our assays we generally 

used pH 6.5, since that also allowed for efficient formation of the Cxt1p/Cxt2p product as 

a convenient internal control for membrane activity. Standard assays were performed 

overnight at 20°C to maximize product yield. 

Manganese-dependent xylosyltransferase product analysis. In our standard assay, 

the Cxt1p and Cxt2p activities generated a trisaccharide product of Xyl linked β-1,2 to 

the reducing Man of the α-1,3-Man2 (17).2 The manganese-dependent xylosyltransferase 

product migrated nearer to the TLC plate origin than the Cxt1p/Cxt2p trisaccharide in our 

solvent system (Figure 1, track 1). This behavior suggested the manganese-dependent 

product was more polar, but was also potentially consistent with products that differ only 

with respect to the linkage of the Xyl residue to α-1,3-Man2. To determine the structure 

of the manganese-dependent product, the reaction was scaled up and the product was re-

covered from the TLC plate as described in the Experimental Procedures. Glycosyl com-

position analysis by GC/MS was consistent with material containing Man and Xyl in a 

2:1 ratio (data not shown), as would be expected for the addition of a single Xyl residue 

to the α-1,3-Man2 acceptor substrate. Surprisingly, the 1H NMR spectrum of the product 
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(Figure 3) did not exhibit a simple doublet resonance corresponding to H-1 of an added 

β-Xyl residue anywhere near the chemical shift (4.3-4.6 ppm) expected for this scenario. 

Instead, in addition to the expected resonances for the dimannosyl substrate, a doublet of 

doublets (dd) resonance was detected far downfield at 5.471 ppm (J = 3.6, 6.9 Hz). A 

possible explanation was suggested by comparison to our published spectrum of UDP-

Xyl (12), which showed a similar dd signal for H-1 of the α-Xyl-1-O-phosphate residue 

at 5.517 ppm (3J1,2 = 3.5 Hz and 3J1,P = 7.0 Hz). The nearly identical splitting pattern in 

 
 
Figure 3. Xpt1p product composition. A 500-MHz 1H-NMR spectrum of the man-

ganese-dependent xylosyltransferase reaction product (D2O, 25°C) with selected reso-

nance assignments is shown. Inset, expansion of the α-Xyl H-1 resonance with a 

summary of the J-coupling analysis. 
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the manganese-dependent xylosyltransferase product indicated that it included an α-Xyl-

1-O-phosphate, presumably derived from UDP-Xyl, linked to the dimannose substrate. 

The presence of phosphate in the manganese-dependent xylosyltransferase prod-

uct was confirmed by positive-mode electrospray ionization mass spectrometry in a linear 

ion trap (+ESI-LIT-MS): an abundant ion was observed in MS1 at m/z 599, consistent 

with a molecular salt/adduct ion [M(Na) + Na]+ corresponding to Man2Xyl + P (where P 

represents phosphate ester; data not shown). Furthermore, in the negative mode (−ESI-

QIT-MS) analysis, a deprotonated molecular ion [M − H]− was observed abundantly at 

m/z 553 (Figure 4, Panel A), consistent with a molecular mass of 554 units for the prod-

uct; this is 98 units more than that expected for the trisaccharide alone, again consistent 

with the presence of phosphate. In the MS2 spectrum of m/z 553 (Figure 4, Panel B), the 

major product ion was observed at m/z 391, consistent with a loss of one Man residue, 

leaving Xyl-P-Man. Structurally significant product ions were observed in pairs at       

m/z 259/241 and m/z 229/211; the same products were observed in an MS3 spectrum ac-

quired by isolation and activation of the m/z 391 fragment generated in MS2 (Figure 4, 

Panel C). These product ions correspond to [Man-P]−/[Man-P − H2O]− and [Xyl-P]−/[Xyl 

− H2O]− product pairs, respectively, which can only be generated if the Man and Xyl 

residues share the same phosphate residue via a phosphodiester linkage. Consistent with 

this assignment, treatment of the manganese-dependent xylosyltransferase product with 

mild acid resulted in the release of free [14C]Xyl due to hydrolysis of the phosphate bond 

(data not shown). 
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Figure 4. Xpt1p product structure. Negative ion mode ESI-QIT-MSn analysis of the 

manganese-dependent xylosyltransferase reaction product is shown. Panel A, MS1 

molecular ion profile showing [M-H]- at m/z 553; Panel B, MS2 product spectrum of 

precursor ion m/z 553; Panel C, MS3 product spectrum of intermediate precursor ion 

m/z 391 (m/z 553→391→). 
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Neither positive nor negative mode ion mass spectra yielded information regard-

ing the specific hydroxyl of either Man residue to which the Xyl-P is linked. However, 

analysis of two dimensional 1H-1H-NMR spectra (gCOSY and TOCSY; data not shown) 

supported linkage of the phosphate to the 6-hydroxyl of the non-reducing Man residue. 

First, long range TOCSY cross-peaks showed the complex resonance observed at     

4.211 ppm (Figure 3) to be in the same spin system as the H-1 centered at 5.116 ppm; this 

was observed as a pair of closely overlapping doublets, which clearly belong to the non-

reducing terminal Man, slightly perturbed by the equilibrium exchange between the α- 

and β-anomers of the reducing terminal Man (β-anomer H-1 at 4.925 ppm, 3J1,2 = 0.9 Hz; 

α-anomer H-1 at 5.149 ppm, 3J1,2 = 1.9 Hz). Second, connectivity analysis of this reso-

nance showed it to be one of the exocyclic H-6 resonances of the Man residue in ques-

tion. Third, analysis of the splitting pattern of this resonance showed one more coupling 

than expected for a Man H-6 resonance; in other words, like the α-Xyl H-1, it exhibits an 

additional coupling with the phosphate atom (3J6,P = 5.8 Hz, while 3J5,6 = 2.0 Hz and 2J6,6 

= 11.3 Hz). Finally, along with the additional coupling, the far downfield shift of this 

resonance compared with its position in the spectrum of the unmodified dimannose sub-

strate (e.g. Figure 3, Panel A of (31)) was consistent with O-6 of the corresponding Man 

residue as the linkage point for the Xyl-P moiety. 

We also treated the manganese-dependent xylosyltransferase product with a man-

nosidase isolated from Jack Bean known to release non-reducing terminal Man residues 

from α-1,2, α-1,3 or α-1,6 linkages (32). This treatment did not affect the manganese-

dependent xylosyltransferase product, although it did cleave the α-1,3-Man2 substrate 
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when it was modified on the reducing mannose (as in the Cxt1p activity product; data not 

shown). This further supported the linkage of the Xyl-P to the non-reducing mannose of 

the α-1,3-Man2 substrate. In sum, our results indicated that the product of the manganese-

dependent xylosyltransferase activity is Xyl-α-1-phosphate-6-Man-α-1,3-Man, and the 

enzyme responsible was a xylosylphosphotransferase (Xpt1p). 

Identification of XPT1. To determine the enzyme responsible for the manganese-

dependent xylosylphosphotransferase activity, we looked to potentially related enzyme 

sequences for clues. We first reviewed the literature for reports of glycosylphosphotrans-

ferases from other organisms and then compared the sequences of these enzymes to the 

Table 2. Known glycosylphosphotransferases from other organisms. 
 

Glycosylphosphotransferases Nearest cryptococcal 
homologs 

Protein NCBI locus 
identifier 

NCBI locus 
identifier E-valuea 

S. cerevisiae mannosylphosphate transferase 
(Ktr1p/Mnn6p) NP_015272 XP_568891 4e-58 

H. sapiens UDP-GlcNAc-1-phosphotransferase 
alpha/beta subunits NP_077288 XP_567514 0.04b 

  XP_567569 0.21b 
H. sapiens UDP-GlcNAc-1-phosphotransferase 
gamma subunit NP_115909 XP_566800 2e-09 

H. sapiens UDP-GlcNAc:dolichyl-phosphate 
N-acetylglucosaminephosphotransferase NP_001373 XP_567597 2e-81 

 
a Results indicated are from searches run with NCBI Blastp version 2.2.20 on July 17, 

2009 using the entire protein sequence of the indicated known enzymes against all 

cryptococcal sequences in the NCBI database. 

b Not significant; see Discussion. 
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genome of C. neoformans (C. neoformans var. neoformans JEC21 Database, maintained 

by TIGR). As shown in Table 2, the four probe sequences identified five candidate loci 

with widely varying degrees of homology. Each of the candidate sequences was targeted 

by RNAi in CAP67 cxt1Δ, a strain with both the manganese-dependent Xpt1p activity 

and the Cxt2p activity. In the presence of an empty RNAi vector containing no target 

gene sequence (pRNAi), products of both enzymes were detected in standard assays 

(Figure 5, tracks 1 and 2). Excitingly, RNAi targeting sequence from one candidate locus 

(XP_567569), a weak homolog of the α/β subunit of the human N-acetylglucosamine 

(GlcNAc)-1-phosphate transferase, eliminated all detectable Xpt1p product (Figure 5, 

track 3) whereas the Cxt2p product was unaffected. A second RNAi construct directed 

 
 
Figure 5. RNA interference targeting of the XPT1 gene. Xylosyltransferase activity 

assays were performed as in Figure 2 using total membranes prepared from strains 

containing either a control RNAi plasmid (pRNAi) or a plasmid targeting nucleotides 

724-1267 of the XPT1 coding sequence (pXPT1i).  
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against an independent region of the same target locus caused a similarly striking reduc-

tion in the manganese-dependent xylosyltransferase activity (data not shown); this dem-

onstrated that the decrease in Xpt1p activity was due to reduced transcription of the tar-

geted gene and was not the result of off-target interference. Targeting the other four can-

didate loci, including one encoding a predicted protein with 32% homology to Xpt1p 

(XP_567514), did not alter the generation of either the Xpt1p or Cxt2p products (data not 

shown). We concluded that the XP_567569 candidate locus likely encodes the Xpt1p 

activity and termed it XPT1. 

The XPT1 locus was annotated as a hypothetical predicted protein in both the 

TIGR database of the JEC21 genome and the Broad Institute database of the H99 ge-

nome. Several expressed sequence tag sequences corresponding to this locus had been 

reported, indicating that it was transcribed, but these did not represent the entire predicted 

transcript. To confirm the XPT1 transcript and the predicted Xpt1p sequence, we gener-

ated cDNA for sequencing and 5' rapid amplification of cDNA ends (RACE) and 

3'RACE of the XPT1 transcript. The encoded 864 amino acid Xpt1 protein sequence con-

tains a single predicted transmembrane domain and demonstrated no significant homol-

ogy to any known proteins or recognized protein domains. 

Deletion of XPT1 and episomal complementation of the xpt1Δ strain. To confirm 

the association between XPT1 and the manganese-dependent xylosyltransferase activity, 

we replaced the XPT1 locus in the wild-type strain KN99α with a drug resistance cassette 

(see Experimental Procedures). Consistent with our RNAi studies, deletion of XPT1 

yielded a corresponding loss of the manganese-dependent xylosyltransferase product 
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(Figure 6, compare tracks 1 and 3). This loss of activity was observed in two independent 

deletion strains and was maintained through a series of back-crosses (data not shown), 

indicating that the change correlated with the deletion of XPT1 and was not due to unre-

lated alterations in the genome potentially generated during the transformation process 

(33). Complementation of the KN99α xpt1Δ strain by episomal expression of XPT1 un-

der control of its native promoter (pXPT1) restored the manganese-dependent xylosyl-

transferase activity to wild-type levels (Figure 6, track 5). 

Xpt1p reaction components. Several glycosylphosphotransferases have been de-

scribed (34, 35) but we are aware of no other reports of a xylosylphosphotransferase ac-

tivity. For this reason we investigated the specificity of the novel Xpt1p activity. Our 

standard Xpt1p reaction utilizes a UDP-[14C]Xyl donor, α-1,3-Man2 acceptor, and MnCl2 

 
 
Figure 6. Deletion of XPT1. Xylosyltransferase activity assays were performed as in 

Figure 2 using total membranes from the wild-type (KN99α), mutant (KN99α xpt1Δ), 

or complemented mutant (KN99α xpt1Δ pXPT1) strains indicated. 
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cofactor. The preference of the Xpt1p activity for each of these reaction components was 

assessed. 

