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Abstract

Multi-dimensional scaling is an analysis teol which transforms pairwise distances
between points to an embedding of points in space which are consistent with those
distances. Two recent technigues in statistical pattern recognition, locally linear
embedding (LLE) and Isomap, give o mechanism for finding the structure under-
lying point sets for which comparisons or distances are only meaningful between
nearby points. We give a direct method to extend the embedding algorithm to
new topologies, finding the optimal embedding of points whose geodesic distance
on a surface matches the given pairwise distance measurements. Surfaces con-
sidered include spheres, cylinders, tori, and their higher dimensional corollaries.
We give ezomples of sets of images that come from spaces with these topologies.
Using these embedding technigues, we compute pose estimates for thousands of
tmages of an object without knowing the object model or finding corresponding
points.

1 Introduction

This paper considers the problem of analysing thousands of images of a sin-
gle object. With very low resolution images taken from unknown viewpoints,
standard computer vision algorithms do not have a good handle to begin the
image understanding process. Instead of corresponding points, one can start by
considering image similarity measures. The question then becomes how to find
the structure underlying a set of images from pairwise comparisons. Here we
focus on data sets taken of a single object in different lighting and pose condi-
tions. An example is given in Figure 1 — given a large set of unsorted images
of a particular object (left), find an organization for these images without any
a-priori knowledge of an object model {right).

One popular tool that could give an approach to this problem is called multi-
dimensional scaling (MDS) [2]. This is a method for creating an embedding of
a point set that respects the set of all pairwise distances. Naively applying this
to image data requires a meaningful measure of distance between all pairs of



Figure 1: We consider the problem of organizing an unordered set of small
images (left}). Using Isomap or LLE, it is possible to automatically organize the
pictures into a low dimensional parameter space, in this case a 2 dimensional
space (right). The subject of this paper is to modify or extend these techniques
in order to extract metric properties of camera angle and object pose, and to
extend MDS techniques to allow direct embedding on spheres, cylinders, and
tori.

images. For images taken from very similar viewpoints, almost any distance
metric between images will be small. For images taken from dissimilar view-
points, almost any image distance metric is likely to be uncorrelated with the
actual distance between camera viewpoints. Therefore embedding the images
in a parameter space using MDS directly is not satisfactory, because not all
pairwise image comparisons are meaningful.

Fortunately, two recent papers give tools to allow a MDS like solution for
situations when only a local similarity measure is available(3, 7}. Each of these
tools takes as input local relationships between input data points. Each outputs
coordinates for the data points that best satisfy the given relationships. Unlike
principal component analysis, these coordinates do not have to correspond to a
linear subspace of the space in which the original point set lies — If the point
set lies in a low dimensional manifold (like a spiral jelly roll), the coordinates
specify point locations within that manifold.

However, both of these techniques require that geodesic distances within the
manifold are Euclidean, that is, the internal structure of the manifold must be



linear. If this manifold is topologically different than a plane, these techniques
fail. Here we provide extensions to the classical MDS algorithm to embed points
on a sphere, cylinder and torus.

This is an exploration into the use of image similarity measures for the
calculation of metric parameters of interest. This is in contrast to creating a
perceptual or infuitive classification or map which typically does not require
the embedding to have meaningful coordinates, and differs from classification
tasks which assign each image to one of a discrete set of categories. We show
two experiments. The first is a pose estimation example which considers 1,800
images of an object and embeds the images into a space parameterized by the
angle of elevation of the camera and the angle of rotation of the object. The
second is a pose estimation problem with a fixed camera, a rotating object,
and a light source which independently rotates around the object. In both
cases the images were sub-sampled to be very small (on the order of 32 x 32
pixels). The mean pose angle estimation error for the first experiment was
less than 6°, indicating the potential of these techniques for the amalysis of
very low resolution imagery. This is an important problem in many real world
surveillance applications, which often have many low resolution images of a
particular object.

