Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-00-07

2000-01-01

Data Archiving with the SRB*

Jinghua Zhou

We use the SRB (Storage Request Broker) middleware to design and implement a storage
archival system which will be used to archive Neuroscience data. As part of the design process,
we developed and used an experimenter's workbench to measure SRB performance. These
experiments improved our understanding of both the functionality and the performance of the
SRB. This technical report describes the scripts in the experimenter's workbench, the archiving
scripts, and performance measurements.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Zhou, Jinghua, "Data Archiving with the SRB*" Report Number: WUCS-00-07 (2000). All Computer Science
and Engineering Research.

https://openscholarship.wustl.edu/cse_research/284

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/284?utm_source=openscholarship.wustl.edu%2Fcse_research%2F284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Data Archiving with the SRB*

Jinghua Zhou

WUCS-00-07

May 2000

Dept. of Computer Science
Washington University
Campus Box 1045

One Brookings Drive

St. Louis, MO 63130

Data Archiving with the SRB*

Jinghua Zhou
Dept. of Computer Science
Washington University
St. Louis, MO 63130

May 4, 2000

Abstract
We use the SRB (Storage Request Broker) middleware to design and implement a storage archival system
which will be used to archive Neuroscience data. As part of the design process, we developed and used an
experimentery workbench to measure SRB performance. These experiments improved our understanding
of both the functionality and the performance of the SRB. This technical report describes the scripts in the

experimenters workbench, the archiving scripts, and performance measurements.

1. Introduction

1.1 Mbotivation:
The Washington University NPACI (National Partnership for Advanced Computing Infrastructure)
Program is focused on applying advanced technology towards some of the difficult tasks associated
with brain mapping. In particular, it is cooperating with other NPACI partners in constructing a

federated brain map database.

One challenging dimension deals with accommodating the tremendous rate of data acquisition from
PET and MRI scanners: 20 GB per week. At this rate, the local cache will be exhausted in about 15
months. To reduce the impact of less active data sets on our data cache, a storage archival system using
SRB (Storage Resource Broker) middleware was designed, implemented and evaluated. Routine

procedures for archiving inactive data sets at our local data cache brainmap.arl.wustl.edu to the HPSS

* This research was sponsored by the National Science Foundation as part of the National Partnership for Advanced

Computational Infrastructure (NPACI), contract ASE-9619020, and administered by the San Diego Supercomputer Center.

1.2

1.3

1.4

{High Performance Storage System) located at the SDSC (San Diego Supercomputer Center) were

developed.

Technologies:
This project focuses on the design and implementation of a prototype storage archival system that

involves four advanced component technologies.

= A terabyte RAID at Washington University as a local storage.

* A remofe petabyte HPSS (High-Performance Storage System) at the San Diego Supercomputer
Center {(SDSC) as the archival storage system.

* A high-speed network -- vBNS (very high performance Backbone Network Service), a high-
performance and high-bandwidth wide area network for advanced applications.

* The SRB (Storage Request Broker) middleware, which provides a uniform storage access

interface to heterogeneous storage systen,

Hurdles:

The archiving in this project is different from the traditional view of “archiving” in which objects are

catalogued. Here there is no agreement among the neuroscientists about how the neuroscience data
should be catalogued. Also, it is important to archive the data while keeping all data in their original

file structure. Furthermore, we must accommodate the tremendous rate of data acquisition cache (about
20 GB per week during 80% of the weeks of last year), At this rate, the present capacity of local
storage will be exhausted in about 15 months. An additional complication is that there are a large
number (many thousands) of small files. “fip” is too cumbersome and would require the user to
remember the exact physical locations of files. Also, standard utilities do not help neuroscientists to
easily exchange data among a diverse collection of tape archives, file systems, databases and digital
libraries, However, the SRB middleware provides the facilities for data sharing and data distribution

among diverse storage systems.

Accomplishments:
The major components of this project are shown below:
= Experiments: (more than 10 per] scripts)
* Test S-command functionality
* Test Container feature.
* Archiving: (more than 6 perl scripts)
* Timing measurements
= Neuroscience data archiving
* Archival correctness verification

» Datarefrieval

1.5 Roadmap:

2.1

This report is organized as follows. Section 2 presents the technologies associated with the archival
system in more details. Section 3 describes the archival system design, implementation, and
evaluation. It also shows ail experimental results and what work has been done with archiving, Section
4 gives an archiving guide and leads through running the archiving scripts. Section 5 leads a user

through an experimenter workbench guide.

Technologies

In the archival system, four advanced technologies are used:
* A terabyte local storage --RAID.

* A remote petabyte archival storage system -- HPSS.

= Ahigh-speed network -- vBNS.

* A middleware — SRB.

More details about these four advanced technologies are described below.

Local Data Cache:

The Washington University neuroscience terabyte data cache is hosted on a 2-processor Sun Enterprise
450 with a DEC Storage Works RAID and 1GB of DRAM. This host (brainmap.arl.wustl.edu) is

accessible through an OC-12 (622Mbps) ATM interface and 100Mbps Ethernet interface. The disk

storage capacity is currently about 1.6 terabyte. This data cache holds the candidate data we are going

to archive. Fig, | shows the network connectivity from the local cache to the archival storage system
(HPSS), the local cache host (brainmap), and part of the WU network used by the neuroscientists.
Basically, neuroscientists generate huge amounts of data everyday at the Washington University
School of Medicine (WUSM). The largest data files are images, and the smallest are text files. As
shown in the graph, there are several scanners affiliated with petsun-23. These scanners obtain images

by scanning various brains. Also, the hosts stp.wustl.edu and v1.wustl.edu provide access to the SUMS
(SUrface Management System) which provides Web access to brain surface data. Large amounts of
data are generated, processed and pumped through the local ATM network to the local data cache

brainmap.arl. wustl.edu. Because of the high rate of local data acquisition (around 20GB per week), the

brainmap storage system will eventually not be large enough to hold all of the data. However, there is a
petabyte high performance storage system (FIPSS) at the San Diego Supercomputer Center (SDSC)
which has a capacity of around 400TB. Also, the SRB middleware developed at SDSC provides a
uniform access interface to heterogencous storage system. Part of the SRB is the MCAT (Metadata
CATalogue) server at ghidorah.sdsc.edu. So through the very fast Backbone Network Service (vBNS),
the data at brainmap can be stored to the remote site HPSS using the SRB.

WU Data Cache

155Mbps
ATM

622 Mbps '/ \lis Mbps
ghidorah hpss brainmap stp, vl petsun-23
(1.6 TB) (SUMS) (Seanners)

(MCAT) (400 TB)
(12 Major Users)

Fig. 1. Network connectivity from WU local cache to the archival storage system (HPSS)

2.2 Aschival Storage (HPSS):
A remote petabyte HPSS (High-Performance Storage System) at the San Diego Supercomputer Center
(SDSC}) acts as the current archival storage system. The HPSS architecture, based on the IEEE Mass
Storage Reference Model, is network-centered, including a high-speed network for data transfer and a
separate network for control. The control network uses the DEC's Remote Procedure Call technology.
In actual implementation, the control and data transfer networks may be physically separated or shared.
An important feature of HPSS is its support for both parallel and sequential input/output (I/O) and
standard interfaces for communication between processors (parallel or otherwise) and storage devices.
In typical use, clients direct a request for data to an HPSS server. The HPSS server directs the network-
attached storage devices to transfer data directly, sequentially, or in parallel to the client node(s)
through the high speed data transfer network. The system can support any network environment, which

provides either socket or IPI-3 interfaces. Fig. 2 shows the HPSS system architecture.

2.3

24

System architecture supported by HPSS

Client ¢
systems |

HPSS control \ J z HFSS network storage
% # g |dita teedge to potatyte rogion and Beyond)

HRPSS core
servers

HNevwoedk

— Yo the a3 region
HPSS o, DEYOND
metadata Nt

Arcess brokers

Fig. 2. The HPSS system architecture

High-Speed Network(vBNS):

vBNS (very high performance Backbone Network Service), is a high-performance and high-bandwidth
wide area networlk for advanced applications. It operates at a speed of 622 Mbps (0C12) using MCI
WorldCom's network of advanced switching and fiber optic transmission technologies. The vBNS
relies on advanced switching and fiber optic transmission technologies, known as Asynchronous
Transfer Mode (ATM) and Synchronous Optical Network (SONET). The combination of ATM and
SONET enables very high speed, high capacity voice, data, and video signals to be combined and
transmitted "on demand". The vBNS' speeds are achieved by connecting Internet Protocol (IP) through

an ATM switching matrix and running this combination on the SONET network.

Middleware (SRB):

The SRB (Storage Request Broker) middleware provides a uniform storage access interface to
heterogeneous storage system and glues together the data-handling environment. The design of the
SRB server is based on the traditional network connected client/server model. The SRB server takes
requests from applications through an application program interface, queries a meta data catalog for
the physical location of the requested data, and accesses the data using the appropriate protocol via a

resource-specific driver, The SRB hides the low-level details of accessing each store, and the SRB file

API provides a common Unix file-like interface to storage regardless of the underlying storage system,

medium, or location.

SRB architecture

SREB Server

DB2, Cracle, IIlustra, ChijectStore HPSS, UniTree UNIZ, fip
Disiributed Storage Resources
{database systems, archival storage systems, file systems, fip)

Fig. 3. A simplified view of the SRB middleware

Fig. 3 gives a simplified view of the SRB architecture, The model consists of four components: the
distributed and diverse storage system, the meta data catalog (MCAT) service, SRB servers and the
SRB clients.

The MCAT stores meta data associated with data sets, users and resources managed by the SRB. The
MCAT server handles requests from the SRB servers. These requests include information queries as
well as instructions for meta data creation and update. Client applications are provided with a set of
AP] for sending requests and receiving response to or from the SRB servers. The SRB server is
responsible for carrying out tasks to satisfy the client requests. These tasks include interaction with the
MCAT service and performing IO on behalf of the clients, A client uses the same common API to
access every storage system managed by the SRB. The complex tasks of interacting with various types

of storage system and OS/hardware architecture are handled by the SRB server.

31

32

This data archiving project used version 1.1.4 of the SRB. The MCAT server was running at
ghidorah.sdsc.edu to handle requests from SRB severs, and the HPSS server was running at

hpss.sdsc.edu. The current version of the SRB is 1.1.6, and version 1.1.7 is coming soon.

Accomplishments

Overview

This data archiving project includes two parts: experiments and archiving, In the first part,
experiments, we characterize the SRB% functionality, quantify the effect of key parameters on the
performance of basic SRB operations to aid us in the design and evaluation of the archival system. The

archiving part includes the design, implementation, and evaluation of our archival system,

In the experiments, we tested typical S-command usage, checked container size effects, verified SRB
functionality and performance. In the design and implementation of the storage archival system, the
Unix file system structure was reflected in the SRB collection structure. We can perform timing
measurements for archiving each file, archive any directory which may have sub-directories, get
archived data back from SRB storage system, test the archival correctness to make sure the right file

with exact size is archived, and also get attributes of each archived file.

In a nutshell, then, the products of our effort include the following:

Experiments

. Per! scripts to test SRB functionality using SRB_1.1.4 version

= S-command usage and performance measurements

" Container performance measurements

Archiving

. Perl scripts for archiving, verification, and restoring

" Timing measurements of archiving performance using SRB_1.1.4 version
" Neuroscience data archival performance measurements

Experiments

3.2.1 Main SRB Concepts

The SRB middleware allows us to access a geographically distributed, heterogeneous storage system.
Performance measurements of the two main SRB functions Sget and Sput were conducted to gain an
understanding of their limitations in a WAN (Wide Area Network) setting, Before describing the
experiments, we will introduce some imporfant SRB concepts. Many of the concepts are similar to

Unix file system concepts.

Collection: A collection is like a Unix directory. But unlike a directory, a ‘collection” is a logical
name given to a set of data sets and is not limited to a single device or partition. The data sets grouped

under a coliection can be stored in heterogeneous storage devices.

Container: A container is like a set of contiguous disk blocks. All objects in a container are stored
cantiguously in physical storage. The archival storage system HPSS is a hierarchic storage system with
two components: a disk cache and a magnetic tape which serves as the permanent storage. Data going
to the HPSS is first stored in the disk cache for some number of days, and then eventually flushed to
the magnetic tape (how often the disk cache is flushed is unknown). The HPSS allocates space in
chunks of physical space that are atleast § KB. A high overhaead is associated with accessing the
magnctic tape component {(almost 100 seconds or more) after a disk copy has been flushed to tape
storage. If there are lots of small files to be stored into the HPSS, the total tape access latency will be
tremendous, and there will be large internal space fragmentation within each 8 KB storage chunk.
Containers were designed to hide this high latency by allowing the user to pack small files into a single

block {container) so that the container can be accessed as a single physical object.

