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ABSTRACT OF THE DISSERTATION

Dual-modality thermoacoustic and photoacoustic imaging

by

Manojit Pramanik

Doctor of Philosophy in Biomedical Engineering

Washington University in St. Louis, 2010

Research Advisor: Prof. Lihong V. Wang

Diagnosis of early breast cancer is the key to survival. The combined contrasts from

thermoacoustic and photoacoustic tomography (TAT and PAT) can potentially pre-

dict early stage breast cancer. We have designed and engineered a breast imag-

ing system integrating both thermoacoustic and photoacoustic imaging techniques

to achieve dual-contrast (microwave and light absorption), non-ionizing, low-cost,

high-resolution, three-dimensional breast imaging. We have also developed a novel

concept of using a negative acoustic lens to increase the acceptance angle of an un-

focused large-area ultrasonic transducer, leading to more than twofold improvement

of the tangential resolution in both TAT and PAT when the object is far from the

scanning center.

A contrast agent could be greatly beneficial for early cancer diagnosis using TAT/PAT,

because the early stage intrinsic contrast can be low. We have developed a carbon

nanotube-based contrast agent for both TAT and PAT. In comparison with deionized

water, single-walled carbon nanotubes (SWNTs) exhibited more than twofold signal
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enhancement for TAT at 3 GHz, and in comparison with blood, they exhibited more

than sixfold signal enhancement for PAT at 1064 nm wavelength. Using PAT in con-

junction with an intradermal injection of SWNTs, we have shown the feasibility of

noninvasive in vivo sentinel lymph node imaging in a rat model.

We have also developed and demonstrated molecular photoacoustic imaging using

unique “soft-type” colloidal gold nanobeacons (GNBs) in the near-infrared region.

GNBs represent a novel class of stable, colloidal gold nanoparticles, incorporating

small metallic gold nanoparticles that can clear from the body when the particles are

metabolically disrupted. We have also imaged the sentinel lymph node using different

sizes of GNBs, showing that size plays an important role in their in vivo behavior

and uptake to the lymph nodes.

In addition to providing diagnostic imaging, TAT and PAT can be used in therapy for

real-time temperature monitoring with high spatial resolution and high temperature

sensitivity, which are both needed for safe and efficient thermotherapy. Using a

tissue phantom, these noninvasive methods have been demonstrated to have a high

temperature sensitivity of 0.15 oC at 2 s temporal resolution (20 signal averages).
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Chapter 1

Introduction to thermoacoustic

and photoacoustic tomography

Breast cancer is currently the second leading cause of cancer deaths in women (after

lung cancer) and is the most common cancer among women, excluding nonmelanoma

skin cancers. One woman in eight either has or will develop breast cancer in her

lifetime. In 2009, there were an estimated 192,370 new cases of breast cancer among

females, and 1,910 new cases among males. About 40,170 female and 440 male died

of breast cancer in 2009 in the USA [1].

Despite major strides in cancer prevention and treatment during the past decades,

there has been only a modest effect on overall survival. Newer treatment regimens

have had some impact on breast cancer mortality, but most of the observed reduction

in mortality is due to the wider use of screening mammography and detection at earlier

stages. National statistics have shown a shift to more early stage diagnoses of breast

cancer. Some of these are smaller invasive cancers, but others are ductal carcinoma

in situ (DCIS), which now represents 20-30% of mammographically detected breast
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cancers. The absolute number of these cases began increasing in the late 1980’s and

1990’s, when screening prevalence increased in the USA.

Early diagnosis is the key to cancer survival. At present, x-ray mammography

is the only mass screening tool used for detecting nonpalpable breast cancers. The

sensitivity of mammography for breast cancer detection is good, and randomized

trials have documented that its widespread use results in a reduction in breast cancer

deaths. However, despite great strides in quality control and interpretation standards,

its sensitivity is limited in the dense breast. Moreover, the use of ionizing radiation

(x-ray) limits the frequency of mammographic screening. In spite of using low doses

of radiation, repeated x-ray exposure can cause problems. Further, it is difficult to

image dense glandular tissue and the region close to the chest wall or underarm. And

finally, very early stage tumors that do not yet exhibit microcalcifications cannot be

imaged. Recent technological developments have resulted in the advent of full-field

digital mammography (FFDM). A recent trial showed that FFDM was significantly

better than film-screen mammography for women under age 50 and for women with

dense breasts [2]. While FFDM might represent an improvement for a subset of

patients with dense breasts, its ability to make early stage diagnoses is limited by the

same factors as screen-film mammography.

Sonography is now routinely used in breast imaging centers as an essential comple-

ment to physical examination and mammography for the evaluation of breast masses,

and as a tool to guide breast interventions. Sonography can readily differentiate cys-

tic from solid breast masses and can be used to characterize masses, although it is

not tissue specific. Ultrasound specificity in breast cancer detection is limited by the

overlapping acoustic characteristics of benign and malignant solid lesions. Current

ultrasound scanners can detect and resolve breast lesions a few millimeters in size.
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Anecdotally breast screening ultrasound in high risk women can find additional mam-

mographically occult non-palpable breast cancers. A prospective multi-institutional

national screening trial comparing mammography to mammography plus sonography

in high risk women with dense breasts is now underway, and the results are expected

soon. Other sensitivity studies which have compared mammography, ultrasound, and

magnetic resonance imaging (MRI) have shown that ultrasound does not perform as

well as MRI for invasive cancers, nor as well as mammography for ductal carcinoma

in situ. Ultrasound may miss tiny nonpalpable breast tumors because they have low

acoustic contrast, or because of operator variability [3].

MRI offers improved tissue characterization compared to other imaging modalities.

Contrast-enhanced MRI is increasingly used as a complementary diagnostic modality

in breast imaging [4]. The sensitivity of breast MRI in the detection of malignancy

has consistently been reported to be excellent. However, the specificity has been

rather variable. Study protocols and imaging techniques are not standardized, and

there is still a great deal of uncertainty about the role of MRI in clinical practice.

MRI has been shown to be the best modality to image the extent of breast cancer in

patients with newly diagnosed breast cancer. It has also been shown to be best at

detecting unsuspected breast cancer in the contralateral breast of patients with newly

diagnosed breast cancer [5], as well as detecting breast cancer when screening high

risk women [3]. The American Cancer Society issued new guidelines suggesting that

high risk women be screened with MRI as an adjunct to mammography [6]. MRI,

however, is the most costly breast imaging modalities and requires the use of contrast

agents which are not innocuous. Recent reports of kidney disease following MRI

contrast agent administration are concerning, even though this is a rare occurrence

[7]. Furthermore, conventional MRI gives only morphological information.
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Thermoacoustic (TA) tomography (TAT)

In microwave induced TAT, a short-pulsed microwave source irradiates the tissue.

The dominant effect of microwaves on biological tissues is thermal. When electro-

magnetic energy is transformed in to kinetic energy in absorbing molecules, heating

and subsequent thermoacoustic emission occurs in the medium. Thus the absorbed

microwave energy causes emission of thermoacoustic waves from within the irradi-

ated tissue. The dielectric properties of the tissues determine their patterns of energy

deposition upon irradiation. The relatively long wavelength of the microwave, e.g.,

1.5–3.5 cm at 3 GHz in tissues (10 cm in vacuum), serves to illuminate the tissue

relatively homogeneously, although heterogeneity on the scale of the wavelength can

result. The microwave heating must be rapid to produce thermoacoustic waves of

sufficiently high frequencies; in other words, a static temperature distribution or slow

heating does not produce thermoacoustic waves. A wide-band ultrasonic transducer

acquires the thermoacoustic waves, which carry the microwave absorption properties

of the tissue.

The dielectric properties of normal and malignant tissues (Fig. 1.1) vary appreciably

over a range of frequencies [8, 9]. Soft tissues of high water/sodium content have a

large increase in the relative dielectric constant at frequencies below 0.1 GHz and a

large increase in conductivity at frequencies above 1 GHz [10]. At frequencies below

0.1 GHz, the large increase in the relative dielectric constant is due to the charging

of cell membranes, with smaller contributions coming from the protein constituents

and possibly ionic diffusion along surfaces in the tissue. At frequencies above 0.1

GHz, the changes in the relative dielectric constant and conductivity probably reflect

relaxation of the tissue proteins and protein-bound water, as well as other sources.

At frequencies above 1–5 GHz, the dipolar relaxation of water primarily determines
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Figure 1.1: Dielectric properties of human breast tissues [8].

the change in the dielectric properties. Because of the free water and sodium in

malignant tissue, conductivity increases significantly with frequency. In addition, the

“static” permittivity of the free water contributes predominantly to the permittivity

of tissue at ultra high (> 300 MHz) frequencies (UHF). The radio frequency (rf)

contrast between tumor tissue and normal tissue, about a factor of 4 as shown in

Figure 1.1, is primarily caused by the extra water and sodium in the tumor tissue

[11]. This large contrast is the primary motivation for our research on TAT, which

measures the conductivity contrast. In comparison, x-ray contrast is typically only a

few percent among soft tissues. Based on the data in Figure 1.1, the 1/e penetration

depth can be calculated (Fig. 1.2). Since TAT can sustain several 1/e attenuations,

it can image multiple cm deep in tissue.

The phenomenon of generating acoustic waves in electromagnetically lossy media

using rf pulses was used in the 1980s for imaging of biological tissues [12–15]. These

pioneering works, however, produced only planar images instead of tomographic or

depth-resolved images [16].
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Figure 1.2: Penetration depths versus frequencies [8].

TAT combines the advantages of pure-ultrasound and pure-rf imaging [17, 18]. Tradi-

tional imaging technology with pure ultrasound (ultrasonography) offers satisfactory

spatial resolution but poor soft-tissue contrast [19], while pure-rf imaging provides

good imaging contrast but poor spatial resolution [20–28]. The best spatial reso-

lution in pure-rf imaging is on the order of 10 mm despite its near-field operation,

whereas the achievable resolution in pure-ultrasound imaging is ∼1 mm. TAT bridges

the gap between them by physically integrating ultrasound and rf. It provides both

satisfactory spatial resolution (0.5 mm) and high soft-tissue contrast.

Photoacoustic (PA) tomography (PAT)

A. G. Bell first reported the observation of sound generated by light in 1880 [29].

When a short-pulsed laser irradiates biological tissues, wideband ultrasonic waves

(PA waves) are induced as a result of transient thermoelastic expansion. If the laser
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pulse is so short that thermal diffusion is negligible – a condition referred to as thermal

confinement, the photoacoustic wave equation in an inviscid medium is given as [30]:

(52 − υs
−2∂2/∂t2)p(~r, t) = −(β/CP )∂H(~r, t)/∂t (1.1)

Here, p(~r, t) denotes the acoustic pressure at location ~r and time t, υs denotes the

acoustic speed, β denotes the thermal expansion coefficient, CP denotes the specific

heat at constant pressure, and H denotes the heating function defined as the thermal

energy converted per unit volume and per unit time. The left-hand side of this

equation describes the wave propagation, whereas the right-hand side represents the

source term. The source term is related to the first time derivative of H. Therefore,

time-invariant heating does not produce a pressure wave, only time-variant heating

does. In practice, laser heating must be rapid to produce PA waves efficiently.

The initial photoacoustic pressure excited by a δ(t) laser pulse is p0 = ΓηthAe, where

Γ = βV 2
s /Cp denotes the Grueneisen parameter (dimensionless), Ae denotes the spe-

cific optical absorption (energy deposition) (J/cm3), and ηth denotes the percentage of

the absorbed energy that is converted in to heat. Since Ae = µaF , where µa denotes

the optical absorption coefficient and F denotes the optical fluence (J/cm2), we have

p0 = ΓηthµaF . In soft tissue imaging, Γ and ηth are usually treated as constants.

In PAT, a short-pulsed laser irradiates the tissue, and the PA waves are measured by

wide-band ultrasonic transducers around the tissue. A key task in PAT is to determine

the optical absorption density (or specific absorption) distribution from the measured

photoacoustic data, i.e., to map the optical absorption heterogeneity of the tissue.

We can use a focused ultrasonic transducer to localize the photoacoustic sources and

then construct the images directly from the data [31–38]. Alternatively, we can use an
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unfocused ultrasonic transducer to acquire the data and then reconstruct the optical

absorption distribution [39–46]. Since optical absorption is sensitive to physiological

parameters such as the total concentration and oxygenation of hemoglobin, PAT can

provide functional imaging. Optical absorption contrast due to both oxy- and deoxy-

hemoglobin relative to background can be as high as 10:1 or even 100:1, depending

on the optical wavelength [47].

PAT overcomes the limitations of other optical modalities and combines optical con-

trast with ultrasonic resolution. In PAT, the contrast is related to the optical prop-

erties of the tissue, but the resolution is not limited by optical diffusion caused by

multiple photon scattering. It has been shown experimentally that the spatial reso-

lution is bandwidth- and diffraction-limited by the photoacoustic waves [48] because

ultrasonic scattering is weak compared to optical scattering. PAT does not depend

on ballistic or backscattered light as optical coherence tomography (OCT) does. Any

light, including both singly and multiply scattered photons, contributes to the imag-

ing signal. As a result, the imaging depth in PAT is relatively large. Furthermore,

PAT is free of speckle artifacts [49], which plague OCT and ultrasonography. Pho-

toacoustic waves propagate one way to the ultrasonic transducers in PAT, whereas

ultrasound propagates two ways in conventional ultrasonography. Therefore, PAT is

less susceptible to acoustic tissue heterogeneity. The motivation for developing PAT

is summarized in Table 1.1. The key advantages of PAT include (1) a combination of

high optical contrast and high ultrasonic resolution, (2) good imaging depth, (3) no

speckle artifacts, (4) scalable resolution and imaging depth with ultrasonic frequency,

(5) the use of nonionizing radiation (used properly, both laser and ultrasound pose

no known hazards to humans), and (6) relatively inexpensive cost.
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Table 1.1: Comparison of various imaging modalities.

Modalities OCT [50] DOT [50] Ultrasonic imaging
(UI, 3 MHz) [51]

PAT [47, 52]

Contrast Good (scatter- Excellent Poor for early Excellent
ing & polariza- (functional) cancers (backscat- (=DOT)
tion) tering)

Resolution Excellent Poor (∼5 mm) Excellent & scala- Excellent
(∼10 µm) ble (∼0.5 mm) (= UI)

Imaging Poor (∼1 mm) Good (∼5 cm) Good & scalable Good
depth (∼6 cm) (= DOT)
Speckles Strong None Strong None
Scattering Strong Strong Weak (∼0.1 /cm)

(∼100 /cm) (∼100 /cm)

In Chapter II, we present the design and engineering of a breast imaging system that

integrates both thermoacoustic and photoacoustic techniques to achieve dual contrast

(microwave and light absorption) imaging [53]. The breast scanner system includes

the breast holder, the microwave source and delivery subsystem, the laser source

and delivery subsystem, image reconstruction subsystem (software), and the master

control of all subsystems. This scanner is non-ionizing, low-cost, and can potentially

provide high-resolution, dual-modality, three-dimensional images of the breast. The

scanner uses front instead of side breast compression, and dry instead of gel ultrasonic

coupling. We validate the proposed imaging system with tissue phantom imaging,

and quantify the resolution, imaging depth, signal-to-noise ratio, and contrast.

We also study how the tangential resolution and the image quality of the proposed

system depend on the transducer [54]. The use of large active area diameter flat

transducers for acquiring thermoacoustic and photoacoustic images gives rise to poor

tangential resolution (depending on the object location inside the scanner) and some

artifacts related to the object shape recovery. We present a novel concept of using
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a negative acoustic lens to increase the acceptance angle of an unfocused large-area

ultrasonic transducer (detector), leading to more than twofold improvement of the

tangential resolution in both TAT and PAT. For a given transducer bandwidth, the

aperture size of the detector affects the tangential resolution greatly when the object

of interest is near the detector surface. We are able to overcome such tangential

resolution deterioration by attaching an acoustic concave lens, made of acrylic, in front

of the flat detector surface. We then quantify the tangential resolution improvement

using phantom images. We also show that the use of the negative lens preserves the

shape of an object after the image is reconstructed.

In Chapter III, we describe studies on the feasibility of single-walled carbon nan-

otubes (SWNTs) as a multimodal contrast agent [55]. Although high rf and optical

contrast exists between well-developed malignant tumor tissue and normal tissue,

the contrast during the early stages of cancer maybe insufficient. Thus, targeted

contrast agents can be greatly beneficial for early cancer diagnosis using TAT/PAT,

increasing cancer contrast and targeting specific gene expressions to improve early

detection limits. We develop a carbon nanotube-based contrast agent for both TAT

and PAT. In comparison with deionized water (DI), single-walled carbon nanotubes

exhibit more than twofold signal enhancement for TAT at 3 GHz. In comparison

with blood, they exhibit more than sixfold signal enhancement for PAT at 1064 nm

wavelength. We also study the clinical application of SWNTs as a contrast agent in

noninvasive sentinel lymph node (SLN) mapping using PA imaging [56].

In Chapter IV, we develop and demonstrate molecular PAT using unique col-

loidal gold nanobeacons (GNBs) [57, 58]. GNBs represent a novel class of stable,

phospholipid-encapsulated, colloidal gold nanoparticles, incorporating small metallic

spherical or rod-shaped gold nanoparticles (2–4 nm) that can clear from the body
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when the particles are metabolically disrupted. These nanoparticles target vascular

markers of thrombosis (i.e., fibrin) and angiogenesis (i.e., integrin) with enhanced

specificity. Their particle size (∼200 nm) constrains their distribution within the

vasculature, preventing interactions with the same epitopes in extravascular tissues.

Preliminary results confirm our hypothesis that GNBs act as an exogenous contrast

agent, and that the strong PA signal in the near infrared (NIR) region points to the

potential of this platform for molecular PAT. The concept of molecular PAT of fib-

rin, a critical component of intravascular thromboses, are studied in vitro. We also

demonstrate the in vivo imaging capability of GNBs by imaging sentinel lymph nodes

in rats. We further show that the lymphnode distribution and in vivo trafficking of

the GNBs are governed by the hydrodynamic radii of these particles.

