Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-00-20

2000-01-01

Configuring Sessions in Programmable Networks

Sumi Choi, Jonathan Turner, and Tilman Wolf

The provision of advanced computational services within networks is rapidly becoming both
feasible and economical. We present a general approach to the problem of configuring
application sessions that require intermediate processing by showing how the session
configuration problem can be transformed to a conventional shortest path problem. We show,
through a series of examples, that the method can be applied to a wide variety of different
situations.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Choi, Sumi; Turner, Jonathan; and Wolf, Tilman, "Configuring Sessions in Programmable Networks" Report
Number: WUCS-00-20 (2000). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/288

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.


https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F288&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F288&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/288?utm_source=openscholarship.wustl.edu%2Fcse_research%2F288&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Configuring Sessions in Programmable
Networks

Sumi Choi, Jonathan Turner and
Tilman Wolf

WUCS-00-20

September 2000

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130






Configuring Sessions in Programmable Networks

Sumi Choei, Jonathan Turner and Tilman Wolf
Computer Science Department, Campus Box 1045
Washington University, St. Louis, MO 63130-4899

{sycl, jst, wolf} @arl.wustl.edu

Abstract— The provision of advanced computational ser-
vices within networks is rapidly becoming both feasible and
economical. We present a general approach to the prob-
lem of configuring application sessions that require interme-
diate processing by showing how the session configuration
problem can be transformed to a conventional shortest path
problem. We show, through a series of examples, that the
method can be applied to a wide variety of different situa-
tions,

Keywords— routing, programmable networks, session
configuration

I. INTRODUCTION

Advances in technology are making it possible to in-
corporate general purpose processing capabilities in net-
work routers. Network processor components with more
than ten RISC cores have recently become available and
will soon appear in high performance routers from several
different equipment vendors. Research in active network-
ing [1], [2], [3]is exploring the potential of programmable
routers, and other approaches are being pursued by indi-
vidual router vendors.

This paper is concerned with the problem of how to
map application sessions onto network resources, when
those network resources may include computational ele-
ments that perform some service on behalf of the appli-
cation. For example, a video application might invoke a
video compression service in the network to reduce its us-
age of network bandwidth. There may be several places
in the network where the required compression and de-
compression service could be performed. We would like
to select the best locations that meet the application’s re-
quirements. In this paper, we describe a general methodol-
ogy for configuring such applications so as to make most
effective use of network resources, including link band-
width and the computational resources provided by the
network. Our methodology is not restricted to systems in
which application services are provided at routers. It can
also be used to configure application services provided by
network-attached servers.

We assume an operating environment in which appli-
cation sessions are explicitly configured when the appli-
cation starts up. The configuration of an application ses-

sion includes selection of intermediate processing nodes
and the network links used for communication among the
various components of the application. In our view, this
session-oriented approach is needed to enable efficient al-
location of network resources among competing applica-
tions. This is especially true for applications that require
a certain level of resources in order to achieve an accept-
able quality of service. However, even “best-effort™ ap-
plications can benefit from a resource allocation system
that seeks to configure applications to take advantage of
locations where resources are plentiful, rather than simply
letting them compete for resources in locations where the
required resources may be scarce.

In the context of active networks, resource discovery
and resource allocation are important elements of net-
work programmability. The Darwin project [4] proposes
a high-level resource allocation scheme, which interacts
with low-level resource management. The resource allo-
cation process includes computing a desirable set of re-
sources based on application constraints, and optimizing
the configuration of the resonrces on a graphical network
model. A different approach is taken in [5], where the
focus is on identifying topological properties related to
network services and resource states. Constrained pro-
grammability is provided to applications based on these
properties. To determine topological properties, network
queries are distributed in the network, and then the resultis
aggregated back at the source in a form of network fusion
operation. Another environment where resource allocation
is of great concern is mobile network, where geographic
information is considered part of the network topology.
Geographic Routing [6] attempts to provide routing with
geographic information as well as network functions per-
taining to geographic location.

Sections 2 through 7 describe various application sce-
narios that each raise different resource configuration is-
sues. In each case, we show how the problem can be re-
formulated so that it can be solved in a similar fashion. In
Section 8, we discuss implementation issues and in Sec-
tion 9, a limitation to our approach.



