Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-00-03

2000-01-01

A Rate-based End-to-end Multicast Congestion Control Protocol

Sherlia Shi and Marcel Waldvogel

Current reliable multicast protocols do not have scalable congestion control mechanisms and
this deficiency leads to concerns that multicast deployment may endanger stability of the
network. In this paper, we present a sender-based approach for multicast congestion control
targeted towards reliable bulk data transfer. We assume that there are a few bottleneck links in
a large scale multicast group at any time period and these bottlenecks persist long enough to
be identified and adapted to. Our work focus on dynamically identifying the worst congested
path in the multicast tree and obtaining TCP-friendly throughput on this selected path. We
device... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Shi, Sherlia and Waldvogel, Marcel, "A Rate-based End-to-end Multicast Congestion Control Protocol"
Report Number: WUCS-00-03 (2000). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/281

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/281?utm_source=openscholarship.wustl.edu%2Fcse_research%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/281

A Rate-based End-to-end Multicast Congestion Control Protocol

Sherlia Shi and Marcel Waldvogel

Complete Abstract:

Current reliable multicast protocols do not have scalable congestion control mechanisms and this
deficiency leads to concerns that multicast deployment may endanger stability of the network. In this
paper, we present a sender-based approach for multicast congestion control targeted towards reliable
bulk data transfer. We assume that there are a few bottleneck links in a large scale multicast group at any
time period and these bottlenecks persist long enough to be identified and adapted to. Our work focus on
dynamically identifying the worst congested path in the multicast tree and obtaining TCP-friendly
throughput on this selected path. We device novel selection (amongst receivers) and aggregation (over
time) methods to achieve our goal. The response time of our protocol is then compatible to TCP once the
worst path is identified. Only when switching between worst paths, the protocol response time is relaxed
to multiple RTTs (less than 10) for the reasons of scalability and stability. We use the network simulator
(NS2) to validate and evaluate our congestion control algorithm with both drop-tail and RED gateways.

https://openscholarship.wustl.edu/cse_research/281?utm_source=openscholarship.wustl.edu%2Fcse_research%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/281?utm_source=openscholarship.wustl.edu%2Fcse_research%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages

A Rate-based End-to-end Multicast
Congestion Control Protocol

Sherlia Shi and Marcel Waldvogel

WUCS-00-03

February 2000

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130

A Rate-based End-to-end Multicast Congestion Control Protocol

Sherlia Shi Marcel Waldvogel
Department of Computer Science
Washington University in St. Louis

{sherlia, mwa}@arl.wustl.edu

Abstract

Current reliable multicast protocols do not have scalable congestion control mechanisms
and this deficiency leads to concerns that multicast deployment may endanger stability of the
network. In this paper, we present a sender-based approach for multicast congestion control
targeted towards reliable bulk data transfer. We assume that there are a few bottleneck links in
a large scale multicast group at any time period and these bottlenecks persist long enough to be
identified and adapted to. Our work focus on dynamically identifying the worst congested path
in the multicast tree and obtaining Tcp-friendly throughput on this selected path. We devise
novel selection (amongst receivers) and aggregation (over time) methods to achieve our goal.
The response time of our protocol is then compatible to TCP once the worst path is identified.
Only when switching between worst paths, the protocol response time is relaxed to mmltiple
RTTs (less than 10) for the reasons of scalability and stability. We use the network simulator
(n82) to validate and evaluate our congestion control algorithm with both drop-tail and RED

gateways.

1 Introduction

Today’s Internet applications, such as streaming media, on-line information retrieval and soft-
ware or proxy caching updates, are demanding much higher bandwidth and much larger scale of
distribution than ever. Multicast is an efficient method to disseminate data to a large number of
receivers. Compared to using multiple unicasi connections, a mulficast connection reduces the
transmission cost both at the data sources and in the network. However, the potentially large

size of a multicast group and the heterogeneity among all receivers introduce hard problems in

scalably managing and controlling a multicast group in all aspects of multicast communication.

During the past few years, we have seen a lot of studies and improvement in multicast rout-
ing, address allocation and transport level error-recovery. Comparably, not as much mature
work has been done in addressing the problem of multicast congestion control. Yet, congestion
control is the key factor to the success of today’s Internet. It ensures network stability and
optimizes the network utilization by preventing applications from overloading the network. To
facilitate the deployment of reliable multicast as a transport layer protocol, congestion contro] is
an indispensable element that must be researched in greater depth. Although congestion control
is required by all applications to ensure network safety, different applications have various con-
straints in speed, quality and consistency of data delivery. For example, real-time audio/video
applications can trade quality for speed, while applications for software distributions can trade
latency for reliability. For multicast congestion control, there is an additional challenge of meet-
ing the heterogeneous conditions of different receivers. Hence, different approaches must be
investigated for different class of applications.

In this paper, we set out to assess problems and solutions in multicast congestion control
for a subset of multicast applications: reliable bulk data transfer. The example applications
of this category include software distribution, web proxy updates and other synchronization
and updates for data replication services. These applications usually transmit high volumes of
data to medium- or large-sized groups and require reliable data delivery. However, there is no
stringent requirement on the speed of data delivery, and whether all participants receive data at
their maximum capabilities is not critical to the application. This gives us space for adapting
data transmission rate according to network congestion among heterogeneous receivers.

We propose a sender-based congestion control scheme that tries to match the bandwidth
condition on the worst receiver path. We define the worst recetver as the one that is downstream
of a congested link that has the smallest bandwidth capacity among all multicast links. However,
such a receiver may not be unique and may change dynamically. Hence, we devise novel selection
(over receivers) and aggregation (over time) methods to identify such a worst receiver. We sketch

the main issues addressed in our scheme as follows:

e Metric for congestion indication: the metric for congestion indication defines when a
receiver should notify the sender of its congestion condition. Unlike multicast error control,
in which receivers send feedback when they observe a packet loss. Multicast congestion
control requires a metric that captures the degree of a receiver’s congestion condition over a
recent period of time. A single packet loss fails to indicate congestion reliably and will result

volatile adaptation at the sender [2]. In our scheme, we choose the metric as a function of

receiver measured loss rate and round-trip time.