In Chapter V, we present another novel application of the TA and PA techniques,

in monitoring temperature noninvasively [59]. During thermotherapy it is necessary

to monitor the temperature distribution in the tissues for the safe deposition of heat

energy and efficient destruction of tumor and abnormal cells. Thus, real-time tem-

perature monitoring with high spatial resolution (∼1 mm) and high temperature

sensitivity (1 oC or better) is needed. Using a tissue phantom,we demonstrate that

the TA/PA technique has high temporal resolution and temperature sensitivity. Be-

cause both TA and PA signal amplitudes depend on the temperature of the source

object, the signal amplitudes can be used to monitor the temperature. The signal is

proportional to the dimensionless Grueneisen parameter of the object, which in turn

varies with the temperature of the object. The deep tissue imaging capability of these

techniques can potentially lead us to in vivo temperature monitoring in thermal or

cryogenic applications.

Finally, in Chapter VI, we summarize this work and suggest future directions.
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Chapter 2

A novel dual-modality breast

imaging system

2.1 Design and evaluation of a novel breast cancer

detection system∗

2.1.1 Introduction

Diagnosis of early breast cancer depends on the recognition of subtle changes in

breast tissue properties, such as mechanical properties (hardness), optical absorption,

rf absorption (change in ion and water concentrations). Treatment is more likely to

work well when cancer is found early. At present, x-ray mammography is the only

mass screening tool. However, there are several limitations of mammography [60].

Sonographic examination of the breast with high-frequency multi-element linear-array

transducers are not so useful because of the poor soft tissue contrast. MRI for breast

∗Reprinted with permission from M. Pramanik, G. Ku, C. H. Li and L. H. V. Wang, “Design
and evaluation of a novel breast cancer detection system combining both thermo-acoustic (TA) and
photo-acoustic (PA) tomography,” Medical Physics 35(6), 2218-2223 (2008).
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screening has a high sensitivity, but it is the most expensive breast imaging modalities.

To overcome some of these difficulties, we have developed a breast screening modality

that combines nonionizing radio frequency electromagnetic waves and a visible/NIR

laser for the early breast cancer screening based on thermoacoustic/photoacoustic

tomography. The rf contrast between malignant tumor tissue and normal human

breast tissue is about a factor of 4 [8]. A more recent study has shown the dielectric-

properties contrast between malignant breast tissues and normal adipose-dominated

breast tissues is large, ranging up to 10:1 [61]. Extra water and sodium in the tumor

tissue cause the enhanced dielectric property of the malignant tumor tissue [11]. The

dielectric properties of malignant tumors show no significant variation with tumor

age [62], suggesting that a large contrast could exist even at earlier stages of tumor

development. This large contrast is the primary motivation for our research on TAT,

which measures the conductivity contrast. In comparison, x-ray contrast is typically

only a few percent among soft tissues. TAT and PAT are capable of giving additional

information such as water/ion concentration, blood volume, and oxygenation level of

hemoglobin. Because these parameters can change during the early stages of cancer,

the combined TAT and PAT can potentially enhance early stage cancer diagnosis

ability. Integrating the two modalities in a single system will have the following

advantages: (1) It will reduce the image acquisition time, (2) It will be cost effective,

and (3) Acquiring two images in the same setup avoids moving and realigning the

patient all over again. Moreover, TAT and PAT are both highly compatible with

ultrasonography as they share the same ultrasound detection system. Therefore, in

the future, ultrasound pulse-echo imaging can also be incorporated very easily into

this system.
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2.1.2 System description

In x-ray mammography the breast is compressed from the sides to reduce the thick-

ness so that x-ray penetrates well. This compression causes some discomfort for the

patient. Moreover, one needs to take a mammogram from different angles to interpret

the images accurately. Our breast scanner is designed to minimize the compression

pain. The breast is compressed from the front (nipple side) to give it a cylindri-

cal shape. This technique has advantages in three ways. First, transducers can scan

around the cylindrical breast for a full 3600 and along the length to obtain a full three-

dimensional (3D) data set. Full 3D reconstruction can be done to view the breast in

3D. Second, compression from the front is less painful than one from the side. Third,

microwave/laser irradiation from the front of the cylindrically compressed breast can

potentially penetrate deep enough to image near the chest wall.

A cylinder made out of low-density polyethylene (LDPE), which has low ultrasound

absorption and an acoustic impedance close to that of water (∼1.5 at room temper-

ature), holds the compressed breast. LDPE minimizes the loss of ultrasound signal

due to a mismatched boundary. Figure 2.1(a) shows the schematic diagram of the

scanner. The breast is inserted into the front opening of the scanner. A supporting

plate made of acrylic pushes the breast from the rear opening of the scanner to obtain

a cylindrical shape. After the compression, a brass retaining ring holds the supporting

plate in position. The microwave/laser source is kept behind the scanner, and a horn

antenna is pushed inside the scanner from the opening to irradiate rf/light on the

compressed breast. An aluminum cylinder (rotating cylinder) with many holes holds

the ultrasonic transducers around the breast holder cylinder. During data collection,

the rotating cylinder is turned by a worm-gear mechanism and a stepper motor. The
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Figure 2.1: Design of the system. (a) Schematic diagram of the breast scanner.
UST: Ultrasonic Transducer. (b) The position of the patient with respect to the

system. (c) Design of the integrated microwave horn antenna and optics. (d)
Photograph of the system.
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whole setup is mounted inside a stainless steel frame filled with mineral oil that fa-

cilitates the coupling of ultrasound to the transducer and also lubricates the worm

gear. The scanner is placed on a height- and angle- adjustable metal frame. Figure

2.1(b) shows how a patient will be positioned, sitting on a chair and leaning onto the

scanner.

The microwave/laser assembly is placed on the backside of the scanner behind the

support plate. We illuminate the breast by either microwave or laser alternately for

TAT/PAT. The microwave is delivered to the breast using a horn antenna, whereas the

laser is delivered by a free space optical assembly. Some parts of the laser illumination

system are incorporated inside the microwave horn antenna. As a result, we do not

need to mechanically switch between the microwave and laser sources. The switching

is electronic and instantaneous – once a TAT image is collected using microwave

illumination, the microwave is switched off and the laser is switched on electronically

to collect a PAT image. We have placed a prism and a ground glass plate inside

the microwave horn antenna. Both are nonmetallic and therefore will not affect the

microwave illumination. A drilled ∼10-mm-diam hole in one narrow wall of the horn

antenna delivers the light. The laser beam is broadened by a concave lens placed

outside the hole on the horn antenna, then reflected by the prism, and homogenized

by the ground glass. Figure 2.1(c) shows a schematic diagram of the integration of

the light delivery through the horn antenna.

Microwave source: A 3.0 GHz microwave source produces pulses of width 0.5 µs

with a repetition rate of up to 40 Hz. The breast is illuminated using an air-filled

pyramidal horn type antenna (WR284 horn antenna W/EEV flange, HNL Inc.) with

an opening of 7.3 × 10.7 cm2. The pulse energy is estimated to be around 10 mJ (=

20 kW × 0.5 µs) (within the IEEE safety standards [63]). The support plate and the
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breast are separated from the opening of the antenna by about 1 cm, which is much

less than the 10 cm microwave wavelength in air. Therefore most of the microwave

energy either goes to the sample or gets reflected back to the horn antenna. Since

the horn antenna is made of good conducting material with the only opening at the

end facing the breast, most of the microwave energy is deposited into the breast even

if microwave reverberation, due to impedance mismatch, exists between the breast

and the horn antenna. Because the speed of the electromagnetic (EM) wave is so

high, pulse broadening due to any reverberation is negligible. Therefore, the spatial

resolution of TAT is not compromised.

The horn antenna is designed to transport the TE10 mode of EM waves, so the electric

field is parallel (or nearly parallel for a horn) to the surface of either narrow side (y

polarized in our system) and approaches zero near the inner surface of either narrow

wall. By contrast, the electric field is nonzero near the surface of either wide wall.

Therefore, opening the light delivery hole on the narrower side of the horn antenna

(or wave guide) minimizes power leakage.

Laser source: A Q-switched Nd:YAG laser with a repetition rate of 10 Hz provides

6.5-ns-wide (at 1064 nm wavelength) laser pulses. The laser system can provide 850

mJ maximal output energy at 1064 nm wavelength. The laser is operated at this

wavelength for maximum penetration into tissue. In this spectral region, absorption

of melanin is relatively low and is not expected to limit the delivery of light into the

breast, even for African American patients, as demonstrated in a previous study of

diffuse optical imaging of the breast [64]. The laser beam is expanded by a concave

lens, homogenized by a ground glass, and then directed onto the breast. This type

of beam expansion scheme has been used extensively before [65–67]. The incident
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laser fluence on the tissue surface is controlled to < 20 mJ/cm2 to conform to the

American National Standards Institute (ANSI) standards [68].

Detection of ultrasound: For detecting the ultrasound signal, 13-mm/6-mm-diam

active area nonfocused transducers operating at 2.25 MHz central frequency (ISS

2.25 × 0.5 COM, ISS 2.25 × 0.25 COM, Krautkramer) are used. The transducers are

scanned around the sample a full 3600 to collect data at different angular positions.

The signal is first amplified by a low-noise pulse amplifier (5072PR, OlympusNDT),

then filtered electronically, and finally recorded using a digital data acquisition card

(14 bit Gage Card). When microwave is the illumination source, a delay/pulse gener-

ator (SRS, DG535) triggers the microwave pulses and synchronizes the data sampling

of the Gage Card. On the other hand, during laser illumination, the sync out of

the laser system synchronizes the laser pulses and the data sampling of the Gage

card. There are various reconstruction algorithms that can be used to reconstruct

the TAT/PAT images from the raw data [48, 52, 69–71]. Here, a delay and sum

(backprojection) algorithm is used for all image reconstruction. Figure 2.1(d) shows

a photograph of the system.

2.1.3 Results and discussion

Integrating TAT/PAT: TAT and PAT have been separately used for tissue imaging

by many groups [17, 31, 66, 69–76]. However, these two modalities have never been

combined before in a single system for breast imaging. To substantiate the new design

of integrating optics with the microwave horn antenna, we performed the following

experiment. Four water-based agar gel cylinders with ∼10 mm diameter and ∼10

mm length were placed inside a mineral oil bath, and images were acquired. Figure
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Figure 2.2: Reconstructed TAT images acquired with (a) the intact horn antenna,
(b) a prism mounted inside the horn antenna, (c) a 5-mm-diam hole drilled in a

sidewall of the horn antenna, and (d) the hole in the sidewall and the prism
mounted inside.

2.2 shows the reconstructed images under different conditions. Figure 2.2(a) shows

the original image with no optical device inside the microwave horn antenna. Figure

2.2(b) shows the image acquired when we put a prism inside the horn antenna. Figure

2.2(c) shows the image acquired after a hole of 5 mm diameter was drilled in the

horn antenna, with no optical devices placed inside. Figure 2.2(d) shows the image

obtained with the hole in the horn antenna and the prism placed inside. We can

clearly see all four embedded objects with similar maximum signals (note that the

gray scales are the same), except for some small background variations. From these

four figures, we conclude that inserting the prism inside the horn antenna and drilling

a hole in the sidewall do not cause much of signal loss or image distortion. These
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experimental results strongly support the placement of optical components (here, the

prism and the ground glass plate) inside the horn antenna to deliver light, and as a

result we are able to integrate both light and microwave delivery.

Dry coupling: Unlike conventional ultrasound imaging, where coupling gel is used

between the body and the ultrasonic transducer, we will be using dry coupling. Since

the cylindrically compressed breast will be held tightly inside the LDPE breast holder,

there will not be a large air gap to hinder ultrasound propagation. To test the

feasibility of dry coupling we used a thin rubber balloon filled with mineral oil as

a breast model. We put the balloon inside the breast holder chamber and then

compressed it to a cylindrical shape that fit tightly inside the LDPE breast holder

cylinder. This experiment was done with the scanner tilted at 450. There was a

little bit of air gap at the top portion of the breast holder cylinder. Even with this

little air gap between the balloon and the breast holder cylinder, when we made a

transmission ultrasound measurement around the breast holder cylinder we saw very

good ultrasound coupling. Figure 2.3 shows the transmission ultrasound coupling at

different depths of the compressed balloon.

From Figure 2.3 we can see that, except near the two ends of the compressed balloon

[Figs. 2.3(a) and 2.3(g)], the remaining planes have quite good ultrasonic transmission,

which means we have good ultrasonic coupling. Even for those few planes where we

do not have good coupling, we have good coupling over 80% of the area. Since we do

tomography and collect data at different angular positions for reconstruction, losing

data over 20% of the area will not affect the reconstructed image.
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Figure 2.3: The transmission of ultrasound around the breast holder at different
depths with a compressed balloon filled with mineral oil inside the breast holder
chamber. The blue dots represent the transmission of ultrasound in that region.

Depths: (a) 9.0 mm, (b) 1.2 cm, (c) 3.0 cm, (d) 4.3 cm, (e) 4.6 cm, (f) 4.8 cm, and
(g) 5.0 cm.
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Phantom experiments: We tested our system using tissue phantoms. Porcine fat

was used as the background medium mimicking the fatty breast tissue, and water-

based agar gel was used to model the inhomogeneity (target) in the background. The

target gel objects were made of 2% agar, 2% salt and 96% water. Salt was added

to increase the microwave absorption. A total of five target objects of diameter ∼6

mm were buried inside ∼7-cm-diam porcine fat. Two targets were made of clear

gel. The remaining three targets were made of black gel; the color was obtained

by mixing black India ink during the preparation of the agar gel. The location of

the target objects inside the base fat is shown in Figure 2.4(a), a photograph of the

phantom. The rf absorption contrast between the target gel and the background fat

tissue was estimated to be ∼4:1. The optical contrast between the black target gel

and background fat tissue was estimated to be ∼5:1. Both microwave and optical

contrast were in the similar range of what we can expect in real human breast. The

sample was placed inside the breast holder chamber, and the chamber was then filled

with mineral oil, an ultrasound coupling medium. The sample was first illuminated

with microwave and then by a 1064 nm wavelength laser.

Figures 2.4(b) and 2.4(c) show the reconstructed TAT images with 13- and 6-mm-

diam active area ultrasonic transducers, respectively. The contrast and signal-to-noise

(SNR) in the reconstructed images are ∼3.5:1 and 34, respectively, for a 13-mm-diam

transducer [Fig. 2.4(b)] and the same numbers for a 6-mm-diam transducer are ∼2.5:1

and 20, respectively [Fig. 2.4(c)]. The resolution is calculated to be ∼1.2 and ∼0.7

mm for the images obtained by 13- and 6-mm-diam transducers, respectively. Dis-

tortion of the TAT images is noted. Although the target object has a circular cross

section, the reconstructed images from TAT appear to be split in to two objects

[Fig. 2.2, Fig. 2.4(b), and Fig. 2.4(c)]. Various factors such as the target object size,
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Figure 2.4: Cross-sectional TAT and PAT images of tissue mimicking phantom
obtained from the scanner. Five water-based agar gel targets were embedded inside
a porcine fat base. (a) Photograph of the phantom. Two targets were clear objects
and the other three targets were black. (b) TAT image obtained using 13-mm-diam

active area transducer. (c) TAT image obtained using 6-mm-diam active area
transducer. (d) PAT image obtained at 1064 nm wavelength using a 13-mm-diam
active area transducer. (e) PAT image obtained at 1064 nm wavelength using a

6-mm-diam active area transducer.
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conductivity of the target objects, and microwave diffraction contribute to the image

distortion [77]. Figures 2.4(d) and 2.4(e) show PAT images with 13- and 6-mm-diam

active area transducers, respectively. The contrast and SNR in the reconstructed

images are ∼4.1:1 and 64, respectively, for the 13-mm-diam transducer [Fig. 2.4(d)]

and the same numbers for the 6-mm-diam transducer are ∼3.8:1 and 27, respec-

tively [Fig. 2.4(e)]. The resolution of the images obtained by both the transducers is

calculated to be ∼0.7 mm.

As expected, we can clearly see all five objects in the TAT images [Figs. 2.4(b) and

2.4(c)]. TAT is based on microwave absorption and all five objects are made of water-

based gel that is much more opaque to microwave than the background fat tissue. In

contrast, PAT images reveal only three black target objects as the contrast in PAT

imaging is dependent on light absorption coefficient. Thus the combination of both

PAT and TAT will provide us with more information about the target objects.
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2.2 Tangential resolution improvement using a neg-

ative acoustic lens†

2.2.1 Introduction

Spatial resolution is one of the important parameters in both TAT and PAT. Fig-

ure 2.5(a) shows how radial and tangential resolutions are defined for planar circular

scanning. Various factors affect the spatial resolution, but the two main limiting fac-

tors are the finite bandwidth of the ultrasound detection system and the size of the

detector aperture. It was shown theoretically that both the radial and the tangen-

tial resolution are dependent on the bandwidth and that the tangential resolution is

dependent on the aperture size [48]. It was also shown that the dependency of spa-

tial resolution on bandwidth is space invariant for any recording geometry but that

the dependency of tangential resolution on the detector aperture size is not space

invariant. The farther the target is from the scanning center, the greater the blurring

effect. In other words, the tangential resolution becomes worse as the target moves

toward the detector surface.

One way of improving the tangential resolution is to use small-aperture unfocused

detectors – ideally, point detectors – that can receive signals from a large angle of

acceptance. However, the small active area of point detectors leads to high thermal-

noise-induced electric voltage in the transducer, making the sensitivity too low to

detect weak signals. Thus, we need to use large-area detectors to get better sensitiv-

ity, compromising the receiving angle. Without compromising the sensitivity of the

†Reprinted with permission from M. Pramanik, G. Ku, and L. H. V. Wang, “Tangential resolu-
tion improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,”
Journal of Biomedical Optics 14(2), 024028 (2009).
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imaging system to a great extent, it was shown that the use of a negative cylindrical

lens increases the acceptance angle and increases the detection region in PAT [78].