There are two physical resources associated with a container: one plays the role of a cache, and the
other acts as a permanent storage system. Usually the cache resource is a Unix file system, and the
permanent storage system is the HPSS (with its own disk cache and backing tape store). After you add
files to the container cache, you can flush the cached files in the container to the permanent storage
system (e.g., the HPSS). Furthermore, if the container becomes completely filled, the SRB
automatically renames the container by appending a time stamp and creates a new container with the

original name. This automatic exiension of containers is transparent to the user,
Object: An object is a file registered in the MCAT. It is the smallest storable unit in the SRB space.

S-command: An S-command is & Unix command which implements an SRB function. There is a
corresponding function supplied as part of the C-language API. The primary S-commands used in our
work include Sget/Sput for pgetting/putting data fromtto the HPSS, Smkdit/Srmdir for
making/removing a data collection, Smkcont/Srmcont for making/removing a container, Sinit/Sexit for
beginning/ending an S-command session, and Ssyncont for flushing a container cache to permanent

storage. These commands are described in more detail later.

The SRB system provides three user interfaces: a programmatic API, a command langnage interface
(S-commands), and a web browser. With the programmatic API, users can write C or C++programs.

But because this interface takes more programming time, we chose to use the S-command interface,

and wrote Perl scripts. Because these scripts were quite short and concise, less time was spent on

programming,

3.2.2 Experiments and Results

In the SRB experiments, we tested the SRB}% functionality, and measured its performance over a

WAN. We were interested in answering several questions. First, what was the basic overhead of using
a storage system middleware? Second, what was the effect on performance of moving data over a
WAN that spanned approximately 2500 miles, the distance from St. Louis to San Diego via Chicago?

Third, how well would the container abstraction hide the HPSS latency? We focused our performance
measuremenits on the Sget and Sput S-commands since they were key operations in the archiving and

restoring of data files. In the experiments and data archiving, we played the role of an SRB client that

stored/retrieved data to/from the HPSS at hpss.sdsc.edu using the MCAT at ghidorah.sdsc.edu (i.e.,

the SRB host was ghidorah.sdsc.edu, and the SRB resource was /pss). Whencontainers were used, the

container cache was at ghidorah.sdsc.edu (ie., the SRB host was ghidorah.sdsc.edu and the SRB

resource was cont-sdsc).

Several environment variables and parameter settings determine the overall performance of the SRB.
The SRB client sends request to an SRB host which in tum goes to an MCAT server for metadata
information (e.g., physical object location and access permissions). In our experiments,
ghidorah.sdsc.edu was both the SRB server and MCAT server. In fact, ghidorah is the only MCAT
server available, Ghidorah was chosen as the SRB host because performance is improved when the
SRB server is colocated with the MCAT server. However, we did informally try other SRB servers to
confirm this fact. The container resource was cont-sdsc which is a logical resource name for a Unix
cach at ghidorah combined with the HPSS permanent storage at hpss.sdsc.edu, In most experiments,
the performance results correspond to the case when the data was in the disk portion of the HPSS. The
specific situation is described in the discussion of each experiment below. Finally, the TCP buffer size

at brainmap.arl.wustl.edu was initially 32K8B but was later increased to 256KB.

The Sput S-command puts local data to a remote site, and the S-command Sgef pets an archived file
back to local storage. These two commands are the main commands tested in our experiments. Our
results show that Spus and Sget had similar performance when the TCP buffer size on brainmap.ar] was
32KB. Recent preliminary experiments with a 256KB TCP buffer at brainmap.arl, the SRB client,
showed that Sget performance was three to five times better than Sput peformance for large files. Our
current thinking is that this is a result of assymetric routing. A measurement effort led by SDSC is just
beginning to look at this issue and other related ones. This report shows only the Sget results since
most of our measurements were done with a 32KB buffer size, and its performance was almost

identical to that of the Sput measurements,

10

Fig. 4 shows the average Sget time and average bandwidth for retrieving a file from a collection stored
in the HPSS disk cache (without a container). The average Sget time is shown in the left graph. Each
point is the result of averaging the timing results from 10 executions of the same data retrieving
operation. Data variation bars are not shown since the time spent for each retrieval showed very little

variation. The right graph came from the computation: filesize/average Sget time.

Average Sget ime (s) Bandwidth(Mbps)
30 4.5
32KB TCP Min RTT
4
251 1 35 b p
3t
207

157

10? 10" 10

File size (MB}

Filesize (MB)

Fig. 4. Performance of SRB in retrieving a file from a collection.

Left: average Sget time versus file size. Right: average bandwidth versus file size

When the TCP buffer size was 32KB, we expected the maximum achievable bandwidth to be 4Mbps
since the minimun RTT was 64ms (4 Mbps = 32KB/64ms). The figure illustrates that there is a large
overhead (disk overhead from HPSS) of about 6 seconds for getting back each data set from a
collection. Each data access requires accessing the MCAT for meta data information which takes time
and results in the large overhead. The overhead typcially ranges from 5 to 7 seconds. However, this
overhead is less significant for larger files when the transmission time dominates. In the right figure,
one can see the bandwidth increases as file size grows. The experiment shows that it is more

economical to archive large files.

Now lets compare the times used to retrieve a file from a collection and a container to see if the use of
containers is worthwhile. In Fig. 5, there are two container curves in each graph because the SRB
developers changed the container implementation in early April 2000, and we increased the TCP
buffer size from 32KB to 256KB. The line marked “from container (initial)” shows the time (or
bandwidth) to get data back from a container before the container implementation and TCP buffer size

were changed. The line marked “from container” was collected after the change. The line marked

11

“from collection™ shows the time (or bandwidth) to get data back from a collection; i.., a container
was not used. Because this time did not change much after the TCP buffer size was changed, only one
ling is shown in each graph.

Avarage Sget time {s) Bardni
Ty el]
50 {Mops)

50

40r

/
/
7
7 fom Nt D

7

/
/
£

30

20] from mnminw,

el
e
from callaction

0

e fomeconiabe
L U
162 19° 1¢ 10 102 10°
. Fila sizo (MB}
File size (MB}

Fig. 5. Performance comparison of SRB in retrieving a file from a collection, from a container (initial,
before the new implementation of container), from a container (after the new implementation).

Left: average Sgef time versus file size. Right: average bandwidth versus file size

Fig. 5 clearly shows that the current container implementation is superior to its earlier implementation
and in fact, is faster than not using a container (the collection curve). For example, the minimum time
to get an object from a collection is about 6 seconds (the “from collection” curve). But the minimum
time to get an object from a container (that is stored in a collection), is about 3 seconds (the *“from
container” curve). Prior to the latest container implementation, the minimum Sget time was about 12

seconds (the “from container (initial)” curve).

Although not shown in these curves, the SRB developers claim that containers are also useful in hiding
HPSS down time when writing to the HPSS since the container can be stored at the SRB host rather
than the HPSS. Only when the container is flushed to the HPSS (using the Ssyncont S-command) does
the FIPSS need to be up. Furthermore, when reading from the HPSS, containers improve the overall
access time if the access pattern follows the file clustering defined by the container loading. That is,
files stored in the same container can be accessed as a group in only one HPSS tape access. This high

penalty is amortized over every file access to the same container,

But how does container size affect the performance? Here, the container size is the upper bound on the
container content size (i.e., the sum of the sizes of the files in the container). When a container is
retrieved, the transmitted size of the container is the content size, not the container size. For example, a

container can have a declared size of 100MB but only contain 30MB of files. In this case, only 30MB

12

of space is consumed, not 100MB. In Fig. 6, the left graph shows the average time to get a IMB file
back from a container when the data are stored in the HPSS disk (cache). The right graph shows the
time after data has been pushed to the magnetic tape. You can sce that the tape access overhead is
about 100 seconds more for each file compared to the disk only access time. Here we have several
10MB and one 100MB containers fully filled with IMB files. When the data is in the HPSS disk, it§
better to use a larger container size (100MB) if you want to access more than 37 objects in a container;
otherwise, you have to spend more time to access several small containers to get all files back. But
when the data is in the HPSS tape system but not its disk cache, it is better to use a 100MB container if
you are going to access more than !0 incontainer files (an incontainer file is a file stored ina
container). So the effect of the container size depends on how many incontainer files you plan to
access. You need prior-knowledge about the archival data access if you plan to take advantage of the

container feature to reduce retrieval time.

Avaraga Sgot e {5}

(2]

10CMB conlainar

1T 35 79 1M B SAITHNNVHTHNRBITN 103 5 7 % 1% 13 15 W 19 3% 23 25 T 28
#fles (SMB) ¥ Fita {1MB)

Fig. 6. Effects of container size on the SRB performance

Left: average Sget time versus file size, Right: average bandwidth versus file size

Now that we have an idea about the basic performance of the main 8-commands, we will relate the
performance results to the file size distribution of the neuroscience data. Table 1 gives a simple
overview of the distribution of file sizes stored on brainmap.arl. In this table, a collection corresponds
to a Unix directory. So, A through D in the table represents the Unix directories of four users. The
distributions of the four directories are representatives of the local file system distribution. The
surprising result is that there are a large number of small files! These small files are really important to
us since it will affect our design and implementation of the data archival system. The next table will

indicate the effect these smalt file sizes on performance.

13

File numbers in Collection
File Size Ranges A B C D
0-1KB 366 3,821 151 2,976
1KB — 10KB 794 7,346 3,362 969
10KB - 100KB 323 4,506 3,579 53,808
100KB -1MB 4,413 1,306 29,306 1,130
IMB - 10MB 0 780 1,846 1,718
10MB - 100MB 0 42 77 104
100MB - 1GB 0 7 0 5
>1GB 0 2 0 0

Table 1: File size distribution in our focal storage system

Table 2 compares the SRB overhead time component with the transmission time component of the
Sget time for the file sizes represented by collection D from Table 1. We show an overhead of 2
seconds which is the carrent minimum overhead under the best circumstances (i.e., uses containers).
Although this is an optimistic overhead, continued improvements in the SRE implementation should
make this a typical value soon. The transmission times are based on a single file of size equal to one-
half of the upper end of the file size range (e.g., 5 KB for the range 1 KB to 10 KB) and using
bandwidth values of 4 Mbps, 10 Mbps, and 32 Mbps. For example, if the file size range is 1-10KB and
the overhead for each file is 2 seconds, the total overhead time in seconds is the number of files times
2 second, and the transmission time in seconds is the number of files times the transmission time of a
5 KB file: #files * (5 KB/Bandwidth). For the file size range 1-10KB, the overhead is 0.5 hours =
969*2 sec, and the transmission time is 9.7 seconds = 969*(5KB/4 Mbps}. In this table, we listed
three bandwidths: 4 Mbps was the maximum bandwidth we achieved when TCP buffer size was
32KB; 10 Mbps was what we had achieved in one way traffic from SDSC after the TCP buffer size
was changed to 256KB; and 32 Mbps is the target bandwidth set by the SRB developers.

By looking at the table, we see that the overhead is quite large compared to the transmission time
component at a bandwidth of 4 Mbps unless the file is at least 1 MB. As the effective bandwidth
increases above 4 Mbps, a 2 second overhead becomes large relative to the transmission time even for
a I MB file. But even if the effective bandwidth were 32 Mbps, the per file overhead still needs to be

reduced substantially below 2 seconds since Table 2 shows that the overhead alone for collection D

14

amounts to over 33 hours! Even if the overhead is reduced to 1 second, the total overhead for this

collection is over 16 hours.

If we place a deadline of 12 hours (one-half day) on any archiving run, we could accomplish this by
archiving only large files (5 MB or larger at 4 Mbps; 500 KB or larger at 10 Mbps or 32 Mbps). But
note that for collection D, we can not meet our deadline unless the overhead is reduced or aggregate
small files locally (e.g., using the tar Unix utility). Although aggregation of small files before
transmission is possible, we would lose the individuality of the small files unless we provided

additional metadata {e.g., an index file).

