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Preterm birth (PTB) is a leading cause of mortality and disease burden globally; 

however, determinants of human parturition remain largely uncharacterized, making 

prediction and prevention of difficult. Genetic studies are one way in which we can 

attempt to better understand this disorder.  

We first sought to develop a model for the genetic influences on PTB to facilitate 

gene discovery. Study of standard measures of familial aggregation, the sibling risk ratio 

and the sibling-sibling odds ratio, and segregation analyses of gestational age, a 



iii 

 

quantitative proxy for preterm birth, lend support to a genetic component contributing to 

birth timing, since preterm deliveries cluster in families and models in which 

environmental factors alone contribute to gestational age are strongly rejected. Analyses 

of gestational age attributed to the infant support a model in which mother’s genome 

and/or maternally-inherited genes acting in the fetus are largely responsible for birth 

timing.  

We also aimed to discover specific genes associated with PTB by screening genes 

selected based on an evolutionary-motivated filter, rather than known parturition 

physiology. Because humans are born developmentally less mature than other mammals, 

birth timing mechanisms may differ between humans and model organisms that have 

been typically studied; as a result, we screened 150 genes, selected because of their rapid 

evolution along the human lineage. A screen of over 8000 SNPs in 165 Finnish preterm 

and 163 control mothers identified an enrichment of variants in FSHR associated with 

PTB and prompted further study of the gene. Additionally, PLA2G4C, identified as the 

gene with the most statistically significant evidence for rapid evolution that was also 

included in a list of preterm birth candidate genes, was examined further. Three SNPs in 

PLA2G4C and one SNP in FSHR were statistically significant across populations after 

multiple testing corrections. Additional work to identify variants in these genes with 

functional effects was also initiated, including comparisons of prostaglandin metabolite 

levels among genotype classes for significantly associated SNPs in PLA2G4C and 

sequencing of FSHR to identify functional coding variants. Together, these experiments 

better characterize the nature of genetic influences on PTB and support the role of 

PLA2G4C and FSHR in PTB.  
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Chapter 1: Introduction
*
 

Clinical aspects of preterm birth (PTB) 

Human parturition typically occurs between 37-42 weeks of gestation, with 40 

weeks being the most common time of delivery (Figure 1.1). Deliveries before 37 weeks 

are designated as “preterm” births by the World Health Organization [1] and represent an 

important public health concern. Approximately one-third of infant deaths are attributable 

to prematurity [2]. Preterm infants also have an increased risk of serious health problems, 

such as respiratory illness, blindness and cerebral palsy [3]. Moreover, the severity and 

incidence of these problems worsen with decreasing gestational age [4].  

A variety of subtypes of PTB can be described. For example, preterm births may 

be spontaneous or medically indicated. For 20-30% preterm births, women are delivered 

early to minimize complications from maternal conditions, like preeclampsia, or fetal 

distress [4]. However, most preterm births result from spontaneous preterm labor or 

preterm premature rupture of membranes (PPROM) [4]. Preterm labor or PPROM may 

arise in response to various stimuli, such as damage to the placental unit, intrauterine 

infection or changes in cervical length, but the mechanisms by which these processes are 

initiated are unknown. Additionally, early births of multiple gestations, which are 

generally delivered earlier than singletons, may occur by different mechanisms than 

singleton PTB. Hence, considerable heterogeneity in etiology may exist among various 

subgroups of PTB and warrants careful consideration of phenotype in studies of PTB.  

PTB is common, with rates consistently rising in recent decades. In 2006, 12.8% 

of births in the United States occurred before 37 weeks, a 21% increase since 1990 [5]. 

                                                 
*
 This chapter is adapted from: Plunkett J & Muglia LJ. (2008) Genetic Contributions to PTB: 

Implications from Epidemiological and Genetic Association Studies. Ann Med., 40(3):167-95. 
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While the recent rise in multiple births, which are generally delivered earlier than 

singletons, contributes to this increase, the rate among singleton gestations has risen 13% 

since 1990 and is now 11.1%. Among singleton PTB, late-preterm births (34-36 weeks) 

account for all of the increase, with essentially no change in the rate of births <34 weeks 

during this period. Importantly, cesarean-delivery rates have also increased since 1990, 

such that medically-indicated PTB may represent a greater portion of the increase in 

overall PTB rate. Consequently, distinguishing spontaneous from medically-indicated 

PTB may be important in identifying risk factors for this condition. 

Of note, rates differ among racial groups. Blacks experience approximately twice 

the rate of PTB than that of Whites. The highest PTB rates are observed when both 

parents are Black and remain higher when one parent is Black, whether that parent is the 

mother or father [6; 7]. According to a study by Goldenberg and colleagues [8], these 

racial disparities are not explained entirely by measured medical and environmental risk 

factors, such as smoking, hypertension, education level or socioeconomic status, 

suggesting that other differences among races, such as genetic ancestry, contribute to the 

disorder. As a result, careful consideration of important differences in social, cultural and 

biological factors among races also are important in studies of PTB risk. 

Motivation for studying genetics  

While a number of risk factors have been identified, accurate prediction and 

prevention of PTB are difficult [4]. For example, biomarkers, such as serum protein 

concentrations of IL-6, IL-8, TNF  or relaxin, while strong predictors of PTB, may not 

be useful in large low-risk populations [9]. One problem may be that such markers vary 
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over time or among individuals, making it difficult to determine levels at which risk for 

PTB is increased.  

In contrast, genetic factors are stable over time and therefore may be better 

predictors of risk. As a result, genetic studies may identify markers which more 

accurately predict PTB than currently known risk factors. Genetic studies may also 

identify novel proteins and/or pathways involved in the disorder. This new information 

will augment our general understanding of parturition and provide new targets for drug 

therapies, potentially improving both prevention and treatment of PTB.  

 

Evidence for genetic influences on birth timing 

Birth timing across pregnancies in the same woman 

A wealth of evidence suggests that genetics are important in birth timing. For 

example, both preterm and postterm births tend to recur in mothers [10-15]. Moreover, 

the most likely age for a recurrent PTB is same week as the first PTB [12; 16; 17], 

suggesting that factors that are stable over time, such as genetics, affect birth timing. 

Birth timing trends among family members 

Familial trends for birth timing also suggest that genetics influence this trait. 

Women who are born preterm are more likely to have a preterm delivery themselves [18], 

indicating that mothers and their daughters share risk. Sisters of women who have had a 

preterm delivery also have an increased risk for preterm delivery [15]. Due to the nature 

of family studies, environmental factors shared between mothers and daughters or 

between sisters cannot be untangled from genetic influences. As a result, it is difficult to 
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determine the relative importance of genetic versus environmental factors from these 

studies alone.  

Partitioning variance in birth timing into genetic versus environmental components 

In contrast to family studies, twin studies measure the relative importance of 

genes in overall trait variance within a population. By comparing concordance rates 

between monozygotic and dizygotic twins, which share 100% and approximately 50% of 

their genes, respectively, one can model the genetic and environmental factors that 

influence a trait. Such studies indicate that genes account for about 30% of variation in 

preterm delivery [19; 20] and child’s gestational age as continuous trait [19; 21], when 

the mother is considered the proband of a delivery.  

A similar method was used to estimate the influence of maternal and fetal genetic 

factors by Lunde and colleagues [22]. Comparing concordance rates among full and half 

siblings for gestation age, the authors estimated that 11% of variation for this trait is due 

to fetal genetic factors and 14% of variation is due to maternal genetic factors [22]. Such 

comparisons use the degree of genetic relatedness (on average 50% for full siblings and 

25% for half siblings) and trait concordance to estimate the relative importance of genetic 

versus environmental factors. Because siblings that are not monozygotic twins display 

some variability in their percent genetic identity and may differ in important dominance 

or interactive genetic effects, these estimates are more difficult to make using non-twin 

siblings. Despite the limitations in estimating the heritability, each study suggests that 

genetics play an important role in PTB. 

Another approach to separating genetic and environmental factors is the 

coefficient of kinship. This measure depicts the degree of genetic relatedness within a 
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population. Ward and colleagues [23] used this measure to examine genetic influences on 

PTB in a Utah population. The Utah population from which the families were drawn was 

established by 10,000 people who moved to the state to establish the Mormon religion 

[23]. Because Mormons are discouraged from using alcohol or tobacco and have low 

rates of substance abuse and sexually-transmitted diseases, this population may represent 

individuals with relatively few environmental risk factors for PTB [23]. As a result, 

detecting genetic effects may be easier in this cohort of Utah preterm families. In this 

study, Ward and colleagues found that families with preterm deliveries had a 

significantly lower coefficient of kinship than controls [23], indicating that these families 

are more closely genetically-related than control families. This evidence suggests that the 

increased rate of PTB in these families can be explained by genetic factors. It is important 

to note that the authors of this study did not report the relative abundance of any 

environmental risk factors for PTB in the two populations. It is possible that one or more 

important environmental risk factors differ between these groups, in addition to genetic 

relatedness. Hence, the results of Ward et al. [23] support the significance of genetics in 

PTB, but do not address their relative importance compared to known environmental risk 

factors. 

Mendelian disorders 

Certain Mendelian disorders are associated with PTB, further supporting genetic 

effects on birth timing. Ehlers-Danlos Syndrome (EDS) represents a diverse group of 

Mendelian disorders affecting connective tissue, primarily inherited in an autosomal 

dominant manner [24]. Women with vascular EDS have an increased risk of delivering 

preterm, primarily due to PPROM [24]. Since this disorder is inherited in an autosomal 
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dominant pattern, there is a 50% chance the fetus has inherited the disorder, making it 

less clear whether the mother’s or infant’s genome contributes to the increase in PPROM 

risk. 

Possible role of fetal genome in birth timing 

Several lines of evidence further suggest that fetal genetic effects may influence 

birth timing. First, fetal genes that are paternally imprinted mainly control placental and 

fetal membrane growth [25]. Because the placenta and fetal membranes likely play a role 

in PTB, fetal genes controlling these tissues may also contribute. Additionally, several 

studies suggest that paternity affects risk for the disorder. For example, several studies 

indicate that partner changes between pregnancies reduced risk of PTB [26; 27]; 

however, changes in paternity may reflect association with long interpregnancy intervals 

rather than paternity effects per se. Paternal race also has been associated with PTB risk 

[6; 7], suggesting that fetal race may influence birth timing. However, father’s family 

history of PTB has been shown to have only a weak association with risk. While an early 

study of a Norwegian birth registry demonstrated a correlation between fathers’ and 

children’s gestational ages [28], a more recent and extensive study of this registry 

suggested fathers contributed little to no risk to preterm delivery risk [29]. Similarly, 

recent studies [21; 30] suggested that paternal genetics contributed little to gestational 

age, but could not refute the possible role of maternally-inherited genes expressed in the 

fetus. Hence, while paternally-inherited genes may contribute little to PTB or other 

disorders, maternally-inherited genes expressed in the fetus may still be important. 

Together, these data suggests that the fetal genome may contribute to birth timing, 

motivating further study defining the infant as the proband.  
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Complexity of genetic effects on birth timing 

There is increasing evidence that PTB can be conceptualized as a common, 

complex disorder. In contrast to Mendelian disorders in which alterations of a single gene 

can lead to disease, complex diseases are influenced by a variety of factors, none 

necessary and sufficient to cause the disorder itself. As a result, there is not a direct 

relationship between genotypes and phenotypes [31]. These disorders likely depend on a 

number of interacting factors, including genetic, epigenetic and environmental risk 

factors[31]. Modeling procedures used by twin studies suggest that additive genetic 

factors and environmental risk factors that are not shared among siblings both influence 

PTB [19; 20; 32]. Additionally, interactions between genes [33; 34] have been associated 

with PTB risk. Several studies suggest that gene-environment interactions, such as 

interactions between inflammatory gene risk alleles and bacterial infections [35-37], also 

influence the disorder. Together, these studies imply that the etiology of PTB likely 

involves genetic as well as environmental factors in complex interactions. 