¢ Feedback implosion control: the classic problem in reliable multicast is how to deal with
the potentially huge volume of feedback from all receivers. Various suppression mechanisms
have been proposed in [6, 20, 19, 24] for multicast error control to reduce the number of
NAKs for the same lost packet. Without re-inventing the wheel, we adopt these mechanisms

to suppress congestion indications for the same congested link.

+ Responsiveness: the responsiveness of a congestion control scheme is crucial to how the
protocol will affect the network stability. Ideally, the sender should adapt to network changes
within a round trip time or even less, decreasing its transmission rate as soon as the conges-
tion builds up in the network and increasing its rate as soon as the congestion disappears.
In order to achieve betier responsiveness, a protocol should minimize the delay in conges-
tion detection and rate adaptation. Yet, an over-responsive protocol may cause wide rate
fluctuations and impede the network stability. In multicast, however, it is hard to identify
the most congested link in a short time scale without causing instability due to the highly
variant network traffic along different paths. Hence, in our closed-loop control, we trade off
protocol responsiveness for scalability and correctness (in metric calculation), and adapt rate

on the scale of a few round-trip times.

¢ Fairness: the fairness issue characterizes how the protocol co-exists and shares bandwidth on
the bottleneck link with existing protocols, especially with TCP. Though TCP’s congestion
control mechanism is itself a moving target, a new mechanism still has to treat it fairly in
order to become viable. Through simulation, we show that our protocol is able to achieve

bandwidth sharing with TCP within a factor of 2.

We should point out that the above issues are not at all independent, rather they interfere
with each other closely and sometimes orthogonally. Our scheme therefore compromises among,
these objectives. We use simulation to study and evaluate our proposed scheme in NS2 [10].
Simulation results show that we are able to achieve TCP-fair throughput and be responsive to
the network congestion even in large multicast groups with different link characteristics.

"The rest of the paper is organized as follows. In Section 2, we present the background and
our motivation for end-to-end congestion control. In Section 3, we classify problems in sender-
based approach multicast congestion control, then in Section 4, we present our solutions and
trade-offs in our design choices. In Section 5, we describe our scheme in detail and in Section 6,
we use simulation to validate and evaluate the performance of our scheme. In Section 7, we

discuss related work and conclude in Section 8.

2 Motivation and Background

2.1 Importance of End-to-end Congestion Control

‘There are two basic ways to deal with congestion in today’s Internet: either application actively
adapt to the available bandwidth, or the network enforces rate limits for every flow and therefore
the applications passitely adapt to the limited rate. The Internet is currently dominated by
one reliable transport protacol — TCP, which is adopted by most of the applications running
in the current Internet, such as World Wide Web, FTP, and Telnet. TCP provides end-to-end
reliability and achieves network safety using end-to-end congestion control. These functionalities
are delivered without additional network complexities or services but assuming that all end
users are cooperative in gracefully increasing and decreasing their transmission rate based on
the discovered available bandwidth.

The second way of dealing with congestion control is emerging in the form of integrated
and differentiated services. These router-aided congestion control methods require flow reserva-
tion, profile specification and admission control ahead of the flow initialization. Furthermore,
they also require routers to keep per-flow or aggregated flow states to enforce the reservations.
The complexity of signaling and maintaining flow states have shifted the research focus from
integrated services to differentiated services, which classifies flows into classes and provides sta-
tistical guarantee on a per-class basis instead of a per-flow basis. Although the differentiated
services architecture has shown promises in its future, its deployment in a large infrastructure
such as the Internet remains to be seen. We also observe that since differentiated services aggre-
gate flows into classes, then within each class, flows must still be cooperative to each other and
adaptive to the bandwidth allocated to that class, although their adaptive ranges can be differ-
ent for each class. Therefore, we believe it is necessary and imperative to deal with congestion

control in an end-to-end manner.

2.2 Approaches of End-to-end Multicast Congestion Control

Although end-to-end multicast congestion control is desirable, it is fundamentally a hard prob-
lem due to the heterogeneity of link bandwidth and delay on each individual receiver’s path. This
heterogeneity introduces an essential scaling issue: how can a sender decide the transmission
rate if every receiver has a different capacity?

Two distinct ways of congestion control are introduced in the current reliable multicast
literature: sender-based [4, 9, 15, 26, 22] and receiver-based [12, 14, 25]. The sender-based

approach is essentially similar to what TCP does, the sender uses a single transmission rate

that affects all receivers and infers network congestion from feedback collected from receivers.
This approach suites applications such as bulk data transfer, where the primary goal is to
deliver data reliably to all receivers but some receivers may suffer delay in waiting for others.
The sender-based approach also requires extreme careful design in dealing with problems such
as implosion control and drop-to-zero problems, which we will address later in the paper.

In favor of other types of applications such as audio/video, which are sensitive to delay but
tolerant to some amount of quality reduction, a receiver-based approach is also proposed. In
this approach, data is organized into layers and transmitted onto different multicast groups.
Receivers can thus choose how much data they can accept under the current network condition
and only subscribe to those layers. For reliable bulk data transfer, problems stem from the
receiver-based approach as data does not come with a natural layering, and it is hard to orga-
nize data into layers, yet maintaining data consistency and ordering. In addition, due to the
complexity of encoding and decoding, the number of available layers is normally confined to be
small, thus limiting the adaptive range of congestion control. The receiver-based approach also
requires receivers to coordinate when join and leave a multicast group, causing more overheads
and dependency on the underlying multicast routing protocols.

For the sake of simple explanation, in the rest of the paper, we generally refer to congestion

control in the context of sender-based and end-to-end congestion control for reliable multicast.

3 Issues in Multicast Congestion Control

The primary goal of congestion control is to let the applications use the network resources
efficiently by being responsive and adaptive to the network congestion occurred along the ap-
plication’s data path. Two fundamental issues arise when applying this principle to multicast

congestion control: scalability and fairness.

