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Abstract of the Dissertation

The Role of Inflammation in pathogenesis and treatment of Globoid-Cell

Leukodystrophy

by

Adarsh Surya Reddy

Doctor of Philosophy in Biology and Biomedical Sciences (Neurosciences)

Washington University in St. Louis

Mark S. Sands, Chairperson

Globoid-cell leukodystrophy (GLD, Krabbe’s disease) is an autosomal recessive

disease caused by a deficiency of the lysosomal enzyme galactosylceramidase

(GALC). It results in altered catabolism of the myelin lipid Galactosylceramide.

The disease predominantly affects the white matter of the CNS and the myelin

sheath of the peripheral nerves. The infantile form of the disease is charac-

terized by early onset between 3-6 months of age with symptoms of irritability,

dysphagia, spasticity, cognitive and sensory deterioration and seizures. Death

usually occurs by two years of age. Currently, hematopoietic stem cell trans-

plantation is the only available option for patients with the disease. Inflammation

is a prominent component of the disease and possibly plays an important role

in determining the efficacy of therapy. The goal of the thesis is to understand

the role of inflammation in the pathogenesis and treatment of GLD.

In order to understand the role of inflammation, the murine model (twitcher)

was used. The twitcher mouse is an authentic model of GLD. It is deficient

in the same enzyme as that of the human counterpart and has similar pheno-

typic manifestations. Previous studies have shown that there is a synergistic
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therapeutic effect when bone marrow transplantation is combined with AAV2/5

mediated gene therapy. Our current study found that the synergistic effect could

be further improved upon by targeting spinal cord with gene therapy in addition

to the brain. The current study also found that AAV2/5 mediated gene therapy

is associated with an increase in CD4 and CD8 T-cells and activated microglia

in the brains and this could possibly limit the effectiveness of the viral vectors.

Interestingly, addition of BMT to AAV2/5 reduced the T-cell and activated mi-

croglia, without further increasing the enzyme levels or decreasing the levels of

toxic substance called psychosine in the CNS. This strongly suggests that BMT

provides synergy by modulating inflammation. Other markers of inflammation

that were highly elevated in the CNS, like the cytokine KC, were also reduced in

mice that received treatment. Among all the cytokines that were measured, KC

was the most highly elevated one in the CNS of the twitcher mice. KC is a strong

chemoattractant to macrophages and neutrophils and it is also involved in oligo-

dendrocyte precursor proliferation and migration. Since both components are

important part of Krabbe’s disease. The role of this cytokine was explored in

further detail.

Lack of KC or its receptor CXCR2 in the CNS or periphery or both did not

alter the inflammation, oligodendrocyte proliferation or course of the disease in

the twitcher mice. This could be explained by the compensatory increase in

other cytokines and growth factors like MIP-2, FGF-2 and PDGF-BB. Although,

KC and CXCR2 probably exert their effects in combination with other cytokines

and growth factors, inflammation is clearly an important player in the patho-

genesis and treatment of Krabbe’s disease, but targeting the primary enzyme
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deficiency appears to be more important for therapy.
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Chapter 1

Background and Significance

1.1 Lysosomal Storage Diseases

Lysosomal storage diseases are a group of diseases caused by the deficiency

or dysfunction of lysosomal enzymes or associated proteins. There are cur-

rently about 45 inherited diseases that fall in to this category. Individually, they

are rare, but taken together as a group, they have an incidence of about 1

in 5000 (Meikle et al., 1999). The various storage diseases share common

pathophysiologic manifestations and certain common therapeutic principles are

involved in treating most of the diseases. Hence they are often considered as

a class. The lysosome is the organelle which is the “garbage disposal” of the

cell. Several catabolic pathways for the major cellular constituents are local-

ized in this organelle. The mileu of the lysosome is maintained at an acidic

pH and is essential for functioning of most lysosomal enzymes. Based on the

pathways that are affected, there are various subsets of lysosomal storage dis-

eases like glycogen storage diseases (e.g., Pompe’s disease), sphingolipidoses
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(e.g., Krabbe’s disease), mucopolysaccharidosis e.g., MPS VII (Sly disease),

disorders of glycoprotein degradation (e.g., α-mannosidosis) etc. Although, the

clinical manifestations of the individual diseases vary, the reticulo-endothelial

system and the CNS are often involved. The diseases are usually chronic and

usually present in early to late childhood with a progressive course. The treat-

ment principles are also similar for the group of diseases with subsets of dis-

eases having the same treatment.

1.2 Krabbe’s disease

Globoid-cell leukodystrophy (GLD, Krabbe’s disease, OMIM # 245200) is a au-

tosomal recessive disease caused by a deficiency of the lysosomal enzyme

galactosylceramidase (GALC) (Suzuki et al., 2000). The incidence of the dis-

ease is estimated to be about 1:100,000 live births (Suzuki et al., 2000). It

results in altered catabolism of the myelin lipid galactosylceramide. The dis-

ease predominantly affects the white matter of the CNS and the myelin sheath

of the peripheral nerves. The infantile form of the disease is characterized by

early onset between 3-6 months of age with symptoms of irritability, dysphagia,

spasticity, cognitive and sensory deterioration and seizures. Death usually oc-

curs by two years of age. Currently, hematopoietic stem cell transplantation is

the only available option for patients with the disease.
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1.3 History and milestones in Krabbe’s disease

The disease was first described as a separate pathological entity by Knud

Krabbe, a Danish neurologist and neuropathologist in 1916 in his study titled

“A new familial, infantile form of diffuse brain sclerosis” (Krabbe., 1916). Krabbe

also described the characteristic globoid-cells and associated them with the

disease. Until recently, much of the clinical management for the disease was

supportive. The study of the disease was greatly aided by the twitcher mouse.

The mouse was discovered as a spontaneous mutant at The Jackson Labora-

tories, Bar Harbor, Maine (Duchen et al., 1980). The mouse was named for

its prominent tremor or twitching phenotype. The twitcher mouse has been an

invaluable tool in understanding the pathogenesis and designing new thera-

pies for Krabbe’s disease. When the lipid profile was analyzed in the twitcher

mouse brains, a catabolite galactosylsphingosine was highly elevated (Iguzu

and Suzuki., 1984). Its toxic effects on cells lead to the ”psychosine hypothesis”,

as a mechanism for rapidly progressive CNS pathology seen in this disease. In

another study bone marrow transplantation significantly prolonged the median

lifespan of the twitcher mouse (Yeager et al., 1984). When a similar study was

performed in humans (Krivit et al., 1997), there was only a minimal improve-

ment in the disease. When umbilical cord blood transplants were performed in

pre-symptomatic infants, there was a much better improvement in symptoms

and the disease course was favourably altered (Escolar et al., 2005). Subse-

quent to the study, Krabbes disease is beginning to be included in the neonatal

screening programs (Duffner et al., 2009). Although progress has been made,

much research still needs to be done in terms of effective therapies and in terms

3



of understanding of the pathogenesis of the disease.

1.4 Twitcher mouse

As mentioned above, the murine model of GLD (twitcher mouse) was discov-

ered as a spontaneous mutant. The mutation was later identified as a point mu-

tation in the exon of the GALC gene leading to a premature termination codon

with very low transcriptional activity(Sakai et al., 1996). The twitcher mouse

recapitulates most of the features of its human counterpart. The mean lifespan

of the untreated twitcher mouse is about 38 days. Recently, a mouse model for

the adult onset disease has been described (Luzi et al., 2008). Large animal

models of Krabbe’s disease include rhesus monkey, dog and sheep (Wenger

et al., 2001) and could be important tools in translational research in Krabbe’s

therapies.

1.5 Pathology and Pathogenesis

The neuropathology of the twitcher mouse is characterized by the infiltration

of periodic acid-Schiff (PAS)-positive cells (globoid cells) in the CNS and PNS,

progressive demyelination, apoptotic death of oligodendrocytes and the activa-

tion of astrocytes and microglia (Wenger et al., 2001). Although, GALC is ex-

pressed in most cell types, the synthesis of galactosylceramide in the nervous

system is almost exclusively localized to oligodendrocytes and Schwann cells

where it forms an important constituent of the myelin sheath. The cell types that

are affected most severely are oligodendrocytes and Schwann cells and several
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lines of evidence points towards these cells being affected first in the disease.

Transgenic correction of oligodendrocytes by expressing GALC under oligoden-

drocyte specific promoter (Myelin Basic Protein promoter) leads to rescue of the

twitcher phenotype (Matsumoto et al.,1997, De Gasperi et al., 2004 ). Trans-

duction of twitcher oligodendrocytes by injecting a GALC-expressing retrovirus

leads to their morphological improvements of in vivo (Meng et al., 2005). Galac-

tosylceramide accumulation also occurs in the kidney in the twitcher mouse, but

such accumulation is not seen in human patients with early onset disease (Igisu

et al., 1983).

Biochemically, the lack of GALC activity leads to an altered breakdown of

galactosylceramide, a sphingolipid consisting of a sphingosine (which is syn-

thesized from fatty acyl-coA and serine), a long-chain fatty acid and galactose

(Figure 1.1).

Surprisingly, abnormal accumulation of galactosylceramide does not occur

in the nervous system despite the genetic catabolic block. Instead, the galac-

tosylceramide is converted to galactosylsphingosine (psychosine), which accu-

mulates in the brains of twitcher mice and is believed to cause the death of

oligodendrocytes (Suzuki 1998)(Figure 1.2). It is not known for certain if psy-

chosine is actually responsible for the death of oligodendrocytes, however, there

are several lines of evidence which support this hypothesis. Psychosine, which

is undetectable in normal brains, progressively accumulates in the brains of

twitcher mice (Igisu et al., 1984). The levels of psychosine in one hundred day

old twitcher mice receiving treatment ( BMT) are comparable to the untreated

terminal twitcher mice at 40 days (Ichioka et al., 1987). Psychosine levels re-
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Figure 1.1: Structure of Galactosylceramide. The main components are sphin-

gosine, fatty acid and galactose. Figure adapted from Wenger et al., 2001.

turn to undetectable levels in the adult-onset model receiving BMT which live for

over one year (Luzi et al., 2005). Psychosine can induce apoptosis in cultured

oligodendrocytes in vitro (Jatana et al., 2002), the exact molecular mechanism

of which remains unknown. Two main ways in which psychosine is hypothe-

sized to act is by: a) activation of Phospholipase C (Hannun and Bell, 1997)

and b) by non-specific effect of disruption of lipid rafts (White et al., 2011). Ac-

tivation of reactive oxygen species is also known to occur (Khan et al., 2005),

although the exact mechanism by which this occurs is not known.

The death of oligodendrocytes likely elicits an inflammatory reaction which

leads to infiltration of immune cells into the CNS and the peripheral nervous
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system. Infiltration of inflammatory cells probably leads to further death and

destruction of the glia and neurons which in turn accelerates the progression

of disease. In summary, the progression of the disease can be broken down in

to two interdependent pathways: primary enzyme deficiency leading to multiple

secondary pathologic events like accumulation of psychosine, cellular apop-

tosis/death, immune cell activation, formation of reactive oxygen species, etc.

(see Figure. 1.3 ).

Figure 1.2: Catabolism of Galactosylceramide. The enzyme GALC degrades

Galactosylceramide in to galactose and ceramide which is spontaneously de-

graded to sphingosine. In the absence of GALC, Galactosylceramide is catab-

olized to Galactosylsphingosine (psychosine) which is hypothesized to be toxic

to cells.
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Figure 1.3: Presumed pathological sequence of events in Krabbe’s disease and

the possible sites of therapeutic effects.

1.6 Role of Inflammation in Krabbe’s disease

It appears that inflammation plays a prominent role in the disease. Globoid cells

are a characteristic feature of the disease and they are modified macrophages.

Elevation of numerous cytokines in the CNS of the twitcher mice have been

previously described (Wu et al., 2001). Additionally, inflammation also seems

to play an important role in the efficacy of therapy. Current strategies used

to treat the disease in pre-clinical studies include bone marrow transplantation

(Yeager et al., 1984), gene therapy (for e.g., Shen et al., 2001; Rafi et al.,2005;

Lin et al., 2005; Lin et al., 2007; Gentner et al., 2011). and substrate reduction
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therapies (Biswas and Levine, 2001). The goal of both BMT and gene therapy

is to supply the normal enzyme whereas substrate reduction therapies reduce

the accumulation of the metabolite by inhibition of the enzyme that is involved

in its synthesis. Previous studies in our lab showed that there is a dramatic

synergy when BMT and intracranial gene therapy with Adeno-associated Virus

2/5 (AAV/BMT) are combined, when compared with either therapy alone (Lin et

al., 2007). Wu et al., 2001, have shown that there is a decrease in immune-

related molecules and infiltrating immune cells after BMT. Combining the above

two observations, we hypothesized that the dramatic synergy observed in our

previous study (Lin et al., 2007) could be the result of the combined effects of

decreased inflammatory response by BMT and enzyme supplied by AAV2/5.

Since inflammation appeared to play an important role in the pathogenesis and

treatment of the disease, its role was further explored and these formed the

objectives of the current thesis. The goals of our research are to understand

the role of the immune system in the treatment and the pathogenesis of the

disease.
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Chapter 2

Role of Inflammation in Therapy of

Globoid-cell Leukodystrophy

2.1 Therapeutic Principle (Cross-Correction)

The treatment of the lysosomal storage disease is based on the observation

that the lysosomal enzymes are secreted from the cells that produce them and

that these enzymes can be taken up by neighboring cells (Fratantoni et al.,

1968). This uptake is mediated by recognition of the phosphorylated or non-

phosphorylated mannose moieties present on the enzyme by the Mannose-6-

Phosphate or Mannose receptors, respectively ( Achord et al., 1978; Kornfeld.,

1992). In theory only a small percentage of cells producing or overexpress-

ing the enzyme should be sufficient to correct the disease since only a small

amount (<5% of normal) of enzyme is required to reverse the pathological stor-

age seen in these disorders (Wolfe et al., 1992; Sands et al., 1993; Vite et al.,

2005).
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2.2 Therapeutic strategies for Krabbe’s disease

The only available treatment for Krabbe’s disease is hematopoietic stem cell

transplantation, using either umbilical cord blood (Escolar et al., 2005) or using

bone marrow cells (Krivit et al., 1997). Although, the treatment improves the

symptoms when pre-symptomatic newborns are treated, it is not curative. Also,

neonatal transplantation is associated with high mortality of approximately 50%.

Current strategies used to treat the disease in pre-clinical studies include gene

therapy, bone marrow transplantation, enzyme replacement therapy, substrate

reduction therapy and a combination of two or more therapies. Some of these

strategies are discussed in detail below.

2.2.1 Gene Therapy

Gene therapy for lysosomal storage diseases that affect the brain, including

GLD, aims to exploit the therapeutic principle of cross correction. As discussed

previously, oligodendrocytes appear to be the primary cells that are affected

by the disease. Adenovirus, lentivirus and Adeno-associated Virus (AAV) gene

transfer vectors have been used successfully in various intracranial gene ther-

apy protocols in a number of CNS diseases (Mandel et al., 2006).

A previous study from our lab has shown that an AAV2/5 vector (AAV2

genome packaged with AAV5 capsid proteins) gives much greater level expres-

sion of GALC in brains of twitcher mice compared to an AAV2 vector (Lin et al.,

2005). Although about 25-fold higher than normal levels of enzyme can be ob-

tained with AAV2/5, there was only a modest improvement in lifespan to about
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55 days compared to untreated twitcher mice whose mean lifespan is about

38 days. This finding was surprising since comparable levels of enzyme are

sufficient to correct the CNS disease in other lysosomal storage diseases like

α-mannosidosis (Vite et al., 2005), Mucopolysaccharidosis VII (Frisella et al.,

2001) and Metachromatic Leukodystrophy (Consiglio et al., 2001). It is possible

that the virus and enzyme levels are insufficient to reach oligodendrocytes in

distant sites. Alternatively, the progress of the disease is too rapid compared to

the rate of correction.

2.2.2 Bone Marrow Transplantation (BMT) and Stem Cell Trans-

plantation

BMT performed in young animals (8-9 days of age) using myeloablative con-

ditioning (900 rads) prolongs the median lifespan of twitcher mice from about

40 days to about 80 days (Yeager et al., 1984). Although it was originally be-

lieved that donor derived cells in the CNS supplied sufficient GALC activity to

correct the disease, the exact mechanism of the therapeutic effect of BMT in

GLD probably involves multiple mechanisms.

Bone marrow (BM)-derived cells differentiate into a wide variety of cell types.

BM contains a heterogeneous population of stem and progenitor cells including

hematopoietic stem cells, marrow stromal cells, and perhaps other progenitor

cells (Hess et al., 2004). When a clonal population of Lin-, CD34-, c-kit+, and

Sca-1+, EGFP+ transgenic marrow precursor cells was allowed to proliferate in

vitro and then transplanted along with short-term repopulating cells into the wild

type mice, all the GFP labeled cells in the CNS were parenchymal microglial
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cells and perivascular cells (Hess et al., 2004). Although normal or near normal

levels of enzyme are reported in the brains of twitcher mice receiving BMT in

some studies, (for e.g. see Ichioka et al., 1987) most studies report a variable

intermediate level of enzyme in the brain (for e.g. See Hoogerbrooge et al.,

1989). The enzyme level is undetectable in twitcher mice undergoing myelore-

ductive ablation, where about 25-35% of donor chimerism is obtained in a pre-

vious study (Lin et al., 2007). A study on α-galactosidase and β-glucosidase

uptake in various cell cultures show that these enzymes are not taken up by

the oligodendrocytes and most of the enzyme is taken up by astrocytes (Hill

et al., 1985). Further, immunostaining showed that there are no M-6-P recep-

tors on the oligodendrocytes. A somewhat contradictory study (Luddi et al.,

2001) shows that oligodendrocytes co-cultured with GALC expressing fibrob-

lasts (GALC activity- 270 nmol/hr/g) can take up some activity from the media

(3.6 nmol/hr/g). It is not clear if the enzyme transfer can occur in vivo from the

few microglia expressing normal levels of GALC. Based on these data, it is un-

likely that the bone marrow cells are supplying the oligodendrocytes with high

levels of GALC activity.

Interestingly, BMT has been shown to reduce the inflammatory infiltrate in

the CNS as well as in the sciatic nerve (Yeager et al., 1984; Suzuki et al.,

1988) . BMT also reduces the number of globoid cells (Yeager et al., 1984).

As discussed above, immune related molecules are down regulated in twitcher

mice after BMT (Wu et al., 2001).

Based on the above evidence, it is reasonable to hypothesize the following

sequence of events. The death of oligodendrocytes elicits an immune response
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which activates the microglia. The microglia secrete chemokines and cytokines

which recruits more immune cells which could be responsible for further dam-

age in the CNS. When the twitcher mouse is treated with BMT, an immune

response recruits normal donor-derived microglia which can digest the galac-

tosylceramide and the immune response is reduced compared to animals not

receiving BMT. Since the enzyme deficiency is not completely corrected, the

oligodendrocytes continue to die, albeit at a slower rate, and ultimately lead to

the florid CNS pathology.

