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ABSTRACT OF THE DISSERTATION  

Characterization of the role for Nmnat, kinase cascades, and purines in axonal 

degeneration 

by  

Craig Adam Press 

Doctor of Philosophy in Biology and Biomedical Sciences (Molecular Cell Biology) 

Washington University in St. Louis, 2010  

Professor Jeffrey Milbrandt, Chairperson 

 

Axonal degeneration is a prominent feature of many neurological disorders 

including Parkinson’s disease (PD), motor neuron disease, inherited, diabetic, and drug-

induced peripheral neuropathies. It is now thought that axonal degeneration is an active 

process, due in large part to studies of the Wlds
 mutant mouse, which undergoes delayed 

Wallerian degeneration in response to axonal injury. Wlds mice have slower disease 

progression in numerous models of neurodegenerative diseases. The Wlds mutation 

results in the production of a chimeric protein that containing nicotinamide 

mononucleotide adenylyltransferase 1 (Nmnat1). Increased expression of Nmnat 

isoforms are sufficient for axonal protection in vitro and in vivo. We attacked axonal 

degeneration from three directions. First, a common finding in neurodegenerative 

disorders with axonal degeneration is mitochondrial dysfunction.  We found that 

mitochondrial inhibition, via rotenone, induced profound axonal degeneration in dorsal 

root ganglia neurons; however, this degeneration was delayed by expression of Nmnat. 

Nmnat decreased axonal accumulation and sensitivity to reactive oxygen species, but did 



iii 

not affect the rate of ATP loss.  Second, it has also been demonstrated that inhibition of 

the mixed lineage kinases (MLKs) can inhibit not only neuronal death, but loss of axonal 

terminals in models of neurological disorders, including PD.  We found that the loss of 

dual leucine zipper kinase (DLK) or inhibition of its downstream target, JNK, decreases 

the rate of axonal degeneration in vitro.  Finally, purine nucleosides are known to have 

trophic effects on neurons and can stimulate axonal growth and regeneration.  Guanosine 

has been used in vivo to decrease injury in both models of stroke and spinal cord injury.  

We found that both adenosine and guanosine robustly slow axonal degeneration in vitro 

while inosine does not.  Adenosine is protective when added previous to, immediately 

following, or up to 6 hr after the injury suggesting that it has a local mechanism of action 

on components of axonal degeneration likely downstream of JNK activation.  The 

protection lasts several days, but is halted by removal of adenosine demonstrating its 

necessity during protection.  This armamentarium of axonal degeneration inhibitors will 

provide new avenues for understanding disease and therapy development.
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CHAPTER 1 

 

 

Introduction: Background and Significance 

Neurodegenerative disorders and axonal degeneration 



 2 

Neurodegenerative disorders and axonal degeneration 

  Axonal degeneration is theorized to be a causative factor in many 

neurodegenerative diseases.  Diseases such as Parkinson’s Disease (PD), Alzheimer’s 

(AD), Amyotrophic Lateral Sclerosis(ALS), Charot-Marie Tooth (CMT), Multiple 

Sclerosis (MS), mechanical nerve injury, diabetic neuropathy, and drug induced 

neuropathies all have a pathology that includes degeneration of the axon (Coleman and 

Perry, 2002).  These diseases affect millions of people a year and place a heavy burden 

on both individuals afflicted with the illness and upon society. PD, the second most 

common neurodegenerative disorder, affects as many as one million people in the United 

States and approximately 40,000 people are diagnosed with PD yearly in the U.S. 

(Weintraub et al., 2008b).  The incidence of PD increases with aging and will only 

continue to rise as the number of individuals over the age of 65 increases.  Annually the 

cost of PD is upwards of $25 billion in the US alone (Foundation, 2006).   Alzheimer’s 

disease, the most common neurodegenerative disorder, affects more than 4.5 million 

Americans, a number which has doubled since 1980 (Hebert et al., 2003). It is imperative 

for the research and medical system to discover new treatments and better management 

strategies to support patients with neurodegenerative diseases.  One aspect of research 

and development seeks to target the axonal degeneration common to many neurological 

disorders. Unfortunately, the mechanism that underlies the process of axonal 

degeneration is not well understood.   
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Parkinson's Disease 

Parkinson's disease is characterized by bradykinesia (slow movement), rigidity, resting 

tremor, and postural instability (Weintraub et al., 2008b).  These symptoms take a heavy 

toll on patients, their family, friends and caregivers.  There are treatments available, such 

as L-DOPA, for example, that decrease the severity of the disease in the initial stages; 

however, in advanced disease, these treatments are ineffective and have significant side-

effects including dyskinesias (Weintraub et al., 2008a).  In patients that are resistant to 

medication, a subset can be treated with deep brain stimulation (DBS).  DBS involves the 

insertion of electrodes into the subthalamic nucleus and relieves the severity of the motor 

symptoms of PD.  None of the available treatments slow the progression of disease.   

 The first signs of degeneration in PD appear in the synapses and their supporting 

axons and dendrites.  Protein accumulations, known as Lewy bodies, are characteristic of 

PD and present in neurites early in the disease (Conforti et al., 2007). The hallmark of PD 

is degeneration of the neurons located in the substantia nigra. These neurons extend 

axons to the striatum where the neurotransmitter dopamine is released.  In pathological 

studies the decrease in striatal dopamine is more striking than that in the substantia nigra, 

suggesting that axonal loss is more rapid than cell loss (Hornykiewicz, 1966).  An animal 

model of PD also demonstrates early loss of axonal terminals preceding neuronal cell loss 

(Betarbet et al., 2000).  These data suggest that axonal degeneration is a component of 

PD and may be the initial site of injury. Much of the previous work on axonal injury and 

neurodegeneration focused on PD and models of PD.  This literature provides a 

framework to discuss axonal degeneration.  
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Description of what is known about axonal degeneration 

 Neurodegenerative disease is commonly associated with neuronal cell death, but 

it is increasingly apparent that axonopathy is also a major component of many 

neurodegenerative diseases including ALS, PD, and AD (Coleman, 2005). One model of 

axonal degeneration derives from studies of anoxic axonal injury, which leads to 

mitochondrial failure, decreased levels of ATP, reduced Na+/K+ ATPase activity, and 

increased axonal Na+ and Ca2+ (Stys et al., 1992).  These changes are followed  

by calpain activation and eventual axonal protein degradation (Fig. 1) (Coleman, 2005). 

While this is the general mechanism of axonal degeneration following anoxic injury, it is 

not at all clear that the same events necessarily occur after other variations of axonal 

injury or during other neurodegenerative disease conditions.  The field would greatly 

benefit from a detailed study of the events after axonal severing in culture.  With new 

techniques including time lapse imaging of axons that can be maintained in culture over 

hours to days these important questions can begin to be addressed in a comprehensive 

fashion.  

 

Figure 1.  A schematic of the pathway leading to axonal degeneration. Adapted from Coleman 
Nat. Rev. Neuroscience 2005. 
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Wlds mouse 

It was not until recently that axonal degeneration was, like apoptosis, understood 

to be an active process (Raff et al., 2002). The key discovery was a spontaneous mutant 

mouse, Wlds, that exhibited slow Wallerian degeneration (Lunn et al., 1989).  Wallerian 

degeneration is the process of axonal deterioration that occurs after the transection of a 

nerve.  It was quickly realized that halting Wallerian degeneration could be a mechanism 

to protect against other forms of axonal degeneration.  Axonal degeneration is delayed by 

the wlds mutation in a wide range of disease models, such as the pmn mice, a model of 

motor neuron degeneration, vincristine treatment, a model of chemotherapy induced 

neuropathy, and models of PD (Wang et al., 2001b; Ferri et al., 2003; Sajadi et al., 2004; 

Hasbani and O'Malley K, 2006), suggesting that a common ‘degenerative’ pathway is 

activated by these insults that can be inhibited by this mutation.  It is important to note 

that the axonal degeneration pathway has been demonstrated, repeatedly, to be separate 

from cellular apoptosis.  Wlds does not inhibit cell body apoptosis after trophic factor 

withdrawal and halting apoptotic mechanisms does not prevent Wallerian degeneration 

directly (Deckwerth and Johnson, 1994; Sagot et al., 1995; Burne et al., 1996; Finn et al., 

2000; Whitmore et al., 2003).   

Role of Nmnat in Wlds protection 

The Wlds mutant mouse harbors a triplication of a gene fusion that produces a 

chimeric protein composed of the N-terminal 70 amino acids of ubiquitination factor 4b, 

a unique 18 residue linker region and the full length nicotinamide mononucleotide 
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adenylyltransferase 1 (Nmnat1) protein (Conforti et al., 2000). Using dorsal root ganglion 

(DRG) neuronal cultures, we previously demonstrated that the Nmnat1 portion of the 

Wlds protein is the moiety responsible for axonal protection (Araki et al., 2004). 

Additionally, it was demonstrated that the enzymatic product of Nmnat1, nicotinamide 

adenine dinucleotide (NAD+), could slow degeneration in culture, but to a lesser extent.  

Many studies in both rodents and Drosophila have confirmed the role for Nmnat in 

axonal protection, but not axonal pruning, a normal elimination of axons during 

development (Hoopfer et al., 2006; Macdonald et al., 2006; Zhai et al., 2006).  

The original analysis of the Wlds gene product described expression 

predominately in the nucleus in vivo (Mack et al., 2001).  This led to the hypothesis that 

Nmnat1 functioned through an indirect mechanism to protect axons since, after 

transection, nuclear-derived changes in protein would not be available to the severed 

axons. This early hypothesis was further bolstered by the connection to Sirt1; the activity 

of Sirt1 activity was necessary for NAD+ to be protective (Araki et al., 2004).  Contrary 

to this, our lab has demonstrated that overexpression of Nmnat1 with a mutated nuclear 

localization signal is at least as potent as wildtype Nmnat1 (Sasaki et al., 2006).  Two 

additional isoforms of Nmnat1 were found, Nmnat2 and Nmnat3 (Raffaelli et al., 2002; 

Zhang et al., 2003; Yalowitz et al., 2004).  Nmnat3 was found to be active and localized 

to the mitochondria (Berger et al., 2005).  We went on to demonstrate that Nmnat3 was 

also effective at protecting axons from post-transection degeneration.  As a further test 

that the subcellular localization was not a limiting factor, we created a form of Nmnat3 

that localized to the nucleus and found that it was effective at delaying degeneration after 

axotomy (Sasaki et al., 2006).   
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There has been some controversy in the literature about the role of Nmnat1 in the 

Wlds mouse (Wang et al., 2005; Conforti et al., 2006).  Attempts to genetically engineer 

transgenic mice that express high levels of Nmnat1 in dorsal root ganglia have been 

largely unsuccessful in our lab. These mice were reportedly sensitive to axonal 

degeneration due to sciatic nerve lesion (Conforti et al., 2006; Yahata, 2007).  However, 

it was recently reported that transgenic expression of Nmnat3 does provide axonal 

protection in vivo and that mutation of the enzymatic site of Nmnat in the Wlds protein 

destroys its ability to protect in vivo (Yahata, 2007).  We believe that these data showing 

protection by multiple isoforms of Nmnat, independent verification in additional species 

and the new transgenic mice are ample evidence supporting Nmnat as a protective factor.   

It has been suggested that the mechanism of protection for Nmnat or Wlds is due 

to their ability to maintain the ATP and NAD+ concentration in degenerating axons 

(Ikegami and Koike, 2003; Wang et al., 2005).  Interestingly, in healthy mice expressing 

the Wlds mutation, increased levels of NAD+ were not detected (Mack et al., 2001). In 

unpublished data, we have also been unable to detect increased levels of NAD+ in 

cultured neurons expressing increased levels of Nmnat. These studies have shown that 

Nmnat does not drastically alter the level of NAD+ or ATP at the baseline. Studies show 

that the levels of ATP and NAD+ drop as axons degenerate after injury (Ikegami and 

Koike, 2003; Wang et al., 2005).  These studies do nothing to address the primary insult; 

it is no surprise that degenerated neurites have less ATP than those that are not 

degenerating.  To understand the role of Nmnat overexpression and its ability to halt 

degeneration in such a dramatic fashion necessitates a rigorous, systematic approach to 

find the metabolic, signaling or enzymatic pathways that Nmnat alters.   
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Mitochondrial dysfunction in neurodegenerative disorders 

Mitochondrial dysfunction caused by mutations or toxic agents has been 

implicated in many neurodegenerative diseases, including those associated with axonal 

degeneration (Lin and Beal, 2006).  It results in a host of cellular abnormalities including 

decreased ATP synthesis, disrupted mitochondrial fusion and transport, and the increased 

generation of reactive oxygen species (ROS) (Lin and Beal, 2006; Baloh et al., 2007). 

The association of mitochondrial dysfunction with neurodegenerative diseases is perhaps 

strongest in Parkinson’s Disease (PD), which has been associated with mutations in 

mitochondria-associated proteins (e.g. DJ-1, PINK-1) (Martin, 2006) and ingestion of 1-

methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP), an inhibitor of mitochondrial 

Complex I (Langston et al., 1983; Betarbet et al., 2000).  

It is generally accepted that environmental factors play an important role in the 

pathogenesis of PD (Sherer et al., 2002a); in particular, there is a strong association 

between PD and exposure to pesticides, including many which inhibit mitochondrial 

Complex I (Semchuk et al., 1992; Gorell et al., 1998; Priyadarshi et al., 2000; Priyadarshi 

et al., 2001; Gorell et al., 2004; Ascherio et al., 2006; Brown et al., 2006). Further studies 

have shown that the pesticide rotenone leads to dopaminergic neuron loss and PD-like 

symptoms in animals (Betarbet et al., 2000). The rotenone model shows a similar 

pathology to human PD where striatal terminals (axons) are lost prior to detectable 

neuronal cell death (Hornykiewicz, 1966; Betarbet et al., 2000).  The role for axonal 

degeneration was further supported when it was shown that the Wlds mouse had decreased 
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loss of striatal terminals, but not cell bodies,  in two acute models of PD (MPTP and 6-

OHDA) (Sajadi et al., 2004; Hasbani and O'Malley K, 2006).  

 This crucial role for mitochondrial dysfunction in neurodegenerative diseases led 

us to explore its role in axonal degeneration in a culture model of PD.  In Chapter 2 we 

present our results showing that rotenone induces axonal degeneration in culture which is 

slowed by Nmnat expression.  This protection was related to decreased accumulation of 

ROS rather than maintenance of ATP.  Furthermore, we found that Nmnat could prevent 

axonal degeneration from exogenous oxidants placing Nmnat downstream of ROS 

initiated axonal degeneration.   

 

Known role of mixed linage kinases in neurodegenerative diseases 

  An interesting story suggesting a role for mixed lineage kinases in axonal 

degeneration began in 1998 when a new drug, CEP-1347, was found to inhibit the 

activation of c-Jun N-terminal Kinase (JNK) and inhibit motor neuron apoptosis in vitro 

(Maroney et al., 1998). Shortly thereafter, it was found that the mechanism by which 

CEP-1347 functioned involved inhibition of the activity of a family of MAPKKK's 

known as the mixed lineage kinases (MLK): MLK1-3, dual leucine zipper kinase (DLK), 

and leucine zipper kinase (LZK) (Maroney et al., 2001).  The ability for CEP-1347 to 

inhibit apoptosis was studied in the well established model of trophic factor withdrawal 

from superior cervical ganglia (SCGs). CEP-1347 inhibited both cytochrome c release 

from mitochondria and the neuron's "competence to die" in response to cytochrome c 

release while simultaneously maintaining metabolism and protein synthesis.  CEP1347 
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thus maintained "not only survival but the 'quality of life' of neurons" (Harris et al., 

2002). 

Due to its neuronal protective effect, CEP-1347 and an additional MLK inhibitor 

(CEP -11004) were tested in two models of PD, 6-hydroxydopamine (6-OHDA) and 

MPTP. In both of these paradigms, axonal degeneration occurs to a significant degree in 

the striatum but the inhibition of MLKs protected both striatal terminals and neurons in 

the substantia nigra (Saporito et al., 1999; Ganguly et al., 2004). Using another model of 

PD in vitro where cultures of midbrain neurons were treated with methamphetamine, 

CEP-1347 inhibited both neurite loss and cell death even when added shortly after 

treatment with methamphetamine was initiated (Lotharius et al., 2005).  As was the case 

with rotenone treatment of DRGs, this neurite loss preceded cell death and was associated 

with ROS damage, which was reduced by CEP-1347.  In an effort to determine if 

inhibition of the MLK pathway with genetic means could inhibit neurodegeneration in 

vivo, adeno-associated virus carrying a dominant negative DLK (dnDLK) was injected 

into the striatum of mice that were also treated with 6-OHDA.  The mice demonstrated 

reduced neuronal cell death, although there was no protection of the striatal terminals 

(Chen et al., 2008).   

In chapter 3 the role for MLKs in axonal degeneration, in particular DLK, is 

explored.  In the first report of a loss of function mutation resulting in delayed axonal 

degeneration, we show that flies lacking DLK have slowed Wallerian degeneration. We 

go on to show in vitro that mouse DRGs lacking DLK exhibit slowed axonal 

degeneration and this effect can be recapitulated by JNK inhibitors.  In vivo, DLK mutant 

mice also have delayed axonal degeneration after sciatic nerve transection.  These results 
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suggest that MLKs and JNK activation play a role in regulating axonal degeneration and 

present a new therapeutic target for neurodegenerative disorders featuring axonal 

degeneration.   