3.1 Scalability

The scalability issue is essential to all multicast based protocols. A multicast congestion control
protocol not only needs to scale to a large number of receivers but also needs to scale in a more
heterogeneous environment with different link capacities and delays. Two resulting problems
need thus be addressed: feedback implosion and rate drop-to-zero.

The implosion problem has been well explained in the literature on multicast error control,
and various feedback suppression mechanisms have been introduced [6, 20, 19, 24]. However, all

these mechanisms come with the cost of introducing extra delay in feedback. Feedback delay

directly contributes to the responsiveness of congestion control schemes, the longer the delay
the less the responsiveness. This irresponsiveness of a multicast flow is especially dangerous to
the network, as it potentially creates fluctuated link conditions along the whole multicast tree
and may drive the network into instability. Additionally, in contrast to error control in which
feedback is only triggered by packet losses discovered at receivers, in congestion control, the
source needs constant feedback from the receivers to discover not only the congestion but the
re-availability of resources as well. These continuous feedback should be well managed to avoid
implosion and to achieve scalability, yet they should also be delivered in a timely manner for
sender to react to network congestion.

The drop-to-zero problem is also known as loss multiplicity problem [2]. The problem arises
when receivers use packet losses as congestion signals and the source uses these signals to
regulate its fransmission rate without proper aggregation. When packets are lost on multiple
paths independently, receivers downstream of these paths will all send congestion signals to the
source resulting in multiple rate drops at the source. In the current IP multicast model, the
data source does not know the receiver topology, hence cannot aggregate the congestion signals
over receiver locations. Generally, when there are multiple bottleneck paths, the source has to
adapt to the sum of the congestion signals generated on these paths and its rate will be quickly

throttled as the number of congested paths increases.

3.2 Responsiveness and Fairness

In today’s Internet, TCP is the dominant transport protocol and its success largely attributes to
its congestion control and error control mechanisms [11]. Consequently, it is important to design
a multicast congestion control scheme which coexists and shares the bandwidth fairly with TCP.
In reliable bulk data transfer, the fairness is defined as to achieve TCP-compatible throughput
on the worst sender-to-receiver path. The responsive time of TCP’s window based congestion
control mechanism is typically one RTT (fast retransmission) or one retransmission time-out.
As we have pointed out earlier, the delay in the feedback makes a multicast congestion control
scheme hard to respond as fast as TCP, and therefore, fairness cannot always be achieved in
a very short period (at most one RTT). Furthermore, the TCP congestion control scheme is
tightly coupled with its error control scheme. A TCP receiver uses the left edge of the window
(the highest sequence number of continuously received data) to ACK to the source instead of the
right edge (the highest received data sequence number), and at a retransmission time-out event,
it reduces the congestion window size to one segment size. In the case of multicast, however, the

sender is not necessarily informed of all packet losses and packets can be retransmitted locally.

Hence, a coupling of error control and congestion control will only add additional complexity
and unscalability to the protocol. It is possible that local retransmissions may well endanger
the already congested path by injecting more packets into it, and care must be taken to limit
these local retransmissions. However, ii. is still an open issue as how local retransmissions should
be limited. The decoupling of the error control and congestion control implies that in time of
severe congestion when the packet loss ratio is very high, the different degree of responsiveness
taken by multicast and TCP congestion control will result in some degree of unfairness.

It was also pointed out in the last RMRG(Reliable Multicast Research Group) meeting [23],
that we may just have to live with the slow responsiveness of multicast flow and only try to
achieve fairness with TCP in a long run. Yet, it is not clear how the network and other flows
will sustain during this period of overload and how long the period should be.

In the next section, we introduce our approach which tries to identify the worst receiver
path and adapts the data rale to this path in a TCP-similar manner. Because we single out
one worst path at a time, relatively fast feedback can be obtained on this path and the flow can
therefore respond quickly to congestion. In addition, each receiver estimates its own capacity
and compares with that of the worst receiver. The capacity of a receiver is calculated as a
function of experienced loss rate and RTT, which we will detail later. This provides a richer
feedback to the source for switching between receivers to adapt its rate and significantly reduces
the drop-to-zero effect. We employ an additive increase/multiplicative decrease rate adaptation

algorithm at the sender, which is similar to that of TCP, to achieve fair bandwidth sharing.

4 Design Assumptions and Solutions

In this section, we first outline our main assumptions of the network model that our protocol
is designed to operate on and then our key ideas that solve the problems described in the
previous section. For simplicity reasons, we describe our scheme in an one-to-many scenario. A
many-to-many case can be generalized by running a separate instance of protocol for each data

source,

4.1 Network and Application Model

We assume in our model that there are a few bottlenecks within a multicast group and they
persist for a period of time long enough for the data source to adapt to. These bottlenecks
are links with offered load near their capacity, creating a few congested paths to downstream

receivers within a multicast group. The nature of the network traffic is unpredictable and

dynamic, suggesting that these bottlenecks can change from one to another and the degree of
congestion on each path can vary over time. However, studies in [8, 16] show that there are
typically a few "hot spots” in the network that are significantly more congested than the others
and these few bottlenecks usnally remain for a noticeable time.

We also assume that the application specifies its rate adaptation range and takes care of
dynamic group membership. For example, if a path is so severely congested that the application
cannot tolerate the low adapted data rate, members downstream of the path may need to
be dropped out. But this should be decided and performed by the application itself, while
the congestion control protocol will simply adapt to as low rate, possibly zero, as the receiver

feedback indicates.

4.2 Solution QOutline

We propose a rate-based and sender-based multicast congestion control protocol that relies only
on end-to-end feedback. In our design, we use a combination of distributed receiver feedback
suppression and sender feedback aggregation scheme to handle shared and independent conges-
tion, and identify the worst receiver path; we adopt the addictive increase and multiplicative
decrease rate adaptation algorithm (AIMD) to achieve TCP-fairness on the worst path. The

main ideas are outlined below:

e Agent architecture: An agent is defined as a receiver downstream of the most congested
data path. There is a single agent among all receivers at any time instance. An agent sends
positive or negative feedback(PF/NF) to the source indicating the congestion condition of
its represented path. Such an agent is dynamically selected and it helps the source to adapt

to the worst path in a timely manner.