We extended the same concept of using a negative lens detector in our combined

TAT/PAT breast scanner to quantify the tangential resolution improvement. We

conducted phantom experiments for all quantitative analyses. We also showed that

the use of a negative lens detector helps to preserve the shape of the target object in

the reconstructed image.

In our breast scanner the cylindrical breast holder has a diameter of ∼15.5 cm, and the

ultrasound detectors, placed outside the breast holder, scan around it in a full circle to

collect data. The scanner is based on circular scanning mechanism and an orthogonal

detection system suitable for deep tissue imaging. Due to large scanning region, the

tangential resolution near the breast holder boundary (i.e., far from the scanning

center) is extremely poor compared to the resolution in the vicinity of the scanning

center. An ideal imaging system would have uniform radial and tangential resolution

across the entire scanning region. One way of improving the near-boundary tangential

resolution would be to put the detectors far from the scanning region. In doing so, the

SNR would be reduced. Therefore, the negative lens detector concept was adopted,

and studies were carried out to quantify the resolution of the imaging system at

different locations inside the scanning region. Although a TAT/PAT combined breast

scanner system was used here, the same concept can be extended to other TAT and/or

PAT imaging systems where unfocused detectors are used for receiving signals.
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Figure 2.5: (a) Diagram showing how radial and tangential resolution is defined in
planar circular scanning configuration. (b, c) Photographs of the flat ultrasonic

transducer and the ultrasonic transducer glued to a negative cylindrical lens made
of acrylic. The active area of the detector was completely covered by the lens.

Minor ticks: 1 mm. (b) and (c) are two orthogonal views of the same transducer.
(d) Step-by-step schematic of how the negative cylindrical lens is made from an

acrylic cylindrical lens.
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2.2.2 System description

A combined TAT/PAT scanner [53] was used for all the experiments. For TAT, a 3.0

GHz microwave source with a 0.5 µs pulse duration and 100 Hz pulse repetition rate

was used. PAT was done at 532 nm wavelength. A Q-switched Nd:YAG laser with

a 10 Hz pulse repetition rate, 5 ns (at 532 nm wavelength) laser pulse width, and

450 mJ maximal output energy was the light source. All other parameters used were

given in detail here [53]. A modified delay-and-sum (backprojection) algorithm was

used for all image reconstructions, taking into account both the dependence of time

delay on the angle in the lens and also the accurate directivity factor [78].

The acoustic concave lens (negative cylindrical lens) was made of acrylic (density

1.19 g/cm3, speed of sound 2.75 mm/µs). The lens made of a 14.5-mm-diam acrylic

rod, was 8.3 mm thick. The lens was epoxied to the flat surface of the transducer.

Figures 2.5(b) and 2.5(c) show the photograph of the transducers with and without

the negative cylindrical lens. Once the lens was glued to the transducer, the active

area of the transducer was completely covered by the lens. Figures 2.5(b) and 2.5(c)

are two orthogonal views of the same transducer. Figure 2.5(d) is a schematic of

how the cylindrical negative lens was made from an acrylic cylinder. Figure 2.5(d1)

shows the 14.5-mm-diam acrylic cylindrical rod. Figure 2.5(d2) shows how the rod

was machined to cutout a circular part (red dotted circle, this circular part has a

diameter similar to that of the transducer surface). Figure 2.5(d3) shows the side

view of the rod after machining. Figure 2.5(d4) is a digital photograph. The lens is

cut out of the acrylic base along the red dotted line [Figs. 2.5(d3) and 2.5(d4)].
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Figure 2.6: Reconstructed TAT images, using the flat ultrasonic detector, of a
needle (18 gauge, 1 mm in diameter) inserted inside a pork fat base placed at a

distance of (a) ∼4 mm, (b) ∼14 mm, (c) ∼32 mm, (d) ∼50 mm, and (e) ∼64 mm
from the scanning center. Corresponding TAT images obtained with the negative

lens detector are shown in (f), (g), (h), (i), and (j), respectively. (k) Location of the
needle inside the scanner is shown.
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2.2.3 Results and discussion

An 18 gauge needle (1 mm diameter) inserted inside a pork fat base was the target

object for the TAT experiments. The detector was located ∼75 mm away from the

scanning center. Considering the scanning center to be at (0, 0), other object locations

were as follows: Figure 2.6(a) (−1.4 mm, 4.0 mm), distance from center ∼4.0 mm,

distance from detector ∼71 mm. Figure 2.6(b) (13.5 mm, 1.5 mm), distance from

center ∼14 mm, distance from detector ∼61 mm. Figure 2.6(c) (32.0 mm, 2.0 mm),

distance from center ∼32 mm, distance from detector ∼43 mm. Figure 2.6(d) (40.5

mm, 28.0 mm), distance from center ∼50 mm, distance from detector ∼25 mm.

Figure 2.6(e) (52.5 mm, 36.5 mm), distance from center ∼64 mm, distance from

detector ∼11 mm. Figures 2.6(a)–2.6(e) show the TAT reconstructed images of the

needle with a flat detector when the needle was placed at different distances from the

scanning center as mentioned earlier. It is evident that when the object is far from

the scanning center, the object is blurred in the reconstructed image and becomes

elongated in the tangential direction. Figures 2.6(f)–2.6(j) show the corresponding

images when the same target was imaged with a negative lens detector. Figure 2.6(k)

shows the location of the needle inside the scanning region. The radial resolution

remains almost the same for all the objects at different locations, as the dependency of

radial resolution on the bandwidth and aperture size is spatially invariant. Moreover,

the radial resolution is not improved by the use of the negative lens. In contrast, the

tangential resolution is poor when the target object is far from the scanning center

[Figs. 2.6(c)–2.6(e)], and it is improved significantly with the use of the negative lens

[Figs. 2.6(h)–2.6(j)]. For objects 3, 4 and 5, we see a more than twofold tangential

resolution improvement [Fig. 2.6(c) versus Fig. 2.6(h), Fig. 2.6(d) versus Fig. 2.6(i),

and Fig. 2.6(e) versus Fig. 2.6(j)].
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Figure 2.7: PAT images of five 0.5-mm-diam pencil leads placed inside the scanning
region at different distances from the scanning center. (a) Reconstructed PAT image

using the flat detector. (b) Reconstructed PAT image using the negative lens
detector. (c–g) Close-up images of all five objects in (a) at distances of ∼2 mm, ∼19
mm, ∼36 mm, ∼55 mm, and ∼67 mm from the scanning center, respectively. (h–l)

Corresponding close-up images obtained with the negative lens detector.
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PAT experiments were done using 0.5-mm-diam pencil leads as target objects. Figures

2.7(a) and 2.7(b) show the PAT reconstructed image with the flat and negatively

focused detectors, respectively, when five pencil leads were placed inside the scanner

at different locations. The pencil lead locations were (−0.5 mm, 2.0 mm), (18.5 mm,

−0.6 mm), (36.0 mm, −1.2 mm), (55.0 mm, −1.2 mm), and (67.5 mm, −1.4 mm).

Figure 2.7(b) clearly shows all five objects (two of them near the detector surface

are blurred), whereas Figure 2.7(a) fails to show the target objects except for the

one near the scanning center. Figures 2.7(c)–2.7(g) show the close-up reconstructed

images of each of the target objects. It is evident that when the object is far from

the scanning center, the object is blurred and elongated in the tangential direction.

Figures 2.7(h)–2.7(l) show the corresponding images acquired with a negative lens

detector. Once again, as expected, the radial resolution is the same for all the objects

(spatial invariance), and it is not improved with the use of a negative lens. But the

tangential resolution has spatial dependence [Figs. 2.7(d)–2.7(g)] and it is significantly

improved with the use of a negative lens [Figs. 2.7(i)–2.7(l)]. For objects 3, 4 and 5

we see a more than threefold tangential resolution improvement [Fig. 2.7(e) versus

Fig. 2.7(j), Fig. 2.7(f) versus Fig. 2.7(k), and Fig. 2.7(g) versus Fig. 2.7(l)].

In the next step, we demonstrate how the type of transducer used for imaging affected

the shape of the target object in the reconstructed image. To do so, an LDPE tube

[∼1 cc volume, inner diameter (i.d.) ∼6 mm] filled with salt water (salt was added to

increase the TAT signal strength) was placed at different locations, and TAT images

were taken using both the flat and negative lens detectors. The tube locations were as

follows: Figure 2.8(a) (1.0 mm, −1.5 mm); Figure 2.8(b) (17.5 mm, 15.5 mm); Figure

2.8(c) (21.0 mm, −33.0 mm); and Figure 2.8(d) (−2.0 mm, −48.5 mm). Figures

2.8(a)–2.8(d) show the TAT reconstructed cross-sectional images of the tube placed
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Figure 2.8: Cross-sectional TAT images, using the flat detector, of an LDPE tube
filled with salt water placed at distances of (a) ∼2 mm, (b) ∼23 mm, (c) ∼39 mm,
and (d) ∼49 mm from the scanning center, respectively. Corresponding TAT images

obtained with the negative lens detector are shown in (e), (f), (g), and (h),
respectively. (i) Location of the tube inside the scanner is shown.
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at different locations in the scanning region. When the object is near the scanning

center, we can clearly see the circular shape of the tube’s crosssection [Fig. 2.8(a)],

but when the target is located increasingly farther from the scanning center, the

object loses its shape in the reconstructed image [Figs. 2.8(b)–2.8(d)]. Figures 2.8(e)–

2.8(h) show the corresponding images when the negative lens detector was used to

get the image. All clearly show the circular boundary of the target object, but the

corresponding images acquired with the flat detector fail to do so, except for the

object near the scanning center. Figure 2.8 (i) shows the location of the tube inside

the scanning region.

For PAT, two LDPE tubes filled with diluted India ink solution were placed at differ-

ent locations in the scanner. Figures 2.9(a) and 2.9(b) show the PAT reconstructed

cross-sectional images of two tubes, one placed near the scanning center and the other

placed at a distance of ∼50 mm from the scanning center, with the flat and negative

lens detectors, respectively. The tube locations were (∼0, ∼0) and (0.5 mm, −49.3

mm). For the tube near the scanning center, we can clearly see the circular shape of

the cross section using both detectors, but as the target object moves farther from

the scanning center, it loses its shape when the flat detector was used. Figures 2.9(c)

and 2.9(d) show close-up images of the tube placed at ∼50 mm from the scanning

center, acquired with the flat and negative lens detectors, respectively. Figure 2.9(d)

clearly shows the circular shape of the object, whereas Figure 2.9(c) fails to show the

actual shape of the target object.

The artifacts seen in the images could be due to the quality of the lens fabrication

and to imperfections in the glue film between the lens and the detector surface (air

bubbles could be trapped in the film). A better lens quality and a bubble-free interface

between the detector surface and the lens are probably the best ways to get rid of
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Figure 2.9: Reconstructed cross-sectional PAT images of two LDPE tubes (∼1 cc
volume; i.d. ∼6 mm) filled with diluted India ink, one placed near the scanning

center and the other at a distance of ∼50 mm from the scanning center. (a) Image
using the flat detector. (b) Image using the negative lens detector. (c) Close-up

image of the tube at ∼50 mm from the scanning center using the flat detector. (d)
Close-up image of the tube at ∼50 mm from the scanning center using the negative

lens detector.
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the artifacts in the images. There is also a loss of signal due to the absorption

of ultrasound inside the acrylic lens and another loss due to impedance mismatch

between the acoustic coupling mineral oil and the acrylic lens. In addition, the

reverberation of sound trapped inside the lens could also affect the reconstructed

images. Some of these issues could be resolved if instead of using a negative lens we

could curve the piezo material used for ultrasonic detection itself to a convex shape.

In that way, we could get rid of the sound absorption inside the lens material and

also the signal loss due to impedance mismatch.

2.3 Conclusions

TAT and PAT together can provide additional functional information for the diag-

nosis of breast cancer. We have successfully integrated the two imaging modalities

into one system. Our system should be much more comfortable for the patient, and

we will not need to apply gel or other chemicals on the skin: our system operates

with dry coupling. We have also achieved good quality TAT and PAT images on

tissue mimicking phantoms. In the future, pure ultrasound pulse-echo images can

also be obtained in this modality. Thus we are able to provide multimodality, high

resolution, high contrast, and low cost breast images which can be potentially used

for early breast cancer detection. We also propose use of negative lens to improve

the tangential resolution more than twofold in both TAT and PAT. The same con-

cept can be extended to other tomographic imaging systems where a large imaging

area is needed and flat transducers are used as detectors to receive signals. Use of

negative lens also helps preserving the shape of the reconstructed object, such shape

preservation could be important in accurate diagnosis and treatment of tumors.
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Chapter 3

Multimodal contrast agent

3.1 Single-walled carbon nanotubes as a multimodal

contrast agent‡

3.1.1 Introduction

The advent of numerous noninvasive imaging modalities, such as x-ray, computed

tomography, single photonemission computed tomography, positron emission tomog-

raphy (PET), MRI, ultrasound imaging, rf, and optical imaging now allows scientists

and clinicians to acquire in vivo images of the anatomy and physiology of animals

and humans [79, 80]. Each of these in vivo imaging techniques possesses character-

istic strengths and weaknesses. For each imaging modality, substantial attention has

been devoted to developing contrast agents not only for improving the contrast of the

acquired images, but also for molecular imaging targeting specific biomolecules, cell

tracking, and gene expression [81–84].

‡Reprinted with permission from M. Pramanik, M. Swierczewska, D. Green, B. Sitharaman, and
L. H. V. Wang,“Single-walled carbon nanotubes as a multimodal - thermoacoustic and photoacoustic
- contrast agent,” Journal of Biomedical Optics 14(3), 034018 (2009).
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TAT/PAT synergizes the advantages of pure-ultrasound and pure-rf/optical imaging

[17, 18], allowing both satisfactory spatial resolution and high soft-tissue contrast.

For instance, PAT is a unique noninvasive technology for imaging and quantifying

the levels of vascularization and oxygen saturation in tumors [75, 76, 85–87]. These

features are associated with angiogenesis and hypoxia accompanying malignant tu-

mors [88, 89]. TAT/PAT is also capable of revealing information such as water/ion

concentration, blood volume, and oxygenation of hemoglobin. Because these param-

eters can change during the early stages of cancer, TAT/PAT offers opportunities for

early detection. However, even though high rf and optical contrast exists between

well-developed malignant tumor tissue and normal human breast tissue, the contrast

during very early stages of cancer may be insufficient. Thus, a targeted contrast agent

could be greatly beneficial for early cancer diagnosis using TAT/PAT.

Recently, carbon nanotube-based contrast agents have shown promise for a variety of

imaging techniques [90–93]. The strategies for development of these contrast agents

have included encapsulation of medically relevant metal ions within their carbon

sheath [90], external functionalization of the carbon sheath with a variety of imaging

agents [92, 93], and exploiting the intrinsic physical properties of the carbon nan-

otubes [91]. Here, we have explored the intrinsic optical [94, 95] and rf [96] absorbing

properties of single-walled carbon nanotubes (SWNTs) with the goal of developing

them as multimodal contrast agents for simultaneous TAT and PAT.

3.1.2 Methods and materials

The combined TAT/PAT scanner [53] was used. For TAT, a 3.0 GHz microwave

source with 100 Hz pulse repetition rate, and for PAT a Q-switched Nd:YAG laser at
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1064 nm wavelength was used (See appendixC for more details). A reflection-mode PA

imaging system [97] was used to test the in vitro blood signal enhancement using the

SWNTs. A 5 MHz central frequency, spherically focused ultrasonic transducer (V308,

Panametrics-NDT) was used to acquire the generated PA signals (See appendixC for

more detail). See appendixA for SWNTs synthesis and characterization.

3.1.3 Results and discussion

LDPE vial with an i.d. of 6 mm and 1 cc volume was used as a sample holder. The

vial was filled with the sample and placed inside the TAT/PAT scanner. Deionized

water was used for TA signal comparison, whereas blood was used for PA signal

comparison. Water and ions are two well-known sources of microwave absorbers in

the human body, and they produce strong TA signals. Therefore, to show that a new

material (in this case SWNTs) can function as a contrast agent, we have to first show

that that SWNTs are capable of generating TA signals comparable to or stronger

than a known TA signal producer in the body. The rf contrast between malignant

tumor tissue and normal human breast tissue is as high as 4:1 [8]. The rf absorption

of water compared to background human breast tissue is also on the order of 4:1.

Thus, we compared the rf absorption of SWNTs to that of water. Similarly, blood

is a dominant light absorber in the human body and produces strong PA signals.

Therefore, to show that SWNTs can function as a contrast agent in PA, we must first

show that SWNTs are capable of generating PA signals comparable to or stronger

than that of a known absorber in the body. Blood was thus an obvious choice for

comparison here.
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Table 3.1: Peak-to-peak TA/PA signal amplitudes obtained from various samples.
An LDPE (6 mm i.d., 1 cc volume) vial was the sample holder. TA was done at 3

GHz, and PA was done at 1064 nm wavelength.

Transducer active area
0.5 in 0.25 in 0.5 in 0.25 in

Sample TA signal (mVp−p) PA signal (mVp−p)

Deionized water 47 14 - -
SWNTs (1 mg/mL) 95 28 113 81
Fullerene (C60) 51 15 55 68
Graphite microparticles 38 10 28 30
MWNTs (o.d. = 10–15 nm) 40 12 95 81
Aldrich MWNTs (o.d. = 20–30 nm) 40 12 58 67
MWNTs (o.d. = 40–70 nm) 39 10 28 27
MWNTs (o.d. = 110–170 nm) 47 15 62 70
Blood - - 33 31

An initial assessment was made for all the carbon nanostructures [SWNTs, multi-

walled carbon nanotubes (MWNTs), C60, and graphite microparticles]. Table 3.1

summarizes the peak-to-peak TA/PA signal amplitudes obtained from various sam-

ples with the two different diameter transducers. Among all the samples, only SWNTs

showed a significant increase in TA signal compared to deionized water and a signifi-

cant increase in PA signal compared to rat blood. To avoid overinterpretation of the

data presented in Table 3.1, it is important to mention here that the TA and PA sig-

nals generated from the MWNT are not directly proportional to the outer diameter

(o.d.). Other parameters, such as the inner diameter, nanotube length, and number

of concentric nanotubes, may also affect the generated signal amplitudes. The only

conclusion that can be drawn from Table 3.1 is that the SWNT sample generates a
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PA and TA signal stronger than that from blood, water, and other carbon nanostruc-

tures. Because only SWNTs showed a significant increase in both TA and PA signals,

they were used for further studies.