II. ROUTING THROUGH ONE PROCESSING SITE

We start with the simplest version of the application
configuration problem. In this version, we have two partic-
ipating end systems and there is some intermediate com-
putation that is to be performed somewhere in the network
(possibly a format translation, for example, allowing two
otherwise incompatible end systems to share information).
There are a number of sites within the network where the
processing could occur, but not all of the sites may be
able to perform the needed processing (perhaps they are
not capable of executing the required program, or perhaps
their computational resources are already fully committed
to other tasks). The application configuration systern must
select one of the sites within the network and select net-
work paths joining the end systems to the intermediate pro-
cessing site. It should do this in such a way as to minimize
the use of network resources, including link bandwidth and
processing “bandwidth.”

We can state the problem formally as follows. The net-
work is represented by a directed graph, G = (V| E), in
which the nodes correspond to routers and end systems,
while the edges correspond to links. Let R C V be a
subset of the nodes that represent sites where intermediate
processing may occur. For brevity, we’ll refer to these as
red nodes. Each edge (u, v) has an associated cost c(u, v)
and each red node r has an associated cost ¢(r)}. Finally,
we have a source vertex s and a destination vertex t. Qur
objective is to find a least-cost path from s to ¢ that in-
cludes at least one red node. The cost of a path is the sum
of the costs of its links, plus the cost of the least cost red
node along the path. Note that the overall path from s to ¢
may not be a simple path. See Figure I for an example of
the problem. The red nodes can be distinguished from the
other nodes by the numbers that indicate their processing
costs. The heavy weight edges in the figure indicate the
best path from s to ¢ that passes through at least one red
node.

Fig. 1. Network with Processing Sites

There is one fairly obvious approach to solving the prob-
lem. First, solve the single-source shortest path problem
from s to all other nodes [7], considering link costs only.

Second, solve the single-destination shortest path problem
to ¢ from all the other nodes. At the end of these two steps,
for each vertex u, we know the cost of the shortest path
from s to v and from w to t. So we can simply iterate over
all nodes r € R and select the node that minimizes

d(s,r) + d{r,t) + c(r)

where d(z,y) denotes the length of the shortest path be-
tween z and y, considering just the edge costs. For a graph
with n vertices and m edges, this algorithm can be imple-
mented to run in O(m + nlogn) time. This is the same
complexity as that for finding a shortest path in a graph, so
we cannot expect to improve on it substantially. The only
real drawback of this method is that it does not readily
generalize to more complex situations. For that reason we
consider an alternative approach that can be applied more
generally.

Fig. 2. Transformed Network for Single Site Processing

Our alternative approach is to transform the original
problem to a conventional shortest path problem on a dif-
ferent graph. We then solve this new problem using stan-
dard methods and apply the results back to the original
problem. The first step in the transformation is to make
two copies of the original graph . We refer to these two
copies as layers in the resulting graph and identify them
as layer I and layer 2. For each vertex u in the original
graph, let w1 denote the copy of u in layer 1 of the tar-
get graph and let uy denote the copy of w in layer 2. The
edges in the two layers have the same costs as the corre-
sponding edges in the original graph. Now, for every node
r € R, we add an edge (r1,72) in the target graph and let
¢(r1, r2) be equal to the cost originally assigned to r. This



completes the construction of the target graph. See Fig-
ure 2 for an illustration of the construction. To solve our
original problem, we simply find a shortest path from s;
to to in the target graph, considering link costs only (see
Figure 2). The resulting path can then be mapped back to
a path in the original graph by “projecting” the two layer
path onto a single layer.

The correctness of this procedure is easily established.
First, note that the least cost path from s to £; does cor-
respond to a path in the original graph and the cost of the
path is the same as the cost defined in the original problem
statement for the corresponding path in the original graph.
Second, note that there cannot be a cheaper solution to the
original problem. If there were, this solution would have
to correspond to a path from s; to ¢9 in the target graph
that is cheaper than the given least-cost solution, a clear
contradiction.

ITI. ROUTING THROUGH MULTIPLE SITES

In this section, we consider a more general application
configuration problem. There are again two participat-
ing end systems, but here there are several intermediate
computational steps that are to be performed at possibly
different locations in the network. For each step, there
may be multiple sites where the processing could be done.
One simple example is secure data transmission, where
the intermediate processing steps include encryption and
decryption processing. The encryption processing can be
done at any of several nodes in the originating end sys-
tern’s domain and decryption processing can be done at
any of several nodes in the destination end system’s do-
main. We allow % intermediate processing steps for any
E>1