¢ Apgent selection: The basic criterion of selecting an agent is that it must be located in the
most congested subtree. Among those, the closest receiver to the bottleneck is ideally the
best agent since it senses the path condition faster than the rest of receivers, hence sending
feedback more quickly. However, the selection mechanism must not cause any implosion
problem. In our scheme, each receiver independently decides when to become an agent
based on their estimation of its path condition and sends a congestion nottfication(CN) to
the source. A suppression mechanism is then applied to avoid implosion of CNs within
a subtree and an aggregation method at the source to single out the worst receiver from

multiple independent CNs.

» Feedback metric: Each receiver estimates its capacity as an indication of the degree of
congestion on its own path and decides locally when to send a CN. This capacity estimation
is a function of both measured loss rate over a recent period and measured round-trip time.
It avoids largely the drop-to-zero problem and avoids false alarms such as packet errors or
random losses by averaging losses over fime, thus mitigating the effect of each individual

packet loss.

¢ Rate adaptation: We use a rate-based AIMD adaptation algorithm on the identified worst
path to achieve congestion control and TCP-fairness. This choice is mainly for simplicity,
since the sender can use a single parameter, the transmission rate, across all receivers. On the
contrary, a window-based scheme has extra complexity in maintaining and synchronizing the
congestion window across all receivers. In addition, a rate-based approach is more friendly

to the network, when a window-based scheme generates data bursts periodically.

5 Protocol Details

In this section, we elaborate our solution in details and also discuss some unsolved issues up
front. Our congestion control mechanism builds on top of any existing error control protocol.
Instead of devising a parallel suppression mechanism to the one already existing in error control,
we re-use it for the suppression of congestion notifications. Although there are differences in
the implosion and exposure control for these error control protocols, the impact on our scheme

is very small so we do not discuss them in great details.

5.1 Identifying bottleneck under shared and independent congestion

Most of the issues we discussed so far stem from the fact that neither the source nor any of the
receivers is able to distinguish shared congestion from independent congestion. The occurrence of
shared congestion results in feedback implosion as receivers do not know whether they are within
the same subtree. On the other hand, independent congestion contributes largely to the drop-
to-zero problem, since the source cannot effectively aggregate all the congestion notifications.
Figure 1 shows the three categories of congestion: independent, shared and a combination of

both.

Independent congestion: For independent congestion, we use a two-step suppression: firstly
each receiver sends a CN if and only if it has worse capacity then the current agent, for example,
if A is an agent, and B’s measured capacity approximates to A’s then B will not send a CN,

This first step significantly reduces the number of congestion notification from the number of

Source Source

Receivers

Independent Shared Combination

Figure 1: Independent and Shared Congestion

congested subtrees to the number of heavily congested subtrees; secondly the sender selects
the worst among all receivers who send a CN, as a new agent. For example, if both A and B
simultaneously detect severe congestion and both send CN, then the sender will only choose one

of them, the worse one.

Shared congestion: Shared congestion happens when there are multiple receivers downstream
a common congested link. Generally, every receiver in this congested subtree is eligible to send
feedback to the source, but the ideal receiver to feed the source should be the one closest to
the bottleneck, since it is the one that first detects the packet loss and is able to send the
source the quickest feedback on the condition of the botileneck link, thus minimizing delay.
In Figure I, assuming all links have the same delay, then receiver C should be ideal to send
feedback. However, the estimated capacity ai each receiver is a function of both RTT and loss
rate, so receiver A, B will then have worse capacity even though they are not the optimal agents.
The problem can be solved if receiver C’s congestion notification can always suppress A’s and
B’s. This is possible in a hierarchical suppression method such as RMTP [20], LMS {19] etc.,
where the designated receiver can distinguish if CNs from downstream are the same as its own
by looking at the sequence number. For schemes like SRM [6], where randommess is used in a
flat topology, then we have to depend on the accuracy of SRM’s timer estimation among A, B
and C such that C’s notification timer always fires beforehand and will reach A and B in time
to suppress their notifications. Therefore, there is fuzziness in selecting the best agent, however,

it does not affect the correctness of determining the bottleneck link.

Combination of independent and shared congestion: In time of receivers experiencing
both independent and shared congestion, our scheme still converges to the receiver with the

worst capacity. As shown in Figure I{c), initially when no agent is selected, all three receivers

10

are eligible for sending CNs. Initially the sender may select C as the agent since C’s CNs reach
first. Some of A’s and B’s CNs are suppressed by C’s CNs due to shared congestion, but since
A and B are experiencing higher loss rate, they are generating more CNs when C doesn’t and
in turn become the new agent. When either A or B becomes agent, C will stop sending CNs

since it discovers itself no longer the worst receiver.

5.2 Feedback Mechanism

In the current Internet, congestion is usually detected by packet loss. A naive approach of
reporting congestion might be sending a negative acknowledgment to the source on detecting
a packet loss. However, this scheme does not scale for two reasons: (1) for congestion control,
we not only need to know when the congestion happens, but also when the resources become
available again, so the source’s rate can ramp up again to efficiently use the resources. If a
simple NAK-based scheme is adopted, the source must suffer delay in detecting the resource
re-availability, typically by a long time-out of lack-of-NAK, and cannot use the resources ef-
ficiently; (2) a NAK-based congestion signal suffers from the drop-to-zero problem, since in a
large multicast group, every single packet may have a high probability of getting lost on at
least one of the paths. A source does not have enough information from the NAKs to aggregate
them, resulting in unnecessary bandwidth throttling. Therefore, the source needs a richer set
of information. In addition, for scalability reasons, this information must be calculated by each
receiver locally.