In addition to the complexity of genetic effects described above, several issues 

complicate how investigators think about the disorder. As mentioned above, it is not clear 

whether the mother or infant from a preterm delivery should be considered the proband. 

As a result, it is not clear which individual’s DNA should be interrogated. Additionally, 

preterm delivery as a trait can be thought of in two ways. First, PTB can be thought of as 

discrete, resulting from genetic factors that lead to either term or early delivery. 

Alternatively, gestational age can be thought of as a quantitative trait, with preterm ages 

as extremely low values; hence, genetic effects may be quantitative trait loci (QTLs) that 
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influence the value of gestational age in both term and preterm deliveries. As disease 

models shape how one approaches identifying genes, it is important to consider the 

uncertainty about how to conceptualize PTB when evaluating various approaches taken 

to study this trait.  

 

Identifying specific genes associated with PTB 

Functional candidate gene studies have identified few genes consistently associated 

with PTB 

Candidate genes in a variety of pathways believed to be important in parturition 

have been tested with mixed results (summary in Table 1.1). Few positive association 

findings for PTB have been consistent. To illustrate, for TNF, the most extensively 

studied gene, 11 studies report major effects of the gene[34; 36; 38-46]; yet, 13 others 

report no major effects of the gene [35; 47-56], including a meta-analysis of 7 studies 

[51]. Similarly, IL1RN was associated in 4 studies [57-60], but not in another 6 [39; 46; 

53; 56; 61]. One possible explanation may be that some polymorphisms are significant 

only in the context of a particular environmental factor, such as infection. For example, 

IL6 has been associated in 2 studies without considering environmental influences [62; 

63], associated in another 2 studies only in the context of infection [35; 37], associated in 

another study only in interaction with other genes [41], and not associated in an 

additional 10 studies [34; 39; 42; 46; 53; 54; 56; 64; 65].  

A number of problems in previous studies’ design may limit their ability to detect 

true genetic effects. Most of these studies have been underpowered, because of small 

sample sizes and/or incomplete sampling of genetic variation in a gene of interest. 
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Phenotypic heterogeneity also may confound many studies’ results, as most consist of 

mothers and/or children collected using a variety of phenotype definitions that may have 

different etiologies. In addition, genetic etiologies may differ across ethnic groups, since 

pregnancies in which either the mother or father is Black are at increased risk for preterm 

delivery, regardless of which parent is Black; however, few studies have included 

analyses separately by race or attempted to correct for possible population substructure, 

further questioning the validity of many genes associated to date. Moreover, no genetic 

model has been identified for PTB to suggest what nature of genetic effects is expected, 

limiting investigators’ ability to appropriately design such studies. This proposal 

considers such issues to better identify PTB genes. 

Alternative approaches 

A variety of alternative genetic approaches may be undertaken to identify specific 

genes involved in PTB. For example, unbiased genome-wide screens, such as the screen 

conducted on a Danish cohort as part of the National Institutes of Health Gene 

Environment Association Studies (GENEVA) program, may identify novel genes and 

pathways. Additionally, non-additive genetic effects, such as copy number or structural 

variation, may be important avenues for future research. Such approaches may enable 

investigators to identify novel genes and pathways involved in birth timing with 

important clinical applications. 

 

Objectives of dissertation 

The etiology of PTB is complex and likely involves both genetic and 

environmental risk factors. A variety of evidence supports genetic influences on PTB, yet 
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few specific genes have been associated with PTB. Developing a model for the genetic 

influences on PTB may facilitate gene discovery. As little work had been done to 

systematically identify a genetic model for PTB, we used sibling risk estimates and 

segregation analyses to identify one. Another method to facilitate discovery of specific 

genes associated with PTB is using a priori methods. Using information from 

comparative genomic studies, we conducted a screen of genes minimally biased by our 

current understanding of parturition to identify novel PTB genes. In order to validate our 

findings, we replicated genes identified in this screen in additional populations. Of note, 

genes encoding the follicle-stimulating hormone receptor, FSHR, and a phospholipase, 

PLA2G4C, showed evidence of association across populations and was investigated 

further. Together, these experiments better characterize the nature of genetic influences 

on PTB and provide evidence for novel genes involved in this disorder. 
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Table 1.1: Summary of candidate gene association studies’ findings as of May 2010. 

 

Gene 

Symbol 

Gene Name Number 

of 

Studies 

Studies reporting 

positive findings 

ABCA1 ATP-binding cassette, sub-family A, member 1 1 0 

ACE angiotensin I converting enzyme  1  7 1 

ADD1 adducin 1 (alpha) 2 0 

ADH1B alcohol dehydrogenase 1B  4 0 

ADH1C alcohol dehydrogenase 1c 5 0 

ADRB2 adrenergic, beta-2, receptor, surface  8 3 

AGT angiotensinogen 3 2 

AGTR1 angiotensin II receptor, type 1 2 0 

ALOX5AP arachidonate 5-lipoxygenase-activating protein  1 0 

ANXA5 annexin A5  1 0 

APOA1 apolipoprotein A-I  1 0 

APOA4 apolipoprotein A-4 1 0 

APOA5 apolipoprotein A-5 1 0 

APOB apolipoprotein B 1 0 

APOC2 apolipoprotein C2 1 0 

APOC3 apolipoprotein C3 1 0 

APOE apolipoprotein E 1 0 

BHMT betaine-homocysteine methyltransferase  1 0 

CBS cystathionine-beta-synthase  5 1 

CCL2 chemokine (C-C motif) ligand 2  4 0 

CCL3 chemokine (C-C motif) ligand 3 4 0 

CCL8 chemokine (C-C motif) ligand 8 4 0 

CD14 monocyte differentiation antigen CD14 5 1 

CETP cholesteryl ester transfer protein, plasma 1 0 

COL1A1 collagen, type I, alpha 1  3 0 

COL1A2 collagen, type I, alpha 2 3 0 

COL3A1 collagen, type 3, alpha 1 3 0 

COL5A1 collagen, type 5, alpha 1 4 0 

COL5A2 collagen, type 5, alpha 2 4 0 

CRH corticotropin releasing hormone  4 0 

CRHBP corticotropin releasing hormone binding protein 5 1 

CRHR1 corticotropin releasing hormone receptor 1 4 0 

CRHR2 corticotropin releasing hormone receptor 2 4 0 

CRP C-reactive protein, pentraxin-related  4 0 

CSF3 colony stimulating factor 3  1 0 

CTGF connective tissue growth factor  1 0 

CTLA4 cytotoxic T-lymphocyte-associated protein 4  4 1 

CYP19A1 cytochrome P450, family 19, subfamily A, 

polypeptide 1  

4 0 

CYP1A1 cytochrome P450, family 1, subfamily A, 7 2 
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polypeptide 1  

CYP2C19 cytochrome P450, family 2, subfamily C, 

polypeptide 19  

1 0 

CYP2D6 cytochrome P450, family 2, subfamily D, 

polypeptide 6 

4 0 

CYP2E1 cytochrome P450, family 2, subfamily E, 

polypeptide 1  

2 0 

CYP3A4 cytochrome P450, family 3, subfamily A, 

polypeptide 4  

1 0 

DHCR24 24-dehydrocholesterol reductase  1 0 

DHCR7 7-dehydrocholesterol reductase  1 0 

DHFR dihydrofolate reductase  4 0 

DRD2 dopamine receptor D2  1 0 

EDN2 endothelin 2  4 0 

PROCR protein C receptor, endothelial (EPCR)  1 0 

EPHX1 epoxide hydrolase 1, microsomal (xenobiotic)  5 0 

EPHX2 epoxide hydrolase 2, microsomal (xenobiotic)  4 0 

F13A1 coagulation factor XIII, A1 polypeptide  1 0 

F2 coagulation factor II (thrombin)  9 0 

F5 coagulation factor V  12 4 

F7 coagulation factor VII  7 1 

FAS Fas  4 0 

FASLG Fas ligand 4 0 

FGB fibrinogen beta chain  2 0 

FLT1 fms-related tyrosine kinase 1  1 0 

GNB3 guanine nucleotide binding protein, beta 

polypeptide 3  

1 0 

GSTM1 glutathione S-transferase mu 1  4 2 

GSTP1 glutathione S-transferase pi 1  5 0 

GSTT1 glutathione S-transferase theta 1  5 2 

GSTT2 glutathione S-transferase theta 2 4 0 

HMGCR 3-hydroxy-3-methylglutaryl-Coenzyme A 

reductase  

1 1 

HSD11B1 hydroxysteroid (11-beta) dehydrogenase 1  4 0 

HSD17B7 hydroxysteroid (17-beta) dehydrogenase 7  4 0 

HSPA14 heat shock 70kDa protein 14  4 0 

HSPA1A heat shock 70kDa protein 1A  4 0 

HSPA1B heat shock 70kDa protein 1B 4 0 

HSPA1L heat shock 70kDa protein 1-like  4 1 

HSPA4 heat shock 70kDa protein 4  4 0 

HSPA6 heat shock 70kDa protein 6  4 0 

ICAM1 intercellular adhesion molecule 1 2 1 

ICAM3 intercellular adhesion molecule 3  1 0 

IFNG interferon, gamma  6 2 

IFNGR1 interferon, gamma receptor 1 1 0 
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IGF1 insulin-like growth factor 1 4 0 

IGFBP3 insulin-like growth factor binding protein 3  4 0 

IL10 interleukin 10  9 2 

IL10RA interleukin 10 receptor, alpha  5 1 

IL10RB interleukin 10 receptor, beta 4 0 

IL11 interleukin 11  1 0 

IL12A interleukin 12A 1 0 

IL13 interleukin 13  5 1 

IL15 interleukin 15  4 1 

IL18 interleukin 18 5 0 

IL1A interleukin 1, alpha  8 1 

IL1B interleukin 1, beta 9 1 

IL1R1 interleukin 1 receptor, type I  5 0 

IL1R2 interleukin 1 receptor, type 2 5 1 

IL1RAP interleukin 1 receptor accessory protein  4 0 

IL1RN interleukin 1 receptor antagonist  10 4 

IL2 interleukin 2 6 1 

IL2RA interleukin 2 receptor, alpha  4 1 

IL2RB interleukin 2 receptor, beta 4 1 

IL4 interleukin 4 8 3 

IL4R interleukin 4 receptor 4 0 

IL5 interleukin 5 4 1 

IL6 interleukin 6 15 5 

IL6R interleukin 6 receptor 7 3 

IL8 interleukin 8 7 0 

IL8RA interleukin 8 receptor alpha 4 0 

ITGA2 integrin, alpha 2 1 0 

ITGB3 integrin, beta 3 1 0 

KL Klotho 4 1 

LCAT lecithin-cholesterol acyltransferase  1 0 

LDLR LDL receptor 1 0 

LIPC lipase, hepatic  1 0 

LNPEP leucyl/cystinyl aminopeptidase  1 0 

LOXL1 lysyl oxidase-like 1  1 0 

LPL lipoprotein lipase  1 0 

LST1 leukocyte specific transcript 1  4 0 

LTA lymphotoxin alpha  5 1 

MASP2 mannan-binding lectin serine peptidase 2  1 0 

MBL2 mannose-binding lectin 2, soluble 10 6 

MMP1 matrix metallopeptidase 1 5 1 

MMP2 matrix metallopeptidase 2 4 1 

MMP3 matrix metallopeptidase 3 5 0 

MMP8 matrix metallopeptidase 8 4 0 

MMP9 matrix metallopeptidase 9 5 2 

MTHFD1 methylenetetrahydrofolate dehydrogenase 4 0 
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MTHFR 5,10-methylenetetrahydrofolate reductase 11 0 