We can state the problem formally as follows. The net-
work is represented by a directed graph, G == (V| E), with
each edge (u, v} having an associated cost c(u, v). As be-
fore, we have a source node s and a destination node ¢.
Forl €3¢ <k, let R C V be a subset of the nodes. R;
contains sites where the i*® intermediate processing step
may be performed. Accordingly, each node r € R; has
an associated cost ¢;(r). We define an admissible path
from s to £ to be a path (not necessarily simple) that in-
cludes nodes from each of the R;, appearing in order. That
is, a path u1,us, ..., Uy, is admissible, if there are inte-
gers i1,...,1; that satisfy 1 < 43 < --- < 45 < mand
ui; € Rjfor 1 < § < k. The list of nodes (uiy,...,u;,)
is called a site Iist for the path. An admissible path may
have multiple site lists. Note that a node may appear in a
site list more than once. The cost of a site list is the sum
of the costs of its nodes and the cost of an admissible path
is the sum of the costs of its edges, plus the cost of its least

expensive site list. Figure 3 shows an example of the prob-
lem. In this figure, nodes drawn with “thick” circles are in
By, while the other nodes containing numbers are in R, .

Fig. 3. Network for Multiple Site Processing

A brute force approach to solving this problem in-
volves enumerating all possible combinations of process-
ing nodes and connecting them with the shortest paths.
However, the number of possible combinations grows pro-
portionally to n*, making this approach impractical, even
for modest values of k.

Fig. 4. Transformed Network for Multiple Site Processing

Fortunately, the problem can be solved efficiently be re-
ducing it to an ordinary shortest path problem in a different
graph. The target graph G has % -+ 1 layers, each layer be-
ing just a copy of the original graph, and numbered from
1to k -+ 1. For each node u in the original graph, we let
u; denote the copy of « in layer i. Now, for every node



r € R;, we add an edge (r;, 7;41) in the target graph and
let ¢(7y,7341) be equal to the cost ¢;(r) assigned to r in
the original graph. See Figure 4 for an example of a tar-
get graph for a problem with & = 2. To solve the original
problem, we find the shortest path from s; to 5,1 in the
target graph. The resulting path can be mapped back to a
path on the original graph by “projecting” the path back
onto the original graph.

The correctness of the procedure can be shown in a sim-
ilar fashion as in Section 2. Consider the least cost path
from sy to fr43. It is easy to see that it corresponds to an
admissible path in the original graph and that its cost is
the same as the cost of the admissible path. Also note that
there can exist no cheaper solution to the original problem.
Any cheaper solution would have to correspond to a path
from s; to x4 in the target graph, yielding a contradiction
to the definition of the shortest path.

IV. APPLICATIONS THAT ALTER BANDWIDTH

Certain processing steps performed on behalf of an ap-
plication may alter properties of the data. For example,
processing steps that compress data can change its band-
width requirements by substantial amounts. We would like
to be able to configure compression and decompression
processing in the network, so as to best exploit the sav-
ings that can be obtained, while simultaneously accounting
for the costs associated with the compression algorithm
itself. More generally, we want to be able to configure
arbitrary applications that modify the bandwidth require-
ments of the processed data stream. Examples for applica-
tions that decrease the bandwidth of a stream are data and
image compression, filtering, and data merging. Applica-
tions that increase the bandwidth of a data stream are data
and image decompression, forward error correction cod-
ing, certain encryption and authentication schemes, etc.

To quantify the changes in bandwidth, we define the
bandwidth scale factor «y; for processing step 4, to be the
ratio of the outgoing bandwidth to the incoming bandwidth
for processing step ¢. The application configuration prob-
lem introduced in the previous section can be generalized
to handle changes in bandwidth requirements. The only
change needed is to the definition of the cost of an admis-
sible path, to account for the changes in the bandwidth of
the data stream. Let P = uy, . .. u,, be an admissible path,
that includes the site list L = (u;,,...u;, ). The cost of P
with respect to site list L is given by

i1—1

> elug, uzpa) + clus)

=1

ia—~1
+ > mle(us, i) + elus,))
J=i1
tgmel
+ ) myele(us, ujp1) + clug,))
J=ta
+ PR
tp—1
+ > (mve - e-r){elug, i) + clu)

Je=ip_y

m—1
+ 3 (v ) eluy, wig)

J=t

The cost of a path P, is the the minimum over all site lists
L of P, of the cost of P with respect to L.

