Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-00-04

2000-01-01

Plugin Management for Active Network

Sumi Y. Choi

The purpose of this document is to present the overview of tte plugin management architecture
and the description of the software developed for the scalable, high performance active network
node project in Washington University, St. Louis. The plugin management is a user space
daemon program that runs at the code(plugin) server and at the active network component of a
router or a switch port processor. The running programs cooperate to load plugins from the
code server to the active network component. This software is intended to be used among
multiple platforms.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Choi, Sumi Y., "Plugin Management for Active Network" Report Number: WUCS-00-04 (2000). A/l
Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/282

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/282?utm_source=openscholarship.wustl.edu%2Fcse_research%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Plugin Management for Active Network

Sumi Y. Choi

WUCS-00-04

April 2000

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130

Plugin Management for Active Network

Sumi Y. Choi

sycl@arl.wustl.edu

Feb. 17, 2000

Abstract

The purpose of this document is to present the overview of the plugin management ar-
chitecture and the description of the software developed for the scalable, high performance
active network node project in Washington University, St. Louis. The plugin management is
a user space daemon program that runs at the code(plugin) server and at the active network
component of a router or a switch port processor. The running programs cooperate to load
plugins from the code server to the active network component. This software is intended to

be used among multiple platforms.

1 Introduction

The core idea of the active network stems from the need for supporting new types of services,
and protocols. The current network model inherently restricts these features because of the
homogeneity implied in it.

Our active network platform has been developed so that one can achieve deployment of new
protocols or the application-specific services efficiently. The focus of the platform is on the
concept of network plugin or plugin and the processing component called active element. The
plugin is binary code that can be recognized, dynamically downloaded and run on a datapath.
The active element maintains the plugins and assigns each datagram with the proper plugin.
Here, each datagram contains the identifier of the plugin to be executed on it. The active
processing element finds the plugin using the identifier and then assigns the datagram to the
plugin.

In case when a plugin references an unknown plugin, the active element is enable to cause a
remote downloading of the plugin. The scheme used for the remote downloading is distributed
code cashing.

In the distributed code cashing scheme, we view of the active network as a continuously
changing entity, where various service vendors produce or update their services by distributing

plugins. The plugins are stored in the entities called code server.

For the efficiency of the network datagram processing, the plugin downloading process is
isolated from datagram process in the active element. The plugin management is the software
which is responsible for the plugin downloading process and is located either in the user space
of the active element or that of the code server in our current platform as shown in the Figure 1.
This document is focused on the structure and the usage of the plugin management on active
element and aiso on code server. We listed the terms used in this document in section 2 for
a quick view. In section 3, we focus on the details of the plugin management in general by
covering all the components. We discuss the code server and the key server in section 4 and
5, followed by the data path review in section 6. In section 7, we presents the usage of the

softwares. Finally, we conclude with section 8.

2 Terms

The terms used in this document are listed here for future reference.
1. Plugin Management: userspace software for the plugin management
Active Plugin Loader: interface of the plugin management to the active element
Plugin Database Controller: plugin database and its controller in the plugin management
Plugin Requestor: plugin request protocol module in the plugin management
Security Gateway: authentication module in the plugin management
Policy Controller: policy verification module in the plugin management
Code Server: code server

Key Server: public key server for authentication

® @ N e o oa e

Active Element: active element.
The active element is broader concept of EE, because it specifies the hardware structure

as well as software. In this document, the active element can be considered as EE.

3 Plugin Management, pmd

The plugin management is the software component of the active network that is responsible
for the remote download, the authentication, the policy verification and the store procedure
of plugins. It has five component, each of which is assigned with one of the procedures.

As shown in the Figure 1, it interfaces with the external world, including the active element,
the code server, and the active network administrator. The communication with the remote
code server which is shown above the plugin management in Figure 1, will be managed by the
plugin requester. All the other interfaces will be defined in the active plugin loader, which
makes it the only system-dependent module in the plugin management. In this section, we
will discuss the details of each components starting with the active plugin loader.