MTR 5-methyltetrahydrofolate-homocysteine 

methyltransferase  

1 0 

MTRR 5-methyltetrahydrofolate-homocysteine 

methyltransferase reductase  

2 1 

NAT1 N-acetyltransferase 1 5 0 

NAT2 N-acetyltransferase 2 6 0 

NFKB1 nuclear factor of kappa light polypeptide gene 

enhancer in B-cells 1 

4 0 

NFKB2 nuclear factor of kappa light polypeptide gene 

enhancer in B-cells 2 

4 0 

NFKBIA nuclear factor of kappa light polypeptide gene 

enhancer in B-cells inhibitor, alpha  

4 0 

NFKBIB nuclear factor of kappa light polypeptide gene 

enhancer in B-cells inhibitor, beta 

4 0 

NFKBIE nuclear factor of kappa light polypeptide gene 

enhancer in B-cells inhibitor, epsilon 

4 0 

NOD2 nucleotide-binding oligomerization domain 

containing 2  

2 1 

NOD2/CAR

D15 

nucleotide-binding oligomerization domain 

containing 2  

4 0 

NOS2A nitric oxide synthase 2, inducible  2 2 

NOS3 nucleotide-binding oligomerization domain 

containing 3 

7 1 

NPPA natriuretic peptide precursor A  1 0 

NQO1 NAD(P)H dehydrogenase, quinone 1  1 0 

NR3C1 glucocorticoid receptor 4 0 

OPRM1 opioid receptor, mu 1  1 1 

OXT oxytocin 1 0 

OXTR oxytocin receptor 1 1 

PAFAH1B1 platelet-activating factor acetylhydrolase, 

isoform Ib, subunit 1  

4 0 

PAFAH1B2 platelet-activating factor acetylhydrolase, 

isoform Ib, subunit 2 

4 0 

PDE4D phosphodiesterase 4D, cAMP-specific  1 0 

PGEA1 chibby homolog 1  4 0 

PGR progesterone receptor 9 1 

PGRMC1 progesterone receptor membrane component 1  4 0 

PGRMC2 progesterone receptor membrane component 2  4 0 

PLA2G4A phospholipase A2, group IVA 4 0 

PLAT plasminogen activator, tissue  6 2 

POMC proopiomelanocortin  4 0 

PON1 paraoxonase 1  7 3 

PON2 paraoxonase 2 6 2 

PPARG peroxisome proliferator-activated receptor 1 1 
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gamma  

PRKCA protein kinase C, alpha 1 1 

PROC protein C 1 0 

PTCRA pre T-cell antigen receptor alpha  4 0 

PTGER2 prostaglandin E receptor 2 5 1 

PTGER3 prostaglandin E receptor 3 4 2 

PTGES prostaglandin E synthase 5 0 

PTGFR prostaglandin F receptor 5 0 

PTGS1 prostaglandin G/H synthase (cyclooxygenase)  4 0 

PTGS2 prostaglandin-endoperoxide synthase 2 4 0 

PTPN22 protein tyrosine phosphatase, non-receptor type 
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4 0 

REN renin  1 0 

RFC1 replication factor C (activator 1) 1 1 0 

RLN1 Relaxin 1 1 0 

RLN2 Relaxin 2 1 0 

RLN3 Relaxin 3 1 0 

SCGB1A1 secretoglobin, family 1A, member 1 

(uteroglobin)  

4 0 

SCNN1A sodium channel, nonvoltage-gated 1 alpha  1 0 

SELE selectin E  2 0 

SERPINB2 serpin peptidase inhibitor, clade B (ovalbumin), 

member 2  

1 0 

SERPINE1 serpin peptidase inhibitor, clade E, member 1  6 1 

SERPINH1 serpin peptidase inhibitor, clade H, member 1 

(collagen binding protein 1)  

6 2 

SFTPC Surfactant protein C 2 0 

SFTPD Surfactant protein D 1 0 

SHMT1 serine hydroxymethyltransferase 1 1 1 

SLC23A1 solute carrier family 23 (nucleobase 

transporters), member 1  

5 0 

SLC23A2 solute carrier family 23, member 2  1 1 

SLC6A4 solute carrier family 6, member 4  4 0 

TCN2 transcobalamin II 4 0 

TFPI tissue factor pathway inhibitor 1 0 

TGFA transforming growth factor, alpha  1 0 

TGFB transforming growth factor, beta 1 0 

TGFB1 transforming growth factor, beta 1 6 0 

THBD thrombomodulin  1 1 

TIMP3 TIMP metallopeptidase inhibitor 3  4 0 

TIMP4 TIMP metallopeptidase inhibitor 4  4 0 

TLR10 toll-like receptor 10  1 1 

TLR2 toll-like receptor 2 6 1 

TLR3 toll-like receptor 3 4 0 

TLR4 toll-like receptor 4  9 2 
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TLR7 toll-like receptor 7 4 0 

TLR8 toll-like receptor 8 4 0 

TLR9 toll-like receptor 9 4 0 

TNF tumor necrosis factor 24 11 

TNFR1 tumor necrosis factor receptor 1 7 4 

TNFR2 tumor necrosis factor receptor 2 3 2 

TNFRSF1A tumor necrosis factor receptor superfamily, 

member 1A  

4 0 

TNFRSF1B tumor necrosis factor receptor superfamily, 

member 1B 

4 0 

TNFRSF6 tumor necrosis factor receptor superfamily, 

member 6b, decoy  

2 1 

TRAF2 TNF receptor-associated factor 2  4 0 

TREM1 triggering receptor expressed on myeloid cells 1  4 1 

TSHR thyroid stimulating hormone receptor  4 0 

UGT1A1 UDP glucuronosyltransferase 1 family, 

polypeptide A1  

4 0 

VEGF vascular endothelial growth factor A  6 1 
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Chapter 2: Increased risk to siblings of preterm infants suggests genetic factors may 

influence PTB
†
 

 

Abstract 

Adverse pregnancy outcomes, such as PTB, PPROM, placental abruption, and 

preeclampsia, are common and contribute to spontaneous and medically-indicated 

preterm deliveries, with acute and long-term complications for both the mother and 

infant. Etiologies underlying such adverse outcomes are not well understood. As maternal 

and fetal genetic factors may influence these outcomes, we estimated the magnitude of 

familial aggregation as one index of possible heritable contributions. Using the Missouri 

Department of Health’s maternally-linked birth certificate database, we performed a 

retrospective population-based cohort study of births (1989-1997), designating an 

individual born from an affected pregnancy as the proband for each outcome studied. We 

estimated the increased risk to siblings compared to the population risk, using the sibling 

risk ratio, s, and sibling-sibling odds ratio (sib-sib OR), for the adverse pregnancy 

outcomes of PTB, PPROM, placental abruption, and preeclampsia. Risk to siblings of an 

affected individual was elevated above the population prevalence of a given disorder, as 

indicated by S ( S (95% CI): 4.3 (4.0-4.6), 8.2 (6.5-9.9), 4.0 (2.6-5.3), and 4.5 (4.4-4.8), 

for PTB, PPROM, placental abruption, and preeclampsia, respectively). Risk to siblings 

of an affected individual was similarly elevated above that of siblings of unaffected 

individuals, as indicated by the sib-sib OR (sib-sib OR adjusted for known risk factors 

                                                 
†
 This chapter is adapted from: Plunkett J, et al. (2008) Population-based estimate of sibling risk 

for adverse pregnancy outcomes. BMC Genetics, 9:44. 
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(95% CI): 4.2 (3.9-4.5), 9.6 (7.6-12.2), 3.8 (2.6-5.5), 8.1 (7.5-8.8) for PTB, PPROM, 

placental abruption, and preeclampsia, respectively). These results suggest that the 

adverse pregnancy outcomes of PTB, PPROM, placental abruption, and preeclampsia 

aggregate in families, which may be explained in part by genetics. 

Introduction 

In the United States, 12.7% of births occur preterm (<37 weeks) [66], 

approximately one-fourth of which occur due to PPROM [67]. Preeclampsia, high blood 

pressure and fluid retention in pregnancy, and placental abruption, early detachment of 

the placenta from the uterus, affect approximately 7% [68] and 1% [69] of all 

pregnancies, respectively. While many pregnancies share more than one of these 

complications, together they affect a significant portion of pregnancies and represent the 

most common reasons for early delivery. Moreover, adverse pregnancy outcomes are 

important causes of perinatal morbidity and mortality. For example, placental abruption, 

while uncommon, accounts for 12% of all perinatal deaths [25]. The incidence of PTB 

[66] and placental abruption [25] have increased over recent decades, further motivating 

additional study to understand susceptibility factors which contribute to these outcomes. 

Prediction and prevention of these adverse outcomes is difficult. Etiologies 

underlying PTB, PPROM, placental abruption and preeclampsia are not well understood. 

Genetic studies are one way in which we can attempt to better understand these disorders. 

Such studies may identify genetic markers that can predict one’s risk for a particular 

pregnancy outcome. Genetic studies may also identify novel proteins and/or pathways 

involved in the disorder.  
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Both maternal and fetal genetic factors may influence adverse pregnancy 

outcomes. Evidence suggests that maternal genetic factors contribute to PTB [70; 71], 

PPROM [71-73], placental abruption [74; 75] and preeclampsia [76-79]. In contrast, fetal 

effects on these outcomes have not been well studied. Several lines of evidence suggest 

that fetal genetic effects may influence adverse pregnancy outcomes. First, fetal genes 

that are paternally imprinted mainly control placental and fetal membrane growth [25]. 

Because the placenta and fetal membranes likely play a role in adverse pregnancy 

outcomes, fetal genes controlling these tissues may also contribute. Additionally, 

heritability studies, which estimate the relative portion of population variation in a trait 

due to genetics, suggest that PTB [22] and preeclampsia [80] are influenced in part by 

fetal genetic factors. Lastly, several studies suggest that paternity affects risk for PTB and 

preeclampsia. For example, several studies indicate that partner changes between 

pregnancies reduce risk of PTB [26; 27] and preeclampsia [80-83]. Changes in paternity 

may reflect association with long interpregnancy intervals rather than paternity effects 

per se; however, for preeclampsia [78; 84], fathers’ family history affects risk for the 

disorder in their partners’ pregnancies. For PTB, father’s family history has been shown 

to have only a weak association with risk. While an early study of a Norway birth registry 

demonstrated a correlation between father and children’s gestational ages [28], a more 

recent and extensive study of this registry suggested fathers contributed little to no risk to 

preterm delivery risk [29]. Also, paternal race has been associated with PTB risk [6; 7]. 

Together, this data suggests that paternal genes expressed in the fetus may contribute to 

these disorders, motivating study of maternal-fetal influences, assessed by defining the 

infant as the proband, in addition to influences that are maternal-specific.  
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While multiple lines of evidence suggest the importance of genetic contributors in 

adverse pregnancy outcomes, observing clustering of such outcomes in families is 

necessary to assert genetic influences on a disorder. A disorder that does not aggregate in 

families is unlikely to be influenced by inherited factors. Hence, detecting an increased 

risk for a disorder among siblings or other family members of an individual born from a 

pregnancy affected by the same adverse outcome would further support genetic 

influences on these conditions. However, familial aggregation is not sufficient to claim 

genetic influences on a disorder. Since family members share both genes and 

environment, any similarities seen in families may be explained by genetic or shared 

environmental factors (such as in utero environment) or by their interaction.  