There are two parameters to decide a worst receiver: round trip time and loss rate. It
is obvious that the packet loss rate directly measures the link condition towards the receiver,
however, it is less obvious that the round trip time also affects the choice of the worst receiver.
This is because in closed loop control, the feedback time controls how fast the rate can be
adjusted. If the adjustment range is the same, the faster the rate oscillates, the higher the
throughput. In addition, TCP also provides fairness proportional to round-trip time. If a close-
by receiver is experiencing high loss rate, while a receiver further away is experiencing moderate
loss rate, adapting to the close-by receiver may result higher data rate than what TCP would

achieve on the longer path, hence causing unfairness. We calculate the capacity as below:
Capacity = 1/(RTT # sqrt(lossrate))

The time period of calculating this capacity directly affects the responsiveness of the con-
gestion control scheme. If the time is too long, the estimated congestion degree is smoothed

too much and the flow will be unresponsive. On the other hand, if the time is too short, the

11

receiver does not have sufficient information to obtain an accurate estimation while filtering out
the noise, causing the flow to be over-responsive. A pure NAK-based approach can be viewed
as such an example: it uses one packet time to report the capacity of zero or one and cannot
filter out any noise caused by loss variance.

Note that our capacity equation bears assemblance to the steady-state TCP throughput
equation [13]. This is no coincidence. Indeed, we try to closely model the equivalance of TCP

throughput, and hence the choice of square root of loss rate as a parameter.

5.3 TCP-like Rate Adaptation Algorithm

Once an agent is selected, it sends positive or negative feedback to the source every RTT. The
source uses AIMD to adapt its transmission rate: the rate is increased one packet every RTT,
where the RTT is reported by the agent; and the rate is decreased to half upon receiving a
negative feedback. The agent’s PF/NF includes its current estimated capacity, measured round
trip time and the sequence number of the last missing packets. The source only adapts to
PEF/NF with the sequence number higher than that of the first data packet sent after last rate
adjustment. This delay in action ensures that the source only adapts to newly experienced
congestion. In addition, it increases its rate only if a PF indicates an increasing capacity. In
other words, if there is queue building up in the network resulting in an increasing RTT and
decreasing capacity, the source anticipates it and does not increase its rate,

Therefore, during the lifetime of the bottleneck link, if additional traffic is created, the
source will detect the decreased link capacity reported by the agent, since it is experiencing
either higher quening delay or higher loss rate. On the other hand, if some flow is terminated
on the bottleneck linlk, the source will detect the increased link capacity from the agent.

The agent’s report is aggregated over one RTT, that is if there are multiple losses over one
RTT, it only sends one NF. An NF has precedence over a PF, so the source receives one PF
or NF every RTT. Thus, the response time to a packet loss event is one RTT which is similar
to the time needed in TCP’s fast retransmission algorithm. For small bursty losses within one
RTT, TCP only halves its window size once according to the fast recovery algorithm, while in
our scheme, the rate is reduced once since only one loss event will be reported. However, a large
burst of losses typically causes TCP’s retransmission timer to expire and reduces the congestion
window size to one segment. In our scheme, large bursts may cause multiple rate drops but may

not result in as conservative a rate as TCP’s.

12

5.4 Open Issues

There are still several open issues that we are aware of, but are left alone in our design, including:
the choice of initial data rate and RIT, the measurement of RTT and the control of local
retransmission rates. These issues are very important in actual protocol implementation and

deployment. We discuss them hriefly below:

Start-up behavior

The choice of an initial transmission rate and the default RTT has been raised during a
recent RMRG meeting. It is generally agreed an RTT of 500ms is big enough to cover the
span of current Internet. If we start transmission at 1 packet/RTT and increase the rate 1
packet/second every 500ms, suppose we have a 1Mb link and use packet size of 1KB, it will
take about 32 seconds before the sender is able to saturate the link. The same problem was
presented 10 years ago in the design of TCP initialization method and the solution is to use an
exponential increase whenever the window size is dropped to one. Yet, an exponential increase
may not be suitable for multicast since TCP usually suffers much higher losses during its slow
start period and this situation may be amplified even more in a multicast environment.

An ideal solution is to let all routers on the multicast tree to select a rate it is able to handle
based on its history and propagate back the minimum rate to the source. However, the policies
involved in such a design are beyond the scope of the paper. In our simulations, we always

choose an initial rate such that the source is able to saturate the link in a small time interval.

RTT measurement

In our scheme, each receiver needs to maintain an average of round trip time measurements
to calculate the capacity. This assumes synchronized clock and symmetric links between the
data source and the receiver. Unfortunately, these two conditions may not be true in some
situations, such as when satellite links are involved. In [1, 17}, hierarchy-based round trip time
measurement without the above assumptions are proposed. Since such a measurement happens
outside the loop of data rate control, we believe it, as well as other future solutions, can be
directly plugged into our scheme. One must note that this is not a problem for agents, because
they send feedback frequently to the source, thus allowing the sender to measure the RTT and

relay back the information.

Error control and retransmissions
As we mentioned earlier, retransmissions can be harmful to an already congested link if they
are not rate limited. If the data source is the only one retransmitting, then the source should

account for the retransmissions as part of its original data transmissions. If local retransmission

13

is allowed, ideally these retransmission should only affect the local subtree and the receiver who
sends the retransmission should limit the transmission rate to some small percentage of the data
rate. Since packet losses are rarely consist of big burst, we imagine limiting the retransmission

rate fo be small is acceptable and will not increase the recovery delay significantly.

6 Simulation Study

We have implemented our multicast congestion control scheme on top of the Scalable Reliable
Multicast protocol (SRM}) in Ns2. We adopt the random timer based suppression method of
SRM to send CNs and keep all other aspects of SRM including error recovery, session messages
unchanged.

The main metric we are interested in is the throughput delivered to each receiver, with
varying multicast group sizes and competing traffic. We compare with TCP performance to
study the fairness issues. The other metric we are interested in is the impact of traffic and

network dynamics.

6.1 Multiple Competing SRM/CC Flows

In this experiment, we construct a simple scenario to understand the basic behavior of our
congestion control scheme. We initiate 20 SRM/CC flows at random time for 0 to 1 second,
sharing a single bottleneck link of 10Mb/s and using 1KB packets. We vary the round trip
time from 60ms to 600ms and the simulation runs for 100 seconds. Figure 2 shows a scattered
throughput plot of each flow with drop-tail queue on left and RED on right.