File Size File #in Overhead Transmission Time
Range Collection Eachfile Total 4Mb/s 10Mb/s 32Mb/s
D of Table 1
0-1KB 2,976 2 sec 1.7h 3sec 1.2sec 0.4sec
-10KB 969 2 sec 0.5h 9.7sec 3.9sec 1.2sec
-100KB 53,808 2 sec 29.9h 1.5h 0.6h 0.2h
-IMB 1,130 2 sec 0.6h 18.8min 7.5min 2.3min
-10MB 1,718 2 sec Ik 4.8h 1.9h 0.6h
-100MB 104 2 sec 3.5min 2.5h 1.2h 0.4h
-1GB 5 2 sec 10sec 1.4h 33.3min 10.4min
>1GB 0

Table 2: Disk overhead for different file sizes

3.3 Archiving
From the above experiments, we know that the overhead time component is significant and can
represent the majority of the total time for small files. Furthermore, some local Unix directories
contain so many small files that they would take over a day to archive. Finally, the SRB
implementation continues to evolve. Thus, the design of our archival scripts reflect this situation:

command line arguments allow the user to flexibly select the minimum file size to be archived, an

15

archiving deadline (i.e., maximum allotted archiving tirme), whether to use the container abstraction,
etc. A user (or script) can examine the file size statistics and select the appropriate set of command
line options that would be most suitable for the situation. There are three categories of archiving
scripts. These categories correspond to the three possible phases in an archival process: archiving,

verification, and restoration (recovery). The following sections describe these scripts.

3.3.1 The Archiving Script
In our archiving system, the strueture of our local Unix file structure is reflected in the SRB storage
system. So there is a direct mapping from the logical location of a local file to the logical of an SRB
object in the SRB storage space. A SRB collection name corresponds to a Unix directory name, and
an SRB dataset corresponds to a regular Unix file. Thus, a Unix file located at /export3/jz5/xxx (for
example) will appear as SRB collection PATH/export3/jz5 where PATH is an absolute pathname from
the root collection. For example, if PATH=/neurodb/archiver/archive, the Unix file /export3/jz5/xxx
would be located at /neurodb/archiver/archive/export3/jz5/xxx in the SRB space. Here neurodb is a

collection; archiver, archive, export3, and jz5 are subcoliections; and xxx is a dataset.

There are several versions of the archiving script which vary in small aspects, We describe the
common features below and describe the details of the varations later. First, the brainmap archiver
user account is the owner of the archiving scripts and is expected to be the account that executes
archival scripts. Second, an archival script can read all files in the Unix file system even if a user has
restricted access to a file my making it readable only by the owner. That is, the scripts give the
archiver account root access to all files on the local host (e.g., brainmap.arl. wustl.edu). Third, the
archiver user can select the minimum file size to be archived (i.e., he/she can define what it means to
be a large file) to avoid the overhead of archiving small files. This feature allows the user to
immediately accommodate the high rate of local data acquisition. Fourth, the archiver user can
efficiently re-archive the same directory at a later time when small file archiving becomes practical
{through a faster SRB implementation or different archiving algorithm). This efficient re-archiving is
accomplished by checking a log file to skip files that have already been archived. Fifth, different
versions of a Unix file appear as different SRB objects. Versions are maintained by appending a suffix
that is the modification time of the Unix file. Sixth, the archiver user can set a deadline for an archival
run. At the expiration of the deadline, the script is gracefully terminated. Finally, archiving scripts
compute performance metrics which can be reviewed by the archiver user to identify performance

problems.

16

Sub_directory

Recursive call

ne

found

yes

Fig. 7: The flow sheet of archival system

Fig, 7 shows a flowchart of an archiving script. The salient features include the following:
* Create an SRB collection for each Unix directory.

* Recursively call the archiving script to handle each Unix subdirectory.

* Optionally, check a log file before archiving if re-archiving.

s Log all files that are archived.
3.3.2 Verification Scripts

After archiving a directory or a file, the user may want to check whether a file has been archived with

the right size or not, or whether the archiving process completed properly. Two verification scripts

17

allow you to do the following: 1)} Get the archived objects’ atiributes (local path, file size and
modification time); and 2) compare the attributes of objects in the SRB space with those in a Unix
directory. This feature is very useful in providing feedback to the SRB developers. In the course of
this project, some SRB bugs were discovered through this process. Running the verification scripts
after each run will provide valuable information on the integrity of the archived data, the reliability of
the SRB software, and increase user confidence in the archival process during periods when

components are suspect {e.g., HPSS interruptions).

3.3.3 Recovery Script
When local data has been archived at a remote site, there must be a convenient way to get the data
back. Since multiple versions of the local file may have been archived the user may want one, all, or
some subset of these versions. The retrieval script allows the user to choose from several options: 1)
Get the latest version; 2) get all versions; or 3) get a group of files which match a regular expression

pattern. Furthermore, the selection criteria can be applied recursively to a whole directory.

3.3.4 Setuid Root
In order to give the archiver user access to all user files, the archiving Perl scripts are given root
permission in a safe manner through a combination of fuinfper! usage, root C wrappers, and
appropriate file permissions that limit how the scripts can be used and modified. Root permission can
be easily given by marking a Perl script as owned by the root user and marking them as executable by
all users. However, this approach opens up many security holes where it is quite easy for an ordinary
user to gain root permissions. We follow the recommendations in Perl documents for writing setuid
Perl scripts: write a C program wrapper that calls the Perl script, and use a special version of Perl
{taintperl) that checks for potential security vulnerabilities. The C wrapper is compiled into a binary
executable which is modifiable only by the root user making it difficult for an intruder to easily modify
for their purpose. The Perl script is also modifiable only by the root user. In fact, many Unix OS
kernels will disallow setuid seripts. Our approach allows us to safely run in root mode without

depending on a Unix kernel setting.

The Perl Programming Manual describes what is required to write and run an untainted Per] script, In

summary, the following rules are followed:

* The Perl script must begin with the line #/usr/bin/per] —T” so that taintper] will be called rather
than the normal perl interpreter.

+ All shell variables and environment variables (e.g., PATH) are initialized in the script,

s All variable values that have their values set from an external source {e.g., command line
argument) are checked.

* Subshells are never created (e.g., System (.. command... ")).

18

4. Archiving Guide

This section will give you a tour through the scripts that make up the Experimenters Workbench and

the archiving suite. This section is divided into subsections corresponding to the three major script

categories for data archiving: archiving, verification, and restoring. Within each category, there are

subsections which will discuss each script and guide you in using them,

Since some scripts have a long parameter list, we present examples using a notation that will simplify

the presentation. Example commands are shown in the form:

where

<command> <variable 1> <variable 2> . . .

<variable 1> = <value>

<variable 2> = <value>

For example,

where

archive Dirf

Diri =test]

is equivalent to entering the command “archive testl™ ie., Dirl is equivalent to the shell variable

$Dirl. By convention, we begin each variable with an uppercase letter (e.g., Dirl).

We summarize below the parameters used by the scripts we are going to talk about and give the

meaning of each parameter:

Adir: Name of directory to be archived (recursively, if necessary)
Days: Archive files that have not been accessed in Days days (i.c., the inactivity criteria)
Cmndir: Absolute path of directory containing this command script (supports recursion)
Minsize: Archive files that are at least Minsize bytes in size (the breakpoint)
Coll: Name of collection where the archived Dir will be placed
First: Always set by the user to “yes” but is changed during a recursive call.
Chk: 1: Check log and archive only versions that have not been archived;
0: Do not check the log (i.c., force an archival of al] files)
Dead: Execution deadline (allotted execution time)
Rdir: Recovery directory (where to place restored files) used by thegetback script
Log: Log file (where to record archiving progress)
Frnm: Name of file to be retrieved from SRB space

Patn: A pattern (a regular expression)

19

The basic archiving cycle can involve the three steps of archiving, verification, and recovery. We give
you a brief overview of the process below and more details in the sections which follow. Suppose you
find a candidate directory ‘Adir’to archive. You may call an archiving script to archive the directory
by following the steps below. First, invoke one of the archiving scripts to archive the directory Adir’

and record the archived file information (path, file size, archived date...) in the log file ‘Log’

archall.hours Adir Days Cmndir Minsize Coll yes Chk Dead

Where the arguments Adir, Days, Cmndir, Minsize, Coll, First, Chk, and Dead arc replaced by
appropriate values, This command will archive all files starting at the directory Adir that have not
been accessed in Days days and are at least Minsize bytes in size. The archall.hours script is located at
Cmndir/archall.hours. The file will be placed in the collection Coll. The seript will terminate after
Dead time has expired. The value of Chk indicates whether the log file Log should be checked before

archiving each file.
Second, call verification scripts to verify the archiving correctness. Verification requires two steps,
First, recursively retrieve the file atfributes from the SRB space and store them to the objlog file by
calling the archivedobj script with the name of the collection (Coll) of interest:

archivedobj Colf —+
The flag -r indicates a recursive execution. If the —r is omitted, subcoilections will not be examined.
Note that the output of archivedobj is always to the file named objlog. Then, call the verification script
Jinalcompare to verify the archiving correctness by comparing the contents of objlog with the
archiving log file Log:

finalcompare Log objlog

Stdout messages indicate missing files and incorrect file atiributes. Third, to recover all versions of the

archived files from directory Adir, run the recovery script getback:
getback Coll Adir Rdir -a
The directory Adir can be replaced with a filename (Fname) or pattern {(Patn). The modification date

suffix of the SRB object name is removed from the recovered file if there is only one version of a file.

The following sections will give more details about the archiving, verification and recovery process.

20

4.1 Archiving
There are four major archiving scripts:
archall largefile: Archive only large files to collections (without using containers).
archallargefile hours: Same as archall largefile but with a deadline.
archall: Archive files so that small files go to containers and large files go to collections.
archall hours: Same as archall but with a deadline,

Given the most recent performance tests, the script archall.hours is the most useful.

In the following descriptions, we first present the syntax of a script call and describe some of the
command line arguments. Then we give one or more examples to illustrate different usage, The

format of the examples foilows the format “Command Argument ... where Argument=Value”

The archiving scripts are written in Perl which recursively call themselves to archive subdirectories.

Syntax: archallhours Adir Days Cmndir Minsize Coll First Chk Dead

Example I: archall.hours Adir Days Cmndir Minsize Coll yes Chk Dead
where
Adir=jz5/srb
Days=5
Cmndir=/export]/jz5
Minsize=1024
Coll=archiver-wustl
Chk=0
Dead=3.3h

Description. Archive files from the directory jz3/stb’ which have not been accessed for at least 5
days. The archiving script (archall hours) can be found by the path fexportl/jz5° All files less than
‘1024’ bytes should be placed in a container; all other files are stored in a collection without using a
container. The archived files will be stored into sub-collections of the ecollection ‘archiver-wust]’
(which itself is a subcollection of the default subcollection meurodb/archiver). Here setting Chk to
means that the system should assume that this is the first time the directory has been archived (even if
it has been previously archived), and the script will not check the log file before archiving each file. If
Chk were not 0, the log file will not be checked to avoid archiving a file version that has already been
archived. The deadline is set to 3.3 hours; so the script will run for only 3.3 hours. The time is
specified as a decimal number with a time unit indicator (e.g., 3.3h means 3 hours and 18 minutes).

The time unit can be hours (h) , minutes (m) or seconds (s} (e.g., 3.3m). When the script exits, all

21

4.1

archiving statistics will be sent to a stdout file. The statistics include the elapsed time, the archival
volume, and the effective bandwidth for each directory or subdirectory. The Log file for this archived
directory “Jz5/srb” will be named ‘§z5_srb.archivedfilelog” to record the archiving information (e.g.,

path, size...) of each file in this directory or its subdirectory.

The other syntax of the other archiving scripts is identical to the syntax of the archall hours script
except that archall.largefile and archall has no deadline argument. Other example scripts are shown

below.

Example 2: archall.largefile.hours Adir Days Cmndir Minsize Coll yes Chk Dead

where the parameters are the same as in Example 1.

Only files that are at least Minsize bytes are archived. Containers are not used, and there is no

execution deadline.

Example 3: archall Adir Days Cmndir Minsize Coll yes Chk

where the parameters are the same as in Example 1.

Archive all files in the directory Adir. Small files (those smaller than Minsize bytes) should be stored

in containers, and large files should not.

Example 4: archallhours Adir Days Cmndir Minsize Coll yes Chk Dead
where the parameters are the same as in Example 1.

This is the same as Example 3 except with an execution deadline.

