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Abstract

LiME is a middleware supporting the development of ap-
plications that exhibit physical mobility of hosts, logical
mobility of agents, or both. LIME adopts a coordination
perspective inspired by work on the Linda model. The
context for computation, represented in Linda by a glob-
ally accessible, persistent tuple space, is represented in
LiME by transient sharing of the tuple spaces carried by
each individual mobile unit. Linda tuple spaces are also
extended with a notion of location and with the ability
to react to a given state. The hypothesis underlying our
work is that the resulting model provides a minimalist
set of abstractions that enable rapid and dependable de-
velopment of mobile applications. In this paper, we il-
lustrate the model underlying LIME, present its current
design and implementation. report about its initial eval-
uation in applications that involve physical mobility, and
discuss lessons Jearned and future enhancements that will
drive its evolution.

1 Introduction

Middleware has emerged as a new development tool which
can provide programmers with the benefits of a power-
ful virtual machine specialized and optimized for tasks
common in a particular application setting without the
major investments assoclated with the development of
application-specific languages and systems. The approach
is intellectually attractive and economical at the same
time, For the programmer, middleware offers a clean
model that can be easily understood and readily adopted
without the need to acquire a new set of programming
skills or to delve into the intricacies of a sophisticated for-
mal model. For the software engineer, middleware pro-
vides a vehicle by which new concepts and design strate-
gies may be packaged and disseminated without the high
cost associated with complex tool sets and compilers. For
these reasons, middleware is enjoying growing popularity
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in the distributed computing arena. Given the complex-
ities assoclated with software involving mobile hosts and
agents, middleware is expected to establish itself as an
importamnt new technology in mobility as well. This pa-
per is about middleware for mobility, an example of how a
new abstract model supporting both physical and logical
mobility can be delivered in the form of middleware.

The starting point for our investigation was the notion
that a coordination perspective on mobility holds the key
to simplifying the development effort. The idea is to elim-
inate the programmer’s need to be concerned with the me-
chanics of communication among hosts and agents. The
interactions among mobile units of any kind are expressed
separately from the application processing and are imple-
mented in a transparent manner by the middleware fabric.
The middleware presented in this paper (LiME—Linda in a
Mobile Environment) explores this idea by providing pro-
grammers with a global virtual data structure, a Linda-like
tuple space whose contents are controlled by the connec
tivity among mobile hosts. Individual programs perceive
the effects of mobility as behind-the-scene changes in the
contents of their own local tuple spaces. The resulting
middleware is essentially an embodiment of a model of
mobility in which coordination takes place via a global tu-
ple space physically distributed among mobile units and
logically partitioned according to connectivity among the
units. The temporal and spatial decoupling that made
Linda an effective tool for parallel programming is pre-
served while accommodating the distinct nature of mabile
computing.

When viewed in the broader context of mobility, LiME
is indeed a new breed of middleware. Earlier work treated
logical mobility essentially as a new design tool for the de-
velopers of distributed applications. The ability to recon-
figure dynamically the binding between hosts and applica-
tion components provides additional flexibility and, under
given conditions, improved bandwidth utilization. On the
other hand, physical mobility was viewed as a source of
new requirements for distributed applications, by defining
a very challenging target execution environment. These
different roles are mirrored in the characteristics of the
corresponding middleware. Middleware for logical mobil-
ity focused on new abstractions that enable code and state
relocation, whereas middleware for physical mobility often
tends to minimize differences with respect to non-mobile



middleware, by relegating, as much as possible, the dif-
ferences into the underlying runtime support. Moreover,
middleware for physical mobility has been application cen-
tered. For instance, the Bayou [8] system provided the
core functionality needed to build database applications
that can handle disconneciion through reconciliation and
data hoarding, largely hiding the mobility from the appli-
cation programmer. In contrast with earlier work, LIME
is general purpose, model-centric, and inclusive of both
physical and logical mobility. It provides novel program-
ming constructs or novel uses of established ones in the
tradition of logical mobility but in a manner that is sensi-
tive to the constraints imposed by the realities of physical
mobility.

In the remainder of the paper we provide an averview of
LiME (Section 2}, we examine the implementation strat-
egy (Section 3), and review our experience with several
applications developed using LIME (Section 4). The pa-
per concludes with a brief discussion of lessons learned
and plans for future enhancements (Section 5) followed by
contclusions (Section ) and references.

2 LiME:
Linda in a Mobile Environment

The LIME model [I] aims at identifying a coordination
layer that can be exploited successfully lor designing ap-
plications that exhibit either logical or physical mobility.
LME borrows and adapts the communication model made
popular by Linda [3]. In the remainder of this section we
review the fundamental concepts of Linda, discuss how
they are reshaped in LiME for use in the mobile environ-
ment, and finally present the programming interface that
allows development of mobile applications with our cur-
rent implementation of LiME.

2.1 Linda

In Linda, processes communicate through a shared tu-
ple spuce that acts as a repository of elementary data
structures—the tuples. A tuple space is a multiset of
tuples that can be accessed concurrently by several pro-
cesses. Bach tuple is a list of typed parameters, such as
(“foo™, 9, 27.5}, and contains the actual information being
communicated.

Tuples are added to a tuple space by performing an
out(t) operation on it. Tuples can be removed from a
tuple space by executing in{p). Tuples are anonymous,
thus their selection takes place through pattern matching
on the tuple contents. The argument p is often called
a template, and its fields contain either actuals or for-
maels.  Actuals are values; the parameters of the previ-
ous tuple are all actuals, while the last two parameters

of ("foo", Tinteger, ?long) are formals. Formals are like
“wild cards”, and are matched against actuals when se-
lecting a tuple from the tuple space. For instance, the
template above matches the tuple defined earlier. If mul-
tiple tuples match a template, the one returned by in is
selected non-deterministically and without being subject
to any fairness constraint. Tuples can also be read from
the tuple space using the rd operation. Both in and rd are
blocking. A typical extension to this synchronous model
is the provision of a pair of asynchronous, primitives inp
and rdp, called probes, that allow non-blocking access to
the tuple space’.

2.2 'The LIME model

Linda characteristics happen to resonate with the mobile
setting. In particular, communication in Linda is decou-
pled in time and space, i.e., senders and receivers do not
need to be available at the same time, and mutual knowl-
edge of their location is not necessary for data exchange.
This form of decoupling is of paramount importance in a
mobile setting, where the parties involved in communica-
tion change dynamically due to their migration or connec-
tivity patterns.

The only challenge to this conceptual vision comes from
consideration tied to an eflicient implementation, that
must take into account issues like reducing latency or pro-
viding fault-tolerance, like in [9]. On the other hand, the
view fostered by mobile computing is profoundly differ-
ent, even at the conceptual level. When mobility is fully
exploited, like in the case ad hoc networking, there is
no predefined, static, global context for the computation.
Rather, the global context is defined by the transient com-
munity of mobile units that are currently present, to which
each unit is contributing with its own individual context.
Since these communities are dynamically changing accord-
ing to connectivity and migration, the context changes as
well. This observation alone leads to the model underlying
LmE that, although still based on the Linda notion of a
tuple space, exploits it in a radically different way.

The Core Idea: Transiently Shared Tuple Spaces
In the model underlying LiME, the shift from a fixed con-
text to a dynamically changing one is accomplished by
breaking up the Linda tuple space in many tuple spaces,
each permanently associated to a mobile unit, and by in-
troducing rules for transient sharing of the individual tuple
spaces based on connectivity.

From the perspective of a mobile unit, the only way to
access the global context is through a so-called interface

'Linda implementations often include aiso an eval operation
which provides dynamic process creation and enables deferred eval-
uation of tuple fields. For the purposes of this work, however, we do
not consider further this operation.



tuple spuce (178), which is permanently and exclusively at-
tached to the unit itself. The 1TS contains tuples the mo-
bile unit is willing to make available to other units, and
that are concretely co-located with the unit itself. This
represent the only context accessible to the unit when it is
alone. Access to the 175 takes place using the Linda primi-
tives mentioned in the previous section, whose semantics is
basically unaffected. Nevertheless, this tuple space is also
transiently shared with the 1Tss belonging to the mobile
units that are currently part of the community. Hence,
the content of the I1TS changes dynamically in reaction to
changes in the set of co-located mobile units.