Recently umbilical cord blood transplantation has been attempted in a clini-

cal setting (Escolar et al., 2005). This leads to significant clinical improvements

if performed early in life (<6 months of age). However, long term follow-up stud-

ies are needed to completely assess the efficacy of this form of therapy. Also,

inherent variation in the disease expression even among siblings, makes the re-

sults difficult to interpret. Transplantation of bone marrow cells transduced with

a lentiviral vector was also shown to be effective in treating the disease, es-

pecially when the GALC overexpression is suppressed in the stem cells using

micro-RNA (Gentner et al., 2010).

When neural stem/ progenitor cells transduced with a GALC expressing

retroviral vector were injected into the brains of the neonatal twitcher mouse,

donor oligodendrocytes preferentially migrated to areas of demyelination, how-

ever the improvement in the lifespan was only about 16 days (Pellegatta et al.,

2006).
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2.2.3 Combination Therapy

Among all the lysosomal storage diseases, there are only isolated instances

where a single approach corrects most of the biochemical, histological and clin-

ical features of the disease. This is likely owing to the complex nature of these

diseases, as well as the inaccessibility of certain tissues, primarily the CNS.

In addition, most of the promising results have been observed under carefully

controlled laboratory conditions. Although the primary insult in LSDs is a single-

gene defect, multiple secondary mechanisms play a role in the pathogenesis

(Vitner et al., 2010). These include accumulation of secondary metabolites,

inflammation, oxidative stress, and possibly other mechanisms like altered cal-

cium homeostasis, abnormal lipid trafficking, increased autophagy, ER stress,

unfolded protein response and autoimmunity. Each of these secondary effects

is a potential therapeutic target. It is likely that one or more of these pathogenic

mechanisms are at play by the time therapy is initiated, limiting the efficacy of

the primary approach. Therefore, several groups have begun combining ther-

apies in order to target either different aspects of disease or different tissues.

Additionally, the timing of various therapies can, and has been optimized in or-

der to take advantage of the strengths of each approach. Interestingly, both

additive and synergistic effects have been documented when two or more treat-

ments are combined (reviewed by Hawkins-Salsbury et al., 2011).
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2.3 The role of immunomodulation in treating the

neuropathology seen in twitcher mouse

Both gene therapy and BMT lead to significant improvements in the clinical

course of disease in the twitcher mouse. However, the improvements are mod-

est. When forebrain directed AAV2/5 is combined with BMT, it results in a dra-

matic synergy in the lifespan, behavioral and neuropathological improvements

(Lin et al., 2007). This synergy cannot be explained by the difference in the

enzyme levels or engraftment between the combination group and the AAV2/5

or BMT groups. Although this synergy is striking, the mechanistic basis of it

is not understood. It is possible that there is a greater reduction of cytokine

levels when compared to animals treated with BMT alone observed in the pre-

vious study (Wu et al., 2001). Also, the disease remains largely uncorrected in

the spinal cord and cerebellum. Therefore, myeloreductive BMT was combined

with AAV2/5 gene delivery to forebrain, cerebellum and spinal cord. Additional

targeting of the cerebellum and spinal cord, resulted in significant improvement

in most outcome measures. The only exception was the tremor phenotype,

which was not improved in animals receiving BMT. In order to understand the

mechanism of synergy, several inflammatory markers were qualitatively and

quantitatively assessed. Despite providing essentially no enzyme activity and

no decrease in psychosine, addition of BMT virtually eliminated the inflamma-

tion and greatly enhanced the effects of AAV2/5. The data strongly suggest that

BMT when combined with AAV2/5, decreases inflammation which provides the

dramatic therapeutic synergy.
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2.4 Materials and Methods

2.4.1 Animals

Heterozygous twitcher (GALC+/-) mice on a congenic C57BL/6 background

were obtained from The Jackson Laboratory (Bar Harbor, ME). Mice were main-

tained under the supervision of M.S.S. at Washington University School of

Medicine. The mice were housed under standard conditions with ad libitum

access to food and water. Homozygous twitcher mice (GALC-/-) were obtained

by heterozygous by heterozygous matings. The genotype was determined by

twitcher-specific PCR (Sakai et al., 1996). Only the mice surviving till weaning

were used for the study. All animal experiments were approved by the Insti-

tutional Animal Care and Use Committee at Washington University School of

Medicine.

2.4.2 Recombinant AAV2/5 vector

The AAV2/5 vector used in this study has been previously described (Lin et al.,

2005; 2007). The expression of murine GALC is under the control of chicken

β-actin promoter and CMV enhancer. The 3’ end of the GALC cDNA has the 3’

untranslated region from the rabbit β-globin gene and SV40 polyA sequences.

Adeno-associated Virus 2 pseudotyped with the AAV 5 capsid (AAV2/5) was

made at University of Florida viral vector core using previously published meth-

ods (Zolotukhin et al., 1999). The AAV2/5 titer was determined by dot blot

hybridization of DNase-resistant viral DNA and compared to known quantities

of vector plasmid. The virus was diluted to a final titer of 1.3 X 1012 particles/ml
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and stored at -70 ◦C till use.

2.4.3 Therapeutic regimen

The study consisted of the following groups: untreated wildtype (untreated

wt), untreated twitcher (untreated mut), BMT-only wildtype (BMT-WT), BMT-only

twitcher (BMT-mut), AAV2/5-only twitcher (AAV-mut) and combination-treated

twitcher (AAV+BMT- mut). The regimen for the AAV+BMT-mut group consisted

of AAV2/5 injections on day 2 or 3 of life and BMT on the following day. Prior to

injections, the newborn mice were anesthetized by inducing hypothermia on ice

packs for 10-15 minutes. CNS-directed gene therapy consisted of an intrathecal

injection (Elliger et al., 1999) and 6 intracranial injections. Injections were done

into the neonatal spine in the midline at the upper lumbar vertebral column. A

total of 20 µl of virus [15 µl of AAV2/5 and 5 µl of filter-sterilized 6% green food

coloring (Durkee products, Ankeny, Iowa) in Ringer’s lactate] was injected using

a 50 µl Hamilton syringe (Hamilton Company, Reno, NV). The procedure was

considered successful only if the green dye reached the posterior fontanelle.

For intracranial delivery, 2 µl of AAV2/5 was injected at each of six sites (3 sites/

hemisphere) into the brain. Injections were performed using a Hamilton Syringe

fitted with a 32-guage needle based on the sutural landmarks visible in a day

2 neonatal mouse. The depth of injection was controlled by using a guard on

the needle. The injection sites were: a) forebrain- 2mm lateral and 1mm caudal

to bregma and 1.5mm deep, b) thalamus- 2mm lateral and 2.5mm caudal to

bregma and 2.5mm deep; and c) cerebellum- 1mm lateral and 3mm posterior

to lambda and 2.5mm deep.
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For BMT, the bone marrow donors were sex-matched syngeneic WT (GALC

+/+) mice expressing GFP under the control of CAGGS promoter (Okabe et al.,

1997). Newborn mice received 400 rads of total body γ radiation from 137Cs

source for conditioning followed by injection of 106 GFP(+) sex-matched un-

fractionated nucleated bone marrow cells in 100 µl volume into the superficial

temporal vein (Sands and Barker, 1999).

2.4.4 Flow cytometry

In order to quantify the hematopoietic-derived cells in the CNS (Sedgwick et al.,

1991; Campanella et al., 2002; Cardona et al., 2006; McCandless et al., 2006),

perfused mice brains were treated with collagenase/ DNase buffer after homog-

enization and passed through a 70 µm filter. The hematopoietic-derived cells

were isolated by separation on a percoll gradient. Cells were then counted using

a hemocytometer and stained with fluorophore-conjugated antibodies after Fc

receptor block. The following cells were identified and quantified by flow cytom-

etry: Resting microglia (CD11b+, CD45lo), activated microglia/ macrophages

(CD11b+ CD45hi), CD8 T-cells, CD4 T-cells and neutrophils (Gr1hi, F4/80-).

Spleen and bone marrow from wildtype animals were used for positive con-

trols. Data were acquired using Cell Quest pro software (BD biosciences, San

Jose, CA) and analyzed using FloJo software (Tree Star Inc., Ashland, OR).

The absolute cell numbers isolated from each brain were calculated using the

hemocytometer cell counts and the percentage of cells that are stained with a

respective combination of fluorophores. For quantifying donor hematopoietic

engraftment, bone marrow was harvested from femurs at 36 days of age and
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the percentage of GFP(+) cells were determined.

2.4.5 Quantitation of Psychosine

Psychosine levels were quantified in the brains and spinal cords at post-natal

day 36, essentially as described previously (Jiang et al., 2009). Briefly, tissues

were flash-frozen, pulverized and weighed. Internal standard N,N-dimethyl

psychosine was added at this stage and lipids were extracted with 2:1 chlo-

rofom:methanol containing 5% ammonium hydroxide. Extracted lipids were

treated with 1.0 M lithium hydroxide in methanol, then washed with diethyl ether

and hexanes, and extracted with chloroform. Lipids were then dried under nitro-

gen, and resuspended in 1:1 chloroform:methanol. This sample was analyzed

by mass spectrometry as described previously (Jiang et al., 2009). Psychosine

concentration was calculated by comparing the psychosine peak intensity to

that of the internal standard.

2.4.6 Multiplex sandwich immunoassays

This assay is based on a procedure described by (Hulse et al., 2004). The

Bio-Plex multiplex cytokine kit (Bio-Rad laboratories, Hercules, CA) was used

for these analyses and the assays were performed essentially as per manu-

facturers’ specifications. The following cytokines were quantified: IL-1α, IL-

1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12(p40), IL-12(p70), IL-13, IL-17,

Eotaxin, G-CSF, GM-CSF, IFN-γ, KC, MCP-1, MIP-1α, MIP-1β, RANTES and

TNF-α. PBS-perfused mice brains were homogenized in a solution consisting

of 10 mM Tris, 150 mM NaCl, 1 mM Dithiotreitol, 0.2% Triton-X and 20 µl/ml
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of Protease Inhibitor Cocktail (P8340, Sigma, St. Louis, MO). The supernatant

from brain homogenates was diluted to obtain a protein target concentration

of 0.5-1.0 mg/ml and stored at -70◦C. Once thawed, the supernatant from the

homogenates was incubated with the fluorescent beads from the kit, washed

and then incubated with biotin-labeled antibody cocktail. The samples were

then incubated with streptavidin-PE and the fluorescence values were read and

analyzed by the flow cytometry based Bio-Plex 2200 system (Bio-Rad labora-

tories, Hercules, CA). The concentration of the cytokine in each sample was

calculated by using the standard curve generated for each cytokine by the stan-

dards supplied in the kit.

2.4.7 Protein assay

Protein assays were performed in order to normalize cytokine levels, GALC

activity and psychosine levels. Total protein concentration was determined us-

ing a protein assay reagent based on Coomasie dye-binding assay (Bio-Rad,

Hercules, CA). A standard curve was generated using known concentrations of

bovine serum albumin (BSA).

2.4.8 Immunohistochemistry

Brains and spinal cords were collected after the animals were perfused with

phosphate buffered saline. The tissue was immersion fixed in 4% paraformalde-

hyde overnight at 4◦C followed by cryoprotection in 30% sucrose at 4◦C. The

tissues were then frozen in tissue-tek O.C.T. compound (Sakura Finetek, Tor-

rance, CA) and cryosectioned. For immunostaining, the tissues were fixed in
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4% paraformaldehyde for 30 minutes followed by peroxidase quenching with

hydrogen peroxide for 15 minutes. The sections were then stained with the ap-

propriate dilution of primary antibodies overnight at 4◦C. The primary antibody

was detected using the appropriate secondary antibody (1:1000 for , strepta-

vidin conjugated using Vectastain kit (PK-6101,Vector laboratories, Burlingame,

CA) and developed using Peroxidase kit (Vector laboratories, Burlingame, CA).

The sections were then mounted, dehydrated and coverslipped. The antibod-

ies used were rabbit anti-mouse GFAP (1:200, Immunostar Inc., Hudson, WI),

rat anti-mouse CD68 (1:1000, ABD serotec, Oxford, England) anti-rabbit sec-

ondary from Vectastain kit (PK-6101, Vector laboratories, Burlingame, CA) and

mouse absrobed anti-rat secondary (Vector laboratories, Burlingame, CA).

2.4.9 GALC activity

Brains and spinal cords were flash frozen in liquid nitrogen after perfusion. They

were then homogenized and the supernatant was frozen at -70◦C until ready

to use. GALC activity was determined by cleaving radioactively labeled 3H-

galactosylceramide (Wenger, 1991). Excess uncleaved substrate was extracted

using chloroform:methanol saturated with galactose. The free 3H-Galactose

activity was measured in a scintillation counter as counts per minute (CPM) and

the specific activity of the enzyme was calculated as nanomoles of substrate

cleaved per hour per mg of total protein.

Histochemical staining for GALC activity was performed using the previously

described method (Dolcetta et al., 2004). Brains and spinal cords were pro-

cessed for histology as above. Sections on slides were incubated in citrate-
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phosphate (CP) buffer (pH 4.5) for 15 minutes. They were then transferred to

a solution containing 5 mg/ml taurodeoxycholic acid and 5 mg/ml oleic acid in

CP buffer for 15 minutes. They were then incubated for 2 hours in a solution

containing taurodeoxycholate, oleic acid, 5mM potassium ferrocyanide, 5mM

potassium ferrocyanide and 2 mg/ml X-Gal (Gold Biotechnology, St. Louis, MO)

in CP buffer. Sections were counterstained with Nuclear Fast Red (Sigma, St.

Louis, MO), dehydrated and coverslipped.

2.4.10 Histology

For Luxol Fast Blue and Periodic Acid-Schiff (LFB/PAS) staining, tissues were

processed as above and embedded in paraffin. Ten-micron-thick sagittal sec-

tions of the brain and transverse sections of the spinal cord were stained using

standard procedures (Lin et al., 2007).

2.4.11 Tremor monitoring

Quantitative analysis of tremor was performed using an ultrasensitive force-

plate actometer essentially as described (Reddy et al., submitted). The animals

were acclimated for at least 30 minutes in the same room prior to tremor mon-

itoring. Data recording was conducted between 2 pm and 6 pm. Data were

collected for 6 min, but only the first minute, when movement was maximal,

was used for the tremor analyses. Briefly, 12-bit integer raw data files were ac-

quired with a LabMaster interface (Scientific Solutions, Mentor, Ohio) that was

controlled by a DOS-based Free Pascal program (http://www.freepascal.org).

Custom-written Free Pascal programs was used to calculate distance traveled
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and the number of low mobility bouts (see below).

The following data were extracted from the raw data files (Fowler et al.,

2001): (a) Fz- the net force exerted by the animal. Each time series (Fz(t))

was Fourier transformed using the fft function in MATLAB (The Mathworks,

Inc., Natick, MA). A 500-point Hanning time-domain data window was used.

The individual frequencies obtained after Fourier transformation were plotted

as a continuous function (power spectrum) after filtering to retain frequencies

between 2.5 and 30.0 Hz. (b) The frequency at peak power was taken as the

frequency at which the power was at its maximum. (c) Power between 13 and

20 Hz was obtained by integrating the area under the power spectrum curve be-

tween 13 and 20 Hz. The aforementioned power spectrum variables (a-c) were

computed for each individual mouse, and these variables were then subjected

to standard statistical treatments (see below).

2.4.12 Lifespan and behavioral testing

The life span was measured by noting the date of death or sacrifice. Animals

were humanely sacrificed if they had hindlimb paralysis or appeared moribund.

Body weight was measured weekly. Behavioral testing was performed using

previously established protocols (Lin et al., 2007). Accelerating rotarod and

wire hang tests were performed every five days starting at 25 days of age. In

the accelerating rotarod (3-9 rpm), the maximum time for the animal to fall off

the rotarod was noted. In the wire hang test, the latency of the animal to fall,

from holding an inverted cage lid, was noted. The maximum latency for both the

tests was 60 seconds and the best value from three trials was used for analysis.
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An n of 10-15 were used per group. Repeated measures analysis could not be

performed due to attrition. Insteasd, ANOVA was performed across groups at

two pre-determined time points (35d and 70d).

2.4.13 Diffusion Tensor Imaging (DTI)

Briefly, five 36-day-old animals from different treatment groups underwent DTI,

as described previously (Hofling et al., 2009), with isoflurane/oxygen anesthe-

sia. Diffusion weighted images were obtained using Stejskal-Tanner spin-echo

diffusion weighted sequence (Stejskal and Tanner, 1965) in a Oxford Instru-

ments 200/330 magnet (4.7 T, 40 cm clear bore) equipped with a 10-cm inner

diameter, actively shielded Magnex gradient coil (maximum strength = 60 G/cm;

rise time = 200 ms). The magnet, gradient coil, and gradient power supply were

interfaced with a Varian Unity INOVA console (Palo Alto, CA, USA) controlled

by a Sun Blade 1500 workstation (Sun Microsystems, Santa Clara, CA, USA).

Multiple transverse slices covering L1 - L3 spinal cord levels were obtained with

the following parameters: TR =1500 ms (determined by the respiratory rate of

the mouse), TE = 37 ms, slice thickness = 1.0 mm, field of view = 1 cm x 1 cm,

data matrix = 128 ’ 128 (zero-filled to 256 ’ 256). Diffusion-sensitizing gradients

were applied in six orientations: (Gx,Gy,Gz) = (E,E,0), (E,0,E), (0,E,E), (-E,E,0),

(0,-E,E), and (E,0,-E) where E = 0.707 with a gradient strength = 13.5 G/cm,

gradient duration (d) = 7 ms, and gradient separation (D) = 18 ms resulting in b

values of 0 and 1000 s/mm2. The diffusion tensor for each pixel was estimated

using a weighted linear least-squares method (Koay et al., 2006). Eigenvalue

decomposition was then applied to the tensor, yielding a set of eigenvalues (l1,
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l2, l3) and eventually axial diffusivity (λ || = l1), and radial diffusivity (λ = (l2 +

l3)/2) diffusivity for each pixel. Regions of interest (ROIs) for dorsal spinal cord

white matter (DWM) and ventrolateral spinal cord white matter (VLWM) were

drawn using ImageJ software. The DTI parameters for each ROI were aver-

aged across three spinal cord levels (L1-L3), including eight 1-mm consecutive

slices.

2.4.14 Statistical methods

Graphpad prism (GraphPad Software, Inc., La Jolla, CA) and R (www. R-

project. org) software were used to generate graphs and perform statistical

analyses. Survival curves were generated by Kaplan-Meier method and anal-

ysis was done using log-rank test. Multiple group comparisons were done us-

ing ANOVA, and was followed by Bonferroni’s multiple comparison procedures.