9

PR

. Plugin Management

Ver)

PDB

:| Policy

SG

Lok

Cal |

i)

(
JURIUAT MIOMIIN ALY

Plugin
Requester

N PP et Ll
(atapase)

Plugin
Database
Controller

Policy
Controller

Security
Gateway

R S

¢ -

Active Plugin Loader

Figure 1: Plugin Management

EE-dependent Header

Plugin Idenfier

-l Azt
u ot L UL

A 4

Figure 2: Plugin Request(from active element) Format

3.1 Active Plugin Loader

Active Plugin Loader is the central module of the plugin management with the interface to the
active element, who requests for unknown plugins. So, the active plugin loader is the starting
point of the plugin downloading process within the plugin management, and it organizes each
steps of the data path. For the interface with the active element in our platform, we use the
socket interface because the plugin management is built on the userspace of the active element.
However, the interface is dependent on the active network platform and the active element or
EE in the platform. Therefore, it should be configured by the active element or EE developer.
The plugin request from the active element has a simple form which is composed of the active
element specific header and the plugin id. The format is shown in Figure 2.

Besides the interface to the active element, the active plugin loader also has the interface to the
plugin management administrator. The plugin management administrator is another software
module that one can use to configure the plugin management from command line, such as
the code server list, the policies for plugins, or the security constraints. It can be remotely
located from the plugin management because it uses the remote procedure call(RPC) to run

the interface routines in the active plugin loader.

3.2 Plugin Database Controller

The plugin database controller manages the database of plugins in the plugin management.
Usually this database is used as a cache space for the plugins downloaded from code servers.
After loaded into the active element, the plugin is also stored{cached) in the plugin database in
the plugin management. Because we can have multiple active elements sharing a single plugin
management in our future model of the active network component, the plugin management is
likely to receive multiple requests for a single plugin. The cached plugin can be supplied for
the subsequent request, once the plugin is loaded. Meanwhile, a loaded plugin can also get
unloaded from the active element by the resource management in it. The datagrams coming
with the identifier of the plugin after this point, will cause the active element to request the
plugin again. This can also be a case for cache downloading.

This local cache downloading is a shortcut for the plugin downloading. However, there are

times one might want to force plugin downloading from code servers. Upgrading plugins can be

Field Size

Plugin ID 32 bit
EE ID 16 bit
Developer ID 32 bit
Time Stamp 32 bit
Plugin Size 32 bit

Codeserver Signature | 64 bytes
Developer Signature | 64 bytes

Plugin File Location | Fixed in code

Figure 3: Plugin Database

one reason. In that case, the plugin cache line in the plugin database of the plugin management
has to be flushed. Another usage of the plugin database is to make it a code server’s storage.
The detail will be given in the code server section.

The plugin database is implemented with the plugin database controller and the database
storage. The plugin database controller contains the methods for maintaining the plugin
database. The plugin database is a storage space in the file system, , and it contains a list
of plugins classified by the plugin identification(pid} number and the execution environment
identification number(eid), or the active element identification number. In addition to these
information, there are a few other fields that are stored with each plugin in the plugin database,
such as the location of the plugin object code in the file system, the signature of the plugin
given by the developer of the plugin or the code server, etc. (The details about the signature
will be given in section 3.4.) The format of the plugin database is shown in Figure 3.

3.3 Policy Controller

Policy Controller is responsible for applying the plugin management policies on the plugin
downloading process. To protect the active element from possible hazard caused by plugins
downloaded from remote sites, the plugin management maintains a list of policy rules. Each
policy rules assigns ACCEPT/DENY policy on a group of plugins, specified with three fields, i.e.
plugin identification number, developer identification number, and code server IP address.
For example, one might always want to accept the plugins from a specific code server, say,
codeserver.com that is poplar or block them from a specific developer, who has bad reputa-
tion(Assume this developer has id of 2). The first two lines of the Figure 5 shows the policy
rules for these cases.

The policy rules are maintained in a database called policy databuse, that has the three field
as in Figure 4. The policy rules in the database are listed in the order as added by the plugin
management administrator or provided by the configuration file. For each plugin downloaded
into the plugin management, the policy controller checks the list of the policy rules, one by one,

Field Name Size

Plugin Identification Number 32 bit
Developer Identification Number | 32 bit
Code Server IP address 32 bit

Figure 4: Policy Database

Plugin Id Number | Developer Id Number | Code Server Address | ACCEPT/DENY bit
* 0x00000002 S]

* codeserver.com 1
0280010005 * * 0

Figure 5: Example Policy Database

whether they match the specification of the plugin. If the policy controller finds a matching
rule, it applies the rule by returning the policy field.
In Figure 5, we show an example of the policy database.

According to the ACCEPT/DENY bit, the active plugin loader either abort the plugin down-
loading(DENY) or load it into the active element(ACCEPT).
Now, the policy discussed @up to this point is the import policy, which is applied to the plugins
coming into the plugin management. There is another type of policy that the policy controller
manages, which is the export policy. The export policy is used by the plugin management
in a code server to control the exporting of the plugin to the plugin management in active

elements. The detail will be given in the code server section.