Verification

There are three scripts that are used during verification:

iistobj: Get the attributes of archived objects.

archivedobj: Call listobj to get the attributes of archived objects, and write
relevant attributes (e.g., local file path, file size, archival date and modification time when
archived) to the file ‘objlog’

Sfinalcompare: Get each record from the file Log, and search for a matching file nanie in
the file ‘objlog’ Check whether the file has been archived or archived with the correct

size.

22

The verification scripts are used to get archived objects” attributes back, compare against the “ ohjlog”

file, and then verify the archiving correctness. The following is the synopsis of these scripts.

Syntax: listobj Coll [-r] > Result

This command is used by the script archivedobj to retrieve attributes of previously archived files.
Coll is the collection name you provided in the command line to the archiving script and is the
collection or home collection where archived files are stored. The optional —r flag indicates that the
collection should be traversed recursively; i.e., include sub-collections. Without the -r, only the
attributes if objects stored in the collection Colf are retrieved, but not its sub-collections. The results
are sent to the stdout file.

Syntax: archivedobij Coll [-1]

This script takes the output of Zistob/ and filters out a subset of the file attributes for display to the

objlog file.

Syntax: finalcompare Log objlog > Result

Log is the file where the archived file information (file path, size, and modification time when
archived) is stored. objlog is the output file of archivedobj script. It stores the attributes of archived
objects retrieved by achivedobj script. Errar conditions (e.g., missing files and incorrect file sizes) are
sent to the stdout file.

Example 5: listobj archiver-wustl -r

Display on stdout the attributes of all objects in the ‘archiver-wustl’ collection and all its sub-

collections.

Example 6. archivedobj archiver-wustl -r

Send the interesting attributes (e.g., path, and size) of each object to the objlog file

Example 7: finalcompare Log objlog

Compare against the archived objects’log © objlog’ to see whether all files in the Log file are archived

correctly.

23

4.2 File Recovery
The getback script allows you to retrieve one or more files from archival storage. You can retrieve the
Iatest version or all versions of a file. When retrieving the latest version, the modification date suffix
that was appended to the file name is stripped. When retrieving all versions, the suffix is not stripped.
You can also retrieve a group of files whose name matches a pattern expressed as a Unix regular
expression (e.g., *.gif). All recovered files are stored in a single user-specified file. Thus, if you
retrieve all files from a collection that has sub-collections, the files that were original in subdirectories
will appear in one directory but with a name prefix that indicates the original Unix directory structure.
For example, a file xxx in subdirectory yyy of subdirectory zzz will be named zzz-yyy-xxx; ie., one

hyphen separates the directory components, and two hyphens separate the file name and the directory.
Syntax: getback Coll Patn Rdir [-a]

Coll is the name of the collection that will be searched for object namies that match the pattern Pazy.
Rdir is the pathname of the Unix directory where matching files will be placed. The optional -a flag
indicates when you want all file versions retrieved; otherwise you will get the latest version. Note that

any Unix metacharacters (e.g., *) must be quoted (e.g., * for *).

Example §: getback Coll Patn Rdir -a
where
Coll= archiver-wustl
Patn=jz5/srb/*.c
Rdir=/exportl/jz5/backup
This command retrieves the files matching the regular expression jz5/stb/*.c from the collection

archiver-wustl into the directory /exportl/jz5/backup. All file versions are retrieved,

Example 9: getback Coll jz5/srb Rdir ~a

where the argument variables are the same as in Example 8.

It retrieves the directory jz5/srb which is stored in the collection archiver-wustl, from the SRB space

with all versions of files and stores the retrieved files in the local directory /exportl/jz5/backup.

Example 10: getback Coll jz5/srb Rdir

where the argument variables are the same as in Example 8,

This is the same as Example 9 except that it only retrieves the latest file versions.

24

5.

5.1

Experimenters Workbench Guide

This section describes the major scripts for running SRB performance measurements. Since the SRB
implementation is still evolving, these scripts are very useful for periodic checks of the SRB}
performance. Results of these measurement experiments provide useful feedback to the SRB
developers, help to tune the SRB implementation and verify its functionality. The following are the

experiment testbench scripts.

For simplicity, all command line arguments that appear in the syntax descriptions are listed below:
Dir: Directory name
Coll: Name of the collection where the files in Dir will be read from or written to
Dfile: Name of a file containing a list of data files that will be read from or written to

the archival storage

Csfile: Name of a file containing a list of container sizes
Fnnm: A file name
Cont: A container name

Reps: Number of repetitions (runs) of an operation

Simple S-command Test

Since the two S-commands Sput and Sget play a major role of in our archiving scripts, the
measurement scripts test features of these commands such as whether to use containers, and the
container size. The SRB host and SRB resource is set in the users ~/.srb/.MdasEnv file. For example,
typical settings are to use ghidorah.sdsc.edu as the SRB host, and cont-sdsc as the SRB resource.
Cont-sdsc is a logical resource consisting of a container cache at ghidorah.sdsc.edu and permanent

storage at the HPSS. All results are displayed on the stdout file.

The simplesput command times the writing of each file listed in the file Dfile to the archival storage
Reps times and reports the maximum/minimum/average time and effective bandwidth. Containers are
not used.

Syntax: simplesput Dfile Reps > Statistics

Example 11: simplesput datafile 5

The argument datafile here is the name of a regular Unix file containing a list of data files that will be

copied to the SRB storage. Sput will be called five times to compute the performance statistics.

25

52

The simplesget command is the same as simplesput except that it uses the Sget command to get files

from SRB storage.
Syntax: simplesget Dfile Reps > Statistics

The dirsimpleput command measures the time and effective bandwidth for writing the contents of an

entire Unix directory to SRB storage.
Syntax: dirsimpleput Dir Coll > Statistics

In Example 12, the performance statistics for copying the contents of the Unix directory jz5/stb to the

collection archiver-wustl will be reported,

Example 12: dirsimpleput jz5/srb archiver-wustl

The corresponding Sget measurement script is dirsimpleget:

Syntax: dirsimpleget Coll Dir > Statistics

Container Measurements

The SRB developers designed containers to pack small files into a physical block to hide the high
latency of each small file access in the archival storage system. The key issue associated with
containers is the effect of the container size. The putcont script is the equivalent of the simplesput
script using containers. The only difference is that the container name must be specified and the
container size is 100MB as default. The putcont script fills 2 container Cort with files listed in the file
Dfile:

Syntax: putcont Dfile Cont > Statistics

Example 13 copies all files from the file datafile to the container fest-cont:

Example 13: putcont datafile test-cont

The getcont script displays the statistics for reading the files from collection Coll Reps times,

Syntax: getcont Dfile Reps > Statistics

26

Example 14 displays the performance statistics for repeating the operation five times of copying all
data from the container to the local space. The data has already been put to the SRB space by the

putcont seript.

Example 14: getcont datafile 5

The gefcont and putcont scripts provide performance data for container usage so that we can decide

whether it is useful to use containers in our archival system.

The contfill script is used to fill containers of different sizes to test the effect of different container

sizes:

Syntax: contfill Fnm Csfile > Statistics

Example 15 measures the performance of filling containers whose sizes are listed in the file
contsizefile with different instances of the Unix file t50k. For example t50k might be a 50 KB test file.
The actual file names used are automatically generated. For example, if there are 100 files in each of
two containers, their names will be t50k.00, t50k.01... t50k.099 and t50k.10, t50k.11, ... t50k.19%.

Example 15: contfill t50k contsizefile

The contretrieve script is used to measure the performance of reading all files back from a container to

show the effect of different container sizes:

Syntax: contrefrieve Fnm Csfile > Statistics

The #rp2-2 script puts different size files into different sized containers, one file per container, to test

the relationship between the container size and the content size of a container:
Syntax: try2-2 Dfile Csfile times > Statistics

There are other scripts which are formed by minor medifications of the above scripts. Since they have
similar functionality, we will not list them here.

Conclusions

In this data archiving project, we installed the SRB in our local system. By doing experiments, we

gained an understanding of SRB performance, verified SRB functionality, and quantified the effects of

27

key parameters on the performance of the basic SRB operations like Sput/Sget. We designed and
implemented an archival system corresponding to the local file system distribution, reflected the local
file structure in the SRB storage system (HPSS). We did perl programming to carry out the archiving,
verification and recovery tasks. By running the experiment and verification scripts regularly, we
provided valuable feed back (functionality and performance) to the SRB developers, cooperated with
the developers to tune SRB performance and debugged SRB errors. With the SRB, we accessed
distributed data. Right now, our data archiving scripts are running with root privilege to archive large
files, to verify archiving success, to compute statistics on the archival process, to provide feedback to
the SRB developers. We provided a facility to solve the local storage shortage problem, and provided
valuable experience and performance data for constructing a future brain map database, and made it

easier for sharing and publishing our local data in the future.

Acknowledgement

We would like to thank Dr. Ken Wong for advice during the conduct of this research project, Dr.
Jerome R. Cox, Jr. for funding, and Sharon Stewart for providing useful seripts to show the local data
characteristics, We would also like to thank Acrobat Raja, Mike Wan, and the other SRB developers

for help in installing and understanding the SRB.

References

http://www.npaci.edw/DICE/SRB

http://www.vbns.net

hitp://www.sdsc.edu/hpss

28

Appendix (Source Code)

#! /pka/gnu/bin/pexrl -T

NAME : archall
PURPOSE: archall some directory(may have subdir)

SYNOPSIS: archall Dir Days Path BrkPt Init First Chk

EXAMPLE:

Dir=jz5/srb

Days=5

Path=/exportl/jz5

BrkPt=1024

Init=archiver-wustl

First="yesg"

Chk=0

DESCRIPTION:

Dir: Directory to be archived

Days: Days, files in the Dir are not accessed

Path: Absolute path of a command script

BrkPt: Breakpoint

Init: Initial collection where the archived Dir will go

First: First time to create the collections. Always set to
"yes" to create collections once

Chk: Checking Log or not. "1" for checking log; "0" for not
checking leg

sEnv{'pPATH'}

="' /pkg/gnu/bin: /bin: /usr/bin: /usr/ucb: /home/arl/staff/wustlarb/bin:
/home/arl/staff/wustlsrb/SRB1_1_4rel/bin: /home/arl/staff/wustlsrb/SRB1_
1_4rel/utilities/bin’;

$ENV{'SHELL'} = '/bin/sh' if $ENV{'SHELL'} ne '';

SENV{'IFS'} = '' if $ENV{'IFS'} ne '';

reguire "flush.pl";

i£ (($ARGV[0] =~ /"-h/) || ($#ARGV<4)) {
print "Usage: archall Dir Days Path BrkPt Init First Chk \n";
print" Example: archall jz5/srb 5 /exportl/jz25 1024 archiver-wustl
ves 0 \n";
print "number or argument now : SH#ARGV \n";
exitc 0;

}

Stotaltime=time;
system "Sinit";

if (8ARGVI[2] =~ /" ([-_\/\w.-_1+)$/) {

Shome = $1; # Shome now untainted
} else {
die "Bad data in SARGV([2]";
1
if ($arGgv (2] 1~ /\/$/){ $home=Shome . */";}
$command=%home .'"archall®:; # archiving command for sub~routes

if ($ARGV(0] =~ /*([-_N/\w.-_1+)8/) {
sdirectory = $1; # $directory now untainted

30

} else {
die "Bad data in $ARGVI[Q]l";
}
@totalsizes=split{(" ", du -s -k $directory”);

if (lchdir($directory)) ({
print "Can't cd to $directory\n";

exitc 0;
}
$localdir="pwd™;
$n=3ARGV[1];
open{lLS, "ls -F -1 -a [|") || die {("can't open $directory \n"};
if ($directory=~/\/%/) { # delete / at tail
chop ({$directoxy };
!
if (S$ARGVI[4] =~ /" ([-_\/\w.-_]+}$/) {
$initecol = $%1; # Sinitcol now untainted
} else {

die "Bad data in SARGV[4]r;:

}

if (sdirectory =~/"\//){
$collpath=$initcol.$directory ;
jelse{
$collpath=Sinitcol."\/".$directory ;

}

@dir=split (/\//, $collpath) ;
if ($ARGV[4]1=~/"\//){ shift(edir);}

Sarchivedir="/".8dir [1}];

for ($i=0; $i<$fdir;si++}{
$dir[0]= gdirfol."_r.3dir[$i+1];
for container naming use
if($i»=1){
S$archivedir=3Sarchivedir. "/" .8dir[$i+1];
record the archived directory

}

Sarchivedirs=5localdir;

if (Sarchivedirs =~ /*([-_\/\w.-_1+)8/) {
Sarchivedir = $1; # Slocaldirs now untainted
} else {
die "Bagd data in Sarchivedirs";