Two standard measures of familial aggregation are increase in risk to siblings of 

affected individuals, compared to the population risk for the disorder, the sibling risk 

ratio, s [85], and compared to siblings of unaffected individuals, the sibling-sibling odds 

ratio (sib-sib OR) [86]. These measures have been estimated for a variety of disorders, 

ranging from single locus Mendelian disorders, such as cystic fibrosis [87], to complex 

disorders, including hypertension [88], type 2 diabetes [89], and myopia [90; 91]. These 

familial aggregation measures have been incompletely documented in pregnancy 

outcomes. When considering mother as the affected individual, investigators have 

reported increased risk among first-degree relatives of women affected with PTB [15; 

18], placental abruption [75] and preeclampsia [78; 92]; however, few of these studies 

have scaled the increase in risk among relatives by the population prevalence for a given 

pregnancy outcome (placental abruption [75] , preeclampsia [92] ), as done to calculate 

s. Maternal recurrence risk, similar in calculation to the sib-sib OR, has previously been 
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reported for these disorders [73; 93-98]. Yet, only one study of PTB and PPROM [73] 

scaled maternal recurrence relative to population prevalence of the disorder and did not 

consider this measure as an indication of familial aggregation. s and sib-sib OR, 

defining the infant of an affected pregnancy as proband, have not been reported for these 

disorders. Estimating s, in which the increased risk for a disorder is scaled by population 

prevalence, is particularly important, as population prevalence can vary by race. While 

there may be a significant increase in risk among siblings or a significant maternal 

recurrence risk, such a risk may reflect high population prevalence, rather than familial 

effects, per se. As a result, calculating s may lead to different conclusions that those 

made by previous reports of maternal recurrence risk. Since individual demographic 

factors, such as socioeconomic status or body mass index, may also contribute to risk, we 

calculate sib-sib OR adjusted for important medical and environmental risk factors to 

assess to what extent genetic effects may account for familial aggregation.  

In order to test whether genetic effects may influence these outcomes, our 

analyses define the infant of an affected pregnancy as the proband. We estimate s and 

sib-sib OR to determine whether each outcome clusters in families.  

Results 

Preterm birth. The population risks for PTB at <35 gestational weeks were 

estimated as 3.6%, 2.8%, and 7.8%, in all races, Whites and Blacks, respectively. Among 

second-born siblings in the sibling subcohort whose older sibling was affected, rates of 

PTB for all races, Whites and Blacks, respectively, were used to estimate the sibling risk 

(see Table 2.1). S and its 95% CI were 4.3 (4.0-4.6), 4.4 (4.0-4.7), and 2.8 (2.6-3.1) for 
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all races, Whites, and Blacks, respectively, indicating a significant increase in risk to 

siblings of PTB patients compared to the population. 

Individuals whose older sibling was affected by PTB were also at significantly 

higher risk compared to individuals whose older sibling was unaffected (see Table 2.1). 

This increase in risk persisted after adjusting for known risk factors. Adjusted OR with 

95% CI were 4.2 (3.9-4.5), 5.1 (4.6-5.7), and 3.3 (2.9-3.7) for all races, Whites and 

Blacks, respectively.  

PPROM. The population risks for PPROM were estimated as 0.8%, 0.6% and 

1.9%, in all races, Whites and Blacks, respectively. Among second siblings in the 

matched sibling sub-cohort whose older sibling was affected, rates of PPROM were used 

to estimate sibling risk (see Table 2.2). S and its 95% confidence interval were 8.19 

(6.50-9.88), 6.75 (4.59-8.91), and 6.40 (4.66-8.14) for all races, Whites, and Blacks, 

respectively, indicating a significant increase in risk to siblings of PPROM patients 

compared to the population.  

Individuals whose older sibling was affected by PPROM were also at 

significantly higher risk compared to individuals whose older sibling was unaffected (see 

Table 2.2). This increase in risk persisted after adjusting for known risk factors. Adjusted 

OR with 95% CI were 9.6 (7.6-12.2), 8.5 (6.0-12.1), and 8.9 (6.4-12.5) for all races, 

Whites and Blacks, respectively.  

Placental Abruption. Population rates of placental abruption were estimated as 

0.8%, 0.7%, 1.0%, in all races, Whites and Blacks respectively. Among second siblings 

in the matched sibling sub-cohort whose older sibling was affected, rates of placental 

abruption were used to estimate risk to siblings (see Table 2.3). S and its 95% 
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confidence interval were 3.95 (2.63-5.27) and 4.93 (3.18-6.68), for all races and Whites, 

respectively, indicating a significant increase in risk to siblings of placental abruption 

patients compared to the population. 

We found that individuals whose older sibling was affected by placental abruption 

were also at significantly higher risk compared to individuals whose older sibling was 

unaffected (see Table 2.3). This increase in risk persisted after adjusting for known risk 

factors. Adjusted OR with 95% CI: 3.8 (2.6-5.5) and 5.0 (3.4-7.4) for all races and 

Whites, respectively. 

Blacks did not show a significant increase in risk to siblings of placental 

abruption births either compared to the population ( S= 1.64 (0.04-3.24)) or compared to 

siblings of births unaffected by this disorder (unadjusted OR: 1.4 (0.5-3.7), adjusted OR: 

1.2 (0.4-3.9)).  

Preeclampsia. Population rates of preeclampsia were estimated as 3.2%, 3.1%, 

and 4.1%, in all races, Whites and Blacks, respectively. Among second siblings in the 

matched sibling sub-cohort whose older sibling was affected, rates of preeclampsia were 

used to calculate sibling risk (see Table 2.4). S and its 95% confidence interval were 

4.51 (4.24-4.78), 4.52 (4.21-4.83), and 4.11 (3.59-4.63) for all races, Whites, and Blacks, 

respectively. 

We found that individuals whose older sibling was affected by preeclampsia were 

also at significantly higher risk compared to individuals whose older sibling was 

unaffected (see Table 2.4). This increase in risk persisted after adjusting for known risk 

factors. Adjusted OR with 95% CI were 8.1 (7.5-8.8), 9.0 (8.2-9.8), and 5.8 (4.9-7.0) for 

all races, Whites and Blacks, respectively.  
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Discussion 

We hypothesized that siblings of individuals who were products of pregnancies 

affected by one of several adverse outcomes, PTB, PPROM, placental abruption and pre-

eclampsia, would be at increased risk for the same outcome. s and sib-sib OR values 

significantly greater than one indicate that risk to siblings of adverse pregnancy outcome 

births is elevated compared to the population rate and to the rate in siblings of unaffected 

individuals, respectively. None of the 95% CI for s or sib-sib OR values overlap with 

one, with the exception of placental abruption in Blacks. The lack of evidence for familial 

aggregation of placental abruption in Blacks may be explained by the rarity of the event 

and the relatively small racial subgroup (see Table 2.3). These data suggest that genetic 

and/or environmental risk factors shared among siblings affect these disorders.  

Estimates of sib-sib OR are consistent with previous studies of maternal 

recurrence risk in the Missouri birth certificate database [93; 94], and of maternal 

recurrence risk scaled to the population prevalence for PTB [73]. Our estimate of s is 

noticeably smaller than the maternal recurrence risk, scaled by population prevalence of 

PPROM estimated in [73] (OR (95% CI): 20.6 (4.7, 90.2)). This difference likely reflects 

the larger and population-based cohort used in our study, in contrast to [73] in which 

relatively small groups of PPROM (n=114) and normal term (n=208) deliveries were 

selected from a hospital population. 

The utility of these measures lies primarily in establishing familial aggregation of 

a disorder, a prerequisite to claiming genetic influences on any trait. Yet, s values may 

also be used to make tentative assessments of future genetic studies. The magnitude of s 

values may reflect the mode of genetic etiology, influencing future studies’ design. For 
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example, for complex disorders, to which multiple genetic and environmental factors 

likely contribute, reported s values range from 1.3-75, with peaks at 3-4 and 10-15 [88]; 

in contrast, monogenic Mendelian disorders show s values an order of magnitude higher 

or more (e.g. cystic fibrosis s ~500 [87]). Thus, moderate values for s, such as those 

reported for the adverse pregnancy outcomes studied (see Tables 2.1-2.4), are consistent 

with complex genetic and environmental etiologies. Among complex disorders, s has 

been used to estimate the ability of a study to detect specific genes [99]. However, large 

values of s do not necessarily predict linkage [88; 100] or association [101] studies’ 

success. Additionally, measures that reflect the strength of a genetic effect detected either 

by linkage, s calculated with respect to a specific locus, or by association, genotype 

relative risk, γ, which measures the ratio of disease risks between individuals with and 

those without the susceptibility genotypes, have only an indirect correlation with s 

[101]. Moderate s values may correspond with high γ values (e.g. rheumatoid arthritis 

[101]) and vice versa. While limitations in interpreting s values exist, disorders with 

similar s values to the adverse pregnancy outcomes reported here have had specific 

genes mapped (e.g. hypertension, obesity [88]), suggesting that identification of specific 

genes influencing these conditions may be possible.  

While the increased risk to siblings may be explained in part by shared genetics, 

some evidence suggests that multiple interacting environment factors can account for 

familial clustering [102]. Hence, the clustering of multiple non-genetic risk factors in 

families may account for these results. In order to distinguish genetic from other familial 

risk factors, we calculated sib-sib OR unadjusted and adjusted for important known 

environmental risk factors. Overall, the elevated risk to siblings persists after adjustment 
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for such factors. While there may be important non-genetic factors affecting each 

outcome for which we have not accounted, we believe these results suggest that genetic 

influences may contribute to each of the adverse pregnancy outcomes studied.  

Interestingly, s and sib-sib OR estimates in Blacks are generally smaller than 

those for Whites. For PROM and preeclampsia, the 95% CI for s and sib-sib OR 

estimates for the two racial groups overlap; however, these CI do not overlap for PTB or 

placental abruption. Hence, it is difficult to determine to what extent family clustering of 

these outcomes may differ among races. Differences in the magnitude of s and sib-sib 

OR estimates between Blacks and Whites may be explained in part by the higher 

population prevalence for Blacks compared to Whites for each outcome studied (non-

overlapping 95% CI, see Tables 2.1-2.4), which may reflect higher overall rates of 

genetic and/or environmental risk factors in this population.  

The Missouri database provides many of this study’s strengths. The large number 

of first recorded siblings in the population cohort (n=267,472) and matched sibpairs in 

the sibling cohort (n=163,826) provides a large sample size from which to estimate s 

and sib-sib OR. Additionally, because this database represents a population cohort of 

births, rather than births selected based on any particular pregnancy outcome, biases due 

to ascertainment and overreporting, which can inflate s values [103], should be minimal.  

However, using a birth certificate database like this one also presents several 

limitations. First, complications of labor and delivery and maternal and infant medical 

conditions recorded in such databases may be underreported [104]; as a result, population 

and/or sibling risk for a particular disorder may be underestimated, potentially biasing 

our results. For example, the relative rarity of placental abruption in the population makes 
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concordant sibships, particularly in Blacks, rare, thereby reducing sample sizes for risk 

estimates for this disorder. Additionally, gestational age estimates contained in birth 

certificate databases are based primarily on the date of the last menstrual period, which 

may be recalled inaccurately or misclassified due to postconceptional bleeding [104], 

potentially influencing estimates of PTB and PPROM prevalence in this dataset. We also 

acknowledge that each of the categories of PTB that we analyzed may in themselves be 

rather heterogeneous. For example, initiation of spontaneous labor may result in PTB in 

each of the categories, though for some etiologies, particularly preeclampsia, iatrogenic 

delivery could contribute significantly. Our utilization of a more rigorous definition of 

PTB at less than 35 weeks should minimize the contribution of iatrogenic delivery. A 

final important limitation to this database is the limited amount of information on race. 

Maternal race is self-reported and possibly subject to population stratification and/or 

admixture. Additionally, information on paternal race is incomplete, further affecting the 

accuracy of infants’ reported race. 