3.4 Security Gateway

In our model of the active processing, once plugins are accepted in the policy controller, we
trust the origin(code server) and the vendor(developer) of the plugins and the plugin s are safe
enough to run in the active element. Therefore, we assume that those code servers and the
developers are well known to the public, and that they do not maintain malicious or deficient
plugins. Maintaining this good quality as a code server or as a developer is a separate issue
to be considered and out of the scope of this document.

However, there still is a need fo secure and maintain the integrity of the plugins through the
transmission between the plugin managements. For this purpose, we included the module
called the security gateway in the plugin management. The security gateway is responsible
for authenticating the origin of the plugin transmission and the vendor of the plugin. In our
model, the origin is the code server that sends the plugin and the vendor is the developer that
publishes the plugin. To perform this task, we use the signature. The plugins are transmitted
with the signature of the code server or the developer of the plugin. We assume that the

plugins are initially stored in the code server with the developer’s signature. The signature of

MD5

|

[

|

|
piu:gin

> MD5 hash
Hashing
] : y
On code server |§ On active element | Compare —»
| A
| MDs PublicKey | | .| Public Key
plugin | Hashing MDs | Eneryption sighature] Decryption [MD5
"~ hash i I hash
Private : Public
key | key

Figure 6: Security Gateway Processing

the code server can be generated at the time of loading or can be pre-computed. The plugin
management should be able to authenticate the plugin using the signature and the identities
of the code server and the developer.

In a full path, an active element’s plugin management requests a code server for a plugin, the
code server transmits back with the plugin, the developer’s signature, and its signature on the
plugin. The plugin management on the active element authenticate the plugin based on the
signatures, the code server address, and the developer id. To vary the weight of focus on the
authentication complexity and the security, one can have options to have no authentication,
code server authentication, or maximum authentication.

There are several ways to do the authentication, well known as cryptographic standards. In
our implementation, we use the RSA encryption and the MD5 hashing scheme. The MD5 is
used for generating a 64 byte plugin specific hash, which is the result of digesting the plugin
and then the RSA encryption is used for the encryption of the hash. The encrypted hash is
the signature. For the RSA encryption, we maintain a key pair of public key and private key
per each entity, such as code server or developer.

As implied, the authentication is done with the cooperation of the sender and the receiver, or
the plugin managements on both ends. The Figure 6 shows the example of the authentication
between the two plugin managements each on code server and the active element. The left
side of the Figure 6 shows the steps for generating the signature on the sender side. The actual
authentication happens on the right side, which is the receiver. The receiver goes through two
separate stages, one for the decryption of the received signature to get the MDS5 hash, and the
other for regenerating the MD5 hash from the received plugin. At the end, it compares two
MD?5 hashes, and only when they are the same, the authentication is successful.

For the plugin management on a active element to be able to authenticate different entities
related to the plugins, it needs the public keys of the entities besides the plugin and the
signatures transmitted from a code server. According to the RSA encryption, the private key

is securely maintained by the owner of the private and public key pair, while the public key
should be known to the other ends.

Therefore, a key distributing service is needed for the plugin management to obtain the keys.
There considered a couple of ways to distribute the public keys. One is to receive them from the
owners. The other is to maintain a key server for the public key distribution service. Because
there are an issue of identifying the owner of a public key, particularly when the owner is a
developer, we decided to follow the second option. The other thing about the second option is
that we could make use of the existing implementation. The DNS security extension provides
the public key maintenance, and it is implemented in BIND ver 8.2. In the DNS security
extension, they have a field for the cryptographic key for well known algorithms including
RSA, and their resolver library support the query of a public key just as the domain name

query.

3.5 Plugin Requester

For the transmission of the plugin request and the plugin response, we have the plugin re-
quest protocol. It defines the formats for the plugin request and the plugin response, and is
implemented upon TCP/IP. The packet formats are shown in the Figure 8. Depending on the
length of the plugin, the response could be fragmented. The whole protocol is built upon the
socket layer over TCP/IP.

The plugin requester is the module that runs the plugin request protocol. To support the
protocol, the plugin requester is required to have a method to locate code servers. Once it
knows where to contact, it uses the plugin request protocol to send request and to download
a plugin. We came up with several methods for locating code servers.