Figure 3.1(a) displays the TA signals from an LDPE vial filled with DI water and

another vial filled with 1 mg/mL SWNTs. The peak-to-peak TA signal amplitudes

generated by DI water and 1 mg/mL SWNTs are 42±0.32 and 101±0.24 mV, re-

spectively. Figure 3.1(b) shows the peak-to-peak TA signal amplitude and fractional

increase in TA signal versus the concentration of SWNTs. The largest standard

deviation of the data points, measuring 0.92 mV, was observed at 0.75 mg/mL con-

centration SWNTs. The data show an approximately linear relationship between the

TA signal amplitude and the SWNTs’ concentration. We observe a maximum of 140%

increase in the peak-to-peak signal amplitude for 1 mg/mL SWNTs over DI water.

Figure 3.1(c) displays the PA signals from LDPE vial filled with blood and with 1

mg/mL SWNTs. The peak-to-peak PA signal amplitudes generated by blood, and

the 1 mg/mL SWNTs are 0.22±0.002 and 1.32±0.009 V, respectively. Figure 3.1(d)

shows the peak-to-peak PA signal amplitude and fractional increase in PA signal ver-

sus the concentration of SWNTs. The largest standard deviation of the data points,

measuring 0.027 V, was again observed at 0.75 mg/mL concentration SWNTs. The

data again show an approximately linear relationship between the PA signal ampli-

tude and the SWNTs’ concentration. We observe a maximum 490% increase in the

peak-to-peak signal for 1 mg/mL SWNTs over blood.

In vitro tests were carried out with SWNTs (0.1 mg/mL) mixed with blood in different

proportions, and then PA signals were recorded. Keeping in mind that in other

applications NIR light (700–800 nm) would be used for in vivo deep tissue imaging,

the light used here was of 754 nm wavelength in the reflection mode PA imaging
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Figure 3.1: (a) TA signals at 3 GHz from a LDPE vial (i.d. 6 mm, volume 1 cc)
filled with DI water and 1 mg/mL SWNTs. (b) Peak-to-peak TA signal amplitude
and fractional increase in TA signal versus SWNTs concentration. (c) PA signals at
1064 nm wavelength from a LDPE vial filled with rat blood and 1 mg/mL SWNTs.
(d) Peak-to-peak PA signal amplitude and fractional increase in PA signal versus
SWNTs concentration. (e) Peak-to-peak PA signal amplitudes from blood mixed
with various amounts of SWNTs. 1: Blood only, 2: blood (90% v/v) + SWNTs

(10% v/v), 3: blood (75% v/v) + SWNTs (25% v/v), 4: blood (50% v/v) +
SWNTs (50% v/v), 5: blood (25% v/v) + SWNTs (75% v/v), and 6: SWNTs alone.
The light source was of 754 nm wavelength. A tube (Silastic laboratory tubing, Dow

Corning Corp., with 300 µm i.d., 640 µm o.d.) was used to hold the sample.
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system [97]. A tube (Silastic R© laboratory tubing, Dow Corning Corp., with 300 µm

i.d. and 640 µm o.d.) was filled with blood, blood (90% v/v) + SWNTs (10% v/v),

blood (75% v/v) + SWNTs (25% v/v), blood (50% v/v) + SWNTs (50% v/v), blood

(25% v/v) + SWNTs (75% v/v), and SWNTs alone. Figure 3.1(e) shows the peak-to-

peak PA signal amplitudes for those six samples, clearly indicating that the PA signal

from blood was enhanced when SWNTs were mixed with the blood. The experiments

were carried out 10 times to get the average and the standard deviation. We observed

a PA signal of 1.37±0.09 V from a mixture of 75% SWNTs and 25% blood, compared

to a 0.44±0.02 V PA signal from only blood. Therefore, when SWNTs were mixed

with the blood, we saw a > 210% increase in the PA signal at 754 nm wavelength.

As shown in previous studies [98], the optical absorption properties of SWNTs are

strong in the visible and NIR region. Currently, no studies have demonstrated

SWNTs’ absorption property in the 3 GHz microwave region, but their conductive

properties make them promising for strong absorption [99]. SWNTs have high per-

mittivity when exposed to electromagnetic radiation at frequencies between 0.5 and 3

GHz, and as the frequency increases to > 3 GHz, the permittivity decreases [100, 101],

indicating that SWNTs could be used as contrast agents at < 3 GHz. Another study

showed the feasibility of iron oxide nanoparticles as a contrast agent in TAT [102].

We successfully demonstrated that SWNTs are suitable as a contrast agent for both

TAT and PAT. It will be particularly interesting to characterize their effectiveness at

lower rf frequencies. It is well known that the human body becomes more transparent

at lower rf frequencies, allowing an increase in the imaging depth. However, because

of lower tissue absorbance at lower rf frequencies, the intrinsic image contrast suffers.

Therefore, if the SWNTs work as a contrast agent at lower rf frequencies, we can

potentially achieve low-background, high-sensitivity, deep-tissue imaging.
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The broad absorption range of SWNTs in the visible/NIR region [99] is also bene-

ficial for optical imaging because one can use a wide range of laser wavelengths for

imaging without the need to tune the contrast agent to a particular wavelength to

optimize light absorption. In comparison, other contrast agents suitable for PAT,

such as gold nanoparticles, are tuned to a particular wavelength range and can be

used only with light within that range [65, 103]. Furthermore, our results suggest

that a minimum detectable concentration of SWNTs should be comparable to that

of gold nanoparticles [103]. Using previously derived equations [104], we have cal-

culated that carbon nanotubes of 2 nm average diameter and 1 µm average length

have ∼105 carbon atoms, giving an average molecular weight of ∼106 Da or g/mol

(multiply the number of carbon atoms by 12, the atomic weight of carbon). From

Figure 3.1, it is clear that the minimum detectable concentration is < 0.1 mg/mL

or 100 nM (0.1 mg mL−1/106 g mol−1, 1 M = 1 mole/Liter) SWNTs concentration,

allowing their detection in the nM range. It is also evident that even at 0.1 mg/mL

SWNTs concentration, there is a 35% increase in peak-to-peak TA signal compared

to deionized water and a 32% increase in peak-to-peak PA signal compared to blood.

In this study, we have detected signals with very high signal-to-noise ratio (SNR >

∼100 in both TA and PA) at 1 mg/mL SWNT concentration, suggesting that the

minimum detectable SWNT concentration could be as low as 0.01 mg/mL or ∼10

nM with this system, making them suitable for in vivo applications in various tissues.

In general, the minimum detectable concentration of an exogenous contrast agent by

PAT/TAT is dependent on many factors, such as incident light/microwave energy,

ultrasound detector sensitivity, data acquisition electronics, etc. For in vivo studies,

the concentration(s) of the SWNTs will depend on the specific application and the

sensitivity of the imaging system [56, 105].
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The SWNTs also have a number of additional benefits. (i) Other than TAT and PAT,

SWNTs can also be used as a contrast agent for other imaging modalities, such as

MRI, PET, NIR optical imaging, and nuclear imaging [90–93]. Therefore, in a true

sense they can work as a multi-modal contrast agent. (ii) The external carbon sheath

of the SWNTs can be directly functionalized for targeting and drug delivery. This

capability is not possible for other optical contrast agents, such as gold nanoparticles,

where one does not functionalize the gold, but rather the capping agents or the bio-

compatible coating used to stabilize and/or dispense gold nanoparticles in solution.

(iii) SWNTs now offer the exciting and tantalizing prospect of achieving TAT and/or

PAT molecular imaging and simultaneous therapy by NIR and rf-induced hyperther-

mia. Recently, SWNTs have been shown to facilitate the NIR and rf-induced ablation

of tumor cells/tissues [91, 106]. Thus, these unique features of SWNTs should allow

the design of multimodal imaging and multitherapeutic approaches within a single

platform.
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3.2 Carbon nanotube-enhanced noninvasive sen-

tinel lymph node mapping§

3.2.1 Introduction

For the majority of invasive breast cancers, the surgical removal of primary breast

tumor and level I and level II axillary lymph node dissections (ALND) are widely per-

formed [107]. However, the common side effects after ALND include upper-extremity

lymphedema, arm numbness, impaired shoulder mobility, arm weakness, and infec-

tions in the breast, chest, or arm [108]. A less invasive, more accurate alternative

to ALND is sentinel lymph node biopsy (SLNB). For patients with clinically node-

negative breast cancer, SLNB has rapidly become the standard of care [109, 110].

The concept of a sentinel lymph node biopsy assumes that the primary draining or

sentinel node will be the first to contain metastases. The hypothesis is that both the

mammary gland and overlying skin share a common lymphatic pathway to the same

axillary sentinel node. Therefore, intradermal injection of blue dye will lead to the

accumulation of the dye in the sentinel lymph nodes [111]. In this surgery, a special

blue dye and/or a radioactive substance is first injected into the breast to determine

which lymph nodes are the first to receive drainage from the breast. These nodes are

potentially the first to be invaded by cancer cells. One to three sentinel nodes are

usually removed and tested for cancer. If cancerous, then all the lymph nodes are

removed. This surgery has fewer complications than axillary node dissection, but the

physicians performing the procedure must have special training. The identification

§Reprinted with permission from M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B.
Sitharaman, and L. H. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic
mapping of the sentinel lymph node,” Physics in Medicine and Biology 54(11), 3291-3301 (2009).
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rate and sensitivity of this technique are less than 95%, even in experienced hands

[109, 110, 112]. Furthermore, the complications associated with the SLNB procedure

include seroma formation, lymphedema, sensory nerve injury, and limitation in the

range of motion [113]. These limitations of SLNB strongly suggest that alternative

strategies to stage the axilla should be explored.

Axillary ultrasound (AUS) has been proposed as a potential noninvasive technique

for identifying axillary metastases [114–116]. AUS can visualize the lymph node’s

size, shape, and contour, as well as changes in cortical morphology and texture that

appear to be associated with the presence of axillary metastases. However, the ability

of AUS alone to stage the axilla accurately is limited because the sonographic signs of

metastatic disease may overlap with those of benign reactive changes. On the other

hand, in vivo identification of a SLN using photoacoustic imaging would allow nonin-

vasive axillary staging, in conjunction with either percutaneous fine needle aspiration

biopsy (FNAB) or other emerging molecular techniques.

In vivo PA imaging of SLN in a rat model was also reported using methylene blue

[117]. However, methylene blue does not permit molecular imaging. We exploited the

intrinsic optical absorbance [94, 95] of carbon nanotubes to develop them as contrast

agents, and used them to perform noninvasive imaging of SLN in a rat model in vivo.

3.2.2 Methods and materials

A reflection-mode PA imaging system [97] was used. A 5 MHz central frequency,

spherically focused ultrasonic transducer (V308, Panametrics-NDT) was used to ac-

quire the generated PA signals (See appendixC for more detail on system description).

See appendixA for SWNTs synthesis, characterization, animal and drug information.
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3.2.3 Results and discussion

Deep tissue imaging: The sensitivity of the PA imaging system was determined

from chicken tissue phantom experiments, used to mimic human breast tissue [117].

The light source was tuned to 793 nm wavelength. A tube (Silastic R© laboratory

tubing, Dow Corning Corp.) with 1.47 mm i.d. was placed between two layers of

chicken breast tissue. The tube was filled with 1 mg/mL SWNTs. The thickness of

the tissue layer on top of the tube was ∼20 mm. Figure 3.2(a) shows the maximum

amplitude projection (MAP) [38] image of the tube. The tube is clearly seen in the

image, with a high contrast-to-noise ratio (CNR) of 25. Figure 3.2(b) shows the B-

scan PA image [along the dotted line in Fig. 3.2(a)]. The bright spot in the B-scan

represents the PA signal generated from the tube filled with SWNTs. Figure 3.2(c)

shows the A-line PA signal [along the dotted line in Fig. 3.2(b)], clearly showing the

strong PA signal from the tube filled with SWNTs compared to the weak signal from

the surrounding chicken breast tissue. These results prove that use of SWNTs as a

contrast agent enables tissue imaging more than 20 mm deep.

Sentinel lymph node imaging noninvasively in a rat in vivo: Adult Sprague

Dawley rats with various body weights (250–350 g) were used for the experiments.

A control PA image of the shaved axillary region was taken. Then, an intradermal

injection of 0.075 mL of 0.5 mg/mL SWNTs was performed on the forepaw pad. Four

PA images were acquired at intervals of 25–30 min after the SWNTs injection. For

all the PA images, the following parameters were used: field of view (FOV) = 25 mm

× 30 mm, step size along the X direction = 0.2 mm, step size along the Y direction

= 0.4 mm, total scan time = ∼23 min. Please note that no signal averaging was done

for any of these images. The images shown here are cropped to a FOV of 16 mm ×
24 mm, since the outside region was not of interest.
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Figure 3.2: (a) MAP image of a tube (Silastic R© laboratory tubing, Dow Corning
Corp., with 1.47 mm i.d.) filled with SWNTs (1 mg/mL) placed inside chicken

breast tissue. The tube was placed 20 mm below the top surface of the tissue. The
PA image clearly shows the tube, with a CNR of 25. (b) PA B-scan image along the
dotted line in (a), with the bright spot showing the PA signal originating from the

tube filled with SWNTs. (c) Photoacoustic A-line along the dotted line in (b).

Figure 3.3(a) shows a representative digital photograph of a rat taken prior to image

acquisition, and Figure 3.3(b) shows the shaved axillary surface where the PA imaging

was performed. Before the SWNTs injection, a PA control image was obtained, which

is shown in the form of a MAP [38] in Figure 3.3(c). The vasculature near an axial

node (one blood vessel is marked as BV) was clearly imaged, with a high CNR of

∼79 and good resolution of ∼500 µm. Note that no lymph nodes are visible in the

control image, since there is no intrinsic optical absorption in lymph nodes to produce

any PA signal to image. Figure 3.3(d) shows the PA image (MAP) of the same area

immediately after the SWNTs were injected, approximately 30 min after the control

image was taken. Figures 3.3(e)–3.3(g) are the post-injection PA images (MAP) of

the same area 30 min, 55 min, and 85 min after the SWNTs injection. The SLN

appears at the left lower quadrant, marked as SLN in Figure 3.3(f), and is clearly
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Figure 3.3: Noninvasive in vivo PA images (MAP) of the SLN in a rat. λ = 793 nm.
(a) Photograph of the rat. (b) Photograph of the rat after the hair was removed
from the scanning region before taking the PA images. The scanning region is

marked with a black dotted square. (c) Control PA image acquired before SWNTs
injection. Bright parts represent optical absorption, here, from blood vessels (BV).
(d) PA image (MAP) acquired immediately after the SWNTs injection. (e) 30 min

post-injection PA image. (f) 55 min post-injection PA image. (g) 85 min
post-injection PA image. Blood vessel (BV) and sentinel lymph node (SLN) are

marked with arrows, and the SLN is visible in all images except the control image.
(h) Photograph of the rat with the skin removed after PA imaging. (i) The excised
lymph node. For (c)–(g): FOV = 25 mm × 30 mm, step size along the X direction
= 0.2 mm, step size along the Y direction = 0.4 mm, total scan time = ∼23 min.

No signal averaging was used. Only a FOV of 16 mm × 24 mm is shown.
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visible in all the post-injection PA images [Figs. 3.3(d)–3.3(g)]. The images show high

CNRs [74 in Fig. 3.3(d), 67 in Fig. 3.3(e), 84 in Fig. 3.3(f), and 89 in Fig. 3.3(g)]. The

contrast of the SLN to the surrounding blood vessel was up to 1.8 (ratio of the peak-

to-peak PA signal amplitude obtained from SLN and BV) after SWNTs injection.

The signal amplitude of the surrounding blood vessels was also increased by up to

∼124% compared to that in the control image [94% in Fig. 3.3(d), 110% in Fig. 3.3(e),

124% in Fig. 3.3(f), and 105% in Fig. 3.3(g)], although the CNR remained almost the

same. This increase in signal amplitude suggests that the SWNTs have traveled in

to the blood stream and the nearby tissues boosting the blood vessel signal as well

as the background signal. Figure 3.3(h) is a digital photograph of the same rat with

the skin removed after the completion of the PA imaging. Figure 3.3(i) is a digital

photograph of the SLN removed from the rat [arrow in Fig. 3.3(i)]. The photograph

shows the SLN size to be 2 to 3 mm, matching the size obtained from PA images

[Figs. 3.3(d)–3.3(g)].

We used a 0.5 mg/mL concentration of SWNTs for our in vivo study (the average

molecular weight of SWNTs is ∼106 Da or g/mol; 0.5 mg/mL = 0.5 mg mL−1/106 g

mL−1 = 500 nM). However, that choice does not limit the use of SWNTs at other lower

concentrations [105]. Currently, this imaging system is limited by its slow scanning

speed. Employing a higher pulse-repetition-frequency laser and an ultrasound array

system could accelerate acquisition, potentially allowing real-time PA imaging [118–

120]. The in vivo biocompatibility of SWNTs needs to be thoroughly examined before

its translation for clinical use. Nevertheless, since SLN identification by PA imaging

is totally noninvasive and safe, it shows potential future clinical applications without

the limitations of current invasive and minimally invasive techniques.
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3.3 Conclusions

In summary, we have successfully shown that SWNTs provide more than twofold

signal enhancement in TAT at 3 GHz and more than sixfold signal enhancement in

PAT at 1064 nm. At lower rfs, these exogenous contrast agents offer a new paradigm

for low-background, high-sensitivity, deep-tissue, and targeted molecular imaging by

TAT. We have also demonstrated a noninvasive SWNTs-enhanced PA identification

of SLN in a rat model in vivo. Our results suggest that this technology could be a

useful pre-clinical and possibly clinical tool to identify SLNs noninvasively in vivo. In

the future, the identification rate of node-negative breast cancer could be improved

by functionalization of the SWNTs with targeting groups.
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Chapter 4

Colloidal nanobeacons and

molecular photoacoustic imaging

4.1 Molecular photoacoustic tomography with col-

loidal nanobeacons¶

Molecular imaging has emerged as an interdisciplinary area that shows promise in

understanding the components, processes, dynamics, and therapies of a disease at

a molecular level [121–127]. The unprecedented potential of nanoplatforms for early

detection, diagnosis, and personalized treatment of diseases is being explored in every

noninvasive biomedical imaging method [128, 129]. Despite myriad advances in the

past decade, developing contrast agents with prerequisite features for these imaging

modalities continues to remain a challenge.