The solution method of the previous section can also be
generalized to handle bandwidth scaling. The target graph
is constructed as before, but the edge costs of the target
graph are modified as follows. For edges within layer 1,
the edge costs are multiplied by y1v2 - - - 11 Edge costs
from layer ¢ to layer ¢ + 1 are multiplied by viy2 - -+ ;.
We solve the problem, as before, by finding a shortest path
from s3 to tp1.

V. OPTIONAL PROCESSING

Some network applications provide services that are not
necessary for correct data transmission, but which can im-
prove the performance or quality of the connection. These
optional processing steps might decrease the transmission
cost to some destination nodes, but not necessarily to all.
We now extending our method to handle such cases.

For concreteness, we use a simple example of a com-
pression/decompression application. The processing for
compression and decompression incurs a cost, but the in-
termediate data stream has a lower bandwidth (y < 1)
which yields lower transmission costs. Thus, for long-
distance transmissions the processing overhead is worth-
while, while for short distances, the cost of the added
processing may exceed the benefit. The problem can be
solved using the method of the previous section. To make
the compression and decompression processing optional,
for each vertex u in the original graph, we add edges
{u1,u3), linking layers 1 and 3. These edges are assigned
a cost of zero. Note, that for this method to work cor-
rectly, the bandwidth of the decompressed data stream
must match that of the original, uncompressed data stream.
In this case, we can actually use a slightly simpler target
graph with just two layers, and edges (u, ug) for all ver-
tices u € Ry and edges (vo,v1) for all vertices v € Ra.
The edges within layer 2 are scaled by the compression
factor, as are the edges from layer 2 to layer I.



%

L

progessing

J

Configuratign with{optional

Configuratipn with
no procegsing

o]

Fig. 5. Transformed Network for Optional Processing

The method can be extended to configuring sessions
where different processing stages are optional. How-
ever, when the effects on the bandwidth of the data
stream are more complex than in the simple compres-
sion/decompression example, a more complex target graph
may be required. These more general cases can be solved
using target graphs that have a source node s connected
to multiple columns of layers, where each column con-
tains some subset of the layers for the complete process-
ing, and eventually connected to the destination # below
the last layer of each column. The general form of such a
graph is illustrated in Figure 5. The direct link from the
“source” layer to the destination £ represents the option for
no processing, and the columns of layers represent possi-
ble choices of processing sequences.

VI. CONGESTION CONTROL PROCESSING

Application-specific congestion control is often cited as
a good example application for active networking. The
idea is that an application-specific module could modify
the application data stream dynamically in response to net-

work congestion, in a way that minimizes the impact on
the application (for example, a video congestion control
module might preferentially discard high frequency infor-
mation, to reduce the subjective impact of the lost infor-
mation).

For this type of application, the modules should be in-
stalled at nodes preceding those links that are most likely
to be subject to congestion, but can be omitted from links
where congestion is unlikely to occur. If the application is
configured to use several congested links, the congestion
control module will need to be installed at each of these
links. If it is configured to use only uncongested links,
then no ¢ongestion control modules need to be installed. If
a path using several congested links is much shorter than a
path that uses no congested links, it may be preferred. We
want to formulate the problem so that we can make the best
overall choice of a path, considering both the cost of the
links and the cost associated with the congestion control
(this may include both a processing cost component and
a “cost” for the impact of congestion on the application).
We can accomplish this simply by modifying the costs of



all congested links to reflect the added cost of coping with
congestion at those links, and then we search for a shortest
path, using the modified costs.

The problem is defined formally as follows. The net-
work is represented by a graph G = (V, E) and we let
L C E denote the set of congested links. Each edge (u,v)
in the graph has an associated cost, ¢(u,v) and each con-
gested edge has additional cost ¢/(u, v). Given a source s
and a destination £, our objective is to find a least-cost path
from s to ¢. The cost of a path includes the cost of its links,
where for congested links we include both ¢ and ¢ in the
sum.

VII. CONFIGURING MULTICAST SESSIONS

So far, we have considered several types of different
application configuration problems with two participating
end system and the common objective to find an optimal
path from one to the other. In this section, we show that
our method can be applied to multicast applications where
there are multiple destinations, rather than just one. For
each of the source-destination paths, we want to include
the same sort of processing that we might apply to a upi-
cast application. Our objective is to find a way of selecting
processing sites and links so that the processing require-
ments are met, and so that the overall cost is minimized.