}

@forlog=split(/\//, $archivedir) ;

if { $archivedir=~/"\//){ shift (e@forlog);}

31

if (S#forlog»=2) {
$logname=§forlog(o] ."_".$forlog[l]."_".$forlog[2]."."
"archivedfilelog”;

else{
for{$i=0; $i<$#dir;$i++) |
$forlog[0]= $forlog{0]." ".sforlegl[$i+1];
}

$logname=sforlogl0] .*." . "archivedfiielog";

}

$log=shome .Slogname;

if(-e $log) {
@loglines=split(" ", “wc -1 $log”);
$logline=$loglines[0];

else {$logline=0;}

open{LOG, ">>$1log") ;

if ($ARGV([S] =~ /" ([-\/\w.I1+)$/} {

$firstereating = $1; # sfirstcreating now uatainted
} else {
die "Bad data in S$SARGV{5]";
}
if ($ARGVIE] =~ /“([-\/\w.1+)8/) {
Sarchivedtimes = 31; # %archivedtimes now untainted
} else {

die "Bad data in SARGVI[6]";

}

Sdate="date '+%Im/33/%y'";
cheop ($date) ;

$sum=0; $8ize=100000000; Scount=0; $dirsize=0;
$contname=$dir{0]." ". Scount;

$contsource="gont-sdsc";

$firsttime="yes";

$found=0;

$incontfile=0; Soutcontfile=0; $incontsize=0; Soutcontsize=0;
S$subtime=0; $logcheckingtime=0;

@col=split{(/\//,$collpath);
if ($collpath=~/"\//){ shift(@col);}
if {$§firstcreating eq '"yes"){ # first time to create parent
collections.
for($1i=0; $i<=S$#col;S$i++){
if ($archivedtimes<1) { ffirst time to archive
system "Smkdir", "Scoll$il*;

system *Scd", "Scollsil";
}

$firstereating="no";

else{ # create current collection

32

for($i=0; Si<S#col;si++){
system "Scd", "Scol[$il";

if ($archivedtimes<l) { #first time to archive
system "Smkdir', "Scol{S#col]l"n;

system "Sed", "Scol[$#col]l";

}

while (<LS>) {
LEC/NN/S/Y | (/PNNN/3/)) (next; }
if((/*\./) && (/\/$/)) {print"can't archive .dir: $ \n"; next;}
it (IN$) | #--sub_dir
chop; chop;

$protime=time;

system "Scowmand", "$ ", "S$SARGV{il", "$ARGV[2]", "SARGV[3]",
"$collpath", "$firstcreating”, "Sarchivedtimes";

$gubtime +=time -S%protime;

next ;

}

$line=5 ;
chop {$line};

not a sub_dir

ifC(/N\es/) || (\N$/)]

print"don't archive symbolic link file or pipe file: $ "; next;
}
if ($1line =~/*8/}{ #executable file
chop (§line) ;
}

#iast modified time
Smtime = (stat($line}) [9];
@gmtimes=gmtime {$mtime) ;
$day=5gmtimes [3];
$month =1+ Sgmtimes{4i;
Syear =13900 +Sgmtimes([5];

if (Sday <= 9){
$day="0".%day;

if (Smonth <= 9){
Smonth="0".3month;
}
$modifiedtime= Syear.$month.Sday;

if (8line=~ /" ([-_+\/\w.,-_+\-\"35\#e\:]1+)38/) {

$file name = $1; # $file name now untainted
} eise {
print "Bad data in $line, at dir: $archivedir \n";
next;
}

33

$filename=$archivedir. "/". $file name;
$filesize=-5 5line;
$dirsize=5dirsize +$filesize;

Sn=int (-& $line); #how old is the file

if ($archivedtimes<1) { #first time tc archive the file
if{Sn <$ARGVI[1]) {next;}

else{ #check log to see whether the file was archived before

S$logtime=time;
@greps="/pkg/gnu/bin/grep -F S$filename $log~;

$leogcheckingtime +=time -$logtime;

if {S#greps>=0) { #find it
for ($k=0; $k<=S#greps;sk++}{
@times=split (" ", Sgreps{sk]};
if ($times[1] eq 3Smodifiedtime) {§found=1; last;}

if {$found==1) { $found=0; next;}
}else{ # not been archived before
if ($n <$ARGVI[1]) {next;}

}
$logline++;
$srbobj= $line . "." . Smodifiedtime;
if ($filesize>$ARGV([31){ #large file goes to collecticn directly
system "Sput", "-f", "Sline", "$srbobj";
Soutcontfile++;
Soutcontsize=Soutcontsize +5filesize;
}
else(# small files go to container now
if ($firsttime eq "yes"){ #first time to create container
system "Smkcont", "-8", "Scontsource®, "-s", "$size",
"Scontname";

Sfirsttime="done";

}

$incontfile++;
Sincontsize=%incontsize +%filesize;
Ssum=$sum + $filesize;

if ($sum > $size} {

gystem "Ssyncont", "-4', "Scontname";
Scount++; Ssum=3filesize;
fcontname=5dir 0] ."_". Scount;
system "Smkcont", "-8§", "Scontsource", "-s",
"$size", "Scontname";
system "Sput", v-fr, t-eg", "Scontname®, "$line", "Ssrbobi";

34

}

printf LOG *$archivedir/$line S$modifiedtime $filesize &4date
Smtime\n";
&Ef1lush (LOG) ;

}
if ($firsttime ne "yes") |
gystem"Ssyncont", "-4", “Scontname®;
}
close (LS} ;
close (LOG) ;

system("Sexit");

Stotaltime=time-$totaltime-Ssubtime;
Sdirsgize=%incontsize +Soutcontsize;
if ($totaltime<l }{ $totaltime=1;}

##$throughputs= (Stotalsizes [0] *8) / (1024 *Stotaltime) ;
$throughputs=($dirsize*8}/{1024*1024*Stotaltime) ;
Sthroughput=sprintf ("%.4f\n", $throughputs) ;

if ($firsttime ne "yes") {
Snumbcont=5count+1;

elgef
Snumbcont=0;
}

print"\nStatistics of dir:$archivedir: \n";
print"The running time for archiving $dirsize bytes in current dir is
(s): $Stotaltime\n";
print"Effective throughput (Mb/s): S$throughput\n";
print"archiving size({B): $dirgize\n";
print"Number of containers: Snumbcont\n";
print"Container size(B) : S$size\n";
print"Breakpoint (Byte): SARGVI3]\n";
print"#files in containers: $Sincontfile\n”;
print"#£files out of containers: Soutcontfile\n";
print"#bytes in containers: $incontsize\n";
print"#byies out of containers: $outcontsize\n";
if ($archivedtimes>0) {

print"checking log time for $logline lines log is (s):
$logcheckingtime\n";

35

#! /pkg/gnu/bin/perl -T

NAME : archall.hours

PURPOSE: archall.hours some directory(may have subdir)
SYNOPSIS: archall.hours Dir Days Path BrkPt Init First Chk T
EXAMPLE:

Dir=jzs/srb

Days=5

Path=/exportl/jz5

BrkPt=1024

Init=archiver-wustl

First="yes"

Chk=0

T=3.3h

DESCRIPTION:
Dir: Directory to be archived
Days: Days, files in the Dir are not accessed
Path: Absolute path of a command script
BrkPt: Breakpoint
Init: Initial collection where the archived Dir will go
First: First time to create the collections. Always set to
"ves" to create collections once
Chk: Checking Log or not. "1" for checking log; "0" for not
checking log
T: Time value

R T o 3 R gk gk e e

SENV{'PATH'}

='/pkg/gnu/bin: /bin: /usr/bin: /usr/uch: /home/arl/staff/wustlsrb/bin:
/home/arl/staff/wustlsrb/SRB1 1 4rel/bin:/home/arl/staff/wustlsrb/
SRB1_1_4rel/utilities/bin';

SENV{'SHELL'} = '/bin/sh' if $ENV{'SHELL'} ne '';

$ENV{'IFS'} = '' if SENV{'IFS'} ne '';

require "flush.pl";

if (($ARGV[0] =~ /"~h/) || (S#ARGV<4)){
print "Usage: archall.hours Dir Days Path BrkPt Init First Chk T
\n";
print" Example: archall.hours jz5/srb 5 /exportil/jz5 1024 archiver-
wustli yves 0 3.3h \n";
print "number or argument now : SHARGV \n";
exit 0;

}

Stotaltime=time;
system "Sinit";

if ($ARGVI2] =~ /*([-_\/\w.-_1+)8/) {
$home = §1; # Shome now untainted
} else {

die "Bad data in SARGV([2]1";
1
if (3ARGV([2] !~ /\/$/){ Shome=$home . "/v;}

$command=5$home ."archall .hours";

36

if ($ARGVIC] =~ /" ([-_\/\w.-_1+1$/) {

$directory = $i; # $directory now untainted
} else {
die "Bad data in S$ARGVI[0]";
}
@totalsizes=split (" ", du -s -k S$directory’};

if (lchdir($directory)) {
print "Can't cd to Sdirectory\n';
exit 0;

}

$localdir="pwd";
$N=$ARGV[1];

open(Lg, "ls -F -1 -a |"} || die ("can't open $directory \n");
if (sdirectory=~/\/3/} { # delete / at tail
chop ($directory);
}
if {$ARGVI4] =~ /T{[-_N\w.-_1+)8/) {
Sinitcol = 31; # $initcol now untainted
} else {

die "Bad data in SARGV[4]";

}

if (sdirectory =~/"\//}{
Scollpath=$initcol.$directory ;}
elge{
Scollpath=siniteol."\/".$directory ;
}

@dir=gplit{(/\//,$collpath);
if ($ARGV[4]=~/"\//){ shift(edir);}

$archivedir="/" . 5dixr[1];

for ($i=0; $i<$#dir;si++}{
5dir(0]l= sdir[0]." ".8dir[$i+1];
* for container naming use
if ($1>ml)(
S$archivedir=$archivedir. "/" .sdir{§i+1];
record the archived dir

}

Sarchivedirs=$localdir;

if ($archivedirs =~ /*([-_\/\w.-_1+)8/) {
Sarchivedir = $1; # Slocaldirs now untainted
} else {

die "Bad data in $archivedirs";

}

@forlog=split{/\//, Sarchivedir) ;

37

if { $archivedir=~/"\//){ shift(@forlog);}

if ($#forlog»=2) {
$logname=$forlogio] .*_".3forleg[1l] ." *. 4forlog[2]."."
"archivedfilelog";}

else{
for($i=0; $i<s#dir;si++){
$forlogin]l= $forlog[0] .* ".$forlog[$i+l};
}
$logname=$forlog (0] ."." . "archivedfilelog"®;

$log=%$home .$logname;

if(-e $log) {
@loglines=split (" ", “wc -1 $lcg™);
$logline=5loglines[0] ;

else {$logline=0;}
open (LOG, ">>$log") ;

if ($ARGVI5] =~ /“([-\/\w.1+)8/) |
$firstcreating = $1; # sfirstoreating now untainted
} else {
die "Bad data in S$ARGVI[5]";

1
if ($ARGVIE] =~ /“{[-\/\w.1+)3/) {
Sarchivedtimes = $1; # Sarchivedtimes now untainted
} else {
die "Bad data in S$ARGVI[6]";
}
if ($ARGVI[7] =~ /"{[-\/\w.1+)5/) {
Stimelefr=51;
$unit=chop{$timeleft);

if (3unit eqg "h") {$timeinseconds=3600*5timeleft;}
else(
if (3unit eqg "m") {Stimeinseconds=60*5timeleft;}
else{Stimeinseconds=3$timeleft; }

} else {
Stimeleft="unknown";

g$date="date '+%m/%d4d/%y'";
chop (Sdate) ;

S$sum=0; $size=100000000; Scount=0; $dirsize=0;
$contname=5dir [0} ."_". Scount;

Scontsource="cont-sdsc";

$firstiime="yes";

s$found=0;

Sincontfile=0; $Soutcontfile=0; $incontsize=0; Soutcontsize=0;
$subtime=0; $logcheckingtime=0;

@col=split(/\//, Scollipath);

38

if (Scollpath=~/"\//}{ shift (@col);}
if (¢firstcreating eq "ves"){ # first time to create parent
collections.
for (5i=0; $i<=$#col;$i++){
if (Sarchivedtimes<i){ #first time to archive
gystem "Smkdir", "Scol(ls$iln;
}

system "Scd", "Scol [$il";