To explore the specificity of the Xpt1p activity for UDP-Xyl as the donor, we first 

performed standard xylosyltransferase reactions in the presence of non-radiolabeled nu-

cleotide sugars or their components; membrane proteins were prepared from KN99α 

cxt1Δ cxt2Δ to prevent any competition from Cxt1p or Cxt2p activities. We were particu-

larly interested in whether Xpt1p could use GDP-Man as a donor molecule given that 

 
 
Figure 7. Competition of Xpt1p activity. Xylosyltransferase activity assays were 

performed using detergent extracts of KN99α cxt1Δ cxt2Δ cells (see Experimental 

Procedures). All reactions contained standard amounts of UDP-[14C]Xyl, α-1,3-Man2, 

and MnCl2 with varying amounts of UDP-Xyl (Panel A) or GDP-Man (Panel B):  

track 1, 0 µM; track 2, 1 µM; track 3, 5 µM; track 4, 10 µM; track 5, 25 µM; track 6, 

50 µM; track 7, 75 µM; track 8, 100 µM; track 9, 250 µM; track 10, 500 µM. Only the 

region of the TLC plate with the Xpt1p product is shown; no signal was detected in 

other regions. 
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transfer of sugar phosphate from this nucleotide sugar has been reported in S. cerevisiae 

(34). As expected, the addition of increasing concentrations of unlabeled UDP-Xyl re-

duced formation of the radiolabeled Xpt1p product (Figure 7, Panel A). In contrast, no 

inhibition of the [14C]Xyl product was seen in the presence of GDP-Man (Figure 7,   

Panel B), suggesting that Xpt1p does not utilize that donor. Inhibition of radiolabeled 

product formation was observed in the presence of UDP-Gal, UDP-Glc, UDP-GlcA, and 

UDP-GlcNAc, but the pattern of inhibition in each case was similar to that induced by 

UDP alone (data not shown). GDP alone did not inhibit Xpt1p activity and neither did 

monosaccharide Xyl (data not shown). 

Although our competition studies indicated that Xpt1p does not utilize GDP-Man, 

we were unable to distinguish between the various UDP-sugars as potential donors be-

cause all were inhibitory (likely due to the shared UDP moiety). To further examine 

Xpt1p donor substrate specificity, we analyzed the products of transferase reactions in 

which UDP-[14C]Xyl was replaced with other radiolabeled nucleotide sugars. To assess 

Xpt1p-dependent reaction products, we compared products from assays of membranes 

from XPT1 wild-type, mutant, or complemented mutant strains (KN99α, KN99α xpt1Δ, 

or KN99α xpt1Δ pXPT1, respectively). Only those reactions in which UDP-[14C]Xyl was 

supplied as a donor demonstrated any Xpt1p-dependent variation in the pattern of radio-

labeled products (Figure 8, tracks 1-3, filled arrowhead). In contrast, no radiolabeled 

products generated by reactions containing GDP-[3H]Man, UDP-[3H]Glc, UDP-[3H]Gal, 

UDP-[3H]GlcA, or UDP-[3H]GlcNAc (Figure 8 and data not shown) were dependent on 
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the presence of Xpt1p. Together, these studies suggested specificity for UDP-Xyl as the 

reaction donor for Xpt1p. 

Having identified UDP-Xyl as the preferred xylose donor in Xpt1p-mediated re-

actions, we considered the source of the phosphate moiety in the Xpt1p product. With 

 
 
Figure 8. Donor substrates of Xpt1p. Xpt1p activity assays were performed as in 

Figure 2 using total membranes from wild-type, mutant, or complemented mutant 

strains as indicated. All reactions contained α-1,3-Man2, MnCl2, and the radiolabeled 

nucleotide sugar donor indicated. Labels are as in Figure 1 although the arrowheads 

refer only to tracks 1-3; the identity of the radiolabeled products in tracks 4-9 has not 

been determined. 
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other known glycosylphosphotransferases, the phosphate is derived from the nucleotide 

sugar donor (36). It is possible, however, that the phosphate in the Xpt1p product is inde-

pendently derived, in a step preceding xylose transfer, from some other compound pre-

sent in the assayed membranes or extracts. To generate more pure material to test in our 

transferase assays, we added sequence encoding a C-terminal HA epitope tag to pXPT1 

and isolated the tagged protein by magnetic immunoprecipitation methods (see Experi-

mental Procedures). The addition of the HA epitope did not alter the overall activity of 

Xpt1p (Figure 9, compare tracks 1 and 3, and data not shown) and did mediate specific 

isolation of the manganese-dependent activity (Figure 9, compare tracks 5 and 7). This 

demonstration of [14C]Xyl-P transfer mediated by affinity-purified protein strongly sug-

 
 
Figure 9. Xylosyltransferase activities of Xpt1p-HA. Xylosyltransferase activity 

assays were performed as in Figure 2. Samples were either detergent extracts from 

membranes of KN99α xpt1Δ pXPT1 or KN99α xpt1Δ pXPT1-HA prior to anti-HA 

affinity isolation or eluted material, as indicated. 
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gests that the phosphate moiety found in the Xpt1p product is derived from the UDP-

[14C]Xyl donor. 

We next used a series of dimannose molecules to examine the acceptor prefer-

ences of Xpt1p. As with the donor specificity experiments above, xylosyltransferase reac-

tions were prepared using membranes from KN99α, KN99α xpt1Δ, or KN99α xpt1Δ 

pXPT1; the standard α-1,3-Man2 reaction substrate was replaced with various potential 

acceptors. We observed Xpt1p-dependent modification of the dimannose compounds α-

1,2-Man2, α-1,4-Man2, and α-1,6-Man2 in addition to the α-1,3-Man2 acceptor used in 

our earlier experiments (Figure 10 and data not shown). Similar studies demonstrated 

Xpt1p utilization of D-Man as an acceptor molecule, but not of D-Gal, D-Glc, D-GlcNAc, 

or D-Xyl (data not shown). It appeared that Xpt1p was specific for Man as an acceptor, 

but was flexible as to the structural context of the Man residue. 

Finally, we tested product formation in xylosyltransferase assays containing a 

panel of chloride salts in place of the MnCl2 cofactor using membranes prepared from 

KN99α cxt1Δ cxt2Δ. Although the most robust Xpt1p activity was seen in the presence of 

MnCl2, some similarly migrating product was detected in the presence of both CoCl2 and 

MgCl2 (~5% and ~15% of the MnCl2 product, respectively; data not shown). Assays us-

ing other cations (CaCl2, CuCl2, Fe(II)Cl2, NiCl2, and ZnCl2) did not yield any detectable 

product and including EDTA in the reactions resulted in the absence of any detectable 

product regardless of which cation was present (data not shown). MnCl2 was therefore 

the preferred metal ion cofactor of Xpt1p. 
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Figure 10. Acceptor substrates of Xpt1p. Xpt1p activity assays were performed as 

in Figure 2 using total membranes from wild-type, mutant, or complemented mutant 

strains, as indicated. All reactions contained UDP-[14C]Xyl, MnCl2, and the indicated 

mannose dimer acceptor.  The migration positions of the unmodified acceptors are 

indicated at the right; all other labels are as in Figure 8. Assays with no acceptor show 

no radiolabeled products (see Figure 1, track 3). 
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DISCUSSION 

We have discovered a unique xylosylphosphotransferase activity in C. neofor-

mans and the gene encoding it, which we named XPT1 (for xylosylphosphotransferase 1). 

This activity appears to be specific for UDP-Xyl, making it distinct from previously re-

ported mannosylphosphotransferases and N-acetylglucosaminylphosphotransferases (34, 

35). The modification of Man with Xyl-P is novel: to our knowledge this structure has 

not been reported in any biological system nor have activities similar to those of Xpt1p 

been previously observed. 

Our studies indicate that the Xpt1p is specific for UDP-Xyl. However, we cannot 

exclude the possibility that this enzyme can also utilize some uncommon UDP-sugar do-

nor that we did not include in our test panel. Although there are no data to indicate C. ne-

oformans synthesizes any such donor, comprehensive studies have not been performed in 

this system. Additionally, our studies with affinity-purified protein suggest that the only 

reaction components needed for Xpt1p-dependent Xyl-P transfer are UDP-Xyl, a Man-

containing substrate molecule, and MnCl2. This suggests that UDP-Xyl serves as the 

source for both the phosphate and the sugar moiety, as with the GlcNAc-1-phosphate 

transferase (36). 

The predicted 100 kDa protein encoded by XPT1 does not resemble other known 

xylosyltransferases and has no conserved domains as identified by either NCBI or other 

publicly available search engines. A cluster of hydrophobic amino acids at residues 83-

103 of Xpt1p may comprise a transmembrane domain, consistent with the observed en-

richment of the manganese-dependent xylosyltransferase activity in detergent extracts of 
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cryptococcal membranes (data not shown). The Xpt1p sequence contains several possible 

DXD motifs, sites of metal ion binding commonly found in glycosyltransferases (37). 

There are also potential N- and O-linked glycosylation sites present within the protein 

sequence (38). Interestingly, Xpt1p demonstrates strong homology to hypothetical pro-

teins found in the basidiomycetous fungi Postia placenta (brown wood rot; 28% identity 

overall) and Ustilago maydis (corn smut; 27% identity overall). Although no biological 

role or biochemical activity has been attributed to these two proteins, it is possible that 

they perform similar catalytic functions to Xpt1p. 

Overall, Xpt1p has extremely limited homology to proteins of known function. 

We identified its sequence based on a 43 amino acid stretch (residues 407-449 of Xpt1p) 

that is 38% identical to a region in the α/β subunit of UDP-GlcNAc phosphotransferase. 

The UDP-GlcNAc phosphotransferase, which has an α2β2γ2 subunit structure, catalyzes 

the initial step in the mannose-6-phosphate modification of lysosomal hydrolases that is 

necessary for targeting these proteins to the lysosome. The α and β subunits are encoded 

by a single gene and are thought to contain the catalytic portion of the protein (39), while 

the γ subunit is encoded by a separate gene and is thought be a regulatory element (40, 

41). Based on our studies, Xpt1p cannot utilize UDP-GlcNAc as a donor. We propose 

that the region of homology between the α/β subunit of UDP-GlcNAc phosphotrans-

ferase and Xpt1p may be involved in sugar-phosphate transfer from a nucleotide sugar 

donor. 

Kudo and colleagues first speculated that a region of the α/β subunit of UDP-

GlcNAc phosphotransferase (residues 321-432) “might be involved in the binding of nu-
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cleotide sugar or transfer of sugar phosphate” (39) because of its similarity to sequence 

elements found in bacterial capsule polymerases. This possibility was revisited in a broad 

in silico analysis of predicted glycosyltransferases in pathogen genomes (42). Several 

proteins identified by Sperisen and colleagues in that study were previously implicated in 

the biosynthesis of exopolysaccharide phosphoglycans, although the functions of these 

proteins were indicated only by indirect association with a given phenotype rather than 

by functional assays. Among the identified hypothetical loci were two from C. neofor-

mans, including XPT1. The region of homology between the α/β subunit of UDP-

GlcNAc phosphotransferase and Xpt1p was included both within the potential domain 

described by Kudo (39) and the conserved regions identified by Sperisen (42). 

A key question for the future is the biological role of Xpt1p. As mentioned earlier, 

the cryptococcal cell contains a variety of glycan structures, several of which are unique 

to this pathogen. The best-studied of these is the cryptococcal capsule, but analyses of the 

polysaccharide components of this structure have not indicated the presence of xylophos-

phomannose linkages (3-5). Preliminary studies suggest that Xpt1p acts in the modifica-

tion of cryptococcal proteins (not shown), but further work will be required to elucidate 

the cellular function of this novel and intriguing enzyme. 
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ABBREVIATIONS USED 

dd, double of doublets; ESI-LIT-MS, electrospray ionization linear ion trap mass 

spectroscopy; ESI-QIT-MS, electrospray ionization quadrupole ion trap mass spectros-

copy; Gal, galactose; gCOSY, gradient-selected correlation spectroscopy; GIPC, glycosy-

linositol phosphorylceramide; Glc, glucose; GlcA, glucuronic acid; GlcNAc, N-

acetylglucosamine; GXM, glucuronoxylomannan; GXMGal, glucuronoxylomannogalac-

tan; G418, geneticin; HA, hemagglutinin; Man, mannose; NAT, nourseothricin; P, phos-

phate ester; RACE, rapid amplifcation of cDNA ends; RNAi, RNA interference; TLC, 

thin layer chromatography; TOCSY, total correlation spectroscopy; UTR, untranslated 

region; Xyl, xylose; 5-FOA, 5-fluoroorotic acid. 
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ABSTRACT 

Cryptococcal meningoencephalitis is an AIDS-defining illness caused by the 

opportunistic pathogen Cryptococcus neoformans. The organism possesses an elabo-

rate polysaccharide capsule that is unique among pathogenic fungi; as such, the gly-

cobiology of C. neoformans has been a focus of research in the field. The structure of 

the capsule as well as other glycans and glycoconjugates within the cell have been 

described, but the machinery responsible for their synthesis remains largely unex-

plored. We recently identified Xpt1p, the first described xylosyltransferase capable 

of generating a Xyl-P-Man linkage, and are interested in determining the function 

of this novel enzyme within the cryptococcal cell. In studies presented here, we dem-

onstrate that the Xpt1p activity is capable of modifying protein-linked glycans. Spe-

cifically, we show that Xpt1p influences the synthesis of O-linked glycans. 
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INTRODUCTION 

Members of the Cryptococcus neoformans species complex are the only organ-

isms in the cryptococcal genus that are commonly associated with human disease. His-

torically categorized into four serotypes (A-D), these yeasts have more recently been 

classified into separate species and varieties: C. neoformans var. grubii (serotype A), C. 

neoformans var. neoformans (serotype D), and Cryptococcus gattii (serotypes B and C) 

(1). All four serotypes have been isolated from the environment, with serotypes A and D 

most commonly found in association with avian excreta and soil, and serotypes B and C 

in association with certain tree species. Humans are infected via the inhalation of small 

yeast cells or basidiospores, which are typically neutralized within the lungs by the im-

mune system without any symptomatic evidence of infection (2). The organism can, 

however, disseminate from the lungs to other organs; if it reaches the brain, C. neofor-

mans causes a fatal meningoencephalitis. Serotypes A and D are responsible for most in-

fections and are generally associated with disease in immunocompromised individuals, 

while serotypes B and C characteristically infect immunocompetent populations. 