Upon arrival of a new mobile unit, the content perceived
by each mobile unit through its ITS is recomputed by tak-
ing into account the context of the new unit, in order to
establish transient sharing. The tuples in the ITS of the
new unit are merged with the current content of the shared
tuple space, and the result is made accessible within the
ITS of all the units currently co-located. This sequence of
operations is called engagement of the tuple spaces, and is
performed as a single atomic transaction. Similar consid-
erations hold for the departure of a mobile unit, resulting
in the disengagement of the corresponding tuple space.
The content of the unit’s tuple space is removed atomi-
cally from the transiently shared tuple space perceived by
the remaining units through their 1Ts.

Transient sharing of the 1Ts constitutes a very powerful
abstraction, as it provides a mobile unit with the illusion
of a local tuple space that contains all the tuples coming
from all the units belonging to the community, without
any need to know them explicitly. The notion of tran-
siently shared tuple space is a natural adaptation of the
Linda tople space to a mobile environment. When physi-
cal mobility is involved, there is no place to store a persis-
tent tuple space. Connection among machines comes and
goes and the tuple space must be partitioned in some way.
Analogously, in the scenario of logical mobility, maintain-
ing locality of tuples with respect to the agent they belong
to may be complicaled. LIME enforces an a priort parti-
tioning of the tuple space in subspaces that get transiently
shared according to precise rules, providing a tuple space
abstraction that depends on connectivity. In a sense, LIME
takes the notion of decoupling proposed by Linda further,
by effectively decoupling the mobile units from the global
tuple space used for coordination.

Encompassing Physical and Logical Mobility
Thus far, we glossed over the nature of the mobile unit at
hand, that is, we never specified whether we talked about
a mobile agent moving in logical space or a mobile host
roaming the physical space. This is precisely because
we believe the LiME notion of a transiently shared tuple
space is applicable to a generic mobile unit regardless
of its nature, as long as a notion of connectivity ruling

Mobile Host
Mobile Agenis

Inferface Tuple Space
Federated Tuple Space

Figure 1: Transiently shared tuple spaces encompass physical
and logical mobility.

engagement and disengagement is properly defined.

In LiME, mobile hosts are connected when a commu-
nication link is available between them. Availability may
depend on a variety of factors, including quality of ser-
vice, security considerations, or connection cost; they can
all be represented in L1mE, although in this paper we limit
ourselves to availability determined by the presence of a
functioning link. Mobile agents are connected when they
are co-located on the same host, or they reside on hosts
that are connected. Changes in conneclivily among hosts
depend only on changes in the physical communication
link. Connectivity among mobile agents may depend also
on arrival and departure of agents, with creation and fer-
mination of mobile agents being regarded as a special case
of connection and disconnection, respectively. Figure 1
depicts the model adopted by LimE.

In LIME, mobile agents are the only active components
in the system; mobile hosts are mainly roaming containers
for agents, to which they provide connectivity and execu-
tion support. Thus, in other words, mobile agents are the
only components that carry a “concrete” tuple space along
with them.

Co-location of mobile agents determines a host-level tu-
ple space that is transiently shared among all such agents
and accessible through each agent’s 1Ts. As evident in
Figure 1, the host-level tuple space can be regarded as the
ITS of a mobile host, as it is permanently associated with
it; if no mobile agents are currently hosted, the host-level
tuple space is simply empty. Hence, transient sharing as
we described for the 1TS of mobile agents can be applied
to the host-level tuple spaces. Hosts that are connected
merge their hosi-level tuple spaces into a federated fuple
spuce whose content is transiently shared across the net-
work. When a federated tuple space is established, access
to the 1Ts of an agent returns a tuple that may belong
indifferently to the tuple space carried by that agent, to a
tuple space belonging to a co-located agent, or to a tuple
space assoclated to an agent residing on some remote host.

In this model, physical and logical mobility are sepa-
rated in two different tiers of abstraction. Nevertheless,
many applications do not need both forms of mobility,



and straightforward adaptations of the model are possi-
ble. For instance, applications that do not exploit mo-
bile agents but run on a mobile host can employ one or
more stationary agents, i.e., programs that do not contain
migration operations. In this case, the design of the ap-
plication can be modeled in terms of mobile hosts whose
ITS is a fixed host-level tuple space. Applications that
do not exploit physical mobility—and do not need a fed-
erated tuple space spanning different hosts—can expleit
only the host-level tuple space as a local communication
mechanism among co-located agents.

Degrees of Context Awareness Thus far, LiME ap-
pears o foster a style of coordination that reduces the
details of distribution and mobility to changes in what is
perceived as a local tuple space. This view is very pow-
erful, and has the potential for greatly simplifying apphi-
cation design in many scenarios, by relieving the designer
from the chore of maintaining explicitly a view of the con-
text consistent with changes in the configuration of the
system. On the other hand, this view may hide too much
in domains where the designer needs a more fine-grained
control upon the portion of the context that need to be
accessed. For instance, the application may require con-
trol over the agent responsible for holding a given tuple,
and this cannot be specified only in terms of the global
context. Also, performance and efficiency considerations
may come into play, like in the case where application
information would enable access aimed at a specific host-
level tuple space, thus avoiding an expensive query on the
whole federated tuple space.

This fine-grained control over the context is provided in
EIME by extending Linda operations with tuple Iocation
parameters that allow to operate on different projections
of the transiently shared tuple space. Tuple locations pa-
rameters are expressed in terms of agent identifiers or host
identifiers, as these identify the scope for the transiently
tuple space that holds the tuple, i.e., the agent’s tuple
space and the host-level tuple space, respectively.

The out[X] operation extends out with a location pa-
rameter representing the identifier of the agent responsi-
ble for holding the tuple. The semantics of out[}] involve
two steps. The first step is equivalent to a conventional
out{t), the tuple ¢ is inserted in the 175 of the agent call-
ing the operation, say w. At this point the tuple ¢ has
a current location w, and a destination location A. If the
agent A is currently connected, i.e., either co-located or
located on a connected mobile host, the tuple # is moved
to the destination location. The combination of the two
actions——the insertion of the tuple in the 1TS of w and its
instantaneous migration to the 17§ of A—are performed
as a single atomic operation. On the other hand, if X is
not currently connected, the tuple remains at the current
location, the tuple space of w. This “misplaced” tuple, if

not withdrawn®, will remain such unless X becomes con-
nected. In this case, the tuple, which is nonetheless acces-
sible through the 175 independently of its current location,
will migrate to the tuple space associated with A as part
of the atomic sequence of operations performed during en-
gagement. Hence, using out[A], the caller can specify that
the tuple, albeit shared, is supposed to be placed within
the tuple space of agent A. This way, the default shared
policy of keeping the tuple in the caller’s context until it is
withdrawn can be overridden, and more elaborate schemes
for transient communication can be developed.

Location parameters come into play also to provide vari-
ants of the in and rd operations that allow access to a slice
of the global context. In LIME, these operations are anno-
tated as in[w, A] and rd[w, A], where the current and desti-
nation locations defined earlier are used. More details are
provided at the end of this section, when we review the
programming interface embodying the LIME model.

Disengagement. relies on the notion of tuple location,
as well. Upon occurrence of a disconnection, be it the
departure of an agent or a broken communication link,
the transiently shared tuple space is partitioned into its
constituents, i.e., as if each mobile agent were alone. In
this situation, the ITS of each mobile agent w, contains
only the portion of the transiently shared tuple space it
is responsible for, i.e., all the tuples whose current loca-
tion is w, including misplaced tuples. Then, these 175 are
merged back according to the new configuration of the
system after disconnection, effectively creating two parti-
tioned transiently shared tuple spaces. It is interesting to
note, however, that the above is just a conceptual repre-
sentation of the disengagement process. In practice, no
tuple transfer is needed to comply with the above process,
provided the atomicity of engagement and of the out[}]
operation are preserved.