The Missouri database also does not document relationships between mothers; as 

a result, similar calculations cannot be made to estimate familial clustering when the 

mother of an affected pregnancy is considered the proband. Moreover, the database 

contains little information on fathers, making it impossible to distinguish full from half 

siblings in most sibships. Because we cannot distinguish siblings that share both maternal 

and paternal factors from those that share maternal factors only, we cannot assess to what 

extent the increased risk can be attributed to factors unique to the fetus, rather than those 

shared with its mother. Due to these limitations, we cannot examine the relative 

importance of maternal versus fetal genetic effects, studied by Wilcox et al. [29] and 
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Cnattingius et al. [80], for PTB and preeclampsia, respectively. Cnattingius et al. [80] 

reports 20% of variation in preeclampsia risk is due to fetal genetic effects and the 

combined effect of fetal genetic factors and couple effects are as important as maternal 

genetic effects. In contrast, Wilcox and colleagues [29] report only a weak association 

between father’s family history and risk for PTB (RR (95% CI): 1.12 (1.01-1.25)), which 

became nonsignificant at earlier gestational ages (RR (95% CI): 1.06 (0.77-1.44). From 

this trend, the authors conclude that fetal genes may contribute to normal labor, but, not 

preterm delivery [29]; however, Wilcox and colleagues [29] have relatively few early 

preterm offspring of early preterm mothers (n=91) and fathers (n=39) from which risk 

was estimated, and do not stratify based upon race/ethnicity. Similarly, a recent study 

[21] suggested that paternal genetics contributed little to gestational age, but could not 

refute the possible role of maternally-inherited genes expressed in the fetus. Hence, while 

paternally-inherited genes may contribute little to PTB or other disorders, maternally-

inherited genes expressed in the fetus may still be important. Because of our study’s 

limitations, we may be detecting effects due to shared uterine environment, shaped in part 

by maternal genes, rather than maternally-inherited genes in siblings. Hence, fetal genetic 

effects may make contributions of lesser magnitude than maternal genetic factors, with 

fetal genetic factors having a more prominent role in certain etiologies of PTB. 

We have observed familial aggregation of PTB, PPROM, placental abruption and 

preeclampsia. Overall, siblings are at increased risk for each outcome, even after 

adjusting for important known environmental risk factors. While the influence of shared 

unmeasured environmental risk factors on sibling risk cannot, and should not, be 

discounted, we hypothesize that maternal and/or fetal genetic influences account for some 
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of the increased risk to siblings observed. Moreover, though it is difficult to determine to 

what extent fetal and maternal effects overlap in these analyses, we postulate that fetal 

genetic factors may contribute to these disorders and suggest that they are studied further.  

Methods 

Study design. A protocol was approved by the Missouri Department of Health 

and Senior Services and by Washington University School of Medicine to analyze the 

state’s maternally linked birth-death certificate database. We analyzed this database to 

assess the recurrence risk for a discrete group of adverse pregnancy outcomes, including 

PTB, PPROM, placental abruption, and pre-eclampsia, in maternally-linked siblings. 

Births to the same mother were linked by a unique identifier called a sibship number, 

described elsewhere [105]. Full siblings and half-siblings resulting from pregnancies in 

the same mother were not distinguished. All protected health information with personal 

identifiers was removed before distributing the data for analysis. 

This analysis was restricted to births that occurred between 1989 and 1997, since 

births that occurred before 1989 lacked complete medical and social histories. Fetal 

deaths occurring at <20 weeks gestation, multiple gestation pregnancies and individuals 

with no maternally-linked siblings recorded in the database were excluded from this 

analysis. After excluding such cases, the remaining cohort consisted of 473,881 births, of 

which 383,812 (81.2%) were White and 81,889 (17.3%) were Black. 267,472 births 

(220,728 (82.5%) White and 42,899 (16.0%) Black) were the first maternally-linked 

sibling in the database and used to estimate the population prevalence for each outcome. 

A second cohort of matched siblings was constructed from this dataset to analyze 

sibling risk for each outcome. The two oldest siblings born to the same mother during the 
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study period were included. The dataset was not restricted to parity 0 and parity 1 

women, in order to be as unbiased as possible in estimating risk for siblings and 

providing the best index of population prevalence. Additional siblings born to the same 

mother were excluded to simplify the statistical model. This cohort comprised of 327,652 

matched siblings, of which 265,947 (81.2%) were White and 55,555 (17.0%) were Black. 

Second-born siblings whose older sibling was affected by a particular outcome were used 

to estimate sibling risk for s and sib-sib OR. 

Definitions. PTB is defined by the World Health Organization as delivery <37 

weeks [1]. To avoid inclusion of borderline gestational ages which may introduce 

misclassification bias, we defined PTB as delivery <35 weeks in this study. Information 

from the last menstrual period and clinical data were used to calculate the best estimate of 

gestational age. PPROM was defined as births delivered <35 weeks complicated by 

premature rupture of membranes. For PPROM, births complicated by pre-eclampsia, 

insulin-dependent and other diabetes, or eclampsia were excluded from analysis due to 

the potential for these births being delivered for medical reasons. First-born sibling and 

second-born sibling refer to the two oldest siblings recorded in database.  

Statistical analysis

prevalence Population

sibling)  affected|P(affected
s

S was calculated as the frequency of an outcome in the individuals whose older 

sibling was affected with the disorder in the sibling cohort divided by the frequency of 

the outcome in first siblings in the larger cohort. 95% confidence intervals (CI) for 

sibling risk, population risk and sibling risk ratio were calculated by standard procedures 

for a binomial variable.  
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sibling)  unaffected|P(affected

sibling)  affected|P(affected
OR  sibSib  

Sib-sib OR was calculated as the odds of a child being affected with a particular 

adverse outcome, given that their older sibling was affected, divided by the odds of a 

child being affected with a particular adverse outcome, given that their older sibling was 

unaffected. Sib-sib OR were adjusted for known medical and environmental risk factors 

for the outcome to most conservatively estimate residual familial effects on risk. For 

preterm-birth and PPROM, OR were adjusted for: mother’s age <20 years old, mother 

<12 years of education, recipient of state-funded assistance (an index of low 

socioeconomic status), no prenatal care, mother’s body mass index (BMI) <20 kg/m
2
, and 

cigarette smoking during pregnancy. In addition to these risk factors, preeclampsia ORs 

were corrected for: mother’s age >35years old, insulin-dependent diabetes mellitus, 

chronic hypertension. ORs for placental abruption were corrected for 

hydraminos/oligohydraminos in addition to the risk factors listed above. 

Frequencies for S and logistic regression analyses for the sib-sib OR were 

performed using Stata 9 [106]. Each calculation was made for PTB, PPROM, placental 

abruption, and preeclampsia in all races (including individuals whose race was neither 

Black nor White), as well as stratified by Black or White race. S and sib-sib ORs 

calculated by race compare siblings of affected individuals designated as Black or White 

to the siblings of unaffected individuals of the same race or the population prevalence for 

that race.  
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Chapter 3: Patterns of inheritance suggest familial PTB is complex genetic disorder
‡
 

 

Abstract 

While multiple lines of evidence suggest the importance of genetic contributors to 

risk of PTB, the nature of the genetic component has not been identified. We perform 

segregation analyses to identify the best fitting genetic model for gestational age, a 

quantitative proxy for PTB. Because either mother or infant can be considered the 

proband from a preterm delivery and there is evidence to suggest that genetic factors in 

either one or both may influence the trait, we performed segregation analysis for 

gestational age either attributed to the infant (infant’s gestational age), or the mother (by 

averaging the gestational ages at which her children were delivered), using 96 multiplex 

preterm families. 

These data lend further support to a genetic component contributing to birth 

timing since sporadic (i.e. no familial resemblance) and nontransmission (i.e. 

environmental factors alone contribute to gestational age) models are strongly rejected. 

Analyses of gestational age attributed to the infant support a model in which mother’s 

genome and/or maternally-inherited genes acting in the fetus are largely responsible for 

birth timing, with a smaller contribution from the paternally-inherited alleles in the fetal 

genome. Our findings suggest that genetic influences on birth timing are important and 

likely complex. 

 

 

                                                 
‡
 This chapter is adapted from: Plunkett J, et al. (2009) Mother’s genome or maternally-inherited 

genes acting in the fetus influence gestational age in familial PTB. Hum Hered 68:209-219. 
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Introduction  

While multiple lines of evidence suggest genetic contributors are important in 

PTB, a specific mode of inheritance has not been identified. No prominent simple 

Mendelian pattern of inheritance has been observed in multiplex pedigrees identified to 

date. Modeling procedures used by twin studies suggest that additive genetic factors and 

environmental risk factors that are not shared among siblings both influence PTB [19-

21]. Moderate values of sibling risk ratio ( S), a measure of risk to siblings of affected 

individuals compared to the population risk for a disorder, estimated for PTB ( S (95% 

CI): 4.3 (4.0-4.6)) [107] are also consistent with complex genetic and environmental 

etiologies [88]. Moreover, association studies have reported gene-gene [33; 34] and gene-

environment [35; 108; 109] interactions with PTB. Together, these studies imply that the 

etiology of PTB likely involves genetic as well as environmental factors in complex 

interactions. However, there has not been a systematic study of possible genetic models 

for PTB to date. 

In this study, we performed segregation analyses to identify the best fitting 

genetic model for gestational age, a quantitative proxy for PTB. Because either mother or 

infant can be considered the proband from a preterm delivery, and there is evidence to 

suggest that genetic factors in either one or both may influence the trait, we performed 

segregation analysis for gestational age as a quantitative trait either attributed to the 

infant, infant’s gestational age, or to the mother, by averaging the gestational ages at 

which her children were delivered, using 96 multiplex preterm families. We also tested 

parent of origin models for infant’s gestational age to examine whether mother’s 

genotype is the sole determinant of variation in this trait. Additionally, as pregnancies in 
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which either the mother [10; 13] or father [6; 7] is Black are at increased risk for preterm 

delivery, we performed segregation analysis for each phenotype in the total sample, as 

well as stratified by Black and White race, to test for heterogeneity between these two 

groups.  

Results 

Modeling of gestational age attributed to the infant. We first analyzed 

gestational age of the infant. The number of subjects and descriptive statistics for this 

phenotype are shown in Table 3.1. Table 3.2 presents the likelihood ratio tests (LRTs) 

and Akaike’s Information Criterion (AIC) values for segregation analysis of infant’s 

gestational age for 17 models of inheritance. The parameter estimates for segregation 

analysis of infant’s gestational age are listed in Table 3.1. The hypotheses of no familial 

resemblance (model 2), no major gene effect (model 3), and no multifactorial effect 

(model 4) are rejected, suggesting the presence of both a major gene and a multifactorial 

effect. Additionally, the equal τ's hypotheses (models 10, 12 and 14) are rejected for the 

mixed, recessive mixed and dominant mixed models, respectively. In the free τ's models, 

the estimated τAa differed from 0.5, expected under the Mendelian model, and fit the data 

better than their respective general models (models 1, 7 and 8) for all groups. Together, 

this evidence supports a genetic component for PTB transmitted from parents to offspring 

and suggests that the transmitted effect is complex. Similar models were tested for 

general parent of origin effects, as well as maternal-specific and paternal-specific effects 

under Mendelian transmission (models 15-17). The parent of origin model (model 15) 

best fit the data as judged by AIC values and was chosen as the most parsimonious model 

(Table 3.3). This model suggests that, when attributing gestational age to the infant of a 
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delivery, genetic factors influence this trait and the parent from whom such factors are 

inherited influences the overall trait value. 