 

Known roles for purines and nucleosides in neurodegeneration and cell 

death 

During hypoxic injuries such as occurs during a stroke, it is known that adenosine 

is released and accumulates in the brain as ATP is consumed without restoration by 

oxidative phosphorylation (Fredholm et al., 2001).  Purines have been demonstrated to 

have neuroprotective effects in cultures models of hypoxia and to stimulate axonal 

outgrowth (Bocklinger et al., 2004). For example, cerebellar granular neurons treated 

with rotenone to induce both cell death and reduce axonal outgrowth were protected by 

the addition of adenosine, guanosine or inosine to the cultures with reductions in the 

number of neurons lost and an increase in the number of neurite bearing cells.  Further, 

the authors commented that in unpublished work they have data supporting a nucleoside 

transport mediated mechanism for this effect.  Later work attempted to link this 

protection to both Hif1- and the MAPK 42/44 pathways although it was not clear if 

these results were a result of increased sensitivity to hypoxia by neurons lacking Hif1-

or MAPK24/44 (Tomaselli et al., 2008; zur Nedden et al., 2008).  Guanosine was also 

shown to reduce apoptosis during treatment of a neuroblastoma cell line with the 

mitochondrial toxin, MPP+ (Pettifer et al., 2007). Guanosine was protective when added 

either before, with or after treatment with MPP+, effects which appeared to be mediated 
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via the PI-3K signaling pathway.  These previous experiments stimulated us to explore 

the role of purines and nucleosides in axonal protection.  Data showing that adenosine 

and guanosine, but not inosine play a protective role in axonal degeneration are presented 

here in Chapter 4.  These small molecules were effective after injury perhaps indicating 

therapeutic potential.   
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Abstract 

Axonal degeneration is a prominent feature of many neurological disorders that are 

associated with mitochondrial dysfunction, including Parkinson’s disease (PD), motor 

neuron disease, and inherited peripheral neuropathies.  Studies of the Wlds mutant mouse, 

which undergoes delayed Wallerian degeneration in response to axonal injury, suggest 

that axonal degeneration is an active process. Wlds mice also have slower axonal 

degeneration and disease progression in numerous models of neurodegenerative disease. 

The Wlds mutation results in the production of a chimeric protein that contains the full 

length coding sequence of nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1), 

which alone is sufficient for axonal protection in vitro.  To test the effects of increased 

Nmnat expression on axonal degeneration induced by mitochondrial dysfunction, we 

examined dorsal root ganglia (DRG) neurons treated with rotenone.  Rotenone induced 

profound axonal degeneration in DRG neurons; however, this degeneration was delayed 

by expression of Nmnat. Nmnat-mediated protection resulted in decreased axonal 

accumulation and sensitivity to reactive oxygen species (ROS) but did not affect the 

change in the rate of rotenone-induced loss in neuronal ATP. Nmnat also prevented 

axonal degeneration caused by exposure to exogenous oxidants and reduced the level of 

axonal ROS after treatment with vincristine, further supporting the idea that Nmnat 

promotes axonal protection by mitigating the effects of ROS.   
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Introduction 

Mitochondrial dysfunction caused by mutations or toxic agents has been 

implicated in many neurodegenerative diseases, including those associated with axonal 

degeneration (Lin and Beal, 2006).  It results in a host of cellular abnormalities including 

decreased ATP synthesis, disrupted mitochondrial fusion and transport, and the increased 

generation of reactive oxygen species (ROS) (Lin and Beal, 2006; Baloh et al., 2007). 

The association of mitochondrial dysfunction with neurodegenerative diseases is perhaps 

strongest in Parkinson’s Disease (PD), which can be associated with mutations in 

mitochondria-associated proteins (e.g. DJ-1, PINK-1) (Martin, 2006) and ingestion of 1-

methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP), an inhibitor of mitochondrial 

Complex I (Langston et al., 1983; Betarbet et al., 2000). It is generally accepted that 

environmental factors play an important role in the pathogenesis of PD (Sherer et al., 

2002a); in particular, there is a strong association between PD and exposure to pesticides, 

including many which inhibit mitochondrial Complex I (Semchuk et al., 1992; Gorell et 

al., 1998; Priyadarshi et al., 2000; Priyadarshi et al., 2001; Gorell et al., 2004; Ascherio et 

al., 2006; Brown et al., 2006). Further studies have shown that the pesticide rotenone 

leads to dopaminergic neuron loss and PD-like symptoms in animals (Betarbet et al., 

2000).  

Neurodegenerative disease is commonly associated with neuronal cell death, but 

it is becoming increasingly apparent that axonopathy is also a major component of many 

neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), PD, and 

Alzheimer’s disease (AD) (Coleman, 2005). Unfortunately, the molecular mechanisms 

underlying axonal degeneration remain poorly characterized.  One model of axonal 
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degeneration derives from studies of anoxic injury to axons, which leads to mitochondrial 

failure, decreased levels of ATP, reduced Na+/K+ ATPase activity, and increased axonal 

Na+ and Ca2+ (Stys et al., 1992).  These changes are followed by calpain activation and 

eventual axonal protein degradation (Coleman, 2005). Studies of the Wlds mutant mouse, 

which exhibits slow axonal Wallerian degeneration in response to nerve injury, have led 

to the conclusion that axonal degeneration, like apoptosis, is an active process (Lunn et 

al., 1989; Raff et al., 2002). Axonal degeneration is delayed by the wlds mutation in a 

wide range of disease models, such as the pmn mice, a model of motor neuron 

degeneration, vincristine treatment, a model of chemotherapy induced neuropathy, or 

MPTP, a model of PD (Wang et al., 2001b; Ferri et al., 2003; Hasbani and O'Malley K, 

2006), suggesting that a common ‘degenerative’ pathway is activated by these insults that 

can be inhibited by this mutation. 

 The Wlds mutant mouse harbors a triplication of a gene fusion that produces a 

chimeric protein composed of the N-terminal 70 amino acids of ubiquitination factor 4b, 

an unique 18 residue linker region and the full length nicotinamide mononucleotide 

adenylyltransferase 1 (Nmnat1) protein (Conforti et al., 2000). Using dorsal root ganglion 

(DRG) neuronal cultures, we previously demonstrated that the Nmnat1 portion of the 

Wlds protein is the moiety responsible for axonal protection (Araki et al., 2004). Many 

studies in both rodents and Drosophila have confirmed these results (Hoopfer et al., 2006; 

Macdonald et al., 2006; Zhai et al., 2006), while other investigators have suggested the 

Ube4b fragment may modulate the Nmnat protective effect (Wang et al., 2005; Conforti 

et al., 2006).  Notably, we have found that Nmnat3, which is localized to mitochondria, 

also provides axonal protection from mechanical injury (Sasaki et al., 2006).  In the 
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present study, we show that increased Nmnat protein expression effectively delayed 

rotenone-induced axonal degeneration in DRG neuronal cultures. Nmnat3 expression 

decreased ROS accumulation in neurons treated with rotenone, but had little effect on the 

rate of ATP loss in these cells. We also demonstrate that Nmnat3 can prevent axonal 

damage resulting from exogenous application of oxidants, suggesting that Nmnat 

expression prevents axonal degeneration by decreasing the accumulation or damage 

caused by ROS generated during mitochondrial and/or oxidative injury. We show that 

vincristine, a known cause of axonal degeneration that is preventable by Nmnat (Araki et 

al., 2004), induces ROS and that this increase can be prevented by Nmnat.  Finally, we 

demonstrate that antioxidants are sufficient for axonal protection from rotenone-induced 

axonal degeneration, further supporting the idea that Nmnat-mediated protection occurs 

via mitigating ROS-mediated damage.  

 

Materials and Methods 

Reagents. All reagents are from Sigma-Aldrich (St. Louis, MO) unless otherwise noted. 

Dissociated DRG cultures. DRGs were dissected from embryonic day 14.5 (E14.5)-15.5 

Sprague-Dawley rat embryos.  DRGs were dissociated with collagenase followed by 

trypsin and subsequent triteration through a fire polished glass pipette. Cells were seeded 

onto Matrigel (BD Biosciences, San Jose, CA) coated 24-well dishes and grown in 

DMEM containing 10% FBS and penicillin and streptomycin, 3 µMaphidicolin or, 

alternatively, in  neurobasal with B27 (Invitrogen, Carlsbad, California) and 25 ng/ml 

nerve growth factor followed 24 hr later by the addition of 1 µM 5-fluoro-2′-

deoxyuridine and 1 µM uridine (Harlan Bioproducts, Indianapolis, IN).  After 4 days in 
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culture, all of the neuronal cultures were maintained in DMEM containing 10% FBS, 

penicillin and streptomycin, 1 µM 5-fluoro-2′-deoxyuridine and 1 µM uridine and NGF.  

Construction of Lentiviral Expression Plasmids.  The GFP plasmid (FUGW) was a 

gift from D. Baltimore (California Institute of Technology, Pasadena, CA).  Nmnat1 

(FCIV-Nmnat1) and Nmnat3 (FCIV-Nmnat3) were described previously (Sasaki et al., 

2006). Hexahistidine-tagged-Nmnat1 (FUW-Nmnat1) and Nmnat3 (FUW-Nmnat3) 

(Araki et al., 2004; Sasaki et al., 2006) were cloned into the FUW plasmid without GFP 

(gift from D. Baltimore) to produce lentiviral transfer vectors without GFP expression for 

studies utilizing ROS-sensitive fluorescent dyes.  

Lentiviral Infection of DRG neurons. Lentiviruses expressing transgenes were 

generated as previously described (Araki et al., 2004). For infection of DRG neurons, 

lentivirus (105 to 106 infectious units) was added to an individual well of a 24 well plate 

containing approximately 5x104 neurons.  Transgene expression from the lentivirus was 

allowed to proceed for 4-10 days prior to using the infected neurons for experiments. 

Viral infection and transgene expression was monitored, where applicable, by monitoring 

the GFP reporter via fluorescent microscopy.  

Neuronal Cell Body Death. Neurons were treated with rotenone or vehicle control and 

monitored for cell body damage by ethidium homodimer exclusion from Biotium 

(Hayward, CA).  Ethidium homodimer was added to the cultures at the indicated time at a 

final concentration of 100 n. For each condition, 4 fields with an average of 35 

cells/well in each of 4 wells were examined using phase contrast and red fluorescence 

merged images. Data was collected from 2 independent experiments. 



 27 

Morphometric analysis of axonal degeneration. Dissociated DRG neurons were treated 

with the indicated chemical agents and imaged using phase contrast microscopy with a 

40x lens at the indicated time points.  A grid was created over each image using NIH 

Image J software using the grid plugin (line area= 100,000). The cell counting plugin was 

used to score each neurite.  Degenerating and healthy axons were counted in at least 3 

high power field per image (~20 neurites) for each well (the observer was blinded to the 

condition). Axonal segments were considered degenerated if they showed evidence of 

swellings and/or blebbing, n≥6 wells per condition from duplicate experiments 

Analysis of ATP Levels.  ATP assays were performed on neuronal cultures seeded at the 

same density lysed in 1% TritonX-100, 0.1M Tris pH 7.8 and 0.5mM EDTA.  Cell 

lysates were used in a luciferase-based ATP assay (Promega, Madison, WI) where ATP 

is expressed as percent of control based on arbitrary units of luminescence (A.U.) and 

then converted to µM ATP based on a standard curve (n≥6 wells per condition, results 

are from 2 independent experiments) (Chang et al., 2003). ATP was measured under all 

conditions at the end of the treatment period. 

Quantitation of ROS Levels. ROS was measured using CM-H2DCFDA dye at 1.85 

µM(Molecular Probes, Carlsbad, California). The dye was added to neurons in serum-

free DMEM without phenol red for 1 hr and the cells were washed twice with PBS. 

Fields containing exclusively axons were identified using phase contrast microscopy. 

These fields were imaged using epifluorescence with a FITC filter and equal exposure 

times on a Eclipse TE300 microscope with a 40x Nikon Pan-Fluor lens (Nikon, Tokyo, 

Japan). The mean intensity of the field minus the minimum intensity (to remove the 

background fluorescence of the field) was recorded, 3 fields per well were imaged from 3 
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wells per condition. Results are from 2 independent experiments. All conditions were 

measured at the end of the treatment period. 

Visualization of mitochondrial potential. The methodology we used has been 

previously described (Ikegami and Koike, 2003). Briefly, DRG cultures were treated with 

either vehicle control, or rotenone for 6 hrs.  Cultures were then changed to Phenol-red 

free DMEM that contained the mitochondrial potential sensitive dye Mitotracker Red 

CMXRos (final concentration 25 n) (Molecular Probes, Carlsbad, California) and then 

co-stained with Calcein-AM (final concentration 500n ) (Molecular Probes, Carlsbad, 

California), a small fluorescein-based molecule that is cleaved by non-specific esterases 

and trapped inside the cell, to visualize the axons. Cultures were treated with 100 

µMFCCP for 1 hr prior to imaging and during exposure to the Mitotracker Red and 

calcein-AM dyes to depolarize the mitochondrial membrane.  Cultures were incubated at 

37o for 30 min and then washed twice with Phenol-red free DMEM and visualized by 

fluorescence microscopy using the FITC filter for calcein-AM and the Rhodamine filter 

for Mitotracker Red. 

Quantitation of antioxidant enzyme expression. RNA was collected from dissociated 

rat DRGs after 14 DIV.  Five wells from a 24 well plate were pooled and three pools for 

each condition were collected.  RNA was prepared using Trizol (Invitrogen, Carlsbad, 

CA). First-strand cDNA templates were prepared using 1 µg of RNA template from each 

pool using standard methods. Quantitative reverse transcription qRT-PCR was performed 

by monitoring in real time the increase in fluorescence of the SYBR-green dye on a 

TaqMan 7700 Sequence Detection System (Applied Biosystems, Foster City, CA). The 

expression levels were normalized to 18s rRNA to account for variations between the 
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levels of total cDNA template across different samples. Each qRT-PCR experiment was 

performed in triplicate using 3 pools of cDNA template. The primers used are as follows 

glutathione peroxidase 1 (GPX1) (Fernandez-Gomez et al., 2006) forward 5’-

GCAGATACACCAGGCGCTTT-3’ reverse 5’-GGCTTCTATATCGGGTTCGA-3’, 

catalase (CATA) forward 5’-GCACACTTTGACAGAGAGCGG-3’ reverse 5’-

CTTTGCCTTGGAGTATCTGGTAATATC-3’, superoxide dismutase 1 (SOD1) forward 

5’- TCAGGAGAGCATTCCATCATTG-3’ reverse 5’-

CAGCATTTCCAGTCTTTGTACTTTCTT-3’, SOD2 forward 5’-

CACAGCATTTTCTGGACAAACC-3’ reverse 5’-

CCTTAAACTTCTCAAAAGACCCAAAG-3’, 18s forward 5’-

CGCCGCTAGAGGTGAAATTCT-3’ reverse 5’-CGGCTACCACATCCAAGGAA-3’ 

Statistics. ANOVA was used followed by individual comparisons with Student’s two-

tailed, unpaired t-tests. Comparisons were considered significant with a P>0.05 after 

Bonferroni’s correction for multiple comparisons. Values are reported as mean ± SEM 

unless otherwise noted. 

 

RESULTS 

Rotenone treatment of DRG neurons results in axonal degeneration 

The expression of Wlds, Nmnat1 or Nmnat3 in neurons protects against axonal 

degeneration resulting from damage due to mechanical, genetic, or chemical injury 

(Gillingwater and Ribchester, 2001; Wang et al., 2001a; Wang et al., 2001b; Ferri et al., 

2003; Samsam et al., 2003; Araki et al., 2004; Gillingwater et al., 2004; Mi et al., 2005; 

Sasaki et al., 2006; Zhai et al., 2006). The association between mitochondrial dysfunction 
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and axonal degeneration in multiple neurological disorders encouraged us to investigate 

whether Nmnat expression could protect axons from damage caused by mitochondrial 

dysfunction.  We used DRG sensory neurons, which we previously utilized (Araki et al., 

2004; Sasaki et al., 2006) in our studies of Wlds- and Nmnat-mediated axonal protection 

after mechanical injury, to study axonal degeneration caused by mitochondrial inhibitors.  

We tested the effects of rotenone, a lipophilic Complex I inhibitor that can be used in 

non-dopaminergic neurons (Betarbet et al., 2000; Sherer et al., 2003), on DRG neurons in 

concentrations ranging from 0.1 to 10µWe assessed axonal degeneration using phase 

contrast microscopy after rotenone addition and found that 1 to 5 µ rotenone caused 

significant axonal degeneration by 24 hr that continued to progress until by 72 hr most 

axons had largely degenerated (Fig. 1A, B and data not shown).  

To determine whether axonal degeneration preceded cell death in neurons 

exposed to rotenone, we performed a time course experiment in which we monitored cell 

body damage using an ethidium homodimer exclusion assay in conjunction with 

microscopic analysis of axonal degeneration. After 72 hr, when 100% of axonal segments 

showed signs of degeneration, 51% survival of cell bodies were still intact (Fig. 1E). 