}

$firstereating="no";

elsel # create current collection
for($i=0; $i<Sffcol;Si++)
system "Scd", "Scoll§i]l";
}

if ($archivedtimes<l} { #first time to archive
system "Smkdir", "Scol [$#coll";
}

system "Scd", "$col [§#col]";

}

while {<LS>) {
LEC/NAN/S/Y | PNANN/S/)) {next ;)
if((/*\./} && (/\/%/)) {print"can't archive .dir: $ \n"; next;}

if (/N/S/) | #--subdir
chop; chop;
if ($timeleft ne "unknown") {
if ({time-$totaltime) >=%timeinseconds) {
print"time_out for: Sarchivedir/s /+*+**\n";last;

else{$leftsecond=5timeinseconds- (time-S$totaltime} ;
S$timelefts=5leftsecond."s";
$protime=time;
system "$command”, "s ", "SARGV[1]", "$ARGV[2]",
"SARGV[3]", "gcollpath", "$firstecreating",
"Sarchivedtimes", "$timelefts®;

S$subtime +=time -Sprotime;
next;
}
}
Sprotime=time;
system "Scommand", "$ ", "SARGVI[1]", "SARGV[2]%", V"SARGV[3]",
"Scollpath", "$firstcreating", "$Sarchivedtimes";

$subtime +=time -$protime;
next;

}
#-- not a sub dir

if ($timeleft ne "unknown™) {
if ((time-$totaltime)>=3$timeinseconds) {
print"time_out for: $archivedir/3 ";last;
}
1

$line=%_;
chop($line) ;

39

ifC(/\es/) || (/\N]$/))]

print"don't archive symbolic link file or pipe file: 3 ¥; next;
}
if{$line =~/*5/){ #executable file

chop ($1line);

}

#last modified time
smtime = (stat($line)) [9];
@gmtimes=gmtime (Smtime) ;

$day=3%gmtimes [3];

smonth =1+ $gmtimes([4];
$year =1900 +Sgmtimes[5];

if(8day <= 9){

gday="0".%day;

if (smonth <= 9} {

Smonth="0", Smonth;

}

Smodifiedtime= Syear.$month.$day;

if ($line=~ /" ([-_+\/\w.-_+\~-\"%5\#@\:1+)$/) {

$file name = $1;

} else {

$file name now untainted

print "Bad data in $line, at dir: $archivedir \n"; next;

}

ffilename=$archivedir. "/". $file name;
Sfilesize=-5 $line;
Sdirsize=3dirsize +5filesize;

$n=int (-A $line);

#how old is the file

if ($archivedtimes<1l){ #first time to archive the file
if ($n <$ARGV({1]) {next;}

}

else{ ficheck log to see whether the file was archived before
$logtime=time;
@greps="/pkg/gnu/bin/grep -F $filename $log";

$logcheckingtime +=time -$logtime;

if ($#greps»>=0){ #find it
for ($k=0; S$k<=Sfigreps;sk++){

@times=spliit {" ", Sgreps([sk]);
if ($times (1] eq Smodifiedtime) {$found=1; last;}

if ($found==1){ $found=0; next;}

lelse

not been archived before

if (8n <$ARGVI[1]) {next;}

}

slogline++;
$srbobj= $line

.0l Smeodifiledtime;

40

if (§filesize>3ARGV([3]){ #large file goes to collection directly

system "sput", "-f", "$line", "Ssrbobij";
soutcontfile++;
Soutcontsize=Soutcontsize +5filesize;

}

else{ # small files go to container now
if ($firsttime eq "yes"){ #first time to create container
system "Smkcont®, "-8", "Scontsource", "-s", "$size!,
"Scontname';
Sfirsttime="done";
}
Sincontfile++;

Sinceontsize=$incontsize +$filesize;
Ssum=Ssum + S$filesize;
if ($sum » $size) {

system "Ssyncont", "-d", "Scontname";

Scount++; Ssum=5$filesize;

$contname=$dir 0] ."_". %count;

system "Smkcont", "-8", "Scontsource", "-sm", t4gigzen,

"Scontname® ;

}

system "Sput®, "-f", "-c", "Sconiname", "$line", "$arbobi';

printf LOG "$archivedir/$line $modifiedtime $filesize $date
Smbime\n";
&Liush (LOG) ;

if ($firsttime ne “"yes'}({
system"Ssyncont", "-d4d", "Scontname";
}

close (LS) ;
cilose (LOG) ;
system("Sexit") ;

$totaltimes=time-S$totaltime;
$totaltime=5totaltimes-$subtime;
sdirsize=$incontsize +S%outcontsize;

if ($totaltime<l) { Stotaltime=1;}
##Sthroughputs=(Stotalsizes [0] *8) / (1024*Stotaltime) ;
$throughputs=(3dirsize*B8) / (1024*1024*Stotaltime} ;
$throughput=sprintf ("%.4f\n", Sthroughputs) ;

if ($firsttime ne "yes"}/{
Snumbcont=Scount+1;

else{

}

print¥\nStatistics of dir:%archivedir: \n*;

snumbcont=0;

41

print"The running time for archiving $dirsize bytes in current dir is
(s): Stotaltime\n";
print"Effective throughput {Mb/s): Sthroughput\an";
printrarchiving size(B): $dirsize\n";
print"Number of containers: $numbconti\n®;
print*Container size(B) : $size\n";
print¥Breakpoint (Byte): $ARGVI3]\n";
print"#files in containers: Sincontfile\n";
print"#files out of containers: $outcontfile\n";
print"#bytes in containers: $incontsize\n";
print"#bytes out of containers: $outcontsize\n";
if {Sarchivedtimes>0) {
print "lines_of_log : $logline \n%;
print'checking leg time for 3lcgline lines log is (s}):
$logcheckingtime\n";

42

#! /pkg/gnu/bin/perl -T

NAME : listobj

PURPOSE: list all archived files' attributes in some collections
SYNOPSIS: listobj ({initecoll name) -r

EXAMPLE: listobj (archiver-wustl) -r

DESCRIPTION: recursivly list all objects in this initcoll name
#collection if -r exits

SENV{ 'PATH' }=' /pkg/gnu/bin: /bin: fusr/bin: /usr/uch: /home/arl/staff/wastl
srb/bin:
/homa/axl/staff/wustlsrb/SRBlml_érel/bin:/home/arl/staff/wustlsrb/SRBlw
1 d4rel/utilities/bin';

$ENV{'SHELL'} = '/bin/sh' if S$ENV{'SHELL'} ne '';
SENV{'IFS'} = '' if $ENV{'IFS'} ne '';
if (($ARGV[0] =~ /*-h/) || ($#ARGV>1)){

print “Usage: listobj (initcoll name} -r\n";
print" Example: listobj (archiver-wustl) -r \n";
print "number or argument now : SH#ARGV \n'";

exit 0;

}

system "Sinit";

if ($ARGVIO] =~ /*([-\/\w.l1+}$/) {

$directory = $1; # $directory now untainted
} else {
die "Bad data in SARGV[0]"; # log this somewhere

)

if ($ARGVI1] =~ /*-r$/) |
$recursive = "yes";
} else{$recursive = "no";}

if (SHARGV>=0) {
@dir=split (/\//,$directory);
if (BSARGV([0]=~/"\//}{ shift(@dir);}
for ($i=0; $i<$#dir+l; $i++)]
system "Scd", "sdir([sil";

}
}
if ($recursive eq "yes"){
System "SlS“r ll_r"' "_l"’ "_,L!l’ [I_l"
else {
system "S}.S”, ||_,,:|_ur wog,n, w_jn ;
}

system "Sexit";

43

#1 /pkg/gnu/bin/perl -T

NAME : archivedob]j

PURPOSE: 1list all archived files' attributes in some collections
SYNOPSIS: archivedobj initcollname -r

EXAMPLE: archivedcbj archiver-wustl -r

must use -r for recursivly getting objects
SENV{'PATH' }='/pkg/gnu/bin: /bin: /usr/bin: fusr/uch: /home/arl/staff/wustl

srb/bin: /home/arl/staff/wustlsrb/SRB1_1 4rel/bin:/home/arl/staff/
wustisrb/SRB1 1 4rel/utilities/bin’;

SENV{'SHELL'} = '/bin/sh' if $ENV{'SHELL'} ne '';
SENV{'IFS'} = ' if SENV{'IFS'} ne '';
if ($ARGV[0] =~ /"-h/}{

print "Usage: archivedobij initcollname -r\n';
print" Example: archivedobj archiver-wustl -r\n";
print "number or argument now : $HARGV \n";

exit 0O;

}

Slocaldir="pwd";
if ($localdir =~ /*([-_\/\w.-_]1+)$/) {
Shome = $1; # Shome now untainted
} else {
die "Bad data in S$localdir";

if {$localdir !~ /\/$/){ Shome=$home . "/v;}
Scommand=$home."listobij";
if ($ARGVI[1] =~ /*-r$/) {
Srecursive = "yesg";
} else{srecursive = "no";}

if ($#ARGV>=0) {

if {$ARGV[0] =~ /" ([-\/\w.14)8/) |

$directory = $1; # Sdirectory now untainted
}

elge {
die "Bad data in SARGV{0]";

@dir=split{/\//, $directory};

if { $ARGV([0}i=~/"\//){ shift(@dir);}
Sextrasteps=S$#dir+1;

if ($recursive eq "yes") {

open (LS, "$command $directory -r }[*) || die ("can't list
abj\n") ;
else{ open(LS, "$command $directory |") || die ("can't 1ist
obj\n"}; }

44

}

elge{

Sextrasteps=0;

open (LS, "$command |") || die ("can't list obj\n"};
}
$log=5home ."objlog";
Sconstantstep=3; #/home/425.../
$finalstep=$constantstep + $Sextrasteps; #/home/425.../test/.../
open (LOG, ">$1log") ; #attributes is writen toc a file

while {(<LS>) {

$line=$;
$line=~s/\s+//; fistripe the leading space(from 1 to unlimited)
if ($line=-~/"c/){ next; } #sub collection name list
if ($line =~/"\//} { #collection start:
chop ($line)} ;

@dir=split{/\//,$line);
for($n=0; Sn<&finalstep; 3n++) {

shift{@dir); #get of the hearder colliection
}

for($i=0; S$i<S$#dir;si++) |
$dir[0)= &dirfo]."/v.sdir[si+1};

1f ($#dir>=0) {
8dir[0]l= "/". $3ir[0] .n/v; #file directory

else {$dirfol="v;}
next;

else{ # objects

chop ($1line) ;
@file=spiit{" ",$iine);

delete useless information: wustlsrb 0 cont-hpsss-sd
shift({@file); shift{@file); shift(efile):

if£({$filef0]=~/"IC\b/){
shift(@file); } # IC--in container

$size= $file[0];

Stimes=4%file[1];

@dates=split ("-",Stimes};

Syear=substr ($dates[0]), 2);
Sdate=$dates [1] ." /¥ .3dates[2] ."/". Syear;
gfilename=3file[2];

printf LOG "$dir([0] $filename %size Sdate\n";
next;

45

close(L8);
close (LOG) ;

46

/pkg/gnu/bin/perl -T

#1

name: finalcompare

input two filenames

check whether the files listed in the file log are archived correctly
comparing time: n*n

example: finalcompare log objlog

#log: stores the information of archived files
#objloyg: stores the attributes of archived objects in SRB space

SENV{'PATH' }='/pkg/gnu/bin: /bin: /usr/bin: /usr/uch: /home/arl/staff /wustl
srb/bin: /home/arl/staff/wustisrb/SRBL_1_ 4rel/bin:/home/arl/staff/wustls
rb/SRBi1_1_4rel/utilities/bin’;

S$ENV{'SHELL'} = '/bin/sh® if $ENV{'SHELL'} ne '';
SENV{'IF8'} = '' if SENV{'IFS'} ne '';
if ($ARGV[0l =~ /" ([-\/\w.]4)$/) {
$file0 = 3$1; # 5file0 now untainted
} else {

die "Bad data in S$SARGVI[O0]¥;

1
if (SARGVI([1] =~ /" (i-\/\w.]1+)$/) {

$filer = §1; # $filel now untainted
} else {
die "Bad data in SARGVI[1]*";
}
open{LOG, $file0) || die {"can't open $ARGV[C]) \n"};

while (<LOG>) {

$line=%_;
chop () ;
if ($_ =~ /7 (1-_+\/\w.—_+\~\"¥$\#@\:\s] +) $/) {
$lines = 31; # $_ now untainted, why?????777?
} else {
print "bad data in $_ \n"; next;
}
@datas=split (" ",%lines);
$findingobj=%datas[0]. "*.* . $datas[1]); #filename.modifiedtime