Analysis of behavioral data was done using one-way ANOVA at specific time

points with post-hoc Bonferroni comparisons.

2.5 Results

2.5.1 GALC activity

To provide a sensitive test for evaluating conditions with decreased GALC ac-

tivity, we conducted an ANOVA followed by pair-wise comparisons on the un-

treated wt, untreated mut, and BMT-mut groups. A significant ANOVA (p=0.0048)

indicated that the groups differed in GALC activity. Post-hoc comparisons showed

that GALC activity in the untreated mut group was significantly less than that of
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the untreated wt group, and compared to the untreated mut group, there was

no significant increase in GALC activity in the BMT-mut group ( Figure 2.1 A).

A similar ANOVA model was used to evaluate treatments that increased GALC

activity and included untreated wt, AAV-mut, and AAV+BMT mut groups. In the

AAV-mut and AAV+BMT-mut groups, GALC activity was significantly different

(p<0.0001) and approximately five-fold greater than untreated wt levels. There

was no significant difference between the AAV-mut and AAV+BMT-mut groups

(Figure 2.1 B) The distribution of enzyme activity in the brain and the spinal

cord was evaluated using a histochemical stain for GALC (Dolcetta et al., 2004;

2.1 C-N). Galactosylceramidase activity in the forebrain is concentrated in the

lateral ventricles in the AAV-mut and AAV+BMT-mut groups (asterisk; Figure

2.1 E and F). There are also GALC-positive cells spread throughout the cor-

tex and hippocampus. In the hindbrain, the enzyme activity is prominent in the

ependyma of the fourth ventricle (asterisk in Figure 2.1 I and J). In the spinal

cord, intense enzyme activity is seen in the meninges (Figure 2.1 M and N).

There appears to be a spread of the activity along the initial part of the spinal

nerve roots to the spinal grey matter (Figure 2.1 M and N, arrowheads).

2.5.2 Hematopoietic engraftment and donor-derived cells in

the CNS

Hematopoietic chimerism and donor cell infiltration into the CNS were mea-

sured at 36 days of age using flow cytometry by determining the percentage of

GFP(+) cells in the bone marrow and brain, respectively (Figure 2.2). All groups

receiving BMT had hematopoietic chimerism between 3 and 29%. There was
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no significant difference in the levels of bone marrow engraftment between the

various groups receiving BMT (Figure 2.2 A). There was no significant increase

in GFP (+) cells (FL1 channel) in the brains of animals receiving BMT compared

to background fluorescence (Figure 2.2 B).

2.5.3 Psychosine levels

Psychosine is a toxic metabolite that is known to accumulate in the CNS of the

twitcher mice (Igisu and Suzuki, 1984) and is used as a biochemical surrogate

to assess efficacy of treatment (Ichioka et al., 1987). Statistical analyses similar

to that performed for GALC activity were used to compare psychosine levels

between different groups. Psychosine levels in the brain and the spinal cord

(Figure 2.3 A and C) showed that the levels are significantly increased in the

untreated mut group compared to the untreated wt group. In the brains and

spinal cords of the AAV-mut and in AAV+BMT-mut groups (Figure 2.3 B and D),

the levels of psychosine are significantly less than untreated twitcher mice and

approach those of normal animals. Interestingly, BMT alone does not reduce

psychosine levels in either brain or spinal cord compared to untreated twitcher

mice (Figure 2.3 A and C).

2.5.4 Histology-LFB and PAS

Brains and spinal cord of various treatment groups were examined for myelin

architecture and globoid cells using LFB/PAS staining. The corpus callosum

of the brains of untreated wt mice (Figure 2.4 A) showed extensive staining

with LFB and no PAS-positive cells. Three 36-day-old untreated mut brains
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had numerous PAS-positive cells within the white matter (arrowheads in Figure

2.4 B). Occasional PAS-positive cells were also seen in the cortex. Two of the

three mice in the AAV-mut group (Figure 2.4 C) and all three mice examined in

the AAV+BMT-mut group (Figure 2.4 D) appeared to have a slight reduction in

the number of PAS-positive macrophages in the white matter. Two of the three

mice in the AAV+BMT-mut group also had cerebellar dysplasia with loss of the

normal cerebellar architecture. The brains of the BMT-mut group animals were

not examined.

There appeared to be a slight reduction in the number of PAS+ cells in the

spinal cords of all three animals from both the AAV-mut and AAV+BMT-mut

groups (Figure 2.4 G and H). The three mice examined from the BMT-mut group

failed to show any obvious reduction in the PAS-positive cells in the spinal cord

(data not shown), and the sections appeared histologically indistinguishable

from those seen in the untreated mut group (Figure 2.4 F).

2.5.5 Diffusion Tensor Imaging (DTI) of the Spinal Cord

Using Diffusion tensor imaging, axial diffusivity (λ||) and radial diffusivity (λ⊥)

were measured in vivo in the dorsal (DWM) and ventrolateral white matter

(VLWM) from all study groups. The radial and axial diffusivity heatmaps are

shown in Figure 2.5 A-H. In the DWM, axial diffusivity of the untreated mut and

the AAV-mut groups show a significant reduction compared to the untreated wt

group (Figure 2.5 I). Interestingly, there is a significant increase in the axial dif-

fusivity in the AAV+BMT-mut group compared to the untreated mut group (Fig-

ure 8I). In the VLWM, a significant decrease in the axial diffusivity was observed
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in the untreated mut group compared with the untreated wt group (Figure 2.5

J). In both the AAV-mut and AAV+BMT-mut groups, λ|| was comparable to that

of the untreated wt group (Figure 2.5 J).

The in vivo radial diffusivity in the DWM of the untreated mut group (Figure

2.5 K) was significantly higher than that of the untreated wt group. There was

no significant difference between the untreated wt group and the AAV-mut or

AAV+BMT-mut groups. In the VLWM, a significant increase in radial diffusivity

was seen in untreated mut mice relative to the untreated wt, AAV-mut, and

AAV+BMT-mut groups (Figure 2.5 L).

2.5.6 Lifespan and Behavior

Twitcher mice have a significantly shortened median lifespan (41d) compared to

normal littermates. There is a significant (p<0.001) increase in median lifespan

to 71 days (Figure 2.5 A) in the AAV-mut group. There is a further increase

in the median lifespan to 123 days (range: 92-282 days) in animals from the

AAV+BMT-mut group. The increase in median lifespan of the AAV+BMT-mut

group compared to the AAV-mut group was highly significant (p<0.001).

Untreated mut mice have significant behavioral deficits as measured by the

rotarod and wire-hang tests (Figure 2.5 B and C). At 35 d, the AAV-mut and

AAV+BMT-mut groups performed significantly better than untreated mut mice

on the accelerating rotarod. At 70 days of age, the AAV-mut and AAV+BMT-mut

groups had significantly reduced latencies on the accelerated rotarod (Figure

2.5 B) compared to the untreated wt group. Interestingly, long-lived AAV+BMT-

mut animals showed a sustained higher level of performance on the rotarod
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until they were terminally ill. In contrast, the untreated mut and AAV-mut groups

showed a steady decline in motor function as they aged. These observations

suggest that hindlimb paralysis or weakness, which is prominent in the un-

treated mut group, appeared much less severe in the AAV+BMT-mut group.

The results from the wire-hang test were consistent with these observations

in that latencies to fall were significantly longer in the AAV+BMT-mut group com-

pared to the untreated mut and the AAV-mut groups at the 35d time point (Fig-

ure 2.5 C). There was no significant difference in performance between the

AAV-mut group and the untreated mut group. At 70 days, the latency on the

wire-hang test was significantly higher in the AAV+BMT-mut group compared to

the AAV-mut group, but the improvement was modest.

There is a significant increase in body weights in both the AAV-mut and

AAV+BMT-mut groups at day 35 (Figure 2.5 D) compared to the untreated mut

group. The animals in the AAV-mut group steadily lose lost weight beyond 40d

whereas the animals in AAV+BMT-mut group maintained their weight for the

duration of the study.

2.5.7 Effect of treatment on tremor

Tremor is one of the characteristic phenotypes of the twitcher mouse. The effect

of various treatments on the tremor phenotype was evaluated using a specially

constructed force-plate actometer (Reddy et al., submitted). The force variation

created by the individual mice was analyzed after Fourier transformation of the

raw data and the power spectra were generated from the output. The averaged

power spectra of the untreated wt and AAV-mut groups appear similar (Figure
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2.7 A). The untreated mut and AAV+BMT-mut groups appear similar to each

other but different from the untreated wt and AAV-mut groups. Compared to

the untreated wt group, the frequency of peak power and the power between

13 to 20 Hz were significantly increased in the AAV+BMT-mut group, but not

in the AAV-mut group (Figure 2.7 B and C). There was no significant differ-

ence between the AAV-mut and AAV+BMT-mut groups with respect to the total

distance traveled (Figure 2.7 D) or the number of low mobility bouts (data not

shown). The similarities (i.e., non-significant differences) between untreated wt

and AAV-mut shown in Figure 2.7 A-D, collectively represent the therapeutic

benefit of CNS-directed AAV2/5-mediated gene therapy on the tremor pheno-

type. The therapeutic benefit of CNS-directed AAV2/5-mediated gene therapy

on tremor phenotype seemed to be negated with the addition of BMT.

In order to directly assess the effect of myeloreductive conditioning and BMT

on tremor, the phenotype of wildtype mice that received BMT (BMT-WT) was as-

sessed. The BMT-WT group had greater power in both the frequencies around

10-12 Hz and in the higher frequencies in the 13-20 Hz range compared to the

untreated wt group (Figure 2.7 A). The power between 13 and 20 Hz (Figure

2.7 C) was significantly increased in the BMT-WT group compared to the un-

treated wt group. The total distance traveled was significantly decreased in the

BMT-WT group compared to the untreated wt group (Figure 2.7 D).

2.5.8 CNS inflammation

Central nervous system inflammation is a prominent pathologic feature of GLD.

Numerous PAS-positive globoid cells (macrophages with engulfed myelin de-
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bris) are found in the white matter (Figure 2.4; Suzuki et al., 2000). Us-

ing flow cytometry, the various inflammatory cells in the brain were quanti-

fied (Figure 2.8). Compared to the untreated wt group, the untreated mut

group showed a trend towards an increase in CD45hiCD11b+ cells (activated

microglia/macrophages; Figure 11B and F). There is a significant increase in

activated microglia/macrophages, CD4, and CD8 T-cells in the AAV-mut group

compared to the untreated wt group (Figure 2.5 A, C and D). The presence

of CD4 and CD8 T-cells was unique to the AAV-mut group. Interestingly, the

increases in activated microglia, CD4 and CD8 T-cells were reversed in the

AAV+BMT-mut group (Figure 2.8 A-D and F). There was no increase in neu-

trophil (Gr1hiF4/80-) numbers in any groups compared to the untreated wt group

(data not shown).

Another important component of inflammation are the cytokines and chemo

kines. Several cytokines and chemokines were found to be altered in the brains

of the twitcher mouse (Figure 2.9). The most highly elevated cytokines in

the untreated mut group compared to the untreated wt groups were KC (Ker-

atinocyte Chemoattractant; CXCL1) and IL-12(p40). Interestingly, KC and IL-12

(p40) are significantly decreased (p<0.001) in the AAV-mut and AAV+BMT-mut

groups compared to the untreated mut group. There was a significant elevation

in KC in the BMT-mut group compared to the untreated mut group. The cy-

tokine MCP-1 was detected in the untreated mut and BMT-mut groups, but not

in untreated wt, AAV-mut and AAV+BMT-mut groups. The cytokines TNF-α and

MIP-1β were decreased in the untreated mut group compared to the untreated

wt group. The levels of these cytokines in the AAV-mut and AAV+BMT-mut
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groups were similar to that of the untreated wt group. Interestingly, no increase

in these two cytokines was seen in the BMT-mut group.

The brains and spinal cords of the animals of various groups were immunos-

tained for Glial Fibrillary Acidic Protein (GFAP). Regions showing increased

GFAP staining represent sites of active inflammation. GFAP staining was ex-

tensive in the brain and spinal cord of the untreated mut group (Figure 2.10 B,

F J and N). In the brains of the AAV-mut group (Figure 2.10 C and G), GFAP

staining appeared to be similar or slightly decreased compared to that of the

untreated mut group. However, in the brains of the AAV+BMT-mut group (Fig-

ure 2.10 D and H), the staining was much less than either the untreated mut or

the AAV-mut groups, although it seemed to be slightly more than that of the un-

treated wt group. In contrast, GFAP staining in the AAV-mut spinal cord seems

to be similar to the AAV+BMT-mut group and much less than the untreated mut

group (Figure 2.10 J, K and L).

Similarly, when the brains and the spinal cords were immunostained for

CD68 (macrosialin), increased immunoreactivity was seen in untreated mut

group (Figure 2.11 B, F and J) compared to the untreated wt group (Figure

2.11 A, E and I). In the AAV-mut group, the CD68 immunostaining was de-

creased in the forebrain and spinal cord (Figure 2.11 C and J), but appeared to

be increased in the hindbrain. This correlates well with the overall similarity in

the microglial number by flow cytometry (Figure 2.11 F). In the AAV+BMT-mut

group, there appeared to be an overall decrease in the CD68 immunostaining

in forebrain, cerebellum and spinal cord compared to either untreated mut mice

or AAV-mut mice (Figure 2.11 D, H and L).
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2.6 Discussion

It is clear that, no single therapy to date can completely treat GLD. Previ-

ous studies have shown that combining BMT with substrate reduction therapy,

lentiviral-mediated or AAV2/5-mediated gene therapy resulted in additive or syn-

ergistic improvements (Biswas and LeVine, 2002; Lin et al., 2007; Galbiati et

al., 2009). Combining BMT with AAV2/5 gene therapy (Lin et al., 2007) resulted

in synergistic benefits. In the previous study (Lin et al., 2007), the AAV2/5-

mediated gene therapy component was limited to the forebrain. Perhaps not

surprisingly, there were no decreases in the disease markers in the cerebellum

and spinal cord. In the current study, myeloreductive BMT was combined with

AAV2/5-mediated gene therapy directed to the forebrain, cerebellum and spinal

cord. The increased gene delivery combined with BMT in the current study fur-

ther improved motor function and increased lifespan. To our knowledge, this is

the greatest clinical improvement observed in the twitcher mouse on the con-

genic C57BL/6 background. This improvement extended to the cerebellum and

spinal cord. Improved myelination was observed in the spinal cord as evidenced

by decreased radial diffusivity on MRI. Radial diffusivity represents water diffu-

sion perpendicular to the axon. When myelin damage occurs radial diffusivity

increases (Hofling et al., 2009). Decreased axonal damage is also observed

in the spinal cord as an increase in axial diffusivity. Axial diffusivity represents

the water diffusion parallel to the axon. A decrease in axial diffusivity implies

compromised axonal integrity (Hofling et al., 2009). It has been hypothesized

that the accumulation of psychosine in oligodendrocytes is the primary insult

leading to the disease. It was recently shown that psychosine preferentially
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accumulates in lipid rafts and it was hypothesized that lipid raft perturbation is

the cellular mechanism of psychosine toxicity (White et al., 2009). Both CNS-

directed AAV2/5 gene therapy alone and in combination with BMT significantly

reduced psychosine levels in the brain and spinal cord. It will be of interest to

determine if the distribution of psychosine is also altered following therapy.

Although nearly every clinical measure (lifespan, motor function and body-

weight) was significantly improved in the animals receiving AAV+BMT com-

pared to animals receiving AAV alone, the tremor was more severe in the com-

bination -treated animals. This is clearly associated with the bone marrow trans-

plant procedure and is most likely due to the conditioning radiation. We showed

previously that conditioning radiation, even relatively low doses (200-400 rads),

in neonatal animals causes cerebellar dysplasia (Sands et al., 1993). The CNS

damage might be even worse with myeloablative conditioning regimens. These

data demonstrate the benefits and drawbacks of BMT and highlight the need

for less invasive treatments.

The combination therapy also dramatically decreased CNS inflammation.

There is normalization of several cytokines, in particular IL-12 (p40), KC (Ker-

atinocyte chemoattractant; CXCL1) and MCP-1 (Macrophage Chemoattractant

Protein). Interestingly, the primary sources of these three cytokines in the brain

are astrocytes and macrophages (Leonard and Yoshimura, 1990; Filipovic et al.,

2003; Gee et al., 2009). The decrease in the above cytokines and chemokines

correlates with the decreased number of macrophages and decreased astro-

cyte activation observed in the AAV-mut and AAV+BMT-mut groups, but not in

the BMT-mut group. The cytokine KC is increased in the untreated mut group
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compared to the untreated wt group. The primary role of KC is in neutrophil

chemotaxis (Boisvert et al., 1998; Liu et al., 2010). Interestingly, there is no in-

crease in neutrophil numbers in the brains of the untreated mut mice. However,

KC is also known to affect oligodendrocyte proliferation and migration. Con-

sistent with KC’s actions on oligodendrocytes, KC is elevated in demyelinating

disease models like the jimpy mice (Wu et al., 2000a) and in brains of patients

with multiple sclerosis (Filipovic et al., 2003). It is possible that the primary role

of KC in GLD is to act as a chemoattractant and mitogen during oligodendro-

cyte development and/or repair(Tsai et al., 2002). The decrease in KC in the

treated animals is consistent with reduced myelin damage.

The chemokine MCP-1 is a macrophage chemoattractant and is increased

in the untreated mut and BMT-mut groups, both of which have greater numbers

of histologically demonstrable globoid cells and increases in CD45hiCD11b+

cells by flow cytometry. The levels of the pro-inflammatory cytokines TNF-α and

MIP-1β are decreased in the untreated mut group compared to the untreated

wt group. Given the profound inflammatory response associated with GLD,

one might predict that TNF-α would be increased. However, TNF-α signaling

through TNF receptor 1 may not play a significant role in the progression of

GLD. This is supported by the fact that the lack of TNF receptor 1 does not

alter the course of the disease in the twitcher mouse (Pedchenko et al., 2000).

The reason for the decrease of TNF-α in the untreated mut group could be

indicative of the profound and persistent demyelination associated with GLD.