These results, which indicate that axons are more susceptible to rotenone toxicity than 

neuronal cell bodies, are consistent with previous reports (Betarbet et al., 2000; Testa et 

al., 2005).  Additionally, as soma membrane permeability clearly lagged behind axonal 

degeneration, these results also demonstrate that cell death was not a prerequisite for 

axonal degeneration.  
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Nmnat proteins protect axons and cell bodies from rotenone toxicity 

To determine if Nmnat activity could protect axons and/or cell bodies against 

rotenone-induced mitochondrial inhibition, we infected DRG neurons with lentivirus 

expressing either GFP alone or hexahistidine-tagged Nmnat1 or Nmnat3 along with GFP. 

After infection, when >95% of neurons express GFP (as monitored by fluorescence 

microscopy), Nmnat transgene expression was clearly demonstrable by Western analysis 

(Fig. 1C). Similarly infected neuronal cultures were treated with 2.5 µ rotenone and 

axonal degeneration as well as cell death were monitored using phase contrast 

microscopy and ethidium homodimer exclusion, respectively.  While neurons expressing 

GFP alone manifested extensive axonal degeneration within 72 hr, axons of Nmnat-

expressing neurons showed no evidence of degradation until 96 hr after rotenone addition 

(Fig. 1A, B, D).  Due to the fact that the rotenone site of action and Nmnat3 localization 

are both in the mitochondria, Nmnat3 was used for the remainder of the experiments. The 

axonal protection afforded by Nmnat proteins in neurons treated with mitochondrial 

inhibitors, in addition to previous work demonstrating protection against mechanical 

injury or vincristine exposure, suggests that Nmnat is acting at a point in the degeneration 

process that is common to multiple types of damage. 

To confirm that rotenone inhibition of Complex I was specifically responsible for 

the axonal degeneration in these experiments, we treated DRG cultures with two 

additional Complex I inhibitors, pyridaben (2.5 µM) and fenpyroximate (2.5 µM)(Sherer 

et al., 2007).  We found that both of these Complex I inhibitors also caused severe axonal 

degeneration by 24 hr.  Furthermore, we found that Nmnat3 expression could clearly 

prevent this axonal degeneration, just as it had inhibited axonal degeneration caused by 
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rotenone (Suppl. Fig. 1). Nmnat expression also had a modest protective effect on cell 

death, although it was less impressive than the protection provided to axons.  For 

example, while 51% of neurons expressing GFP alone excluded ethidium homodimers 

after 72 hr of rotenone treatment, 68% of Nmnat3-expressing neurons were viable at 72 

hr (Fig. 1E).  It should be noted that at 72 hr there is almost complete protection of axons 

even though 32% of the cells no longer exclude ethidium homodimers (a late marker of 

cell death). This dichotomy is similar to results obtained using axotomy or growth factor 

deprivation, and emphasizes that the mechanism of axonal protection is different from 

(and perhaps independent of) those involved in the prevention of cell death.  

 

Nmnat3 prevents oxidant-induced axonal degeneration 

 The accumulation of ROS as a result of mitochondrial inhibition has been 

implicated in the pathogenesis of several neurodegenerative diseases (Lin and Beal, 

2006). Excessive ROS production has multiple detrimental effects such as DNA damage, 

oxidation of proteins that leads to their subsequent inhibition, and the oxidation of lipids 

that creates toxic products including 4-hydroxynonenal (4-HNE) (Geller et al., 2001; 

Sherer et al., 2002b; Duarte et al., 2005; Keeney et al., 2006; Ramachandiran et al., 

2007).  Since it is well known that rotenone induces an increase in ROS, we hypothesized 

that rotenone damage is initiated by ROS and that Nmnat might protect against ROS 

damage caused by exposure to exogenous oxidants.  To test this idea, we treated DRG 

neurons infected with lentivirus expressing either GFP alone or Nmnat3 with 100-300 

µ hydrogen peroxide (H2O2).  In cultures infected with GFP alone there was significant 

dose-dependent axonal degeneration after 24 hr (Fig 2A).  In contrast, axonal 
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degeneration from H2O2 exposure was inhibited in neurons expressing Nmnat3 (Fig. 2A). 

To confirm the ability of Nmnat to prevent oxidant-induced damage, we also examined 

the effects of the organic oxidant tert-butyl hydroperoxide (TBHP)  In GFP-expressing 

(control) neurons, TBHP caused extensive axonal degeneration within 48 hr (Suppl. Fig. 

2), whereas neurons expressing Nmnat3 showed no evidence of TBHP-mediated axonal 

degeneration during this time period (Suppl. Fig. 2).  These data demonstrate that Nmnat 

can prevent axonal degeneration triggered by ROS, and suggest that Nmnat-mediated 

protection is accomplished by decreasing the toxicity of ROS produced either 

endogenously or exogenously. 

Protection of oxidant-mediated axonal damage by Nmnat suggested that it might 

act via increasing neuronal expression of antioxidant proteins, including superoxide 

dismutase, glutathione peroxidase, and/or catalase. (Thiruchelvam et al., 2005; 

Fernandez-Gomez et al., 2006; Jung et al., 2007). We used qRT-PCR to compare their 

mRNA levels in Nmnat3-expressing vs. control DRG neurons. However, we found no 

significant differences in the RNA levels of these genes (Fig. 2C), suggesting that 

Nmnat-mediated protection does not involve transcriptional regulation of these enzymes. 

 

Nmnat3 expression decreases axonal ROS levels  

The axonal protective activity of Nmnat3 against ROS supplied by exogenous 

oxidant or generated intracellularly via inhibition of mitochondrial Complex I, led us to 

hypothesize that Nmnat expression may reduce rotenone-induced ROS accumulation 

and/or toxicity.  To test this idea, we measured relative ROS levels in axons using a ROS-

sensitive fluorescent dye, CM-H2DCFDA, and found that ROS levels were significantly 
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increased in axons 6 hr after rotenone treatment (Fig. 3A, B).  The level of ROS 

continued to rise until 96 hr after rotenone treatment, when the severely degenerated state 

of most axons in the cultures precluded a quantitative analysis of axonal ROS levels (Fig. 

3A). Interestingly, the increase in ROS, which is detectable after 6 hr of rotenone 

treatment, substantially preceded any observable axonal degeneration (Fig. 3A, B).   

To determine the effects of Nmnat expression on rotenone-induced ROS 

accumulation, neurons were infected with Nmnat3 lentivirus that lacks the GFP reporter 

(to avoid interference with the CM-H2DCFDA fluorescence). The infected neurons were 

treated with rotenone (or vehicle) and ROS levels were measured 6, 48 or 96 hr later. We 

found that neurons expressing Nmnat3 had statistically significant lower axonal ROS 

levels after rotenone treatment compared to controls (Fig. 3A, B), and that this decrease 

in ROS was correlated with the slower axonal degeneration observed in these neurons.   

Mitochondrial dysfunction is often accompanied by a decrease in mitochondrial 

membrane potential (Nicholls, 2004), and others have suggested that dissipation of 

mitochondrial membrane potential precedes axonal degeneration and that the 

degeneration can be blocked if the mitochondrial membrane potential is preserved 

(Ikegami and Koike, 2003; Nicholls, 2004; Yang et al., 2007).  To determine if rotenone 

caused a loss of mitochondrial membrane potential, we stained cultures with Mitotracker 

Red, a mitochondrial potential dependent dye. However, consistent with other studies 

with rotenone (Johnson-Cadwell et al., 2007; Marella et al., 2007), we did not observe a 

collapse of mitochondrial membrane potential after rotenone treatment (6 hr) at a time 

when rotenone induced increases in ROS are already observed (Fig. 3C). These 

observations demonstrate that Nmnat expression decreases ROS accumulation, 
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suggesting that inhibition of ROS accumulation and/or toxicity is a principle mechanism 

by which Nmnat proteins protect against rotenone-induced axonal degeneration.  

Nmnat3 inhibits ROS accumulation in vincristine treated neurons 

 In addition to its axonal protective effects after mechanical injury or 

mitochondrial inhibition, Wlds and Nmnat proteins protect against vincristine-mediated 

axonal degeneration (Wang et al., 2001b; Araki et al., 2004). Recent studies have shown 

that vincristine toxicity in cancer cells may be mediated by ROS, and that treatment with 

antioxidants can inhibit vincristine-induced cell death (Groninger et al., 2002; Tsai et al., 

2007). We therefore tested whether vincristine treatment resulted in increased axonal 

ROS, and whether Nmnat axonal protection of vincristine-treated neurons was associated 

with decreased ROS accumulation.  We used CM-H2DCFDA fluorescence to monitor 

ROS levels in DRG neurons treated with 0.04 µ vincristine for 0, 6, 24 and 48 hrs.  

Vincristine caused a modest, but significant, increase in ROS after 6 hr (Fig. 4A, B) that 

continued to increase as axonal degeneration became apparent at 24 and 48 hr after 

vincristine addition. In contrast, Nmnat3-expressing neurons treated with vincristine 

showed decreased accumulation of ROS at 24 and 48 hr (Fig 4A, B).  Cultures were 

maintained for up to 96 hr to demonstrate that Nmnat3 protected against vincristine-

mediated axonal degeneration. (Fig. 4C).  While the primary effect of vincristine is 

microtubule disruption, these results suggest that it also stimulates ROS production and 

that ROS generation may play a role in vincristine axonal toxicity.  Taken together, these 

data suggest that Nmnat-mediated axonal protection against a variety of insults results 

from its ability to inhibit ROS-mediated damage or signaling.  This would imply, as 

suggested by others, that ROS-stimulated processes could be a point of convergence for 
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multiple pathways that culminate in axonal degeneration (Arundine et al., 2004; 

Alexandre et al., 2006; Holtz et al., 2006). 

 

Nmnat3 mediated axonal protection occurs despite decreases in neuronal ATP levels  

Cells treated with inhibitors of mitochondrial electron transport have decreased 

levels of ATP along with an increased accumulation of ROS. Several studies have 

indicated that increased ROS levels, and not the loss of ATP, are the proximal causes for 

neuronal death induced by mitochondrial inhibition (Sherer et al., 2003; Watabe and 

Nakaki, 2006). However, others have shown that Nmnat1-mediated axonal protection 

involves the maintenance of axonal ATP levels (Wang et al., 2005).  While dampening 

the increases in ROS accumulation are clearly an important feature of Nmnat-mediated 

protection, we also investigated the effects of Nmnat expression on ATP levels in DRG 

neurons. ATP levels of DRG neurons treated with rotenone for various lengths of time 

were measured using an ATP-dependent luciferase-based assay. We found that rotenone 

caused a 55.3% and 83.4% decrease in ATP levels in DRG neurons treated for 6 and 96 

hr, respectively (Fig. 5 A).  

To test whether Nmnat3 promoted axonal protection via prevention of these 

rotenone-induced decreases in ATP, we treated Nmnat3-expressing DRG neurons with 

rotenone and monitored ATP levels.  Nmnat3-expressing neurons had a small increase in 

basal ATP levels (Control: 100 ± 1.3 % ATP vs. Nmnat3: 118 ± 2.7 % ATP). Rotenone 

treatment caused a rapid fall in ATP levels in both control and Nmnat3-expressing 

neurons, but ATP levels were always slightly higher in Nmnat3-expressing neurons (Fig. 

5 A).  We also calculated the rate of ATP loss for both control and Nmnat3-expressing 
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neurons. During the first 6 hr, ATP loss was rapid in both GFP- and Nmnat3-expressing 

neurons (GFP: 9.2 ± 0.39 % ATP/hr and Nmnat3: 9.6 ± 0.39 % ATP/hr).  The rate of 

ATP loss slowed at later time points, but was very similar in GFP- and Nmnat3-

expressing neurons (0.3 ± 0.07 % ATP/hr and (0.17) ± 0.19 % ATP/hr, respectively). The 

initial decrease in ATP is likely due to the inhibition of oxidative phosphorylation by 

rotenone, while the later and slower loses of ATP are presumably due to axonal and 

cellular degeneration and death.  Thus, even though axons of Nmnat3-expressing neurons 

were intact, their ATP levels decreased to a similar degree as those of degenerating axons 

of control neurons.  (Fig. 1B, 2A, 5A).   

Although the differences in ATP levels between Nmnat3-expressing and control 

neurons did not correlate well with the extent of axonal degeneration, ATP levels were 

slightly higher when Nmnat3 was overexpressed. To further investigate the possibility 

that ATP levels were key to axonal degeneration, we treated cultures with tetrodotoxin, 

(TTX, a voltage-gated sodium channel blocker).  TTX treatment should serve to increase 

neuronal ATP levels as it will inhibit the influx of sodium and negate the need to expend 

ATP for maintaining axonal membrane potential via the Na+/K+ ATPase (Stys, 2004). In 

accord, DRG cultures treated for 6 hr with TTX had a 20% increase in ATP (Fig. 5B).  In 

cultures treated with rotenone and TTX simultaneously, the presence of TTX 

dramatically decreased the rotenone-stimulated drop in ATP (Fig. 5B).  Despite this 

effect on ATP levels, TTX had no effect on rotenone-induced axonal degeneration (Fig. 

5B and data not shown). These data indicate that increasing the ATP levels via inhibition 

of voltage stimulated sodium influxes does not inhibit axonal degeneration.  
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To further explore the relationship between ATP levels and axonal degeneration, 

we treated DRG neurons with 2-deoxyglucose (2-DG), which inhibits glycolysis by 

blocking glucose uptake and phosphorylation but does not interfere with the 

mitochondrial electron transport chain or increase ROS levels (Sherer et al., 2003).  

Treatment with 2-DG resulted in a 37.0 ± 5.3% decrease in ATP after 24 hr, but there 

was no evidence of axonal degeneration after 48 hr or increased ROS levels (Fig. 5C, 

data not shown).  Even long-term treatment of DRG neurons with 2-DG (18 days) did not 

cause axonal degeneration, although the low ATP level observed at 24 hr remained 

throughout the treatment period (data not shown).  

 

Antioxidants inhibit rotenone-mediated axonal degeneration without altering ATP 

levels.  

 The suppression of ROS accumulation by Nmnat proteins is reminiscent of that 

observed in cells treated with antioxidants, whose utility in preventing axonal 

degeneration secondary to mitochondrial inhibition has been suggested by others (Sherer 

et al., 2003; Testa et al., 2005; Sherer et al., 2007).  To determine whether antioxidants 

can protect against rotenone-induced axonal degeneration, we administered vitamin E (-

tocopherol) in doses from 125 µM to 1000 µM (corresponding to 0.052 IU/ml to 0.47 

IU/mL) to DRG neurons treated with rotenone and assessed axonal degeneration.  We 

found that while axonal degeneration in control cultures (rotenone alone) began within 

24-48 hr, axons from neurons treated with vitamin E remained intact for up to 120 hr 

(Fig. 6A, B).  To determine if vitamin E also affected ATP levels, perhaps by directly 

blocking the actions of rotenone, we measured ATP levels at various times after rotenone 
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treatment. As previously observed in Nmnat3-expressing neurons, vitamin E did not 

significantly suppress the initial loss of ATP (Fig. 6C), however as axons began to 

breakdown (in the untreated neurons) a difference in ATP levels was observed. 

Taken together, these results indicate that a decrease in ATP levels is insufficient 

to cause axonal degeneration. Furthermore, the degree of ATP loss, unlike ROS levels, 

did not correlate with axonal degeneration temporally or with Nmnat3 expression, 

suggesting that inhibition of ROS initiated axonal degeneration rather than maintenance 

of ATP levels is the primary driver of Nmnat3-mediated protection against rotenone-

induced axonal degeneration.  

 

Discussion 

 Elucidating the mechanism and role of axonal degeneration in neurodegeneration 

is an important step in developing strategies for preventing and treating 

neurodegenerative diseases.  We recently demonstrated that Nmnat1 and Nmnat3 

expression can prevent axonal degeneration against a variety of insults including 

microtubule disruption and mechanical injury (Sasaki et al., 2006).  This protection 

requires the enzymatic activity of Nmnat that converts nicotinamide mononucleotide 

(NMN) to nicotinamide adenine dinucleotide (NAD+) (Araki et al., 2004; Berger et al., 

2005), although recent studies in Drosophila neurodegeneration have suggested 

additional Nmnat activities may also be important for synaptic protection (Zhai et al., 

2006). The importance of mitochondrial dysfunction in neurological disorders involving 

axonal degeneration, and the ability of the Wlds mutation to protect against MPTP-

induced parkinsonism (Hasbani and O'Malley K, 2006), suggested that Nmnat proteins 



 40 

might prevent degeneration caused by mitochondrial inhibition. Here, we demonstrated 

that Nmnat expression robustly inhibits rotenone-induced degeneration of DRG axons 

and provides modest protection to the neuronal soma.  In exploring the mechanism of this 

protection, we found that Nmnat expression did not affect the rate of decrease in ATP 

levels caused by rotenone-mediated mitochondrial inhibition. Further, we found that 50-

60% losses of ATP were neither necessary or sufficient for axonal degeneration.  

However, Nmnat proteins inhibited axonal degeneration caused by external oxidants and 

decreased the accumulation of axonal ROS during rotenone and vincristine treatment, 

suggesting that they protect axons by reducing ROS accumulation or toxicity. 