The capsule is the most distinctive structure of C. neoformans and, because it is 

known to be required for virulence, has been intensively studied. This extensive structure 

is primarily composed of two polysaccharides, glucuronoxylomannan (GXM) (3) and 

glucuronoxylomannogalactan (GXMGal) (4, 5). The capsule surrounds a cell wall com-

posed of cross-linked polymers of glucose (glucans), mannose (mannans), and N-acetyl-

glucosamine (chitin or, upon deacetylation, chitosan). The wall also contains proteins that 

bear elaborate mannose modifications, referred to as mannoproteins. Members of the 
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Cryptococcus genus are known to synthesize proteins with glycosylphosphatidylinositol 

(GPI) anchors (6-8) as well as both N- and O-linked modifications (9-12). The organism 

also synthesizes lipids modified with mannose, xylose, and galactose (13, 14). C. neo-

formans synthesizes a diverse array of cellular glycans and glycoconjugates, the struc-

tures of which are only partially characterized. 

Our laboratory is interested in glycosyltransferases, those enzymes that catalyze 

the transfer of sugar moieties from nucleotide sugar donors to cellular acceptors (pro-

teins, lipids, or other sugars) in the synthesis of cellular glycans. Previous studies of nu-

cleotide sugar synthesis pathways in C. neoformans found that cells unable to produce 

UDP-xylose (UDP-Xyl) had no detectable Xyl residues in capsule polysaccharides, dis-

played shortened and deformed capsule fibers, and were avirulent in animal models of 

infection (15, 16). This physiological relevance of Xyl, together with its frequent occur-

rence in cryptococcal glycoconjugates, stimulated our interest in Xyl transfer activities. 

Using a radiolabeled UDP-Xyl molecule (UDP-[14C]Xyl) as a donor and an α-1,3-linked 

dimannose molecule (α-1,3-Man2) as an acceptor in an in vitro assay of glycosyltrans-

ferase activities, we have characterized several xylosyltransferase reactions in C. neofor-

mans. One is the transfer of Xyl from UDP-Xyl to the reducing Man of the disaccharide 

substrate, forming a β-1,2-linkage (17)1. This is mediated by either of two proteins: 

Cxt1p and Cxt2p. Cxt1p acts in the synthesis of both cellular glycolipids (18, 19) and the 

two capsule polysaccharides (GXM and GXMGal); less is known regarding the function 

of the closely related Cxt2p. 

                                                
1 J.S. Klutts and T.L. Doering, in preparation 
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In addition to the straightforward addition of Xyl that is mediated by the Cxt pro-

teins, we have also discovered a completely distinct and novel activity of C. neoformans 

that adds xylose-phosphate (Xyl-P) to Man-containing substrates (20). The resulting Xyl-

P-Man linkage has not been previously observed in the glycan structures of C. neofor-

mans or any other organism, nor has an enzyme with xylosylphosphotransferase activity 

been described. We have identified and characterized the C. neoformans protein respon-

sible for this activity, xylosylphosphotransferase 1 (Xpt1p; (20)). This protein is specific 

for UDP-Xyl as the reaction donor, but readily modifies a variety of Man-containing sub-

strates. A significant gap in our knowledge is the biological function of Xpt1p; the moi-

ety it forms has not been detected in glycolipid or capsule polysaccharides structures so 

far examined in C. neoformans, but many glycan elements of the cell remain uncharacter-

ized. Below, we describe our investigation into the function of Xpt1p and present evi-

dence that this enzyme plays a role in the O-linked glycosylation of proteins. 
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EXPERIMENTAL PROCEDURES 

Materials. UDP-[14C(U)]xylose (UDP-[14C]Xyl; 151 mCi/mmol) was from 

PerknElmer and α-1,3-D-mannobiose (α-1,3-Man2) was from Carbohydrate Synthesis 

(Oxford, United Kingdom). The murine monoclonal anti-GXM antibodies used were 3C2 

and 339 (21); F12D2 (22); 1255 (23); and 1326 (24). Unless specified, all other chemi-

cals or reagents were obtained from Sigma Aldrich. 

Strains and cell growth. C. neoformans strains (Table 1) were grown in liquid cul-

ture at 30°C in YPD medium (1% w/v yeast extract, 2% w/v peptone, 2% w/v dextrose) 

with shaking (230 rpm) or at 30°C on YPD agar plates (YPD medium with 2% w/v agar). 

As appropriate, media included 100 µg/ml nourseothricin (NAT; from Werner Bio-

Agents) and/or Geneticin® (G418; from Invitrogen). For immunofluoresence localization, 

strains were cultured at 30°C in Minimal Medium (0.17% yeast nitrogen base without 

amino acids, 2% w/v dextrose). 

Table 1. C. neoformans strains used in these studies. 
 

Namea  Serotype  Origin 
KN99α  A  Nielsen et al. 2003 (41) 
KN99α xpt1Δ  A  Reilly et al. 2009 (20) 
KN99α xpt1Δ pXPT1  A  Reilly et al. 2009 (20) 
KN99α xpt1Δ pXPT1-HA  A  Reilly et al. 2009 (20) 
KN99α cap59Δ  A  Baker et al. 2007 (42) 
WM276  B  Warren et al. 2005 (43) 
MMRL2651  C  Fraser et al 2005 (44) 
JEC21  D  Kwon-Chung et al. 1992 (45) 

 
a All strains are MATα 
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To test C. neoformans viability under various growth conditions, cells from an 

overnight culture were washed in water and adjusted to 2x106 cells/ml; 5 µl (1x104 cells) 

of this suspension and of four ten-fold serial dilutions were spotted on YPD agar or YPD 

stressor plates (YPD agar with 0.5 mg/ml caffeine, 0.05% sodium dodecyl sulfate (SDS), 

1 mM sodium nitrite, or 0.5 mM hydrogen peroxide) and then incubated at 30°C or 37°C. 

Total membrane preparation and detergent extraction. C. neoformans membranes 

and their detergent extracts were prepared as in (20). Briefly, cells from an overnight cul-

ture were washed in Tris-EDTA Buffer (100 mM Tris-HCl pH 8.0, 0.1 mM EDTA), bro-

ken with glass beads, and the resulting lysate subjected to a clearing centrifugation step. 

Total membranes were isolated from the resulting supernatant fraction by ultracentrifuga-

tion, resuspended in Tris Buffer (100 mM Tris-HCl pH 8.0), and stored at 4°C. Protein 

concentration of the total membrane sample was determined using the Bio-Rad Protein 

Assay (Bio-Rad Laboratories). For some studies, membranes were extracted with 1% Tri-

ton X-100, subjected to a second round of ultracentrifugation, and the resulting super-

natant fraction stored at 4°C. Protein concentration of the Triton X-100-extract sample 

was determined using the Bio-Rad Detergent Compatible Protein Assay (Bio-Rad Labo-

ratories). 

Xylosyltransferase activity assays. Enzyme activity was assayed by monitoring 

the transfer of [14C]Xyl from a UDP-[14C]Xyl donor to an α-1,3-Man2 acceptor as in 

(20). Briefly, reactions containing 625 µg protein (from C. neoformans total membranes 

or Triton X-100-extracts), 1 µM UDP-[14C]Xyl, 8.8 mM α-1,3-Man2, and 7.5 mM MnCl2 

in 100 mM Tris-HCl pH 6.5 were incubated overnight at 20°C. The reaction products 
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were isolated using an anion exchange resin, resolved by thin layer chromatography 

(TLC), and visualized by autoradiography. 

Growth in mice. For each strain tested, eight 4-6 week-old female C57Bl/6 mice 

(Jackson Laboratories) were anesthetized with a combination of ketaset-HCl and xy-

lazine, and inoculated intranasally with 50 µl of a 2.5x105 cells/ml suspension in phos-

phate-buffered saline pH 7.4 (PBS). Three animals from each cohort were sacrificed at    

1 hr post-inoculation; the remaining five were sacrificed at 7 days post-inoculation. Fol-

lowing sacrifice, lungs were harvested, homogenized in PBS, and serial dilutions of the 

homogenate were plated on YPD agar for determination of colony-forming units (CFUs). 

Initial inocula were also plated to confirm CFUs. 

Capsule staining. Cells from an overnight culture of C. neoformans were washed 

twice with PBS, resuspended at 1x107 cells/ml in PBS containing 1% bovine serum al-

bumin (PBS + 1% BSA), and rotated for 1 hr at room temperature with a final concentra-

tion of 8 µg/ml murine anti-capsular antibody. Cells were washed twice with PBS and 

then incubated for 1 hr at room temperature with rotation in PBS + 1% BSA containing 

3.2 µg/ml Alexa Fluor® 546 goat anti-mouse IgG (Invitrogen). Cells were again washed 

twice with PBS and suspended in PBS for visualization. Bright field and fluorescence 

images were acquired simultaneously on a Zeiss Axioskop 2 MOT Plus wide-field fluo-

rescence microscope; all samples were imaged with identical acquisition settings. 

Capsule induction. Cells from an overnight culture of C. neoformans were resus-

pended at 1x105 cells/ml in 50 ml YPD media plus appropriate antibiotics and again cul-

tured overnight. The sub-cultured cells were resuspended at 1x107 cells/ml in 10 ml Dul-
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becco’s Modified Eagle’s Medium, transferred to a 25 cm2 tissue culture flask, and incu-

bated at 37°C with 5% CO2 for 20 hrs. One milliliter of cells was harvested, washed once 

with water, and resuspended in 100 µl India Ink for visualization. Bright field images 

were acquired on a Zeiss Axioskop 2 MOT Plus wide-field fluorescence microscope as 

above. 

Lipid glycosylation. Reactions of 625 µg total membrane protein, 1 µM UDP-

[14C]Xyl, and 7.5 mM MnCl2 in 100 mM Tris-HCl pH 6.5 were incubated overnight at 

20°C. Chloroform and methanol were added for a final ratio of 10:10:3 (chloro-

form:methanol:buffer); the sample was incubated for 30 min at room temperature with 

occasional vortex mixing and then centrifuged to remove particulate material (16,000      

× g; 2 min). The supernatant fraction was transferred to a fresh tube and dried under a 

stream of nitrogen gas. The sample was then resuspended in n-butanol, vortexed with an 

equal volume of water, centrifuged as before, and the resulting organic phase transferred 

to a fresh tube. The remaining aqueous phase was again extracted with an equal volume 

of n-butanol and this organic phase pooled with the previous. The pooled organic phases 

were washed with an equal volume of water and the final organic phase transferred to a 

fresh tube and dried as before. The sample was resuspended in 1:1 methanol:water, ap-

plied to a Silica Gel 60 plate (EM Sciences), and resolved by TLC in a solvent system of 

10:10:3 chloroform:methanol:water. The dried plate was sprayed with En3Hance® Spray 

(PerkinElmer) and radiolabeled products were visualized by autoradiography. 

Protein glycosylation. Xylosyltransferase reactions were performed as in the pre-

vious section. Following overnight incubation, some reactions were treated with Protease 
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Type XIV (from Streptomyces griseus) or a buffer control (0.01 M sodium acetate,   

0.005 M calcium acetate, and 0.01 M CaCl2) for 24 hr at 37°C. All samples were mixed 

with sample buffer, heated for 15 min at 100°C, and resolved by SDS-PAGE on a 10% 

gel according to standard methods (25). The gel was fixed for 1 hr in 5:4:1 metha-

nol:water:acetic acid, incubated in Enlightning Rapid Autoradiography Enhancer (Perki-

nElmer) for 30 min, dried onto 3MM chromatography paper (Whatman), and visualized 

by autoradiography. 