¶Reprinted with permission from [D. Pan, M. Pramanik], A. Senpan, X. Yang, M. J. Scott, H.
Zhang, P. J. Gaffney, S. A. Wickline, L. H. V. Wang, and G. M. Lanza,“Molecular Photoacoustic
Tomography with Colloidal Nanobeacons,” Angewandte Chemie International Edition 48(23), 4170-
4173 (2009).
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A number of contrast agents for PAT have been suggested recently [87, 105, 130],

but only a few were shown to have the potential for targeted imaging. To achieve

molecular PAT, a major and mostly uninvestigated task is to develop nanometric

molecular contrast agents. The prerequisite features include improved properties,

such as contrast enhancement, stability, and high target specificity.

We have prepared a novel class of accessible and commercially amenable platform

technologies (Fig. 4.1). Colloidal GNBs of a “soft” nature are used to target vascular

pathology, such as thrombus (fibrin), the proximate cause of stroke, and myocardial

infarction. Our hypothesis is that GNBs will act as an exogenous contrast agent and

could be used as a targeted molecular agent in PAT. In a typical synthesis [Fig. 4.1(a)],

a commercially available octanethiol-coated gold nanoparticle (AuNP, 2 w/v%, 2–4

nm) that is soluble in organic solvents is suspended in almond oil (20 vol%) and

microfluidized with phospholipid surfactants (2 vol%). The surfactant mixture is

comprised of phosphatidylcholine (lecithin-egg PC, 91 mol% of lipid constitutents),

cholesterol (8 mol%) and biotin-caproyl-phosphatidylethanolamine (1 mol%). This

synthesis resulted in approximately 1200 biotin units per nanoparticle for biotin avidin

interaction. A control nanobeacon was prepared identically except for exclusion of

the gold nanoparticles.

The GNB particles have a nominal hydrodynamic diameter of 154±10 nm. The

polydispersity and zeta potential were measured to be 0.08±0.03 and −47±7 mV,

respectively. Gold content, determined by ICP-MS, was 1080 µg/g of the 20% colloid

suspension. UV/Vis spectroscopy [Fig. 4.1(d)] showed absorptions at about 520 nm

and in the NIR window, which corresponds to the presence of gold nanobeacons.

The particle size and zeta potential of these nanobeacons varied less than 5% over

more than 100 days when stored at 4 oC under argon in sealed serum vials (see
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Figure 4.1: (a) Preparation of gold nanobeacons from octanethiol-functionalized
gold nanoparticles (AuNPs). x = 1–2 mol% phospholipid coating. (b) Transmission
electron microscopy (TEM) image of gold nanobeacons (drop deposited over nickel
grid, 1% uranyl acetate; scale bar: 100 nm). (c) Atomic force microscopy (AFM)
image of gold nanobeacons. Average height Hav/nm = (101±51) nm. d) UV/Vis

spectroscopic profile. Solid blue line: gold nanobeacons; purple dashed line:
octanethiol-coated AuNPs. Spectra are not normalized.
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appendixB for details). Nanocrystal platforms (< 50 nm) for NIR contrast have

been reported [87, 105, 130]; however, particles in this size range rapidly distribute

beyond the vasculature and into tissues where binding to non-target cells or simple

matrix entrapment can lead to nonspecific signals and increased background noise.

For GNBs, the tiny metallic gold nanoparticles (2–4 nm) are incorporated within a

larger, vascular-constrained colloidal particle that is constrained to the circulation

and intraluminal accessible biomarkers.

Figure 4.2: (a) PA signals generated from a tygon tube filled with GNBs and rat
blood. (b) PA spectrum of GNBs and rat blood (740–820 nm range). (c) Ratio of
the peak-to-peak PA signal amplitudes generated from GNBs to those of blood.

Figure 4.2(a) shows the PA signals (excitation wavelength λ = 764 nm) obtained

from a tygon tube (i.d. 250 µm, o.d. 500 µm) filled with GNBs and whole rat blood.

At this excitation wavelength, the peak-to-peak PA signal amplitude Vp−p obtained

from GNBs is about 2.64 V, compared to 0.17 V peak-to-peak PA signal amplitude

from rat blood. Figure 4.2(b) shows the PA spectrum of the GNBs over the NIR
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wavelength range 740–820 nm. Figure 4.2(c) shows the ratio of the peak-to-peak PA

signal amplitude of GNBs to that of rat blood. The PA signal from the tygon tube

filled with GNBs is more than 15 times strong than that from rat blood. Over the

740–820 nm window, the PA signal from GNBs is more than ten times stronger. The

NIR window is well-known for providing deep tissue PA imaging at the expense of

blood contrast owing to the weak blood absorption. The strong PA signal from GNBs

in the NIR region indicates the potential for molecular PAT of this platform.

The concept of molecular PAT of fibrin, a critical component of intravascular throm-

boses, was then studied in vitro. Using acellular fibrin clot phantoms, the biotinylated

gold nanobeacons and the control nanobeacons (containing no metal) were targeted

to the fibrin clots with classic avidinbiotin interactions using a well-characterized bi-

otinylated anti-human fibrin-specific monoclonal antibody (NIB5F3) [131]. Figures

4.3(a) and 4.3(b) show cross-sectional PAT images of a LDPE tube (1 cc volume, i.d.

6 mm) filled with plasma clot (control) and plasma clot targeted with biotinylated

GNBs using a curved array PAT system [97]. An 800 nm wavelength laser was used

for the light source. The control clot treated with targeted nonmetallic nanoparticles

has negligible contrast [Fig. 4.3(a)], whereas the targeted fibrin clot shows up in the

PAT image [Fig. 4.3(b)] with high contrast. Figures 4.3(c) and 4.3(d) show cross-

sectional PAT images, using a PA breast scanner system [53], of the same control and

targeted plasma clot. For this system, a 532 nm wavelength laser source was used. As

expected, the targeted plasma clot is clearly visible [Fig. 4.3(d)] in the PAT image,

whereas the control image does not show any plasma clot [Fig. 4.3(c)].We have ana-

lytically tested the clot phantoms targeted with three controls for total gold content

analyses. The total gold content of the clots targeted with biotinylated GNBs (with

gold), non-biotinylated GNBs (with gold), and biotinylated control nanobeacons (no
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Figure 4.3: (a–d) Cross-sectional PA images of an LDPE tube filled with plasma
clot. Color bars between images refer to both images. (a) control, (b) targeted with
GNBs using a curved-array PA system (λ = 800 nm). (c) Control, (d) targeted with

GNBs using a photoacoustic breast scanner system (λ = 532 nm). (e, f) Optical
images of plasma clots stained with Biebrich scarlet acid fuchsin solution: (e)

targeted with GNBs, (f) control.
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gold), as determined by ICP-MS, were found to be 47 µg/g, ND (not detected, <

0.02 µg/g) and ND, respectively. The in vitro images along with ICP-MS data of the

targeted plasma clots illustrate the concept of intravascular PAT with GNBs.

Experimental section: See appendixB for GNBs preparation and characterization.

Curved array photoacoustic tomographic system (See appendixC for system descrip-

tion) and photoacoustic breast scanner system (described in chapter 2) were used for

in vitro imaging of the targeted plasma clot samples.
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4.2 Near infrared photoacoustic detection of sen-

tinel lymph nodes with gold nanobeacons‖

The success of PAT with noninvasive SLNs mapping can be considered as a giant step

towards breast cancer staging. Noninvasive mapping of SLNs has been explored with

PA imaging using various contrast agents, such as methylene blue dye, single-walled

carbon nanotubes, gold nanocages, and gold nanorods [56, 117, 132–134]. While

these approaches have seen some preliminary success in laboratory animals, it is

still poorly understood how nanoparticles traverse through the lymphatic vessels and

migrate into the nodes. Clearly, there is a critical unmet clinical need, and delineating

this transport mechanism will further improve detection sensitivities, drug delivery

efficiencies, and reduce off-target toxicity of engineered nanostructures.

Ligand-directed GNB160s were found to deliver tenfold higher PA signal over blood

(i.e., hemoglobin) when targeted to fibrin clots. In the first phase of our experiment,

the potential of SLN imaging with GNB160 [Dav(DLS): 155±11 nm, ICP-OES: 6120

gold/nanobeacons] was tested in a rodent model. Lymph node imaging was possible

with GNB160 (5 µM) [Figs. 4.4(a) – 4.4(e)], however with eight times diluted GNB160s

(∼600 nM), SLNs were not visible [Figs. 4.4(f) – 4.4(j)]. The study produced mixed

results with overall unsatisfactory lymph node detection sensitivity.

Our preliminary approach to resolve this issue was to increase the amount of metal

within the colloidal nanobeacons. Towards this aim, we prepared polymer-encapsulated

gold nanobeacons (P-GNB290s) adopting a unique approach, which is based on the

‖Reprinted with permission from [D. Pan, M. Pramanik], A. Senpan, S. Ghosh, S. A. Wickline,
L. H. V. Wang, and G. M. Lanza,“Near infrared photoacoustic detection of sentinel lymph nodes
with gold nanobeacons,” Biomaterials 2010, (In Press).
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Figure 4.4: Noninvasive photoacoustic imaging of sentinel lymph nodes in rat. Scale
bar: 5 mm. (a, f) Control PA images. (b–e) post-injection PA images with 5 µM

GNB160s injection. Lymph nodes are visible (marked with green arrow) in all
post-injection images. (g–j) post-injection PA images with 8 times diluted (625 nM)

GNB160s injection. No lymph nodes are visible.

self-assembly of amphiphilic di-block copolymer in aqueous media to entrap high pay-

loads of gold. In a typical synthesis, PS-b-PAA [135–138] (Mn × 10−3: 0.8-b-29.3,

PDI = 1.18, 0.0033 mmoles) was dissolved in a mixture of methanol and CHCl3 (4:1)

and subjected to controlled evaporation under reduced pressure to generate a thin

film of polymer [Fig. 4.5(a)]. The thin film was dispersed in deionized water (0.2

µM) by probe sonication at ambient temperature. Octanethiol coated AuNPs (2

w/v%) were suspended in polysorbate (sorbitan monolaureate (5 vol%) and microflu-

idized with a PS-b-PAA dispersion (0.5 vol%) to obtain the P-GNB290 particles. The

nanobeacons were purified by exhaustive dialysis against an infinite sink of nanopure

water using a cellulosic dialysis membrane (20 kDa MWCO). P-GNB290 was charac-

terized by multiple techniques. Hydrodynamic particle sizes for the P-GNB290 were
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Figure 4.5: (a) Synthesis of GNBs, (b) physico-chemical characterization, (c)
anhydrous state AFM images (drop-deposited on glass).
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289±24 nm observed by dynamic light scattering measurements with narrow distri-

bution (polydispersity indexes, PDI = 0.15±0.04) [Fig. 4.5(b)]. The particle stability

and successful amphiline-encapsulation were confirmed by the presence of negative

electrophoretic potential (ζ) values. Anhydrous state morphology of the particles was

observed by atomic force microscopy studies [Fig. 4.5(c)]. Gold content was deter-

mined by ICP-OES as 134 µg g−1, which corresponds to 71,493 gold metal atoms per

nanobeacon.

Figure 4.6: (a) PA signals generated from a tube (Silastic R© laboratory tubing, Dow
Corning Corp., i.d. 300 µm, o.d. 640 µm) filled with P-GNB290s (680 nM), L-GNB90s
(10 nM), and blood at λ = 767 nm. (b) PA spectrum of P-GNB290s, L-GNB90s, and

blood. (c) PA signal of serially diluted P-GNB290s at various wavelengths.
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Photoacoustic imaging of P-GNB290 in suspension within the NIR range was promis-

ing. Figure 4.6(a) shows P-GNB290 (680 nM) produced a stronger PA signal than

blood (λ = 767 nm). P-GNB290s produced a peak-to-peak PA signal amplitude of

540±30 mV, whereas blood produced 133±7 mV. Figure 4.6(b) shows the PA spec-

trum over NIR wavelengths from 721 to 823 nm. The PA signal amplitude changed as

the concentration of nanobeacons was varied. Figure 4.6(c) shows how the PA signal

amplitude changed for several laser wavelengths from serially diluted P-GNB290s. It

is evident that a significant PA signal was produced even at the low concentration of

10 nM, making P-GNB290s a candidate for in vivo applications.

Figure 4.7: Scale bar: 5 mm. (a) Control PA image. (b–e) Post-injection PA image
with P-GNB290s (680 nM) injection. No lymph node was visible in any of the

images. Due to the large particle size of the P-GNB290s the uptake of the particles
in the lymph node was none.

The potential of SLN imaging with the use of P-GNB290s was explored through fore-

paw injection in a rat model. Interestingly, SLN imaging with P-GNB290s (680 nM)

was unsuccessful. Figures 4.7(a) and 4.7(e) show the pre- (control) and post-injection

(60 min) MAP [38] photoacoustic images. SLNs were dynamically monitored for three

days without promising results (n = 4). This confirmed that we were not experiencing

a slower, longer-lasting transport of these larger nanobeacons into the lymphatic

vessels. These results led us to believe that the uptake of the P-GNB290s in the
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lymphatic channels and transport to the lymph node were poor, which presumembly

were correlated with the larger size and mass of these gold nanobeacons (> 250 nm).

The unsuccessful outcome prompted us to explore a smaller lipid-encapsulated (∼90

nm) gold nanobeacon (L-GNB90) [Fig. 4.5(a)]. Gold nanoparticles (AuNPs) were

uniquely suspended within a polysorbate core matrix to avoid unfavorable interac-

tions with the surrounding plasma proteins. In a typical procedure, octanethiol-

functionalized, coated AuNPs (2 w/v% of inner matrix) were suspended in polysor-

bate (sorbitan monolaureate, 20 vol%) and homogenized with the surfactant mixture

at 137.9 MPa for 4 min to produce L-GNB90s. The surfactant mixture comprised

mainly of phosphatidylcholine (PC) (∼90 mol% of lipid constituents). Hydrodynamic

particle sizes for the L-GNB90s were 92 ±12 nm (DLS) with narrow polydispersity

indexes, PDI = 0.35±0.05 [Fig. 4.5(b)]. Anhydrous state particle heights were mea-

sured to be 45±10 nm. [Fig. 4.5(c)] Gold content was determined by ICP-OES as 1.56

µg g−1, corresponding to approximately 9 gold metal nanoparticles per L-GNB90s.

Figure 4.6(a) shows that L-GNB90s (10 nM) produced a stronger PA signal than blood

(λ = 767 nm). L-GNB90s produced a peak-to-peak PA signal amplitude of 168±12

mV. Interestingly, L-GNB90s produced a stronger PA signal than blood below 795 nm

wavelength but a weaker one above 800 nm. L-GNB90s produced weaker PA signals

in suspension than P-GNB290s, presumably due to its incorporation of much lower

concentrations of gold. Although L-GNB90s have a weaker absorption coefficient than

P-GNB290s in the NIR wavelength range, they were still considered useful for in vivo

SLN imaging application.

The efficacy of L-GNB90s for SLN imaging was studied in a rat model following in-

tradermal injection of the particles, as used previously. At baseline, sagittal MAP
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Figure 4.8: L-GNB90 (10 nM): (a) Sagittal MAP [38] pre-injection control image.
Bright parts represent optical absorption from blood vessels, marked with red

arrows. (b) PA image (MAP) acquired 5 min after L-GNB90 injection. SLNs are
clearly visible, marked with green arrow. Lymphatic vessel is also visible, marked

with blue arrow. (c) 20 min post-injection PA image with two different color spaces
showing the blood vessel as well as the SLNs. (d) Control PA image. (e) 5 min

post-injection image of 4 times diluted L-GNB90s (2.5 nM). (f) Control PA image.
(g) 5 min post-injection image of 10 times diluted L-GNB90s (1 nM). (h) Average
PA signal from the ROI [marked as yellow dotted square in all the pre-injection or
control images, 4.4(a), 4.7(a), 4.8(a), 4.8(d), 4.8(f)]. Blue represents pre-injection

and brown represents post-injection.

photoacoustic image (resolution = ∼500 µm, in plane) of the axillary area revealed a

distinct microvasculature indicated by the red arrows [Fig. 4.8(a)]. Lymph nodes were

undetectable at baseline, lacking any intrinsic optical absorbers, in contradistinction

to the adjacent blood vessels containing highly absorbing red blood cells. Following

baseline image acquisition, L-GNB90s (150 µL) were injected intradermally into the

forepaw, and serial PA images were acquired. At 5 and 20 mins post-injection, sentinel

lymphnodes were easily visualized [Fig. 4.8(b) and 4.8(c)]. In Figure 4.8(b), immedi-

ately after the injection, L-GNB90s were noted traveling through the lymphatic system

(designated by the blue arrow) and accumulating in the lymphnodes. At 20 min, the

L-GNB90s had reached the SLNs and were no longer observed within the draining
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lymphatic vessel. Dynamic PA imaging was performed up to 1 hour post-injection,

and SLNs remained visible in all the PA images (see appendixB for more details).

The above experiment was successfully repeated with diluted L-GNB90s (2.5 and 1

nM). In both cases, lymph nodes were clearly visible [Figs. 4.8(d–e) and 4.4(f–g)] in

the post-injection (5 min) MAP photoacoustic image.