Modeling of gestational age attributed to the mother. We also analyzed 

gestational age attributed to the mother, by averaging the gestational ages at which her 

children were delivered (see Table 3.1). Table 3.2 presents the likelihood ratio tests and 

AIC values for segregation analysis on mother’s average gestational age of children for 

14 models of inheritance. The parameter estimates for the combined dataset are listed in 

Table 3.4. The hypotheses of no familial resemblance (model 2), no major gene effect 

(model 3), and no multifactorial effect (model 4) are rejected, suggesting the presence of 

both a major gene and a multifactorial effect. The equal τ's (models 10, 12 and 14) are 

rejected. None of the free τ's models (models 9, 11 and 13) converged initially. In order to 

estimate these models, τAA and τaa were fixed to 1 and 0, respectively. Only τAa was 

estimated and, in each case, differed from 0.5, expected under the Mendelian model. 

Additionally, the free τ's models fit the data better than their respective general models 

(models 1, 7 and 8), perhaps suggesting that the major effect observed is more complex 

than the single biallelic locus modeled here. Together, this evidence supports a genetic 

component for PTB transmitted from parents to offspring and suggests that the 

transmitted effect is complex. The mixed free ’s model (model 9) best fit the data as 

judged by the AIC values and was chosen as the most parsimonious model (Table 3.5). 

This model suggests that a multifactorial genetic model most likely best accounts for 

variation in gestational age, when the trait is attributed to the mother of a delivery. 

Heterogeneity between Blacks and Whites. Since pregnancies in which either 

the mother [10; 13] or father [6; 7] is Black are at increased risk for preterm delivery, we 
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tested for evidence of genetic heterogeneity between these two groups. Segregation 

analyses of infant’s gestational age and mother’s average gestational age over all her 

children also were performed in Black and White subgroups. Table 3.1 documents the 

number of subjects and descriptive statistics for both phenotypes by race. The segregation 

analyses of infant’s gestational age supported similar conclusions in the combined sample 

and Black and White subgroups. However, several results differed in the segregation 

analysis of mother’s average gestational age of children when the sample was stratified 

by Black and White race, compared to the combined sample. In the race-stratified 

samples, final estimates of the free τ's models had higher -2ln likelihoods than did similar 

models with fewer parameters, indicating that the maximum likelihood was not reached. 

As a result, the equal τ's hypotheses (models 10, 12 and 14) and the free τ's hypotheses 

(models 9, 11 and 13) were not rejected for the mixed, recessive mixed and dominant 

mixed models, respectively, in Black and White subgroup analysis. The best fitting 

model according to AIC values was the mixed equal τ's model and was selected as the 

most parsimonious model in both race subgroups (data not shown).  

To test formally for heterogeneity between Blacks and Whites, we used the 

heterogeneity 
2
 test [110; 111] in which the -2lnL value under a given model for the 

combined data is subtracted from the summed -2lnL values from stratified analyses. For 

infant’s gestational age, evidence for genetic heterogeneity among races was observed 

when comparing values under the multifactorial model (
2 

= 698.07 Black + 2010.02 

White) -2690.72 combined =17.37, 3 df, p=0.0006). Of note, parameter estimates for 

Blacks and Whites differed, particularly estimates of p, H and AA which were generally 

higher in Blacks than Whites. For the multifactorial model, H was estimated as 0.46 
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(95% CI: 0.27, 0.65) for Blacks and 0.23 (95% CI: 0.13, 0.33) for Whites. While these 

point estimates are quite different, the 95% CI overlap, indicating that this difference may 

not be statistically significant. For mother’s average gestational age of children, evidence 

for genetic heterogeneity among races was observed when comparing values under the 

multifactorial model (
2 
= (54.92 Black +213.58 White)-216.37 combined =52.13, 3 df, 

p=2.81x10
-11

). Of note, parameter estimates for Blacks and Whites differed, particularly 

estimates of H, which are generally higher in Blacks than Whites. For the mixed free τ's 

model, H was estimated as 0.70 (95% CI: 0-1) for Blacks and 0.23 (95% CI: 0-0.57) for 

Whites. As the 95% confidence intervals overlap, this difference is not significant in the 

sample size analyzed here. 

Discussion 

PTB likely has a complex etiology involving both genetic and environmental risk 

factors, based on evidence from previous studies. This study is the first to explicitly test 

different modes of inheritance for birth timing, by assessing gestational age as a 

phenotype of either mother or infant. These data lend further support to a genetic 

component contributing to birth timing since sporadic (i.e. no familial resemblance) and 

nontransmission models, in which gestational age is attributed to environmental factors 

alone, are strongly rejected (Tables 3.2 and 3.4). Our findings suggest that genetic 

influences on birth timing are important and likely complex.  

For infant’s gestational age, the parent of origin model (model 15) best fit the data 

according to the AIC values and was chosen as the most parsimonious model (Table 3.2). 

Based on the mean estimates for AA, Aa, aA and aa under this model (Table 3.3), it 

appears that this parent of origin effect is largely maternal. Heterozygotes who inherit the 
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A allele from their mother (Aa) have a mean closer to, but not equal to, AA. Under a 

strict maternal model, AA and Aa would be equivalent, since mother’s A allele would be 

expected to be the sole determinant of phenotype. In contrast, heterozygotes who 

inherited the A allele from their father (aA) have a mean that is approximately equivalent 

to that of aa, suggesting that father’s A allele has little effect on phenotype. A model in 

which the maternally-inherited allele was the sole determinant of the phenotype (model 

16) did not fit the data better than the parent of origin model in which the entire genotype 

was considered. Importantly, father’s genes also affect phenotype in this model, aligning 

with previous work showing paternity [26; 27] as well as paternal race [6; 7] influence 

PTB risk. Hence, both maternal and paternal alleles seem to contribute to infant’s 

gestational age, with maternally-inherited alleles having a stronger effect on phenotype 

than those inherited from the father. This finding may support previous studies that have 

observed stronger effects of mother’s race [6; 7] and family history on risk for PTB [29] 

than those of the father. 

These data suggest that maternally-inherited genes acting in the fetus and/or 

maternal genes acting in the mother are largely responsible for birth timing; however, 

these two possibilities are not easily distinguished. Maternal genetic effects can create the 

same pattern of phenotypic variation as genomic imprinting [112]. These two classes of 

effects can be distinguished by comparing the offspring of heterozygous mothers [112]; 

however, such comparisons are not possible in our dataset in which individuals were 

assigned probabilities for each possible genotypic state, rather than having known 

genotypes measured empirically. Previous studies in cattle [113; 114] have observed 

maternal genetic effects on gestational age, but did not consider parent of origin effects. 
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Consequently, further study is needed to determine whether maternal effects or 

imprinting account for our observations. In either case, considering the mother of a 

preterm delivery as proband may be most useful in identifying genetic contributions to 

PTB.  

Segregation analysis of mother’s average gestational age of children also 

supported a complex genetic model. The mixed free τ's model (model 9) best fit the data 

according to the AIC values and was chosen as the most parsimonious model (Table 3.4). 

This model, in combination with results from LRTs, suggests that genetic influences on 

birth timing are important and likely complex. Importantly, fewer individuals are 

informative when mother is considered the proband in a preterm delivery (Figure 3.1), 

and the smaller sample size affects the power of the analysis. As a result, the parameter 

and likelihood estimates made when considering mother as proband are more affected by 

sampling variance; however, conclusions made by comparing across models should be 

less affected by sample size.  

Overall, mother-based and infant-based analyses both support the importance of 

genetic factors, perhaps primarily acting in the mother or maternally-inherited alleles 

acting in the fetus, in birth timing. The genetic component influencing PTB likely 

involves many genes in interaction with environmental and other genetic factors. These 

results are consistent with previous studies suggesting that genes and environments [19-

21], as well as gene-gene [33; 34] and gene-environment [35; 108; 109] interactions 

influence PTB. Estimates from the multifactorial model (model 3, Tables 3.3 and 3.5) 

indicate 30-40% of variation in gestational age, attributed to either mother or infant, can 

be explained by genetics, consistent with estimates from previous twin studies [19; 21]. 
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As twins may not be representative of the population as a whole, our heritability 

estimates corroborate the general importance of genetics in birth timing. Heritability 

estimates were generally higher in mother-based analyses (0.44 (95% CI: 0.11, 0.77)) 

than in infant-based analysis (0.33 (95% CI: 0.24, 0.42)), but not significantly different 

(Tables 3.3, 3.5). While many genes may be contributing to the observed genetic 

influence on birth timing, the moderate heritability observed suggests that the cumulative 

effect of these genes accounts for an important amount of variation in gestational age.  

Although alternative methods for segregation analysis exist, we considered the 

Pedigree Analysis Package (PAP) to be the best method for our primary goal of 

identifying the best-fitting genetic model for birth timing. Using PAP, we were able 

compare models directly and identify the most parsimonious model. In contrast, Markov 

Chain Monte Carlo (MCMC) methods, such as those used by the Loki [115] and Morgan 

[116] packages, generate a series of posterior probabilities for various models, but no one 

model is identified as superior. Moreover, MCMC methods model several Mendelian loci 

simultaneously but do not include a polygenic component, which we wanted to include in 

the models we examined. Furthermore, one cannot correct for ascertainment within 

MCMC analysis, in contrast to PAP. One of the disadvantages of using PAP exclusively 

was that we were not able to estimate the approximate number of loci contributing to 

birth timing, as could be done with MCMC methods. Additionally, MCMC methods may 

be better at handling large, complex pedigrees than PAP [117]; however, since our 

families were relatively small and simple (e.g. containing no inbreeding), we did not 

consider this a limitation. 
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We have likely enriched for genetic and/or common environmental effects by 

using 96 multiplex families, all of whom were recruited based on having two or more 

first degree relatives delivered preterm. These multiplex families provided a large sample 

size from which genetic effects could be examined. However, the ascertainment scheme 

also introduces bias, as the families were not collected randomly and may overestimate 

the importance of certain genetic models. To minimize errors due to such bias, all 

analyses were corrected for ascertainment by conditioning on the initial proband, either 

the mother or the offspring depending which phenotype was considered, that led to the 

ascertainment of the family, assuming single ascertainment. However, if our assumption 

of single ascertainment is incorrect, conditioning on probands in this manner may create 

bias in estimating model parameters [118], leading to inaccurate conclusions about the 

best-fitting model for familial PTB. Because we believe our ascertainment scheme is 

consistent with single ascertainment, these results appear to be most appropriate for 

modeling genetic effects in familial PTB. Yet, it is possible that our conclusions drawn 

from familial cases of PTB may not generalize to all instances of this disorder. Familial 

cases of PTB may have a different genetic contribution than isolated cases, perhaps 

having different etiologies than isolated cases. 

This study is also limited by the phenotypes studied. Information on gestational 

age was collected by self-report data from questionnaires for many individuals used in 

this analysis. While it was possible to verify gestational ages from medical records in 

some cases, including all births delivered at the participating institutions, many 

gestational ages could not be verified and may be subject to reporting errors. 

Additionally, many individuals for whom we could not verify precise gestational ages 
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were reported as “full term” and assigned gestational age of 40 weeks. While this is the 

most likely gestational age for infants to be born [12], we may lose some variability in 

the overall distribution of gestational age by doing so. As modeling of trait variance is 

essential to segregation analysis, this approach also may have affected our results. 

Our findings suggest that genetic influences on birth timing are important. 