It is interesting to note that the extension of Linda
operations with location parameters, as well as the other
operations discussed thus far, foster a model that hides
completely the details of the system (re)configuration
that generated those changes. For instance, if the probe
inplw, A](p), looking in the tuple space of agent w for
tuples matching p and destined for agent A, fails, this
simply means that no tuple matching p is available in the
current projection over the location parameters jw, ] of
the federated tuple space. No information is available to
determine whether the failure is determined by the fact
that agent w does not have those tuples in its tuple space,
or whether agent w is not part of the community at the
moment.

Without awareness of the system configuration, anly a

2Note how specifying a destination location A does not necessarily
imply guaranteed delivery of the tuple ¢ to A. Linda rules for non-
deterministic selection of tuples are still in place; thus, it might be
the case that some other agent may withdraw ¢ from the tuple space
before A, even after ¢ reached A's 1Ts.



partial context awareness can be accomplished, where ap-
plications are aware of changes in the portion of context
concerned only with application data. Although this per-
spective is often enough for the requirements of many mo-
bile applications, in some cases the configuration context
plays a key role. For instance, a typical problem is to
react to departure of one of the parties involved, or to de-
termine the set of parties currently belonging to the mobile
community. LIME provides this form of awareness of the
system configuration using the same set of abstractions
discussed thus far. Information about the configuration of
the system can be accessed through a transiently shared
tuple space. Tuples contain information about the mobile
components present in the community, and their relation-
ship, e.g., which tuple spaces they are sharing or, for mo-
bile agents, which host they reside on. This tuple space,
conventionally named LimeSystem, has the peculiarity of
providing only read-only access: thus, only rd operations
are allowed. Furthermore, reactions can be set on the tu-
ple space, to enable actions to be taken in response to
a change in the configuration of the system. All agents
are permanently bound to LimeSystem. Thus, transiently
shared tuple spaces, including the LimeSystem tuple space
and the 1TSs defined for application purposes, enable the
definition of a fully context aware style of computing.

Reacting to Changes in Context Mobility enables a
highly dynamic environment, where reaction to changes
constitutes a major fraction of the application design. At
& first glance, the Linda model would seem sufficient to
provide some degree of reactivity by representing relevant
events as tuples, and by using the in operation to exe-
cute the corresponding reaction as soon as the event tuple
shows up in the tuple space. Nevertheless, in practice this
solution has a number of drawbacks that are well-known
in literature, and are a consequence of the different per-
spective adopted by Linda, which expects agents to poll
proactively and synchronously the context for new events,
rather than specify the actions to be executed reactively
and asynchronously upon occurrence of an event.

LmME extends tuple spaces with a notion of reaction.
A reaction R{s,p) is defined by a code fragment s that
specifies the actions to be executed when a tuple matching
the pattern p is found in the tuple space.

The semantics of reactions is based on Mohile UNITY
reactive statements, described in [6]. After each
operation on the tuple space, a reaction is selected non-
deterministically and the pattern p is matched against the
content. of the tuple space. If a matching tuple is found,
s is executed, otherwise the reaction is equivalent to a
no-operation. This selection and execution proceeds until
there are no reactions enabled, and normal processing
of tuple space operations can resume. Thus, reactions
are executed as if they belonged to a separate reactive

program that is run to fixed point after each non-reactive
statement. Blocking operations are not allowed in &, as
they would conflict with the semantics of the processing of
reactions, which must reach termination before standard
processing is resumed. These semantics offer an adequate
level of reactivity, because all the reactions registered are
executed before any other statement of the co-located
agents, including the migration statements. Thus, the
programmer’s effort in dealing with events is minimized.

The actual form of a reaction is annotated with
locations—this has been omitted so far to keep the
discussion simpler. A reaction assumes the form
R[w, A)(s;p), where the location parameters have the
same meaning as discussed for in and rd. However, this
kind of reactions, called strong reactions are not allowed
on federated tuple spaces; in other words, the current
location field must always be specilied, although it can be
the identifier either of a mobile agent or of a mobile host.
The reason for this les in the constraints introduced
by the presence of physical mobility. If multiple hosts
are present, the content of the federated tuple space
spanning them, accessed through the 1TS of a mobile
agent, actually depends on the content of the tuple
space belonging to remote agents. Thus, to maintain the
requirements of atomicity and serialization imposed by
reactive statements would require a distributed trans-
action encompassing several hosts for each tuple space
operation on any ITS—very often, an impractical solution.

For these reasons, LIME provides also a notion of weak
reaction. Weak reactions are used primarily to detect
changes to portions of the global context that involve re-
mote tuple spaces, like the federated tuple space. In this
case, the host where the pattern p is successfully matched
against a tuple, and the host where the corresponding ac-
tion s is executed are different. Processing of a weak re-
action proceeds like in the case of strong reactions, except
for the fact that the execution of s does not happen syn-
chronously with the detection of a tuple matching p: in-
stead, it is guaranteed to take place eventually after such
condition, if connectivity is preserved.

2.3 Programming with LIME

We conclude the presentation of the LIME model by briefly
commenting upon the programming interface that is cur-
rently provided in the implementation of LIME we report
about in this work,

The class LimeTupleSpace, shown in Figure 2%, embod-
ies the concept of a transiently shared tuple space. Ob-
jects of this class are created by specifying an instance
of the Agent class, which essentially provides a means
to uniquely identify a mobile agent. The thread associ-
ated to such agent object will be the only one allowed

3Exceptions are not shown for the sake of readability.



pubiic class LimeTupleSpace {
public LimaTupleSpaca{Agent agont, Siring name);
public String getName();
public boolean isOwner();
public boolean setShared(boolean isShared);
public static bocloan cetShared(lLimeTupleSpace{] lts,
boolean igShared);
public beoeolean isShared();
public void out(ITuple tuple);
public void out{AgentLocation destination, ITuple tuple);
public ITuple in{ITuple template);
public ITuple in(Location current, AgentLocation destinatiom,
ITuple templata);
inp(Leocation qurrent, AgentLocation destination,
ITuple template);
ITuple rd(ITuple template};
ITuple rd(Location current, Agentlocation destination,
ITuple template);
ITuple rdp{iocation current, Agentlocation destinatien,
IZuple template);
Registercdieaction{]
addStrongheaction(LocalizadReaction{] reactions)};
public RegisteredReaction[] addWeakReaction(Reaction[] reactions);
public void removeRaaction{Regizteredheactionl] roactions);
public RegisteredReaction[] getReogisteredReactions();
public beeloan isRegisteredReaction(RegisteradRenction reaction);

}

public ITuple

public
public

public

public

Figure 2: The class LimeTupleSpace, representing a tran-
siently shared tuple space.

to perform operations on the LimeTupleSpace object; ac-
cesses by other threads will fail by returning an exception.
This represents the constraint that the 1TS must be per-
manently and exclusively attached to the corresponding
mobile agent.

In LiME, agents may have multiple 1Tss distinguished by
a name, which is the second parameter for the construe-
tor of LimeTupleSpace. The name determines the sharing
rule; only tuple spaces with the same name are transiently
shared. For instance, this enables an agent to exchange
information with a service broker about the available CD
resellers by transiently sharing the corresponding T8, and
then subsequently share information about a given title
and the payment options with the reseller selected through
a different ITS, thus keeping separate the information con-
cerned with different tasks and different roles.

Agents may have also private tuple spaces, i.e., not sub-
ject to sharing. A private LimeTupleSpace can be used
as a stepping stone to a shared data space, allowing the
agent to populate it with data prior to making it publicly
accessible, or it can turn out to be useful just as a primi-
tive data structure for local data storage. As a matter of
fact, all tuple spaces are initially created as private, and
sharing must be explicitly enabled by calling the instance
method setShared. The method accepts a boolean pa-
rameter specifying whether the transition is from private
to shared or vice versa. Calling this method effectively
triggers engagement or disengagement of the correspond-
ing tuple space. Sharing properties can also be enabled
in a single atomic step for multiple tuple spaces owned by
the same agent by using the class method setShared.