The blood vessels and the SLN were detected with a contrast of 12 and 89, respectively

(calculated from the 1 hour post-injection MAP image). The contrast is defined as

the ratio of the average PA signal amplitude obtained from the blood vessel/SLN to

the average background signal amplitude. Thus the contrast ratio between the SLN

and the surrounding blood vessel was ∼7.5:1. The SNR was 24 dB and 39 dB for

blood vessels and SLN, respectively. The SNR, calculated from the raw A-line signal

without any signal averaging, was defined as 20×log (peak signal amplitude/standard

deviation of background). Figure 4.8(c) is illustrated with two different color maps

(green for the contribution from the nanobeacons, red for hemoglobin). Some of the

nanobeacons transited into the surrounding vessels, as evident from the signal therein.

The dissection of the lymph node, after all the imaging was completed, revealed no

outwardly visible accumulation of the AuNP themselves (i.e., red color) indicating

the patent integrity of the surface lipid coating (see appendixB for more details). We

quantified the signal intensities [Fig. 4.8(h)] and observed a ∼9 times enhancement

with L-GNB90s injection, ∼7.5 times enhancement with 1/4x diluted L-GNB90s, ∼5.2

times enhancement with 1/10x diluted L-GNB90s, and ∼2.6 times enhancement with

GNB160s. However, with L-GNB90s no signal enhancement was seen after injection

(average signal is ∼1.01 times the pre-injection value). As a result, we concluded that

SLNs mapping with P-GNB290s was infeasible. The total gold content of the excised

lymphnode specimens were analytically determined by ICP-OES as 8.74 µg/g and
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1.99 µg/g, (detection limit = 0.02 µg/g), for animals injected with L-GNB90s and

P-GNB290s respectively.

Experimental section: Refer to appendixB for GNB preparation, characterization

and appendixC for system description (All SLN images were obtained using reflection-

mode deep photoacoustic imaging system with 5 MHz center frequency transducer).

4.3 Conclusions

In summary, both GNB160s and L-GNB90s can function as contrast agents for PA

deep tissue imaging in the NIR window, with the smaller L-GNB90s being supe-

rior for SLNs detection. Although L-GNB90s had lower PAT contrast in suspension,

in vitro than GNB160s or P-GNB290s, when injected intradermally L-GNB90s travel

quickly through the lymphatic vessels and migrate exclusively to the lymph nodes.

P-GNB290s produced strong PA signals in suspension and therefore could be benefi-

cial for other in vivo application. These results suggest that cumulative nanoparticle

deposition in lymph nodes is size dependent and that high payloads of gold, although

offering greater contrast, may yield nanoagents with poor intradermal migration and

lymphatic transport characteristics.
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Chapter 5

A novel temperature sensing

method∗∗

5.1 Introduction

During thermotherapy or cryotherapy, it is necessary to monitor the temperature

distribution in the tissues for the safe deposition of heat energy in the surrounding

healthy tissue and efficient destruction of tumor and abnormal cells. To this end,

real-time temperature monitoring with high spatial resolution (∼1 mm) and high

temperature sensitivity (1 oC or better) is needed [139]. The most accurate tem-

perature monitoring is by directly measuring the temperature with a thermocouple

or thermistor. However, it is invasive, hence, generally not preferred and often not

feasible. Several noninvasive temperature monitoring methods have been developed.

Infrared thermography is a real-time method with 0.1 oC accuracy but is limited only

to superficial temperature [140]. Ultrasound can be applied for real-time tempera-

ture measurements with good spatial resolution and a higher penetration depth, but

∗∗Reprinted with permission from M. Pramanik, and L. H. V. Wang,“Thermoacoustic and pho-
toacoustic sensing of temperature,” Journal of Biomedical Optics, 14(5), 054024 (2009).
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the temperature sensitivity is low [141–143]. Magnetic resonance imaging has the

advantages of high resolution and sensitivity, but it is expensive, bulky, and slow

[144, 145]. Therefore, an accurate, noninvasive, real-time temperature measurement

method needs to be developed.

The TA and PA effects are based on the generation of pressure waves on absorption

of microwave and light energy, respectively. A short microwave and laser pulse is

usually used to irradiate the tissue. If thermal confinement and stress confinement

conditions are met, then pressure waves are generated efficiently. The pressure rise

of the generated acoustic wave is proportional to a dimensionless parameter called

the Grueneisen parameter, and to the local fluence. The local fluence depends on

the tissue parameters, such as the absorption coefficient, scattering coefficient, and

anisotropy factor, and does not change significantly with temperature. However, the

Grueneisen parameter, which depends on the isothermal compressibility, the thermal

coefficient of volume expansion, the mass density, and the specific heat capacity at

constant volume of the tissue, changes significantly with temperature. Thus, the gen-

erated TA/PA signal amplitude changes with temperature. By monitoring the change

in the TA/PA signal amplitude, we were able to monitor the change in temperature

of the object.

PA sensing has been used to monitor tissue temperature [139, 146–150]. However,

TA sensing of temperature has never been studied. These two techniques do not

interact and can be used independently. Depending on the need, one has to choose

which technique to use. The main difference between these two techniques is the

contrast mechanism. For example, water and ion concentrations are the main sources

of contrast in TA measurements, whereas blood and melanin are the main sources

of contrast in PA measurements. Therefore, if we need to monitor the temperature
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of a blood vessel, then the PA technique will be more useful; whereas if we need to

monitor the temperature of muscles, then the TA technique will be preferred. TA/PA

temperature sensing is a noninvasive, real-time method. The TA/PA technique has

the ability to image deeply (up to 5 cm) with high spatial resolution (scalable: mil-

limeters to microns). We can monitor temperature with high temporal sensitivity

(∼2 sec) and high temperature sensitivity (0.15 oC) and high precision [scalable with

temporal resolution: ±0.015 and ±0.15 oC at 200 s (2000 measurements averaged)

and 2 s (20 measurements averaged) resolutions, respectively]. Because microwaves

penetrate more deeply into tissue than light, we can potentially monitor temperature

in vivo for locations deep inside the body.

5.2 Theoretical background

If the microwave/laser excitation is much shorter than both the thermal diffusion

(thermal confinement) and the pressure propagation (stress confinement) in a heated

region, the fractional volume expansion dV/V can be expressed as

dV/V = −κp + βT, (5.1)

where κ is the isothermal compressibility, β is the thermal coefficient of volume ex-

pansion, and p and T denote changes in pressure (Pascal), and temperature (Kelvin),

respectively.

When the fractional change in volume is negligible under rapid heating, the local

pressure rise immediately after the microwave/laser excitation pulse can be derived

as,
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p0 =
βT

κ
=

β

κρCv

ηthAe, (5.2)

where ρ denotes mass density, Cv denotes specific heat capacity at constant volume,

Ae is the specific optical/microwave absorption, and ηth is the percentage of absorbed

energy that is converted to heat.

We define the Grueneisen parameter (dimensionless) as

Γ =
β

κρCv

=
βV 2

s

Cp

= f(T ), (5.3)

where Vs is the velocity of sound, Cp denotes the specific heat capacity at constant

pressure, and T is the temperature of the object.

Therefore,

p0 = f(T )ηthAe, (5.4)

Thus, in practice, the measured pressure signal generated due to the microwave/laser

excitation can be used to monitor the temperature. Note that, here we always refer

to the base temperature of the object, not the change in temperature due to the

microwave/laser heating. The instantaneous temperature increase in the object due

to the microwave/laser pulse heating is on the order of milliKelvin and its effect

on the Grueneisen parameter is negligible. The base temperature of the object is a

slowly varying parameter compared to the transient temperature increase induced by

a microwave/laser pulse.
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5.3 System description

Figure 5.1 shows the combined TA and PA system used for sensing temperature. A

similar concept of integrating light with microwaves was used earlier for a breast can-

cer imaging system [53]. The plastic chamber containing the sample holder was filled

with mineral oil, a nonmicrowave-absorbing material. Moreover, because mineral oil

is visibly transparent, light absorption is negligible. Mineral oil also acts as a coupling

medium for sound propagation, and thus, mineral oil was an ideal choice as a back-

ground medium for all our experiments. The microwave/laser assembly was placed

under the sample holder chamber, from where it illuminated the sample by either mi-

crowave or laser, alternately, for TA/PA sensing. The microwave was delivered using

a horn antenna, whereas the laser was delivered by a free-space optical assembly. The

prism and ground glass of the laser illumination system were incorporated inside the

microwave horn antenna. Light was delivered through a drilled ∼10-mm-diam hole

in one of the narrow walls of the horn antenna. The laser beam was broadened by a

concave lens placed outside the hole in the horn antenna, then reflected by the prism

and homogenized by the ground glass. This type of beam expansion scheme has been

used extensively before [66, 67, 75]. The insertion of the optical devices inside the

microwave horn antenna had no significant effect on the microwave delivery [53]. Mi-

crowave source, laser source, and the detection of ultrasound is described in chapter

1. The laser was tuned to a fixed wavelength of 532 nm.

Temperature sensor: A precision thermistor for laboratory applications (sealed

PVC tip, resistance of 2252 Ω at 25 oC and accuracy of ±0.1 oC; ON-401-PP, Omega)

was used to measure the temperature of the sample. The tip of the thermistor was
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Figure 5.1: Schematic of the experimental setup. MO: mineral oil bath, SH: sample
holder vial, UST: ultrasonic transducer, GG: ground glass, PR: prism, AN: horn

antenna, CL: concave lens, TH: thermistor.

inserted inside the sample to get an accurate measurement of the temperature. A volt-

age divider circuit with a dc source (Vizatek, MPS-6003L-1) converted the resistance

change of the thermistor in to voltage, which was recorded using a digital oscillo-

scope. Because the current through the thermistor was very small, the self-heating

was negligible.

Experimental procedure: The sample holder vial (LDPE vial with i.d. ∼12 mm

and volume ∼5 cc) was filled with different samples, DI water for TA measurements,

and ink solution for PA measurements. Two types of experiments were done. A

heated sample was allowed to come to room temperature by natural convection,

exchanging heat with the background medium (mineral oil). The volume of the

sample was very small compared to the mineral oil; thus, the temperature rise of

the mineral oil was neglected. The TA/PA signal was recorded with time as the
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sample temperature decreased to room temperature. The thermistor was inserted

inside the sample to monitor the actual temperature. Next, cold sample was allowed

to reach room temperature by natural convection, exchanging heat with mineral oil,

and the TA/PA signal was recorded with time as the sample temperature increased to

room temperature. The actual temperature of the sample was also monitored using

a thermistor as before. Note that, for the decreasing and increasing temperature

experiments, the sample holder position may have altered slightly. The sample holder

was removed, refilled with cold/hot sample, and then placed back in the system.

5.4 Results and discussion

Figure 5.2(a) shows the peak-to-peak TA signal amplitude and the actual temperature

of the DI water. The TA signal decreased as the DI water cooled to room temperature

with time. The TA signal follows the actual temperature profile (red line) very well.

Figure 5.2(b) plots the TA signal versus the temperature of the sample. The green line

shows a linear curve fit with an R2 of 0.95. A linear relationship between the actual

temperature and the TA signal was observed. Figure 5.2(c) shows the TA signal

increased when the cold DI water temperature reached room temperature. The TA

signal follows the actual temperature profile (red line) very well. Figure 5.2(d) plots

the TA signal versus the temperature of DI water, and the green line shows a linear

curve fit with an R2 of 0.91. A linear relationship between the temperature and

the TA signal was observed. For water in this temperature range, the Grueneisen

parameter is a linear function of temperature [151, 152] and, therefore, the TA signal

amplitude also varies linearly with the temperature.
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Figure 5.2: (a) TA signal and actual temperature of DI water as heated DI water
was allowed to come to room temperature. (b) TA signal versus temperature shows
almost a linear relationship (green line) with with an R2 of 0.95. (c) TA signal and
the actual temperature of DI water as cold DI water was allowed to come to room
temperature. (d) TA signal versus temperature shows almost a linear relationship

(green line) with an R2 of 0.91.

Similar experiments were done for PA measurements with ink solution as a sample.

Figure 5.3(a) shows the PA signal generated from the ink solution and the actual

temperature. Once again, the PA signal decreased as the solution temperature ap-

proached room temperature, and followed the actual temperature profile (red line)

very well. Figure 5.3(b) plots the PA signal versus temperature, with the green line

showing a linear curve fit with an R2 of 0.98. Next, a cold ink solution was allowed to

reach room temperature. The PA signal increased as the temperature of the solution

increased [Fig. 5.3(c)] and followed the actual temperature profile (red line) very well.

Figure 5.3(d) plots the PA signal versus the temperature with the green line showing

a linear curve fit with an R2 of 0.98.
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Figure 5.3: (a) PA signal and actual temperature of diluted black ink solution (µa =
30 cm−1) as the heated sample was allowed to come to room temperature. (b) PA

signal versus temperature shows almost a linear relationship. Green line is the linear
curve fitting with an R2 of 0.98. (c) PA signal and the actual temperature of ink
solution as cold solution was allowed to come to room temperature. (d) PA signal

versus temperature shows almost a linear relationship. Green line is the linear curve
fitting with an R2 of 0.98.

Table 5.1 summarizes the TA/PA measurements. The number of measurements av-

eraged was 20 for each data point, and as the microwave/laser was operating at 10

Hz pulse repetition rate, the temporal resolution was 2 s. We can see the change in

signal per degree change in temperature is slightly higher for increasing temperature

than for decreasing temperature. It was 3.6% for increasing temperature (compared

to 3.0% for decreasing temperature) in the case of TA measurements, and 5.9% for

increasing temperature (compared to 4.1% for decreasing temperature) in the case of

PA measurements.
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Table 5.1: TA/PA signal change per degree centigrade change in temperature of DI
water/ink solution in a tube.

Tmax Tmin Smax Smin Signal change
(oC) (oC) (mV) (mV) (%/oC) (mV/oC)

TA Decreasing 58.7 22.6 73.3 35.1 3.0 1.0
measurements temperature

Increasing 21.7 4.0 28.9 10.7 3.6 1.0
temperature

PA Decreasing 46.0 23.6 319.8 166.7 4.1 6.8
measurements temperature

Increasing 21.4 12.6 140.3 67.6 5.9 8.3
temperature

Figure 5.4(a) shows how the Grueneisen parameter of water varies with temperature

(Γ = βV 2
s

Cp
) in the temperature range of interest [151, 152]. It increases linearly with

temperature, with a slightly higher slope within the range 0–20 oC than within the

range 20–100 oC (the slope in the range 0–20 oC is 1.48 times the slope in the range

20–100 oC). This agrees with our observation in both TA and PA measurements for

increasing and decreasing temperature. For the TA measurements, the slope in the

range 4–22 oC was 1.16 times the slope in the range 23–58 oC, and for the PA mea-

surements the slope in the range 13–22 oC was 1.44 times the slope in the range 24–46

oC. We can also see a slight difference in the signals, depending on the direction from

which the sample comes to equilibrium. In the case of TA measurements, the equilib-

rium signals were 35.1 and 28.9 mV (17.6% difference) for equilibrium reached from

cooling and warming, respectively. The corresponding equilibrium temperatures were

22.59 and 21.66 oC. There was an almost 1 oC difference between the two equilibrium

temperatures. After accounting for this difference, we see ∼14% [17.6−(3.0+3.6)/2

= 14.3%] signal discrepancy. In the case of PA measurements, the equilibrium signals
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Figure 5.4: (a) Variation of the Grueneisen parameter of water with temperature
[151, 152]. (b) Temperature precision versus number of measurements averaged for
TA measurements in log-log scale. The plot shows a linear curve with a slope of
−0.47. (c) Temperature precision versus number of measurements averaged for PA
measurements in log-log scale. The plot shows a linear curve with a slope of −0.44.

were 166.7 and 140.3 mV (15.8% difference) and the equilibrium temperatures were

23.57 and 21.41 oC, respectively. There was an almost 2 oC temperature difference

between the two equilibrium temperatures. After accounting for this difference, we

see ∼6% [15.8−2 × (4.1+5.9)/2 = 5.8%] signal discrepancy. The TA/PA signal gen-

erated from the sample is dependent on various factors, such as the orientation of the

sample holder and the spatial distribution of microwaves/light on the sample surface.

Therefore, the absolute signal is very sensitive to the position of the sample holder.

Because the sample holder position was altered slightly between experiments, these

variations in signal could arise. If the sample holder had been fixed in its position
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between different experiments (increasing and decreasing temperatures), the varia-

tion in the signal amplitudes would have been less. Of course, when the technology

is used to monitor thermal therapy, the sample will be held stationary.

The temperature measurement precision was ±1 oC for TA measurements and ±0.5

oC for PA measurements. Here, we have used the terms precision and sensitivity

synonymously. The temperature precision is calculated based on the uncertainty in

the mean value of the measurements (standard error). The precision would improve

if we took a larger sample size. Figure 5.4(b) shows how the temperature precision

typically varies with the number of measurements averaged for TA measurements. As

expected, the standard error decreased as a factor of the square root of the number

of measurements averaged. The greater the number of measurements averaged, the

less the standard error, and hence, the higher the precision. The plot is on a log-log

scale, yielding a linear curve with −0.47 slope (mean slope = −0.40±0.05, for seven

repeated experiments). In an ideal situation, the slope should be −0.5. It is observed

that the temperature precision could be as high as ±0.1 oC with > 2000 measure-

ments averaged. Of course, the increased precision comes at the expense of temporal

resolution. With the current microwave source (a maximum 100 Hz pulse repetition

rate), the temporal resolution could be as long as 20 s to achieve a temperature pre-

cision of ±0.1 oC. However, employing a higher repetition rate microwave source can

eventually give us even higher temperature precision with practical temporal reso-

lution. Similarly, figure 5.4(c) shows how the temperature precision varied with the

number of measurements averaged for PA measurements. As expected, the precision

could be as high as ±0.1 oC with > 1000 measurements averaged. As before, the plot

is on a log-log scale, with a linear curve with −0.44 slope (mean slope = −0.40±0.03,

for five repeated experiments). Note that the precision varies from sample to sample
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depending on the SNR. We will show later that, for saline and turkey breast tissue,

we obtained even higher precision in temperature based on TA measurements with

20 measurements averaged.