Related to this work is [6], who does a similar dimensionality reduction by
comparing a large set of images to a set of templates. Comparing the images to
the templates avoids the need to compare all pairs of images, and gives a method
to find a low dimensional Euclidean embedding of the image set, suitable for
content based indexing. However, this still requires that a distance metric be
valid for every pair of template and image, instead of a measure that need
only be valid for very similar images. Other uses of MDS in the field of vision
include [5] who uses the earth movers distance as a similarity measure and gives
a perceptual organization of various image classes,

‘The main contribution of this work is to extend the MDS algorithm to
solve for embeddings of points in non-flat spaces — to find point positions on
spheres, tori, cylinders, and their higher dimensional counterparts. Since many
image sets come from these topological spaces, this expands the applicability of
MDS for the vision community. In contrast to many dimensionality reduction
techniques which seek to classify or categorize images, these techniques are
best suited to the analysis of image sets which are evenly sampled over some
parameter space.

2 MDS, LLE and Isomap

This section begins with an overview of the mathematics behind MDS. Modifi-
cations of this procedure are necessary to embed in non-flat spaces. All of these
procedures solve directly for the embedding and do not iteratively update the
point positions. The subsections for spherical, cylindrical, and toroidal MDS
are the main theoretical contributions of this work. This section concludes with
an overview of LLE and Isomap, two methods that allow the application of



MDS type techniques fo situations where not all point to point distances are
available. Longer tutorials on these methods and MDS in general give more
specific implementation details [4, 7, 2].

2.1 Maulti-Dimensional Scaling

The input to the MDS procedure is a distance matrix D, an n X n matrix of
pairwise distances. The following algorithm then computes the embedding.

MDS Algorithm (explanation taken from [7]):

1. Input D, a matrix of pairwise distances, D;; is distance from point
ito j, assumed to be measured in some Fuclidean space.

2. Construct S, the squared distance matrix, (S;; = D?j)

3. Construct H, the centering matrix, (H;; = d;; —1/N, where §;; = 1
if i = j and 0 otherwise.)

4. Define 7(D}) = ~HSH/2. The centering matrix H is defined to
make 7(D) a dot product form of the distance matrix, i.e. for ama-
trix X of point coordinates, X' X = (D) if and only if V;;(X; ~
X)) T (X - X5) = S

5. Solve for positions X such that X "X = 7(D)

e let A, be the p-th eigenvalue {in decreasing order) of the
matrix {1}
o let v be the i-th component of .

¢ Set the p-th component of X; to be v;;\//\p.

6. Use the first k components of each position vector X; for the op-
timal embedding in k-dimensional Euclidean space.

The key point of this algorithm is the centering matrix, which transforms the
distance matrix into dot-product form, after which standard linear algebra tools
are appropriate. For distances which arise from measurements in non-Euclidean
space, it is necessary to use other methods to compute the dot-product form.

2.2 non-flat Multi-Dimensional Scaling

For many applications, the point of multi-dimensional scaling is o give a vi-
sualization of a data set. Since visualizations are projected onto a screen, and
eventually, the viewers 2D roughly flat retinal surface, techniques have largely
focused on embedding the points in 2D Euclidean space. The applications envi-
sioned here seek to use thousands of images to extract metric information about



a set of images. If these images arise from a data set with a non-Euclidean dis-
tance measure, this embedding will be distorted. To avoid this distortion, we
must take the given distance measures and embed them directly onto the ap-
propriate surface.

2.2.1 Spherical MDS

The distance between two points on a sphere is the radius of the sphere times the
angle between the position vectors of those points, A point set embedded on a
2D sphere has a different set of pairwise distances than a point set embedded in
3D space such that all points happen to lie on a sphere. The following algorithm
finds the embedding on a k-dimensional sphere by changing the standard MDS
procedure for finding the dot product matrix from the pairwise distances.