TNF receptor 2 is upregulated during demyelination and remyelination (Arnett

et al., 2001) and may act as a sink effectively reducing TNF-α levels.
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The current study clearly shows that, CNS-directed AAV2/5-mediated gene

therapy is associated with an increase in activated microglia, as well as CD4+

and CD8+ T-cells in the twitcher mouse. CD4 and CD8 T-cell responses are

typically associated with viral infections (Doherty, 1985). An increase in CD4

and CD8 T-cells was also observed in normal control mice following an injection

of the same vector expressing palmitoyl protein thioesterase 1, a ubiquitously

expressed lysosomal enzyme (data not shown). Although AAV2/5-mediated

gene therapy resulted in GALC levels several fold higher than normal, the in-

creased inflammatory response could contribute to the limited clinical improve-

ments observed with this therapy alone. When BMT is added to the regimen,

the AAV2/5-associated inflammation is virtually eliminated. This is especially

interesting considering the fact that BMT alone provides little or no GALC ac-

tivity, no decrease in psychosine and seems to exacerbate certain aspects of

the inflammatory response (KC, MCP-1 and IL-12). These data strongly sup-

port the hypothesis that BMT has a direct immunomodulatory effect on AAV2/5-

mediated gene therapy and could explain the dramatic synergy. It also suggests

that in order for BMT to exert its immunomodulatory effects, GALC activity must

also be present. The GALC activity is likely necessary to reduce psychosine

levels, thus decreasing the toxic insult.

Although the immunomodulation by BMT seems to be a plausible explana-

tion, there appears to be a discrepancy between the cellular inflammation and

the cytokines. The AAV-mut group shows a decrease in some of the elevated

cytokines but an increase in the cellular inflammation. On the other hand, the

AAV+BMT-mut group shows a decrease in cytokine levels as well as a decrease
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in cellular inflammation. The cytokine elevations appear to correlate with the ex-

tent of demyelination rather than the infiltration of inflammatory cells.

In a different therapeutic paradigm, BMT using high dose (800-900 rads)

myeloablative radiation in 9-10 day old mice is known to extend the lifespan

in the twitcher mice (Yeager et al., 1984). Galactosylceramidase-positive bone

marrow derived-cells have been shown to enter the CNS (Hoogerbrugge et

al., 1988) and can result in GALC activity in the CNS as high as 15% of wild-

type (Hoogerbrugge et al., 1989). However, this level of enzyme results in an

increase in median lifespan to only about 80 days (Yeager et al., 1984; Hooger-

brugge et al., 1989). Interestingly, a similar BMT regimen is also associated with

downregulation of several pro-inflammatory cytokines in the twitcher mice (Wu

et al., 2001). Therefore, either decreasing inflammation or supplying enzyme, or

both, appears to be responsible for the efficacy of BMT following high dose con-

ditioning. Based on the data presented here, we believe that immunomodulation

plays a significant role in the efficacy of BMT. It will be particularly interesting

to perform BMT experiments in the twitcher mice using conditions that allow for

higher levels of engraftment during the neonatal period (Bruscia et al., 2006).

This will help determine the respective contributions of enzyme activity and im-

munomodulation. To summarize, myeloreductive BMT effectively augments the

therapeutic benefit seen with CNS-directed AAV2/5-mediated gene therapy in

GLD. Several reasons make the use of a myeloreductive conditioning regimen

more attractive than the currently used myeloablative regimen. It is known that

BMT is most effective when performed during the pre-symptomatic neonatal pe-

riod and fully myeloablative neonatal BMT has a high mortality rate (Escolar et

39



al., 2005; Weinberg, 2005). Myeloreductive conditioning regimens are known to

result in lower mortality, lower incidence of graft-versus-host disease, and stable

engraftment (Jacobsohn et al., 2004; Shenoy et al., 2005). Therefore, we pro-

pose that combination therapy using an AAV vector and myeloreductive BMT

during the neonatal period is a viable approach for treating GLD. Of course, this

approach would be greatly facilitated by widespread implementation of newborn

screening programs (Duffner et al., 2009). Future studies might further improve

on this regimen by adding other therapies like substrate reduction (Young et

al., 2004), increasing BM engraftment, increasing the number of donor-derived

cells entering the brain (Young et al., 2004), and using transduced bone marrow

expressing high levels of enzyme (Naldini, 2011). Two interesting observations

from the study were pursued in greater detail. The alteration of tremor pheno-

type by BMT was contradictory to what was expected and the further charac-

terization of the phenotype is described in chapter 4. The dramatic elevation of

KC and its reduction with therapy was very interesting and the role of KC in the

disease was further characterized as described in chapter 5.
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Figure 2.1: GALC activity and distribution. GALC activity was significantly
higher in the untreated wt mice compared to the untreated mut and BMT-mut
groups (A). There was no significant difference between the untreated mutant
and BMT-mut groups (A). A separate analysis showed that the GALC activity
in the brains of AAV-mut and AAV+BMT-mut groups was approximately five-fold
greater and significantly different from that of the untreated wt group (B). Hori-
zontal bars represent means and error bars represent SEM (*p<0.05, **p<0.01
and ***p<0.001). GALC activity can be seen histochemically in the forebrain
(C), cerebellum (G) and spinal cord (K) of the untreated wt group. In contrast
no GALC staining is observed in the forebrain (D), cerebellum (H) or spinal
cord (L) of the untreated mut group. Intense GALC staining is observed in the
ependyma of lateral and fourth ventricles of the AAV-mut and AAV+BMT-mut
groups (asterisks; E, F, I and J). Intense staining was also observed in the
meninges of the spinal cord and along the spinal nerve roots (arrows; M and
N) of AAV-mut and AAV+BMT-mut mice. Panels C-J were imaged at the same
magnification, scale bar in F and J is approximately 600 µm. Panels K-N were
imaged at the same magnification, scale bar in N is approximately 600 µm.
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Figure 2.2: Engraftment and GFP+ cells in the brain. The number of GFP+
donor cells present in the bone marrow and brains were determined using flow
cytometry. The levels of bone marrow engraftment at day 36 were between
3 and 29%. There is no significant difference in donor engraftment in various
groups receiving BMT (A). The number of cells present in FL1 channel (“GFP
channel”) in the brain was similar in all the groups tested. There is no significant
difference in the GFP+ cells in the brains between the treated and untreated
groups (C).
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Figure 2.3: Psychosine levels in the brain (Psychosine-brain, A and B) and the
spinal cord (Psychosine-sc, C and D) were measured using mass spectrome-
try. In the brain, the psychosine levels were highly elevated in the untreated mut
compared to untreated wt group, while levels were significantly increased in the
BMT-mut group relative to both the untreated wt and untreated mut groups (A).
In spinal cord, both the untreated mut and BMT-mut groups had significantly
increased psychosine levels compared to the untreated wt mice (C). The anal-
yses conducted on treatments that decreased psychosine levels showed that
both the AAV-mut and AAV+BMT-mut groups had significantly reduced levels of
psychosine compared to the untreated mut mice in both brain (B) and spinal
cord (D). There was no significant difference in psychosine levels between the
AAV-mut and AAV+BMT-mut groups in either the brains or spinal cord. The hor-
izontal bars represent the means and the error bars represent SEM. (*p<0.05,
**p<0.01 and ***p<0.001).
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Figure 2.4: Luxol fast blue-Periodic Acid Schiff staining of the anterior com-
missure of the corpus callosum of representative animals is shown (A-D). The
untreated wt animal (A) has essentially no PAS-positive macrophages within
the white matter, the untreated mut (B) mouse shows prominent PAS-positive
macrophages within the white matter (arrowheads), and both the AAV-mut (C)
and AAV+BMT-mut (D) mice show a reduction in the number of PAS-positive
macrophages in this region of the brain. Sections from the lateral white matter
of the spinal cord from an untreated wt mouse (E) show no PAS-positive ma-
crophages within the white matter whereas sections from the same area of an
untreated 36-day-old twitcher mouse (F) show numerous PAS-positive macro-
phages (arrowheads). There appears to be a slight reduction of PAS-positive
cells in the spinal cords of both the AAV-mut (G) and AAV+BMT-mut groups (H).

44



Figure 2.5: Diffusion Tensor Imaging. Heat maps of axial diffusivity ( λ||, A-
D) and radial diffusivity (λ⊥, E-H) in the spinal cord obtained by DTI. In the
DWM (I), there is a significant decrease in the axial diffusion in the untreated
mut group compared to the untreated wt group. The AAV-mut and AAV+BMT-
mut groups show an increase in axial diffusion compared to the untreated mut
group. In the VLWM (J), the axial diffusivity of the untreated mut is signifi-
cantly decreased compared to the untreated wt and the treated groups. Radial
diffusivity in the DWM (K) is significantly increased in the untreated mut com-
pared to the untreated wt. The treated groups are intermediate between the
untreated wt and untreated mut groups. In the VLWM (L), there is a significant
increase in the radial diffusivity in the untreated mut compared to untreated wt.
There is no significant difference between the untreated wt and the AAV-mut
and AAV+BMT-mut groups. The horizontal bars represent the means and the
error bars represent SEM. (*p<0.05, **p<0.01, ***p<0.001).
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Figure 2.6: Survival and Behavior. Kaplan-Meier curves showing the survival of
various treatment groups (A). The median lifespan of the AAV-mut group (71 d,
range= 46-78d) was significantly greater than (p<0.001) that of the untreated
mut group (41d, range=24-46 d). The median lifespan of the AAV+BMT-mut
group (123 days, range=92-282 days) was significantly greater than that of the
AAV-mut group (p<0.001). Behavior was evaluated using constant speed ro-
tarod and wirehang test. Animals in the AAV-mut and AAV+BMT-mut group
performed significantly better than the untreated mut group in the accelerating
(B) rotarod motor function tests at 35 days and at 70 days of age (arrows).
There was a statistically significant improvement in latency on wire-hang test
only in the AAV+BMT-mut group (C) at day 35 of age. Body weights (D) in the
AAV+BMT-mut group were significantly higher compared to the untreated mut at
35 days of age. There was no significant difference between the AAV-mut and
untreated mut groups at 35 days of age. At 70 days of age, the body weights
were significantly higher in the AAV+BMT-mut group compared to the AAV-mut
group. The body weights were maintained in the long-lived animals from the
AAV+BMT-mut group. Error bars represent SEM.
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Figure 2.7: The averaged power spectrum (A) of the untreated mut group (blue
line) is shifted towards higher frequencies with a broader bandwidth compared
to the untreated wt group (solid black line). In the AAV-mut group (red line),
the averaged power spectrum is similar to that of the untreated wildtype. In the
AAV+BMT-mut group (solid gray line), the power spectrum is shifted towards
higher frequencies compared to the AAV-mut group and is similar to the un-
treated mut group. Compared to the untreated wt group, there is a significant
increase in the frequency of peak power (B) and the power between 13 and
20 Hz (C) in the AAV+BMT-mut group, but not the AAV-mut group. The dis-
tance traveled by the AAV-mut and AAV+BMT-mut groups (D) is significantly
increased compared to the untreated mut group. BMT alone altered the tremor
phenotype in the wildtype mouse. The averaged power spectrum (A) of the
BMT-WT group (solid green line) is shifted upward and rightward compared to
the untreated wt group (solid black line). The frequency of peak power (B) and
the power between 13 and 20 Hz (C) were significantly increased in the BMT-
WT group compared to the untreated wildtype group. The distance traveled by
the BMT-WT group was significantly decreased compared to the untreated wt
group (D). The horizontal bars represent the mean and the error bars represent
SEM (*p<0.05, **p<0.01, ***p<0.001).
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Figure 2.8: Flow Cytometry -brains. Representative bivariate plots show
the relative numbers of CD4+ and CD8+ T-cells (A) and activated microglia
(CD45hiCD11b+) (B) in brains of untreated wt, untreated mut, AAV-mut and
AAV+BMT-mut groups. Quantitation of T-cells shows that there is a significant
increase in CD4 and CD8 T-cells (C and D) in the AAV-mut group compared
to the untreated wt. There is no increase in CD4 and CD8 T-cells in the un-
treated mut and AAV+BMT-mut groups compared to the untreated wt group (B,
C and D). There appears to be an increase in CD4, CD8 and activated microglia
(CD45hiCD11b+) in the AAV-mut group compared to other groups. Quantitation
of resting microglia (CD45loCD11b+) (E) shows that there is a significant de-
crease in these cell numbers in the untreated mut and AAV+BMT-mut groups
compared to the untreated wt group. Quantitation of activated microglia (F)
shows that there is a significant increase in these cell numbers in the AAV-mut
group compared to the untreated wt or AAV+BMT-mut group. There is no sig-
nificant difference between the activated microglial numbers between untreated
wt and AAV+BMT-mut groups. Horizontal bars represent means and the error
bars represent SEM .(*p<0.05).
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Figure 2.9: Chemokines and cytokines. There is a significant increase in KC
(A) in the brains of the untreated mut animals compared to the untreated wt an-
imals. The chemokine MCP-1 (B) is increased in the untreated mut group and
is undetectable in the untreated wt group. In both the AAV-mut and AAV+BMT-
mut groups, KC and MCP-1 levels are reduced similar to the untreated wt group.
The BMT-mut group does not show a decrease in the above chemokines com-
pared to the untreated mut group. The chemokine MIP-1β (C) is undetectable
in the untreated mut group and is present in the AAV-mut and AAV+BMT-mut
groups at levels comparable to the untreated wt group. The levels of MIP-1β
in the BMT-mut group are similar to that of the untreated mut group. The cy-
tokine TNF-α (D) is significantly decreased in the untreated mut group com-
pared to the untreated wt group. In the AAV-mut and AAV+BMT-mut groups,
the levels of TNF-α are similar to that of the untreated wt group. The levels
of TNF-α in the BMT-mut group are similar to that of the untreated mut group.
The cytokine IL-12(p40) (E) shows a trend similar to KC, with a significant in-
crease in the untreated mut group compared to the untreated wt group. Levels
of IL-12 (p40) in the AAV-mut and AAV+BMT-mut groups are similar to the un-
treated wt group. Horizontal bars represent mean and error bars represent
SEM. (*p<0.05, **p<0.01, ***p<0.001).
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Figure 2.10: GFAP immunohistochemistry. Representative images of GFAP
staining of brain and spinal cords are shown. Untreated mut animals have
higher GFAP immunoreactivity in all the regions of the CNS (B,F,J and N) com-
pared to untreated wt animals (A, E, I and M). Animals in the AAV-mut group
(C, G, K and O) appear to have similar or slightly decreased GFAP staining
compared to the untreated mut group. The AAV+BMT-mut group (D, H, L and
P) has less intense GFAP staining compared to the untreated mut and AAV-mut
groups. High magnification images (E, F, G and H) from the cortex show char-
acteristic activated astrocyte morphology. The spinal cords of the untreated wt
group have minimal GFAP staining (M) compared to the untreated mut group
(N). The spinal cords of the AAV-mut (O) and AAV+BMT-mut (P) groups stain
with similar intensity as that of the untreated wt group. Panels A-D and I-P
were imaged at same magnification, scale bars in D, L and P are approximately
600 µm. Panels E-H were imaged at same magnification and scale bar in H is
approximately 25 µm.
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Figure 2.11: CD68 immunohistochemistry. CD68 staining of the forebrain (A-
D), cerebellum (E-H) and the spinal cord (I-L) at 36 days of age show increased
staining in the untreated mut group (B,F and J). In the AAV-mut cerebellum
(G), the CD68 staining appears similar or increased in intensity to that of the
untreated mut (F). Interestingly, there appears to be decreased staining in the
spinal cord (K) and the forebrain (C). In the AAV+BMT-mut group, the CD68
staining is decreased in most regions and indistinguishable from untreated wt
mice in certain regions. Panels A-H were imaged at the same magnification,
scale bars in D and H are approximately 600 µm. Panels I-L were imaged at
the same magnification, scale bar in L is approximately 600 µm.
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Chapter 3

Phenotypic Characterization of
Tremor in the Twitcher Mice and its
Alteration After Therapy

3.1 Introduction

Although, tremor is a prominent phenotype in the twitcher mouse, very little is

understood regarding its origin and characteristics. Also, very little is known

about how the tremor is altered after various treatments, especially bone mar-

row transplantation (BMT) following harsh conditioning regimens. In the cur-

rent study, a detailed phenotypic characterization of the tremor in the twitcher

mouse was performed using a specially modified force-plate actometer (Fowler

et al., 2001). The sensitive transducers of the force-plate allowed recording of

the force generated by unusually small (7-13 g) mice with high temporal res-

olution (100 samples/s). Using Fourier analysis, the force generated by the

mouse was decomposed into individual component frequencies and was plot-

ted as a power spectrum. The power spectra and the locomotor activity of the

twitcher mice were compared to the wildtype mice to reveal several important

differences. The study also evaluated the efficacy of BMT in altering the tremor

phenotype in the twitcher mice. The current study systematically characterizes
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the tremor in the twitcher mice and establishes a quantitative tool for evaluation

of the effectiveness of various therapies.

3.2 Materials and methods

3.2.1 Colony maintenance

GALC +/- and wildtype mice on the C57BL/6J background were obtained from

The Jackson Laboratory (Bar Harbor, ME) and maintained under the supervi-

sion of M.S.S. at Washington University School of Medicine. The GALC-/- mice

were obtained by GALC+/- X GALC+/- matings. The galc genotype was deter-

mined by twitcher-specific PCR (Sakai et al., 1996). All animals were allowed

ad libitum access to food and water, except during brief (12-min or less) behav-

ioral recording sessions. All animal experiments were approved by Institutional

Animal Care and Use Committee at Washington University School of Medicine.

3.2.2 BMT and harmaline injections

Neonatal pups were genotyped on day 2 or 3 and BMT was performed on post

natal day 3 or 4. The mice received 400 rads of total body irradiation from a

137Cs source. The animals received an intravenous injection of 106 nucleated

bone marrow cells from a sex-matched GALC+/+, GFP (+) donor (Okabe et al.,

1997) via the superficial temporal vein (Sands and Barker, 1999).

Harmaline (1-methoxy-3, 4-dihydro-β-carboline, H1392, Sigma, St. Louis,

MO) at a dose of 15 mg/kg was injected intraperitoneally 12 minutes before the

start of tremor monitoring on post natal day 36.

The nomenclature for the various treatment groups and the number of ani-

mals used in the study is as follows: (a) UntWt- untreated wildtype (n=28), (b)
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UntMut- untreated mutant (twitcher; n=34), (c) BmtWt- wildtype mice treated

with BMT (n=12), (d) BmtMut- twitcher mice treated with BMT (n=7), (e) Un-

tWtHarm - wildtype mice treated with harmaline (n=11), (f) UntMutHarm- twitcher

mice treated with harmaline (n=8), (g) BmtWtHarm- BmtWt mice treated with

harmaline (n=11), and (h) BmtMutHarm- BmtMut mice treated with harmaline

(n=7).