LimeTupleSpace contains also the Linda operations

needed to access the tuple space, as well as their variants
annotated with location parameters. Tuple objects must
implement the interface ITuple, defined in a separate
package that provides a definition for a Linda tuple space
that is independent on the actual runtime support used.
As for location parameters, LIME provides two classes,
AgentLocation and HostLocatiom, which extend the
commaon superciass Location by enabling the definition of
globally unique location identifiers for hosts and agents.
Objects of these classes are used to specify different
scopes for LIME operations. Thus, for instance, a probe
inp(cur,dest,t) may be restricted to the tuple space of
a single agent if cur is of type AgentLocation, or it may
refer the whole host-level tuple space, if cur is of type
HostlLocation. The constant Location.UNSPECIFIED is
used to allow an unspecified location parameter. Thus,
for instance, in{cur,lLocation.UNSPECIFIED,t) returns
a tuple contained in the tuple space of cur, regardless of
its final destination, thus including also misplaced tuples.
Note how typing rules allow to constrain properly the
nature of the current and destination Iocation according
to LiME rules. Thus, for instance, the destination
parameter is always an AgentLocation object, as agents
are the only carriers of a “concrete” tuple space in LIME.
Specifying a HostLocatien as a destination for a tuple
would result in the impossibility to assign a responsible
for the tuple when the host-level tuple space becomes
partitioned due to disengagement. Note also how, in
the current implementation of LIME, probe are always
restricted to a subset of the federated tuple space, as
defined by the location parameters. An unconstrained
definition, like the one provided for in and rd, would
involve a distributed transaction in order to preserve
the semantics of the probe across the whole transiently
shared tuple space.

All the operations retain the same semantics on a
private tuple space as on a shared tuple space, except
for blocking operations. Since the private tuple space is
nonetheless permanently and exclusively associated to
an agent, the execution of a blocking operation would
immediately suspend the agent forever, waiting for tuples
that no other agent is allowed to insert. In this case, a
run-time exception is thrown instead.

The remainder of the interface of LimeTupleSpace is de-
voted to managing reactions; other relevant classes for this
task are shown in Figure 3. Reactions can either be of type
LocalizedReaction, where the current and destination
location restrict the scope of the tuple space scanned for
matching, or UbiquitousReaction, that specify the whole
federated tuple space as a target for matching. The type
of reactions is used to enforce the proper constraints on
the registration of reactions through type checking. These
classes have the abstract superclass Reaction in common,
which defines a number of accessors for the properties set



on the reaction at creation time. Creation of a reaction
is performed by specifying the template that needs to be
matched in the tuple space, a ReactionListener object
that specifies the actions taken when the reaction fires,
and a mode. The ReactionListener interface requires
the implementation of a single method reactsTo that is
invoked by the runtime support when the reaction actually
fires. This method has access to the information about the
reaction carried by the ReactionEvent object passed as
a parameter to the method., The reaction mode can be
either of the constants ONCE and ONCEPERTUPLE, defined
in Reaction. ONCE specifies that the reaction is executed
only once and then deregistered automatically in the same
atomic step. When ONCEPERTUPLE is specified instead, the
reaction remains registered but it never executes twice for
the same tuple.

Reactions are added to the ITs by calling either
addStrongReaction or addWeakReaction. Only
LocalizedReaction can be passed to the former, as
prescribed by the LIME model. Due to the different
semantics, this operation has different atomicity guaran-
tees. The former guarantees that all the reactions passed
as a parameter are registered in a single atomic step, Le.,
processing of reactions takes place only after all reactions
have been inserted in the LimeTupleSpace, and yet before
any other operation takes place on it. The latter does

public abstract class Reaction {
public final etatic short ONCE;
public final static short OMCEPERTUPLE;
public ITuple getTemplate();
public ReactionListenar getlistener();
public short getModae();
public Location getCurrentlocation(};
public Agentlocution getDestirvationLocation{);
}
public ¢lass UbiquitousReaction extends Reaction {
public UbiquitousReaction{ITupie template,
Reactionligtener listener,
short mode);

public clase lLocalizedReaction extends Reaction {
public LocalizedReaction{Location curreat,
Agentlocation destinmation,
ITuple template,
Reactionlistener listener,
short modae};
¥
public class RegisterodReaction e¢xtends Reacticen {
public String getTupleSpaceName();
public Agent]D getSubscriber(};
public boolean isWeakReaction();
}
public class ReactionEvent extende java.util.Event(Object {
public ITuple getEventTuple();
pubiic RegisteredReaction geiReaction();
public AgentID getSourcedgent();

public interface Reactionlistemer erterds java.util.Eventlistener {
public void reactsTo(ReactionEvent e);

}

Figure 3: The classes Reaction, RegisteredReaction,
ReactionEvent, and the interface ReactionListener, required
for the definition of reactions on the tuple space.

not provide such guarantee, as weak reactions could be
spread on multiple hosts and thus enforcing the property
above would entail a distributed transaction among all
the nodes involved.

Registration of a reaction in any case returns an
object RegisteredReaction, that can be used to dereg-
ister a reaction with the method removeReaction.
RegisteredReaction hasically acts as a “ticket stub”
for the registration of the reaction, and provides addi-
tional information about the registration process. The
decoupling between the reaction used for the registration
and the RegisteredReaction object returned allows for
registration of the same reaction on different ITSs, or
to register the same reaction with a sirong and then
subsequently with a weak semantics.

3 Design and Implementation
of LIME

In this section we look behind the scenes of the LiMmE
programmer interface, by providing some insights about
the internal structure of the lime package and of the
associated run-time support. The presentation will pro-
ceed through increasing levels of complexity. We first de-
scribe how the simple notion of a private, non-shared tu-
ple space is made available through the LimeTupleSpace
class. Then, we move on to describe the components that
enable the local transient sharing that determines a host-
level tuple space. Finally, we show how the illusion of
a federated tuple space enabling transient sharing across
remote nodes is provided.

Private Tuple Space A private tuple space essentially
provides a Linda tuple space that is permanently attached
to an agent. It enjoys exclusive access to the tuple space
and can leverage off the strong reaction feature of LIME.
Furthermore, since the private tuple space can later be
engaged through transient sharing, support for operations
annotated with tuple location parameters must be pro-
vided as well.

The core functionality above is supported by two ob-
Jects that belong to every LimeTupleSpace object. The
first object has type ITupleSpace and provides exactly the
functionality of a plain Linda tuple space, including block-
ing operations. The second object is of type Reactor and
is in charge of running the reactive program constituted
by the reactions registered on the LimeTupleSpace object
after each operation.

When designing LIME, we had to face the decision about
how to implement the core tuple space support. Analysis
of available systems revealed that they provide a very rich
set of features, with big variations in terms of expressive-
ness, performance, and often also semantics. The need



for a simple, lightweight implementation, combined with
the desire to provide support and interoperability with
industry-strength products, led us to the development of
an adaptation layer that hides from the rest of the LIME
implementation the nature of the underlying tuple space
engine. This layer is provided by a separate package called
LigHTS, developed by one of the authors. ITupleSpace,
together with the already mentioned ITuple, and IField,
are the interfaces that provide access to the core tuple
space functionality. Adapter classes implementing this in-
terfaces can be loaded at startup time to translate these
operations into those of the tuple space engines supported.
Currently, adapters are in place for our lightweight tuple
space implementation and for IBM’s TSpaces [4]. Short
term activities include the development of an adapter for
Sun’s JavaSpaces [5].

Support for operations annotated with tuple locations
relies on the ITupleSpace object, although a change in
the format of tuples is performed along the way. In fact,
the design choice we made was to represent tuple location
parameters as tuple fields, in order to simplify the imple-
mentation of the corresponding extended operations and,
as we will see later, to simplify the retrieval of misplaced
tuples during engagement. Nevertheless, this represen-
tation is hidden from the programmer, who is prevented
from tampering directly with the location fields (which
would possibly lead to changes in the semantics) and can
refer to location fields only through the corresponding pa-
rameters in the operations provided by LimeTupleSpace.
Thus, upon insertion, a tuple specified by the program-
mer is augmented with two location fields representing
the current and destination location. These fields are then
stripped down when operations accessing the tuple space,
like rd, are performed. As it will be discussed in the re-
mainder of this section, a third field containing a globally
unique tuple identifier is also added, and it is used exclu-
sively to support reactions with a ONCEPERTUPLE mode.