Modeling for both mother and infant phenotypes indicate that a genetic component 

influences gestational age and is complex in nature. In analyses using either mother or 

infant as proband, monogenic Mendelian models were strongly rejected, suggesting that a 

single gene model cannot fully explain birth timing in these families. A number of genes 

probably contribute to the genetic influence on birth timing and PTB described. Analyses 

of gestational age attributed to the infant support a model in which mother’s genome 

and/or maternally-inherited genes acting in the fetus are largely responsible for birth 

timing, with a smaller contribution from the paternally-inherited alleles in the fetal 

genome. Hence, considering the mother of a preterm delivery as proband may be more 

useful in identifying specific genetic contributions to PTB. Interestingly, results from the 

heterogeneity 
2
 test comparing race-stratified analyses suggest that genetic influences on 

birth timing may differ between Blacks and Whites. Hence, in future association studies, 

race-stratified analyses or population stratification corrections may improve our ability to 

identify specific genes associated with PTB. Overall, as multiple genes in the mother’s 

genome may explain the bulk of genetic influences on birth timing, future studies to 

identify specific genes influencing PTB perhaps will be most fruitful by using large scale 

studies of mothers’ genomes.  

Material and Methods 
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Proband mother-infant pair was initially identified through premature birth of a 

live singleton fetus before 37 weeks of gestation [1] by review of delivery logs at 

university medical center hospitals at Washington University and University of Helsinki 

or by self-identification through the study’s website from 2003 to October 2007. To avoid 

misclassification bias at borderline gestational ages, we defined PTB as <35 weeks in the 

US cohort and <36 weeks in the Finland cohort. Our gestational age criteria was less 

stringent in the Finland cohort due to the high number of early ultrasounds performed, 

leading to more accurate gestational ages in this cohort. To include only families with 

spontaneous onset of preterm singleton birth, the following mother-infant pairs were 

further excluded: elective deliveries without spontaneous onset of labor and deliveries in 

which either maternal (e.g. systemic infection) or fetal (e.g. malformation) disease with 

known predisposition to premature birth was indicated. Families were extended through 

affected individuals on both maternal and paternal sides until no additional first degree 

relatives were identified as either mother of infant of a preterm delivery. Families were 

recruited into the study only if two or more members were mothers and/or infants of 

preterm deliveries. 55 families were recruited from the US, of which 31 were Black and 

24 were White. 41 White families were recruited from Finland. In the US cohort, families 

ranged from 9 to 36 individuals with phenotypic information with a median family size of 

18 individuals. In the Finland cohort, families ranged from 8 to 73 individuals with 

phenotypic information with a median family size of 16 individuals. Informed consent 

was obtained from participants and the study was approved by the institutional review 

board of Washington University School of Medicine and the ethics committee of Helsinki 

University Central Hospital.  
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From the US cohort, an individual’s gestational age was calculated based on his 

or her mother’s self report of expected due dates and actual delivery dates for a 

pregnancy or of how many weeks early that family member was born. For all individuals 

born at the Washington University School of Medicine, gestational ages were verified 

from medical records. From the Finland cohort, an individual’s gestational age was 

obtained from medical records. Individuals for whom pedigree information indicated that 

they were born <35 or <36 weeks without a specific gestational age designated were 

assigned a gestational age of 34 or 35 weeks, respectively. Similarly, those individuals 

indicated as “term” were designated 40 weeks. Infant’s gestational age was treated as a 

quantitative trait, which was standardized to a normal distribution ( =0, =1) prior to any 

analysis. A total of 1378 individuals had non-missing phenotypes, with a median of 13 

individuals per family (range 3-80). The number of sibpairs with phenotypic information 

for this phenotype was 309, with a median of 3 sibpairs per family (range 1-7). The 

median number of generations with phenotypic information was 3 (range 1-5).  

For both cohorts, a variable representing the average gestational age of all 

children born to a given mother was constructed. For mothers who had one or more 

children born before 37 weeks, this variable was calculated as the mean of the gestational 

ages for all children born to that woman. Mothers who gave birth to all of their children 

at term (>37 weeks) were assigned a value of 40 weeks. Mothers for whom one or more 

children had missing gestational ages were coded as missing. Additionally, all males and 

females who had not yet given birth were coded as missing. This phenotype was treated 

as a quantitative trait, which was standardized to a normal distribution ( =0, =1) prior 

to any analysis. Univariate statistics and standardizations for each phenotype were 
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performed with SAS language v. 9.1.3 for Linux OS (SAS Institute, Cary, NC). A total of 

404 individuals had non-missing phenotypes, with a median of 4 individuals per family 

(range 1-17). The number of sibpairs with phenotypic information for this phenotype was 

309, with a median of 0 sibpairs per family (range 0-5). The median number of 

generations with phenotypic information was 2 (range 1-4).  

We used the Pedigree Analysis Package (PAP), Version 5.0 [119] to perform 

segregation analysis. Under the mixed Mendelian model (model 1), the phenotype is 

influenced by a major gene, polygenic background and an untransmitted environmental 

component. The major gene is biallelic (A, a), with allele A, occurring at frequency p, 

associated with lower trait values. Mean values for the three genotypes (μAA, μAa, μaa, 

where the order of the means is constrained to be μAA ≤ μAa ≤ μaa) and a common 

standard deviation for all genotypes are estimated. Parent-to-offspring transmission 

probabilities for the three genotypes (τAA, τAa, and τaa) also are included in the model. τAA, 

τAa, and τaa designate the probability of transmitting allele A for the genotypes AA, Aa, 

and aa, with Mendelian expectations of 1, 0.5, 0, respectively. When the τ’s are set equal 

to p, there is no transmission of the major effect. Polygenic heritability (H) after 

accounting for the putative major gene effect was also estimated. For parent of origin 

models, heterozygotes who inherited A from their mother (Aa) and heterozygotes who 

inherited A from their father (aA) are distinguished from one another and allowed to have 

different means. Many of the free τ's models did not converge initially. In order to 

estimate these models, τAA and τaa were fixed to 1 and 0, respectively, and likelihoods 

calculated under these additional assumptions were used for the analysis.  
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All parameters were estimated using a maximum likelihood method. Nested 

models representing null hypotheses were tested against a more general model using a 

LRT, in which the difference between negative twice the log-likelihood (-2 ln L) values 

for two models approximates a chi-square distribution with degrees of freedom equal to 

the number of independent parameter restrictions. The most parsimonious model of those 

not rejected by likelihood ratio test (p>0.01) was determined using AIC [120], which is 

computed as -2 ln L of the model plus twice the number of parameters estimated. The 

model with the lowest AIC indicates the most parsimonious fit to the observed data. 

To account for the ascertainment of the families, the likelihood of each model was 

conditioned on the likelihood of the proband’s phenotype under the model, an appropriate 

correction for the manner in which these families were extended [121]. While our 

criterion required 2 or more preterm first degree relatives for a family to be enrolled in 

the study, the ascertainment scheme is approximately equivalent to single ascertainment 

[122]. Because not all preterm deliveries in the metropolitan St. Louis or Finnish health 

care systems occurring during the study period were captured under our ascertainment 

scheme, the probability that a family was identified through multiple probands is small 

and should be proportional to the number of affected deliveries in a family, as expected 

under single ascertainment[123]. Under single ascertainment, conditioning on the 

proband’s phenotype is sufficient to adjust for the ascertainment of families [123]. Hence, 

analyses for infant’s gestational age were corrected for the proband infant’s gestational 

age jointly with PTB (<37 weeks) affection status. Similarly, analyses attributing 

gestational age to the mother were corrected for the proband mother’s average gestational 

age of children jointly with her PTB (<37 weeks) affection status.  
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To test genetic heterogeneity among races, we used the heterogeneity 
2
 test [110; 

111] in which the -2lnL value under the best fitting model for the combined data is 

subtracted from the summation of -2lnL values for stratified analyses to obtain the test 

statistic. This test statistic approximates a 
2
 distribution with df equal to K*J-K where J 

is the number of subgroups and K is the number of parameters in the model. 
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Chapter 4: Considering rapidly evolving genes facilitates discovery of novel gene for 

PTB: follicle-stuimulating hormone receptor, FSHR 
§
 

 

Abstract  

The signals initiating parturition in humans have remained elusive, due to 

divergence in physiological mechanisms between humans and model organisms typically 

studied. Because of relatively large human head size and narrow birth canal cross-

sectional area compared to other primates, we hypothesized that genes involved in 

parturition have evolved rapidly along the human and/or higher primate phylogenetic 

lineages to decrease the length of gestation and alleviate complications arising from these 

constraints. Consistent with our hypothesis, many genes involved in reproduction show 

rapid evolution in their coding or adjacent noncoding regions. We screened >8,000 SNPs 

in 150 rapidly evolving genes in 165 Finnish preterm and 163 control mothers for 

association with PTB. A linkage disequilibrium block of SNPs in FSHR, rs11686474, 

rs11680730 and rs12473870, showed significant association across ethnically diverse 

populations. By considering rapid evolution, we identified a novel gene associated with 

PTB, FSHR. We anticipate other rapidly evolving genes will similarly be associated with 

PTB risk and elucidate essential pathways for human parturition. 

Introduction 

Because humans are born developmentally less mature than other mammals [124; 

125], birth timing mechanisms may differ between humans and model organisms that 

have been typically studied [126]. Evidence suggests that parturition has changed along 

the human lineage in response to other uniquely human adaptations. The dramatic 

                                                 
§
 This chapter is adapted from: Plunkett J, et al. Evolution History of FSHR in Humans 

Predicts Role in Birth Timing. Submitted. 
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increase in brain size, along with the human pelvis becoming narrower to facilitate 

bipedalism, places unique constraints on birth in humans compared even with 

evolutionarily close relatives such as Neanderthals and chimpanzees [127; 128]. Given 

the historically high mortality rate associated with pregnancy, these human adaptations 

are likely to have generated a strong selective pressure to initiate parturition at a 

relatively earlier time in gestation compared to non-human primates to avoid 

cephalopelvic disproportion and arrested labor. High rates of human versus non-human 

primate divergence in human pregnancy-related genes, such as genes in the reproduction 

Gene Ontology (GO) category [129; 130] as well as GO categories related to fetal 

development, including transcription factors [131], nuclear hormone receptors [131], 

transcriptional regulation [132] and development [130], support the notion that human 

gestation length has been shortened to accommodate features unique to human 

pregnancy. As a result, the set of genes rapidly evolving on the human lineage likely 

includes genes that play important roles in regulating parturition and potentially influence 

PTB risk. 

Genetic influences on birth timing in humans appear to be substantial; however, 

association studies using candidates selected from suspected pathways have not detected 

robust susceptibility variants for PTB. Genome-wide association studies (GWAS) are 

promising but will require large numbers of well-characterized subjects in order to 

overcome the challenge of multiple statistical comparisons. To address these limitations, 

we applied an evolutionarily-motivated filter to examine genes showing marked 

divergence between humans and other mammals, defined by relative nucleotide 

substitution rates in coding and highly conserved noncoding regions, for association with 
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PTB. Here we show that genes with the signature of rapid evolution in humans provide 

an informative group of candidates, and demonstrate as proof of concept that one rapidly 

evolving gene, follicle-stimulating hormone receptor (FSHR), has significant association 

with PTB.  

Results and Discussion 

Life history traits. Because of large human head size and narrow birth canal 

cross-section compared to other primates [127], we hypothesized that genes involved in 

parturition have evolved rapidly along the human phylogenetic lineage to decrease the 

length of gestation and alleviate the complications arising from these constraints. We 

performed a comparative analysis of life history traits in mammals to further evaluate 

whether the relative gestational period in humans has decreased compared to other 

primates and mammals. Data acquired by Sacher and Staffeldt [133] and reanalyzed by 

us show that both adult and neonatal primates have higher brain to body weight ratios 

compared to other mammals (Figure 4.1A, B). The decoupling of brain/body size ratios 

in primates makes it possible to ask whether gestation in primates is linked to brain size 

or body size. Primates and other mammals have equivalent gestational periods with 

respect to brain weight (Figure 4.1C). In contrast, the gestational period in primates is 

longer relative to the length of gestation in mammals with equivalent neonatal body 

weights (Figure 4.1D). This suggests that the length of gestation is expected to change 

with brain size but not body size. 