@greps="/pkg/gnu/bin/grep -F $findingobi sfilel™;

if ($#greps>=0){ #find it
@cimes=split (" ", $greps[0]1);

if ($times[2] ne $datasi3]){
print"achiving date is different\n";
print "oringinal:$line archived:Sgreps[0]";

if ($times{l] ne $datas[2])

print"achiving file size is different\n";
print "oringinal:$line archived:sSgreps(C]¥;

47

}

else{
print "not be archived : $iline";
}

close (LOG) ;

48

#! /pkg/gnu/bin/perl -T

NAME : gethack
PURPOSE: retrieve archived files from some collection
SYNOPSIS: getback Init Dir/Fnm/Patn SDir -a
EXAMPLE:
Init= archiver-wustl
Dir=jz5/srb
Fam=Xxx
Patn=jz5/srb/*.c
SDir=/exporti/jz5/backup
DESCRIPTION:

Init: Initial collection where the archived Dir stored
Dir: Directory to be retrieved

Fnm: a file

Patn: a pattern

SDhir: Storing directory, to store retrieved files

e Sk ok ok o4

SENV{*PATH'}='/pkg/gnu/bin: /bin: /usr/bin: /usr/uch: /home/arl/staff/wustl
srb/bin:/home/arl/staff/wustlsrb/SRB1m1m4rel/bin:/home/arl/staff/wustls
rb/SRB1_1 4rel/utilities/bin';

$ENV{'SHELL'} = '/bin/sh' if $ENV{'SHELL'} ne '';
SENV{'IFS'} = '' if $ENV{'IFS'} ne 'r;
1E(($ARGV[0] =~ /*-h/) || ($#ARGV<0)) {

print "Usage: getback Init Dir/Fnm/Patn SDir -a \n";
print "number or argument now : IHARGV \a";
exit 0;

}

Stotaltime=time;
system "Sinit";

$localdir="pwd™;

if ($localdir =~ /™ ([-_\/\w.-_1+)8/) {
S$home = §1; # Shome now untainted
} else {
die "Bad data in $localdir”;

}
if ($localdir !~ /\/$/){ $home=Shome . "/";}

Scommand=3home . "archivedobi";
$log=%home. "ohjlog";

Sisdir=0;
if ($ARGVIL] =~ /7 ([-_+\/\w., —_+*\2\-\T88\E s\ \<\s] +) §/) {
Sdirectory = 31; # sdirectory now untainted
} else {

die "Bad data in $directory";

}

if (3directory=~/\/$/} { # delete / at tail
chop ($directory);

49

S$igdir=1;

1
if ($ARGVI[0] =~ /*([-\/\w.1+)8/) {
$initcol = $1; # Sinitcol now untainted
} else {
die "Bad data in Sinitcol";
}
if ($ARGV([2] =~ /*{[-\/\w.1+}5/} {
$storedir= $1; # $storedir now untainted
} else {

die "Bad data in S$storedir";

}

i1f ($storedir !~ /\/3/){ $storedir=$storedir . "/v;}
if(-e $ARGV[2]){ print " storing dir exist\n";}
else(

}

if (-d $directory){ $isdir=1;
@dir=split(/\//,sdirectory);
}

else{
if ($isdir!=1) {
$isdir=0;
$at=rindex (S3directory, "/v);
Spuredir=substr{$directory, 0, S$at);
$filenames=substr ($directory, Sat+l);

if (mkdir($storedir, 0700)){ priant "creating storing dir\n";}

if ($filenames =~ /" ([-_+\/\w., —_+*\2\~\"%8\#\: \>\<\s]) 8/) {
Sfilename = $1; # Sdirectory now untainted
} else {
die "Bad data in S$filenames";

@dir=split(/\//, $puredir);
)

if { $directory =~/"\//){
shift (@dir);
if ($isdir==1) {
Scollpath=$initcol.S%directory ;
Jelse{%collpath=$initcol. $puredir ;}

else{
if($iedir==1){
$collpath=$initecol."\/".58directory ;
telse{$collpath=8initeol."\/" Spuredir ;}

for($i=0; $i<$#dir;siv+) |

$dir[0]= $dir[0]."-" . 8dir[$i+1];
}
system "Scommand", “"Scollpathv, "-r';
#get all files' attributes{size...) from srb space

30

Sversion= "recent";
if ($ARGV([3] =~ /*-as$/) |
$version = "all";
}

open({LOG, $log) || die ("can't open $ARGV[0]) \n"};

if{{$isdir==0) && ({(5filename =~ /[*\?1/)){
#get multifiles matching the pattern
Smypatern=paterns ($filename) ;

while (<LOG>) {
1f ($_ =~ /7 ([-_+\/\w.-_s\~\"s5\#e\:\s]+)$/) {
$lines = 81;
}else{ print "bad data in $_ \n"; next; }

@data=split (" ",$lines);

if({$data 0] =~ /$mypatern/) {print*match** \n";
&getfile($lines);

}
else{ print*mot match???? \n";
next;
}
}
exit;
}
if($isdir==1){ # get whole dir back
while (<LOG>) {
1E ($_ == /7 (0-_+\/\w._+\~\"85\#a\:\s]+) $/) {
$lines = $1;}
else{ print "bad data in $_ \n"; next; }
&getfile($lines);
}
}
else| # get a file back

if ($version eg "all"){
@greps="/pkg/gnu/bin/grep -F S$filename 3$log”;
Sn=0; $find=0;
if ($#grepss>=0) { #find it
for ($k=0; $k<=$#greps;Sk++) {
@times=split{® ", $greps{sk]);
sdot=rindex ($times[0], ".");
if ($dot<0) {$filenm=4times [0];}
else{ $filenm=substr($times(0), 0, Sdot);}

if ($filename ne $Ffilenm) { next;}

$find=1;

$localname=S$storedir. $d4irf[0]. "--". $times[0];
Ssrbobj= $collpath . "/"., $times|[0C];

print" srbobj: $srbobi; localname: S$localname \n";
system "Sget", "-f", "Ssrbobij", "S$localname";
}

51

if ($£ind==0) {
print "this file is not archived <finde=0>\n";

exit;
}
else{ print "this file is not archived <grep notfind>\n";
exit;
!
1
else{
Ststamp=latestfile ($filename) ;
if ($tstamp eg "notfound") {
print "this file is not archived <notfounds>\n";
exit;
elsef
$locainame=5storedir. $dir[0]. "—". Sfilename;
if ($tstamp eqg "notimestamp®) {
$srbobj= Scollpath . "/", $filename;
} else{
Ssrbobj= S$collpath . "/". sfilename
LT, gtstamp;
1
print" srbobj: $srbobj; localname: $localname \n";
system "Sget”, "-f", "$Ssrbobi", "$localname";
}
}

close (LOG) ;

sub latestfile{
@greps="/pkg/gnu/bin/grep -F 3 _[0] 3log™;
$n=0; $find=0;
if ($#greps>=0){ #find it

for ($k=0; S$k<=S#greps;sk++){
@times=split (" ", Sgreps[$k]};
Satt=rindex ($times[0], ".");
if ($att<0) {snm=5times[0] ;}
else{ Snm=substr{$times[0], 0, Satt);}

i£(5_ (0] ne $nm) { next;)
S$timestamp=substr{$times[0], Satt+1l);

if{length($timestamp) ==8) {
Stimepart [$n)=5timestamp;
Sn++;
§find=1;

else{next;}

}

if ($find==1) {

52

$recentime=S5timepart [C] ;
for ($i=0; Si<=S8#timepart;Ssi++){
if (S$recentime<$timepart [$1i])
Srecentime=$timepart [$i];

} return S$recentime;

}

else {return "notimestamp";}

}

else{ return "notfound";]}

sub paterns{
S$patern=$_[0];
if($_101=~/\./){ $patern=~s/\./\\\./g;}

if (§_[0]=~/\?/} {$patern=~tr/\?/\./;}
1E($_[0]=~/*/) {Spatern=-s/*/\.+/;}
$patern="\(". $patern ."\)";

iE((5_(0]=~ /7{\w) /) J{(s5_[0]l=~ /(AW)$/)){
$patern ="\"", $patern.*\$";}
return $patern;

sub getfile{
@datas=split (" ",%_[0]);

if ($version eqg "all®){
$localname=$storedir. $dixr(0]. "--", Sdatas[0];
$sxrbobj= Scollpath . /7. $datas[0];
print" srbobi: $srbobi; localname: Slocalname \n";
system "Sget", "-£", "$srbobj", "$localname";

elsef # get files with latest version back
S$dot=rindex($datas[0], "."):
if ($dot<0) {
$filenm=Sdatas [0] ;
Slocalname=8storedir. 5dir[0]. "--v, sdatas[0];
$srbobj= $collpath . "/". 3datas[0];
print" srbebj: Ssrbobj; localname: $localname \n";

system "Sget", "-f", "Ssrbobj", "slocalname";

}

else(
sfilenm=substr ($datas[C], 0, 3dot):
Ststamp=latestfile ($filenm);
Siocalname=Sstoredir. $dir([0]. "--"., Sfilenm;
$srbobj= $collpath . "/". $filenm .".". Stastamp;

print" srbobj: $srbobj; localname: $localname \n";
system "Sget", *-f", "Ssrbebi?, "S$localname”;

}

53

! /pkg/anu/bin/perl

NAME simpleput
PURPOSE: test average sput time to a collection
SYNOPSIS simplesput Dfile Times
EXAMPLE: simplesput datafile 5
DESCRIPTION:
Dfile: a file contains all files for the testing purpose.
Times: times of repeated operations
IE({$ARGVI0] =~ /*-h/) }] ($#ARGV<1)){
print "Usage: simplesput Dfile Times \n";
exit 0;
}
open (TESTDATA, "$ARGV[01") || die ("can't open SARGV[0]"};
$3=0;
while {<TESTDATA>) {
chop;
s$testfile[$j]1=5_:
Si++;
}

Snumb=5#testfile;
system("Sinit") ;

For{$j=0; $j<=%numb; $j++){

$filesize=-s $testfile[$]];
Siterator=3%ARGVI{1l];
Ssum=0; S$Smax=0; Smin=0; $first=1;
while ($iterator) {
Stimes=time;
“Sput -f S$testfilei$j] Stestfile[$]]7;
Stimes=time-stimes;

Ssum +=5times;

if ($first) {
Smax~=Smin=%times;
$first=0;
telse {
if ($maxe<Stimes) {
Smax=35times; }
if ($min>$times) {
$min=$times; }
sfirst=0;
1
Siterator--;
}
Savgs=5sum/SARGV 1] ;
Savg=sprintf ("%.5f\n", Savgs) ;
$throughputs={$filesize+8) /(1024*1024*5avg) ;
$throughput=sprintf ("%.4f\n", $throughputs) ;

54

write;

close (TESTDATA) ;
system("Sexit");

format STDOUT=
Poccacacad P @< adaes @< @<

I L

Smax, $min, Savyg, Stestfile[$j}, Sthroughput , $filegize

format STDOUT TOP=
Page @<<<<<

$%

just sput time

R et e T >

Max{s) Min(s) Average (s) InContFile throughput filesize

33

/pkg/gnu/bin/per]

NAME : simpleget

PURPOSE: test average sget time to a collection
SYNOPSIS simplesget Dfile Times

EXAMPLE: simplesget datafile 5

DESCRIPTION:
Dfile: a file contains all files for the testing purpose.
Times: times of repeated operations

if{{$ARGV[0] =~ /"-h/) || (S#ARGV<1)){
print "Usage: simplesget Dfile Times \n";
exit 0;
}
open (TESTDATA, "$ARGV[0]"} || die ("can't open $ARGV[0]");
53=0;
while (<TESTDATA>) {
chop;
Stestfile[$j)=5 ;
Bi++;
)

Snumb=S$Htestfile;
system("Sinit");

for($j=0; $j<=%numb; $j++){

$filesize=-s5 $testfile[$5];
Siterator=SARGVI[1]:;
Ssum=0; Smax=0; S$min=0; S$first=1;
while($iterator) {
Stimes=time;
“Sget -f Stestfilel$j] Stestfile[$3]7;
Stimes=time-$times;