The Reactor object is the other key component of the
LimeTupleSpace. It contains the list of registered reac-
tions forming the reactive program, which gets changed
through the methods of the LimeTupleSpace that add and
remove reactions. The current implementation supports
only reactions to changes in state and not to the mere
occurrence of an operation. This means that execution
of the reactive program must be triggered only when the
contents of the tuple space changes, i.e., as part of the ex-
ecution of the out method of the LimeTupleSpace. The
requirement for the reactive program to run to fixed point
after every such change is achieved by cycling through the
whole list of reactions in a round robin fashion until no
reaction is enabled to fire. A straightforward implementa-
tion of this processing would probe the whole tuple space

for a tuple matching the reaction’s template every time a

reaction is evaiuated. Clearly, this would be quite highly

inefficient even for a small number of reactions and tuples,
especially in the case of reaction listeners that insert tu-
ples of their own. For this reason, our Reactor adopts
an optimized strategy that mirrors and separates, during
execution of the reactive program, the tuples written to
the tuple space as a consequence of the firing of a reaction
from those that have already been checked, thus avoiding
looking at the same tuple more than once per evaluation of
a reaction. This complicates the management of the tuple
space during the evaluation of reactions because it must
be kept consistent with the Reactor’s view. Nevertheless,
in our experience this added complexity is far outweighed
by the advantages gained, especially during the process-
ing of ONCEPERTUPLE reactions which, as we will discuss,
represent a major asset during developiment.

Host-Level Tuple Space Transient sharing of
LimeTupleSpace objects is under the explicit control
of the respective agent. Once sharing is turned on, a
host-level tuple space is created. I'mplementation of this
abstraction requires a host-wide, centralized management
of the access to the individual tuple space objects, in order
to properly enforce the semantics of transient sharing
and to take into account engagement and disengagement
of local tuple spaces. This management is provided by
instances of the class LimeTSMgr.

At run-time, there exist one LimeTSMgr per each
named transiently shared tuple space currently active.
A LimeTSHMgr object is created as soon as the first
LimeTupleSpace instance with a given name is engaged.
Subsequent engagements of LimeTupleSpace objects
with the same name will refer to the same LimeTSMgr.
Engagements of objects with a different name will refer
to a different LimeTSMgr.

Upon local engagement of a given tuple space, the
LimeTupleSpace object surrenders the control of its own
ITupleSpace object. Thus, the implementation of the
methods providing access to the tuple space no longer
operate directly on the ITupleSpace. Instead, operation
requests are forwarded to the corresponding LimeTSMgr,
and the calling agent is suspended, waiting for the result.
Operation requests are enqueued by the LimeTSMgr,
which runs in a separate thread of control, and thus
their execution is serialized. This way, synchronization
among concurrent accesses performed through different
LimeTupleSpace instances is obtained structurally, by
confining concurrent accesses in a synchronized queue.

In our current implementation, not only the
LimeTupleSpace surrenders control of its tuple space,
but the contents of the ITupleSpace object are physi-
cally merged upon engagement in another ITupleSpace
object associated with the LimeTSMgr. This latter object
becomes then a concrete representation of the host-level
tuple space. Similarly, the reactive statements of each



LimeTupleSpace instance are all moved, upon engage-
ment, into a Reactor object associated to the LimeTSkHgr.
The rationale for this design decision lied in the fact
that this solution optimizes for tuple queries, especially
if the underlying tuple space engine adopts indexing
mechanisms to provide faster access to tuples, like in the
case of TSpaces. Thus, this sclution is appropriate in
the case where changes in the configuration are not very
frequent. However, experience with applications and the
development of our own lightweight tuple space made us
consider more carefully the alternate solution of keeping
tuples and reactions in the objects associated with the
LimeTupleSpace, and simply allow the LimeTSMgr to
reference them. This latier solution, by eliminating the
transfer of tuples and reactions during engagement and
disengagement, is likely to provide better performance in
the case of frequent mobility. In the short term, we will
extend our run-time support to let the choice of the more
appropriate strategy to the designer, who will evaluate it
against application needs.

In contrast with LimeTupleSpace objects that are still
private, when sharing is enabled blocking operations are
allowed as well because multiple agents can write tuples
to the host level tuple space. In the case where a match-
ing tuple is found, no special processing is necessary and
the LimeTSMgr releases the agent with the appropriate re-
sult. However, if no matching tuple exists, a mechanism
must be established to detect when the tuple shows up,
and immediately to notify and release the waiting agent.
The realization that this kind of processing is somehow re-
active led us to a design solution that exploits the notion
of reaction not only as part of the programming interface,
but also as a core element of system design.

For each blocking operation that does not find im-
mediately a matching tuple, a strong reaction with the
specified template is created, together with a system-
defined ReactionListener. This listener will be called
as any other LIME reaction listener, that is, with a
ReactionEvent parameter containing the matching tuple
triggering the reaction. In the case of a rd, the listener will
simply return a copy of the tuple in the ReactionEvent
object to the suspended agent; in the case of an in, the
listener will also first remove the matching tuple from
the host. Note that, in this latter case, the listener is
guaranteed that the tuple is still in the tuple space,
because the reactive program runs as a single atomic step.

Federated Tuple Space Creating the illusion of a tran-
siently shared federation of tuple spaces is the ultimate
goal of the abstractions provided by Lime. This is accom-
plished by building upon the choices and mechanisms dis-
cussed thus far. While, the ultimate target environment
for LiME is an ad hoc network where mobile hosts may
move unconstrained and mobile agents can roam among
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Figure 4: The engagement and disengagement protocals.
Dashed lines indicate multicast messages, heavy solid lines rep-
resent multiple unicast, and regular lines are unicast messages.
The data message from the leader may contain tuples {t), weak
reactions (r), and all the tuples in the LimeSystem tuple space
(Ists).

them, we recognize that such a task of monumental pro-
portions is likely to fail if not backed up by an initial
evaluation of the primitives chosen. For this reason, our
first version of LIME is based on a more constrained sce-
nario that allows us to quickly develop a first impiementa-
tion and gather feedback from applications, as discussed
in the next two sections. We assume that mobile units
announce explicitly their intentions te join and leave the
LiME community, whick determines the ability to control
programmatically in LiME the engagement and disengage-
ment process. Also, the scenario we assume involves a
single community of mobile hosts, all in communication
range. This latter constraint will change as we integrate
an ad hoc routing protocol within our testbed network.
Thus far, disengagement of a host always leaves the rest
of the community connected, and hosts are able to join the
community only one at a time, i.e., we do not yet support
the engagement of two distinct LIME communities.

The management of changes in the configuration of the
hosts is one of the key additions needed to move from
the host-level to the federated tuple space. The engage-
ment and disengagement protocols are implemented as
community-wide transactions in order to maintain a con-
sistent view among all hosts. To coordinate change re-
quests in the configuration of the community and to ensure
a total ordering of transactions among all hosts, the cur-
rent version of our engagement protocol determines the
presence of a leader in the community, with an election
mechanism in place to deal with leader departure. The
details of the protocols can be seen in Figure 4.

The first step of the protocol involves the engaging host,
and presumes the availability of multicast support, which
is exploited by the host to send a first message requesting



the engagement. Upon receipt of the message, all hosts in
the community prepare locally for engagement and inform
the leader that they are ready. When the leader knows
that all hosts are ready, the distributed transaction begins
and the hosts in the community begin to exchange any
misplaced tuples and new weak reactions with the new
host.