The ideal fair bandwidth sharing for each flow is 64KB/s. Figure 2 shows that when the
round-trip time is low, bandwidth is more equally shared among all flows. With an increasing
RT'T, the dispersion of throughput also increases. The maximum throughput ratio is a factor of
2.5 when RT'T equals to 600 ms. This ratio is true for both drop-tail and RED, with RED having
a slightly wider dispersion. The increase of RT'T attributes to feedback delay and flow response
time, resulting in higher loss rate. Meanwhile, the variances of SRM suppression timers also
increase since these timers scale on receiver RT'T's. We believe these variance are the major cause
of throughput deviations. The highest loss rate among all flows during the entire simulation is

around 3% {not shown) whick is quite good given the additional delay in feedback.

14

Feirness amang Multiple SRAYCC Flows Fairness among Multiple SRM/CC Rows

DepTat =]
100 T 100 T
80 20
L
7 8 : g R
m 60 t "1(g 60¢f] & 4
ES H Y Z g B ¢ & [
a. 3 ! H ! ¥ g. % t a « #
= F £
© £ 4 o ¢ 4 < :
3 ¢ 1 3 g H & p
8 : H i : 2 o4l : H .
£ 4 H i =4 ¢ A .
= . F s 4 e
&
20 !
q : : . 0 ; . ;
0 200 400 500 1 200 400 800
Round Trip Time {ms}) Reund Trip Time (ms)

Figure 2: Fairness among Multiple SRM/CC Flows

6.2 TCP Fairness

In this experiment, we study the TCP-fairness aspect in a single bottleneck network model.
We use TCP-Reno as the base-line TCP. The topology we use is shown in Figure 3. All traffic
sources are at the left side of the bottleneck link, and receivers on the right. We keep the
bandwidth of the bottleneck link to be proportional to the number of flows sharing the link so
that in the ideal case, each flow should always get the same amount of throughput regardless of

other varying parameters.

SRM/CC SRM/CC
Sources Receivers
N # 0.5 Mb/s
100 Mb/s 100 Mb/s
5 ms _Sms
TCP TCP
Sources Sinks

Figure 3: Topology for TCP-fairness Simulation

Due to the excessive memory consumption of NS, we were not able to construct large mul-
ticast groups while simultaneously running many SRM flows. Instead, we keep each group size
small with two receivers only but varying the number of competing flows from 10 to 80. Half

of these flows are TCP and the other half SRM/CC. All flows are started randomly during the

15

first 5 seconds and the simulation runs for 120 seconds.

Fairness test with Varying Number of Flows Fairness test with Varying Number of Flows
Drep Tait RED
3 : : 3 ; T
-2 10 flows o—o 10 fiows
& i 20 flows & —t5 20 liows.
- - 40 flows 40 llows
25 F o2 8D flows B 25 F o B0 Tlows
80 flows: 80 flows
2 2
2 8
T a
o [i4
] =}
Bist Bst
f= o
=) =
_g 2
E £
s b
05 05 -
]

0 100 200 300 400 500 00 [100 200 300 400 500 600
Round Trip Time {ms) Round Trip Time {ms)

Figure 4: TCP Fairness

Figure 4 shows the average throughput ratio between SRM/CC and TCP with drop tail
queues and RED. We observe that the throughput ratio lies between 0.5 and 2.5. This ratio is
compatible with that of the previous experiment, meaning that SRM/CC is able to treat TCP
fairly. We also observe that when RTT is small, SRM/CC is more aggressive while TCP tends
to get higher throughput with larger RTTs. When RTT is small, TCP’s congestion window is
small because of the low bandwidth-delay product, therefore, multiple losses in a single window
create more time-outs at the source resulting slow start and low throughput. On the other hand,
once the TCP congestion window opens up high, the fast retransmission helps TCP recovering
lost packets in about 1 RT'T, so the multiple-loss impact on TCP is very little. In this case the
TCP becomes more aggressive than SRM/CC. This is typically why the majority of the points
in figure 4 passing the 100ms RI'T mark, are less than 1.

We repeated the same set of test for RED gateways. For RED, the minimum threshold is
kept at 5 packets, the maximum threshold at 20 packets and the queue weight at 0.003. Clearly,
RED is able to achieve better fairness than drop-tails queues. The early warning of the incipient
congestion and the smaller averaging queuing delay reduce the bursty loss for TCP, and reduce
the measured RTT variance for SRM/CC. This results in more stable behavior and brings closer
the throughput of the two types of flows.

We conclude from this test that SRM/CC is able to achieve good fairness with TCP and

16

scales well with large number of flows. However, TCP operates in two phases during congestion:
slow stari and fast retransmission. This non-uniformity is not necessarily a desired feature for
congestion control, but it certainly makes it hard for other type of congestion control to achieve

complete fairness with TCP.

6.3 Impact of Network Dynamics

In this experiment, we examine the impact of network and traffic dynamics on source’s rate
adaptation. Figure 5 shows the topology used in this experiment. We uses CBR sources to
create dynamic traffic on the intermediate links. The size of SRM/CC multicast group is 20 with
each receiver link delay uniformly distributed between 5ms and 100ms. The traffic dynamism
are as follows: at t = 0, SRM/CC source start transmission; at t — 20, CBR flow I transmits
at 20KB/s; t=40, CBR flow 2 transmits at 40KB/s; t=60, CBR flow 3 transmits at 30KB/s;
t=80, CBR flow 2 stops. We add zero-mean noises of uniform distribution over [-0.5, 0.5] to the
inter-packet transmission time of CBR flows. We tests both drop-tail and RED queue at the
bottlenecks. The link bandwidth settings are shown in Figure 5. All other parameters are the

same as before. The simulation runs for 100 seconds.