We illustrate the application of the method to multi-
cast situations by considering a video distribution appli-
cation, where we need to perform compression process-
ing and decompression processing. As discussed earlier,
we can solve this problem for unicast applications using
a two layer graph with “compression edges” from layer
1 to layer 2, and “decompression edges” from layer 2 to
layer 1. The same target graph can be used for the multi-
cast problem, where we have a source and multiple desti-
nations. See Figure 6 for an example of the target graph.
The only real difference is that the objective of the prob-
lem becomes finding a least-cost subtree of the two layer
network with the source at the root, and the destinations
at the leaves. This problem is a Steiner Tree problem (as
is the usual multicast routing problem), which is known to
be NP-compiete [8], [9]. There are several known approx-
imation algorithms for the Steiner Tree problem in graphs
that can produce solutions costing no more than twice the
cost of an optimal solution, and which in practice are typ-
ically better than the bound implied by the worst-case per-
formance. We do not discuss such algorithms further here;
we simply note that they can be applied to finding an ap-
propriate tree in the target graph, and we can then use this
to produce a solution to the original multicast session con-
figuration problem.

Fig. 6. Transformed Network for Multicast with Compression

VIII. IMPLEMENTATION ISSUES

The previous sections have omitted any explicit discus-
sion of implementation strategies, focusing instead on fun-
damental algorithmic issues. Of course, in order to apply
our approach, a suitable implementation method is needed.
One way to implement the approach is for a global con-
figuration server, to make session configuration decisions,
based on complete knowledge of the network state that it
maintains at a ceniral location. While this may be feasi-
ble in small networks, it clearly does not scale to larger
systerns. In general terms, what is needed is a distributed
configuration service, that allows configuration decisions
to be made by multiple computers in a cooperative fash-
ion. Such a system must include a component that dis-
tributes information about network resource availability,
and a component that uses that information to make con-
figuration decisions with respect to specific sessions.

The ATM Private Network-Network Interface protocol
(PNNI) [10] is an example of a distributed resource allo-
cation system that solves a similar problem. PNNI can
be viewed as two protocols, a link-state protocol that dis-
tributes information about network resource availability,
and a signalling protocol that uses this information to make
virtual circuit routing decisions. In the case of PNNI, the
route from a source to a destination is selected by the
switch connected to the source, using stored information
about the network topology and resource availability. It
then passes the selected route to other switches along the
path. They, in turn, make local resource reservations and
propagate the signalling method along the path. If during
this process, an attempt to make a Jocal resource reserva-



tion fails, a new path may be computed by the switch at
the point where the reservation failed, allowing the path
setup process to continue. To make the approach scalable
to very large networks, the PNNI protocol aggregates in-
formation about sections of the network, allowing switches
to have complete knowledge of the portion of the network
that is close to them and more summary knowledge of dis-
tant portions of the network.

The general approach taken by the PNNI protocol can
be extended to handle configuration of sessions requiring
intermediate processing. The state information distributed
by the routing protocol must be expanded to include in-
formation about processing resources available at various
locations in the network. Using this information, a path
can be computed by the router connected to the source of
a unicast session, and then forwarded in a signalling mes-
sage to successive routers on the path to the destination,
allowing local resource reservations to be made as the sig-
nalling message proceeds to the destination. Of course,
as with the basic PNNI protocols, the selected paths may
not be globally optimal, since initial path selections may
be based on summary information about distant portions
of the network. This is nothing new in network routing,
where optimality of path selection must generally be sac-
rificed for the sake of scalability.

Other approaches are possible as well. In particular,
other link state protocols, such as Open Shortest Path First
{OSPF) {11] can be used to distribute state information,
and other signalling protocols can be used to select paths
and make the required resource reservations.

IX. LIMITATIONS

In our approach to the session configuration problem,
we allow a given node to be used as a processing site for
more than one processing step. Referring to the formula-
tion of Section 3, the sets Ry, ..., Ry may contain nodes
in common. In such a case, it is acceptable for a site to be
used for multiple processing steps, and our problem for-
mulation allows this.

However, there is one situation where we might want to
exclude solutions where a given node is used more than
once. For example, a node might have sufficient process-
ing capacity available to perform either of two processing
steps, but not both. While it is possible to formulate the
problem in such a way to allow such restrictions, it seems
difficult to do so in a completely general way, because re-
stricting the number of uses of a given node can lead to
intractable computational problems.