Spherical MDS Algorithm

1. Input, set of pairwise distances, D;; assumed to be measured along
great circle of a sphere.

2. Estimate radius of sphere r = maw;; %l
— 2 Dz
3. set 7(D) = r?cos(=H)
4. solve for position vectors using step 5 from MDS procedure.

5. Choose the first k+1 components of each X; position wvector.
Extend each vector to have length r for final embedding on k-
dimensional sphere.

2.2.2 Cylindrical MDS

A cylindrical space is characterized by one dimension which is cyclical and one
dimension which is flat. Embedding on a cylinder consists of two phase. It
is important to embed the dimension along which there is the most variance
first. For a cylinder which is much longer than its radius, the two steps are the
following:



Cylindrical MDS Algorithm

. Input, set of pairwise distances, D;;.
. Compute, squared pairwise distances, Sj;.

. Use standard MDS to solve for optimal 1D embedding to find X;

for each point.

. Compute residual distances D}; = 1/Sj; — (X; — X;)%.

Use spherical MDS with distances D{; to find best embedding on
a circle parameterized by ©;.

The pair (X}, ®;) is the position of the point on the cylinder.

For a cylinder whose radius is longer than its length, the circular embedding
must be done first, then the residual distances are computed and standard
MDS is applied to find the flat X; coordinate. When one of the two dimensions
{circular or flat) does not account for most of the initial distances between
points, the algorithm often fails. The most likely explanation is the potential
difficulty in the spherical MDS algorithm of finding an estimate of the radius of

the cyclic dimension.

2.2.3 Toroidal MDS

A toroidal space is characterized by two cyclical dimensions. A set of images
with a toroidal topology is given in Section 4. Embedding on a torus is a two
phase process, embed on a circle, compute the residual distances, and embed

on a circle again.

Toroidal MDS Algorithm

. Input, set of pairwise distances, Dy;.
. Compute, squared pairwise distances, S;;.

- Use spherical MDS with distances D;; to find best embedding on

a circle parameterized by ©;.

Compute residual distances D; = 1/Sj; — r2(0; — 9j).

Use spherical MDS with distances Dj; to find best embedding on
a circle parameterized by €;.

. The pair (©;, ®;) is the position of the point on the torus.




2.2.4 Sparse Distance Measurements

MDS, of any form, would be useless for vision applications without the ability
to deal with sparse distance measurements. Image similarity measurements
are only accurate or meaningful for images that have a high correlation. The
following two techniques were recently developed to allow MDS algorithms to
work for sparse distance measurements.

» Isomap
Input: an n x n matrix pairwise distances with some (perhaps most) dis-
tances unknown.
Output: Point coordinates such that the pairwise distances are best ap-
proximated.
Method: Define a graph whose vertices are the set of points, and whose
edges are the known pairwise distances. Compute all-pairs shortest path
distances in this graph, which defines a distance between every pair of
nodes. Use MDS to find point coordinates which satisfy these (now com-
plete) distance constraints.

¢ Locally Linear Embedding (LLE)
Input: A n xn weight matrix W which expresses each point as a weighted
sum of other points (probably neighbors).
Output: Point coordinates best fitting the local constraints
Method: Solve an Eigenvalue problem to find reasonable point coordinates
X such that WX = X.

Both Isomap and LLE oufiput a set of point coordinates. In the subsequent
section, we explore techniques to force those point coordinates to have a meaning
in terms of parameters defining the image set..

3 Constrained Embeddings

The matrix of pairwise distances is invariant to rigid transformations of the point
coordinates. Extra knowledge is required to transform the embedded point set
into one that expresses metric information. There are two categories of external
knowledge that can be brought to bear on the embedding process. The first
method is to enforce absolute knowledge of the desired parameter location for
one or a small set of the points. The second is to enforce global properties of the
embedding, for instance the lmowledge that the data set comes from an even
sampling of the desired parameterization. The form of global constraints which
are appropriate is highly application dependent, and we discuss techniques used
in our experiment within the experimental section.