One option is to use unicast. To do this, the plugin requester simply maintains a list of code
server addresses and it contacts the code servers on the list, one by omne, in the order of the
priorities assigned to them, starting with the most preferred one. The plugin requester sends
out requests to a code server every re-request interval seconds until it receives a response. It
gives up with the code server after request-cancel timeout period seconds, and try the next
code server. This two parameters are configured from the configuration file at the time of
initial setup.(See section 7.2) This option is desirable for the local network where the network
resources are mostly stable, and the types of plugin services are restricted and expected to be
found in one of the stable code servers.

Another option is to use multicast. The plugin requester maintains a list of multicast addresses
instead of unicast addresses. The works the same way as unicast from the point of the plugin
requester. However, it has an effect of sending a single request to the group of code servers.
This scheme requires a global notion of public multicast groups for code servers. It implies
the development of a distributed storage with code servers, which is out of the scope of this
document. One of the drawbacks of the multicast solution is that it may waste network load by

causing duplicate responses from code servers, because once the request is multicasted, there

No. of Fragments

Plugin Size This Fragment No. Fragment Length = A

Source Codeserver Address

Plugin Fragment (A bytes
Developer Identifier 5 & (A bytes)

Developer Signautre(64bytes)

(a) First Plugin Packet (b) Subsequent Plugin Packet

Figure 8: Plugin Response Format

is no control for optimizing the number of responses.
Last option is to use anycast. An anycast address represents a group of destinations as a
multicast address does. However, unlike the multicast, it does the selective addressing. In
other words, if a datagram is sent out addressed to an anycast address, the network figures out
the best one out of the group that the anycast address represents. Then, the datagram is sent
to the one picked by the network. Here, we eliminate the disadvantage of high network load
caused by multicast. Anycast is a convenient mechanism for the service discovery in general.
However, it has not been detailed for implementation.
The multicast solution and the anycast solution are better for the network where hierarchy or
configuration of the code storages are dynamically changing. The combination of any of the
three solutions are also possible. Currently, we only implements unicast, where the addresses
for code servers are fixed at the time of configuration or by the administrator.

The Figure 8 shows the plugin request format and the plugin response format that are used
for the plugin request protocol. The plugin request format here is different than the one used
internally between the active element core and the active element plugin management. This

plugin request is used between plugin managements for code server downloading.

4 Code Server

As briefly introduced in the section 1, the code server is the entity that maintains a database of
plugins, and it responses to plugin requests that comes from the remote active elements. The
plugins in the database are specified with the plugin identification number and the execution
environment number. Therefore, various active element(execution environment) can share a
single code storage.

In our implementation, we recycle the plugin management software to use it for the code server.
Because of the ability to store plugins, to provide additional safety features, and to support
the plugin request protocol, the plugin management can be used either for the active element
and for the code server with some tune-up parameters, which is specified in the configuration
file.

The key difference of the plugin management for the code server as to that for the active
element is in the interfaces to the external world. While the plugin management for the active
element has the interface to the active element, the plugin management for the code server is
the code server itself. So, it does not have any other interfaces other than the communication
channel through the plugin request protocol.

Another difference is in the security gateway. The code server itself is one of the entity who can
have its own key pair. If the security option says it has to maintain code server authentication,
the key pair should be generated, and in addition, the public key has to be registered with
the key server. The key pair is also read locally by the plugin management software when the
code server gets executed. This information should also be appeared on the configuration file.
From an abstract view, we consider a group of code servers as a distributed database. The code
servers can form a tree structure, or nested structure so that each code server can also download
plugins from each other. Here, the code server list maintained in the plugin requester is used
for the next level code server connection. Therefore, the plugin request can be forwarded to
the next level, if it cannot be satisfied at the current level. Now, the plugin request and plugin
reply can go through several code servers causing them to forward back to the active element
who originally requested the plugin.

It is still not clear how to find a best hierarchy of the code servers and how to distribute the
plugins throughout the hierarchy. This is out of the scope of this document, and also the
more crucial issue at the current moment is to experiment with the shared plugin storage on

a network of the heterogeneous network platforms.

5 Key Server

The key server is the entity that maintains a database of public keys for the security gateway,
and distributes the keys as requested. As mentioned, we provides three options for authentica-
tion, either, No authentication, code server authentication, or developer authentication. Either

the second or third case, we use the RSA scheme which requires public key distribution.

The DNS security extension is used to provide the features of the key server. It has the capa-
bility to store well known public keys, including the RSA public keys.