3.2.3 Force plate actometer

The design of the original force plate actometer and the principles used in the

design were described previously (Fowler et al., 2001). For the current study

a force-plate actometer was custom made to accommodate the relatively low

body weight and impaired force production capabilities of the untreated twitcher

mice. The mean weight of the twitcher mice at 36 days was 10.4±1.6 grams

compared to 16.9±1.8 grams for wildtype mice at this age. The custom-made

actometer used a carbon fiber/nomex composite material for the load plate,

which weighed 57 g, was 3.2 mm thick and measured 24 cm X 24 cm. The

sensing area was 20 cm X 20 cm, and the cage that confined the mouse to

the load plate was constructed of 6.4 mm-thick clear polycarbonate with inside

dimensions of 20 cm long by 20 cm wide by 15 cm high. A removable clear

polycarbonate top was perforated with ventilation holes. The load plate was

supported by four Model 31a miniature strain gauge load cells purchased from

Honeywell/Sensotec (Columbus, Ohio). The load cells were calibrated to yield

a force resolution of 0.2 gram-force.
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3.2.4 Actometer data acquisition and analysis

The animals were acclimated for at least 30 minutes in the same room prior

to tremor monitoring. Data recording was conducted between 2 pm and 6

pm. For mice given harmaline, the drug or saline was injected 12 minutes

prior to recording. Data were collected for 6 min, but only the first minute,

when movement was maximal, was used for the tremor analyses. The record-

ings from the transducers were collected at 100 samples/s. The 12-bit inte-

ger raw data files were acquired with a LabMaster interface (Scientific Solu-

tions, Mentor, Ohio) that was controlled by a DOS-based Free Pascal program

(http://www.freepascal.org ). The data from the raw integer files were converted

to text files and formatted by Free Pascal programs for further processing by

commercially available software (see Statistics section below). Custom written

Free Pascal programs were used to calculate distance traveled and the number

of low mobility bouts (see below). The following data were extracted from the

raw data files (Fowler et al., 2001): (a) Fz- the net force exerted by the ani-

mal at a particular 0.01-s “instant” was calculated as the sum forces on each

of the four transducers that supported the load plate. The digitized Fz data

obtained at 100 samples/s for the first minute of the recording session were

formatted into 12 consecutive 5.00-s time series. Importantly, for the tremor

analyses the Fz time series data were expressed as a percent of each mouse’s

body weight. This normalization made it possible to compare the power spectra

across genetic and treatment conditions without potential confounding by the

body weight differences. Each time series (Fz(t)) was Fourier transformed us-

ing the fft function in MATLAB (The Mathworks, Inc., Natick, MA). A 500-point
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Hanning time-domain data window was used. The resulting 12 power spectra

were averaged together to yield a single power spectrum for each mouse. The

individual frequencies obtained after Fourier transformation were plotted as a

continuous function (power spectrum; see Figure 3.1 C) after filtering to re-

tain frequencies between 2.5 and 30.0 Hz. (b) The bandwidth was defined as

the difference between the upper and lower limit of the frequencies where the

power was half that of the maximum. (c) The center frequency was calculated

as the frequency co-ordinate of the vertical line bisecting the bandwidth. (d)

The frequency at peak power was taken as the frequency at which the power

was at its maximum. (e) Power between 13 and 20 Hz was obtained by inte-

grating the area under the power spectrum curve between 13 and 20 Hz. The

aforementioned power spectrum variables (a-e) were computed for each indi-

vidual mouse, and these variables were then subjected to standard statistical

treatments (see below). Although the tremor analyses were performed for the

first minute of force-plate recordings, the variables for tracking and quantifying

the mouse’s horizontal movements in the actometer were based on the entire

6-min session. (f) The X-Y position of the mouse on the force plate and (g) the

distance traveled by the animal was calculated using the principle of moments

and by calculating distance (in mm) between centers of force locations at suc-

cessive time points, respectively (Fowler et al., 2001). The X-Y locations of the

animal at various time points were plotted as a function of time to obtain the

(h) trajectory of animal movement. (i) X-Y coordinates of the center of force

as a function of time were additionally used to identify a low mobility bout,

which was defined in terms of a virtual circle with a radius of 15.0 mm that was
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centered on the mouse as it moved across the load plate. When 5.00 s elapsed

without movement beyond the perimeter of the circle, a low mobility bout was

tallied, and the 5.00-s time interval was reset in order to ”look for” the next bout.

This measure gives an indication of a mouse’s proclivity to ”stay in one place”

regardless of the location of that place on the load plate.

3.2.5 Statistical analyses

Systat (Systat Software Inc., Chicago, IL, USA) and Graphpad prism (Graphpad

Software, Inc., La Jolla, CA) were used for generating graphs and performing

statistical analyses. ANOVA or Kruskal-Wallis tests were used to compare dif-

ferent groups, and post-hoc multiple comparisons were done using Bonferroni

tests.

3.3 Results

3.3.1 Tremor and locomotion in twitcher mice

The qualitative differences in the Fz time series between the UntWt and UntMut

mice are shown in Figure 3.1 A and B. A Fourier transform was applied to the

Fz time series to obtain a power spectrum (Figure 3.1 C). The power spectra

of different animals were further analyzed to obtain the peak power, frequency

of peak power, center frequency, and bandwidth (Figure 3.1 C). Comparison of

the averaged power spectra of these two groups revealed a shift in the spectrum

with a predominance of higher frequencies (Figure 3.1 D) in the UntMut group

compared to the UntWt group. The center frequency and the bandwidth in the

UntMut group were significantly higher than these variables for the UntWt group

(Figure 3.1 E and F). The peak power (Figure 3.1 G), frequency of peak power
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(Figure 3.1 H) and the integrated power between 13 and 20 Hz (Figure 3.1 I)

were significantly increased in the UntMut group compared to the UntWt group

(p<0.001 for all three comparisons; t-test). The data for the UntWt group are

indicative of normal movements without any visible tremor, whereas the UntMut

(twitcher) mice exhibited the obvious tremor for which they are named. This

analysis shows that the tremor of the twitcher mice manifests itself as relatively

broad band, high-frequency force oscillations while on the force-plate.

The UntMut group had decreased locomotion compared to that of the Un-

tWt group. Representative trajectories of these two groups are shown in Figure

3.2A and B. The total distance traveled was significantly lower in the UntMut

group compared to the UntWt group (p<0.001, t-test; Figure 3.2 C). One way

to gain insight into the nature of the tremor phenotype of the UntMut group is

to compare these mutant mice with UntWt mice that are subjected to a rela-

tively well accepted pharmacological tremor model [harmaline treatment] (e.g.,

Wang and Fowler, 2001). Therefore, the tremor in the UntMut was compared to

the tremor in the wildtype mice injected with harmaline (UntWtHarm). Harma-

line induces a characteristic narrow-band, near 12-Hz tremor (see figure 3.6

for time series plots). When the UntMut and the UntWtHarm animals were

compared (Figure 3.3), there was a robust difference in the averaged power

spectra (Figure 3.3 A). When quantified, the mean of the center frequencies

from the UntMut mice (15.8 Hz) was significantly higher than the UntWtHarm

group (p<0.001; Bonferroni test, Figure 3.3 B). The UntWtHarm group had

a narrow peak at approximately 12.2 Hz, and the bandwidth was significantly

less than that of the UntMut group (p<0.001; Bonferroni test, Figure 3.3 C).
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There was no statistically significant difference between the distance traveled

and the number of low mobility bouts between the UntWtHarm and the UntMut

groups, probably because tremor-inducing doses of harmaline in intact animals

suppresses locomotion (Wang and Fowler, 2001) (data not shown).

Interestingly, when twitcher mice were injected with harmaline (UntMutHarm),

there was a blunted response with no statistically significant change in center

frequency or bandwidth compared to the UntMut group (Figure 3.3 B and C).

In the UntWtHarm group, the peak power was significantly higher (p<0.001;

Bonferroni test; Figure 3.3 D) while frequency of peak power was significantly

lower (p<0.05; Bonferroni test; Figure 3.3 E) compared to the UntMut group.

There was no significant difference between the UntMutHarm and UntWtHarm

groups with respect to the distance traveled or the number of low mobility bouts

(data not shown). Representative trajectories of animals from these groups are

shown in figure 3.7.

3.3.2 Effect of treatment on tremor

In order to directly assess the effect of myeloreductive conditioning and BMT

on the power spectra, tremor monitoring was performed on both wildtype and

twitcher mice that received BMT (i.e., comparison of BmtWt versus BmtMut).

The Fz time series recordings are shown in figure 3.6 A, B, E and F. The BmtWt

group had greater power in both the frequencies around 10-12 Hz and in the

higher frequencies in the 13-20 Hz range compared to the UntWt group (Figure

3.4 A). The BmtMut group had greater power in the near 10 Hz lower frequency

range compared to the UntMut group. The center frequency of the BmtWt group

was significantly increased compared to the UntWt group (p<0.05; Bonferroni
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test; Figure 3.4 B). There was no significant difference in the bandwidth in

the groups compared (data not shown). The peak power (Figure 3.4 C) and

the power between 13 and 20 Hz (Figure 3.4 E) was significantly increased in

the BmtWt group compared to the UntWt group but not in the BmtMut group

compared to the UntMut group. The frequency of peak power was significantly

increased in the BmtWt group compared to the UntWt group (Figure 3.4 D).

There is no significant difference in the frequency of peak power between the

BmtMut group and the UntMut group (Figure 3.4 D). The total distance traveled

was significantly decreased (decrement in normal function) in the BmtWt group

compared to the UntWt group (Figure 3.4 F). The trajectories of the various

groups are shown in figure 3.7 .

3.3.3 Harmaline response in BMT animals

Since the BMT-treated animals had additional higher frequencies in the aver-

aged power spectra, possible alteration of their olivocerebellar circuit properties

were tested by comparing their spectra to those of the mice receiving harma-

line after BMT (BmtWtHarm and BmtMutHarm). The Fz time series are shown

in figure 3.6 E-H. Interestingly, the mice in the BmtWtHarm group were more

resistant to the expression of harmaline-induced tremor than the UntWtHarm

group (Figure 3.5 A). The response to harmaline in the BmtMutHarm group

was similar to the UntMutHarm group (Figure 3.5 A). The center frequency and

the bandwidth were significantly higher in the BmtWtHarm group compared to

the UntWtHarm group (Figure 3.5 B and C). The peak power was significantly

lower in the BmtWtHarm group compared to the UntWtHarm group (Figure 3.5

D). Interestingly, there was no significant difference in the center frequency,
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bandwidth and peak power between the UntMutHarm and BmtMutHarm groups

(Figure 3.5 B, C and D). There was no significant difference in the distance trav-

eled or in the number of low mobility bouts in the groups compared (data not

shown). The movement trajectories for the animals in the current comparison

are shown in figure 3.7 .

3.4 Discussion

In the current study, a detailed quantitative characterization of the tremor pheno-

type (movement-related force oscillations) in the twitcher mice was performed

using an ultra-sensitive force-plate actometer. Unlike the results generated from

other tremor monitoring devices, the data in the current study were obtained in

unconstrained animals. This allowed for the simultaneous acquisition of tremor

data and locomotor activity data. One possible confounding issue with this de-

sign is the effect of group differences in ambulation on the tremor recording.

However, differences in ambulation do not appear to alter the relevant power

spectra that are used to evaluate the presence of tremor and the effects of treat-

ment on tremor. For example, similar differences are observed in the relevant

power spectra between twitcher mice and WT controls whether measurements

are compared for the whole session or during low mobility bouts (analyses not

shown).

The tremor in the twitcher mouse was seen as a relatively higher frequency

with a broader bandwidth than the movement-related force oscillations exhibited

by the wildtype mice moving normally on the force plate. The twitcher tremor

also differed substantially from the characteristic harmaline-induced tremor dis-

61



played by wildtype mice. Harmaline, at the doses used in the study (15 mg/kg),

is believed to disrupt olivocerebellar pathways (McMahon et al., 2004). The

current data suggest that the tremor in the twitcher mouse is of complex ori-

gin and not limited to the olivocerebellar circuits. However, the olivocerebel-

lar pathways in the twitcher mouse appear to be disrupted. This is indicated

by the blunted response of the twitcher mice to harmaline compared to the

wildtype mice. This behavioral result is consistent with histological findings of

widespread inflammation and demyelination throughout the neuraxis, including

the entire cerebellum and brainstem in twitcher mice. Although it is likely that

the effects of the twitcher mutation in the CNS are complex, the current study

implies the involvement of olivocerebellar circuits in the generation of the tremor

phenotype. Interestingly, disruption of the olivocerebellar circuit function similar

to that seen in mice lacking Kv3.3 potassium channel (McMahon et al., 2004),

leads to ataxia and tremor similar to the twitcher mice. Kv3.3 is expressed

mainly in the olivocerebellar circuit (McMahon et al., 2004). The olivocerebellar

circuit consists of inferior olivary nucleus, Purkinje cells and the deep cerebellar

nuclei (Jacobson et al., 2008). The proper functioning of the circuit is necessary

for learning and timing of movements among other functions. Similar to twitcher

mice, the mice lacking Kv3.3, showed no coherent rhythmic response to har-

maline (McMahon et al., 2004). Harmaline, at low doses acts predominantly on

the olivocerebellar pathways (Miwa, 2007). Thus, the decreased response to

harmaline in the twitcher mice and the mice lacking Kv3.3 can be attributed to

the existing olivocerebellar circuit dysfunction in these genetically altered mice.

The validity of tremor monitoring in evaluating the effects of various therapies
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was also determined. Hematopoietic cell transplantation (either using umbilical

cord blood or bone marrow) is the only available therapy for the human disease

(Krivit et al., 1998; Escolar et al., 2005). Bone marrow transplantation also pro-

longs the lifespan in the twitcher mouse (Yeager et al., 1984; Hoogerbrugge et

al., 1989; Lin et al., 2007). However, the effect of conditioning and bone mar-

row transplantation on the prominent tremor phenotype exhibited by the twitcher

mouse had not heretofore been determined. Twitcher mice receiving BMT had

power spectra that had greater power in higher frequencies, implying a wors-

ening of tremor. This is contradictory to what is observed in terms of other

measures like lifespan seen in the previous studies (Lin et al., 2007; Reddy et

al., submitted). The wildtype animals receiving only BMT had altered power

spectra and were resistant to the effects of harmaline compared to the wildtype

animals that did not receive BMT. These data suggest that BMT and the as-

sociated conditioning could possibly disrupt the olivocerebellar circuit function

during the neonatal period in the wildtype animals, and reduce the beneficial ef-

fect on tremor phenotype that could otherwise be expected. Interestingly, BMT

(with radiation conditioning) is known to cause cerebellar dysplasia in neonatal

mice (Sands et al., 1993). Conditioning and BMT could adversely affect some

as yet unknown regions in the brain or periphery to give the same abnormal re-

sponse. The current study thus highlights a possible harmful effect of condition-

ing in treating the disease. These effects could be explained by the presence of

rapidly proliferating cells in the cerebellum during the time of conditioning and

BMT (Noguchi et al., 2008). Although, the current study uses myeloreductive

conditioning (400 rads) at post natal day 3 or 4, similar and perhaps more se-
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vere function-compromising effects could be expected in studies that use fully

myeloablative regimens (Yeager et al., 1984; Hoogerbrugge et al., 1989). Con-

ditioning and BMT performed in newborn children (Escolar et al., 2005) may

superimpose additional abnormal phenotypes on this already complex disease

presentation. This could further complicate the interpretation of the therapeutic

benefits of BMT for GLD.

Since detailed histological evaluation of the olivary and cerebellar circuits

was not carried out in this study, the exact origin of the tremor in the above men-

tioned groups cannot be made. However, there is clearly pathology in the cere-

bellum of the mice which likely encompasses the olivocerebellar circuitry and

contributes to the tremor phenotype. It would be interesting to test whether the

basal ganglia are similarly functionally affected with the disease and treatments

using cholinesterase inhibitors like physostigmine (Wang and Fowler, 2001).

In addition to acquiring data regarding the various frequencies of the force

variation during movements, the force-plate actometer can be concurrently used

to measure locomotor activity. The total distance traveled during the recording

session was significantly decreased in the untreated twitcher mice compared

to the untreated wildtype mice. This study establishes the use of an ultra-

sensitive force-plate actometer in evaluating the effects of various therapies

for the twitcher mice. It also emphasizes the need to evaluate the impact of

various therapeutic approaches on a wide variety of functions before drawing

conclusions on their safety and efficacy.
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Figure 3.1: Characterization of tremor in the UntMut mice. Representative Fz
time series recording from an UntWt mouse (A) and an UntMut mouse (B) over
12 seconds (each series is 6 s). The X-axis represents time and the Y-axis
represents force the vertical force variation (Fz) recorded by the force plate ac-
tometer. A Fourier transformation performed on the Fz time series data yields
a power spectrum that shows how much power (variance) the Fz variation con-
tains at each frequency of oscillation. The power spectrum can then be further
analyzed to yield peak power, frequency at peak power, center frequency, and
bandwidth. These data are represented diagrammatically on a hypothetical
power spectrum plot (C). The averaged power spectrum (D) of the UntMut mice
(solid black line) was shifted towards higher frequencies compared to the UntWt
mice (dashed gray line). The center frequency (E) was significantly increased in
the UntMut (open circles) compared to the UntWt mice (filled squares). There
was a significant increase in the band width (F) in the UntMut compared to the
UntWt group. The peak power (G), frequency at peak power (H) and the power
between 13 and 20 Hz (I) were significantly increased in the UntMut group com-
pared to the UntWt group. The horizontal bars represent the mean and the error
bars represent the SEM (**p<0.01, ***p<0.001).
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Figure 3.2: Characterization of locomotor activity in the twitcher mouse. The
movement trajectory of representative UntWt and UntMut mice are shown in
(A) and (B), respectively. Each panel represents the movement of the mouse
for duration of 1 minute. The box in which each movement trajectory is plotted
represents the inside wall of the 20 cm X 20 cm cage that confined the mouse
to the load plate. Each point in the panel represents the XY location of the
mouse at a certain point of time. The total distance traveled during 6 minutes
is shown in (C).The total distance traveled by the UntWt mice (filled squares) is
significantly higher than that of the UntMut mice (open circles). The horizontal
bars represent the mean and the error bars represent the SEM (***p<0.001).
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Figure 3.3: Comparison of the tremor of the UntMut mice with that of the tremor
induced by harmaline. The average power spectrum (A) of the UntMut mice
(solid black line) reflected a broadband tremor and that of the UntWtHarm mice
(solid gray line) showed a characteristic narrow band 12 Hz tremor. The re-
sponse to harmaline was blunted in the UntMutHarm mice (dashed black line).
The center frequency (B) and bandwidth (C) were significantly increased in
the UntMut group (open circles) compared to the UntWtHarm group (filled dia-
monds), which exhibited the expected characteristic narrow band tremor typ-
ically induced by harmaline in mice. The peak power (D) was significantly
increased in the UntWtHarm group compared to the UntMut group. The fre-
quency at peak power was significantly decreased in the UntWtHarm group
compared to the UntMut group. There was no significant difference in the cen-
ter frequency, bandwidth, peak power and the frequency of peak power between
the UntMut and UntMutHarm groups (plus symbols). Horizontal bars represent
the mean and the error bars represent the SEM (***p<0.001, **p<0.01 and
*p<0.05).
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Figure 3.4: Effect of BMT on power spectra. The averaged power spectrum (A)
of the BmtWt group (dashed gray line) is shifted upward and rightward com-
pared to the UntWt group (solid gray line). Similarly, the averaged power spec-
trum in the BmtMut group (dashed black line) is shifted upward across a broad
frequency band compared to the UntMut group (solid black line). The center
frequency (B) was significantly increased in the BmtWt group (open triangles)
compared to the UntWt group (filled squares). There was no significant dif-
ference between the untreated mut (open circles) and BmtMut groups (cross
marks) in the center frequency. The peak power (C), frequency of peak power
(D) and the power between 13 and 20 Hz (E) was significantly increased in the
BmtWt group compared to the UntWt group. Compared to the UntMut group,
the BmtMut group showed no significant difference in the center frequency (B),
peak power (C), frequency of peak power (D) and power between 13 and 20
Hz (E). The distance traveled by the BmtWt group was significantly decreased
compared to the UntWt group (F). The horizontal bars represent the mean and
the error bars represent SEM (*p<0.05, **p<0.01, ***p<0.001).
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Figure 3.5: Harmaline tremor response in the BMT-treated animals. Aver-
aged power spectra of various groups treated with harmaline (A). The averaged
power spectrum of UntWtHarm group (solid gray line) appears different com-
pared to the averaged power spectrum of the other groups in (A). The averaged
power spectra of the BmtWtHarm (solid black line), UntMutHarm (dashed black
line), and BmtMutHarm (solid gray line) appear very similar to each other. The
center frequency (B) and the bandwidth (C) were significantly increased in the
BmtWtHarm group (open triangles) compared to the UntWtHarm group (filled
squares). The peak power (D) was significantly decreased in the BmtWtHarm
group compared to the UntWtHarm group. There was no significant difference
in center frequency, bandwidth or peak power between the UntMutHarm (open
circles) and BmtMutHarm groups (cross marks). Horizontal bars represent
the mean and the error bars represent the SEM . (***p<0.001, **p<0.01 and
*p<0.05).
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Figure 3.6: Comparison of the Fz time series in the various treatment groups.
The y-axis represents the Fz and the x-axis represents time. Each row repre-
sents 6s of recording.
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Figure 3.7: Comparison of the trajectories of representative animals from differ-
ent groups. Each column represents a single animal from a group. Each box
represents the movement trajectory of successive locations of center of force
(position of the mouse at any moment) across a one-minute block of time.