3.1 Local Constraints

The LLE approach to embedding the point set starts with a weight matrix W
which which expresses each point as & weighted sum of other points. It then



seeks a set of point coordinates X which respect this weighting:

WX =X, or,
(W-DX =0

Requiring that certain points must be embedded in particular locations requires
the solution to a similar problem:

(W' -DX' =C,

where X’ is the remaining unknown point coordinates for which we are solving,
W’ is the matrix of relative constraints between these points, and C is a matrix
encoding the effect of the location of the fixed points.

Alternatively, the points can be warped after the fact to force the satisfaction
of a particular set of constraints. Different warping functions may be required
depending upon the number of points whose position is fixed. A general linear
transform is an 8 parameter transform allowing any four points to be fixed.
The four embedded points, (z,y) and their desired locations (z',7'), define a
linear system which can be solved (for unknowns a,b, ¢, d, e, f, g, h) to define the
transformation for each point:

ar+by+c detey+ f
gr+hy+1 gz +hy+1

(a",4) = ( ).

When embedding points into a flat space, this transformation can force the
axes of the embedded space to conform to parameters of interest, such as pose
angles.

4 Experiment

We present two experiments, each using a large number of images captured
from a known space with two parameters. In each case the images were sub-
sampled to be very small, both for computational efficiency, and to illustrate
that these algorithms work with very low resolution imagery. Both image data
sets were captured with the object capture device shown in Figure 2. The first
experiment requires the embedding of the images into a flat space parameterized
by object pose and camera angle. The second experiment uses images which
are parameterized by two cyclic dimensions, the lighting angle and the object
pose angle which varied independently through all 360°.

4.1 Flat Embedding

The object capture system captured 1,800 images of the object shown in Fig-
ures 1 and 5. These images evenly sample the space of object rotations {every
3 degrees, over one half a rotation) and camera viewing angle (every 3 degrees,
from horizontal to vertical). The images were sub-sampled to 32 x 64 pixels,
and all pairs of image distances were computed as both the sum of squares of



light position

object pose angle

Camera Angle:

Figure 2: Object capture system, can take pictures of an object from any camera
angle and object rotation. For this experiment, we took 1,800 images, sampling
@ and € every 3 degrees (data set available upon request, uncompressed pgm
format}.

differences of normalized pixel intensity, and the sum of squares of differences of
normalized edge maps. We found that using the edge image gave qualitatively
similar but slightly better and more consistent results that using distances com-
puted from original images. These images were embedded using Isomap and
LLE.

For Isomap, the local neighborhood graph of each image consisted of the 8
nearest images, all other distances were initially unknown and defined during
the shortest path component of the Isomap procedure. For LLE, each point
was expressed as a weighted sum of its neighbors using the following algorithm
suggested in [4]. Using all pairwise distance between a point and its eight
nearest neighbors, embed these (nine) points using MDS. Then, express the
central point as a weighted sum of its neighbors, and use these weights as the
input constraints to LLE.

Figure 3 shows the result of the LLE embedding of all 1800 images. The
four points corresponding to the (known) extremes of camera angles and object
rotations are marked with small circles. In the coordinate system defined by
these four points, the points should be arranged as a rectilinear grid. This
metric structure underlying the point set is not exhibited by this embedding.
Exploring why this fails is a subject of future work — It may be better to
compute each image directly as a linear combination of neighbor rather than first
computing distances, then locally embedding, then using that local structure.
The qualitative structure found is shown in Figure 1 (right); as one moves in a
path through neighboering points in this embedding, there is a smooth transition
between image viewpoints, but the embedding does not directly capture the
parameters of the object pose.

Figure 4 (top) shows results using the standard Isomap procedure, without
enforcing external constraints on the coordinates. Choosing four extreme points



Figure 3: Locally Linear Embedding: Each image was expressed as a linear
combination of nearby images. The points were embedded with the additional
constraint that the four corner images lie at fixed positions at the corner of a
square.