One critical aspect of engagement is the update of the
LimeSystem tuple space. This is accomplished in two steps.
When a host first joins the LIME community, it sends a
copy of the content of its own LimeSystem in the multicast
message sent t0 all the hosts. This information is bound
to contain only agents and tuple spaces present on that
host, since the engaging host is not part of any other com-
munity. The information distributed to the members of
the community serves to update their own LimeSystem in
a way that is consistent with the configuration the system
will assume after engagement is completed. In addition,
when the leader sends its own tuple space information it
will also send a copy of its LimeSystem tuple space to the
new host. This way, the engaging host will be able to ob-
tain a consistent view of the new configuration being built.
Incidentally, this will also allow the engaging host to de-
termine when it has exchanged data with all the members
of the community, and thus it can resume regular process-
ing. The disengagement protocol is similar albeit notably
shorter than engagement, as there is no need to exchange
data.

Besides changes in the configuration, the very task of
enforcing the semantics of the operations we described in
the previous section for the whole federated tuple space
is complicated by distribution. In particular, much of
the complexity actually lies in the mechanisms support-
ing weak reactions. These are based on the same idea
exploited to handle blocking operations on the host-level
tuple space. When a weak reaction is registered, the
Reactionlistener object specified by the programmer is
inserted in a separate weakReactionMgr object, while a
system-defined strong reaction is registered with the reac-
tor associated with the LimeTSMgr of the hosts involved
in the weak reaction. These strong reactions guard the
host-level tuple space {or a single agent tuple space, de-
pending on the value of its current location parameter). If
the strong reaction is fired locally to the subscribing agent,
the listener simply looks into the local weakReactionMgr
and the user Reactionlistener is executed. Alternately,
if the reactor is remote, the listener sends a message to
the subscriber’s host with a ReactionEvent. When this
message arTives, the user’s Reactionlistener is executed.
In the case of a ONCE reaction, we must be careful to only
execute the ReactionListener one time even though mul-
tiple matching tuples may be returned from different hosts
in the system.

Federation also has an impact on remote processing of

basic tuple space operations. Just as we were able 10 ex-
ploit the local reactor for the remote operations at the
host level, here we utilize the weak reaction structure. A
remote blocking rd is identical to a ONCE, weak reaction
with a system defined ReactionlListener which releases
the blocked agent. A remote blocking in is slightly more
complex as we may get responses back from multiple hosts,
must return to that host to actually retrieve the tuple (us-
ing an inp) before releasing the agent.

Although the same Reactor serves both ONCE and
ONCEPERTUPLE reactions, the processing of matching
tuples are tailored based on this mode. After a ONCE
reaction fires, the reaction is removed from the reactive
program because the user’s request has been satisfied.
Alternately, a ONCEPERTUPLE reaction remains registered
and must ensure that no single tuple causes the reaction
Lo fire more than once. This is accomplished by keeping a
list of the tuple identifiers which have already been reacted
to within the RegisteredReaction itself. Bach time a
matching tuple is found, this data structure is queried and
updated to determine if the ReactionListener should
be executed. The implementation of the Reactor which
separates newly written tuples from those which were in
the tuple space prior to this round of the reactive program
greatly improves the performance of ONCEPERTUPLE by
not selecting a tuple more than once from a single local
tuple space. However, because tuples can migrate and
weak reactions can be uninstalled and reinstalled as
connectivity changes, it is possible for a tuple to be
selected more than one for a reaction, making the list of
tuple identifiers necessary. By passing a relevant subset
of the list of tuples already reacted to when an upon is
reinstalled, additional duplication can be eliminated.

Details about the Current Implementation LIME
is currently implemented completely in Java, with sup-
port for version 1.1 and higher. Communication is com-
pletely handled at the socket level-—no support for RMI
or other additional communication mechanisms is needed
or exploited in LiME. The lime package is about 5,000
non-commented source statements, for about 100 Khyte
of jar file. The 1ighTS package providing a lightweight
implementation of a tuple space and the adapter layer in-
tegrating multiple tuple space engine adds an additional
20 Kbyte of jar file. Thus far, it has been tested success-
fully on PCs running various versions of Windows and on
hand-held devices running WindowsCE and using Lucent
WaveLLAN wireless technology,
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4 Developing Mobile Applications
with LiMe

Application development is the last phase of our research
strategy, and the one where the abstractions inspired by
formal modeling and embodied in the middleware are eval-
vated against the real needs of practitioners.

In this section we present two applications that exploit
the current implementation of LIME in a setting where
physical mobility of hosts is enabled. The two applica-
tions are typical of the physical mobility domain. The
first one involves the ability to perform collaborative tasks
in the presence of disconnection, while the second one re-
volves around the ability to detect changes in the system
configuration. In each case, we present the corresponding
application scenarios and a report about the way LIME has
been exploited during development. The lessons learned
from these experiences and the results of our empirical
evaluation of LIME are presented in the next section.

4.1 ROAMINGJIGSAW:
Accessing Shared Data

Scenario QOur first application, ROAMINGJIGSAW as
shown in Figure 5, is a multi-player jigsaw assembly
game. A group of players cooperate on the solution of the
Jigsaw puzzle in a disconnected fashion. They construct
assemblies independently, share intermediate results, and
acquire pieces from each other when connected. Play
begins with one player loading the puzzle pieces to a
shared tuple space. Any connected player sees the puzzle
pieces of the other connected players and can select pieces
they wish to work with. When a piece is selected, all
connected players observe this as a change in the colored
border of the piece, and within the system, the piece itself
is moved to be co-located with the selecting player. When
a player disconnects, the workspace does not change,
but the pieces that have been selected by the departing
player can no longer be selected and manipulated. From
the perspective of the disconnected player, pieces whose
border is tagged with the player’s color can be assembled
into clusters. Additionally, the player can connect to
other players to further redistribute the pieces, and to
view the progress made by the other players with respect
to any clusters formed since last connected.

This application is based on a pattern of interaction
where the shared workspace provides an accurate image
of the global state of connected players but only weakly
consistent with the global state of the system as a whole.
The user workspace contains the last known information
about each puzzle piece. It is interesting to observe that
the globally set goal of the disiributed application, i.e.,
the solution of the puzzle, is built incrementally through
successive updates to the local state, distributed to all

Figure 5: RoamingJicsaw. The left image shows the view of
a disconnected player which is able to assemble only pieces it
selected. The right image shows the view after the player re-
engages with the other players, seeing assembly that occurred
during disconnection.

other players either immediately if connected or in a “lazy”
fashion if connectivity is not available at that time.

RoaMINGJIGSAwW ig a simple game that exhibits the
characteristics of a general class of applications in which
data sharing is the key element. The RoAMINGJIGSAW
design strategy may be adapted easily to any applications
found in which the data being shared may change, e.g.,
sections of a document in a collaborative editing appli-
cation, paper submissions to he evaluated by a program
committee, etc.

Design and Implementation The basic data element
of ROAMINGJIGSAW is the individual puzzle piece. For
efficiency purposes, each piece is stored as a pair of tuples.
The first contains the image of the piece which remains
unchanged throughout the game. The second contains
a descriptor that includes information about a pilece or
the cluster that includes it and the current owner of the
cluster. When a player selects a plece or joins together
several pieces, a new tuple with the updated information
is inserted, and the old descriptor is removed.

The critical operations in the game are the detection of
piece selection and clustering actions, the reconciliation
on reconnection, and the engagement of a new player. All
are handled by exploiting a single mechanism in LIME:
a weak reaction with mode ONCEPERTUPLE and type
UbiquitousReaction, its scope is the whole federated
tuple space. The reaction is registered for tuples that
match any cluster descriptor. The corresponding reaction
listener updates the user workspace with the information
in the matched descriptor and correctly maintains the
weakly consistent view of the workspace. The amount of
data transmitted for each update is minimized, because
the reaction looks for descriptors and not for the individ-
ual piece images. However, in the case where a puzzle
descriptor is received for a piece which the player never
encountered before, as is the case during the engagement
of a new player, the puzzle image is explicitly requested
directly from the tuple space before the workspace is
updated. Since the reaction is registered on the federated
tuple space, the program receives updates about new
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descriptors without any need to be explicitly aware of the
arrival and departure of players. Thus, the programming
effort can focus just on handling data changes without
worrying about the actual system configuration.