71



Chapter 4

The Role of KC and CXCR2 in the
Pathogenesis of Globoid-Cell
Leukodystrophy

4.1 Introduction

Inflammation is a prominent histopathologic feature of GLD and is characterized

by the presence of globoid cells (macrophages with engulfed myelin debris)and

astrocytosis (Suzuki et al., 2000, Lin et al., 2007, Reddy et al., submitted) in

the CNS. There is also an increase in some of the pro-inflammatory molecules

(LeVine and Brown, 1997; Wu et al., 2001; Luzi et al., 2009). Our previous

study (Reddy et al., submitted) has shown that the levels of KC (GRO-α; mouse

ortholog of CXCL1) was highly elevated in the CNS of the twitcher mice and that

the levels were restored after treatment.

KC belongs to the CXC family of chemokines (chemoattractant cytokines)

and is a potent macrophage (Boisvert et al., 1998; 2006) and neutrophil chemoat-

tractant (Tani et al., 1996). KC signaling through its receptor, CXCR2 synergizes

with another oligodendrocyte mitogen, Platelet Derived Growth Factor (PDGF)

to cause OPC proliferation, but can act independently to cause migration arrest

(Tsai et al., 2002). Since the CNS of twitcher mice have demyelination and in-
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flammation, we investigated the role of various cytokines in the two inter-related

aspects of the disease. Our results highlight the severity of primary oligoden-

drocyte damage resulting from the deficiency of the enzyme and the minimal

benefit of targeting the secondary processes in the disease.

4.2 Materials and Methods

4.2.1 Animal Procedures

Heterozygous (GALC +/-) mice on a congenic C57Bl/6J background were ob-

tained from The Jackson Laboratories (Bar Harbor, ME) and maintained under

the supervision of M.S.S. at the animal facility at Washington University School

of Medicine. The mice were housed under standard conditions in pathogen-free

facility with ad libitum access to food and water. The mutant twitcher mice were

obtained by heterozygous sibling matings. CXCR2+/- mice on C57Bl/6J back-

ground were a kind gift from Dr. Ann Richmond (Vanderbilt University, Nashville,

TN). KC+/- mice on the C57Bl/6J background were a kind gift from Dr. Sergio

Lira (Mount Sinai School of Medicine, New York City, NY). These mice were

bred to GALC+/- mice to obtain the KC-/- GALC-/- and CXCR2-/-GALC-/- mice.

The CXCR2 mice were maintained on antibiotic water (Trimethoprim / Sulpha

methoxazole).

4.2.2 Bone Marrow Transplantation

Animals were genotyped by PCR on postnatal day 9 or day 10. Nine day old

mice received 900 rads of total body γ-radiation from a 137Cs-source for condi-

tioning followed by injection of approximately 3-4 X 107 GFP+ sex-matched un-

fractionated bone marrow cells in 300 µl volume i.p. approximately 24 hours af-
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ter irradiation. Post-transplantation antibiotics included trimethoprim/ sulfamethox-

azole added to the water. The bone marrow donors were sex-matched syngenic

GALC +/+, GALC-/-, CXCR2+/+ or CXCR2-/- mice expressing GFP under the

CAGGS promoter maintained as separate colonies.

4.2.3 Flow cytometry

Flow cytometry was used to quantify the hematopoietic-derived cells in the CNS

and to measure bone-marrow chimerism with donor-derived GFP+ cells after

transplantation. For quantifying the hematopoietic-derived cells in the CNS

(Sedgwick et al., 1991, McCandless et al., 2006), perfused mice brains were

treated with collagenase/DNase buffer after homogenization. The hematopoietic-

derived cells were isolated by separation on a percoll gradient. Cells were

then counted using a hemocytometer and stained with fluorophore conjugated

antibodies after Fc receptor block (BD biosciences, San Jose, CA). The fol-

lowing cells were identified and quantified by flow cytometry: Activated mi-

croglia/macrophages (CD11b+ CD45hi), resting microglia (CD11b+, CD45lo),

CD8+ T-cells, CD4+ T-cells and Neutrophils (Gr1hi F4/80lo). The data was ac-

quired on a FACSCalibur flow cytometer (BD biosciences, San Jose, CA) using

Cell Quest software (BD biosciences, San Jose, CA) and analyzed using FloJo

software (Tree Star, Inc., Ashland, OR). The individual cell counts were obtained

by multiplying the percentages of the various cell populations obtained by flow

cytometry with the cell counts obtained by using the hemocytometer. Spleen

and bone marrow cells were used for positive controls. For quantifying donor

engraftment, bone marrow was harvested from the femur and the percentage

of GFP+ cells was determined.
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4.2.4 Cytokine sandwich immunoassays

The methods used in the study are as described previously (Hulse et al., 2004;

Reddy et al., submitted). Animals were perfused with ice cold PBS after deep

anesthesia. The brains and spinal cords were collected and homogenized in 10

mM Tris, 150 mM NaCl, 1 mM Dithiotreitol, 0.2% Triton-X and 20 µl/ml of Pro-

tease Inhibitor Cocktail (P8340, Sigma, St. Louis, MO). The supernatant was

diluted to 0.5-2 mg protein/ml and the samples were stored at -70◦C till use.

The concentration of various cytokines and chemokines was determined using

Bio-plex kit (Bio-Rad laboratories, Hercules, CA), a flow cytometry-based mul-

tiplex assay. The 23-plex sample kit includes the standards and antibodies for

the following cytokines: IL1 α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-

12(p40), IL-12(p70), IL-13, IL-17, Eotaxin, G-CSF, GM-CSF, IFN-γ, KC, MCP-1,

MIP-1α, MIP-1β, RANTES and TNF-α. A 3-plex kit for analyzing MIP-2, FGF-

2 and PDGF-BB was also used. The supernatant from brain and spinal cord

homogenates were incubated with the fluorescent beads, washed and then in-

cubated with biotin-labeled antibody cocktail. The samples were then incubated

with streptavidin-PE and the fluorescence values were read in the Bio-Plex 2200

system (Bio-Rad laboratories, Hercules, CA). Standard curves were generated

for each cytokine using the standards supplied with the kit and the individual

cytokine concentration in each sample was estimated. Protein concentration of

the samples was determined using the Bio-Rad protein assay reagent (Bio-Rad,

Hercules, CA), which is based on Coomasie dye-binding assay.
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4.2.5 Histology and Immunofluorescence

For oligodendrocyte proliferation studies, the animals were injected with 5 mg/kg

BrdU (B9285, Sigma, St. Louis, MO) every 8 hours for four days starting on day

32 of age. The lumbar spinal cords were collected after perfusion of the ani-

mals with PBS and 4% paraformaldehyde. The tissue was fixed in Enhanced

Decalcification Formulation (SL85-32, Statlab, Lewisville, TX) for 2 days and

cryoprotected in 30% sucrose. The tissues were then frozen in O.C.T. com-

pound (Sakura Finetek, Torrance, CA) and cryosectioned. For immunostaining,

the sections were stained with 1:50 dilution of NG2 antibodies (ab5320, Milli-

pore, Billerica, MA) and 1:100 dilution of mouse anti-BrdU (B2531, Sigma, St.

Louis, MO) overnight at 4◦C. The secondary antibody was detected using anti-

rabbit Alexafluor 555 (A-21428, Invitrogen, Carlsbad, CA) and goat anti-mouse

Alexa 488 (A-11001, Invitrogen, Carlsbad, CA). The images were acquired us-

ing Ziess laser confocal microscope (Carl Ziess Microimaging, LLC, Thorn-

wood, NY). Ten sections from each group with n=4 animals per group were

used for analysis. The cell counts were done manually using LSM/Axioskop

software (Carl Ziess Microimaging, LLC, Thornwood, NY). For LFB and PAS

staining, the tissues were fixed overnight in 4% paraformaldehyde after perfu-

sion with ice cold PBS and then transferred to 30% sucrose. The tissues were

embedded in paraffin and the LFB and PAS staining was done using standard

methods.
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4.2.6 Statistical methods

GraphPad prism (GraphPad Software, Inc., La Jolla, CA) was used for statistical

analyses and for generating graphs. Two-way unmatched ANOVA followed by

post-hoc Bonferroni comparisons were used for analyzing figures 4.1 C, 4.1

D, 4.4 C, 4.4 D, 4.4 G, 4.4 H, 4.11 A, 4.11 B, figures 4.2 , 4.3 and 4.6.

One-way ANOVA followed by post-hoc Bonferroni comparisons were used for

comparing various groups in figures 4.10 A, and 4.5. Log-rank test was used

to compare the Kaplan-Meier survival curves in figures 4.10 B, 4.8 A and 4.8

B. For statistical analysis of body weights, repeated measures ANOVA could

not be used because of attrition, therefore one-way ANOVA at pre-determined

time points was used instead in figures 4.10 C, 4.8 B and 4.8 D.

4.2.7 Genotyping

PCR for GALC was done using the protocol described previously (Sakai et al).

The following primers were used for genotyping KC (Tani et al., 1996): 5’-GAA

GAC AGA CTG CTC TGA TGG CAC-3’ and 5’-CCC TTC TAC TAG CAC AGT

GGT TGA-3’. The following primers were used for genotyping CXCR2 (Boisvert

et al., 1998): 5’-CCT CGT ACT GCG TAT CCT GCC TCA G-3’ and 5’-TAG CCA

TGA TCT TGA GAA GTC CAT G . The lack of KC or CXCR2 was confirmed

by the presence of Neo cassette in the same PCR reaction. The primers used

were: 5’-GGA TTG CAC GCA GGT TCT-3’ and 5’-GGA CAG GTC GGT CTT

GAC AAA-3’. GFP phenotype was determined using an ultraviolet lamp held on

the ventral surface of the newborn mice to detect greenish skin glow.
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4.3 Results

4.3.1 Altered cytokine profiles

Since inflammation is a prominent feature of the disease, and previous stud-

ies (Wu et al., 2001; Biswas and Levine, 2001; Reddy et al., submitted) have

shown alterations in cytokines, a more comprehensive survey of several cy-

tokines and chemokines in the brains and spinal cords were measured at differ-

ent time points. Several cytokines/chemokines were altered in the brains and

spinal cords of twitcher mice at different time points (Figure 4.1). Among the

altered molecules, the chemokine KC was most strikingly elevated in the mu-

tant compared to the wildtype (approximately 16-fold and 25-fold in the brain

and spinal cord respectively) (see Figure 4.1 A and B). KC is progressively

elevated in the brains and the spinal cords of twitcher mice (Figure 4.1 C and

D). Other cytokines that were altered were IL-12(p40) in the brain and IL-1α,

IL-6, IL-10 and IL-12 p40 in the spinal cord. Detailed alterations of the various

molecules that were assayed in the brain and spinal cords are shown in Figure

4.2 and Figure 4.3.

4.3.2 Cellular inflammation in the CNS of twitcher mice

KC (CXCL1) is a chemokine known to be chemotactic to neutrophils and macro-

phages (Tani et al., 1997; Boisvert et al., 1998). Review of the twitcher literature

showed no previous description of neutrophils in histopathological sections of

the brain and spinal cord. Our previous study (Reddy et al., submitted) also

did not show an elevation in the neutrophils in the CNS of the twitcher mice at

36 days of age. Therefore, we hypothesized that elevated KC is responsible
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for recruitment of macrophages into the CNS. Flow cytometry of the brains of

the various animals at different timepoints was performed to quantify the various

hematopoietic-derived cells (Figure 4.4). Two-way ANOVA showed that there is

a significant interaction effect by the genotype and the timepoint for both resting

and activated microglia. Post-hoc tests showed a significant increase in acti-

vated microglia (CD45hiCD11b+) in the twitcher brains at day 30. There was

no significant difference in the number of neutrophils (Gr1hiF4/80-) that were

detected in the brains of the wildtype or twitcher mice at different timepoints

(data not shown). Since IL-12(p40) was also elevated in the twitcher brains and

spinal cords, CD4 and CD8 T-cells in the brains were also quantified.

4.3.3 Inflammation in KC-/-GALC-/- mice

Since elevated KC correlated with an increase in activated microglia/ macropha-

ges (CD45hiCD11b+)in the twitcher mice, we hypothesized that twitcher mice

lacking KC would have decreased activated microglia in the CNS. Hence, KC-/-

GALC-/- mice were generated. Surprisingly, KC-/-GALC-/- mice did not show an

alteration in the various inflammatory cells in the brain and spinal cord, when

compared with that of KC+/+GALC-/- mice (Figure 4.5 and 4.6 ). Also, his-

tology of the brain and spinal cord did not reveal any major differences when

examined using LFB/ PAS staining (Figure 4.7). There was also no alteration

in the lifespan (Figure 4.8 A) or body weights (data not shown) of KC-/-GALC-/-

mice when compared with the KC+/+GALC-/- mice .
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4.3.4 Inflammation in CXCR2-/-GALC-/- mice

The similarity in the inflammatory profile between KC-/-GALC-/- and KC+/+GALC-

/- mice could be due to redundancy amongst the various cytokines and chemo

kines. In the CNS, KC acts predominantly on the CXCR2 receptor. CXCR2 is

involved in oligodendrocyte migration in the CNS (Tsai et al., 2002) and is in-

volved in the macrophage and neutrophil chemotaxis in the periphery (Boisvert

et al, 2002). Interestingly, several other chemokines (CXCL1-3, 6 and 7) also

act on the CXCR2 receptor (Bozic et al., 1994). It is possible that elevation of

any of the other four ligands could compensate for the lack of KC. Therefore,

we hypothesized that twitcher mice lacking CXCR2 would have decreased acti-

vated microglia and macrophages (globoid cells) in the CNS. CXCR2-/-GALC-/-

mice were generated in order to test the above hypothesis. When the histology

of the brains of CXCR2-/-GALC-/- mice were compared to CXCR2+/+GALC-

/- mice, using LFB/PAS, there was no qualitative difference between the two

groups (Figure 4.9). There was also no difference in lifespan (Figure 4.8 B)

and body weights (data not shown) in the CXCR2-/-GALC-/- mice when com-

pared to CXCR2+/+GALC-/- mice .

4.3.5 BM chimera experiments

Previous studies have shown that CXCR2+ cells are involved in demyelination

and transplantation of CXCR2 deficient bone marrow decreases the severity of

demyelination in the cuprizone model of demyelination (Liu et al., 2010). Al-

though our study did not find any alteration in neutrophils, macrophages are

prominent in the CNS of the twitcher mice. In the current study, global lack of
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KC or CXCR2 in the the twitcher mice does not alter the activated microglia /

macrophages or prevent demyelination. However, it is possible that the ben-

eficial effect of KC and CXCR2 deficiency in the bone marrow and other pe-

ripheral tissues are negated by their lack in the CNS or vice-versa, where they

would be important in promoting repair. We hypothesized that selective defi-

ciency of CXCR2 in the bone marrow or selective deficiency of KC in the CNS

would lead to decrease inflammation and alter the course of the disease. In

the twitcher mice, bone marrow transplantation supplies enzyme to the CNS

and by itself prolongs the lifespan (Yeager et al., 1984). Therefore, appropriate

controls were used to control for this therapeutic effect. Twitcher hematopoi-

etic chimeras lacking CXCR2 in the bone marrow or KC in the periphery (bone

marrow) did not show any difference in lifespan after comparable levels of bone

marrow engraftment (Figure 4.10 A and B). There was also no difference in the

weights of the various groups of twitchers that received transplantation (figure

4.10 C)

4.3.6 Role of KC and CXCR2 in oligodendrocyte proliferation

The striking elevation of KC in the brains and spinal cords of the twitcher mice

seem to have no apparent effect on the cellular inflammatory profile in the CNS.

Another important function of KC and CXCR2 is the proliferation of oligodendro-

cytes ( Tsai et al, 2002). KC and CXCR2 have been shown to be involved in

oligodendrocyte precursor proliferation and migration in other mice models of

demyelinating diseases like the cuprizone model, jimpy mice and Theiler’s en-

cephalitis (Robinson et al., 1997, Wu et al., 1998). In the twitcher mouse, as

reported in previous studies , there is an increase in proliferating oligodendro-
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cytes in the spinal cord (Taniike and Suzuki., 1995). Therefore, we hypothesize

that KC elevation is important in promoting oligodendrocyte proliferation seen

in the twitcher spinal cord. Since hindlimb paralysis is a prominent feature in

late stage of the disease in the twitcher mice, the ventral region of the lumbar

spinal cord will be evaluated for proliferating oligodendrocyte cells by Brdu/ NG2

double immunostaining.