Interestingly, studies with the acute 6-OHDA and MPTP rodent PD models 

showed that the Wlds mutation provided robust protection against TH+ fiber loss but little 

or no protection of dopaminergic neuronal cell bodies (Sajadi et al., 2004; Hasbani and 

O'Malley K, 2006).  These in vivo results are consistent with our findings, and suggest 

that Nmnat-mediated protection is focused primarily on axons. The effects of Wlds have 

not been tested in the chronic rotenone model of PD that more closely mimics the 

degenerative progression observed in PD patients since this model only works in rats 

(Hornykiewicz, 1966; Betarbet et al., 2000; Richter et al., 2007); however, our results 

suggest that increasing Nmnat expression in this model may rescue axonal function and 

thereby prevent dopaminergic neuron death.   

ROS has been implicated in the pathogenesis of neurodegenerative diseases, in 

particular PD, as well as in the deficits that occur in normal aging (Lin and Beal, 2006). 

For example, Complex I inhibition and oxidative damage to mitochondrial proteins have 

been observed in brains of PD patients, changes that can be replicated by treatment of 
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isolated mitochondria with rotenone (Keeney et al., 2006). Indeed, antioxidants provide 

protection for dopaminergic neurons in the MPTP, 6-OHDA, rotenone and genetic 

models of PD in vivo and in vitro (Schulz et al., 1995; Matthews et al., 1999; Bahat-

Stroomza et al., 2005; Testa et al., 2005; Wang et al., 2006).  In addition, RNAi-mediated 

inhibition of Drosophila PINK1, a kinase mutated in familial PD, resulted in losses of 

dopaminergic neurons and eye defects. These deficits could be rescued by expression of 

superoxide dismutase or treatment with the antioxidant vitamin E, suggesting that ROS 

was responsible for the damage (Wang et al., 2006). Moreover, organotypic midbrain 

cultures treated with rotenone display loss of TH+ fibers, increased protein oxidation, and 

to a much lesser extent cell body shrinkage; deficits that are consistent with an 

axonopathy in which axonal degeneration precedes cell body loss. Similar to our 

findings, these deficits appear to involve ROS as they could be prevented by co-

administration with vitamin E (Testa et al., 2005). Taken together, these results suggest 

that halting ROS-induced damage can prevent the damage caused by mitochondrial 

dysfunction.   

Inhibition of the electron transport chain can cause apoptosis in human 

dopaminergic cells (Watabe and Nakaki, 2006). Further study showed that ATP loss 

could not account for the induction of apoptosis in this model; instead, ROS production 

was necessary and sufficient to promote apoptosis of these cells. Axonal degeneration 

was not directly addressed in that study, however the results are consistent with the idea 

that moderate mitochondrial inhibition causes damage primarily via excess ROS 

production rather than through abnormalities associated with energetic deficits (i.e. 

decreased ATP) (Bao et al., 2005).  On the other hand, some studies have suggested that 
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preventing axonal ATP loss is a crucial aspect of axonal protection by Nmnat (Ikegami 

and Koike, 2003; Wang et al., 2005).  However, our results indicate that the rate of ATP 

loss is comparable in control and Nmnat-expressing neurons as well as vitamin E treated 

neurons, suggesting that this is not the mechanism by which Nmnat protects against 

axonal degeneration. Furthermore, neurons treated with 2-DG for prolonged periods of 

time have up to 40% lower levels of ATP but show no evidence of axonal degeneration, 

providing additional support for the idea that decreases in ATP levels are unlikely to be 

the only driver of axonal degeneration.  Finally, we showed that treatment with 

tetrodotoxin could mitigate rotenone-induced decreases in ATP yet could not prevent 

axonal degeneration.  It appears that moderate ATP losses are insufficient for axonal 

degeneration, however lower ATP levels could affect axonal stability by increasing 

neuronal susceptibility to ROS-mediated damage.   

Others have shown that the Wlds protein maintains the mitochondrial membrane 

potential in vinblastine-treated SCG neurons and they suggested that this may play a role 

in Wlds mediated axonal protection (Ikegami and Koike, 2003).  Our results indicate that 

rotenone causes an increase in ROS without a collapse of the mitochondrial membrane 

potential.  It is possible that rotenone does cause small changes in the mitochondrial 

membrane potential, but the physiological significance of small changes in mitochondrial 

membrane potential are unclear (Nicholls, 2004; Nicholls et al., 2007).  

We cannot exclude the possibility that ROS is simply a trigger to initiate axonal 

degeneration, much like axonal severing, and that Nmnat protects axons by blocking 

downstream targets of this signaling cascade.  It also possible that ROS accumulation is 

secondary to the initiation of this degeneration pathway; however, this is less likely since 
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axonal degeneration induced by exogenous oxidants can also be blocked by Nmnat 

expression.  

Furthermore, Nmnat expression can protect axons from diverse insults, suggesting 

that the axonal damage in many of these paradigms may ultimately involve ROS, or 

ROS-mediated signaling. While mitochondria are considered to be the major source of 

ROS, other sources of ROS production include membrane-bound NADPH-oxidase 

(NOx), a source of oxidative products induced in neurons by signaling intermediates, and 

xanthine oxidase, which produces ROS in neurons in response to hypoxia and glucose 

deprivation (Ibi et al., 2006; Abramov et al., 2007). Other insults not directly linked to 

mitochondrial dysfunction, including taxol, vincristine and mechanical injury, also induce 

ROS and neurodegeneration (Hall, 1987; Groninger et al., 2002; Arundine et al., 2004; 

Holtz et al., 2006; Jérôme Alexandre, 2006; Tsai et al., 2007).   

The mechanism by which Nmnat proteins prevent the accumulation and/or 

toxicity of ROS is unclear. It does not appear that transcriptional changes for previously 

identified antioxidant genes are involved (Gillingwater et al., 2006b). Interestingly, the 

production and usage of NAD+ and its metabolites can play important roles in antioxidant 

responses (Mack et al., 2001).  One possibility is that Nmnat proteins increase NAD+ 

availability without increasing NADH breakdown via oxidation, thus providing more 

NADH for conversion to NADPH, a cofactor for many ROS scavenging enzymes 

(Elizabeth and Karam, 2003).  Alternatively, Nmnat proteins may have additional 

activities, such as antioxidant activity, much like peroxidases or dismutases. An 

undiscovered function of Nmnat, in addition to its role in NAD+ biosynthesis, could 

explain why Nmnat enzymatic activity is not required to block vacuole formation and 
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neurodegeneration in the Drosophila retina (Zhai et al., 2006). However, this is 

inconsistent with observations indicating that NAD+ and NAD+ precursors as well as 

other enzymes involved in NAD+ biosynthesis can also provide axonal protection after 

axotomy (Araki et al., 2004; Wang et al., 2005; Sasaki et al., 2006).  Identifying how 

increased Nmnat expression limits ROS damage may yield clues as to how it promotes 

axonal protection in general, as well as opening up new avenues for understanding how 

ROS causes axonal degeneration.  
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Figure Legends 

Figure 1. Nmnat expression protects against rotenone-mediated axonal degeneration 

in DRG neurons.  A, B. DRG neurons were treated with rotenone (2.5 µM) for the 

indicated time and phase contrast microscopy was used to assess axonal degeneration. 

Degeneration is subtle after 24 hr, but note the extensive axonal damage caused by 

rotenone by 48 hr. Nmnat1 and 3-expressing neurons do not show axonal degenerative 

changes until after 96 hr.  (A) Scale Bar = 20 µm (B) Scale bar = 100 µm. C. Western-

blot analysis of lysates of DRG neurons infected with lentivirus expressing GFP alone, 

Nmnat1 or Nmnat3 using a monoclonal antibody to the hexahistidine tag. D. 

Quantification of rotenone induced axonal degeneration at 0, 24, 48, and 72 hr in DRG 

neurons expressing GFP or Nmnat3 (4 fields per well, 6 wells per condition from 

duplicate experiments) (see Materials and Methods). E. Quantification of surviving DRG 

neurons after treatment with rotenone for 24, 48 or 72 hr using ethidium homodimer 

exclusion (6 wells per condition from duplicate experiments) (*=P<0.01 compared to 

GFP-expressing neurons at 0 hr ; **=P<0.01 compared to rotenone-treated GFP-

expressing neurons at corresponding time point; Error bars=±SEM) 

 

Figure 2. Nmnat activity delays axonal degeneration induced by treatment with the 

oxidant H2O2. A. Quantification of axonal degeneration induced by H2O2 treatment.  

DRG neurons were treated with the indicated dose of H2O2 and axonal degeneration was 

monitored after 24 hr using phase contrast microscopy (*=P<0.01 compared to GFP 

infected cultures, 3 fields per well, 6 wells per condition from duplicate experiments, 

Error Bars= ±SEM). B. Representative images of DRG axons treated with 0-300 µ 
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H2O2 after 24 hr and visualized by phase contrast microscopy. C. Expression of genes 

encoding antioxidant enzymes.  Quantitative RT-PCR analysis was performed using 

mRNA templates prepared from DRG neurons infected with GFP or Nmnat3 for 10 DIV. 

The mRNA levels of the antioxidant genes examined were not significantly altered by 

Nmnat3 (n=3, each sample represents 5 pooled wells, p>0.1 in all comparisons, data from 

a representative experiment) 

  

Figure 3. Nmnat expression in DRG neurons decreases rotenone-mediated ROS 

accumulation. A. Representative images of DRG neurons treated with rotenone or 

vehicle for 0, 6, 48, 96 hr. ROS levels were monitored using the ROS-sensitive dye CM-

H2DCFDA and fluorescence microscopy (left) and axonal degeneration was monitored 

using phase contrast microscopy (right) (Scale bar= 20 µm).  B. Quantification of ROS 

levels in DRG neurons treated as above. Rotenone-treated DRG neurons expressing 

Nmnat3 showed decreased CM-H2DCFDA dye fluorescence (i.e. ROS) compared to 

control neurons. ROS levels do increase in Nmnat3-expressing neurons when axonal 

degeneration becomes visible (96 hr) (#=P<0.05 compared to time zero of each condition 

*=P<0.05 compared to control culture at corresponding time point, n=18 fields from 

duplicate experiments, mean ± SEM). C. Visualization of mitochondrial membrane 

potential.  Neuronal cultures were treated with DMSO (control), FCCP for 1 hr, or 

rotenone for 6 hr and then Mitotracker Red (mitochondrial membrane potential-

dependent dye) and Calcein-AM (intracellular dye to stain axons) were added and 

visualized by fluorescence microscopy.  FCCP decreases the staining of Mitotracker Red 

consistent with a drop mitochondrial membrane potential, whereas the staining in 
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rotenone-treated neurons showed minimal changes compared to control neurons. 

(Representative images from 3 fields per well, 3 wells per condition, duplicated 

experiments. Scale Bar = 20 µm) 

 

Figure 4. Nmnat expression in DRG neurons inhibits vincristine-mediated increases 

in ROS levels. A. DRG neurons were treated with vincristine (0.04 µM) or vehicle and 

ROS levels were measured at the indicated time points using the ROS-sensitive dye CM-

H2DCFDA and visualization with fluorescence (left) and phase contrast microscopy 

(right) (Scale bar= 20 µm).  B. Quantification of ROS levels in DRG neurons 

demonstrated that neurons expressing Nmnat3 had decreased CM-H2DCFDA 

fluorescence (i.e. ROS) (#=P<0.05 compared to control at time zero *=P<0.05 compared 

with vehicle treated control cultures, n=18 fields from duplicate experiments, mean ± 

SEM ). C. DRG neurons (control vs. Nmnat3-expressing) were treated with vincristine 

for 96 hr to demonstrate the axonal protection afforded by Nmnat3. Representative 

images are shown. 

 

Figure 5. Nmnat3 does not slow rotenone-induced decreases in ATP levels.  A. DRG 

neurons expressing Nmnat3 or GFP were treated with rotenone (2.5 µfor the indicated 

times and ATP levels were determined using a luciferase-based assay. Note that Nmnat3 

expression had minimal effects on the rate of ATP loss (*=P<0.05 compared to control at 

the indicated time, n=6 wells per condition read in duplicate from duplicate experiments). 

B. Left) DRG neurons were treated with 1 mM TTX for 6 hr with or without 2.5 µ 

rotenone and ATP levels were determined.  TTX increased ATP in both conditions 
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(*=P<0.05 compared to non-TTX control, **=P<0.05 compared to non-TTX and non-

rotenone control, n=6 wells per condition read in duplicate from 2 independent 

experiments, Error bars=±SEM).control). Right) Axonal degeneration was observed in 

the absence or presence of TTX at 24 hr. C. Left) DRG neurons were treated with 2-DG 

(20 mM) for 24 hr and ATP levels were measured (*=P<0.05, n≥6, Error bars=±SEM).  

Right) DRG neurons were treated with 2-DG (20 mM) for 48 hr. Representative phase 

contrast images show no evidence of axonal degeneration.  

 

Figure 6.  Vitamin E prevents axonal degeneration, but does not affect initial ATP 

losses. A. DRG neurons were treated with rotenone (2.5 µM) and the indicated doses of 

vitamin E. Axonal degeneration was quantified after 6 days of treatment using images 

obtained by phase contrast microscopy (*=P<0.05 compared to control, n=6 wells per 

condition from duplicate experiments, Error bars=±SEM). B. DRG neurons were treated 

with rotenone (2.5 µM) in the presence or absence of vitamin E (1 mM) and axonal 

degeneration was assessed by phase contrast microscopy.  While axons in cultures treated 

with rotenone only were visibly damaged by 48 hr, neurons treated with rotenone and 

vitamin E were intact at 120 hr.  C. DRG cultures were treated with rotenone (2.5 µM) in 

the presence or absence of vitamin E (1 mM) and ATP levels were measured at the 

indicated time points. Vitamin E failed to prevent the initial loss of ATP (*=P<0.05, n≥6 

wells from duplicate experiments, Error bars=±SEM). 

 

Supplemental Figure 1. Nmnat expression protects against Complex I inhibitor-

mediated axonal degeneration in DRG neurons.  DRG neurons were treated with 
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pyridaben (Pyr), or fenpyroximate (Fen) (2.5 µM) for 24 hr time and phase contrast 

microscopy was used to assess axonal degeneration. (n=6 wells per condition from 

duplicate experiments). 

 

Supplemental Figure 2. Nmnat slows TBHP induced axonal degeneration. 

Representative images of DRG neuronal axons treated with 50 µM TBHP after 48 hr and 

visualized by fluorescence microscopy. (Top) GFP fluorescence (Bottom) Phase contrast 

microscopy. 
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Abstract 
Axon degeneration underlies many common neurological disorders and is a 

prevalent cause of disability.  Injured axons follow an apparently active and well 

regulated self-destruction program, termed Wallerian degeneration, but the genes 

required for this program have not been previously identified.  We show that DLK and its 

downstream target JNK are components of a pathway that promotes Wallerian 

degeneration.  Genetic deletion the Drosophila DLK ortholog, Wnd, decreases Wallerian 

degeneration in vivo.  Wallerian degeneration is diminished in DLK mutant mice after 

axotomy of DRG axons in vitro and following sciatic nerve transection in vivo.  

Pharmacological inhibition of JNK during the first three hours of axotomy, well before 

axon fragmentation begins, is necessary and sufficient to decrease axon degeneration, 

suggesting that this pathway acts within neurons as injured axons commit to degenerate, 

rather than controlling the neuron’s pre-injury competence to degenerate or the execution 

phase of the degeneration program.   Axon degeneration induced by vincristine, a 

chemotherapeutic agent whose dose limiting side effects include neuropathy, is also 

decreased in DLK mutant mice.  Thus, diverse insults may activate a common DLK 

dependent axon degeneration program.  The identification of a signaling pathway that 

promotes axon degeneration opens new avenues for the development of therapies aimed 

at minimizing axon loss and the resulting neurological disability. 
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Introduction 

Axon degeneration is a common feature of many neurological ailments including 

mechanical injury, exposure to neurotoxins, hereditary neuropathies, glaucoma, and 

neurodegenerative diseases such as Alzheimer’s Disease and Parkinson’s Disease1-3.  

Axon loss is a direct cause of neurological impairment and it also often proceeds and 

promotes cell body dysfunction and death.  Despite the diversity of insults that lead to 

axon loss, axons tend to degenerate following a stereotyped progression of morphological 

changes.  This breakdown process, termed Wallerian degeneration and first described in 

the 1850s, is hypothesized to be an active and highly regulated process4,5.  Yet, no loss-

of-function mutants with diminished Wallerian degeneration have been identified and the 

genetic underpinnings of axon degeneration remain unknown.  What causes axons to 

degenerate in such a stereotyped fashion?  There may be a common axon self-destruction 

program that is triggered by a wide range of insults.  In support of this hypothesis, 

pharmacological inhibition of the ubiquitin proteasome system6-8, calpain proteases9-12, 

and trypsin-like proteases13 decreases Wallerian degeneration, suggesting that regulated 

protein degradation may relieve an inhibitory restraint on the degenerative mechanism.  