Figure 5.5: (a) Temperature monitoring of saline using TA measurements. TA
signal followed the actual temperature profile. (b) TA signal versus temperature

showing a second-order relationship (green line)with an R2 of 0.99. (c) Temperature
monitoring of turkey breast tissue using TA measurements. TA signal and actual
temperature of turkey breast tissue as heated tissue was allowed to come to room

temperature. (d) TA signal versus temperature showing a second-order relationship
(green line) with an R2 of 0.99.

Saline/Tissue temperature monitoring: We also used saline (0.9% w/v of NaCl

in water) and turkey breast tissue as a phantom to monitor temperature using TA

measurements. The same experimental procedures were followed as before. Figure

5.5(a) shows that the TA signal decreased as the temperature of the saline decreased.

The TA signal followed the actual temperature profile (red line) very closely. Figure
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5.5(b) shows a second-order curve fit (green line) for the TA signal versus the temper-

ature of saline with an R2 of 0.99. Figure 5.5(c) shows that the TA signal decreased as

the temperature of the tissue decreased. The TA signal followed the actual tempera-

ture profile (red line) very closely. Figure 5.5(d) shows a second-order curve fit (green

line) for the TA signal versus the temperature with an R2 of 0.99. Table 5.2 sum-

marizes the TA measurements for the sensing of the saline and turkey breast tissue

temperatures. As before, 20 measurements were averaged. For the saline, there was

∼5.9% change in TA signal, whereas for tissue there was ∼6.1% change in signal per

degree centigrade change in temperature. The TA signal generated from the tissue

had a very high SNR of ∼100 at room temperature (∼24 oC). Thus, the minimum

detectable signal change (i.e., noise-equivalent signal change) is ∼1%, which gives us

a temperature sensitivity of ∼0.15 oC (= 1%/6.1%/oC). However, if the SNR is im-

proved, the sensitivity could be even better. The temperature precision was ±0.15 oC

(with 20 measurements averaged) based on the standard error. As discussed before,

taking the average of a greater number of signals (> 2000) the precision could be

improved to ±0.015 oC.

Table 5.2: Saline and turkey breast tissue temperature monitoring using TA
measurements. The precision is based on taking average of 20 measurements.

Tmax Tmin Smax Smin Signal change Precision
(oC) (oC) (mV) (mV) (%/oC) (mV/oC) (oC)

Saline 49.0 21.9 196.6 75.3 5.9 4.5 ±0.3

Turkey breast 37.0 23.6 335.9 184.5 6.1 11.3 ±0.15
tissue

82



5.5 Conclusions

We proposed a novel temperature-sensing method based on TA and PA measure-

ments. This noninvasive method has deep-tissue-sensing capabilities. Depending

on the tissue types, either the TA or PA component, or both, could be used. We

monitored temperature of DI water thermoacoustically within 5 to 60 oC, and pho-

toacoustically monitored the temperature of diluted ink solution within 12 to 46 oC.

We also showed that the TA-based measurements could be used for saline and turkey

breast tissue temperature monitoring. The temperature sensitivity was 0.15 oC with

2 s (20 measurements averaged) temporal resolution. Measurement precision could be

improved by taking more signal averages. In the future, we would like to continue the

monitoring of temperature in vivo using both TA and PA sensing for various appli-

cations, such as temperature monitoring for tissue during radio frequency ablation,

radiation therapy, photothermal therapy, photodynamic therapy, cancer treatment

using high intensity focused ultrasound (HIFU), and drug delivery using HIFU.
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Chapter 6

Conclusions and future directions

6.1 Conclusions

This dissertation presented the feasibility of dual-modality thermoacoustic and pho-

toacoustic imaging, the development of dual-modal contrast agents, the development

of a molecular targeted contrast agent for photoacoustic imaging, and a novel tem-

perature sensing technique using thermoacoustic and photoacoustic measurements.

We successfully integrated the two imaging modalities (TAT and PAT) into one sys-

tem. Our system should be much more comfortable for the patient, and we will not

need to apply gel or other chemicals on the skin – our system operates with dry

coupling. We also achieved good quality PAT and TAT images of tissue mimicking

phantoms, with 0.7 mm spatial resolution and high SNR. We successfully used a nega-

tive lens ultrasonic detector to improve the tangential resolution of the breast imaging

system. More than twofold resolution improvement was observed in both TAT and

PAT. The increase in acceptance angle enabled us to image a larger scanning area,

which is especially useful for breast screening. The same concept can be extended

to other tomographic imaging systems where a large imaging area is needed and flat
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transducers are used as signal detectors. We also showed that a negative lens detector

preserves the object shape in the reconstructed images, even when the target is far

from the scanning center or close to the detector surface. Such shape preservation

could be important in the accurate diagnosis and treatment of tumors.

We developed a dual-modal contrast agent, single-walled carbon nanotubes (SWNTs)

for both thermoacoustic and photoacoustic imaging. These nanotubes provided more

than twofold signal enhancement in TAT at 3 GHz and more than sixfold signal

enhancement in PAT at 1064 nm. We demonstrated a noninvasive SWNTs-enhanced

PA identification of SLN in a rat model in vivo with a high contrast-to-noise ratio

(CNR = 89) and good resolution (∼500 µm). Our results suggest that this technology

could be a useful pre-clinical and possibly clinical tool to identify SLNs noninvasively

in vivo.

We demonstrated the potential for targeted molecular PAT of gold nanobeacons

(GNBs). The GNBs provided a more than tenfold signal enhancement in PAT in

the NIR wavelength window. In vitro and preliminary in vivo PAT images sub-

stantiated our hypothesis that GNBs can work as a exogenous contrast agent in the

NIR wavelengths and they can be used for targeted photoacoustic imaging. We also

imaged SLN noninvasively by intradermal injection of GNBs. The uptake of these

nanobeacons to the lymph node was particle size dependent. Among the three dif-

ferent sizes of nanobeacons we tried, we found the smallest size particles (∼90 nm

diameter) traveled and accumulated in the lymph node faster than the other GNBs

of larger sizes (∼160 nm, ∼290 nm diameter).

TAT and PAT can be used not only for imaging, but also for therapy. A novel tem-

perature sensing method based on thermoacoustic and photoacoustic measurements
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was explored. These noninvasive methods have deep tissue sensing capabilities. De-

pending on the tissue types, either the TA or PA component, or both, could be used.

We monitored the temperature of DI water thermoacoustically within 5 to 60 oC, and

photoacoustically monitored the temperature of diluted ink solution within 12 to 46

oC. We also showed that the TA-based measurements could be used for saline and

turkey breast tissue temperature monitoring. The temperature sensitivity was 0.15

oC with 2 s (20 measurements averaged) temporal resolution. Measurement precision

could be improved by taking more signal averages.

6.2 Future directions

In the future, we propose to integrate TAT and PAT with a clinical ultrasound imag-

ing system. The three compatible imaging modalities could share the same ultrasound

detection system and provide complementary contrasts. The long-term goal will be

to provide a clinical tool for the early functional monitoring of breast neoadjuvant

therapy (chemo- or hormone therapy). Many breast cancer patients receive neoadju-

vant treatment to reduce tumor size and enable breast conserving therapy that would

otherwise have not been possible. Although it was originally hoped that neoadjuvant

therapy would improve patient survival outcomes, data from trials have not shown

this benefit. However, this may be due to the inability to monitor response to therapy

and modify treatment regimens more carefully. Methods used to monitor response

to neoadjuvant chemotherapy or hormone therapy include clinical breast examina-

tion, mammography, ultrasound, and magnetic resonance imaging. These methods

depend on overall gross tumor morphology and size measurements, which may not
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change, despite tumor response on a cellular level. A more sensitive method of de-

tecting response to therapy might allow earlier adjustments in treatment, and might

thus result in better outcomes. Furthermore, if drug choices are not resulting in

beneficial responses, prompt and early changes in drug regimens will alleviate some

of the unnecessary morbidity that patients suffer during treatment while awaiting

response to therapy. We believe that the combined contrasts from TAT, PAT, and

ultrasonography can accurately predict breast neoadjuvant therapeutic response.

We also propose to study angiogenesis by photoacoustic imaging. Advances in in vivo

and in vitro assays of angiogenesis have been influential for increasing our understand-

ing of regulation of angiogenesis. We will use a Matrigel model to study angiogenesis

in vivo in rats and mouse. Matrigel is a mixture of basement membrane proteins and

growth factors secreted by Engelbreth-Holm-Swarm murine sarcoma cells. It con-

sists of laminin, type IV collagen, entactin, nidogen, heparan sulfate proteoglycan,

and growth factors, including transforming growth factor-β, epidermal growth factor,

platelet-derived growth factor, and insulin growth factor-1. When endothelial cells

are grown in vitro on Matrigel, these cells are known to organize into capillary-like

tubules. Within 1 h of plating on the gel, endothelial cells form cords, which develop

into a three-dimensional branching network. By mixing test substances with Matrigel

prior to gel polymerization or by adding them to the endothelial cell suspension, both

putative inducers and inhibitors of neovascularization can be studied. This Matrigel

model will be used for targeted imaging. Briefly, mice or rats, will be anesthetized

and subcutaneously injected with Matrigel (BD Biosciences, San Jose, California),

thawed at 4 oC and enriched with fibroblast growth factor-2 (500 nm/mL; Sigma

Aldrich, St. Louis, MO) and heparin (64 U/mL). After injection, the matrigel will

form ellipsoidal plug. Following the implant, PA imaging will be performed from day
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7 onwards. Animals with Matrigel plugs will undergo PA imaging following a treat-

ment of targeted GNBs, and then will be sacrificed. The excised Matrigel plugs will

be sectioned in to slices corresponding to the PAT scan plane and stained with CD31

immunohistochemical stain. Histologic vascular parameters, including microvascular

density (MVD), vessel number (VN), vascular area, and vascular perimeter, will be

measured. Then, PAT and histologic parameters will be correlated. It is hoped that

the findings will contribute new information on angiogenesis that will be therapeuti-

cally valuable.
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Appendix A

Safety standards, SWNTs

preparation and characterization,

animal and drug information

Safety standards for microwave and laser exposure:

For microwave exposure in TAT, we refer to the safety standards of rf heating ap-

proved by IEEE [63] and FDA [153, 154]. Rf heating is measured in specific absorption

rate (SAR) in units of W/kg. According to the IEEE standards, our case involves

microwave exposure under a controlled environment, which means that the exposure

is incurred by persons who are aware of the potential for exposure. With 3 GHz

microwaves under a controlled environment, the IEEE standards limit the SAR to

0.4 W/kg as averaged over the whole body and limit the spatial peak SAR to 8.0

W/kg as averaged over any 1 gm of tissue. The SARs are averaged over any 6 min

interval. The FDA standards are more relaxed than the IEEE counterparts. Note

that since MRI uses rf, it is constrained by the same safety standards. We calculated

the SAR distribution by simulating the transport of microwave in the breast tissue.
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The simulation is done by using the finite difference time domain (FDTD) method

[155, 156] with dielectric parameters of breast tissues [157]. It is observed that the

local peak SAR value is less than 3.0 W/kg. In addition, since the average power

of the microwave source is less than 0.4 W at the current repetition rate and the

body weight is over 1 kg, the whole body averaged SAR is guaranteed to be below

the IEEE limit. Therefore, the rf heating in the breast is within both the IEEE and

FDA safety standards. Further, the detection time at any position will be within five

minutes, so the local maximum temperature increase in the breast tissue is less than

0.3 oC even if there is no blood perfusion and other heat conduction.

When PAT is used to image human subjects in vivo, the maximum permissible pulse

energy and the maximum permissible pulse repetition rate are governed by the ANSI

laser safety standards [68]. The safety limits for the skin depend on the optical

wavelength, pulse duration, exposure duration, and exposure aperture. In the spectral

region of 400–700 nm, the maximum permissible exposure (MPE) on the skin surface

by any single laser pulse should not exceed 20 mJ/cm2. In the 700–1050 nm region,

the MPE increases with the wavelength λ in nm as 20 × 102(λ−700)/1000 mJ/cm2. At

800 nm, for example, the MPE is 31.7 mJ/cm2. In the 1050–1400 nm region, the

MPE increases to 100 mJ/cm2. In PAT, the laser beam is always expanded so that

the fluence is within the ANSI maximum permissible energy limit.

SWNTs synthesis:

A diblock copolymer templating method was used to coat Fe coated on Si wafers

[158]. The wafers were placed in a 3 in quartz reaction chamber (Easy Tube 2000,

First Nano) and heated in Ar to 900 oC. The chamber was filled with H2 for 2 min,
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and CH4 was added to the gas flow as the carbon feedstock for 20 min to initiate

the growth of SWNTs. Subsequently, the carbon feedstock was switched off and

the furnace was cooled to room temperature. The SWNTs were further dispersed

in 1 wt% Pluronic R© F127 surfactant (1 g of surfactant in 100 g of deionized water)

at the appropriate concentration and sonicated rigorously to obtain a homogeneous

dispersion.

Characterization of SWNTs:

Raman spectroscopy (LabRAM Aramis, Horiba JvonYvon) at 633 nm excitation,

transmission electron microscope imaging (JEOL 2000 FX electron microscope op-

erating at 200 kV), ζ potential (Malvern Zetasizer NanoZS system with irradiation

from a 632.8 nm He-Ne laser), and atomic force microscopy (MFD-3D-BIO, Asylum

Research) were used to characterize the SWNTs.

Figure A.1(a) shows a representative bright-field TEM image of densely populated

SWNTs on the surface of the substrate. Further investigation by high-resolution

TEM (HRTEM) [Fig. A.1(b)] and AFM [Fig. A.1(c)] showed SWNTs with diameters

between 1.2 and 2.2 nm and lengths between 500 nm and 1 µm. Figure A.1(d) shows

a representative Raman spectrum of SWNTs at the laser excitation wavelength of

633 nm. The Raman spectrum shows a G band at 1596 cm−1 and a D band at

1320 cm−1, with a D/G band ratio for SWNTs of < 0.1, indicating that the SWNTs

have very few defects [159]. The radial breathing modes [Fig. A.1(d) inset], unique

to SWNTs [159], further corroborate the HRTEM and AFM results and confirm the

presence of SWNTs. SWNT suspensions with different concentrations (0.1–1 mg/mL)

were prepared in 10 mL of 1% biologically compatible Pluronic R© F127 surfactant
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Figure A.1: (a) A low-resolution bright-field TEM, (b) HRTEM image of bundled
SWNTs grown using Fe as the catalyst. (c) Tapping mode AFM images of dispersed
SWNTs. (d) D-band and G-band Raman spectra of the SWNTs. The inset shows
the radial breathing modes. (e) Vials contain aqueous dispersions of SWNTs in

Pluronic R© F127 after being sonicated. From left to right, the concentrations are (i)
0, (ii) 0.1, (iii) 0.25, (iv) 0.5, (v) 0.75 and, (vi) 1 mg/mL.
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solution (pH 7). The different domains of the nonionic Pluronic F127 likely wrapped

themselves in energy-minimized conformations around the nanotubes to solubilize the

SWNTs by steric stabilization, producing nearly neutral nanotube suspensions [160].

These suspensions were stable during the period of the entire study. The ζ-potential

measurements were performed on 0.1 mg/mL SWNTs dispersed in Pluronic F127

and showed a peak ζ potential of −14 mV with a Gaussian distribution (full width

half maximum of the distribution = 10 mV). This value is similar to other reported

ζ-potential measurements on neutral stable SWNTs dispersed in Pluronic F127 [160].

Figure A.1(e) shows an optical image of the SWNTs (0.1–1 mg/mL concentration)

dispersed in Pluronic F127 after aggressive sonication.

Photoacoustic spectroscopy of SWNTs:

Figure A.2(a) shows the PA signals obtained from a tygon tube (i.d. 250 µm, o.d. 500

µm) filled with SWNTs (0.25 mg/mL) and rat blood. The laser was tuned to 764

nm wavelength. At this excitation wavelength, the peak-to-peak PA signal amplitude

obtained from SWNTs was∼600 mV, compared to a∼170 mV peak-to-peak PA signal

amplitude from blood alone. Figure A.2(b) shows the PA spectrum (peak-to-peak PA

signal amplitude versus excitation light wavelength) of the SWNTs (in black) for an

excitation wavelength range of 740–820 nm. The PA spectrum of rat blood (in red) is

also shown in the same figure. It is evident that the PA signal obtained from SWNTs

is much stronger than that of blood over the entire wavelength range. Therefore, one

can choose a specific light wavelength for imaging within a broad range. Figure A.2(c)

plots the ratio of the peak-to-peak PA signal amplitude of SWNTs to that of blood

between 740 and 820 nm. The PA signal from the tygon tube filled with SWNTs

is more than four times stronger than that from blood at 750 nm. Over the entire
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740–820 nm window, the PA signal from SWNTs is more than two times stronger

than that from blood.

Figure A.2: (a) PA signals generated from a tygon tube (i.d. 250 µm, o.d. 500 µm)
filled with SWNTs (0.25 mg/mL) and rat blood. The excitation optical wavelength
is 764 nm. (b) PA spectra of SWNTs and blood over a 740–820 nm range of NIR
wavelengths. (c) Ratio of the peak-to-peak PA signal amplitudes generated from

SWNTs to those generated from blood.

Animal and drug information:

Guidelines on the care and the use of laboratory animals at Washington University in

St. Louis were followed for all animal experiments. Adult Sprague Dawley rats with

body weights ranging from 250–350 g were used for the in vivo studies. Initial anes-

thetization of the rat was done using a mixture of ketamine (85 mg/kg) and xylazine
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(15 mg/kg). During the image acquisition, anesthesia was maintained using vapor-

ized isoflurane (1 L/min oxygen and 0.75% isoflurane, Euthanex Corp.), and a pulse

oximeter (NONIN Medical INC., 8600V) was used to monitor the vitals. If needed,

0.9% saline was administered to the rat for hydration. After image acquisition, the

animal was euthanized by pentobarbital overdose.