Preparation of protein-linked glycans for analysis. A 50-ml overnight culture of 

C. neoformans was sub-cultured into 1 L YPD, grown overnight, harvested by centrifuga-

tion, and washed with Tris-EDTA Buffer. Cells (~1×107 cells/ml) were resuspended in  

10 ml of the same buffer, disrupted with glass beads, and the resulting lysate subjected to 

a clearing centrifugation step as above. The supernatant fraction was then extracted with 

1% CHAPS and subjected to ultracentrifugation The detergent-soluble material was 

transferred to cellulose dialysis tubing (8,000 MWCO; from Fisher Scientific) and dia-

lyzed against 2 L 50 mM ammonium bicarbonate buffer at 4°C; the buffer was changed 

every 12 hrs for a total of 8 L over 60 hrs. The dialyzed sample was transferred to a      

50-ml conical tube, frozen at -80°C, and lyophilized. Lyophilized protein powder was 

further washed with 80% acetone to remove residual detergent and then dried under a 

stream of nitrogen gas. 

Oligosaccharides were released from the C. neoformans samples by reductive and 

β-elimination as detailed in (26) and summarized here. The lyophilized C. neoformans 

material (2.5 mg) was resuspended in a solution of 100 mM sodium hydroxide and 1 M 
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sodium borohydride, and incubated for 18 hrs at 45°C in a glass tube sealed with a Tef-

lon-lined screw top. The tube was transferred on ice and the reaction mixture was neutral-

ized with 10% acetic acid. The sample was then loaded onto a column of AG 50W-X8 

cation exchange resin (Bio-Rad) to desalt. Released oligosaccharide were eluted from the 

resin with three bed-volumes 5% acetic acid and lyophilized to dryness. To remove bo-

rate from the sample, a solution of 10% acetic acid in methanol was added and the sam-

ple then dried under a stream of nitrogen gas at 37°; this was repeated for a total of five 

times. The sample was then resuspended in 5% acetic acid and loaded onto a C18 car-

tridge column (J.T. Baker Co.) that was previously washed with acetonitrile and pre-

equilibrated with 5% acetic acid. Run-through from the column was collected after load-

ing; the column was then washed a total of five times with 5% acetic acid. The run-

through and washes were combined and evaporated to dryness. 

Analysis of glycans by nanospray ionization mass spectrometry (NIS-MS). Sam-

ples were analyzed as in (26). Briefly, the released oligosaccharide sample was permethy-

lated (27), dissolved in 1 mM sodium hydroxide in 50% methanol, and infused into a lin-

ear ion trap mass spectrometer (LTQ; Thermo Finnigan) equipped with an orbitrap. MS 

analysis was performed in positive ion mode. The total ion mapping (TIM) function of 

the Xcalibur software package was utilized to detect and quantify the prevalence of indi-

vidual glycans in the total glycan profile; peaks were quantified if they were two-fold or 

greater above background. 

Protein localization. Cells were cultured overnight in Minimal Medium (final 

density ~5x107 cells/ml), mixed with Formalin (10% final), and incubated for 30 min at 
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30°C with shaking. All subsequent steps were performed at room temperature. Cells 

(5x108) were harvested by centrifugation (1,000 × g; 5 min), washed once with water, 

resuspended in 2 ml of a fresh solution of 4% formaldehyde in PBS, and incubated for  

30 min with rotation. The sample was then washed three times with PBS, resuspended in 

4 ml Lysis Buffer (50 mM sodium citrate pH 6.0, 1 M D-sorbitol, 2 mM DTT) plus       

25 mg/ml Lysing Enzymes (from Trichoderma harzianum), and incubated for 2 hr with 

occasional inversion. Following digestion, the cells were washed three times with HS 

Buffer (100 mM HEPES pH 7.5, 1 M D-sorbitol), resuspended in HS Buffer containing 

1% Triton X-100, and incubated for 10 min. Finally, cells were washed three times with 

HS Buffer and resuspended in 1 ml HS Buffer. 

The washed cell suspension was spotted in 20 µl aliquots on a glass microscope 

slide coated with 0.1% poly-L-lysine, incubated for 20 min at room temperature, and the 

buffer removed by aspiration. All subsequent treatments and washes were performed by 

the application of 20 µl volumes, incubation at room temperature, and aspiration. The 

slides were treated with Blocking Buffer (5% goat serum, 0.05% Triton X-100 in PBS) 

for 1 hr followed by either a high-affinity rat anti-HA monoclonal antibody (20 ng/ml in 

Blocking Buffer; from Roche) or Blocking Buffer alone overnight in a moist chamber. 

Samples were then washed six times with Blocking Buffer and stained with Alexa Fluor® 

594 goat anti-rat IgG (1 µg/ml in Blocking Buffer; from Invitrogen) for 1 hr in the dark; 

next, slides were washed three times with Blocking Buffer and stained with DAPI          

(4 µg/ml in PBS) for 15 min in the dark. Finally, samples were washed twice with Block-

ing Buffer, then twice with PBS, and allowed to air-dry. Prolong Gold was applied to 
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each sample, followed by a glass coverslip, and the slide was incubated for 30 min at       

-20°C in the dark. Bright field and fluorescence images were acquired as for the capsule 

staining assays above using the Zeiss Axioskop 2 MOT Plus wide-field fluorescence mi-

croscope. 
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RESULTS 

Xylosyltransferases in C. neoformans. We have identified several xylosyltrans-

ferase activities in C. neoformans by assaying the transfer of radiolabeled Xyl from the 

nucleotide sugar donor UDP-[14C]Xyl to an α-1,3-Man2 oligosaccharide acceptor (see 

Experimental Procedures). When membranes prepared from the wild-type strain KN99α 

were used as the source of enzyme activity in this assay, two distinct products were ob-

served (Figure 1, track 1). A combination of nuclear magnetic resonance spectroscopy 

and mass spectrometry analyses were employed to determine the structures of these two 

oligosaccharides. The upper product (Figure 1, track 1, open arrowhead) is Xyl linked β-

1,2 to the reducing Man of the α-1,3-Man2 substrate (17); this is synthesized primarily by 

Cxt1p, which generates a Man-α(1→3)[Xyl-β(1→2)]-Man motif present in cryptococcal 

glycosylinositol phosphorylceramide (GIPCs), GXM, and GXMGal (18, 19). The lower 

product (Figure 1, track 1, closed arrowhead) is Xyl-P linked to the non-reducing Man of 

α-1,3-Man2 and is generated by Xpt1p (20). The Xyl-P-Man modification has never been 

observed in C. neoformans or any other organism. Our current investigation focuses on 

identifying a biological function for Xpt1p, the enzyme responsible for generating this 

novel linkage. 

As mentioned above, members of the C. neoformans species complex differ in 

terms of ecological niche, host preference, and disease outcome (1). We began our inves-

tigation into the function of Xpt1p by exploring its conservation among these closely re-

lated species. To do this, we performed xylosyltransferase activity assays on membranes 

prepared from cryptococcal strains representing the four major historically defined 
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serotypes: serotype A (KN99α, H99), serotype B (WM276, R265), serotype C (NIH312, 

MMRL2751), and serotype D (JEC21, KN355α, KN433α). In each of the strains exam-

ined, a xylosylated product was observed that migrated in parallel with that of the Xpt1p 

activity of KN99α and was also manganese-dependent (Figure 2, closed arrowhead, and 

 
 
Figure 1. Xylosyltransferase activities in C. neoformans. Total membranes prepared 

from wild-type (KN99α), mutant (KN99α xpt1Δ), or complemented mutant (KN99α 

xpt1Δ pXPT1 and KN99α xpt1Δ pXPT1-HA) strains were assayed as described in the 

Experimental Procedures with UDP-[14C]Xyl and α-1,3-Man2 in the presence (+) or 

absence (–) of the MnCl2 cofactor as indicated. An autoradiograph of the products re-

solved by TLC is shown; no signal was detected in other regions of the plate beyond 

minor amounts of free Xyl. The filled triangle indicates the product of the manganese-

dependent xylosyltransferase activity and the open triangle indicates the products of 

unrelated xylosyltransferase activities (refer to Results). Note that no signal was de-

tected in the absence of the α-1,3-Man2 acceptor. 
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data not shown). These results were consistent with our identification of sequences ho-

mologous to the serotype A XPT1 (locus CNAG_04860; from the C. neoformans var. 

grubbii H99 database maintained by the Broad Institute) in the genomes of serotypes B 

(locus CNBG_5687; from the C. gattii R265 Database maintained by the Broad Institute) 

and D (locus CNJ02890; from the C. neoformans var. neoformans JEC21 Database main-

tained by TIGR)2. The presence of an Xpt1p-like activity in each of the strains tested con-

firmed that not only was the XPT1 sequence conserved, but that the encoded protein was 

expressed and active in growing cultures of these cells. 

Growth of xpt1Δ strains. To begin defining the biological function of Xpt1p, we 

examined the basic growth characteristics of cells deleted for XPT1 (xpt1Δ) compared to 

wild-type. Cultures of KN99α and KN99α xpt1Δ grew comparably in liquid rich medium 
                                                
2 A representative genome of serotype C has not been sequenced. 

 
 
Figure 2. Xylosyltransferase activities in the C. neoformans species complex. Xy-

losyltransferase activity assays of membranes from the strains indicated were per-

formed with UDP-[14C]Xyl and α-1,3-Man2 in the presence (+) or absence (–) of 

MnCl2. Symbols are as in Figure 1. 
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and on solid rich medium; this held true at both 30°C (the optimal growth temperature for 

C. neoformans) and 37°C (internal body temperature of cryptococcal human hosts; data 

not shown). Similar results were obtained when the plate medium was supplemented with 

caffeine, SDS, sodium nitrate, or hydrogen peroxide, which act as cell wall, cell mem-

brane, nitrosative, and oxidative stressors, respectively (data not shown). We also as-

sessed the relative growth of KN99α and KN99α xpt1Δ in a mouse model of cryptococ-

cal infection. The levels of CFUs recovered from the lungs of mice following intranasal 

inoculation were the same for both the wild-type and deletion strains (data not shown). 

Collectively, these studies indicated that the loss of Xpt1p did not influence growth or 

viability under the conditions tested, but they gave no information as to the cellular func-

tion of Xpt1p. 

Potential roles of Xpt1p. We examined the potential role of Xpt1p in capsule for-

mation by comparing the capsule morphologies of KN99α, KN99α xpt1Δ, and KN99α 

xpt1Δ pXPT1 cells. To do this, we used immunofluorescence microscopy to assess the 

binding of monoclonal anti-GXM antibodies to the cell surface. Each of the antibodies 

tested (see Experimental Procedures) demonstrated uniform staining around the cell pe-

riphery (shown for antibody F12D2 in Figure 3, panel A), indicating no obvious differ-

ence in the mutant strain from wild-type at the level of light microscopy. We also as-

sessed the ability of mutant and wild-type strains to increase the radius of their capsule in 

response to ‘inducing’ growth conditions (28). Again, both the KN99α and KN99α xpt1Δ 

strains enlarged capsule to a comparable extent (Figure 3, panel B). This lack of change 

in the capsule was consistent with prior studies of capsule polysaccharides that detected 
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no Xyl-P in GXM or GXMGal (3-5). To confirm this finding, 31P NMR analysis was per-

formed on GXM prepared from KN99α; we were unable to detect any phosphate signal 

in the sample (data not shown).3 Therefore we did not pursue additional analysis of the 

capsule polysaccharides in the xpt1Δ deletion mutant. 

                                                
3 C. Heiss, personal communication 

 
 
Figure 3. Capsule morphology in wild-type and xpt1Δ  mutant cells. Panel A, im-

munofluorescence microscopy of the indicated strains labeled with monoclonal anti-

body F12D2 followed by Alexa Fluor® 546 (Experimental Procedures). Bright field 

(upper) and fluorescent (lower) images are shown. Panel B, bright field image of the 

indicated strains grown under capsule-inducing conditions (Experimental Procedures) 

and then mixed with India Ink. Bar, 10 µM. 
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We next assessed the participation of Xpt1p in the xylosylation of cryptococcal 

glycolipids. We examined the utilization of UDP-[14C]Xyl by cryptococcal membrane 

proteins prepared from wild-type, mutant, and control strains (KN99α, KN99α xpt1Δ, 

and KN99α xpt1Δ pXPT1, respectively) in reactions similar to our standard xylosyltrans-

ferase assay but lacking the α-1,3-Man2 substrate such that only endogenous compounds 

were available as acceptor molecules. Following incubation, lipids were extracted from 

the radiolabeled samples for analysis by TLC. Although we detected the incorporation of 

[14C]Xyl into several lipid species, this activity was not dependent on the presence of 

Xpt1p (data not shown). These data indicated that Xpt1p does not act in glycolipid syn-

thesis. 