Preventing rises in Ca2+ can also be protective14, suggesting that Ca2+  may trigger signal 

transduction cascades that promote axon degeneration.  Finally, over-expression of the 

chimeric protein Wlds 15 and nicotinamide mononucleotide adenylyltransferase (Nmnat)16 

dramatically delays axon degeneration in response to multiple insults, providing strong 

evidence that axon degeneration is not due to passive deterioration of the severed axon 

following its separation from the neuronal cell body.  Thus, the degenerative process is 
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likely active, and diverse neuronal insults may trigger a common self-destruction 

mechanism within the axon.  However, the molecular pathway that promotes axon 

degeneration is unknown. 

Which signal transduction pathways are likely to mediate Wallerian 

degeneration?  Wallerian degeneration is conceptually similar to apoptosis: each appears 

to be an intrinsic process that is primed and waiting for a triggering stimulus to activate 

the execution phase. Degenerating axons exhibit microtubule depolymerization, altered 

axonal transport, mitochondrial dysfunction, increased reactive oxygen species, 

phosphatidylserine exposure, membrane blebbing, and axon fragmentation1-5.  Many of 

these pathological changes are shared with neuronal apoptosis.  Despite these similarities, 

current experimental data suggest that the molecular pathways are distinct. A variety of 

manipulations that block neuronal apoptosis do not prevent Wallerian degeneration17-19.  

However, the final stages of apoptosis and Wallerian degeneration, the phagocytosis of 

cellular debris by surrounding cells, share some common molecular features.  Loss-of-

function mutations that delay clearance of cellular debris also interfere with the clearance 

of axon fragments and thereby delay some aspects of Wallerian degeneration8,20,21.  

Importantly, these mutations do not directly affect the pathways within axons that 

promote degeneration.  Hence, the intrinsic neuronal pathways that orchestrate axon 

breakdown in injury and disease remain unidentified.   

Loss of DLK/Wnd inhibits axonal degeneration in Drosophila 

Many insults, such as trophic withdrawal and axotomy, can induce both neuronal 

apoptosis and axon degeneration.  Although inhibition of the effectors of neuronal 

apoptosis does not decrease axon degeneration, some upstream regulators of these 
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effectors are highly expressed in axons and are activated by axonal insults.  These are 

good candidates as components of the axon degeneration pathway.  One such molecule is 

dual leucine kinase (DLK), a mitogen activated protein kinase kinase kinase (MAP3K) 

involved in axonal transport22, axon pathfinding23, neuronal migration23, and neuronal 

apoptosis24.  Interestingly, one of DLK’s downstream targets, the mitogen activated 

protein kinase (MAPK) C-Jun N-terminal kinase (JNK), is activated locally in axons 

following injury25.  We hypothesized that DLK is a component of the molecular pathway 

that promotes axon degeneration.  We tested this hypothesis using a well-established 

Drosophila axon degeneration model8,26.  We expressed green fluorescent protein (GFP) 

in a subpopulation of olfactory receptor neurons (ORNs).  ORN cell bodies are located 

peripherally in the antennae, and their axons extend into the brain and terminate in 

glomeruli of both the ipsilateral and contralateral antennal lobes, which are connected by 

a commissure (Fig. 1A).  To sever these axons and induce axon degeneration, the 

antennae are surgically removed.  In this paradigm, most wild-type axons degenerate 

within 24 hours, and this degeneration can be delayed by expressing the Wlds 8 in the 

ORNs.  The degree of degeneration is scored based on the presence or absence of the 

commissure formed by the ORN axons connecting the two lobes8.  Mutants in the 

Drosophila ortholog of DLK, Wnd, have substantially diminished axon degeneration 

compared to control flies (Fig. 1B,C).  The commissure was visible in 4 out of 32 control 

flies and 18 out of 27 Wnd/DLK mutant flies (Chi-square, p<0.001).  Wnd/DLK is 

therefore required for normal axon degeneration in Drosophila.   
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Loss of DLK/Wnd inhibits axonal degeneration in mouse DRG cultures 

Having demonstrated that Wnd/DLK promotes axon degeneration in flies, we 

wished to determine if DLK has a similar activity in mammals.  To assess degeneration, 

we used the in vitro dorsal root ganglion (DRG) axotomy model.  We cultured embryonic 

mouse DRGs for 14-16 days to allow their axons to radiate from the central core of cell 

bodies before severing the axons with a micro-scalpel.  After 24 hours, transected wild-

type axons are dramatically degenerated.  The initially smooth and continuous axonal 

processes become rough and irregular axon fragments (Fig. 2).  We quantified the extent 

of axon breakdown by measuring the fraction of axonal area occupied by fragmented 

axons (degeneration index, DI).  When cultures from DLK mutants and littermate 

controls were axotomized, degeneration of the mutant axons was significantly diminished 

(Fig. 2).  This result was obtained using two independently generated DLK mutant mouse 

lines9.   Because non-neuronal cells are eliminated in this DRG culture system, DLK 

must be required within neurons themselves for the normal axon degenerative response.  

The identification of loss-of-function mutants with decreased axon degeneration in both 

flies and mice demonstrates that axon degeneration is an active process driven in part by 

an evolutionary conserved pathway that includes DLK. 

Axon degeneration is triggered by a range of insults in addition to axotomy that 

are relevant to human disease.  Inhibitors of axotomy induced degeneration often also 

decrease axon loss in mouse models of these diseases, suggesting that a common axon 

self-destruction pathway is employed1,4.  To investigate whether DLK participates in such 

a common pathway, we assessed the response of DLK mutant DRG axons to vincristine 

toxicity. Vincristine is a chemotherapeutic drug that inhibits microtubule formation, and 
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whose dose-limiting side effects in patients include peripheral neuropathy due to axon 

degeneration27.  In cultured DRG neurons, applying vincristine triggers an axon 

degeneration that is morphologically similar to that induced by axotomy28 (Fig. 2).  DLK 

mutant axons are protected from vincristine toxicity, with a significantly decreased 

degenerative response relative to control axons (Figure 2). Hence, DLK promotes axon 

degeneration in response to both axotomy and neurotoxin exposure.  This result suggests 

that DLK is a component of a common axon self-destruction pathway utilized by both 

axotomy and vincristine induced axon degeneration. 

Inhibition of JNK slows axonal degeneration mouse DRG cultures 

DLK is a MAP3K that activates the MAP kinases JNK and/or p38 in a variety of 

systems29.  To determine whether the axon degeneration pathway requires either JNK or 

p38, we used pharmacological inhibitors of each MAP kinase in the DRG axotomy 

model.  Wild-type DRG cultures were treated with the JNK inhibitor SP600215 and the 

p38 inhibitor SB203580.  Inhibition of JNK, but not p38, decreased degeneration of DRG 

axons following axotomy (Figure 3B,C).  Thus JNK, like DLK, is a component of an 

intrinsic pathway that promotes axon degeneration.   

 How does JNK promote axon degeneration?  Axon degeneration is hypothesized 

to comprise at least three distinct phases – competence to degenerate, much of which is 

determined transcriptionally before axotomy; commitment to degenerate, which occurs in 

the substantial delay period between injury and axon fragmentation; and the execution 

phase, when axons fragment3.  If JNK’s primary role is to promote competence to 

degenerate, for instance by promoting the expression of pro-degenerative factors that are 

activated after injury, then JNK activity would be required prior to axotomy.  We found 
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that this is not the case since application of the JNK inhibitor 24 hours prior to axotomy 

followed by a wash just before axotomy is not protective (Figure 3D).  In contrast, JNK 

inhibition started concurrently with axotomy is protective (Figure 3E).  JNK therefore 

does not control the axon’s pre-injury competence to degenerate, but instead it is required 

in the severed axon itself to promote axon degeneration. 

One hallmark of Wallerian degeneration is the substantial delay between the onset 

of axonal injury and the initiation of rapid axon breakdown, suggesting that a signaling 

pathway commits the axon to a breakdown program during this delay.  To assess whether 

JNK is involved in the commitment or execution phase of axon breakdown, we added the 

JNK inhibitor 3 hours after axotomy, which is approximately 12 hours before substantial 

fragmentation begins.  We found that JNK inhibition beginning 3 hours post-axotomy, 

and continuing for the rest of the experiment in order to span the transition to the 

execution phase, does not decrease axon degeneration (Figure 3F).  Thus, JNK inhibition 

during the execution phase is not sufficient to decrease degeneration. We next wished to 

determine if inhibiting JNK only during the early phase is sufficient to decrease axon 

degeneration.  When the JNK inhibitor is added concurrently with the axotomy and then 

washed off 3 hours post-axotomy, axon degeneration is decreased (Figure 3G).  Thus, 

JNK activity during this early period, the hypothesized commitment phase, is both 

necessary and sufficient to promote axon degeneration.   

Mice lacking DLK/Wnd have slowed axonal degeneration in vivo  

There are many differences between in vitro and in vivo models of axon 

degeneration, and manipulations that diminish degeneration in vitro do not always show 

the same effect in vivo30.  We therefore investigated whether DLK plays a role in axon 
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degeneration in vivo in mice.  Sciatic nerve transection is a simple and well-characterized 

in vivo model of Wallerian degeneration.  Most wild-type axons degenerate within 52 

hours post-transection31 (Fig. 4).  In the DLK mutants, however, many axons are spared 

(Fig. 4).  We find a more than two-fold increase in the number of non-collapsed axonal 

sheaths from sciatic nerve sections of DLK mutants distal to the axotomy site.  In wild-

type axons distal to the axotomy, electron microscopic analysis reveals degenerating 

myelin sheaths, collapsed axonal sheaths, and few recognizable mitochondria or 

microtubules in the remaining axons. In the DLK mutants, these pathological features are 

much less prominent, with less degeneration of the surrounding myelin and many more 

axons containing mitochondria and microtubules (Fig. 4).  The finding that DLK is 

required in vivo for normal axon degeneration validates the relevance of our in vitro 

results and demonstrates that the DLK pathway may be a new potential therapeutic target 

for mitigating axon degeneration.  

Conclusion 

Axon degeneration is a shared feature of many neuropathological conditions.  The 

protective effects of Wlds/Nmnat over-expression and proteasome inhibition suggest that 

there is an intrinsic axon self-destruction program, but the components of this program 

had not been previously identified.  We have now shown that the MAP3K DLK and its 

downstream MAPK JNK are critical factors in the axon degeneration program. Genetic 

deletion of Wnd/DLK in flies, DLK in mice, and pharmacological inhibition of JNK all 

diminish axotomy-induced Wallerian degeneration.  Thus, the conceptually and 

morphologically similar processes of apoptosis and axon degeneration share some 

molecular components.  This JNK pathway acts within neurons as injured axons commit 
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to degenerate, rather than controlling the neuron’s pre-injury competence to degenerate or 

the execution phase of the degeneration program.  Inhibition of this pathway also 

decreases axon degeneration in response to the chemotherapeutic agent vincristine, 

whose dose-limiting side effects include neuropathy, suggesting that a common axon 

self-destruction program orchestrates axon breakdown in response to multiple insults.  

The identification of a signaling pathway that promotes axon degeneration opens new 

avenues for the development of therapies aimed at minimizing axon loss and the resulting 

neurological disability. 

 

Materials and Methods 

Drosophila Wallerian degeneration 

We assessed Wallerian degeneration in adult control and Wnd mutant flies 

following established methods8,26.  We expressed green fluorescent protein (GFP) in a 

subpopulation of olfactory receptor neurons (ORN) using Or47bGal4 and UASmcd8GFP 

(Bloomington Stock Center).  We used Wnd mutants wnd1/wnd2 as described32.  We 

severed ORN axons by surgically removing the third antennal segments bilaterally with 

forceps.  Flies were then kept at 25°C for 24 hours.  Fly heads were then removed and 

fixed in 4% paraformaldehyde (PFA) (Electron Microscopy Sciences) and 0.1% Triton-

X100 (Amresco) in PBS for 3 hours at 4°C.  Brains were then removed and washed in 

PBS with 0.1% Triton-X100 for 16-18 hours at 4°C.  Brains were stained with rabbit 

derived A488-conjugated anti-GFP (Invitrogen) for 16-18 hours at 4°C.  Brains were then 

rinsed with PBS with 0.1% Triton-X100 and mounted in 70% glycerol (Amresco) in 

PBS.  Images were acquired using standard confocal microscopy and degeneration was 
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scored based on the presence or absence of the commissure connecting the two antennal 

lobes formed by ORN axons8.  Statistical significance was determined using the Chi-

square test. 

 

DLK mutant mice 

Two independently generated DLK mutant mouse lines were used in this study.  

We previously described a strong DLK hypomorph developed from a BayGenomics 

genetrap ES cell line9.  We also developed a conditional DLK knockout by flanking the 

exons that encode the kinase domain with LoxP sites using homologous recombination.  

We generated a constitutive DLK knockout allele by breeding these mice to a cre-

recombinase line with germline expression (zp3-cre33; The Jackson Laboratory).  The 

genetrap DLK mutant, constitutive DLK mutant, and conditional DLK mutant with the 

mutation induced in vitro using lentiviral mediated cre-recombinase expression as 

described16 were all used for the DRG cultures presented in Fig. 2.  We used the genetrap 

DLK strong hypomorphic mutant for the in vivo experiments presented in Fig. 3 because 

the constitutive DLK mutant is perinatal lethal. 

 

Mouse DRG culture preparation, treatment, and analysis 

DRGs were cultured from embryonic day 12.5-14.5 mice in 24 well plates 

(Corning) coated with poly-d-lysine (Sigma) and laminin (Sigma).  Cultures were grown 

for 14-16 days before axotomy or drug treatment in 500µL serum free medium consisting 

of Neurobasal (Invitrogen) containing penicillin and streptomycin and supplemented with 

2% B27 (Invitrogen), 25 ng/ml nerve growth factor, and 1 µM 5-fluoro-2'-deoxyuridine 
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and 1 µM uridine (Harlan Bioproducts) to eliminate dividing non-neuronal cells.  For 

cultures derived from crosses of heterozygous mutant parents (DLK genetrap mutants or 

DLK constitutive knockouts) one intact DRG explant was cultured per well.  For all other 

cultures, all DRGs of a given litter were combined, trypsinized for 20 minutes at 37°C, 

triturated in medium, and seeded at a density of 1 DRG per well in 2 µL medium for 40 

minutes at 37°C before the addition of 500µL medium.  Wild-type cultures in Fig. 3 were 

made from CD1 mice (Charles River). 

DRGs were axotomized using a micro-scalpel.  All drugs were dissolved in 

DMSO (Sigma) and the controls were treated with this vehicle.  Vincristine was used at 

0.04 µM, SP600125 (Biomol) at 15 µM, and SB203580 (Biomol) at 20 µM. 

Live DRG cultures were imaged using phase contrast and a 20X objective.  3-4 

non-overlapping images were taken per well with a field of view of approximately 

0.15cm2.  Images were taken 24 hours post-axotomy or 48 hours after vincristine 

addition.  The degeneration index (DI) was measured using a program written in NIH 

ImageJ that calculates the fraction of axonal area occupied by fragmented axons.  This 

enabled us to sample an order of magnitude greater area than by manual analysis.  The 

mean DI of each well was calculated by averaging the DIs of the images from that well.  

Using this analysis, non-axotomized wildtype cultures have a DI of 0.15 ± 0.023 (sem) 

before axotomy and a DI of 0.67 ± 0.26 (sem).  There is no significant increase in DI 3 

hours post-axotomy (DI = 0.11 ± 0.018; n = 3; p > 0.15 compared to non-cut, Student’s t-

test).  Unless noted, there was an n ≥ 7 axotomized DRG cultures or vincristine treated 

DRG cultures per genotype or drug treatment condition and each result was obtained 

from multiple experiments.  DI’s are presented in the text normalized to the indicated 
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control DI for each independent experiment.  When only 2 conditions or genotypes were 

compared, Student’s t-test was used.  When more than 2 were compared, we used 

ANOVA with posthoc Tukey means comparison. 

 

Mouse in vivo sciatic nerve transection 

Adult DLK genetrap mutant animals and littermate controls were anesthetized 

with isofluorane.  A small incision was made unilaterally to expose the sciatic nerve.  The 

sciatic nerve was transected with fine surgical scissors and the incision was then sutured.  

After 52 hours, the animals were sacrificed using CO2 and the sciatic nerves were 

removed bilaterally (distal to the trasection of the transected nerve) and fixed 16-18 hours 

at 4°C in 4% PFA and 2.5% glutaldehyde in 0.1M cacodylate buffer.  Approximately 2 

mm long sciatic nerve stumps were post-fixed in 2% osmium tetroxide in 0.1 M 

cacodylate buffer for 1 hour at RT and then embedded in resin as follows.  Nerves were 

dehydrated through an ethanol series, then in propylene oxide and then overnight in a 1:1 

mix of propylene oxide in Epon 812 (hard formulation; Ted Pella Inc.) under -5 inches 

Hg vacuum. The next day, the samples were changed into fresh Epon resin, left on a 

rotator for several hours, and then placed in fresh Epon in coffin molds. The resin was 

cured at 60 °C for 48 hours and sectioned with a diamond knife (Micro Star 

Technologies) on a Leica EM UC6 ultramicrotome (Leica Microsystems). Sections were 

taken at 500nm for Toluidine blue staining and 70 nm for EM.  Sections for EM were 

transferred to grids, stained with filtered 5% uranyl acetate in methanol for 10 minutes, 

washed, dried, and stained for 2 minutes in filtered lead citrate.  Pictures were taken on a 

Hitashi H-7500 TEM using 70 kV accelerating voltage.  Axon density (axons/µm2) was 
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determined by counting the total number of axons with non-collapsed sheaths in the tibial 

division of the sciatic nerve and dividing by the area.  Statistical significance was 

determined using Student’s t-test. 
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FIGURE 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1: Wallerian degeneration is 
delayed in Wnd/DLK mutant flies. 
  