{circled), and solving for the general linear transform which forces these four
points to have specific coordinates (bottom left) allows one to define meaningful
axes to the embedded space. Finally, the a-priori knowledge that the parameter
space was evenly sampled gives a global constraint on the embedded point set.
The final embedding uses a variant of the thin-plate spline warping technique [1]
to enforce that the density of points in every region of the embedded space is
approximately constant (bottom right). Evenly sampling this space and choos-
ing the closest image to the sample points gives a graphical depiction of this
embedding (Figure 5).

Finally, since this data set was taken in a laboratory setting, the actual pose
coordinates are known for each image. Over all 1800 images, the mean error in
the embedded 8, ¢ coordinates was: 6.98°,2.97°. This numbers should not be
compared directly to other pose estimation algorithms, and are extremely good,
given that they come from the analysis of 32 x 64 pixel images of an unknown
object.

4.2 Embedding on a torus

A second experiment considered a data set where the images are parameterized
by two cyclic dimensions. In this case it is not possible to embed these images
in a 2d flat parameter space, so neither MDS (augmented with Isomap) nor
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Figure 4: At the top is the initial Isomap solution embedding the positions of
all 1,800 images. In the bottom left, this embedding is warped by a general
linear transform so that the four circles points lie in fixed points in the final
embedding. In the bottom right image, a variant of thin plate spline enforces
the constraint that the parameter space was evenly sampled. The horizontal
axis of this plot corresponds to the camera angle ¢, and the vertical axis is the
object rotation angle 8.

LLE would not be able to find an appropriate embedding. The object capture
device captured 3,600 images, evenly sampling the entire [0, 360°] range of object
pose angle and light position. Examples of the input image data are shown in
Figure 6. Each image was taken from the same camera position. The images
were sub-sampled to 32 x 24 pixels each and the image distance measure was the
sum of squared pixel intensity differences. This image distance was computed
for all pairs of images.

The embedding began using the Isomap procedure. The local neighborhood
graph of each image consisted of the 8 nearest images, all other distances were
initially unknown and defined during the shortest path component of the Isomap
procedure. The image embedding, computed using the toroidal MDS procedure
defined in Section 2.2.3, gives an embedding of the images shown in Figure 7
{top). The two axes of this embedding correspond to the object pose angle
and the lighting angle. This organization of the image comes directly from the
embedding procedure and does not require any transformations as were needed
in the flat embedding. The structure of the space of images is illustrated with
sample images drawn on a torus in Figure 7 {bottom). The mean error in the
embedding of the lighting angle was 2.7°.

The embedding of the pose angle is less accurate. Although the data set
evenly samples the set of all lighting angles and object pose angles, it is visible
from the embedding that for some lighting angles (positions along the x-axis),

11



the images do not cover all pose angles. The cause of this is the image set itself,
in the input data (Figure 6}, for some lighting conditions, one view of the lizard
appears very similar to the view after an object rotation of 180°. In this case,
the space of images is not cyclic, so it cannot be effectively embedded on the
torus. For lighting conditions where this is not the case, the embedding covers
all of both dimensions.

The main insight to be gained from this experiment is that analysis of images
by similarity measures requires not “images from nearby points in the parameter
space must be judged to be similar”, but rather “images from far away points
in the parameter space must not be judged to be similar”.
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Figure 5: Images from an even sampling of the final embedded space shown in
Figure 4, (bottom right}. The mean embedding error over all 1800 images is
only 6.98° for the rotation, and 2.97° for the camera elevation.

13



Figure 6: Example images from the data set used for the second experiment. A
small object was imaged for different pose angles and lighting conditions. 3600
images sample the space evenly.
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Figure 7: (top) embedded points from the lizard data sequence. the x-axis
corresponds to the lighting angle, the y-axis corresponds to the object pose
angle. This is a toroidal embedding, along each axis points with coordinate
0 + € are very close to points with coordinate 2z — €. (bottom) Illustration of
the images embedded on the torus.
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