We next assessed the involvement of Xpt1p in protein glycosylation. Similar to 

the lipid experiment outlined above, we incubated cryptococcal membranes with UDP-

[14C]Xyl (but not α-1,3-Man2), and then analyzed the samples by SDS-PAGE. As seen in 

Panel A of Figure 4, KN99α membranes assayed in this manner incorporated significant 

amounts of radiolabel into material that migrated between 50 kDa and 100 kDa. Notably, 

the incorporation of [14C]Xyl increased with the addition of MnCl2 to the reactions, indi-

cating that some of the xylosylation was due to a manganese-dependent enzymatic activ-

ity (Figure 4, Panel A, compare lanes 1 and 2). The subsequent addition of protease to 

these reactions significantly reduced the [14C]Xyl signal relative to mock-treated controls, 

demonstrating that the radiolabel was in fact associated with a polypeptide species (Fig-

ure 4, Panel B). 
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Figure 4. Protein glycosylation studies of xpt1Δ  mutant. Total membranes prepared 

from the indicated strains were assayed with UDP-[14C]Xyl in the presence (+) or ab-

sence (–) of the MnCl2 cofactor as indicated; some samples were subsequently mock-

treated (m) or treated with protease (+) as indicated. Panel A, manganese stimulation 

of radiolabel incorporation; Panel B, protease treatment of assay products; Panel C, 

Xpt1p-dependence of radiolabel incorporation. Autoradiographs of dried SDS-PAGE 

gels are shown. Molecular weight standards (kDa) are indicated at the right. 
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Although [14C]Xyl-labeling of protein in KN99α membranes was clearly stimulated by 

the addition of MnCl2, this could have been due to any of a number of synthesis activities 

that are native to C. neoformans. To test whether the manganese-dependent labeling cor-

related with the presence of Xpt1p, we performed similar experiments with membrane 

preparations from KN99α, KN99α xpt1Δ, and KN99α xpt1Δ pXPT1 cells. The intensity 

and pattern of radiolabel incorporation was comparable for both the wild-type and com-

plemented strains (Figure 4, Panel C, lanes 1-3 and lanes 6-9): in both strains the inclu-

sion of MnCl2 increased [14C]Xyl incorporation while protease treatment of reaction 

products significantly reduced [14C]Xyl-labeling. In contrast, membranes from the 

KN99α xpt1Δ strain showed no increase in protein radiolabeling upon addition of MnCl2 

(Figure 4, Panel C, lanes 4-6). These studies strongly implicated Xpt1p in protein glyco-

sylation. 

Analysis of O-linked glycans. In order to examine the protein-linked structures 

formed by Xpt1p, we turned to glycan analysis. Total cell lysates were prepared from 

KN99α and KN99α xpt1Δ strains and extracted with 1% CHAPS. O-glycans were re-

leased from the detergent-soluble material by β-elimination, permethylated, and analyzed 

by NSI-MS (see Experimental Procedures). The major species of O-linked glycans in 

both the wild-type and xpt1pΔ samples were consistent with structures of Man2, Man3, 

Man4, and Xyl-Man2 (Figure 5). There was, however, a significantly lower (~25-fold) 

level of O-glycans expressed by the mutant strain compared to wild-type. 
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Figure 5. O-linked glycan profiles of wild-type (Panel A) and xpt1Δ (Panel B). Note 

difference in scale of y-axes between two profiles. Actual composition and structure 

of O-linked oligosaccharides is unknown. Circles, hexose saccharide, possibly Man; 

stars, pentose saccharide, presumably Xyl. 
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            TIM data filtered by the loss of terminal Xyl (Δmass, 175) and Xyl-1-P (Δmass, 

285) revealed the presence of minor O-glycan components of masses consistent with Xyl-

1-P-substituted O-Man-type glycans. These included mass consistent with compositions 

of Xyl-P-Man2 (m/z = 748), Xyl-P-Man3 (m/z = 952), and Xyl-P-Man4 (m/z = 1156) in 

 
 
Figure 6. Filtered scans showing Xyl-P-Man structures at m/z = 748 and m/z = 952 

for wild-type (Panels A and C) and xpt1Δ (Panels B and D). Note difference in scale 

of y-axes between wild-type and xpt1Δ scans. 
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the wild-type KN99α sample (Figure 6, Panels A and C; and data not shown). Fragmen-

tation analysis (Figure 7) supported these structural assignments. Species of m/z = 748 

and m/z = 952 were also detected in the KN99α xpt1Δ sample (Figure 6, Panels B and 

D), although quantities were insufficient for fragmentation. 

 
 
Figure 7. Fragmentation of Xyl-P-Man O-glycans at m/z = 748 (Panel A-B) and 

m/z = 952 (Panel C-E; next page) in wild-type KN99α. 
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Localization studies. Although most O-glycosylation of proteins occurs in the en-

doplasmic reticulum (ER) and Golgi (29) there are also important examples of cytosolic 

O-glycosylation (30). To localize Xpt1p, we used an xpt1Δ strain expressing an HA-

tagged form of the protein; as a control strain we used the same deletion background ex-

pressing wild-type protein. Both pXPT1 and pXPT1-HA were regulated by the native 

XPT1 promoter and the xylosyltransferase activity levels of both strains were comparable 

to that of wild-type (Figure 1, tracks 5-8). Immunofluorescence microscopy of cells 

probed with an anti-HA antibody (refer to Experimental Procedures) allowed visualiza-

tion of Xpt1p-HA in a punctate pattern within the cell (Figure 8), clearly distinct from the 

nucleus and the plasma membrane. This staining did not coincide with staining of an ER 

marker, BiP (data not shown; (31)) and is consistent with staining of Golgi structures in 

other budding yeast such as Saccharomyces cerevisiae (32). 

 
 
Figure 8. Xpt1p-HA localization. xpt1Δ strains complemented with the native pro-

tein with or without an HA epitope tag were labeled with a rat anti-HA monoclonal 

antibody followed by Alexa Fluor® 594 and examined by fluorescence microscopy. 

Bright field and fluorescent images are shown. Bar, 5 µM. 
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DISCUSSION 

We previously identified Xpt1p as a novel glycosyltransferase of C. neoformans 

that generates a Xyl-P modification of Man (20). In the current study, we focused on de-

termining the role of this unusual enzyme within the cryptococcal cell. Based on its bio-

chemical function, we expect Xpt1p to participate in glycan synthesis. While the capsule 

polysaccharides, GIPCs, and O-linked glycans of C. neoformans are all known to include 

Xyl residues (3, 4, 11, 13), none have been previously reported to contain a Xyl-P modi-

fication. However, the possibility that this unusual structure may have been overlooked in 

the previous analyses, together with the lack of definitive structures for many cellular 

glycans, left open many potential roles for Xpt1p. 

We detected structures consistent with the Xyl-P modification in the O-glycans of 

cryptococcal proteins isolated from a wild-type strain, which led us to perform similar 

analyses in the xpt1Δ mutant strain. Notably, the xpt1Δ strain synthesizes dramatically 

fewer O-glycans overall (~25-fold reduction). The putative Xyl-P-containing structures 

were further reduced (~2-fold for the Xyl-P-Man2 species and ~12-fold for the Xyl-P-

Man3 species), but not eliminated, in the mutant. This suggests that other enzymes par-

ticipate in the synthesis of these species. However, these results also implicate Xpt1p, or 

the structure it generates, in O-glycan synthesis. Future work will be needed in order to 

elucidate the role of Xpt1p in the generation of O-linked glycans. 

The detection of structures consistent with Xyl-Man and Xyl-P-Man among the 

O-linked glycans of C. neoformans differentiates the O-glycans of this pathogen from 

those of the model yeast S. cerevisiae, which are composed only of Man residues (33). 
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Also, although phosphate moieties have been previously observed in the O-linked modi-

fications of S. cerevisiae and Pichia pastoris, in these examples the phosphate was al-

ways present at the glycan terminus (34, 35). The product of the cryptococcal Xpt1p ac-

tivity is, to our knowledge, the first example of phosphate acting as a bridge between two 

sugar residues in O-glycans. 

Further studies are also needed to address a possible role for Xpt1p in generating 

modifications within N-linked glycans. The Man-P modifications found in some of the 

highly mannosylated N-linked glycan structures of S. cerevisiae provides some prece-

dence for the presence of a phosphate moiety in these structures (36). However, outside 

of the plant kingdom, Xyl has only been detected in the N-glycans of mollusks (37, 38) 

and the pathogenic fungus Pneumocystis jiroveci (39). 

We found no difference between the ability of wild-type and xpt1Δ cells to colo-

nize mice or to grow under stress conditions. Nonetheless, both the XPT1 gene and en-

zyme activity are conserved among members of the C. neoformans species complex 

(Figure 2). Serotypes A and D (C. neoformans) are estimated to have split from serotypes 

B and C (C. gattii) over 37 million years ago (40). The maintenance of Xpt1p through the 

evolution of these species suggests that Xpt1p performs a necessary function for the cell, 

possibly under conditions we have not yet tested. 

It may be informative to identify those proteins that are modified by the activities 

of Xpt1p. As seen in Figure 4, the diffuse Xpt1p-dependent [14C]Xyl labeling that ap-

pears between 50 kDa and 100 kDa sometimes resolves into more focused bands       

(Figure 4, Panel A). Isolating these few highly radiolabeled polypeptides from the rest of 
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the proteinaceous material present in the total membrane sample preparations will likely 

prove difficult. In addition, the radioabeling of membrane proteins in our in vitro assay 

may not accurately represent the native targets of the Xpt1p activity in terms of cellular 

protein modification. In the future, it may be possible to develop an antibody specific for 

the Xyl-P-Man motif, which could then be used in the purification and identification of 

the Xpt1p protein substrates. 

The data presented in Figure 5, Panel A represents our first insights into the struc-

tures of O-linked glycans in C. neoformans. Further studies are required to fully define 

the protein-linked glycan structures of this pathogenic fungus. Such investigations will 

help to catalogue the unusual glycans of C. neoformans as well as suggest the underlying 

biosynthetic pathways required for their generation. Significant differences in either gly-

can structure or assembly between this organism and its occasional human host represent 

possible drug targets in a cryptococcal infection. 
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ABSTRACT 

The capsule of Cryptococcus neoformans is unique among pathogenic fungi 

and is considered to be the organism’s primary virulence factor. In addition to the 

polysaccharide elements of the capsule, C. neoformans generates a number of other 

glycans and glycoconjugates. The composition of some of these structures has been 

studied in great detail; the enzymes responsible for their synthesis, however, remain 

largely unexplored. We recently identified and characterized the first described 

xylosylphosphotransferase, Xpt1p of C. neoformans, and determined its involvement 

in protein glycosylation. Here, we present preliminary evidence that suggests Xpt1p 

may act as part of a larger protein complex, multimerizing either with itself or 

other, heterologous proteins. 
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INTRODUCTION 

Cryptococcus neoformans is an environmental yeast and an opportunistic fungal 

pathogen. Our laboratory is interested in studying the xylosyltransferase activity of this 

basidomycete because previous studies determined that a mutant strain of C. neoformans 

that was unable to generate UDP-xylose (UDP-Xyl, the sole donor of all Xyl residues in 

the cell) was also no longer able to cause disease in a murine model of cryptococcal 

infection (1). In order to identify xylosyltransferases, we developed an activity assay 

using an UDP-[14C(U)]xylose (UDP-[14C]Xyl) donor and an α-1,3-D-mannobiose (α-1,3-

Man2) acceptor; the radiolabeled UDP-[14C]Xyl allows us to track any xylosylated 

products generated in our assay while the α-1,3-Man2 corresponds to structures found in 

cryptococcal glycolipids, glycoproteins, and the capsule polysaccharides that may be 

linked to Xyl. Using membrane proteins prepared from a wild-type C. neoformans strain 

as the source of enzyme activity in this assay, we see the formation of two distinct 

products. One of these is Man-α(1→3)[Xyl-β(1→2)]-Man and is generated by the 

xylosyltransferases Cxt1p and Cxt2p (2).1 The other is Xyl-P-Man-α(1→3)-Man (where 

P represents phosphate; (3)), formed by a second and highly unusual activity that is the 

focus of the studies detailed in this dissertation. 

When we discovered the enzyme responsible for the formation of the Xyl-P-Man-

α(1→3)-Man product, we named it Xpt1p, for xylosylphosphotransferase 1 (3). Our 

studies, reported in Chapter II of this thesis, determined that this glycosyltransferase 

specifically utilizes UDP-Xyl as the activated sugar donor. The enzyme also prefers to 
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transfer Xyl-P to a Man acceptor molecule, although this may be in multiple 

configurations. Finally, Xpt1p requires a metal ion cofactor for its activity, preferably 

manganese. Our report of Xpt1p and its product represented the first indication that a 

Xyl-P-Man modification existed in nature and we went on to investigate its function 

within the cryptococcal cell. In studies detailed in Chapter III of this thesis, we showed 

that Xpt1p xylosylates protein substrates found in preparations of cryptococcal cell 

lysates. We further verified the presence of Xyl-P-Man moieties in the O-linked glycans 

of wild-type cells that were absent in an xpt1Δ cell line. 