A. Non axotomized ORN axons expressing GFP.  
B. Degenerated WT axons 24hrs post-axotomy. 
C. Wnd/DLK mutant axons 24hrs post-axotomy. 

A B C 
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FIGURE 3 
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FIGURE 4 
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Abstract 

 Axonal degeneration is a key component of neurodegenerative diseases.  Our 

current understanding of axonal degeneration is based on observations after anoxic injury 

and mechanical severing.  The discovery of inhibitors of the degenerative pathway 

including overexpression of nicotinamide mononucleotide adenylyltransferase (Nmnat), 

treatment with nicotinamide adenine dinucleotide (NAD+), and resveratrol have 

suggested that there is an active pathway, like apoptosis, that can be inhibited.  We have 

discovered that the purine nucleosides adenosine and guanosine, but not inosine are able 

to slow mechanically induce axonal degeneration in culture.  Addition of adenosine, 

either prior to or up to 6hr after axonal injury, was protective. Furthermore, adenosine 

was necessary during the protective period to maintain protection.  These findings 

suggest that endogenous purines may play a role in regulating axonal degeneration and 

present a new therapeutic target for neurodegenerative diseases with axonal degeneration. 
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Introduction 

 Neurodegenerative diseases including Parkinson’s Disease (PD), Alzheimer’s 

(AD), Lou Gehrig’s Disease or Amyotrophic Lateral Sclerosis(ALS), Charot-Marie 

Tooth (CMT), Multiple Sclerosis (MS), mechanical nerve injury, diabetic neuropathy, 

and drug induced neuropathies have a pathology that includes axonal degeneration and 

affect millions of people (Coleman and Perry, 2002; Coleman, 2005).  Unfortunately, the 

molecular mechanisms that underlie axonal degeneration and the factors that regulate it 

are poorly understood.  Recently, axonal degeneration has been discovered to be an 

active process much like apoptosis (Raff et al., 2002).  This understanding is a result of 

the study of a mutant mouse, Wlds, which manifests slowed axonal degeneration (Lunn et 

al., 1989) . The Wlds mouse is resistant to a number of mouse models of 

neurodegenerative disease both genetic and toxin induced (Wang et al., 2002; Ferri et al., 

2003; Samsam et al., 2003; Sajadi et al., 2004; Mi et al., 2005; Gillingwater et al., 2006a; 

Hasbani and O'Malley K, 2006).  The diversity of diseases that affect axonal 

degeneration and are slowed in the Wlds mouse suggest that there is a common pathway 

to axonal degeneration that can be manipulated (Coleman, 2005).  

The mutation responsible for the Wlds phenotype is a tandem triplication of a gene 

fusion containing the N-terminal 70 amino acids of ubiquitination factor 4b 

(Ube4b/Ufd2a), an 18 unique amino acid linking region and the full length coding region 

of nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) (Conforti et al., 2000). 

 The effects of Wlds have been replicated in an in vitro with cultures of mouse 

dorsal root ganglia (DRG) and sympathetic ganglia (Deckwerth and Johnson, 1994; 

Wang et al., 2005; Conforti et al., 2006).  Subsequently, it was shown Nmnat1 (or 
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Nmnat3) overexpression is sufficient in cultures to slow axonal degeneration from a 

variety of insults and that this protection was dependent upon the enzymatic activity of 

Nmnat (Araki et al., 2004; Wang et al., 2005; Sasaki et al., 2006; Press and Milbrandt, 

2008).   

Nmnat is known to convert nicotinamide mononucleotide (NMN) to nicotinamide 

adenine dinucleotide (NAD+) using NMN and ATP as substrates (Berger et al., 2005).  

NAD+ was shown to be able to slow axonal degeneration after axonal severing in vitro 

and this effect is hypothesized to have a nuclear effect in one case and a local effect it the 

other depending on concentration and the culture conditions (Araki et al., 2004; Wang et 

al., 2005).  Interestingly, other precursors to NAD+
, including NMN, were also able to 

stimulate axonal protection in vitro and in vivo (Kaneko et al., 2006; Sasaki et al., 2006).  

It has recently been reported that purine nucleosides were able to delay neuronal cell 

death and increase neurite outgrowth in response to rotenone (Bocklinger et al., 2004).  

These two findings spurred us to explore the potential for other NAD+ derivative 

nucleotides to provide axonal protection.  We used in vitro DRG axonal cultures that 

were axotomized as a model of Wallerian degeneration. Here we report that adenosine 

slows axonal degeneration in a dose dependent fashion.  Adenosine is protective when 

either added prior to axotomy or several hours after injury.  We go on to show that 

exogenous adenosine is necessary for the maintenance of the protective effect. Finally, 

we demonstrate that in addition to adenosine, guanosine is protective at similar 

concentrations while inosine is not. 
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Materials and Methods 

Reagents: All reagents are from Sigma-Aldrich unless otherwise noted 

Culture of DRGs: Tissue culture plates are coated with poly-D-lysine and laminin 

(Invitrogen, Carlsbad, California). Plates are initially coated with 250 l of 0.1 mg/ml 

poly-D-lysine (sigma) solution for overnight. Then poly-D-lysine solution was removed 

and wells were washed twice with 500 l of water and place in a culture hood until dry. 

250 l of 2 to 5 g/ml of mouse laminin solution was added to each well and incubated 

for 1 to 2 hours. The laminin solution was then removed and the plates were dried in the 

culture hood prior seeding. 

 DRGs were collected from CD1 mouse embryos at the gestation days between 

e12.5 and e13.5. Approximately 45-50 DRGs are removed from each embryo. DRGs 

from 6 embryos were collected into single 1.5 ml microfuge tube containing DMEM for 

6 24-well plates. After centrifugation (2,000 x g, briefly) the supernatant was removed 

and 500 l of solution containing 0.05% trypsin and 0.02% EDTA was added and 

incubated at 37°C for 15 min. After the incubation DRGs were triturated by using 1000 

l pipette until the DRG clumps are disrupted. The cell suspension was centrifuged 

(2,000 x g, briefly) and supernatant was removed and suspended in 500 l of complete 

media containing, Neurobasal media (Invitrogen) containing 0.02% B27 (Invitrogen) and 

50 ng/ml of NGF (2.5S; Harlan Bioproducts, Indianapolis, IN). Cell suspension was 

centrifuged again (2,000 x g, briefly), the supernatant was removed and complete media 

was added to the cell pellet at the ratio of 50 l to one dissected embryo. Two micro liter 

of cell suspension was placed as a drop slightly below the center of each 24 well coated 

with poly-D-lysine and laminin and incubated at 37°C with 5% CO2 for 1 hour. After the 
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attachment of cells, 500 l complete media plus 1  5-fluoro-2′-deoxyuridine, and 1 

 uridine was added to each well. The 125ul of media was removed and 150ul was 

replaced each 4 to 5 days with media to account for evaporation. In this condition, DRG 

cell bodies are clustered within 3 to 5 mm diameter in the lower part of wells and axons 

are extending in radially. Axons are severed by a micro-scalpel (Fine Science Tools, 

Foster City, CA) after 14 days in vitro (DIV). 

 

Quantification of axonal degeneration. Axonal degeneration was quantified as 

described elsewhere (Sasaki and Milbrandt, 2008).  Briefly, after axonal severing, phase 

contrast images were taking with an inverted microscope with a 20x objective (Eclipse 

TE 300; Nikon). For each wells, 3-4 random fields of distal axons were imaged by using 

CCD camera (Cool SNAP ES; Nikon) and Metamorph software (Molecular Devices) 

with 40 ms exposure time. Images were adjusted for brightness and background intensity 

by the auto-level function and converted to 8-bit in Adobe Photoshop (Adobe, San Jose, 

CA) and analyzed by Image J (NIH). To obtain the total area of axon, images were 

binarized. Non degenerated axons have continuous tracts, while unhealthy degenerating 

axons were fragmented and beaded showing up as aggregates. The total axonal area was 

determined by the total number of detected pixels after the imaged was binarized.  

Degenerated axons were detected using the particle analyzer of Image J as small 

particles, while healthy axonal area was represented by large continuous areas. The 

degeneration index (DI) is the ratio of fragmented axon area to total axon area. ≥20 fields 

were evaluated per condition combined from multiple independent experiments and the 

data presented are adjusted representative images from repeated experiments.  
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Statistics: All comparisons were analyzed by student's t-tests with Bonferroni's 

correction for multiple comparisons.   

 

Results 

Exogenous adenosine slows Wallerian degeneration 

Purine nucleosides have been show to have trophic effects on neurons and support 

axonal growth (Bocklinger et al., 2004).  This led us to explore the effects of exogenous 

purine nucleosides on axonal degeneration.  To address this question we used a 

previously developed model of in vitro axonal degeneration.  Mouse DRGs were cultured 

from E13.5 embryos by spotting the neurons in an isolated drop on a culture dish from 

which axons grow out of to form a halo of axons.  The cultures were maintained for 14 

DIV and severed using a micro-scalpel.  Using the percent of axonal area that was 

fragmented we determined a degenerative index (DI).  Higher numbers (0.0-1.0) indicate 

more fragmentation and thus degeneration.  After 24 hr the axons exhibit a significant 

amount of swelling, beading and fragmentation (DI=0.62±0.02) (Fig. 1).  To determine 

the effect of adenosine on axonal degeneration we added a range of adenosine 

concentrations to cultures 24hr prior to axotomy. We monitored the axonal degeneration 

over 96 hr following axotomy.  Adenosine was protective after 24 hr at all doses 

including 1.25mM when added 24hr prior to axonal injury (1.25 mM DI=0.28± 0.02, 2.5 

mM DI=0.17± 0.01, 5 mM DI=0.16± 0.01, 10 mM DI=0.13± 0.01) (Fig. 1).  There was a 

dose dependent increase in the duration of protection where 2.5 mM, 5.0 mM and 10 mM 

adenosine were protective for 48hr, 72hr and 96hr respectively (Fig. 1).   
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We compared this level of protection to two compounds known to inhibit axonal 

degeneration, 5 mM NAD+ and the JNK inhibitor SP600125 (15 ) (Araki et al., 2004; 

Wang et al., 2005; Miller, 2008).  Compared to NAD+  treatment and JNK inhibition, 

adenosine was a more potent inhibitor of axonal degeneration at 48 hr after injury (5 mM 

NAD+
 DI=0.54±0.04, JNK inhibitor DI=0.47±0.06 vs. 10 mM adenosine DI=0.19±0.01) 

(Fig. 1).   These data demonstrate that adenosine is the most efficacious small molecule 

inhibitor of axonal degeneration known to date and that the duration of this effect is dose 

dependent. 

 

Adenosine is protective both pre- and post- axotomy 

 To determine if the effects of adenosine are mediated by a local mechanism or via 

actions in the cell body and/or nucleus we treated cultures with 10 mM adenosine 24 hr 

prior to, immediately afterwards, or 6hr after injury and measured the degeneration index 

for 72 hr after the injury.  Treatment at all times both pre- and post-axotomy were 

protective after 24 hr (Fig. 2).  The level of protection was dependent, in a significant 

way, on the time of the treatment with pretreatment (DI=0.13±0.01) giving the strongest 

protection, followed by immediate treatment (DI=0.18±0.01) and treatment 6 hr after 

injury being slightly weaker (DI=0.23±0.02), but better than no treatment 

(DI=0.64±0.02).  This time dependent effect was also apparent after 48 hr when 

pretreatment (DI=0.12±0.01) was stronger than 6 hr post-axotomy (DI=0.43±0.04) (Fig. 

2).  72 hr after the injury all treatments were less fragmented than control 

(DI=0.66±0.03), however pretreatment (DI=0.21±0.02) with adenosine was significantly 

better than either post-axotomy treatments (Post-axotomy DI=0.51±0.03 and 6 hr post-
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axotomy DI=0.54±0.03) (Fig. 2).  These data demonstrate that adenosine has a local 

mechanism of protection and can be a potent modulator of axonal degeneration even 

when applied several hours after injury.  Importantly, this rules out a role for 

transcriptional changes since the axon is not able to synthesize new message after injury. 

 

Adenosine is necessary after injury to maintain protection 

 While it was clear that adenosine was sufficient to slow axonal degeneration even 

when added many hours after injury it was not clear if adenosine was only needed during 

a critical window (i.e. the first 3-6 hr after injury) or if it was needed during the entire 

period of protection.  To determine if adenosine was necessary to maintain protection 

after the initial 24 hr when most axons would have normally degenerated (Fig. 1), we 

treated cultures with 10 mM adenosine 24 hr prior to injury and 24 hr after injury we 

replaced it with media either containing or lacking 10 mM adenosine three times.  We 

then followed the axonal degeneration 24 hr after the wash step.  Removing adenosine 

from the media resulted in rapid degeneration within 24 hr (Fig. 3).  Cultures that were 

washed with media lacking adenosine were significantly more fragmented 

(DI=0.64±0.02) than those with washed media still contained adenosine (DI=0.19±0.01).  

Cultures without adenosine for the duration were still significantly worse than either 

condition (DI=0.73±0.02) (Fig. 3).  This suggests that adenosine is necessary for the 

duration of protection rather than during a critical early time window. 
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Guanosine, but not inosine slows Wallerian degeneration 

 Knowing that adenosine was protective, we explored the protective potential of 

additional purine nucleosides including guanosine and inosine.  Due to the limited 

solubility of guanosine we were only able to test up to 2.5 mM in warmed media.  We 

compared the effects of pretreatment with 2.5 mM guanosine and adenosine 24 and 48 hr 

after axonal injury.  2.5 mM Guanosine slowed axonal degeneration after 24 hr (Control 

DI=0.68±0.02 vs. Guanosine DI=0.30±0.02), but not 48 hr (Control DI=0.69±0.02 vs. 

Guanosine DI=0.71±0.06) (Fig. 4A).  However, inosine up to 10 mM added 24 hr prior to 

axotomy was not able to slow axonal degeneration at 24 hr after injury, in fact it was 

significantly worse than control (Control DI=0.64±0.02 vs. Inosine DI=0.73±0.02) (Fig. 

4B).  This data suggests that adenosine and guanosine are protective and that this 

mechanism is not likely via conversion to inosine by extracellular enzymes, although it 

does not exclude intracellular metabolism. 

 

Discussion 

 Following evidence that suggests that NAD+ precursors are able to slow axonal 

degeneration (Sasaki et al., 2006) and evidence that purine nucleosides have trophic 

effects on in vitro neuronal cultures (Bocklinger et al., 2004), we investigated the 

potential role for other metabolites in axonal degeneration following mechanical injury in 

vitro. Adenosine added exogenously to cultures robustly delayed axonal degeneration and 

is the most efficacious chemical inhibitor amongst those we have tested date (Fig. 1).  

This protection was apparent up to 96 hr post injury and the duration of protection was 

dose dependent (Fig. 1).  Adenosine protection was present when added up to 6 hr post 
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axotomy and was dependent upon maintenance of adenosine in the media during the 

protective period (Fig. 2, 3). Finally, we also demonstrated that guanosine was protective 

at similar doses to adenosine, while inosine was not protective (Fig. 4). It should be noted 

that the effect of adenosine and guanosine could be independent or based on the same 

mechanism. 

 These results suggest that extracellular or exogenous purine nucleosides play a 

role in the timing of axonal degeneration in a local, non-transcription dependent manner.  

This is potentially important since adenosine is well known to accumulate after neuronal 

injury, including stroke, and its metabolism is altered after peripheral injury (Sawynok 

and Liu, 2003; Stone et al., 2007).  Adenosine has at least two major modes of action 1) 

receptor mediated effects and 2) intracellular interactions via membrane transport 

(Fredholm et al., 2001).   

Adenosine has four known G-coupled protein receptors, A1, A2A, A2B, and A3 

receptors.  It is thought that A1 and A3 receptors are inhibitory acting through Gi and Go, 

while A2 receptors are excitatory acting through Gs, Golf, and Gq (Sawynok and Liu, 

2003).  The best studied and well characterized receptors are the A1 and A2A receptors.  

A1 receptor agonists and A2A receptor antagonists are known to spare striatal terminals 

and act as a neuroprotectant against the MPTP model of PD (Lau and Mouradian, 1993; 

Pierri et al., 2005). This suggests that selectively activating the A1 receptor while 

inhibiting the A2A receptor would be beneficial in axonal protection.  From in vivo data 

we know that adenosine has analgesic effects after spinal injuries that appear to be a 

result of A1 stimulation (Sawynok and Liu, 2003).  The data concerning the role of 

receptor A3 is less clear and suggests both neuroprotective and destructive roles 
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(Abbracchio and Cattabeni, 1999).  Interestingly, we have preliminary data that shows 

that theophylline, a relatively non-selective adenosine receptor blocker (although weakly 

at A3), does not inhibit adenosine mediated protection.   