Although all processing described so far has operated
on the federated tuple space, fine-grained control over the
location of tuples is critical in dealing with disconnections
caused by mobility. When a player selects a piece to work
with, the piece must remain part of the transiently shared
tuple space, but its location is changed to that of the se-
lecting player in order to enable it to disconnect without
losing access to the descriptor. In addition, since we deal
with a weakly consistent workspace, a player must be pre-
vented from selecting a piece that is currently not present
in the federated tuple space. For these reasons, our imple-
mentation of ROAMINGJIGSAW responds to an attempt to
select a piece by first performing an inp operation on the
tuple space of the player last known to have the piece. If
the piece is returned, it is properly rewritten to the local
tuple space of the new owner, and the selection is suc-
cessful. If no tuple is returned, it means that the piece is
unavailable for selection because the corresponding player
is currently disconnected. This fact is communicated to
the user by an audible beep.

We are presently developing a version of RoaMINGJiG-
sAw that presents the user with a workspace that rep-
resents the current state of the system in a fully con-
sistent way, i.e., only pieces belonging to users that are
currently connected are seen through the workspace. All
other pieces are removed from the workspace upon discon-
nection of the player that owns them and are redisplayed
as soon as the player becomes connected again. In other
words, the player sees exactly the pieces which are cur-
rently in the federated tuple space. This version may be
easily coded by utilizing the LimeSystemTupleSpace to
react to player arrivals and departures and by monitoring
which puzzle pieces have been handed off to other players.

4.2 REDROVER:
Detecting Changes in Context

Scenario Qur second target application is a spatial
game we refer to as REDROVER in which individuals
equipped with small mobile devices form teams and in-
teract in a physical environment augmented with virtual
elements. This forces the participants to rely to a great
extent on information provided by the mobile units and
not solely on what is visible to the naked eye.
REDROVER is the initial step in the development of
a suite of virtually augmented games to be carried out
in the real physical world. BeodyWare will provide each
player with global positioning system access, audio and
video communication, range finding capabilities, and
much more. For now, the game is limited to seeking

Figure 6: REDRoOVER. The main console of REDROVER, and
the most recent camera image of a connected player.

and discovering the physical flag of the other team and
clustering around the player who finds the flag. Each
player is equipped with a digital camera which can be
used to share a snapshot of the current environment with
team members who may be separated physically by walls
or other barriers, but remain within radio communication
range. Finally, players know and share their precise loca-
tion in space so that all connected players can maintain an
image of the playing field displaying the relative location
of all participants As with RoaMingJigsaw, REDROVER
is a simple game but it has great potential to be extended
to real world scenarios such as the exploration of an
unknown area by a group of people or robots. Our
current efforts include the incorporation of a mapping
mechanism which will allow users to define the elements
of a region and share these results as they meet other
users. Finally, the current implementation employs an
artificial notion of player location, however, this can be
trivially replaced with a global positioning system.

Design and Implementation in LiME  The dominant
feature of the user display is the current location of each
connected player within the playing field. This is main-
tained in a strongly consistent manner, i.e., by displaying
precisely the players which are connected and their most
recent location update. Each time a player moves, a tuple
representing its location is written to the federated tuple
space. All players register a weak ONCEPERTUPLE ubiqui-
tous reaction for these tuples and the screen is updated
with each reaction.

To detect when a player disconnects, we make use of
the LimeSystem tuple space and register a reaction for
the departure of a player (represented by a host). The
listener of this reaction changes the connected status of
the player and the user display is updated to replace the
standard image of the player with a “ghost image” indi-
cating that the player was once present, but is no longer
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connected. Upon reconnection, once the player moves,
the ONCEPERTUPLE reaction gets the new location for the
player. However, if the player stays put, the reaction on
the location tuple will not fire. Nevertheless we can still
update the player’s status to connected by registering a
reaction on the LimeSystem tuple space for the arrival of
a player (host}.

To handle the notification of the flag capture, each
player can register a ONCE or ONCEPERTUPLE upon on the
federated tuple space. When a player finds the flag it
writes a tuple to the tuple space indicating this fact, and
all registered players receive notification in the form of a
dialog box indicating which player has the flag. To facil-
itate clustering around this player, it is useful to request
the camera image of the player in order to identify obsta-
cles not visible on the screen which must be maneuvered
around. Because the imape is requested from a specific
player, we simply use the rdp operation rather than incur-
ring of the overhead of the reaction.

Another feature of the implementation is the separation
of data to be shared with teammates versus information
available to all game players. For example, it is desirable
to inform only team members of the flag capture. There-
fore, this information is written to a team-only tuple space,
while general information. such as player location is writ-
ten to a game tuple space. The ability to have selective
sharing of tuple spaces is an important feature and the
first step towards introducing security considerations in
LiME.

5 Discussion

In this section we discuss our research contributions with
an emphasis on lessons learned from exploiting LIME in the
mobile applications presented in the previous section. We
also compare LIME to similar projects found in literature
and report about future work and enhancements we plan
for our middleware.

5.1 Reflections and Lessons Learned

The development of LiME is the result of a continuous
interplay among the definition of the undetlying formal
model, the design and implementation of the middleware,
and its evaluation on mobile applications. The develop-
ment, of a model for LiME, and its formalization, favored a
better understanding of the abstractions provided by the
middleware. In particular, by keeping the programming
interface as close as possible to the operations defined in
the formal model, we made it easy to communicate and
reason about the functionality of the system and its use
in applications. In an incidental way, this task also pro-
vided an evaluation of the applicability of Mobile UNITY

to the specification of a middieware for mobility. The abil-
ity to think about abstractions in a setting unconstrained
by implementation details favored a style of investigation
characterized by a more radical perspective, where the de-
cisions driving the modeling and the definition of the main
abstractions where mostly determined by the need for ex-
pressiveness and completeness.

This view was greatly refined when we started the de-
sign and implementation of the middleware. An example
of refinements that took place is provided by the notion of
reaction. Reactions were motivated by an intuition of the
importance of reacting to events in a mobile environment
and were inspired by the notion of reactive statements
in Mobile UniTYy. Nevertheless, reactions as defined in
Mobile UNITY imposed atomicity requirements that are
in general too strong to be practical in a distributed set-
ting. This consideration led to the notion of a weak reac-
tion, which represents a seemingly reasonable compromise
between the loose guarantees provided by common event
mechanisms like those found in TSpaces and JavaSpaces
and the full atomicity guarantees of strong reactions.

Other refinements were the result of unforeseen needs
on the part of the application programmer. This was the
case with the reaction mode. In the reactive model of Mo-
bile UnITY, reactions are permanently enabled and it is
up to the designer to specify the conditions under which
they become disabled. Nevertheless, programming prac-
tice with the LIME model showed early on that some sort of
auntomatic disabling of reactions is needed. In particular,
the ONCEPERTUPLE mode turned out to be an important
mechanism in developing both applications discussed in
this paper.

The feedback coming from applications was not limited
to the discovery of new primitives. The use of LIME made
it possible for us to evaluate the usefulness of its pro-
gramming abstractions and constructs. Experience with
RoaminGJ1Gsaw and REDROVER corroborated our hy-
pothesis that the ability to register weak reactions on the
whole transiently shared tuple space provides the pro-
grammer with highly effective constructs that simplify
the programming task. The execution of a single oper-
ation is sufficient to guarantee future notification of ev-
ery event occurring over the whole federated tuple space,
independently of changes in the configuration. Interest-
ingly, this power has a cost; the implementation of weak
reactions is probably the most complicated portion of the
current LIME software—this should be expected, since we
are shifting a great deal of complexity away from the pro-
grammer and into the run-time support.

Another interesting bypreduct of these empirical evalu-
ations is an understanding of the programming and archi-
tectural styles fostered by LIME and recurring in mobile
applications. A possible distinction can be made between
applications whose main requirement is to enable sharing
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of data despite mobility and those where most of the com-
putation is driven by reactions to changes in context, as
is the case with the two applications we presented here.
Interestingly, in one case the functionality of the applica-
tion must be provided despite mobility, while in the second
case, the functionality ewists because of mobility.