Our studies outlined here suggest that Xpt1p functions as part of a larger protein 

complex. Similar complexes have been observed with the glycosyltransferase activities of 

other organisms. In some instances, a single catalytic protein may require the presence of 

one or more scaffolding proteins in order to function. This is the case with the 

oligosaccharyltransferase (OST) protein complex, which transfers GlcNAc2Man9Glc3 

from Dol-PP-GlcNAc2Man9Glc3 to a particular asparagine residue of a nascent 

polypeptide as part of the N-linked protein glycosylation pathway. In S. cerevisiae, the 

OST is comprised of at least eight proteins: the highly conserved Stt3p harbors the 

transferase activity of the complex while the other seven proteins mediate the association 

of the diverse reaction substrates (4). In other instances, the formation of a 

polysaccharide structure involves the activities of several glycosyltransferases working in 

tandem and these enzymes exist in single complex of proteins. An example of this is 

when the ‘core’ structure of N-glycans in S. cerevisiae is modified by the actions of the 

                                                                                                                                            
1 J.S. Klutts and T.L. Doering, manuscript in preparation 
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mannan polymerase complexes I and II (M-Pol I and M-Pol II), which can extend a linear 

branch of α-1,6-linked Man up to sixty residues in length (5, 6). In this chapter we 

present several pieces of evidence suggesting that Xpt1p multimerizes either with itself or 

other, heterologous proteins. 
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EXPERIMENTAL PROCEDURES 

Materials. UDP-[14C(U)]xylose (UDP-[14C]Xyl; 151 mCi/mmol) was from 

PerkinElmer and α-1,3-D-mannobiose (α-1,3-Man2) was from Carbohydrate Synthesis 

(Oxford, United Kingdom). Unless specified, all other chemicals or reagents were 

obtained from Sigma Aldrich. Protease inhibitor cocktail I (PIC-I) included 1 mg/ml 

leupeptin, 2 mg/ml antipain, 0.1 M TLCK, 10 mg/ml Benzamidine, and 10,000 units/ml 

Traysylol (aprotinin) in water; protease inhibitor cocktail II (PIC-II) included 1mg/ml 

chymostatin and 1 mg/ml pepstatin in DMSO. 

Strains and cell growth. C. neoformans strains (Table 1) were grown in liquid 

culture at 30°C in YPD medium (1% w/v yeast extract, 2% w/v peptone, 2% w/v 

dextrose) with shaking (230 rpm) or at 30°C on YPD agar plates (YPD medium with 2% 

w/v agar). As appropriate, media included 100 µg/ml nourseothricin (NAT; from Werner 

BioAgents) and/or Geneticin® (G418; from Invitrogen). 

Table 1. C. neoformans strains used in these studies. 
 

Namea,b  Origin 
CAP67 cxt1Δ  Klutts et al. 2007 (1) 
CAP67 cxt1Δ cxt2Δ  J.S. Klutts and T.L. Doering, manuscript in preparation 
KN99α  Kwon-Chung et al. 1992 (13) 
KN99α xpt1Δ  Reilly et al. 2009 (3) 
KN99α xpt1Δ pXPT1  Reilly et al. 2009 (3) 
KN99α xpt1Δ pXPT1-HA  Reilly et al. 2009 (3) 
 
a All strains are MATα 
 
b All KN99 strains are serotype A; all CAP67 strains are serotype D 
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Total membrane preparation and detergent extraction. C. neoformans membranes 

and their detergent extracts were prepared as in (3). Briefly, cells from an overnight 

culture were washed in Tris-EDTA Buffer (100 mM Tris-HCl pH 8.0, 0.1 mM EDTA), 

broken with glass beads, and the resulting lysate subjected to a clearing centrifugation 

step. Total membranes were isolated from the resulting supernatant fraction by 

ultracentrifugation and resuspended in Tris Buffer (100 mM Tris-HCl pH 8.0). For 

protein purification studies only, the membranes were again resuspended in the same 

buffer and sedimented by ultracentrifugation in a wash step. The membranes were then 

treated with 1% Triton X-100, subjected to ultracentrifugation, and the resulting 

supernatant stored at 4°C. Protein concentration of the total or washed membranes was 

determined using the Bio-Rad Protein Assay (Bio-Rad Laboratories) while protein 

concentration of the Triton X-100 extract of membranes was determined using the Bio-

Rad Detergent Compatible Protein Assay (Bio-Rad Laboratories). For some studies, the 

protease inhibitor cocktails PIC-I and PIC-II were added to the samples prior to cell lysis 

at a dilution of 1:1000. 

Xylosyltransferase activity assays. Enzyme activity was assayed by monitoring 

the transfer of [14C]Xyl from a UDP-[14C]Xyl donor to an α-1,3-Man2 acceptor as in (3). 

Briefly, reactions containing 625 µg protein (from C. neoformans total membranes or 

Triton X-100-extracts), 1 µM UDP-[14C]Xyl, 8.8 mM α-1,3-Man2, and 7.5 mM MnCl2 in 

100 mM Tris-HCl pH 6.5 were incubated overnight at 20°C. Unincorporated radiolabel 

was removed using AG® 2-X8 resin (Bio-Rad) and the xylosylated products were 

resolved by thin layer chromatography (TLC) on Silica Gel 60 plates (EM Sciences), and 
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developed in a solvent system of 5:4:1 1-propanol:acetone:water. TLC plates were 

sprayed with En3Hance® Spray (PerkinElmer) and the radiolabeled reaction products 

visualized by autoradiography. 

Protein purification studies. All steps were performed at 4°C and using pre-

chilled buffers. Triton X-100 extracts (2-4 ml; ~15 mg/ml) of washed membranes were 

prepared from a 1 L culture of CAP67 cxt1Δ cxt2Δ as above. The sample was filtered 

using a CoStar® Spin-X® Centrifuge Tube Filter (0.22 µm cut-off; from Corning) and 

loaded onto a 20-ml HiPrep 16/10 Q-Sepharose Fast Flow column (GE Healthcare) that 

had been pre-equilibrated with Q1 Buffer (20 mM Tris-HCl pH 8.0, 0.1 mM EDTA, 

0.05% TritonX-100, and 100 mM NaCl). The column was first washed with 200 ml Q1 

Buffer and then eluted with a 200-ml gradient from Q1 Buffer to Q2 Buffer (20 mM Tris-

HCl pH 8.0, 0.1 mM EDTA, 0.05% TritonX-100, and 2 M NaCl) that was collected in   

4-ml fractions. Aliquots (40 µl) from each fraction were assayed for xylosyltransferase 

activity as above; reaction products were quantified using ScintiSafeTM Econo 1 (Fisher) 

and an LS 6000 CI Scintillation Counter (Beckman). Those fractions corresponding to 

the peak of xylosyltransferase activity were pooled and concentrated to 0.5-1 ml using an 

Amicon® Ultra-15 Centrifugal Filter Device (30,000 MWCO; from Millipore). 

The concentrated Q-Sepharose peak activity fractions sample was filtered using a 

CoStar® Spin-X® filter and applied to a 316-ml HiPrep 26/60 Sephacryl S-300 Gel 

Filtration Column (GE Healthcare) that was pre-equilibrated with S1 Buffer (100 mM 

Tris-HCl pH 8.0, 0.1 mM EDTA, 0.05% TritonX-100, and 500 mM NaCl) and had been 

previously calibrated using a Gel Filtration HMW Calibration Kit (GE Healthcare). The 
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column was eluted with 253 ml (0.8 column volume) of S1 Buffer, with the first 95 ml 

going to waste (void volume) and the remaining 158 ml collected into 4-ml fractions. As 

the high salt content of the S1 Buffer interferes with the ability of the AG® 2-X8 resin to 

remove unincorporated UDP-[14C]Xyl label from the reactions, aliquots from the 

Sephacryl S-300 column fractions were transferred to Slide-A-Lyzer Mini Dialysis Units 

(10 kDa MWCO; from Pierce) and dialyzed against Tris Buffer for 1 hr prior to being 

assayed for xylosyltransferase activity by scintillation counting as above. Fractions 

corresponding to the peak of xylosyltransferase activity were pooled, concentrated to 0.5-

1 ml, diluted 10-fold with Tris Buffer, and again concentrated using an Amicon® Ultra-15 

Centrifugal Filter Device (30,000 MWCO). 

The concentrated Sephacryl S-300 peak activity fractions sample was brought up 

to a volume of 5 ml using M1 Buffer (20 mM Tris-HCl pH 8.0, 0.1 mM EDTA, and 

0.01% TritonX-100) and applied to a 5-ml column of a custom-synthesized α-1,3-Man2-

agarose resin (Carbohydrate Synthesis) that was pre-equilibrated with M1 Buffer. The 

column was capped and allowed to rock overnight at 4°C. The column was then washed 

with 40 ml M1 Buffer, followed by 50 ml M2 Buffer (20 mM Tris-HCl pH 8.0, 0.1 mM 

EDTA, 0.01% TritonX-100, and 5 mM NaCl), and eluted with a 25-ml gradient of M2 

Buffer to M3 Buffer (20 mM Tris-HCl pH 8.0, 0.1 mM EDTA, 0.01% TritonX-100, and 

250 mM NaCl) collected in 0.8-ml fractions. Fractions were assayed by scintillation 

counting as above and those corresponding to the peak of xylosyltransferase activity were 

pooled and concentrated to 0.5-1 ml using an Amicon® Ultra-15 Centrifugal Filter Device 

(30,000 MWCO). 
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Immunoprecipitation studies. Detergent-extracts of total membranes from KN99α 

xpt1Δ pXPT1 and KN99α xpt1Δ pXPT1-HA were prepared as above. Each sample (5 mg 

total protein) was rotated for 1 hr at 4°C with 50 µl Anti-HA MicroBeads from the 

µMACS™ HA Epitope Tag Protein Isolation Kit (Miltenyi Biotec) in a total of 500 µl 

Tris-EDTA Buffer. The sample was then applied to a µColumn placed in the magnetic 

field of a µMACS Separator and the column washed with 200 µl Tris Buffer five times. 

To prepare the material associated with the Anti-HA MicroBeads for elution, 20 µl CAPS 

Buffer (100 mM CAPS pH 11.9, 0.1% Triton X-100) was applied to the column and 

incubated for 5 min. Then 100 µl CAPS Buffer was applied to the column and the eluate 

was collected in a tube containing 6 µl MES Buffer (1 M MES pH 2.9). 

Half of each µColumn eluate was assayed for xylosyltransferase activity by TLC 

as above. The remainder of each eluate was resolved by SDS-PAGE on a 10% gel 

according to standard methods (7) and then transferred to a 0.2 µm nitrocellulose 

membrane using the Transblot SD Semi-dry Transfer Cell (BioRad). The blot was 

developed using the primary antibody Anti-HA High Affinity Rat Monoclonal IgG 

(Roche) at 50 ng/ml in 3% dry milk in TBS pH 8.0, the secondary antibody Anti-RAT 

Goat Polyclonal IgG-Peroxidase (Sigma Aldrich) at 1 ng/ml in 3% dry milk in TBS, and 

the Western Lightning®-ECL Kit (PerkinElmer) according to standard methods (8). 
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Figure 1. Xylosyltransferase activities of C. neoformans. Total membranes prepared 

from CAP67 and CAP67 cxt1Δ cxt2Δ cells were assayed as described in the 

Experimental Procedures with UDP-[14C]Xyl and α-1,3-Man2 in the presence (+) or 

absence (–) of MnCl2 as indicated. Only a portion of an autoradiograph of the 

products resolved by TLC is shown: no signal was detected in other regions beyond 

minor amounts of free Xyl and no signal was detected in the absence of the α-1,3-

Man2 acceptor. In this and subsequent figures, the filled arrowhead indicates the 

product of Xpt1p and the open arrowhead indicates the products of the unrelated 

Cxt1p and Cxt2p. This figure is adapted from (3). 
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RESULTS 

Protein purification of the manganese-dependent activity. Our studies of Xpt1p 

began when, using the xylosyltransferase assay outlined in the Experimental Procedures, 

we detected a manganese-dependent xylosyltransferase activity that generated a product 

distinct from that of the previously identified manganese-independent xylosyltransferases 

Cxt1p and Cxt2p (Figure 1, tracks 1-2) (9).1 We initially attempted to identify the protein 

responsible for this activity by isolating it using traditional protein purification methods. 

In order to do this, we took advantage of an available CAP67 cxt1Δ cxt2Δ strain in which 

the manganese-dependent xylosyltransferase product was the only one visible in our 

xylosyltransferase assay (Figure 1, tracks 3-4), allowing us to track the activity by 

scintillation counting. Our initial purification scheme used a combination of detergent 

extraction, ion exchange chromatography, and gel filtration (see Experimental 

Table 2. Partial purification of the manganese-dependent xylosyltransferase activity 

from CAP67 cxt1Δ cxt2Δ. 