The second major known mechanism by which purines affect cells is through 

transport via 2 classes of transporters.  Purines nucleosides can be transported via either 

equilibrative (ENT1 - ENT4) or concentrative (CNT1 – CNT5) mechanisms (Podgorska 

et al., 2005).   Purines have been shown to enhance neurite outgrowth in a number of 

cellular systems that  were shown to be, or thought to be, dependent on equilibrative 

transport dependent and activation of protein kinase N (PKN) (Benowitz et al., 1998, 

Bocklinger et al., 2004). Using two equilibrative transport inhibitors, dipyridamole and 

NBTI, increased axonal growth caused by guanosine and inosine was blocked.  Further, 

they demonstrated in PC-12 cells that the PNK inhibitor and purine analog, 6-thioguanine 

decrease inosine induced axonal growth.  In contrast to our work, these studies have seen 

that inosine is in fact more potent than adenosine.  It is known that adenosine is converted 

to inosine through the activity of adenosine deaminase (ADA) since inhibition of ADA 

blocked adenosine induced axonal growth (Benowitz et al., 1998).  These differences 

may be due to cell type differences, different culture media or a completely different or 

novel mechanism.  

The different equilibrative transports are blocked to a different extent by the 

different transport inhibitors.  The two best characterized are ENT1 and ENT2. In 

humans ENT1 is termed the "es" transporter due to its sensitivity to NBTI, while ENT2 is 

the "ei" transporter since it is less sensitive to NBTI (Podgorska et al., 2005).  Initial 

reports suggest that mouse mENT1 is sensitive to the three inhibitors, dipyridamole, 
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NBTI, and dilazep, while mENT2 is insensitive to both NBTI and dilazep (Kiss et al., 

2000). Unfortunately, the drugs were not tested to their full range of concentrations thus 

the insensitivity can only be stated as a relative insensitivity.  We have preliminary data 

suggesting that treatment of cultures with adenosine and dilazep or dipyridamole inhibits 

the adenosine induced protection, while NBTI did not have a consistent inhibitory effect.  

Dilazep and dipyridamole appeared to induce morphological changes that can be best 

described as swellings in the DRGs when added alone, although they did not induce rapid 

degeneration.  This may suggest that adenosine needs to be transported to provide 

protection. 

To determine if adenosine and non-adenosine nucleosides can be effective as a 

therapy for neurodegenerative disorders it will be necessary to test their effectiveness in 

vivo.  Unfortunately, due to the extremely short half life of adenosine in vivo (Lerman 

and Belardinelli, 1991)), studies have not been able to test the hypothesis that injections 

of adenosine would inhibit axonal degeneration.  However, guanosine has been used in 

vivo against models of stroke and spinal cord injury.  Guanosine injected intraperitoneally 

(I.P.) was able to decrease cell death in an in vitro model of oxygen-glucose deprivation, 

decrease disability and ischemic volume after middle cerebral artery occlusion (MCAO); 

however guanosine had no effect on the number of apoptotic cells in the ischemic 

penumbra (Chang et al., 2008). Guanosine injected I.P. has also been shown to reduce the 

severity of injury after spinal cord compression, reduce macrophage infiltration, but not 

astrocyte activation, reduce apoptosis in the spinal cord, and increase axonal sparing 

(although not in a quantitative assay) (Jiang et al., 2007).  Both of these studies discuss 

the ability of guanosine to accumulate in the brain and be converted to guanine which 
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could be the protective product.  Guanosine has also been used orally (at similar doses to 

I.P. injections) to interfere with quinolinic acid induced seizures in mice (de Oliveira et 

al., 2004)  suggesting the possibility that supplemented water could be a route of 

delivery. It will be critical to determine if guanosine or adenosine analogs are able to 

slow axonal degeneration either after mechanical injury or in a model of 

neurodegeneration.  Further exploration of the pathway responsible for nucleoside 

mediated protection will allow for better targeting of therapeutic drugs for 

neurodegeneration.   
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Figure Legends 

 

Figure 1  

Adenosine slows axonal degeneration in a dose dependent manner. A) Axonal 

degeneration was monitored using phase contrast microscopy after cultures were 

incubated with adenosine at various concentrations (1.25mM-10mM), NAD+ (5mM), or 

JNK inhibitor SP600125 (15). The degeneration was monitored for 96hr. B) 

Quantitation of the axonal degeneration using the degeneration index (*=p≤0.05 

compared to control at each timepoint). 

 

Figure 2  

Adenosine slows axonal degeneration when added pre- or post-axotomy. A) Axonal 

degeneration was monitored using phase contrast microscopy after cultures were 

incubated with adenosine either 24 hr prior to, immediately after, or 6 hr after axotomy. 

The degeneration was monitored for 72 hr. B) Quantitation of the axonal degeneration 

using the degeneration index (*=p≤0.05 compared to control at each timepoint). 

 

Figure 3 

Adenosine is necessary for the maintenance of protection. A) Adenosine was added to 

cultures 24 hr prior to axotomy.  24 hr after axotomy, the media was replaced three times 

with media either containing or lacking adenosine and axonal degeneration was 

monitored for 24 hr. B) Quantitation of the axonal degeneration using the degeneration 
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index (*=p≤0.05 compared to control at each timepoint, #=p≤0.05 compared to adenosine 

containing media). 

 

Figure 4 

Guanosine, but not inosine slow axonal degeneration A) Guanosine (2.5 mM) or 

adenosine (2.5 mM) were added to cultures 24 hr prior to axotomy. The degeneration was 

monitored with phase contrast microscopy for 48 hr. B) Quantitation of the axonal 

degeneration using the degeneration index (*=p≤0.05 compared to control at each 

timepoint). C) Inosine (10 mM) or adenosine (10 mM) were added to cultures 24 hr prior 

to axotomy. The degeneration was monitored with phase contrast microscopy for 24 hr. 

D) Quantitation of the axonal degeneration using the degeneration index (*=p≤0.05 

compared to control at each timepoint). 



 109 

FIGURE 1 

 



 110 

 

FIGURE 2 

                  



 111 

 

FIGURE 3 

 

                    



 112 

FIGURE 4 
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CHAPTER 5 

 

 

Conclusions and Future Directions 
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Summary of Conclusions 

 As our population ages, and the baby boomer generation enters into their 60's, 

they will begin to face the stage of life where age dependent diseases start to affect them 

in earnest.  This includes many diseases such as a subset of neurodegenerative diseases 

that can, and most likely, will affect their quality of life.  These diseases, including 

Parkinson's, Alzheimer's, Lou Gehrig's, glaucoma, diabetes, and cancer are potential 

targets for therapies directed at preventing axonal degeneration.  As therapies for the past 

several decades have focused on decreasing cellular death and apoptosis with some 

success, an increasing number of failures has made it clear that the processes causing 

disabilities in these diseases also include axonal injury.  By developing treatments that 

enhance axonal stability and function, we can not only enhance the quality of life of 

axons and neurons, but the patient's quality of life. 

 In the work presented here we have approached understanding axonal 

degeneration from two different angles.  First, in chapter 2, using what was known 

previously to cause and influence axonal degeneration in models of anoxia, mechanical 

injury and toxin induced models of neurodegeneration we developed a cell culture model 

of axonal degeneration by mitochondrial inhibition.  By understanding where Nmnat 

interferes with axonal degeneration secondary to this insult, we can narrow down our 

search for its underlying mechanism.  Second, in chapter 3 and 4, we explored two new 

modifiers of axonal degeneration, DLK, and purines nucleosides.  By learning how these 

new modulators interact with the axonal degeneration pathway and current models we 

can clarify the mechanisms that lead to axonal dysfunction.  
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We are just beginning to understand the complex field of axonal degeneration. 

What we have presented here are only a couple of clues or puzzle pieces that will be put 

into place over the next decade.  As the pieces come together, it will be interesting to see 

how the puzzles of cancer, metabolism, cell death, and apoptosis overly this one.  It will 

require collaborations with all of these fields to come to understand the mechanism of 

neurodegeneration and develop safe, effective therapies.   

 

Nmnat mediated axonal protection 

Nmnat mediated protection is related to the reduction of ROS rather than an 

increase in ATP  

In chapter 2, we described how Nmnat expression robustly inhibits rotenone-

induced degeneration of DRG axons and provides modest protection to the neuronal 

soma.  In exploring the mechanism of this protection, we found that Nmnat expression 

did not affect the rate of decrease in ATP levels caused by rotenone-mediated 

mitochondrial inhibition. Further, we found that 50-60% losses of ATP were neither 

necessary nor sufficient for axonal degeneration.  However, Nmnat proteins inhibited 

axonal degeneration caused by external oxidants and decreased the accumulation of 

axonal ROS during rotenone and vincristine treatment suggesting that they protect axons 

by reducing ROS accumulation or toxicity.   
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Understanding the mechanism for Nmnat mediated ROS protection 

The mechanism by which Nmnat prevents the accumulation and/or toxicity of 

ROS is unclear.  ROS accumulation causes damage in a number of neurodegenerative 

diseases via many mechanisms including lipid peroxidation and protein adducts 

(Reynolds et al., 2007). NAD+ and its metabolites are known to play important roles in 

antioxidant responses (Mack et al., 2001).  One possibility is that Nmnat proteins increase 

NAD+ availability without increasing NADH breakdown via oxidation, thus providing 

more NADH for conversion to NADPH which is a cofactor for many ROS scavenging 

enzymes (Elizabeth and Karam, 2003).  One way to explore this possibility is to establish 

a method using axonal cultures and small molecule detection to measure the amounts of 

NAD+ metabolites in culture.  Two such methods have been described using red blood 

cells and lymphocytes using ion-pairing HPLC (Stocchi et al., 1987; Di Pierro et al., 

1995).  By using a method that allows for the detection of many of the possible 

metabolites formed by changes in NAD+ metabolism, we will be able to approach the 

problem as a complex system with multiple inputs and outputs rather than attempting to 

measure changes in individual metabolites without understanding how the system 

changes.   

Alternatively, Nmnat proteins may have additional activities, such as antioxidant 

activity, much like peroxidases or dismutases. An undiscovered function of Nmnat, in 

addition to its role in NAD+ biosynthesis, could explain why detectable Nmnat enzymatic 

activity is not required to block vacuole formation and neurodegeneration in the 

Drosophila retina (Zhai et al., 2006).  For example Nmnat was shown to have chaperone 

activity in vitro, much like heat shock protein 70 (Zhai et al., 2008).  However, this is 
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inconsistent with observations indicating that NAD+ and NAD+ precursors as well as 

other enzymes involved in NAD+ biosynthesis can also provide axonal protection after 

axotomy (Araki et al., 2004; Wang et al., 2005; Sasaki et al., 2006).  Furthermore, we 

found that by mutating the enzymatic site of Nmnat we greatly reduce its protective 

potential (Sasaki and Milbrandt, 2008).   

While we began an exploration of changes in antioxidant enzymes in response to 

Nmnat expression in DRGs and found that some of the major antioxidant enzymes did 

not have their transcriptional levels increased, a further exploration into changes in the 

antioxidant machinery of neurons is warranted.  Transcriptional changes for previously 

identified antioxidant genes are likely small as they were not detected in published 

microarray studies or our own unpublished data (Gillingwater et al., 2006b).  In 

mammalian tissues, key antioxidant enzymes include superoxide dismutases (SOD), 

catalase (CATA), glutathione peroxidases (GPX), thioredoxin (TXN) and peroxiredoxin 

(PRDX) complexes, and glutathione (GSR) and thioredoxin reductases (TRXR). These 

enzymes replenish key electron donor molecules. Many of these genes are regulated by 

transcriptional mechanisms (Li et al., 2007). By using quantitative RT-PCR for a subset 

of genes we may be able to small changes in expression of redox modifying genes in 

neurons expressing Nmnat.  Due to the ability of Nmnat to slow axonal degeneration 

after severing, the transcriptional changes necessary for protection must have occurred 

prior to injury thus analysis could be limited to uninjured DRG neurons in the presence or 

absence of Nmnat expression.  While transcriptional changes thus far have not been 

detected, it is possible that Nmnat could be regulating the expression of several enzymes 

to a small degree that would synergistically increase the antioxidant potential. 
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In addition to transcriptional regulation, antioxidant proteins are regulated at the 

post-transcriptional level.  Some of the proteins known to be phosphorylated and 

regulated are SOD1, SOD2, CATA, GPX and GSR (Rhee et al., 2005). Nmnat may 

change the activity of some of these components, perhaps by changing the ratio of known 

redox molecules (NAD+, NADH, NADP+ and NADPH).  A combination of approaches 

could be used to determine if any of the known antioxidant pathways are required for 

Nmnat mediated protection.  1) Using siRNA technology, key enzymes could be reduced 

in the presences of Nmnat overexpression. Using the rotenone model of axonal 

degeneration or axonal severing the relative protection could be monitored.  This would 

allow for the detection of genes essential for Nmnat protection.  However, it is important 

to identify those genes that may be necessary for axonal survival regardless of axonal 

injury.  Since it is possible that a combination of enzymes, as opposed to individual 

enzymes, are necessary for Nmnat protection we would need to perhaps inhibit multiple 

pathways with multiple siRNAs.   2)  By using commercially available kits we can 

measure antioxidant potential, and specific enzymatic activities (Oxis International Foster 

City, CA).  Using this information we can determine if certain classes of enzymes are 

activated in cultured neurons expressing Nmnat. 3)  Since many of enzymes that are have 

antioxidant potential use co-factors such as GSH and NADPH as reducing equivalents, 

we can measure the relative changes in GSH to GSSG and NADPH and NADP+.  This 

will allow us to determine if Nmnat changes the redox status of the neurons and thus 

perhaps direct the next stages of research towards classes of genes that regulate these 

metabolites.  Identifying how increased Nmnat expression limits ROS damage may 
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suggest new pathways to support axonal protection and help understand the mechanisms 

that underlie axonal degeneration in general. 

 

Gene Therapy Potential 

 The importance of mitochondrial dysfunction in neurological disorders involving 

axonal degeneration and the ability of the Wlds mutation to protect against MPTP- and 6-

OHDA- induced Parkinsonism (Sajadi et al., 2004; Hasbani and O'Malley K, 2006) 

highlight the potential to use Nmnat as an adjunctive therapy for PD.  Nmnat could be 

delivered in a viral vector (either AAV or lentiviral) in the substantia nigra of patients 

with PD to enhance their axonal stability.  This increase in axonal stability could, as our 

data suggest, enhance cell body survival.  While the expression of Wlds did not preserve 

the cell bodies in either the MPTP or 6-OHDA models, these are both acute models of 

dopaminergic neuron toxicity.  To test the effects of Nmnat in a chronic model, it would 

be best to use the rotenone model established in rats.  The chronic rotenone model of PD 

more closely mimics the degenerative progression observed in PD patients where the 

amount of axonal loss is more severe than the cell death found at each stage of disease 

(Hornykiewicz, 1966; Betarbet et al., 2000).   

By using viral delivery a construct could be designed that would express Nmnat 

in combination with trophic factor delivery to further enhance cell body survival.  This 

potent combination of axonal and cell body protection could lead to the type of synergism 

that is likely necessary to treat degenerative diseases that often do not present 

symptomatically until many of the effected neurons and axons are lost. For example, in 

PD it is thought that greater than 50-60% of dopaminergic neurons are when patients 
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present to the clinic.  Recent success with AAV-derived viral vectors expressing the 

trophic factor neurturin in Phase I clinical trials make this possibility even more likely to 

succeed (Marks et al., 2008). 

 

DLK regulates the rate of axonal degeneration 

Loss of DLK function and inhibition of downstream targets inhibit axonal 

degeneration 

 In chapters 3 we explored the role for the MAPKKK pathway involving DLK to 

slow axonal degeneration.  Based on the evidence suggesting that inhibiting that the DLK 

pathway is important in neurite survival in PD models both in vitro and in vivo, we 

examined axonal degeneration in mice and flies lacking DLK. Loss of DLK slowed 

axonal degeneration in a phylogenetically conserved fashion.  This slowed degeneration 

was present in vitro, allowing us to examine the potential downstream target of JNK.  We 

found that by inhibiting JNK shortly before axonal severing, but not several hours after 

severing, we could slow axonal degeneration.  This suggests that DLK and JNK signaling 

are important early in axonal degeneration and regulate the speed of axonal degeneration.   

 

Gene therapy mediated DLK protection for axonal degeneration 

 Our data suggests that inhibition of the MLK pathway, and in particular the DLK 

pathway, is a target for gene therapy treatment of neurodegenerative diseases featuring 

axonal degeneration.  The use of small molecule inhibitors of the MLK pathway for 

treating neurodegenerative diseases has received enthusiastic support in the literature 

(Wang et al., 2004) and was the focus of a clinical trial of CEP-1347 in PD patients 
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(Parkinson Study Group PRECEPT Investigators, 2007).  While animal trials of CEP-

1347 were relatively successful, the human trial did not slow clinical progression to L-

DOPA dependency.  While this initial trial does prove that MLK inhibition will be 

ineffective since it is not clear that MLK inhibition was achieved (Burke, 2007), it does 

suggest that use of gene therapy via viral vectors may be a more successful method of 

inhibition.   