In the normal DNS server, the necessary fields per a name is the IP address(type A). In our
key server, we add the key field(type KEY) in addition to the IP address. Unless the key
server is also used as a real DNS server, a separate key server domain is required for the plugin
management,

As mentioned, we have a couple of entities for our key server, code server and developer.
Adding a record to the key server can be slightly different for the code server and the devel-
oper.

If the entity is a code server, the record for this code server already exists in the local DNS
server. We take the same name without the subnet domain name and the IP address field and
the public key field have to be created to complete the record for this entity. (The tool for
generating the RSA public key is included in our package. See section 7.3)

If the entity is a developer and it’s record is already in some DNS server, then the procedure
for the code server is applied here, too.

If the entity is a developer and it is a new entity to be introduced, all three items, the name,
the IP address, and the public key, have to be created.

The IP address for a name in the key server is not to be used for the domain name lookup and
should comply with the subnet where the key server is located.

In our plugin management version, we include BIND ver 8.2 to support the key query and the
key generation. For generating the RSA keys and the signatures, we support the command
line tools, located in bin directory, each named pmkeygen and pmsiggen.

Although we included all the necessary tools in our package, we recommend you download the
DNS package from http://www.isc.org/products/BIND/.

6 Overview of the data path

6.0.1 Plugin Request

The Figure 9 shows the data path that the plugin request is received from the active element
and sent out to the code server. The interface with the active element is open, and can be

defined as needed. The default case the socket interface.

6.0.2 Plugin Response

The Figure 10 shows the data path that the plugin response is received and processed. It
touches through all the modules in the plugin management and finally ends at the active

element, where the plugin request is issued.

PR .PDB Pollc ;
Ctr] cm

Plugm D(/lan%%ement_

Tver)

3
f Active l-’lugm Loadcr
w1 [lagiti -Managemerit
=
[a]
A
Z .
z Plygin . ;
g Requester
; Dj‘;ltg%g; o Policy Security |
g- Controller || Controller Gateway
= ' * - = * | Active
% Active Plugin Loader > Net :
- i Admm
Figure 9: Plugin Request
Plugin Management-
Cocherver)
pr | et e DB
FDB Polic
Leu | cal’ || S
i Aciive Plugin Loader .
= “Plugi Management -
> -Database, - :
& Plygin ERe Gl Lot
£ < Recujester :
;_31; - Diltlzi%g;e Policy Security |
- Controller Controller Gatewa)
= ¥ ¥ ¥ 1| +Active
o L/ Active Plugin Loader +-| - Net .
= K Admm

Figure 10: Plugin Response

7 Manual

7.1 Compilation

From the root directory of the plugin management(untared path), do the following.

make clear

make depend

make install

This stores the binary files in the bin directory. Note that only Linux and NetBSD are sup-

ported at this moment.

7.2 Configuration

The slight different configurations are applied to the plugin management depending on whether
it runs for the active element or for the code server. A configuration file starts with comments,
which are the lines with prefix '#’. The comments are in italic fonts in the figure. A sample
configuration file is shown Figure 11. A valid configuration line starts with one of more
keyword, which is in bold in the figure. The syntax for each line is given in the commented
lines. The configuration files including this one can be found in demo directory. In this
document, we only describe the semantics of each line. (The following notation are used
pid=plugin id, eid=ee id, did=developer id)
¢ path [local path]
sets the local directory for pmd

» keyserver [name]
sets the key server

¢ keydomain [domain name]

sets the domain name used by key server
e codeserver [name]
sets the code server

s security [security code]
sets the security option used by security gateway
e policy [pid] [eid] [did] [policy(0/1]
sets a policy, entered in order of appearance
o plugin import [pid] [eid]
load a plugin into plugin cache
¢ plugin export [pid] [eid]
load a plugin and send it through active element interface
¢ plugin import [pid] [eid] [did] [plugin file] <[developer signature file]>
load from local file

&

Configuration file for pmd EE/Active Element
#

i 1. Path for db

Svyntax : path {local path for pm]

path ann-gantry

#2. Keyserver
Syntax : kevserver [key server nume|
keyserver gussie.arl. wustl.edu

i 3. Domain of the key server
Syntax : keydomain [domain used for the key server]
keydomain ann.arl.wustl.edu