 Total 
protein 

(mg) 

 
Total 
unitsa 

Specific 
activity 

(units/mg) 

Purification 
factor 
(-fold) 

 
Recovery 

(%) 
1. Total membranes 102.3 51.3 0.5 --- --- 
2. Detergent extract 45.9 30.3 0.7 1.3 59 
3. Anion exchange 6.5 3.6 0.6 1.1 7 
4. Gel filtration 1.4 12.2 8.99 17.7 24 
5. α-1,3-Man2 affinity resin 0.6 7.4 12.9 25.7 14 
 
a A unit is defined as the amount of enzyme that transfers 100 cpm of [14C]Xyl from 

UDP-[14C]Xyl to α-1,3-Man2 per minute. 
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Procedures), but only enriched the activity of interest ~20-fold (Table 2). In an attempt to 

improve upon the initial isolation protocol, various affinity resins were tested (see 

Supplemental Table 1); of these materials, only the α-1,3-Man2-agarose resin 

consistently enhanced purification of the manganese-dependent xylosyltransferase 

activity and this only modestly. Ultimately, the greatest improvements to the preliminary 

purification scheme were associated with the optimization of sample preparation and 

column operating conditions, including the buffer, pH, detergent, and salt concentrations 

of the extraction, wash, elution, and storage conditions used throughout the protocol. 

Unfortunately, the maximal enrichment of ~25-fold achieved in our studies was not 

enough to allow for the successful identification of a protein band whose concentration in 

a given fraction varied in correspondence with the detected levels of manganese-

dependent xylosyltransferase activity. 

Sizing of the manganese-dependent activity. Although purification studies did not 

identify the protein associated with the manganese-dependent xylosyltransferase activity, 

Supplemental Table 1. Affinity resins tested during protein purifications studies. 
 

Resins 
Hydrophobic interaction resins (GE Healthcare): 
     butyl, octyl, low-substitution phenyl, high-substitution phenyl 
Reactive dye-ligands (Sigma Aldrich): 
     Blue 3GA, Blue 4, Brown 10, Green 19, Red 120, Yellow 86 
α-1,3-Man2 coupled to agarose (Carbohydrate Synthesis) 
Concanavalin A coupled to sepharose (GE Healthcare) 
UDP coupled to agarose (Sigma Aldrich) 
UDP-hexanolamine coupled to agarose (Sigma Aldrich) 
Immobilized affinity chromatography select gel (Sigma Aldrich) charged with: 
     CaCl2, CoCl2, CuCl2, Fe(II)Cl2, MgCl2, MnCl2, NiCl2, ZnCl2 
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we were able to garner other information regarding our activity of interest. Most 

importantly, the volume in which the manganese-dependent xylosyltransferase activity 

eluted from the Sephacryl S-300 gel filtration column allowed us to calculate an 

approximate molecular mass for the our activity of interest. Using commercially available 

standards, we were able to estimate the mass for the manganese-dependent 

 
 
Figure 2. Molecular weight calculations for the manganese-dependent 

xylosyltransferase activity. Panel A, Molecular weight standard curve for the 

Sephacryl S-300 gel filtration column. The molecular weight standards were as 

follows:  aldolase (182 kDa), catalase (213 kDa), ferritin (430 kDa), thyroglobulin 

(756 kDa), and Blue Dextran 2000 (2000 kDa). The void volume (Vo) of the column 

is 93.375 ml; Ve is the elution volume. Panel B, Manganese-dependent 

xylosyltransferase activity eluted from the Sephacryl S-300 gel filtration column as 

measured using the standard xylosyltranferase reactions and scintillation counting. 

Fraction collection begins after 99.57 ml running buffer has been applied to the 

column; individual fractions have a volume of 4 ml. 
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xylosyltransferase activity at ~440 kDa (Figure 2). This was unexpectedly large (see 

Discussion for further explanation). 

Identification and analysis of Xpt1p. In the course of the purification studies 

described above, we determined the product of the manganese-dependent 

xylosyltransferase activity to be Xyl-P-Man-α(1→3)-Man (3). The protein responsible 

for its formation was finally identified based on its homology to known 

glycosylphosphotransferases and named Xpt1p; this identity was confirmed by gene 

deletion and complementation studies (Figure 3). The mRNA transcript of XPT1 was 

confirmed by analysis of cDNA sequence in combination with 5' and 3' RACE studies; 

this allowed us to predict the amino acid sequence of Xpt1p. When entered into several 

publicly available prediction programs, the Xpt1p sequence was estimated to generate a 

protein ~100 kDa in size. Given that the Sephacryl S-300 gel filtration column studies of 

the manganese-dependent xylosyltransferase activity had predicted a protein more than 

four times that size, we considered the possibility that Xpt1p might exist as either a 

homo- or hetero-oligomer. 

Affinity purification of Xpt1p by epitope-tagging. In an effort to isolate Xpt1p, and 

possibly any binding partners, we took advantage of a strain engineered to express an 

HA-tagged form of the protein (KN99α xpt1Δ pXPT1-HA). The C-terminal addition of 

the epitope tag (3) did not interfere with the strain’s Xpt1p activity (Figure 3, compare 

lanes 5 and 7). Detergent-extracts of membrane material prepared from KN99α xpt1Δ 

pXPT1-HA and KN99α xpt1Δ pXPT1 (as a control) were immunoprecipitated as in the 

Experimental Procedures. When the eluted material was run out on an SDS-PAGE gel 
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and developed by immunoblot using an anti-HA antibody, bands were visible in the 

KN99α xpt1Δ pXPT1-HA sample that were absent in the KN99α xpt1Δ pXPT1 sample 

(Figure 4). These bands ran at ~65 kDa, ~70 kDa, and ~100 kDa (Figure 4, lanes 2-3); the 

largest of these was close to the predicted size of the Xpt1p polypeptide. The addition of 

protease inhibitors during preparation of the membrane material did nothing to alter the 

observed banding pattern (data not shown). Because the Sephacryl S-300 gel filtration 

studies had indicated the manganese-dependent xylosyltransferase activity eluted as if it 

were ~440 kDa, the stacker portion of the gel and the wells were also transferred to the 

immunoblot, but there was no evidence of high molecular weight anti-HA antibody-

reactive material (data not shown). 

 
 
Figure 3. Deletion and complementation of XPT1. Xylosyltransferase activity 

assays were performed as in Figure 1 using total membranes from the wild-type 

(KN99α), mutant (KN99α xpt1Δ), or complemented mutant (KN99α xpt1Δ pXPT1 

and KN99α xpt1Δ pXP1-HA) strains indicated. Symbols are as in Figure 1. This figure 

is from Chapter III. 
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Finally, material eluted from both the control KN99α xpt1Δ pXPT1 and the 

tagged KN99α xpt1Δ pXPT1-HA samples was evaluated by TLC for xylosyltransferase 

activity. Although both Cxt1p/Cxt2p and Xpt1p activity was visible in the detergent-

extracts applied to the µColumns (Figure 5, tracks 1-4), only the eluate from KN99α 

xpt1Δ pXPT1-HA sample retained the Xpt1p activity (Figure 5, compare tracks 5 and 7). 

Unexpectedly, however, there was a trace of manganese-independent activity associated 

with the isolated material (Figure 5, track 8). This activity was not the result of non-

 
 
Figure 4. Immunoblot of Xpt1p-HA. Detergent extracts from membranes of KN99α 

xpt1Δ pXPT1 or KN99α xpt1Δ pXPT1-HA were subjected to anti-HA affinity isolation 

as outlined in the Experimental Procedures. Material eluted from the columns was run 

on a 10% SDS-PAGE gel, transferred to nitrocellulose, and developed by immunoblot 

using an anti-HA antibody. Molecular weight strandards (kDa) are indicated at the 

right. * indicates the predicted size of Xpt1p (100 kDa). 
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specific binding to the column material as it was present only in the KN99α xpt1Δ 

pXPT1-HA sample and not in the KN99α xpt1Δ pXPT1 sample (Figure 5, compare tracks 

6 and 8). 

 
 
Figure 5. Xylosyltransferase activities of Xpt1p-HA. Xylosyltransferase activity 

assays were performed as in Figure 1. Samples were either detergent extracts from 

membranes of KN99α xpt1Δ pXPT1 and KN99α xpt1Δ pXPT1-HA prior to anti-HA 

affinity isolation or eluted material, as indicated. Symbols are as in Figure 1. 
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DISCUSSION 

Data generated using a Sephacryl S-300 gel filtration column indicated that the 

manganese-dependent xylosyltransferase activity eluted at ~440 kDa (Figure 2). This was 

surprisingly large as most glycosyltransferases average around 50 kDa in size (as 

calculated using information obtained from the CAZy database). When we identified 

Xpt1p as the protein behind the manganese-dependent xylosyltransferase activity, we 

predicted the enzyme to to be ~100 kDa given the amino acid sequence encoded by the 

XPT1 transcript (3). Together, these data suggest to us that Xpt1p may function as part of 

a larger protein complex, multimerizing either with itself (forming a homo-oligomer) or 

with other proteins (forming a hetero-oligomer). This would not be unprecedented, as 

glycosyltransferases in other systems have been found in multi-protein complexes, like 

the OST complex (4) and M-Pol I/M-Pol II complexes (5, 6) of S. cerevisiae. 

Interestingly, the glycosylphosphotransferase whose sequence initially identified Xpt1p 

(the GlcNAc-1-phosphate transferase) itself has an α2β2γ2 subunit structure, with the 

catalytic portion contained in the α and β submunits while the γ subunits are thought to 

perform a regulatory function for the activity (10-12). 

Immunoprecipitation studies performed using protein preparations from a KN99α 

xpt1Δ pXPT1-HA strain provided additional insights into the possibility of Xpt1p 

interacting with other proteins. In assaying the immunoprecipitate samples for 

xylosyltransferase activity, we detected a second, manganese-independent activity in 

conjunction with Xpt1p-HA. As noted above, the enzyme responsible for this activity did 

not associate with the column material non-specifically as it was absent from the 
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untagged Xpt1p control samples. We do not believe this unexpected xylosylated product 

was synthesized by Xpt1p as it has never been observed in any cxt1Δ cxt2Δ strain 

preparations (Figure 1, tracks 3-4), regardless of variation in the temperature, pH, or 

other reaction components (data not shown). Interestingly, the product of this mystery 

activity migrates on the TLC at roughly the sample position as the product of the Cxt1p/ 

Cxt2p activities, though additional studies are needed to verify this possibility. Together, 

these data suggest that at least one other protein associates with Xpt1p in the cell. 

Finally, we observed three distinct protein bands on the immunoblot of material 

isolated by immunoprecipitation of Xpt1p-HA from cell membranes (Figure 4). The 

largest band, at ~100 kDa, is most likely full-length Xpt1p-HA given its amino acid 

sequence and predicted size. We do not think the two smaller bands, at ~65 kDa and   

~70 kDa, are non-specific degradation products of Xpt1p as their presence is not 

impacted by the inclusion of protease inhibitors during the experiment (data not shown). 

These data raise the possibility that Xpt1p may undergo some kind of processing 

following translation. At this time we cannot conclude which of the three bands might be 

responsible for the manganese-dependent xylosyltransferase activity. 

The experiments presented here support the possibility that Xpt1p acts as part of a 

larger protein complex, either associating with other enzymes that perform distinct 

functions (as suggested by the data in Figure 5) or multimerizing with itself, potentially 

following processing of the protein (as suggested by the data in Figure 4). Additional 

studies are needed to directly address each of these possiblities. Approaches to these 

questions are outlined in detail in the Future Directions section of Chapter V. 
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GlcNAc, N-acetylglucosamine; GXM, glucuronoxylomannan; GXMGal, 
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Pol, mannan polymerase complex; NAT, nourseothricin; OST, oligosaccharyltransferase; 

P, phosphate; RACE, rapid amplifcation of cDNA ends; TLC, thin layer chromatography; 

Xyl, xylose. 
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FUTURE DIRECTIONS 

I have identified a novel xylosylphosphotransferase activity in the fungal 

pathogen Cryptococcus neoformans and determined the enzyme responsible for it 

(Chapter II). Additional characterization of the protein is needed in terms of identify-

ing those regions and residues necessary for its enzymatic activity and, possibly, 

processing. I am also intrigued by the possibility that Xpt1p acts as part of a larger 

protein complex, multimerizing either with itself or other proteins while in the cell 

(Chapter IV). Furthermore, I have shown that Xpt1p is involved in the synthesis of O-

linked protein glycans (Chapter III). I am interested in determining if Xpt1p plays any 

role in the synthesis of N-linked protein glycans and identifying those proteins tar-

geted by its activities. I would also like to explore the hypothesis that this unusual en-

zyme is required for survival of this organism in the environment. 

 

Activity of Xpt1p 

In Chapter II, I determined the preferred donor of Xpt1p by testing a panel of 

nucleotide sugars: GDP-[3H]mannose, UDP-[3H]glucose, UDP-[3H]galactose, UDP-

[3H]glucuronic acid, UDP-[3H] N-acetylglucosamine, and UDP-[14C]xylose. Of these, 

I found that only UDP-xylose (UDP-Xyl) functioned as a substrate of Xpt1p in my 

transferase activity assay. As noted in the Discussion of Chapter II, however, I cannot 

exclude the possibility that my enzyme of interest utilizes an uncommon nucleotide 

sugar donor that I did not test. To address this, I propose analyzing the nucleotide 

sugars present in wild-type KN99α cells by mass spectrometry using methods similar 

to those in (1). If C. neoformans is found to generate any unusual nucleotide sugars, it 

would be prudent to then test them in my transferase assay. I recognize that the pool 
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of nucleotide sugars generated by the cell can change depending on growth condi-

tions; therefore, should later studies determine that Xpt1p is preferentially expressed 

under a given growth condition, I would need to repeat this nucleotide sugar analysis. 