Recently, dominant negative forms of DLK were delivered with use of an AAV 

viral vector to the dopaminergic neurons in a mouse model of PD using 6-OHDA.  As 

mentioned in the introduction dnDLK was able in inhibit the cell death, but not the 

axonal degeneration.  It is possible that DLK may not be able to slow axonal loss in this 

acute model.  It is also possible that the dose of 6-OHDA tested is above the level where 

partial DLK inhibition could be protective in the axonal terminals.  It would be 

worthwhile to determine if dnDLK is protective for axonal terminals at lower doses of 6-

OHDA.  Since the CEP inhibitors have shown that they are able to protect striatal 

terminals it is likely that MLKs play a role.  The 6-OHDA model is a rather acute model 

of PD and it might be advantageous to determine if dnDLK is protective against axonal 

terminal loss in the chronic rotenone model of PD in rats.  The chronic nature of this 

model could provide enhanced sensitivity for protective effects.   Furthermore, it should 

not be overlooked that inhibition of MLKs potentially will inhibit both axonal 

degeneration and apoptosis.  This powerful combination may be the holy grail of 

neurodegenerative therapies.   

In fact, a study using a dominant negative c-Jun demonstrated both cell body and 

axonal protection after transection of the medial forebrain bundle in another model of PD 
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(Crocker et al., 2001).  Interestingly, this suggests that either 1) the dominant negative c-

Jun had a gain of function in the axons, perhaps by sequestration of JNK, or  2) loss of c-

Jun transcription prior to injury resulted in the depletion of a key component of the 

axonal degenerative pathway.  Additionally, experiments with ligated sciatic nerves show 

that phospho-JNK is increased and transported after axonal injury and in diabetic rat 

models (Middlemas et al., 2003; Cavalli et al., 2005).  This further highlights the need to 

understand the targets of JNK in the axons during axonal degeneration. 

 

Identification of Axonal DLK and JNK targets 

 Since JNK inhibition is able to slow axonal degeneration when added only 

minutes before severing it is unlikely that there is a transcriptional component to the 

protection.  This suggests that JNK regulates axonal degeneration through the 

phosphorylation of targets.  Further, it is known that phosphorylated JNK accumulates 

and is transported in injured sciatic nerves in vivo (Middlemas et al., 2003; Cavalli et al., 

2005).  Identification of these JNK targets is critical for understanding how JNK 

influences axonal degeneration and the mechanism of axonal degeneration in vitro and in 

vivo.  The use of 2-D gels may allow for detection of multiple JNK phosphorylation 

targets.  By the use of either radiolabeled substrates, or antibodies specific for 

phosphorylated epitopes on proteins we could use our DRG cultures to isolate axons from 

cultures that have been treated with or without JNK inhibitors prior to axonal injury at 

several timepoints after injury.  This would allow us to develop a network of 

phosphorylation changes that occur after injury and how JNK inhibition changes that 

network.   
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 JNK is known to have three different isoforms (Bjorkblom et al., 2008).  It is not 

clear from the experiments done thus far if DLK inhibition prevents the activation of all 

three JNK isoforms or if inhibition of all of the JNK isoforms is necessary for protection. 

Using siRNA technology we can decrease the amount of each JNK isoform prior to 

axonal injury and determine if loss of any individual JNK isoforms is able to inhibit 

axonal degeneration.  It is possible that the different JNKs have overlapping targets and 

thus individual knockdown may not be sufficient and may require knockdown of two or 

three of the isoforms.  If it is possible to inhibit a single isoform this will allow for more 

directed targeting of therapy for neurodegenerative diseases.    

 

Purine Nucleosides role in axonal degeneration 

Adenosine and guanosine inhibit axonal degeneration 

In chapter 4 we demonstrated that axonal degeneration is slowed by purine 

nucleosides in vitro after mechanical injury. We found that exogenous adenosine robustly 

delayed axonal degeneration and is the most efficacious chemical inhibitor amongst those 

we have tested to date.  Where NAD+ and JNK inhibitors are protective for ~24 hr, 

adenosine was able to slow axonal degeneration up to 96 hr.  Importantly adenosine was 

not only protective when added prior to axotomy, but also when added up to 6 hr after 

axonal injury. While adenosine was protective for at least 96 hr, if it was removed during 

this protective window, the axons we would degenerate rapidly within 24 hr.  This 

demonstrated the necessity for the continued presence of adenosine during the protective 

window.  Finally, we also provided evidence that in addition to adenosine, guanosine was 

protective, while inosine was not. This could suggest some selectivity to the purines that 
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provide a common protective mechanism or the protection mediated by adenosine and 

guanosine could be independent of each other. 

 

Proximal mechanism of adenosine mediated protection 

The earliest events in adenosine mediated protection are not clear.  Adenosine has 

at least two routes to interact with cells 1) receptor mediated effects and 2) intracellular 

interactions via membrane transport (Fredholm et al., 2001).  Although the high 

concentrations (millimolar) where adenosine is effective argue against a receptor 

mediated mechanism which would more likely be in the micromolar range, it is necessary 

to test this hypothesis (Haas and Selbach, 2000; Noguchi and Yamashita, 2000).  

Adenosine has four known G-coupled protein receptors, A1, A2A, A2B, and A3 receptors.  

We have preliminary data that showing that theophylline, a relatively non-selective 

adenosine receptor blocker (although weakly at A3), does not inhibit adenosine mediated 

protection.  We also have preliminary data showing that the A1, and A2A, receptor 

agonists CPA, and CGS21680 do not reproduce the effects of adenosine; we have yet to 

test A2B or A3 receptor agonists. There are additional known agonists of each of these 

receptors that should be tested over a range of concentrations (Tocris Bioscience 

Ellisvile, MO).  It is not currently clear which receptors are expressed on DRG neurons in 

culture, RT-PCR and immunohistochemistry could be used to determine both expression 

levels and subcellular localization of these receptors.  Axonally located proteins would be 

of particular importance as it appears adenosine has a local mechanism.  siRNA 

technology could also be used to knock down each receptor to examine its role in axonal 
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protection and maintenance without relying on relatively selective inhibitors that may 

have off-target effects.  

The second major known mechanism by which purines affect cells is through 

intracellular action via 2 classes of transporters.  Purine nucleosides can be transported 

via either equilibrative (ENT1 - ENT4) or concentrative (CNT1 – CNT5) transporters 

(Podgorska et al., 2005).   We will focus on the equilibrative transporters since it has 

been shown that they play a role in the trophic effects of purines.  Purines enhance 

neurite outgrowth in a number of cellular systems that was shown to be, or thought to be, 

dependent on equilibrative transport and activation of protein kinase N (PKN ) (Benowitz 

et al., 1998) (Bocklinger et al., 2004).  In contrast to our work, these studies have shown 

that inosine is in fact more potent than adenosine or guanosine.  It is known that 

adenosine is converted to inosine through the activity of adenosine deaminase (ADA) 

since inhibition of ADA blocked adenosine induced axonal growth (Benowitz et al., 

1998).  Since inosine is ineffective against axotomy, it is unlikely that ADA inhibitors 

will affect adenosine mediated protection, but it should be explored.  These differences 

may be due to different cell types, culture media or a novel mechanism.  

The different equilibrative transporters are blocked to a different extent by various 

transport inhibitors.  Early characterization showed that mouse mENT1 is sensitive to the 

three inhibitors, dipyridamole, NBTI, and dilazep, while mENT2 is insensitive to both 

NBTI and dilazep (Kiss et al., 2000). Unfortunately, the drugs were not tested to their full 

range of concentrations thus the insensitivity can only be stated as relative insensitivity.  

We have preliminary data suggesting that treatment of cultures with adenosine and 

dilazep or dipyridamole inhibits the adenosine induced protection, while NBTI did not 
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have a consistent inhibitory effect.  Dilazep and dipyridamole induced morphological 

changes that can best be described as swellings in the DRGs when added alone, although 

they did not induce rapid degeneration or fragmentation.  It is possible, and in fact likely, 

that nucleoside transport is important for the maintenance of neurons and axons.  Using 

RT-PCR and immunohistochemistry it should be determined which transporters are 

expressed and their subcellular localization. It would be particularly interesting if there is 

differential expression of the channels on the soma and axon.  The use of siRNA may 

also allow selective inhibition of each of the known transporters to determine if 

nucleoside transport is in fact necessary for adenosine mediated axonal protection. 

 

Guanosine as a therapeutic 

Due to the half-life of adenosine in vivo being on the order of seconds and its 

cardiac effects, it is impossible to use adenosine as a therapeutic or even test for efficacy 

(Lerman and Belardinelli, 1991).  However, guanosine has been beneficial in vivo when 

injected intraperitoneally (I.P.) against models of stroke and spinal cord injury (Jiang et 

al., 2007; Chang et al., 2008).  Guanosine has also been used orally (at similar doses to 

I.P. injections) to interfere with quinolinic acid induced seizures in mice (de Oliveira et 

al., 2004)  suggesting the possibility that supplemented water could be a route of 

delivery. Using I.P. injections of guanosine it could be determined if there are in vivo 

protective effects when mice or rats are treated with guanosine prior to and/or 

immediately after sciatic nerve injury or administration of rotenone. This will determine 

if guanosine is able to slow axonal degeneration either after mechanical injury or in a 

model of neurodegeneration.  The use of modulators, either receptor based or transporter 
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based will allow for the dissection of the in vivo mechanism for protection.  Further 

exploration of the pathway responsible for nucleoside mediated protection will allow for 

better targeting of therapeutic drugs for neurodegeneration.   

 

Extracellular adenosine levels during axonal degeneration 

 Having demonstrated that adenosine clearly slows axonal degeneration and that it 

is necessary to maintain this protection, we still need to determine if adenosine is 

sufficient to maintain the protection.  The axonal degeneration is not completely 

prevented by treatment with adenosine as is shown by the eventual axonal degeneration.  

Is this degeneration due to the eventual degradation of adenosine?  Another possibility is 

that the metabolism of adenosine leads to the build-up of metabolites that leads to some 

sort of end-product inhibition.  Either of these would be important regardless of the 

mechanism of action via receptors or transport.  To determine the concentration of 

adenosine in the media during the time course we can use HPLC to measure the amount 

of adenosine available immediately after addition, after axonal injury and after axonal 

degeneration has occurred in the presence of adenosine.  If adenosine is still present at a 

concentration that is known to mediate protection this would suggest that adenosine is not 

sufficient to maintain axonal health indefinitely.  The media from these cultures could be 

transferred to un-axotomized cultures which are then axotomized to determine if the 

components of protection or an inhibitor are present.  The use of HPLC would also allow 

us to determine if adenosine treatment leads to the accumulation of any metabolites in the 

media.  Any metabolites that are identified by spiking experiments would be tested for 

their ability to mediate protection or to inhibit adenosine mediated protection.  Guanosine 
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and inosine treated cultures would provide interesting contrasts.  If the same peaks appear 

in guanosine treated cultures, but not in inosine treated cultures this could be of 

significant importance and may be a regulator of axonal degeneration.  However, 

guanosine could lead to a completely different metabolite profile which could suggest 

that adenosine and guanosine have different mechanisms.   

 

Intracellular metabolism during axonal degeneration 

 For two reasons it will be interesting to explore the possible changes in 

intracellular metabolites during axonal degeneration. 1) It is possible that adenosine is 

transported intracellularly and is metabolized to AMP via adenosine kinase and this 

changing the energy status of the cells or to inosine through adenosine deaminase and 

altering the purine balance in the cells.  2) Nmnat or NAD+ may also be affecting the 

same or similar pathways and a comparison of intracellular changes to the NAD+ 

nucleotides and purine metabolites will help to determine if these are perhaps similar 

pathways.  It is difficult to interpret the measurement of individual metabolites and their 

role in axonal degeneration. For example, ATP and NAD+ have been measured during 

axonal degeneration and found to decrease, but is not clear that these losses correlate with 

axonal degeneration as the data in chapter 2 demonstrated for ATP.  If neurons can lose 

50% of their ATP and not degenerate acutely, how can the loss of ATP be a linear 

indicator of axonal degeneration?  There is clearly more than one factor contributing to 

the balance of these metabolites.   

 We can begin to monitor changes in axonal metabolites during axonal 

degeneration by employing the armamentarium of axonal degeneration inhibitors that we 
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have develop here.  By comparing the effects of adenosine, guanosine, inosine, NAD+, 

JNK inhibitors, and Nmnat on protected axons, we can start to understand the way in 

which normal axons degenerate and they ways in which different protecting agents 

change this profile.  While it is possible that all of these agents produce the same changes 

in metabolism, but, as they each have a different time scale of protection, this is unlikely.  

By observing the differences we can perhaps learn which metabolic changes are 

important early and which changes occur much later during protected degeneration or 

after adenosine or Nmnat have ceased to protect.  It is possible that these metabolites will 

be detectable on HPLC, but it may necessitate the use of LC/MS to increase the 

specificity of detection (Yamada et al., 2006).  We are currently working on optimizing 

both of these methods to detect NAD+ nucleotides and purine metabolites. 

   

Axonal degeneration is a multifactorial process 

Time course of protection 

 Throughout the course of the experiments discussed in this work it has become 

increasingly clear that each protective agent leads to a distinct time course of protection.  

This is particularly clear in the case of axonal degeneration after mechanical severing.  

Nmnat expression can protect axons from degeneration in vitro for over 1 week (Araki et 

al., 2004).  Adenosine, the best small molecule tested, is protective for up to four days or 

96 hr.  NAD+ and JNK inhibition protect for 24 hr.  These data alone suggest that there 

are different mechanisms that regulate the speed of degeneration.  If they all regulated the 

same pathway the time course of protection would likely be similar.  This is further 

highlighted by the fact JNK inhibition is protective only when added during in the first 
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three hours after axonal injury while adenosine can clearly be added up to six hours after 

injury.   

 Unfortunately, due to the need to overexpress Nmnat prior to injury we cannot be 

sure when Nmnat is necessary or sufficient for protection.  We can compare the 

protection of the JNK inhibitor and adenosine in culture.  What these two different stories 

tell us is that JNK likely acts as a trigger mechanism that happens early during 

degeneration.  This trigger is not necessary for degeneration, but activates an accelerator 

pathway.  In contrast, adenosine is not necessary during the early phase of axonal 

degeneration to act as a protecting agent.  Instead, it acts as a break on the degeneration 

process.  The earlier and stronger it is applied the more effective the protection.  So while 

the JNK inhibitor is likely preventing a pathway from being stimulated, adenosine is 

likely slowing the degenerative pathway.  It will be interesting to explore the possibility 

of combining JNK inhibition with adenosine treatment and looking for synergism.  

Perhaps JNK inhibition can extend the effective time window after injury for adenosine 

treatment. 

 This differential control of degeneration will allow us to understand the events 

that are important early in degeneration and those that are important later.  A systematic 

and scientific approach to the problem will tell us what events are necessary for 

degeneration and what parts of the pathway are modulators.  To begin with it will be 

important to start with the events that have already described in this and similar systems.  

Some of the factors that need to be considered are 1) membrane integrity, 2) axonal 

transport, 3) mitochondrial potential and function, 4) ATP levels, 5) NAD+ levels, 6) 

membrane potential and Na+/K+ ATPase function, 7) ROS levels, 8) oxidative 
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metabolism, 9) intracellular Na+, 10) intracellular Ca2+, 11) cytoskeletal structure, and 12) 

protein degradation pathways.  As axonal degeneration and fragmentation is a discrete 

event it will be crucial to monitor these changes in individual axons over the degenerative 

time course when possible.  Tools to explore membrane potential and integrity, 

mitochondrial function and potential, ionic concentrations and ROS are already 

developed and need to be optimized for our culture system.  A system to allow for 

oxygen consumption measurements while imaging neurons was recently developed to 

allow for the simultaneous measurements of these critical variables (Jekabsons and 

Nicholls, 2004).  Axonal transport and cytoskeletal dynamics can be explored using 

fluorescently tagged markers of organelles and cytoskeletal components that have been 

developed in our lab (Baloh et al., 2007).  Comparing how each of these markers of 

axonal health change dynamically during degeneration and during protection should 

provide a useful framework for understanding the degenerative process and developing 

additional inhibitors.   

 

Is axonal degeneration comparable to apoptosis as an active pathway? 

Axonal degeneration is a multifactorial process where there may be multiple factors 

contributing to the rate of degeneration not all being necessary or sufficient to block the 

entire process. The system is likely not a completely linear process, but one where 

effector molecules can accelerate or dampen the rate of degeneration.  While the 

individual components of an axonal degeneration program are unknown, the ability for 

Nmnat to delay axonal degeneration for over a week suggests that is blocking some 

component of a linear process.  In apoptosis, a cell body that has been "saved" by caspase 
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inhibitors may be metabolically alive, but it is clearly dysfunctional and may be no better 

than a dead neuron to an organism. Furthermore, many neurons "saved" will advance on 

to non-apoptotic cell death (Putcha and Johnson, 2004).  The axons "saved" by Nmnat or 

Wlds are excitable and functional in a sense after axonal severing, though they too will 

advance on to "non-Nmnat protectable" axonal degeneration (Beirowski et al., 2005).  

Importantly axonal severing may be the least mild of insults as disease causing genetic 

mutations will cause mitochondrial dysfunction, altered axonal transport, etc. and the 

axons will still be in a suboptimal state.  Excitingly, disease models show that these saved 

axons are better than no axons at all by significantly slowing disease progression.  While 

it may not reverse the physiological insult, slowing axonal degeneration may provide a 

therapeutic window for advanced treatment to be administered after a disease process has 

started thus enhancing a person's the quality of life. 
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