4.3.7 Elevation of other chemokines and growth factors

Since KC and CXCR2 deficiency in either the CNS or the bone marrow had

minimal effect on the disease progression, the deficiency of the chemokine and

the receptor might be compensated by elevation of other cytokines or growth

factors or both. Measurement of cytokines that could potentially act on CXCR2

(for e.g., CXCL2 or MIP-2), and other oligodendrocyte mitogens like FGF-2 and

PDGF-BB in the spinal cord (Figure 4.11) show that there is a progressive and

a significant elevation in their levels with time. This elevation could compensate

for the lack of CXCL1 and CXCR2 and could bring about continued activation of

microglia. Similarly, there may be no difference in the oligodendrocyte prolifera-

tion in the mice lacking KC and CXCR2 due to elevation of other growth factors

like FGF-2 and PDGF-BB.

4.4 Discussion

A previous study (Reddy et al., submitted) has shown that KC is highly ele-

vated in the CNS of the twitcher mouse and the levels of KC correlate well with

the effectiveness of therapy. In the current study, the significance of the key

finding of elevated KC in the twitcher brains and spinal cords was explored in
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further detail. The elevation of KC was similar to that seen in other mouse

models of demyelinating diseases like jimpy mice (Wu et al., 2000), Theiler’s

encephalitis and EAE mice (Carlson et al., 2008). There was also a significant

increase in activated microglia in the terminal stages of the disease. This cor-

relates well with the histological observation of increased globoid cells in the

brain and spinal cord. Since KC and its receptor were known to be involved

in macrophage recruitement (Boisvert et al., 2004), we hypothesized that in-

crease in KC was detrimental to the progression of the disease by recruitment

and activation of microglia/macrophages. Contradictory to our prediction, there

was neither a decrease in the number of activated microglia nor was there a

alteration in the overall course of the disease in KC-/-GALC-/- mice.

Since there is considerable redundancy among the cytokines and chemokines,

we hypothesized that the compensatory effects of ligands could be overcome

by receptor knockout. Again, there was no alteration in the globoid-cells or the

overall course of the disease in the CXCR2-/-GALC-/- mice compared to the

CXCR2+/+GALC-/- mice. This observation could be explained again by the re-

dundancy in the chemokine system. KC could act on its alternative receptor

CXCR1 (Horuk et al., 1997) and bring about the same effects in the absence of

CXCR2.

As mentioned before, it is also possible that the beneficial effect of lack of

KC and CXCR2 in the bone marrow and other peripheral tissues are negated

by their lack in the CNS, where they would be important in promoting repair.

So, bone marrow chimeras in which the GALC-/- mice lacked either KC in the

CNS or CXCR2 in the bone marrow were created. Again, these chimeric mice
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showed no alteration in the course of the disease compared to GALC-/- mice

that received GALC+/+ marrow. From the above experiments, the role of KC

and CXCR2 in disease progression is not clear. It is possible that the primary

role of KC and CXCR2 is in oligodendrocyte proliferation and migration that is a

response to myelin destruction that is seen in the disease. Studies are currently

underway to determine if KC or CXCR2 have any role in oligodendrocyte prolif-

eration seen in the twitcher spinal cords. It is possible that the role of KC and

CXCR2 is highly redundant even in oligodendrocyte proliferation and migration

in response to injury. This could be possible because of the highly elevated

levels of FGF-2 and PDGF-BB in the spinal cords of the twitcher mice that was

found in the current study.

Although preliminary evidence of elevated growth factors was found in the

current study, the chemokine profiles that were altered in the twitcher mice lack-

ing KC or CXCR2 either in the entire body or in CNS and bone marrow compart-

ment was not characterized. This would help in delineating the exact molecular

pathways that could be important in creating the redundancy.

It was also surprising that elevation of KC had minimal effect on neutrophil

recruitment. Transgenic over-expression of KC in the CNS leads to a massive

infiltration of neutrophils (Tani et al., 1997). It is however possible that expres-

sion of KC in the endothelial cells played a prominent role in the neutrophil re-

cruitment. Among several studies discussing the neuropathology in the twitcher

mice, none of them have documented the presence of neutrophils.

Contrary to our expectation, there were activated microglia/ macrophages in

the CNS of the twitcher mice lacking KC and CXCR2. This implies that neither
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of the molecules are important for the recruitment /activation of the microglia

and macrophages or there are other redundant pathways. In a recent study

(Liu et al., 2010), it was shown that bone marrow chimeras with CXCR2-/- bone

marrow show reduced demyelination in response to cuprizone. It appears that

the lack of CXCR2 decreases the number of neutrophils (and possibly macro-

phages) and reduces demyelination. When similar chimeras were made in the

GALC-/- mice, no such effect was seen, implying that the myelin damage in

the twitcher mouse is very profound with minimal to no effect of the immune

system on the disease progression. Alternatively, the incomplete bone mar-

row chimerism obtained by irradiating 9-10 day old mice could leave enough

CXCR2+/+ cells in the bone marrow to cause demyelination. Since the disease

is rapidly progressive, generating complete bone marrow chimeras would be

challenging. All the above experiments strongly suggest that KC and CXCR2

have minimal to no effect on the inflammation in GLD. The other aspect that is

affected by KC and CXCR2 is the oligodendrocyte migration and proliferation.

These pathways could be activated in response to injury as seen in other mod-

els of demyelination (Robinson et al., 2008; Wu et al., 1998). Therefore, in vivo

oligodendrocyte proliferation was measured by quantitating the BrdU labelling

in the lumbar spinal cords of twitcher mice lacking KC or CXCR2. Although,

the oligodendrocyte proliferation in the twitcher spinal cords is higher than the

wildtype (Taniike and Suzuki., 1995), there could be no difference in oligoden-

drocyte proliferation in twitcher mice lacking KC or CXCR2. It is possible that the

proliferative response is also compensated by other growth factors like FGF-2

and PDGF-BB which are found to be elevated in the spinal cords of the twitcher
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mice.

To summarize, although KC is highly elevated in the CNS of the twitcher

mice, its deficiency has no apparent effect on the inflammation, oligodendro-

cyte proliferation or on the overall progression of the disease. These findings

highlight the profound and rapidly progressive oligodendrocyte damage in the

twitcher mice and emphasize the redundancy of the chemokine system in the

progression of disease. It appears that other therapeutic interventions would be

ineffective if the primary enzyme deficiency is not corrected.
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Figure 4.1: Cytokines and chemokines in the CNS of the twitcher mice.The
fold-elevation of various cytokines/chemokines assayed in the brain (A) and the
spinal cord (B) are shown. Among all the assayed molecules, the chemokine
KC showed greatest fold change in the brain (>15-fold) and in the spinal cord
(>25-fold) of the twitcher mice. The levels of KC in the brains and the spinal
cords of the twitcher mice showed a progressive increase with time (C and D).
The bars represent the mean and the error bars represent SEM. (**p<0.01,
***p<0.001)
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Figure 4.2: Cytokine profile in the brains of twitcher mice.The data obtained us-
ing 23-plex assay were normalized to the protein concentration of the individual
samples and plotted as shown below. Each individual cytokine was measured
at five time points. Two-way ANOVA were performed on each cytokine. The
vertical bars represent the means and the error bars represent SEM (*p<0.05,
**p<0.01, ***p<0.001).

88



Figure 4.3: Cytokine profile in the spinal cords of the twitcher mice.The data
obtained using assay similar to above were normalized to the protein concen-
tration of the individual spinal cord samples. Only the cytokines that showed
major alterations in the brains were assayed in the spinal cord. The cytokines
were measured at five time points. Two-way ANOVAs were performed on indi-
vidual cytokines. The bars represent the means and the error bars represent
SEM (*p<0.05, **p<0.01, ***p<0.001).

89



Figure 4.4: Characterization of the cellular inflammation in the twitcher CNS.
Representative bivariate flow cytometry plots of CD4 and CD8 T-cells isolated
from the wildtype (A) and twitcher (B) brains at day 36. These changes are
summarized for different time points in C and D, which show a trend towards
an increase in CD4 and CD8 T-cells. In panel E and F, representative bivari-
ate contour plots derived from CD45+ gated cells isolated from the CNS are
shown. In the wildtype (E), there are a large proportion of resting microglia
(CD45lo CD11b+) and the presence of a small percentage of activated microglia
(CD45hiCD11b+). In the twitcher mice (F), there is an increase in the percent-
age of activated microglia with time. These changes are quantified in G and
H. There is a significant increase in the number of activated microglia in the
twitcher mice brains at day 30. (Error bars represent SEM, *p<0.05).
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Figure 4.5: Cellular inflammation in KC-/- mice brains. Flow cytometric char-
acterization of inflammation in the KC-/-GALC-/- mice. Panels A-D show the
representative bivariate contour plots with CD8 and CD4 T-cells at day 36 in
various groups of mice. The cell numbers are quantified in E and F. There is
a significant increase in the CD4 T-cells in the brains of the KC-/-GALC-/- and
KC+/+GALC-/- mice compared to the KC+/+GALC+/+ mice (E). There is a trend
toward increase in the CD8 T-cells in the KC-/-GALC-/- and KC+/+GALC-/- mice
compared to the KC+/+GALC+/+ mice (F). Panels G-J show the representative
bivariate contour plots showing resting and activated microglia isolated from the
brain at 36 days of age. Panel K and L shows the quantitation of the resting and
activated microglia. There is no apparent difference between the KC+/+GALC-
/- mice and KC-/-GALC-/- mice. Panels M-P show the representative bivariate
contour plots of neutrophils (Gr1hiF4/80-) isolated from the brain. These cells
are quantitated in panel Q. There is no significant alteration in the neutrophil
numbers isolated from the CNS in all the groups tested. The bars represent the
mean and the error bars represent the standard error and *p<0.05.
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Figure 4.6: Cellular inflammation in KC-/- mice spinal cords. Flow cytometric
characterization of inflammation in the KC-/-GALC-/- mice. Panels A-D show
the representative bivariate contour plots with CD8 and CD4 T-cells at day 36
in various groups of mice. The cell numbers are quantified in E and F. There
is a trend towards an increase in the CD4 T-cells in the spinal cords of the
KC-/-GALC-/- and KC+/+GALC-/- mice compared to the KC+/+GALC+/+ mice
(E). There is a trend toward increase in the CD8 T-cells in the KC-/-GALC-/-
and KC+/+GALC-/- mice compared to the KC+/+GALC+/+ mice (F). Panels G-J
show the representative bivariate contour plots showing resting and activated
microglia isolated from the spinal cords at 36 days of age. Panel K and L shows
the quantitation of the resting and activated microglia. There is no significant
difference between the cell counts of KC-/-GALC-/- and KC+/+GALC-/- mice.
Panels M-P show the representative bivariate contour plots of neutrophils iso-
lated from the spinal cords. Neutrophils are Gr1hiF4/80-. These cells are quan-
titated in Q. There is no significant alteration in the neutrophil numbers isolated
from the CNS in all the groups tested. The bars represent the mean and the
error bars represent the standard error.
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Figure 4.7: LFB-PAS staining of twitcher mice lacking KC. Histology of the
brains and spinal cords showing LFB staining (blue) and PAS staining (pink) in
the corpus callosum (A-D) and cerebellum (E-H) in the various groups of mice
lacking KC and GALC. There is no difference in the KC+/+GALC+/+ and KC-
/-GALC+/+ mice in all the tissues examined. The KC-/-GALC-/- tissues show
histology which is essentially similar to the KC+/+GALC-/- (twitcher) with similar
myelin staining and distribution of globoid cells. Scale bars are approximately
50 µ m.

Figure 4.8: Survival of KC-/-GALC-/- and CXCR2-/-GALC-/- mice. Kaplan-
Meier curves showing survival proportions of KC-/-GALC-/- mice (A) and
CXCR2-/-GALC-/- mice (B). There is no significant difference in survival be-
tween KC-/-GALC-/- and KC+/+GALC-/- mice or between CXCR2-/-GALC-/-
and CXCR2+/+GALC-/- mice ( log-rank test).
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Figure 4.9: LFB-PAS staining of CXCR2-/-GALC-/- mice. Histology of CXCR2-
/-GALC-/- mice compared to CXCR2+/+GALC-/- (twitcher) mice. There is no
difference in the histology of these two groups in the forebrain (A-D) and cere-
bellum (E-H) in either with LFB (blue staining) or PAS staining (pink). Scale bar
in H is approximately 50 µm.

Figure 4.10: Effect of CXCR2 and KC bone marrow chimeras on the progres-
sion of GLD. The survival of the various chimeras lacking KC or CXCR2 only
in the CNS or only in the periphery is shown in A. Transplanting wildtype bone-
marrow in to the twitcher mice (k+g+ to k+g-; solid gray line) is therapeutic and
extends the survival to a median of approximately 80 days. When GALC-/- bone
marrow is transplanted to GALC-/- mice (k+g- to k+g- ; dashed gray line), the
median lifespan is 45 days as compared to the untransplanted KC+/+GALC-/-
mice which is 40 days (data not shown). The survival after BMT was similar in
various chimeras lacking KC only in the CNS (k+g+ to k-g-) or CXCR2 in the
periphery (c-g+ to c+g-). Bone marrow engraftment determined at 36 days of
age (26d post transplant), shows that the engraftment of various groups is be-
tween 40 and 60% (B). There was no significant difference between the various
groups. The weights (C) of various bone marrow chimeras are not significantly
different from each other, but are significantly decreased compared to the wild-
type chimera controls.
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Figure 4.11: Alteration of cytokines and growth factors that could possibly com-
pensate for the lack of KC or CXCR2. MIP-2, PDGF-BB and FGF-2 levels in the
spinal cords of twitcher mice. MIP-2 (CXCL2) levels are progressively elevated
in the spinal cords of the twitcher mice (A). Similar progressive increase is seen
in FGF-2 and PDGF-BB. Vertical bars represent the mean and the error bars
represent SEM (*p<0.05, **p<0.01, ***p<0.001).
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Chapter 5

Summary, Conclusions and Future
Directions

5.1 Combination therapy experiment

5.1.1 Summary and Conclusions

In our current study, described in chapter 2, additional targeting of the spinal

cord and the cerebellum results in an improvement in lifespan compared to the

limited targeting of only the forebrain and thalamus (Lin et al., 2007). In the

previous study performed in our lab (Lin et al., 2007), the median lifespan of

the twitcher mice was extended from 38 days in the untreated twitcher mice

to about 55 days with AAV2/5 alone or to about 105 days using AAV+BMT. In

our current study, the cerebellum and spinal cord were also targeted, since it

appeared that the pa-thology in these regions was not corrected in the previous

study. This led to an improvement in the lifespan to a median of 72 days using

AAV2/5 alone and a median of 123 days using both AAV2/5 and BMT. This also

led to associated improvements in biochemical and histological pa-rameters.

However, in the mice that received AAV2/5 alone, inflammation markers (CD4

T-cells, CD8 T-cells and activated microglia) were increased. Interestingly, addi-

tion of BMT to AAV2/5 appeared to result in an overall decrease in inflammation
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even though BMT alone provides no GALC activity and no reduction in psycho-

sine. It is possible that the addition of BMT to AAV results in a direct decrease

in inflammation resulting from immunomodulation.

5.1.2 Future directions

Although the CNS was extensively targeted and the brain showed a greater

than 5-fold increase in overall enzyme activity, the median lifespan was only

about 72 days in the animals that received AAV2/5. This may imply that 1) all

of the cells in the CNS were not uniformly tar-geted, 2) the peripheral nerves

and organs are important targets for therapy, or 3) the secondary processes in

the disease were inadequately targeted. Based on the findings of the study,

several future experiments can be envisioned that could improve therapeutic

efficacy and address the mechanism of synergy and are discussed in detail

below.

Strategies targeting oligodendrocytes

Oligodendrocytes are prominently affected in the disease. Targeting oligoden-

drocytes should be the primary focus of therapy. Some of the gene therapy

vectors like AAV and adeno-virus mostly target the neurons and show poor tar-

geting of oligodendrocytes (Howard et al., 2008). Using viral vectors that show

higher affinity towards oligodendrocytes (e.g. AAV8 and AAV serotype rh43)

(Lawlor et al., 2009) could prove to be an improvement over existing viral vec-

tors. Another method for improved targeting of oligodendrocytes is to use phage

panning (Chen et al., 2009). In phage panning, a phage library is created with

various peptides on the phage capsid and the phages that are bound to the spe-
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cific cell types (e.g. endothelial cells or oli-godendrocytes) are isolated after the

phages are delivered in vivo. One of the important therapeutic principles in the

treatment of lysosomal storage diseases is cross-correction, which is discussed

in detail in chapter 1. However, with GALC, it appears that the cross-correction

in the oligodendrocytes is poor, which could be a limiting factor in therapy. In

vitro transwell experiments have shown that the enzyme cross-correction ob-

tained in oligodendrocytes is significantly lower than that of fibroblasts (Luddi

et al., 2001). This suggests that the enzyme uptake machinery (mannose-6-

phosphate receptor) of oligodendrocytes is not as functional as that of the other

cells in the periphery. Several approaches can be utilized to enhance the cross-

correction and diffusivity of GALC in the CNS: a. Upregulation of the mannose-

6-phosphate receptors: Strategies to increase mannose-6-phosphate receptor

expression could potentially serve as adjunctive therapies for gene therapy or

enzyme replacement therapy. In fibroblasts, mannose 6-phosphate, insulin like

growth factors I and II, and epidermal growth factor have been shown to cause

acute upregulation of mannose-6-phosphate receptors. Interestingly, radiation

damage in the intestine upregulates the mannose-6-phosphate expression in

the epithelial cells (Wang et al., 1999) and such a phenomenon in oligoden-

drocytes could potentially explain the synergy seen in our study. So far, no

studies have examined this phenomenon in detail in oligodendrocytes. Since

mannose-6-phosphate receptors are downregulated at a relatively fast rate (Ko-

rnfeld, 1992), methods for chronic upregulation of mannose-6-phosphate recep-

tors could be an interesting avenue for future research. b. tat modification of

GALC: Tat is a protein from the Human Immunodeficiency Virus. The protein
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transduction domain contains an 11- amino acid sequence that allows the en-

try of proteins into cells by penetrating the cell membrane (Frankel and Pabo,

1988). The 11-amino acid sequence also enhances cytoplasmic entry of pro-

teins when they are fused with it (Schwarze et al., 2000). Tat modification of

another lysosomal enzyme β-glucuronidase has been shown to increase en-

zyme distribution in the CNS (Xia et al., 2001). Preliminary studies in our lab

using such an approach have shown that the enzyme activity is preserved in the

GALC-tat fusion protein. It would be interesting to test whether the uptake and

cross-correction and proper targeting to the lysosome are higher in the fusion

protein and whether the overall therapeutic effi-ciency is increased.