I used the results of an immunoprecipitation experiment (Chapter II, Figure 9) 

as evidence that UDP-Xyl serves as the source of both the phosphate and sugar moie-

ties of the Xpt1p product, Xyl-P-Man (where P represents phosphate and Man repre-

sents mannose). A more direct means of addressing the source of the phosphate resi-

due would require the generation of a radiolabeled UDP-Xyl in which the phosphate 

was radioactive: UD[32P]-Xyl. This nucleotide sugar is not commercially available 

and would have to be synthesized from UD[32P]-Glc as in Figure 10 of Chapter I, us-

ing the cryptococcal UDP-Glc dehydrogenase (Ugd1; (2)) and UDP-GlcA decarboxy-

lase (Uxs1; (3)), both of which have been purified in their active forms in the Doering 

laboratory. If UD[32P]-Xyl could be generated, I would then include it in my trans-

ferase assays to demonstrate the source of the phosphate moiety in the Xpt1p product. 

 

Necessary regions and residues. 

As mentioned in Chapter I, DXD motifs have been implicated in the binding 

of metal ions by those glycosyltransferases that require cofactors for their activity (4). 

I am interested in determining which of several potential DXD sites in the amino acid 

sequence of Xpt1p is necessary for activity of the enzyme. To do this would require 

expression of pXPT1 with the necessary point mutations introduced into a KN99α 

xpt1Δ background. The DXD sites would be selected in part based on their conserva-

tion among the predicted protein sequence encoded by XPT1 in the genomes of sero-

type A (locus CNAG_04860; from the C. neoformans var. grubbii H99 database main-



 170 

tained by the Broad Institute), serotype B (locus CNBG_5687; from the C. gattii R265 

Database maintained by the Broad Institute), and serotype D (locus CNJ02890; from 

the C. neoformans var. neoformans JEC21 Database maintained by TIGR). The activ-

ity of the DXD mutant proteins would be compared to wild-type using my standard 

xylosyltransferase assay. 

There is also the intriguing idea of a conserved phosphate transfer region, the 

region described by Kudo (5) in relation to the α/β subunit of UDP-GlcNAc phos-

photransferase and by Sperisen (6) in relation to various glycosyltransferases with a 

role in capsule production. Similarly to the selection of possible DXD sites in Xpt1p, 

residues potentially involved in the transfer of phosphate would be selected based on 

the alignment of predicted Xpt1p sequence from Serotypes A, B, and D for conserved 

residues in conjunction with comparisons to the protein sequences examined in the 

aforementioned papers. I would then proceed to express a pXPT1 construct with the 

desired point mutations in a KN99α xpt1Δ background and assess xylosyltransferase 

activity. 

 

Multimerization of Xpt1p 

I have some intriguing data to suggest that Xpt1p may act as part of a larger 

protein complex, multimerizing either with itself or other proteins in the cell. Al-

though the manganese-dependent xylosyltransferase activity of Xpt1p elutes from a 

gel filtration column at a volume indicative of a ~440 kDa protein (Chapter IV, Figure 

2), the amino acid sequence of the XPT1 transcript predicts a ~100 kDa protein 

(Chapter II, Discussion). The results of an immunoprecipitation experiment only fur-

thered my speculation that Xpt1p may not function as a monomer: immunoprecipita-
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tion of Xpt1p-HA led to the isolation of three distinct anti-HA reactive protein bands, 

running at ~65 kDa, ~70 kDa, and ~100 kDa (Chapter IV, Figure 4). Furthermore, 

when assayed for xylosyltransferase activity, these samples generated not only the 

expected product of Xpt1p but also a second, manganese-independent product (Chap-

ter IV, Figure 5). 

The immunoprecipitated material should be run on a native gel to see if I have 

been able to isolate anything close to the ~440 kDa size indicated by the gel filtration 

column. This could also tell me whether Xpt1p is associated with other proteins. I am 

interested in scaling-up the immunoprecipitation reactions such that any isolated pro-

tein can be visualized by staining an SDS gel and then submitted for identification by 

mass spectrometry and N-terminal sequencing. The largest band seen on the im-

munoblot in Figure 4 of Chapter IV runs under denaturing conditions near the size 

predicted for full-length Xpt1p. It seems unlikely that the two smaller bands are non-

specific degradation products as the inclusion of proteases in the reactions had no im-

pact on their formation. If Xpt1p does undergo some kind of processing, it could be 

interesting to explore if this cleavage is necessary for the xylosylphosphotransferase 

activity, possibly by targeting conserved residues immediately adjacent to the cleav-

age site to prevent this activity. Generation of a strain expressing a C-terminally epi-

tope-tagged Xpt1p would allow us to determine if both halves of the processed pro-

tein are maintained. Alternatively, expression of two differentially tagged forms of 

Xpt1p in the same cell could let us explore the possible self-oligomerization of the 

protein. 

The second, manganese-independent xylosyltransferase product that was iso-

lated in association with Xpt1p-HA migrates on the TLC plate similarly to the product 
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of Cxt1p and Cxt2p (Chapter IV, Figure 5. In order to determine if either Cxt1p or 

Cxt2p is responsible for generating this second product, I can introduce the pXPT1-

HA plasmid into available strain backgrounds lacking CXT1 and/or CXT2. If the for-

mation of the second product corresponds with either of these proteins, I would pro-

ceed to express Xpt1p-HA in a strain engineered to express (non-HA) epitope-tagged 

forms of Cxt1p and/or Cxt2p. This would allow me to track both Xpt1p and 

Cxt1p/Cxt2p in a series of co-immunoprecipitation studies. Should the activities of 

Cxt1p and Cxt2p not prove responsible for the manganese-independent xylosyltrans-

ferase activity I have observed, scaling up the immunoprecipitation assays might al-

low for the isolation of interacting protein(s) that, if visible by staining an SDS gel, 

could then be identified mass spectrometry. 

I am also interested in expressing the cDNA of XPT1 in a heterologous system 

such as Saccharomyces cerevisiae. This would allow me to determine if Xpt1p re-

quires other proteins for activity, either because it is processed by another protein or 

because its activity requires association with other proteins. If Xpt1p can function in a 

heterologous system, this may also be useful for isolating pure protein and determin-

ing the kinetics of this unusual enzyme. 

 

Protein glycosylation 

While trying to identify the biological role of Xpt1p, I determined that the en-

zyme is capable of glycosylating polypeptide substrates (Chapter III, Figure 4). With 

collaborators, I subsequently evaluated the O-linked glycan modifications of C. neo-

formans and found that there was a broad and significant decrease in the amount of O-

glycans isolated from xpt1Δ cells compared to wild-type (Chapter III, Figure 5). In an 
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extension of this work, I would like to more fully characterize the major O-linked 

glycan structures of C. neoformans, which has not been done before. Although the 

mass spectrometry work we have already done (Chapter III and data not shown) indi-

cates the overall pattern of this glycosylation, full characterization of the structures 

will require composition and linkage analysis of some of the observed species. I am 

also interested in evaluating the structures of N-linked glycans, both in order to de-

termine if Xpt1p plays any role in their synthesis, and to generate a profile of the ma-

jor N-glycans of C. neoformans, which are currently unexplored. In depth analysis of 

both the N- and O-linked glycans of C. neoformans will require significant input from 

our collaborators. 

I am interested in identifying the C. neoformans proteins that carry this un-

usual Xyl-P-Man modification generated by Xpt1p. In some of the gels looking at 

protein modifications by Xpt1p (Chapter III, Figure 4), individual bands can be seen. I 

have not yet explored the possibility that these proteins are abundant enough among 

the total membranes samples used that they could be visualized on SDS-PAGE by 

staining and subsequently identified by mass spectrometry. Of course, it is possible 

that Xpt1p is only targeting these proteins because they are present in my assay and 

they do not represent the native targets of its activity. In this case, I would consider 

attempting to generate an antibody specific to the Xyl-P-Man modification. This 

could then be used to pull-down Xpt1p-modified proteins by immunoprecipitation or 

to follow the modification in fractionations of total membrane samples. 
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Biological role of Xpt1p 

From our studies using an inhalation murine model of cryptococcal infection 

(Chapter III), I know that Xpt1p is not required by the organism to survive in the 

lungs of mice for short periods of time. I could expand our studies to see if Xpt1p is 

needed during longer periods of infection, perhaps for dissemination of C. neofor-

mans from the lungs to the brain. I would also like to explore the hypothesis that this 

enzyme (possibly by means of its target proteins) is required for survival of this or-

ganism in the environment. Xpt1p has been maintained among all four members of 

the C. neoformans species complex and has homologs in the genomes of two other 

environmental yeasts, the basidiomycete plant pathogens, Postia placenta (brown 

wood rot) and Ustilago maydis (corn smut). I would like to see if I could detect a 

similar xylosyltransferase activity to Xpt1p in P. placenta and U. maydis. I can also 

explore the expression pattern of C. neoformans XPT1 using microarray data that 

have been generated for other projects in our laboratory and is available for analysis. 

Preliminary examination indicates that XPT1 is expressed at very low levels under all 

conditions tested so far,1 though I do know that the Xpt1p activity is detectable in 

most of these conditions. 

 

                                                
1 B.C. Haynes, personal communication 
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CONCLUSIONS 

Cryptococcosis is an AIDS-defining illness and the causative agent, C. neo-

formans, is a fascinating example of an opportunistic pathogen. The organism is able 

to survive for extended periods of time in the environment, in association with soil, 

trees, and avian excreta, as well as within the human body. Studies of glycosynthetic 

pathways in C. neoformans began because the organism possesses an extensive poly-

saccharide capsule that is absolutely required for its virulence in the host. The field 

has since grown to encompass the biosynthesis of numerous glycans and glycoconju-

gates within the cell, many of which are unique to C. neoformans compared to its hu-

man host and are needed for full virulence in models of infection. Here, I have ex-

plored the role of a single glycosyltransferase whose activity, the transfer of Xyl-P to 

a Man substrate, appears to be completely novel. In my efforts to identify the function 

of this unusual enzyme within the cell, I have initiated a survey of the many protein-

linked glycan structures of C. neoformans and have already noticed both intriguing 

similarities to and differences from other model yeast organisms and humans. I have 

only begun to elucidate the function of this unusual enzyme and look forward to see-

ing its role in cryptococcal biology further defined. 



 176 

ACKNOWLEDGEMENTS 

The author thanks Aki Yoneda for many thoughtful discussions over the years 

on this project. 

 

ABBREVIATIONS USED 

Man, mannose; P, phosphate; Xyl, xylose. 

 



 177 

REFERENCES 

 

1. Griffith, C.L., J.S. Klutts, L. Zhang, S.B. Levery, and T.L. Doering. 2004. Dec 3. 

UDP-glucose dehydrogenase plays multiple roles in the biology of the pathogenic 

fungus Cryptococcus neoformans. J. Biol. Chem. 279: 51669-51676. 

2. Bar-Peled, M., C. L. Griffith, J. J. Ory, and T. L. Doering. 2004. Jul 1. Biosynthesis 

of UDP-GlcA, a key metabolite for capsular polysaccharide synthesis in the 

pathogenic fungus Cryptococcus neoformans. Biochem. J. 381: 131-136. 

3. Bar-Peled, M., C.L. Griffith, and T.L. Doering. 2001. Functional cloning and char-

acterization of a UDP-glucuronic acid decarboxylase: the pathogenic fungus 

Cryptococcus neoformans elucidates UDP-xylose synthesis. Proc. Natl. Acad. 

Sci. U.S.A. 98: 12003-12008 

4. Qasba, P.K., B. Ramakrishnan, and E. Boeggeman. 2005. Substrate-induced con-

formational changes in glycosyltransferases. Trends Biochem. Sci. 30: 53-62. 

5. Kudo, M., M. Bao, A. D'Souza, F. Ying, H. Pan, B.A. Roe, and W.M. Canfield. 

2005. The alpha- and beta-subunits of the human UDP-N-acetyl-

glucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase are 

encoded by a single cDNA. J. Biol. Chem. 280:3 6141-36149. 

6. Sperisen, P., C.D. Schmid, P. Bucher, and O. Zilian. 2005. Stealth proteins: in 

silico identification of a novel protein family rendering bacterial pathogens in-

visible to host immune defense. PLoS Comput. Biol. 1: e63. 

 


	Identification and Characterization of a Xylosylphosphotransferase of Cryptococcus neoformans
	Recommended Citation

	Microsoft Word - 1 Title page.doc