SRM
Receivers (20}

SRM CBR I

Source
SRM
Receivers (20)
CBR2

CBR SRM

Sources Receivers (20)

CBR3

Figure 5: Simulation Topology for Dynamic Network

Figure 6 shows the source rate adaptation over time, the dotted line shows the available
bandwidth. We observe that the rate oscillation of SRM/CC follows the available bandwidth
closely regardless the RTT difference among downstream receivers. This clearly shows that
SRM/CC is able to detect the switch of congestion path and react to it rapidly. The early
warning from the RED routers seem to create more oscillation. At time t=80 seconds, when
CBR flow 2 stops, both graphs show a spike. This is because that at this instance the agent

Is temporarily downstream of a ”"good” path and the source is getting the feedback from the

17

Rate Adaptation with Drop Tail Rate Adaptation with RED

100 00
e w N N S e - s .
e SRMIGE {201) —— SRM/CG (200
—— Avail BW — Avall. BW
80 4 aor

%
3

"l

40 |

Transmissicn Rate {KB/s)
»
3

-l

et |

Wk 20}

¢ . 4 : L
Q 20 40 £0 a0 104 o 20 BO 100

48 40
Time {seconds) Time (secends)

Figure 6: Response time of SRM/CC

mis-informed agent. This mistaken period lasts about 1 seconds, or about 20 RTT.

At the top of each figure, we also listed the switches of agent at the sender side. Commonly
in both drop-tail and RED, SRM/CC is able to pinpoint an agent behind the bottleneck quickly
when traffic changes. There are some oscillations between agents during the first 20 seconds when
all three links are experiencing same degree of congestion. This leads to our next experiment
on whether SRM/CC have excessive agent oscillations when all links are suffering from similar
degree of congestion.

When sender switches agent, it drops its transmission rate to half. Hence, agent oscillations
may lead to extreme low throughput. These oscillations are due to the large variance of loss
rates on each individual path which causes receivers unable to measure accurately their loss rate
over a short period time. We examine the impact of network loss variance on our congestion
control scheme. In this experiment, we use a star topology of 40ms round-trip time and 0.5Mb/s
links with one multicast group of 50 receivers. On each path, random loss is created with mean
p varied from 1% to 10%. Each random loss is a uniform distribution over [0, 2 * p].

Figure 7 shows the throughput comparison of TCP under the same loss rate and SRM/CC.
It shows that SRM/CC does exhibit some performance degradation when loss rate is low. Since
the lower the loss rate, the longer the time period needed to measure it accurately. However, as
loss rate increases, SRM/CC behaves more stable than T'CP and throughput of two flows are
closer when loss rate is around 5%. In {21], Paxson suggested that loss bursts exhibit a “heavy-

tailed” distribution, indicating immense variability over both small and large time scale. If this

18

T T
a—aTCP
+—~—+ SRWCC, 150

d

Threughput (KB/S)
[
S

.f
f
:
|
/
|
!
|

[H 0.02 0.04 .06 0.08 0.1
RAandom Mean Loss Probability

Figure 7: The Drop-to-Zero Problem

observation is true, then any end-host based measurement cannot be accurate unless using a
prolonged period which is not suitable for congestion control. We are currently underway to

research other mechanisms that may help in producing more precise measurement.

7 Related Work

There are several sender-based multicast congestion control scheme presented in [4, 7, 9, 26, 22].
In [4], Delucia and Obraczka presented a similar model to identify independent bottlenecks and
letting representatives in each of these subtrees to send feedback. Although the basic model
is similar to ours, the methods of identifying the bottlenecks, suppression of congestion signals
and the rate adaptation mechanism are completely different from ours. In [4], feedback is in
the form of ACKs and NAKs, and is multicast to the entire group for the sake of suppression
of shared congestion signals. The ACK/NAKs that escape the subtree and reach the source are
likely from independent subtrees, and are selected by the source as representatives. Once the
representatives are selected, the source adopts a TCP-Vegas [3] like rate adaptation algorithm.
We argue that this scheme is vulnerable to independent packet losses. In a large network, it
is highly possible that each subtree will suffer some degree of independent packet losses, If
there are only a limited number of representatives, they cannot cover every subtree. Thus,
any uncovered receiver may send NAKs upon detection of packet loss, causing sender’s rate be
throttled. Purthermore, the suppression method they use is also not efficient. In order to let

representatives’ feedback traversing the group and suppress others, the feedback timer at each

19

receiver is set based on the longest RTT of the group instead of each receiver’s own RTT. Even
so, since all feedback is multicast, there is at least one feedback received by everybody in the
group for every packet. This high volume of feedback traffic is undesirable in a geographically
large multicast group.

Mark Handley, et al presented a different approach for TCP-friendly reliable multicast con-
gestion control in RMRG [9, 26]. They propose to use the TCP throughput approximation
equation [18] at each receiver to estimate its current reception rate and feed this information
back to the source. The source then simply chooses the slowest rate and adjusts its transmission
rate. Since the throughput approximation is based on steady state analysis, and the receivers
have to calculate their loss fractions over a relative long period (tens of RTT) in order to achieve
an accurate rate estimation. The idea behind [9] is to relax the responsiveness as compared to
TCP and only achieve TCP-fairness over a long term average. The robustness and reliability
of the throughput equation in a real network is still under investigation. However, given the
different profotypes of TCP implementations and the heterogeneity of network environment,
a single form of equation will be hard to model all these situations accurately. This puts the
scalability and reliability of any protocols based on such equation in doubt. Additionally, the
impact of low responsiveness on TCP performance also needs further study and investigation.
One possibility is that since TCP responds to congestion much faster, it may be starved of
bandwidth, while the scheme in [9] may not detect any serious congestion at all. The same mis-
taken percepfion can happen in rediscovery of the bandwidth availability as well. The trade-off
between responsiveness and accuracy therefore needs to be carefully examined.

Both of the above works use a rate-based adaptation algorithm, while in [7], Golestani
investigated the fairness relationship between window-based and rate-based schemes. They
proposed a hierarchical approach of window-based congestion control. The idea is to keep a
distinct window for every receiver so as to carry a sustainable throughput adapted to the slowest
receiver. This hierarchical approach can also be used separately for feedback consolidation and
RTT estimation. However, as the writing of this paper, we are not aware of any formal evaluation

or simulation of the proposed scheme in [7].