In this and other application typologies, a recurring
dilemma is between an application style that provides a
weakly consistent view of the system in the presence of
mobility, and one that provides a fully consistent view
that takes into account departure and arrival of mobile
units. Choosing one representation style or the other has
non-trivial implications cn the complexity of the overall
design and development task, and on the primitives that
must be used. If weak consistency is enough, the view
can be built incrementally by exploiting the notification
mechanism provided by weak reactions, usually in the
ONCEPERTUPLE mode. If, instead, a fully consistent view is
required, additional, application specific machinery must
be added in addition to using the LimeSystem tuple space
to react (immediately) to changes in the system configu-
ration. In our experience both styles are naturally accom-
modated by the abstraction of a transiently shared tuple
space. Our “developers”, mostly graduate and undergrad-
uate students, found it easy not only to pregram applica-
tions with LiME but, most importantly, to think about the
application in terms of the metaphors characteristic of the
underlying LIME model.

Actually, the particular programming style induced by
LiME, albeit biased by the limited range of applications
considered thus far, is quite different from what we ini-
tially expected. This is especiaily true in the case of weak
reactions and the LimeSystem tuple space. Reactive pro-
gramming was not part of the initial core of LIME was en-
visioned to be a coordination framework founded on the
idea of transiently shared tuple spaces accessible exclu-
sively through Linda operations. Similar circumstances
surrounded the LimeSystem. It was initially thought of as
an add-on to support very specific needs. Instead, these
abstractions turned out to play a key role in the design of
both RoAMINGJ1GSAW and REDROVER. We already re-
ported about the use of weak reactions and ONCEPERTUPLE
and we noted that the LimeSystem tuple space provides
full context awareness by exposing changes in the config-
uration of the system. Although we initially thought this
explicit knowledge could be bypassed by the observation
of changes in the data context, experience with our ap-
plications (especially with REDROVER), showed that this
hypothesis does not hold in general. The developer must
resort to the LimeSystem tuple space. This causes no dif-
ficulties since the LimeSystem tuple space is perceived by
the user as just another transiently shared tuple space with
a different name and restricted access.

Finally, an issue that deserves careful evaluation is the

extent to which the programmer is induced to duplicate
the data present in the tuple space into some other run-
time data structure, for performance reasons. For in-
stance, in RoAMINGJIGSAW the re-paint of the workspace
would involve retrieving from the federated tuple space all
the pieces present at that moment. Clearly that is im-
practical, and the content of the tuple space is mirrored
in a data structure that is kept consistent as changes are
notified through reactions. In RoamincIigsaw, such a
mirroring is necessary in order to preserve weak consis-
tency of the workspace, and to keep track of pieces that
are no longer available. Nevertheless, this issue has more
profound implications that have to do with the way the
tuple space is actually used (i.e., as a coordination means
or as a data repository). A comparative evaluation of the
LiME programming style relative to the programming style
induced by other middleware based on tuple spaces, like
TSpaces [4] or JavaSpaces [5] remains to be carried out in
the future.

5.2 Related Projects

LivEe is not alone in its exploitation of the decoupled na-
ture of tuple spaces for the coordination of mobile com-
ponents. The Limbo platform [2] builds the notion of
a quality of service aware tuple space which resides on
mobile hosts. The quality of service information itself is
stored in the tuple spaces and can be made accessible to
agents on remote hosts. There is no notion of sharing data
among the tuple spaces, however a bridge agent can be
built which has references to multiple tuple spaces and can
monitor and copy information among the spaces. Agents
must also know explicitly which tuple space they wish to
connect to. A wniversel tuple space exists which registers
all tuple spaces and can be used to locate a space. This no-
tion is similar to the LimeSystem tuple space. Limbo does
not provide any mechanisms beyond the regular Linda op-
erations to react to changes in the tuple space.

In contrast, the main focus in the TuCSoN coordination
mode] [7] is a reactive mechanism which is used to create
prograrnmable tuple spaces which respond 1o the queries of
mobile agents. When an agent poses a query to the tuple
space, the registered event which matches the operation
and template fires, and an action is atomically performed.
Another feature of TuCSoN is the ability to either fully
qualify a tuple space name, identifying the specific host
where the tuple space relies, or providing a partial name
and gaining access to a local version of the tuple space.
There is no coordination between tuple spaces, and mobile
agents only have access to the tuple spaces fixed at the
hosts.

It is interesting to note how the notion of reaction put
forth in L1ME is profoundly different from similar exten-
sions that allow notification of events in the tuple space,
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such as those provided by TuCSoN, TSpaces [4], and
Javaspaces [5]. In these systems, the events that are de-
tected are the actual operations performed by the access-
ing processes, while in LLIME, reactions fire based on the
state of the tuple space itself. One common application
task we discovered early is the need to look for a tuple,
and, if it is not present. and then wait for its appearance.
Without transactions, this is complicated by the possi-
bility for the tuple to be written in between the initial
query and the installation of the event listener. However,
transactions are complex and expensive. In LIME, a single
reaction accomplishes the desired task. Furthermore, the
atomicity guarantees of the local reactions are relatively
powerful. For example, with a localized reaction, the exe-
cution of the listener is guaranteed to fire in the same state
in which the matching tuple was found. No such guaran-
tee can be given with an event model where the events are
asynchronously delivered.

5.3 Future Directions for LIME

An important feature of the LIME model is the integra-
tion of physical and logical mobility. The ability of a mo-
bile agent to move among mobile hosts opportunistically
as connectivity is available makes the integration of the
two models powerful. Our current design is already cen-
tered around the concept of an agent, which has the abil-
ity to create, access, and share LimeTupleSpace objects,
however we do not yet allow for this agent to migrate.
To accomplish this, current plans include integrating the
#CODE toolkit into LiMg. This will involve minimal mod-
ifications to the transaction protocols, as well as modi-
fications to the LimeServer to handle the departure of
agents,

A reality of the physically mobile environment is the
unanticipated loss of a communication channel when a
host moves out of range. This can cause an interrup-
tion of the engagement or disengagement transactions or
data instability when a connection is lost during a tu-
ple transfer. We are currently researching mechanisms to
reduce the atomicity guarantees of the transaction proto-
cols so as to Hmit the window of vulnerability. To address
data instability, we are defining new classes of data to
reflect the state of the transfer where the connection was
lost. To complement these data classifications, we are also
describing policies for accessing the possibly inconsistent
data which range from conservative approaches regarding
availability to possible duplication. Furthermore, recon-
ciliation protocols must be put in place to resolve incon-
sistencies when a connection is established again.

Another important consideration of the mobile environ-
ment is security. The current implementation of LIME
does not specifically address security, however we recog-
nize that security is a major concern, particularly in the

ad hoc environment and have several ideas about how to
integrate security into LIME. First, the notion of a private
tuple space can already be exploited to keep data separate.
Alternately, it should be possible to share data in a lim-
ited fashion, for example a tuple space {or at a more fine-
grained level, the tuples themselves) can be augmented
with with an access control list. The modular design of the
implementation means that these changes should be local-
ized to specific parts of the transaction protocol and to the
LimeTSMgr. From the application perspective, many more
parameters will be tunable, providing added flexibility.

6 Conclusions

LIME is our first attempt at designing middleware for mo-
bile systems based on the theme of coordination. The
notion of transiently shared tuples spaces is part of a
larger vision we refer to as global virtuel deta structures.
This concept starts with the notion of a global, persistent,
shared data structure accessible to all mobile agents but
distributes it among mobile components and provides op-
erations for sharing and manipulating the structure hased
on connectivity, While the choice of sharing Linda tu-
ple spaces has proven useful, we anticipate applying this
strategy to other kinds of data such as graphs or trees.
The operations and semantics must be redefined, but the
underlying notion of transient sharing based on connec-
tivity remains. Finally, we are currently in the process
of broadening our view of what is necessary for success-
ful mobile middleware. Clearly, adaptability to different
mobility scenarios is crucial and is something we have not
explored fully within the confines of LIME. Experience to
date has been instrumental in helping us develop a new
strategy for structuring the LIME middleware and an ef-
fort is under way to achieve a multilayered modular design
that can be adapted to mobile hosts of varying capabilities
and to the construction of middleware based on a variety
of coordination models.
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