For in vivo imaging the hair on the region of interest of the rat was gently removed

before imaging, using a commercial hair-removal lotion. For SLN imaging 75-150 µL

of intradermal injection was performed on the left/right forepaw pad, depending on

which side of the rat was imaged.
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Appendix B

GNBs preparation and

characterization

Materials:

Unless otherwise listed, all solvents and reagents were purchased from Aldrich Chem-

ical Co. (St. Louis, MO) and used as received. Anhydrous chloroform and methanol

were purchased from Aldrich Chemical Co. and distilled over calcium hydride prior to

use. Poly(styrene-b-acrylic acid) [135–138] (PS-b-PAA) was purchased from Polymer

Source Inc. (Montreal, Canada). Biotinylated dipalmitoyl-phosphatidylethanolamine

and high purity egg yolk phosphatidylcholine were purchased from Avanti Polar

Lipids, Inc. Cholesterol and octylthiol-coated gold nanoparticles were purchased and

used as received from Aldrich Chemical Co. (St. Louis, MO). Sorbitan monolaurate

was purchased from Aldrich. Argon and nitrogen (Ultra High Purity: UHP, 99.99%)

were used for storage of materials. The Spectra/Por membrane (Cellulose MWCO:

10,000 Da) used for dialysis was obtained from Spectrum Medical Industries, Inc.

(Laguna Hills, CA).
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Methods:

Preparation of GNB: In a typical procedure, octanethiol-coated gold nanoparti-

cles (2–4 nm) in toluene (100 mg) are suspended in almond oil (4 mL) and vigorously

vortexed to homogeneity. The suspension was filtered through a small bed of cotton.

The solvent was evaporated under reduced pressure at 60 oC. The surfactant comix-

ture included high-purity egg yolk phosphatidylcholine (91 mol%, 377.4 mg), choles-

terol (8 mol%, 16.9 mg), and biotinylated dipalmitoyl phosphatidylethanolamine (1

mol%, 5.8 mg). The surfactant co-mixture was dissolved in chloroform, evaporated

under reduced pressure, dried in a vacuum oven at 40 oC overnight, and dispersed into

water by probe sonication. This suspension was combined with the gold nanoparti-

cles suspended in almond oil (20% v/v, 0.2 mm) in distilled deionized water (77.3%

w/v), and glycerin (1.7% w/v). The mixture was continuously processed thereafter

at 20000 psi (ca. 137.9 MPa) for 4 min with an S110 Microfluidics emulsifier at 4

oC. The nanobeacons were dialyzed against water using a 20000 Da MWCO cellulose

membrane for a prolonged period of time (3 days) and then passed through a 0.45

µm Acrodisc syringe filter. To prevent bacterial growth, the nanobeacons were stored

under an argon atmosphere (typically at 4 oC). Dynamic light scattering: average di-

ameter Dav = (154±10) nm; ζ = (−47±7) mV. AFM: average height Hav = (101±51)

nm.

Typical procedure for preparation of control nanobeacon: In a typical ex-

perimental procedure, the surfactant co-mixture included high purity egg yolk phos-

phatidylcholine (90 mole%, 558.6 mg), cholesterol (8 mole%, 26.3 mg), and biotinylated-

dipalmitoyl phosphatidylethanolamine (2 mole%, 16.2 mg).
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Figure B.1: Number-averaged hydrodynamic diameter profiles for (a) GNB and (b)
control nanobeacon from dynamic light scattering measurements; (c) distribution of
particle height of GNB from AFM analyses; (d) change in particle sizes over time

(> 150 days stored at 4 oC under argon in sealed serum vials).

The surfactant co-mixture was dissolved in chloroform, filtered and evaporated under

reduced pressure, dried in a 40 oC vacuum oven overnight, and dispersed into water by

probe sonication. This suspension was combined with the almond oil mixture (20%

v/v), distilled deionized water (77.3% w/v), and glycerin (1.7% w/v). The mixture

was continuously processed thereafter at 20,000 PSI for 4 min with an S110 Microflu-

idics emulsifier (Microfluidics) at 4 oC. The nanobeacons were dialyzed against water

using a 20,000 Da MWCO cellulose membrane for a prolonged period of time and

then passed through a 0.45 µm Acrodisc Syringe filter. To prevent bacterial growth

the nanobeacons were stored under argon atmosphere typically at 4 oC.

DLS (Dav)/nm = 153±11 nm; Zeta (ζ)/mV = −23±09 mV; PDI: 0.14±0.02.
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Preparation of L-GNB90: In a typical experimental procedure, octanethiol coated

gold nanoparticles (2-4 nm, Aldrich Inc., 2% w/v) in toluene (100 mg) were suspended

in sorbitan sesquioleate (4 mL, 2 mole%) and vigorously vortexed to homogeneity.

The suspension was filtered through a small bed of cotton. The solvent was evapo-

rated under reduced pressure at 45 oC. The surfactant co-mixture included high purity

egg yolk phosphatidylcholine (91 mole%, 380 mg), cholesterol (8 mole%, 17.39 mg),

and biotinylated-dipalmitoyl phosphatidylethanolamine (1 mole%, 6.2 mg). The sur-

factant co-mixture was dissolved in chloroform, evaporated under reduced pressure,

dried in a 40 oC vacuum oven overnight, and dispersed into water by probe sonica-

tion. This suspension was combined with the gold nanoparticle-suspended sorbitan

sesquioleate mixture (20% v/v), distilled deionized water (15.23 mL, 77.3% w/v), and

glycerin (0.37 mL, 1.7%, w/v). The mixture was continuously processed thereafter

at 20,000 PSI for 4 minutes with an S110 Microfluidics emulsifier (Microfluidics) at

4 oC. The nanobeacons were dialyzed against water using a 20,000 Da MWCO cel-

lulose membrane for a prolonged period of time and then passed through a 0.45 µm

Acrodisc Syringe filter. To prevent bacterial growth the nanobeacons were stored un-

der an argon atmosphere typically at 4 oC. DLS (Dav)/nm = 92±13 nm; Zeta (ζ)/mV

= −55±14 mV; AFM (Hav)/nm = 45±10 nm, ICP-MS = 1.56 µg of gold /g of 20%

colloidal suspension.

Preparation of P-GNB290: In a typical experimental procedure, octane thiol coated

gold nanoparticles (2-4 nm, Aldrich Inc.) in toluene were suspended in sorbitan mono-

laurate (1 mL, 5 mole%) and vigorously vortexed to homogeneity. The suspension

was filtered through a small bed of cotton. The amphiline PS-b-PAA [135–138] (Mn

× 10−3: 0.8-b-29.3 polydispersity index: PDI = 1.18, 0.0034 mmoles, 104.0 mg,

0.5 mole%) was dissolved in a mixture of methanol and chloroform (4:1), filtered
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through a small bed of cotton, evaporated under reduced pressure at 50 oC, dried

in a 40 oC vacuum oven for 6 h, and dispersed into water by probe sonication until

a clear suspension was obtained. This suspension (10 mL) was combined with the

gold nanoparticle-suspended polysorbate mixture (1 mL, 5 mole%), distilled deion-

ized water (8.45 mL, 0.2 µM), and glycerin (0.45 mL). The mixture was then briefly

probe sonicated at ambient temperature followed by continuous processing at 20,000

PSI (137.9 MPa) for 4 minutes with an S110 Microfluidics emulsifier (Microfluidics)

at 4 oC. The nanobeacons were purified by exhaustive dialysis against deionized wa-

ter using 20 KDa MW CO cellulosic membrane. The nanoparticles were recovered

and passed through a 0.45 µm Acrodisc Syringe filter. To slow microbial growth the

colloids were stored under an argon atmosphere typically at 4 oC. DLS (Dav)/nm =

289±24 nm; Zeta (ζ)/mV = −35±08 mV; AFM (Hav)/nm = 153±31 nm, PDI =

0.15±0.04, ICP-MS = 134 µg of gold /g of 10% colloidal suspension.

Measurements:

Dynamic light scattering measurements: Hydrodynamic diameter distribution

and distribution averages for the GNB and controls in aqueous solutions were deter-

mined by dynamic light scattering. Hydrodynamic diameters were determined using

a Brookhaven Instrument Co. (Holtsville, NY) Model Zeta Plus particle size ana-

lyzer. Measurements were made following dialysis (MWCO 10 kDa dialysis tubing,

Spectrum Laboratories, Rancho Dominguez, CA) of GNB suspensions into deionized

water (0.2 M). Nanobeacons were dialyzed into water prior to analysis. Scattered

light was collected at a fixed angle of 900. A photomultiplier aperture of 400 mm was

used, and the incident laser power was adjusted to obtain a photon counting rate be-

tween 200 and 300 kcps. Only measurements for which the measured and calculated
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baselines of the intensity autocorrelation function agreed to within +0.1% were used

to calculate nanoparticle hydrodynamic diameter values. All determinations were

made in multiples of five consecutive measurements.

Electrophoretic potential measurements: Zeta potential (ζ) values for the GNB

were determined with a Brookhaven Instrument Co. (Holtsville, NY) model Zeta Plus

zeta potential analyzer. Measurements were made following dialysis (MWCO 10 kDa

dialysis tubing, Spectrum Laboratories, Rancho Dominguez, CA) of GNB suspen-

sions into water. Data were acquired in the phase analysis light scattering (PALS)

mode following solution equilibration at 25 oC. Calculation of ζ from the measured

nanoparticle electrophoretic mobility (µ) employed the Smoluchowski equation: µ

= εζ/η, where ε and η are the dielectric constant and the absolute viscosity of the

medium, respectively. Measurements of ζ were reproducible to within ±4 mV of the

mean value given by 16 determinations of 10 data accumulations.

UV-visible spectroscopy: Absorption measurements were made with a Shimadzu

UV-1601 P/N 206-67001 spectrophotometer using Shimadzu-UV probe 2.21 software.

Transmission electron microscopy measurements: Glow discharged carbon/

formvar coated nickel grids were floated on a drop of sample for 2 min. Grids were

blotted, rinsed quickly in water, and stained in 1% aqueous uranyl acetate for 1 min.

Samples were blotted, air dried, and viewed on a Zeiss 902 Electron Microscope, and

recorded with Kodak E.M. film. Micrographs were collected at 100,000X magnifi-

cation. The number-average particle diameter (Dah) values and standard deviations

were generated from the analyses of a minimum of 100 particles from three micro-

graphs.
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Atomic force microscopy measurements: A Digital Instruments Dimension 3000

series AFM (calibration date 08/2008) and standard Veeco tapping mode silicon

probes w/PtIr coating were used for scanning the samples.

In a typical methodology, aqueous suspensions of GNB samples were dried in a class

10000-clean room on a clean glass slide for 3 h. Once dried, samples were placed

on the AFM and scanned. Pertinent scanning parameters were as follows: Resonant

frequency (probe): 60–80 kHz; Example of tip velocity: (4 µm/s for 2 µm), (15 µm/s

for 5 µm), (30 µm/s for 10 µm). Aspect ratio: 1:1; Lift height: 20 nm; Resolution:

512 samples/line, 256 lines. The average particle height (Hav) values and standard

deviations were generated from the analyses of a minimum of 100 particles from three

micrographs.

Inductively coupled plasma-optical emission spectroscopy (ICP-OES): The

iodine and bismuth contents of cROMP were analyzed by inductively coupled plasma-

optical emission spectroscopy (ICP-MS, SOP7040, Rev 9) conducted at the Bodycote,

West Coast Analytical Service (WCAS), Santa Fe Springs, CA. Briefly, the samples

were analyzed by a Leeman Labs Direct Reading Echelle ICP-MS, or a DRE (Di-

rect Reading Echelle) instrument which was designed to handle sub-ppm to percent

level metal concentrations. DRE consists of a 2 dimensional, high resolution Echelle

grating which precisely and reliably locate any peak in the ICP spectrum.

In vitro human plasma clot phantoms: In a typical procedure, whole porcine

blood was obtained fresh and anticoagulated (9:1 vol/vol) with sterile sodium citrate.

Plasma clots were produced by combining plasma and 100 mmol/L calcium chloride

(3:1 vol/vol) with 5 U thrombin (Sigma-Aldrich, Inc.) in an LDPE tube (∼1 cc vol-

ume, i.d. ∼6 mm). The plasma was allowed to coagulate slowly at room temperature.
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The clots were incubated individually with 150 µg biotinylated antifibrin monoclonal

antibody (NIB5F3) [131] in 10 mL PBS with 1% crystalline BSA (Sigma Chemical

Co) for 2 h. The antibody-treated clots were then incubated with excess avidin (50

µg/mL PBS) for 30 min, followed by biotinylated GNB (30 µL/mL PBS) for 30 min.

The control clots were treated similarly with control nanoparticle (30 µL/mL PBS).

Staining of human plasma clot phantoms: Biebrich Scarlet-Acid Fuchsin Solu-

tion was diluted 1:1 in 1X PBS. Plasma clot targeted with GNB and control samples

were incubated with 200 µL diluted staining solution on the surface at room temper-

ature for five minutes, then wash with 1X PBS for three times. Keep samples in 1X

PBS buffer at refrigerator overnight.

Noninvasive PA imaging with L-GNB90: Figure B.2 shows the noninvasive lymph

node imaging with L-GNB90s as the contrast agent. Different concentration of the

L-GNB90s was tried and all of them were able to show the lymph node very clearly.

Although the preparation of GNBs utilized in general pharmaceutically accepted com-

ponents such as phospholipids, vegetable oil, glycerin etc, the more in depth animal

studies are warranted to understand the behavior of each component in vivo.
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Figure B.2: In vivo photoacoustic imaging of sentinel lymph nodes of rat
noninvasively. λ = 767 nm. (a) Photograph of the rat after the hair was removed

from the scanning region before taking the PA images. The scanning region is
marked with a black dotted square. (b–p) Sagittal maximum amplitude projection
(MAP) [38] images. Blood vessels are marked with red arrows, SLNs are marked

with green arrow, lymph vessel is marked with blue arrow. Scale bar: 5 mm. (b, g,
l) Control PA image with no nanobeacons injected. (c–f) 10 nM L-GNB90s were
used. (h–k) Four times diluted L-GNB90s (2.5 nM) were used. (m–p) Ten times

diluted L-GNB90s (1 nM) were used. (q) Digital optical photograph of the rat with
the skin removed after PA imaging. Lymph node area is shown with green arrow.

(r) Excised lymph node. Smallest tick: 1 mm.
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Appendix C

Imaging systems

Reflection-mode deep photoacoustic imaging system [97]:

A tunable Ti:sapphire laser (LT-2211A, LOTIS TII) pumped by Q-switched Nd:YAG

(LS-2137, LOTIS II) laser was the light source, providing < 15 ns pulse duration and

a 10 Hz pulse repetition rate. A dark-field ring-shaped illumination was used [37].

The light energy on the sample surface was controlled to conform to the ANSI stan-

dard for maximum permissible exposure [68]. A 3.5 MHz/5 MHz central frequency,

spherically focused (4.95 cm/2.54 cm focus length, 1.91 cm diameter active area

element, and 70%/72% bandwidth) ultrasonic transducer (V380/V308, Panametrics-

NDT) was used to acquire the generated PA signals. The signal was then amplified

by a low-noise amplifier (5072PR, Panametrics-NDT), and recorded using a digital

oscilloscope (TDS 5054, Tektronix) with a 50 mega-sampling rate. PA signal fluc-

tuations due to pulse-to-pulse energy variation were compensated by signals from a

photodiode (DET110, Thorlabs), which sampled the energy of each laser pulse.

A linear translation stage (XY-6060, Danaher Motion) was used for raster scanning

to obtain three-dimensional (3-D) PA data. A computer controlled the stage and

synchronized it with the data acquisition. To shorten the data acquisition time,
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a continuous scan was used without signal averaging. An A-line (A-scan) was the

PA signal obtained along the depth direction at a single point. Multiple A-lines

[acquired by a one-dimensional (1-D) scan] gave a two-dimensional (2-D) B-scan. A

3-D image was acquired with a 2-D scan. A 1-D depth-resolved image was obtained

by multiplying the time axis of the initial A-scan (resolved in time along the depth

direction) by the speed of sound in soft tissue (∼1500 m/s).

The scanning time depends on the laser pulse repetition rate (PRR), the scanning

step size, and the FOV. Typical values are a scanning step size for a 1-D scan = 0.2

mm, for a 2-D scan = 0.4 mm, a laser PRR = 10 Hz, and a FOV = 24 mm × 24

mm. The acquisition time = ∼25 sec for a B-scan, and = ∼18 min for a 3-D image.

Please note that no signal averaging is done for any of the PA images. The transducer

was located inside a water container with an opening of 5 cm × 5 cm at the bottom,

sealed with a thin, clear membrane. The object was placed under the membrane, and

ultrasonic gel was used for coupling the sound.

Curved array photoacoustic tomographic system [161]:

The light source was same as in reflection-mode deep photoacoustic imaging system.

A uniform illumination area of approximately 20 mm in diameter on the sample sur-

face was produced by diverging the laser beam with a concave lens and homogenizing

it by a circular diffuser. The sample was placed at the center (focal point of the curved

transducer) and was illuminated orthogonal to the imaging plane of the transducer

for maximum uniformity. The transducer consisted of 128 elements arranged along a

900 arc with a 25 mm center of curvature (5 MHz central frequency, BW 80%, custom

manufactured Imasonic Inc., Besanon, France).The transducer used piezocomposite
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technology for high sensitivity and signal-to-noise ratio. Individual elements had an

elevation height of 10 mm with an azimuthal pitch of one wavelength (0.308 mm) and

kerf of 0.1 mm. Electronic beam formation provided in-plane dynamic focusing. PA

signals from each element were amplified with 60–70 dB gain and multiplexed in to

16 parallel data acquisition channels. The data was DMA-transferred to RAM and

subsequently to disk for post-processing. The acquisition rate was 1 frame/second.

Images were reconstructed using a delay-and-sum algorithm [162].
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