Strategies targeting bone marrow

After myeloablative BMT, an increase in GFP+ donor cells in the CNS is seen

(Wu et al., 2000). Since transplantation of enzyme-deficient donor cells has

minimal impact on the disease, it is likely that the enzyme-expressing donor

cells provide therapeutic benefit at least partially by supplying the enzyme to

the CNS. In our current protocol, the sensitivity of mice to high levels of radia-

tion prevents further increasing the radiation dose for conditioning on postnatal

day 3-4. In this scenario, several alternate approaches to increase the total

enzyme in the bone marrow could be considered, especially in combination

with CNS-directed gene therapy. a. Hematopoietic-directed gene therapy with

lentiviruses (Naldini, 2011). b. Increasing bone marrow engraftment: Using

busulphan in utero in addition to postnatal conditioning appears to result in an

increased level of engraftment which might translate into greater enzyme ac-

tivity (Yeager et al., 1991). Another approach to experimentally increase the
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engraftment would be by using W41 mice. These mice have point mutations in

the c-kit re-ceptor and as a result have a competitive disadvantage with wild-

type bone marrow cells in terms of proliferation (Miller et al., 1996). Using these

mice, a very high level of engraftment can be obtained using very low levels of

radiation (Hall et al., 2007). Administering c-kit antagonists (Kelly et al., 2002)

in combination with a mild conditioning regimen could be a potential combina-

tion to achieve high-level engraftment in humans. c. Increasing cell entry into

the CNS: Disrupting the integrity of the blood-brain barrier using vascular en-

dothelial growth factor (VEGF) in conjunction with BMT expressing a high level

of GALC could also lead to improved enzyme delivery into the CNS (Young et

al., 2004). When leukocytes enter the brain parenchyma, most of the cells are

localized to the perivascular space due to the interaction of membrane CXCL12

(present on the basal side of the endothelial cells) with the chemokine recep-

tor CXCR4 (McCandless et al., 2006). Disrupting interactions between immune

cells and chemokine receptors using CXCR4 antagonist AMD 3100, in a murine

model of experimental allergic encephalomyelitis, results in greater spread of

immune cells in the CNS parenchyma and worsening of pathology (McCand-

less et al., 2006). This approach could be potentially adapted for enhanced

entry of enzyme-expressing cells into the CNS. d. Expressing modified GALC

with increased CNS bioavailability: Metaperiodate fol-lowed by Borohydride re-

duction of another lysosomal enzyme β-glucuronidase leads to a removal of

mannose-6-phosphate residues and an increase in the circulating half-life and

CNS bioavailability of the enzyme (Grubb et al., 2008). It is possible that the

CNS uptake is mediated by a non-receptor mechanism. A similar approach
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could be attempted in Krabbe’s disease. The mannose-6-phosphate residues

are attached to the N-linked and O-linked oligosaccharides to aspargine or ser-

ine side chains of the protein (Kornfeld, 1992). Recombinant proteins which

lack sites for attachment of N-linked and O-linked oligosaccharides but pre-

served or enhanced enzyme activity could be synthesized using combinatorial

approaches. These genes could then be used in viral vectors to transduce bone

marrow cells or for direct systemic gene therapy.

Strategies targeting peripheral nerves and autonomic nerves

Although GALC is highly expressed in the CNS, its function is important in the

peripheral nervous system as well. Twitcher mice have inflamed peripheral

nerves with edema and infiltra-tion of globoid cells and a decrease in peripheral

nerve conduction (Hoogerbrugge et al., 1988b). Hindlimb paralysis is also a

prominent feature of late stage disease in twitcher mice. In humans, the cranial

nerves seem to be more prominently affected with the presence of swallow-

ing difficulties and visual defects (Suzuki et al., 2000). Recently, twitcher mice

have also been shown to have autonomic neuropathy which leads to a progres-

sive thymic and splenic atrophy (Galbiati et al., 2007a). Although a significant

amount of enzyme activity is present in the normal liver, kidney and bone mar-

row, the exact function of the enzyme in these peripheral organs is not known.

Like in other lysosomal storage diseases, it could be speculated that the CNS

pathology is the ”rate-limiting” step in the disease and hence the peripheral

manifestations of enzyme deficiency are less obvious. However, once the CNS

is corrected to a certain extent, the peripheral manifestations of the disease

may then need correction. The presence of numerous peripheral nerves and
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autonomic nerves presents a challenge for targeting them individually. BMT

(myeloablative) is associated with improved peripheral nerve function and his-

tology (Hoogerbrugge et al., 1988a). This indicates that a systemic approach is

more pragmatic. This approach could be complemented by specific targeting of

important nerves, such as the sciatic nerve. Recent studies have shown very

effective retrograde transport of AAV6 when injected into the gastrocnemius

muscle and efficient transduction of the peripheral nerve (Towne et al., 2010).

High level of transduction was also obtained by direct targeting of the sciatic

nerve with AAV8 (Homs et al., 2011). Another approach for correcting the dis-

ease in the peripheral and autonomic nervous system is targeting a peripheral

organ as a ’reservoir’ for the enzyme. This approach is similar to other disease

like hemophilia B (Vandenberghe et al., 2006), mucopolysaccharidosis VII (Daly

et al., 1999a, 1999b) etc. Several viral vectors such as AAV2, lentivirus, and

adenovirus (Sands and Davidson, 2006) have been used for efficient targeting

of the liver.

Understanding the mechanism of synergy

The mechanism of dramatic synergy observed in the previous study (Lin et al.,

2007) was addressed in the current study. It is not entirely surprising that CD4

and CD8 T-cell numbers are increased in the CNS of the mice receiving AAV2/5,

as it represents the naturally occuring antiviral response. Although AAV2/5 is

a relatively inert virus, inflammatory reactions with increases in CD8 and CD4

T-cells have been known to occur in the liver (Vandenberghe et al., 2006; Mays

et al., 2009). The evidence from our study, discussed in chapter 2, is strongly

suggestive of the direct immunomodulatory role of the BMT. Independent confir-
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mation of the increase in T-cells using histology or Q-PCR should be sought. In

order to address the mechanism of synergy in greater detail, the studies could

begin by narrowing the role of the innate versus the adaptive immune system.

The role of the adaptive immune system could be studied by testing the pres-

ence of synergy in the mice that lack T-cells and B-cells (for e.g. rag mice, SCID

mice) (Mombaerts et al., 1992; Shinkai et al., 1992). These studies could be

further narrow the various subtypes of cells involved using twitcher mice lacking

CD4, CD8 mouse etc. (Simard et al., 1997; Krieger et al., 1997; Hofling et al.,

2003). The role of the innate immune system in synergy could be addressed

by using twitcher mice lacking microglia (e.g., PU.1 knockout mouse) (Beers et

al., 2006). Other important mechanisms that might be playing a role in BMT-

mediated immunosuppression include deletion of alloreactive T-cells and the

induction of tolerance to viral antigens after transplantation by T-regulatory cells

(Walsh et al., 2004). One experiment to address the role of T-regulatory cells

would be to use donor bone marrow that is selectively depleted of T-regulatory

cells (CD4+CD25+ and CD8+CD25+ cells). Another possible explanation for

the observed synergy is the peripheral correction of the disease brought about

by BMT. A recent study (Galbiati et al., 2007a) has demonstrated the presence

of atrophy in the various autonomic neurons innervating the thymus and the

spleen. BMT could improve the autonomic dysfunction seen in the disease and

bring about synergy. The thymus and spleen have to be examined in detail to

see if the synergy correlates with the improvement in pathology in these or-

gans. Synergy could also result from the increased accessibility of the enzyme

from the donor cells that enter the CNS to sites that are inaccessible to injec-
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tions. The pathology in the brain-stem is profound and poor correction of the

brainstem could lead to a rapid compromise of the various vital centers that are

present in this part of the CNS. The rapidly progressive nature of the disease

might limit the optimal cross-correction and diffusivity of the enzyme. BMT could

possibly increase the enzyme levels to the sites inaccessible to gene therapy.

This could be tested by immunohistochemical localization of GALC in animals

receiving combination therapy

The role of regional differences in the progression of disease and therapy

In the current study, the enzyme assays, psychosine measurements, flow cy-

tometry and cytokine quantitation were performed using the whole brain. Al-

though differences are present in the whole brain between various groups, it is

possible that some of the differences are not obvi-ous because the whole brain

was analyzed. For example, it appears that the psychosine levels are similar

in the AAV-mut and AAV+BMT-mut group. It is possible that the differences in

psy-chosine levels may correlate better with the efficacy of treatment, when only

white matter rich regions (like corpus callosum) are analyzed. Then, the differ-

ences between animals receiving AAV2/5 and AAV+BMT-mut animals might be

more obvious. Similarly, some of the cytokines such as TNF-α and IFN-γ may

show regional differences which are less obvious when whole brain is analyzed.

Future studies should explore these differences and their alteration with various

therapies.
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Timing of therapy

In humans, most of the myelination takes place after birth (Brody et al., 1987;

Kinney et al., 1988), so it is reasonable to assume that delivering enzyme after

birth would be an optimal time to begin therapy, at least with the current meth-

ods of enzyme delivery. Although there are no obvious clinical or biochemi-

cal markers of disease in affected newborns, it is possible that the disease is

present even at birth. In human subjects, umbilical cord transplantation prior to

the on-set of symptoms (age range: 12 to 44 days) results in a significant clini-

cal improvement in the newborns compared to subjects transplanted with cord

blood after the onset of symptoms (age range: 142 to 352 days) (Escolar et al.,

2005). BMT has been attempted in utero in 3 human subjects, however, none of

the subjects survived post-procedure (Bambach et al., 1997). Increased safety

of in utero BMT would probably allow testing this approach. Another approach

is to increase cell or enzyme transfer from the mother to the fetus. Maternal-

fetal chimerism of hematopoietic-derived cells is known to occur physiologically

at low levels (1-2

5.2 Characterization of tremor

5.2.1 Summary and conclusions

Although the addition of BMT to AAV2/5 resulted in an improvement in the vari-

ous be-havioral parameters and lifespan, it worsened the tremor. This alteration

in the tremor was sur-prising and was investigated in detail in chapter 3. The de-

tailed characterization of tremor was performed using a modified force-plate ac-

tometer. Twitcher mice have a broader band tremor with the presence of higher
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frequency components of movements compared to the wildtype an-imals. In or-

der to test if the actometer was sensitive to known tremors, wildtype mice were

treated with a tremorogenic agent harmaline and the current modification of the

force-plate actometer appeared sensitive. Interestingly, harmaline could not in-

duce tremor in the twitcher mice which indicates that the tremorogenic locus of

harmaline (olive and cerebellum) is affected in the twitch-er mice. After therapy,

the AAV group showed a power spectrum similar to that of the wildtype, but the

addition of BMT negates the ’therapeutic benefit’. So, the effect of conditioning

and BMT on the movement phenotype was further investigated. Interestingly,

wildtype animals receiving BMT have an altered power spectrum compared to

that of the untreated wildtype, and the twitcher mice treated with BMT have al-

tered power spectrum compared to that of the untreated twitcher mice. Also,

the wildtype animals treated with harmaline show a blunted tremor response.

Since it is known that the neonatal conditioning and BMT lead to cerebellar dys-

plasia (Sands et al., 1993), it is possible that the function of the cerebellum is

affected. Taking all the findings together, the tremor in the twitcher mice has a

prominent cerebellar component and the physiological properties of olive and

the cerebellum are altered in the twitcher mice and in wildtype mice treated with

BMT.

5.2.2 Future Directions

Two important findings from the characterization of the tremor phenotype need

further understanding: the origin of tremor and the exact effect of BMT on the

movement phenotype. The origin of the tremor could be addressed based on

the two types of tremors that are known to exist: a low frequency (8-10 Hz)
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tremor that is known to arise after disruption of the basal ganglia pathways and

a higher frequency tremor (12-14 Hz) tremor that is known to arise after dis-

ruption of cerebellar function. Our studies have revealed that the tremor in the

twitcher mice is predominantly of higher frequencies and also the response to

the drug acting on the olivo-cerebellar circuit (harmaline) is blunted. Although

greater power is present in the power spectra of twitcher mice at higher fre-

quencies, greater power is also present at lower frequencies. This implies that

basal ganglia could also be involved in generating the complex tremor pheno-

type. This could be tested by using physostigmine (a cholinergic agent) (Wang

and Fowler, 2001) which produces a low frequency tremor. If the lower fre-

quency tremor is not inducible in the twitcher mice, then it is possible that basal

ganglia are similarly affected. Since the CNS pathology in the twitcher mice is

extensive, it would be difficult to localize the exact origin of tremor. However,

identifying the predominant sites of the origin of tremor would be useful in terms

of targeting and monitoring various therapies.

Intention tremor versus resting tremor

Our preliminary analyses have revealed that the differences in power spectra in

the twitcher mice and wildtype are greater during active movements than during

rest. This appears similar to the intention tremor that is seen in humans with

cerebellar lesions. This could possibly imply that the cerebellum is the predom-

inant origin of the tremor. Further exploration with a more precise definition of

the resting state of the animal would help in understanding this possibility in a

definite way.
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Alternative therapies that do not worsen tremor after treatment

One of the surprising findings of the study was that the power spectra in the

mice receiv-ing both AAV and BMT was similar to that of the untreated twitcher

mice, whereas the mice re-ceiving only AAV had power spectra similar to that

of the wildtype mice. Interestingly, wildtype mice receiving BMT also had al-

terations in the power spectra. This clearly highlights the damag-ing effects of

BMT and the associated radiation conditioning prior to the procedure. Neona-

tal cerebellum has numerous proliferating granule cells (Galbiati et al., 2007b;

Noguchi et al., 2008) and as such is vulnerable to genotoxic insults. Similar

motor defects are also seen in children who received BMT for Krabbe’s dis-

ease on extended follow up (Escolar et al., 2005), although the exact causal

link is uncertain. The exact therapeutic mechanism of BMT probably involves

multiple mechanisms. Nevertheless, alternative therapies that are less toxic to

rapidly proliferat-ing cells in the CNS (such as anti-inflammatory drugs, agents

that promote cell entry into the CNS e.g. VEGF) are highly desirable. Under-

standing the exact molecular pathways altered by BMT in the CNS could lead

to therapies that spare the untoward effects on rapidly proliferating cells in the

CNS.

5.3 The role of KC and CXCR2 in the pathogene-
sis of Krabbe’s disease

5.3.1 Summary and conclusions

Since inflammation was a prominent feature in the CNS of the twitcher mice,

the role of the various cellular and humoral mediators of inflammation was sur-
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veyed, as detailed in chapter 4. There was a trend towards a progressive

increase in the CD4 and CD8 T-cells in the brains of the twitcher mice with

time. There was a significant increase in the activated microglial numbers in the

brains of the twitcher mice. Several chemokines and cytokines were surveyed

and the cyto-kine KC was highly elevated in both the brains and the spinal

cords of the twitcher mice. KC was known to be involved both in inflamma-

tion and oligodendrocyte proliferation, both prominent features of the disease.

Interestingly, detailed characterization of the KC-/-GALC-/- mice and CXCR2-

/-GALC-/- mice revealed no difference in the cellular inflammation seen in the

CNS of twitcher mice. Selective deficiency of KC in the CNS or selective de-

ficiency of CXCR2 in the bone marrow did not alter the course of the disease.

Twitcher mice have been shown to have increased proliferation in the spinal

cord (Taniike and Suzuki, 1995). The role of KC and CXCR2 in oligodendro-

cyte proliferation seen in the disease is currently under investigation. Although

very high levels of KC were seen in the disease, the lack of phenotype in the ab-

sence of KC or CXCR2 implies redundancies in the chemokines and the growth

factors. Also, the lack of KC or CXCR2 failed to show an effect in the twitcher

mice, probably implying that the primary disease is profound and that targeting

secondary processes like elevated KC would not have any benefit in treating

the disease without first targeting the primary enzyme deficiency.

5.3.2 Future Directions

Exploring the role of KC and CXCR2 in oligodendrocyte prolifera-tion

It is possible that the primary role of KC is to control the oligodendrocyte prolif-

eration and to localize the oligodendrocyte precursors to areas of myelin dam-
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age. This possibility could be further explored using immunostaining for NG2

(oligodendrocyte precursor marker) and BrdU (marker of cell proliferation). Pre-

liminary evidence suggests that the number of NG2 +BrdU+ cells in the spinal

cord of the twitcher mice is increased. The effect of the lack of KC or CXCR2 in

the twitcher mice on the proliferation of NG2+BrdU+ cells is currently under in-

vestigation. It would be interesting to know if other ligands of CXCR2 and other

growth factors are further elevated in these mice, compensating for the lack of

KC or CXCR2.

Exploring the role of other chemokines and growth factors in disease pro-
gression

Since redundancies exist in the chemokine KC and its receptor CXCR2 for in-

flammation and oligodendrocyte proliferation, deletion of other molecules that

might be responsible for the compensatory effect (FGF-2, PDGF-BB, CXCL2)

could be attempted. Unfortunately, deletion of multiple molecules would make

the effects less easy to interpret. Previous experiments in which a single cy-

tokine like IL-6 or TNF-α was deleted (Pedchenko et al., 2000; Biswas et al.,

2001) also had minimal effect on altering the course of the disease. Similarly,

minimal alteration in the course of the disease was seen when MHC-Ia was

de-leted in the twitcher mice (Matsushima et al., 1994). This highlights the nu-

merous redun-dancies that exist in the system. One approach to overcome the

redundancies would be to use models that result in a known phenotype in a

particular cell type that is known to be involved in the disease. These models

are usually a result of the lack of a transcription factor like PU.1 (which plays

an important role in the development of myeloid lineage/ microglia; Beers et
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al., 2001) or the lack of microRNAs that suppress several factors responsible

for cell differentiation (e.g. mir-219 is responsible for oligodendrocyte differ-

entiation and myelination and suppresses expression of several transcription

factors and PDGF-β) (Dugas et al., 2010). As mentioned above, the progres-

sion of the disease, the inflammation and oligodendrocyte proliferation could be

studied in twitcher mice that lack microglia (PU.1 knockout mice; Beers et al.,

2001) and twitcher mice that have delayed oligodendrocyte maturation (mir-219

knockout mice; Dugas et al., 2010).

Effect of correcting primary disease in KC and CXCR2 mice

It is possible that the effect of lack of KC and CXCR2 on inflammation or oligo-

dendrocyte prolif-eration is not apparent with the current model, because of the

rapidly progressive pathology. It is possible, however, that the effect of the lack

of KC and CXCR2 would be more apparent if the progression of the disease

is slowed. Two models could be utilized where the progression of the disease

is slowed: a. adult onset Krabbe’s disease model (Luzi et al., 2001) in which

a pathology similar to the twitcher mouse is seen but the course of the dis-

ease is protracted b. twitcher mice lacking KC or CXCR2 treated with AAV2/5

expressing GALC to delay the pro-gression of the disease.
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