Ssum +=Stimes;

if(§first)
Smax=3%min=38times;
Sfirst=0;

}else {
if ($max<Stimes) {
Smax=$times; }
if ($min>$times) {
smin=3times;}
$first=0;
}
Siterator--;
}
savgs=3§sum/SARGV [1] ;
Savg=gprintf ("%.5f\n", Savgs) ;
Sthroughputs=($filesize*8) /(1024*1024*Savy) ;
Sthroughput=sprintf{"%.4£\n", $throughputs) ;

56

write;

close (TESTDATA) ;
system{"Sexit") ;
print:" repeating times: SARGV([1]\a";

format STDOUT=
@eacdaded B dd B <Ce @< <cs Beccccgc<ex

@L<
$max, $min, Savyg, Stestfile[$]], Sthroughput , Sfilesize

format STDOUT_ TOP=
Page @<<<<x

$%

just sget time (thoughput unit: Mb/s)

e >

Max (s) Min(s) Average (s) InContFile throughput filesize

57

#! /pkg/gnu/bin/perl

NAME : dirsimpleput

PURPOSE: test average sput time to a collection
SYNOPSIS dirsimpleput Dir Init

EXAMPLE: dirsimpleput jz5/srb archiver-wustl

DESCRIPTION:

Dir: a directory

Init: initial collection in which the archived directory
will be stored.

if(($ARGVI0] =~ /*“-h/) || (S#ARGV<0)){
print "Usage: dirsimpleput Dir Init \n";
exit 0;

}

Stotaltime=time;
system("Sinit");
@totalsizes=split{" ", du -s -k $SARGVI[0]™);:
Stimes=time;
“Sput -r -f $ARGVI[0] .7;
stimes=time-S$times;

$throughputs= ($totalsizes [0]*8) /{1024*1024*4times) ;
$throughput=sprintf ("%.4f\n", $throughputs) ;

print " dirname for sput:$ARGVI{0] \n*;
print" dir size: S$totalsizes[0]\n";

print " throughput (Mb/s) : $throughput \n";
“date”;

Stotaltime=time-Stotaltime;

print¥script run time(s): Stotaltime\n";

58

#! /pka/gnu/bin/perl

NAME : dirsimpleget
PURPOSE: test average sget time to a collection
SYNOPSIS dirsimpleget Init Diry
EXAMPLE: dirsimpleget archiver-wustl jz5/srb
DESCRIPTION:
Dir: a directory
Init: initial collection in which the archived directory
will be stored.
if(($ARGV[0] =~ /"-h/} [| (S$#ARGV<0)){
print "Usage: dirsimpleget Init Dir\n";
exit 0;
}

Stotaltime=Cime;
system("Sinit");
@totalsizes=split(" ", du -s -k SARGVI[0]");
$times=time;
“Sget -r -£ SARGV([0] SARGVI[1] ~;
Stimes=time-Stimes;

$throughputs=($totalsizes (0] *8) /(1024*1024*Stimes) ;
Sthroughput=sprintf {"%.4f\n", $throughputs) ;

print " dirname for sput:S$ARGV[0] \n'";
print" dir size: Stotalsizes{0]l\n";
print " throughput (Mb/s): Sthroughput \n";

stotaltime=time-Stotaltime;
print"script run time(s): Stetaltime\n";

59

#! /pkg/gnu/bin/perl
NAME : getcont
PURPOSE: test average sget time from a container
SYNOPSIS getcont Dfile Times
EXAMPLE: getcont datafile 5
DESCRIPTION:
Dfile: a file contains all files for the testing purpose.
Times: times of repeated operations
if ({$ARGV[0] =~ /*-h/} || ($#ARGV<1)){
print "Usage: getcont Dfile Times \n";
exit 0;
}
open (TESTDATA, "$ARGV([0]1") |] die ("can't open SARGVI[0]");
$j=0;
while (<TESTDATA>) {
chop;
Stestfile($3]1=3%_;
SJ++;
}

Snumb=$fitescfile;
system{"Sinit");
for($j=0; $j<=$numb; $j++){

$filesize=-g Stestfileijl;
$iterator=3ARGV[1];
Ssum=0; Smax=0; Smin=0; §first=1;
while ($iterator) {
Stimes=time;
“Sget -f Stestfile[sj] S$testfilel$i]”;
Stimes=time-Stimes;

Ssum +=$times;

if ($first){
Smax=Smin=Stimes;
$first=0;

telse {
if {Smax<$times) {
Smax=%times;}
if ($min>Stimes) {

S$min=$times;}

sfirst=0;

}

$iterator--;

Savgsg=%sum/SARGV[1] ;

Savg=sgsprintf (*"%.5f\n", Savgs) ;
Sthroughputs=($filesize*8) /(1024*1024*3avyg) ;
S$throughput=sprintf ("%.4f\n", Sthroughputs) ;

60

write;

}

S$timec=time;
system("Ssyncont -4 Scontname®);
Stimec=time-$timec; print "syn-time: Stimec\n";

close (TESTDATA) ;
system("Sexit") ;
print:" repeating times: $ARGVI1]\n";

format STDOUT=
Booetede<d @CaecCaesce @ DL Cac<deds P

B C L L C LT
Smax, $min, %$avg, Stestfile($j], $throughput , $filesize

format STDOUT TOP=
Page @<<<<<

$%

just sget time (thoughput unit: Mb/s)
e T e >

Max (s} Min (s} Average (s) InContrFile throughput filesgize

61

#! /pkg/gnu/bin/perl

NAME : putcont
PURPOSE: i{est average sput time to a container
SYNOPSIS putcont Dfile Cont
EXAMPLE: putcont datafile test_cont
DESCRIPTION:
Dfile: a file contains all files for the testing purpcse.
Cont: a container name to contain all files listed in the
file Dfile
if ({$ARGV[0] =~ /™-h/) || ($#BRGV<1)){
print "Usage: putcont Dfile Cont \n";
exit 0;
}
cpen (TESTDATA, "S$ARGVIO]") || die ("can't open SARGV[0]");
$3=0;
while (<TESTDATA>) {
chop;
Stestfile[$jl1=8_;
$i++;

Snumb=3S#testfile;

system("Sinit");
Scontname=8SARGV[1] ;

system("Smkcont -S cont-sdsc $contname’) ;

for($=0; S$j<=$numb; $j++){
$filesize= -s §testfilel$]] ;
Stimes=time;
“Sput -f -c Scontname $testfile($j] Stestfile([$i]™;
Stimes=time-$times;

$throughputs=($filesize*8)/ (1024%1024%$times) ;
$throughput=sprintf ("%.4f\n", $throughputs) ;

write;

Stimec=time;
system("Ssyncont -d $contname") ;
$timec=time-Stimec; print "syn-time: $timec\n’;

close (TESTDATA} ;
system("Sexit"};

format STDOUT=

Aeecagae<<d @ cadgees @L< @€ eg<cL
Stimes Stestfile[$]], Sthroughput , sfilesize

62

format STDOUT TOP=
Page @<<<<<

$%
just sput time
s e e e e - >
put{s) InContFile throughput filesize

63

#! /pkg/gnu/bin/perl
name : contfill
SYNOPSIS contfill testdatafile containersizefile

testdatafile: input file to a container
f containersizefile: a file contains different container sizes

1E (($ARGV[0] =~ /"-h/) || {(S$#ARGV<0}){
print "Usage: contfill testdatafile containersizefile\n";
exit 0;
}
stotaltime=time;
open (CONTSIZE, "$ARGV(1]") || die ("can't open SARGV[1]");
$3=0;
while (<CONTSIZE>) {
chop;
$size($3]=5_;
$i++;

Ssizes=3%3f#size;
system("8init"});

$filesize=-5 $ARGVI[O];
Scontsource="cont-sdsc";
Scontsourcel="brainmap-wustl-container";

for($i=0; Si<=$sizes; $i++){

Scontnames=$size{$i} . ", " . $ARGVIO] ;

Ssum=0;

system{"Smkcont -8 Scontsource -s $size[$i] Scontnames™);
Ssumsize=0;

$n=0;

while (($sumsize<$size[$i]} && (($sumsize+ $filesize)<=8%size($il)){

$localifile=$ARGVI[0]. *." ., S$i. 3n;

S$putime [$n] =time;

“Sput -f -c Scontnames S$ARGVI0] $localfile™;

Sputime [$n] =time-Sputime [$n];

$sum=%$sum +$putime [3n};

if ($putimelsn]) {
$bws=($filesize*8)/(1024*1024*Sputime [Sn]) ;

else{sbws=0;}
Shw=sprintf ("%.5€\n", $bws) ;
$sumsize=$sumsize + $filesize;
Sn++;
write;
t
stimesyn=time;
system("Ssyncont -d $contnames");

64

Stimesyn=time-S$timesyn;

Ssum =$sum +Stimesyn;

Savgs=%$sum/Sn;

$BWss=($filesize*8) /(1024%1024*% 3avgs);
SBWITH=sprintf (*%.5f\n", $BWss) ;

print" avgput time: 3avgs \n";

print " BW: $BWITH \n";

print "total files in container: %n \n";

}

close (CONTSIZE) ;
system{"Sexit") ;
Stotaltime=time-Stotaltime:

print"\n total running time of this script is: $totaltime\n";

format STDOUT=
@uacegcs @< Beageiccads @< @<

SARGV (0], %n, $sizel[$i] , Sputime([$n-1], $bw

format STDOUT _TOP=
Page @<<<<«

5%
Sputime to ccontainer: (# files per container) {(bw=Mbit/second)
R i ittt >

65

#! /pka/gnu/bin/perl
name : contretrieve
SYNOPSIS coniretrieve testdatafile containersizefile

testdatafile: input file to a container
containersizefile: a file contains different container sizes

if ({$ARGV{0] =~ /"-h/} || ($#ARGV<0)){

print "Usage: contretrieve testdatafile containersizefile\n";
exit 0;

}

Stotaltime=time;

cpen (CONTSIZE, "SARGVI[1]") || die ("can't open $ARGV[1I"};
$J=0;

while (<CONTSIZE>) {
chop;
$size[s5]]=5_;
$iw+;
}

$sizes=S#size;
#print "$numb $sizes\n";

system("Sinit");
5filesize=-5 SARGV[O];

for($i=0; Sic=%$sizes; $i++){

Scontnames=5gize[$i] .".".$ARGVI[O] ;
Ssum=0;

Ssumsize=0;

5n=0;

$numb=int ($size[$i] /$filesize); Sa=1;

while ({$sumsize<$size[$i]) &&(($sumsize+ $filesize)<=S$sizef$i]l)){

Slocalfile=SARGV([0]. "." . $i. %n;
$putime [$n] =time;
$Obj=$ARGV [0] L "COpy" ;
“8get -f $localfile Sobj™;
Sputime [$n] =time-$putime[3n];
$sum=S$sum +$Sputime($n];
if ($putime[$n]) {
Sbws=($filesize*8) /(1024*1024*Sputime [Sn]);

else{Sbws=0; }
S$bw=sprintf ("%.5f\n", Sbws) ;

if ($n==int { ($numb*Sa) /16)) {
list time for getting some part of total files

print" time for getting $a/16 of total files: $sum\n";
if{Sa<2) {$5a+=1;} else {$a+=2;}

66

}

$sumsize=Ssumsize + $filesize;
Shwav= ($sumsize*8) /(1024*1024*$sunm) ;
Sbwavs=sprintf ("%.5f\n", $bwav) ;
ST++;

write;

Stimesyn=time;

system("Ssyncont -d Scontnames");
S$timesyn=time-$timesyn;

$sum =Ssum +$timesyn;

Savgs=5sum/sn;
SBWss=(§filesize*8)/(1024*1024* Savgs);
SBWITH=sprintf {"%.5f\n", $BWss) ;

print" avgput time: $avgs \n";

print " BW: $BWITH \n";

print "total files in container: $n \n";

}

close (CONTSIZE) ;
system({"Sexit"};
Stotaltime=time-Stotaltime;

print"\n total running time of this script is: $totaltime\n";

format STDOUT=
Beeccete @cocce Bocceccceece B Becdgedss Beg<aggax

SARGV[0], %1, $sizel$i] , S$putime[$n-13,3$bw, Shwavs

format STDOUT_TOP=
Page @<<<<<

8%

Sgetime from container: (# files per container) {bw=Mbit/second)

67

	Data Archiving with the SRB*
	Recommended Citation

	tmp.1439924045.pdf.fOhAr