Suppose, for example we have a version of the problem
where By = Ry = --- = Ry, = V. That s, all nodes in
the graph can perform any of the processing steps. Now,

suppose we add the restriction that no processing node can
be used more than once. That is, we want to find to find a
path from s to ¢ that goes through k% distinct intermediate
nodes. If & = [{V/| — 2 we are asking for a shortest path
from s to ¢ that goes through every other node. This is es-
sentially equivalent to the NP-complete traveling salesman
problem, so we cannot expect to find effective computa-
tional methods to solve it.

Note that the intractability argument depends on the
number of distinct processing steps being very large. In
practice, the number of processing steps is quite limited;
one would not expect applications to require more than say
ten distinct processing steps. Thus, there is some possibil-
ity that restrictions on the use of a given processing site
could be implemented in a computationally feasible way
for the cases of practical interest.

X. SUMMARY

The provision of advanced computational services
within networks is rapidly becoming both feasible and eco-
nomical. The provision of such services, either by routers
or by network-attached processing sites, is potentially a
significant benefit for network users, as it can relieve indi-
viduals from the need to acquire, install and maintain soft-
ware in end systems to perform required services. As such
network services become more widely used, it will become
increasingly important for service providers to have effec-
tive methods for configuring applications sessions so that
they use resources efficiently.

We have presented a general approach to the problem
of configuring application sessions that require interme-
diate processing. The method involves transformation of
the original problem to a conventional shortest path prob-
lem. We have shown, through a series of examples, that
the method can be applied to a wide variety of different
situations. To make the ideas in this paper directly appli-
cable, it will be necessary to automate the methodology,
so that resource management software can automatically
determine the best way to configure a session to satisfy
its requirements. The next step in reaching this objective
is to develop a general way of specifying application re-
quirements for intermediate processing, that is expressive
enough to describe typical application scenarios, while be-
ing simple enough for application programmers to use ef-
fectively.

We believe that given such a specification method, it
will be possible for network resource management soft-
ware to combine information about network resource
availability and an application specification, to produce a
graph that represents the possible configurations of the ap-
plication. By solving the appropriate optimization prob-



lem on this graph (typically a shortest path problem), the
network resource management software will be able to au-
tomatically map the application to an appropriate set of
resources. This paper represents a crucial first step in a
research program that aims to achieve this objective.

REFERENCES

{1] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie,
David J. Wetherall, and Gary J. Minden, “A survey of active net-
work research,” IEEE Communications Magazine, vol. 35, no. 1,
pp. 80-86, Jan. 1997,

(21 Andrew T. Campbell, Herman G. De Meer, Michael E. Kounavis,
Kazuho Miki, John B. Vicente, and Daniel Villela, “A survey
of programmable networks,” Compuiter Communication Review,
vol. 29, no. 2, pp. 723, Apr. 1999,

[3] Daniel Decasper, Guru Parulkar, Sumi Choi, John DeHart, Tilman
Wolf, and Bernard Plattner, “A scalable, high performance active
network node,” IEEE Network, January/February 1999.

{4] Prashant Chandra, Allan Fisher, Corey Kosak, T. S. Eugene Ng,
Peter Steenkiste, Eduardo Takahashi, and Hui Zhang, “Darwin:
Resource management for value-added customizable network ser-
vice,” Sixth IEEE International Conference on Network Proto-
cols, October 1998,

[5] Youngsu Chae, Shashi Merugu, Elien Zegura, and Samrat Bhat-
tacharjee, “Exposing the network: Support for topology sensitive
applications,” Proceedings of IEEE OpenArch 2000, March 2000.

[6] Tomasz Imielinski and Julio C. Navas, “Gps-based geographic
addressing, routing, and resource discovery,” Comm. of ACM,
vol. 42, Apr 1999.

f7] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest,
Introduction to Algorithms, McGraw-Hill Book Company, 1990,

[8] Frank K. Hwang, Dana S. Richards, and Pawel Winter, The
Steiner Tree Problem, vol. 53 of Annals of Discrete Mathemat-
ics, North-Holland, Amsterdam, Netherlands, 1992.

{91 Pawel Winter, “The steiner problem in networks: A survey.”
Nenworks, vol. 17, 1987,

[10] ATM Forum Technical Committee, Private Network-Network In-
terface Specification Version 1.0, Mar. 1996,

[11] J. Moy, OSFF Version 2, 1ETF Network Working Group, Apr.
1998, RFC 2328.

{12] Lary L. Peterson and Bruce S. Davie, “Computer networks,”
Computer Networks : A Systems Approach, 2nd Edition, 2000.



	Configuring Sessions in Programmable Networks
	Recommended Citation

	tmp.1439924045.pdf.Vux8W