4. PM's public key
Syntax : cownkey [key name] [key id] [path]
it cownkey _KEYNAME_. 38144 /c/syc/pm/demo/keys

3. Code server
Syntax @ ¢server Jeode server name) [priority]
cserver nmvel.arl.wustl.edu 1

i 6. EE id
Syntax : ee [ee id]
ee 0x0001

#7. Security Gateway Option
Syntax :

security ao (no security check)
security developer {check developer signature)

b

% security max {code server + developer signature)
f# security codeserver (check code server signature)
Delault @ security codeserver

security no

#

Continued

8. Policy

i Syntax : policy [pid] [did] [code server] fatlow(| }deny(())
policy 0x80010001 # *]

policy * * clouseaw.arl.wustl.edu 1

9. Default plugin to load

i Syntax : plugin import [pid) [eid]

plugin export [pid] {eid]

i plugin export 0x80010001 0x0001
plugin impert 0x80020001 0x0001

10, Inter-request interval for plugin. \

The requests are sent out every [this| seconds
Syntax : plugin_nextreq [intervall

nrequest 5

11, Timeout period for plugin request
Syntax : plugin_cancelreq Htimeout period]
crequest 20

12, Set code server key
Syntux : ckey {code server name)
ckey nmvcl.arl.wustl.edu

13. Set devetoper key
Syntax : dkey [developer name]
dkey devl.arl.wustl.edu

Figure 11: Sample Configuration File

plugin export [pid] [eid] [did] [plugin file] <[developer signature file]>
load from local file

nrequest [intervall
sets the inter-request period

crequest [timeout period]
sets the timeout period for plugin request

In the sample files, only mandatory lines are remained and all the others are commented out.

These lines are the minimum requirements.

7.3 Running Plugin Management

In the bin directory, there are binaries for the plugin management, signature generator, key

generator, and plugin administrator

*

Plugin Management on active element

pmd -a -f <configuration file>

Plugin Management on code server

pmd -c -f <configuration file>

Key Generator

prkeygen <key name>

This generates a 512 RSA key pair.

"The public key is stored in the file named K<key name>.+001i+<key id>.key, which can
be directly inserted as another field for DNS database. The private key is stored in the
file name K<key name>.+001+<key id>.private.

Signature Generator
pmsiggen -n <key name> -i <key id> -p <plugin filename>
This generates a 64 bytes signature for the plugin file. The key pairs should be in the

same directory. The signature file is named <plugin ilename>.sig.

Sample EE interface

preereq <pid>

This sends a plugin request to the plugin management. (Only applicable for netBSD.

7.4 Modifying EE Interface

The ee interface is defined in pmsrc/pmd/pm_eeinterface.c. Currently, the system type of
DAN is defined for our active network interface. Additional modifications should go to the

correct system type slot. The reference source files are as follows::

pm.eeinterface.h : dinterface header file

pm_eeinterface.c : interface source file

*+ "Plugin Management: Control Proce
{Code Server) : ST
RPlugm - R ot Routing & ANTS
Srmndlind | Plugin O | oegin DB | Security | Signatting | | Java
| Plugin ;* Policy Security || Requ- Comro]ler :| Controller || Gateway | A VM
DB || i | Gater || ester | [Il——pr e x ANN
| Cirler L ey “Active Pluﬂm Loader Manager
Active Plyein Loader | ¥ Kernel v v
L
Switch Fabrig
R R Active 7
I Plugin Memt. pmxyl Processing Elements l Plugin Mgmt Proxy |
ISR INEEINAI SPO)
Kemel L Kernel

Figure 12: Plugin Management Proxy and the Plugin Management

8 Summary

The plugin management is the user space module that support the remote code loading process
on the active network platform. For the active network environment with different platforms,
the plugin management can also be used as a tool for managing a shared code storage.

To support these features, we developed the plugin request protocol module, the authentication
module, the policy control module, and the plugin database module as part of the plugin
managment.

In our testbed, we use kernel interface that directly load plugins into the kernel of the active
element operating system. As a next step, we are planning to have the plugin management
in the control processor of a network switch, and the active element on the port cards of the
switch. Because we will have multiple active elements(for a multiport switch), each active
element will have a small module that communicates with the plugin management. This
module, which is called plugin managment proxy, will issue plugin requests through the active
plugin loader in the plugin management. The new model is shown in Figure 12. We expect to
obtain better performance by detaching the plugin management process from the critical path
of the packet process. At the same time, active elements can achieve the distributed effect
with cost-effectiveness by sharing the plugin management. Meanwhile, we expect the plugin
management to be used in various environments, that require the remote code loading feature.

	Plugin Management for Active Network
	Recommended Citation

	tmp.1439924045.pdf.F9NRF