8 Conclusions and Future Work

In this paper, we have presented a multicast congestion control scheme based on dynamically
identifying the congested subtrees in the network and adjusting data rate according to feedback

from these subtrees. Suppression and aggregation of feedback on both receiver and sender side

20

avoids the implosion problem, still the agent based model ensures that feedback is propagated
to the sender in a timely manner. The simulation shows promising results in scalability and in
achieving TCP-fairness.

Although we have focused our study in an end-to-end based approach, the same model
can be extended to other multicast congestion control framework as well. For example, if the
routers are to keep states for a multicast session, then the router that is mostly congested can
act as an agent sending feedback to the end nodes, possibly using the ECN bit [5]. In this
case, the capacity is not necessarily be strictly proportional to the square root of loss rate
and RTT, but can be calculated in accordance with the queue management algorithms or with
additional policies. In our scheme, we have adopted the AIMD algorithm for it is proven to
be safe to the network. Additionally, for fairness reasons, we have chosen the increase and
decrease factor of the AIMD algorithm to be same as that of TCP. However, we found that
the two phases of TCP’s congestion control makes it very hard for any other type of congestion
control to be completely fair with it. The congestion avoidance of TCP during which the TCP
congestion window reduces to one segment size is very conservative and usually results in very
poor performance. On the other hand, the reducing to half semantic results in wide oscillations
in transmission rate. These features of TCP are developed during its historical design, whether
any new protocol should conform to these design simnply for the sake of pure fairness is an
open question. There is one possibility of deploying muliicast as a separate flow class in the
differentiated service architecture. Then, the flow adaptive range is limited to be smaller and the
increase and decrease factor can then be changed to smaller values in order to achieve smoother

and healthier rate adaptation and better link utilization.

References

[1] A. Basu and S. J. Golestani. Estimation of Receiver Round Trip Times in Multicast
Communications. RMRG Meeting, December 1998.

(2] S. Bhattacharyya, D. Towsley, and J. Kurose. The Loss Path Multiplicity Problem in
Multicast Congestion Control. Technical report, University of Massachusetts, August 1998.

[3] L. Brakmo, S. O'Malley, and L. Peterson. TCP Vegas: New techniques for congestion
detection and avoldance. In ACM SIGCOMM, 1994.

[4] D. DeLucia and K. Obraczka. A Multicast Congestion Control Mechanism for Reliable
Multicast. In Proc. IBEE INFOCOM, 1997.

[5] S. Floyd and K. Fall. Promoting the Use of End-to-End Congestion Control in the Internet.
IEEE/ACM Transactions on Networking, August 1999.

[6] S.Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A Reliable Multicast Framework
for Light-weight Sessions and Application Level Framing. In Proc. ACM SIGCOMM, 1995.

21

[7] S.J. Golestani. Fundamental Observations on Multicast Congestion Control in the Internet.
In Proc. IEEE INFOCOM, 1999.

[8] M. Handley. An Examination of MBone Loss Distributions. Presentation at the 3rd RMRG
meeting, February 1998.

(9] M. Handley and S. Floyd. Strawman Specification for TCP Friendly Reliable Multicast
Congestion Control {TFMCC). RMRG Meeting, December 1998,

[10] http://www mash.cs.berkeley.edu/ns.
[11] V. Jacobson. Congestion Avoidance and Control. In Proc. ACM SIGCOMM, 1988.

[12] S. Kasera, J. Kurose, and D. Towsley. Scalable Reliable Multicast Using Multiple Multicast
Channels. Technical Report 96-73, University of Massachusetts, October 1996.

[13] J. Mahdavi and 5. Floyd. TCP-Friendly Unicast Rate-Based Flow Control. Technical note
sent to the endZend-interest mailing list, January 1997.

[14] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven Layered Multicast. In Proc.
ACM SIGCOMM, 1996,

[15] T. Montgomery. A Loss Tolerant Rate Controller for Reliable Multicast. Technical report,
NASA-IVV-97-011, 1997.

[16] A. Odlyzko. The Internet and Other Networks: Utilization Rates and Their Implications.
Technical report, AT&T Research Labs, September 1998.

f17] V. Ozdemir, S. Muthukrishnan, and I. Rhee. Scalable, Low-Overhead Network Delay
Estimation. In Proc. IEEE INFOCOM, 2000.

[18] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Throughput: A Simple
Model and Its Empirical Validation. In Proc. ACM SIGCOMM, 1998.

(19] C. Papadopoulos, G. Parulkar, and G. Varghese. An Error Control Scheme for Large-Scale
Multicast Applications. In Proc. IEEE INFOCOM, 1998.

[20] S. Paul, K. K. Sabnani, J. Lin, and S. Bhattacharyya. Reliable Multicast Transport Protocol
(RMTP). In Proc. IEEE INFOCOM, 1996,

[21] V. Paxson. End-to-End Internet Packet Dynamics. In Proc. ACM SIGCOMM, 1997.

(22] 1. Rhee, N. Ballaguru, and G. N. Rouskas. MTCP: Scalable TCP-like Congestion Control
for Reliable Multicast. In Proc. IEEE INFOCOM, 1999.

[23] RMRG Meeting, hitp://www.east.isi.edu/RMRG /newindex.html, Decemnber 1998.

f24] T. Speakman, D. Farinacci, S. Lin, and A. Tweekly. PGM Reliable Transport Protocol.
Internet Draft, August 1998.

[25] L. Vicisano, L. Rizzo, and J. Crowcroft. TCP-like congestion control for layered multicast
data transfer. In IEEE INFOCOM, 1998.

[26] B. Whetten and J. Conlan. A Rate Based Congestion Control Scheme for Reliable Multi-
cast. Technical White Paper, 1998.

22

	A Rate-based End-to-end Multicast Congestion Control Protocol
	Recommended Citation
	A Rate-based End-to-end Multicast Congestion Control Protocol

	tmp.1439924045.pdf.rLtfb