Humans have evolved the highest adult brain to body weight ratio of any mammal 

[29]. In contrast to the evolution of brain/body ratios along the lineage leading to 

primates, the increase in the brain/body ratio along the lineage leading to humans is 
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present in adults but not neonates (Figure 4.1B). The simplest explanation is that adult 

brain/body ratios have changed independently of neonatal ratios. However, the ratio of 

brain/body weight is highest at birth and declines until adulthood. Thus, an alternative 

explanation is that both adult and neonatal brain/body ratios have increased in humans, as 

in primates, but that a concurrent decrease in the length of gestation lowered the neonatal 

brain/body ratio. This second possibility is supported by the relative immaturity of human 

neonates compared to other primates [124; 125] and that the length of human gestation, 

relative to either neonatal brain or body weight, is shorter than most other primates 

(Figure 4.1C,D). 

To examine the evolution of gestation length relative to neonatal brain and body 

weight in primates, we inferred the evolution of these characters across a phylogenetic 

tree. For both gestation-neonatal body ratio (Figure 4.2A) and gestation-neonatal brain 

ratio (Figure 4.2B) there is a consistent trend of a relatively shorter length of gestation on 

branches leading to humans. Of note, human has the lowest gestation-neonatal body ratio 

(Figure 4.2A) or gestation-neonatal brain ratio (Figure 4.2B) of all the 20 primates. The 

gestation-neonatal brain ratio for humans is 69% that of gorilla and 45% that of 

chimpanzee. The gestation-neonatal body ratio of human is 49% that of gorilla and 50% 

that of chimpanzee.  

Signature of rapid evolution. In light of this evidence for human adaptation for 

birth timing, we examined whether genes involved in parturition would display a 

signature of positive selection, an increased rate of amino acid altering to synonymous 

nucleotide substitutions (dN/dS; Figure 4.3). We found that, of 120 suggested candidate 

genes for PTB [134] that were included in ENSEMBL database, 7 showed statistically 
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significant increased rate acceleration (i.e. increased dN/dS; p<0.05) along the human 

lineage in comparison to the other lineages. Table 4.1 shows these 7 genes plus 2 

accelerated human genes significantly rapidly evolving along the human-chimpanzee 

ancestor lineage (complete analysis of dN/dS reported in [135; 136]). Of these, common 

variants of PGR [137] and MMP8 [138] have previously been found to contribute to PTB 

risk. Of note, this candidate gene list derived from the Institute of Medicine report on 

PTB [134], and information from the Gene Cards and Online Mendelian Inheritance in 

Man databases was relatively enriched for genes rapidly evolving along the human 

lineage compared to a normal distribution (3/120 expected; p=0.02) and exhibited a 

similar trend for enrichment in comparison to other human genes in the ENSEMBL 

database (408/10,440 observed with p<0.05; p=0.14 vs. suggested PTB candidates). 

Using criterion agnostic to possible involvement with PTB, and measuring genome-wide 

changes, we identified 175 genes either rapidly evolving along the human (40 genes) or 

on the human and human-chimpanzee ancestor lineages combined (135 genes) at a 5% 

false discovery rate (FDR) [139] from this analysis of protein-coding sequences.  

Motivated by this evidence of protein coding region evolution for genes involved 

in parturition and that positive selection has also been found to act on noncoding regions, 

we developed a method to identify rapidly evolving noncoding sequences [132; 140]. We 

identified a total of 401 elements significant along the human lineage and 2103 elements 

significant along the human and human-chimpanzee ancestor lineages at a 5% FDR. To 

choose candidate genes, we calculated gene-wise p-values for each gene locus by 

assigning each conserved element to its nearest RefSeq gene [141] and a Fisher’s 

combined p-value across the locus. This resulted in identification of a total of 279 
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candidate genes (complete analysis of rapidly evolving non-coding regions reported in 

[135; 136]). 150 of the genes identified as rapidly evolving in the protein-coding 

sequence and highly conserved noncoding elements screens, selected based on expression 

and functional information suggesting potential roles in parturition, were analyzed for 

association with PTB (Table 4.2). 

Association analysis of rapidly evolving genes. Because recent data suggests 

that heritability of risk of PTB acts largely or exclusively through the maternal genome 

[29; 30; 32] and the Finnish have low environmental risk and high genetic homogeneity 

compared to other populations, we genotyped Finnish (165 preterm, 163 control) mothers 

for 8,490 SNPs in the gene regions of our prioritized list of 150 rapidly evolving genes 

(Figure 4.4). The most significant finding was rs6741370 (p=9.28 x 10
-5

) in the follicle-

stimulating hormone (FSH) receptor gene (FSHR). 91 SNPs were significant at the 

p<0.01 level by allelic tests (Table 4.3). However, no SNPs were significant after 

correcting for 6,042 independent tests, considering relationships among markers, by the 

Bonferroni method (p<8.27 x 10
-6

). Of note, 8 of the 10 most statistically significant 

SNPs were located in FSHR. We identified FSHR as rapidly evolving in the noncoding 

analysis, with 40 changes in 4,218 bp of 17 conserved elements (human lineage p = 5.4 X 

10
-5

). Moreover, FSHR was revealed as rapidly evolving in a study of noncoding 

conserved elements by Prabhakar and colleagues [140], which otherwise had limited 

overlap with our gene list (see Methods). FSHR also harbors SNPs with extreme iHS 

values in the Yoruban population, reflecting extended haplotype homozygosity and 

suggesting a recent selective sweep [142]. Bird and colleagues [143] identified a region 

less than 1 megabase downstream of the FSHR gene boundaries as rapidly evolving in 
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their study, further supporting rapid evolution of the locus. This information, together 

with the known importance of variation in human FSHR in subfertility [144; 145], a risk 

factor for preterm delivery independent of the use of assisted reproductive technologies 

[146; 147], and evidence suggesting its expression in uterus and cervix [148-150], 

motivated its specific study.  

16 SNPs in FSHR showing potential association in the screening analysis (p<0.1) 

were genotyped in US White (147 preterm, 157 control), US Black (79 preterm, 164 

controls) and US Hispanic (73 preterm, 292 control) mothers (Figure 4.5; Table 4.4). 

Several SNPs exhibited suggestive association (p<0.01) with PTB risk. One SNP in the 

US Blacks, rs12473815, was significant after correcting multiple testing (13 independent 

tests; p<0.004). The SNP rs12473815 is in high linkage disequilibrium (LD) with three 

nearby SNPs, rs11686474, rs11680730 and rs12473870 (Figure 4.5), all of which showed 

evidence of association across populations. Meta-analysis of these SNPs resulted in odds 

ratios ranging from 1.37 to 1.41 with a common 95% confidence interval of 1.26-1.50. Of 

note, when combining data from all populations tested by meta-analysis, p-values for 

rs11686474 (p=0.0006) and rs11680730 (p=0.002) are significant after a Bonferroni 

correction (p<0.003).  

In FSHR, 4 SNPs in high LD show evidence of association with PTB across the 

populations studied. These SNPs lie within intron 2 of FSHR (Figure 4.5) and show little 

LD with variants outside of this intron, based on available information from the 

International HapMap Project database [151]. Variants in this intron may tag yet 

uncharacterized variants in coding regions or nearby regulatory sequences. Alternatively, 

an intronic variant in FSHR may affect risk directly by altering functional sequences 
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contained within the intron, such as microRNA binding sites, splice regulatory sites or 

transcription regulation sites. For instance, a variant in a splice enhancer site may change 

splicing patterns in favor of transcripts that promote PTB risk, as several alternatively 

spliced FSHR isoforms have been observed with altered function [152]. Risk-promoting 

variation in this gene likely contributes to birth timing, rather than size at birth, based on 

additional tests examining gestational age or birth-weight Z-score as a quantitative trait, 

rather than PTB affection status (Table 4.5). Hence, FSHR may represent a novel gene 

involved in birth timing and PTB risk. 

FSHR encodes the follicle-stimulating hormone (FSH) receptor. FSH is secreted 

from the pituitary and, in females, acts primarily on receptors in the ovaries to stimulate 

follicle development and synthesis of estrogens. Investigators also have observed FSHR 

protein and mRNA expression in nongonadal tissues, including uterus and cervix [148-

150]. In these tissues, FSHR may mediate uterine relaxation, as suggested by FSH’s 

ability to modify electrical signaling in the myometrium, independent of estrogen and 

progesterone [148]. Padmanabhan and colleagues [153] noted a progressive rise in 

bioactive serum FSH levels during pregnancy. Because high levels of FSH are known to 

downregulate FSHR expression [154], increasing levels of FSH may lead to gradual 

desensitization to the hormone and resultant increase in contractility as term approaches. 

Additionally, evidence from the FSHR haploinsufficient mouse [155] suggests that FSHR 

levels affect the relative abundance of progesterone receptor isoforms A (PR-A) and B 

(PR-B). Increased PR-A: PR-B ratios, occurring in human pregnancy normally near term 

and observed in FSHR haploinsufficient mice in non-pregnant states, are correlated with 
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increased myometrium contractility. Hence, dysregulation of FSHR may contribute to 

early uterine contractility and promote PTB.  

Aspects of our approach pose limitations on interpretation of this work. First, we 

assigned conserved elements to the nearest RefSeq gene to calculate gene-wise p-values; 

however, conserved elements may not be associated with the nearest gene per se, 

potentially affecting the accuracy of the estimated gene-wise p-values. Additionally, 

because we use adjacent genes to estimate expected synonymous and nonsynonymous 

rates for a given locus, rapidly evolving genes that are located physically nearby other 

genes undergoing rapid evolution, such as gene families with multiple members in the 

same region, may miss detection. The variability in number of probes represented on the 

Affymetrix Genome-Wide Human SNP Array 6.0 within the gene regions of the 150 

rapidly evolving genes tested poses another limitation. Although the coverage is adequate 

for most rapidly evolving genes, there are some genes with too few probes tested to 

support or refute their potential association with PTB; as a result, this study may have 

failed to detect association between PTB and rapidly evolving genes underrepresented on 

this genotyping array. Lastly, while precedence exists for intronic variants affecting 

protein structure and function [156; 157], additional study is needed to determine whether 

any of the SNPs associated with PTB in this work has a functional effect. 

Overall, FSHR represents a likely candidate for involvement in PTB. Even though 

FSHR has a plausible role in parturition physiology, it has not been considered in 

previous association studies or appeared on candidate gene lists like that in the Institute 

of Medicine report on PTB [134]. Thus, by considering rapid evolution, we identified a 

gene associated with PTB that otherwise would not have been revealed by current models 
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of parturition physiology. Moreover, our approach exploits an evolutionarily-motivated 

filter to more efficiently utilize currently available datasets for PTB, which are probably 

underpowered to detect variants of effect sizes reported in GWAS of other complex traits. 

Our approach represents an alternative method for a priori gene discovery in which fewer 

comparisons are made than in GWAS, thus potentially retaining more power to detect 

effect sizes typical for common variants. We anticipate that other rapidly evolving genes 

will similarly be associated with PTB risk and elucidate the essential pathways for human 

parturition. 

Materials and Methods 

Allometric Analysis. Data acquired by Sacher and Staffeldt [133] was used to 

examine the relationships among brain size, body size and gestation length among 

mammalian species. Specifically, we compared logarithm-transformed values for these 

traits between human, primate and non-primate mammals, using linear regression 

implemented in R [158]. Additionally, we used allometric data from this paper and the 

primate phylogeny delineated by Purvis [159] to trace the evolution of gestation-neonatal 

body size ratio, and gestation-neonatal brain size ratio, using Mesquite [160]. Given a 

phylogenic tree, the Mesquite method uses parsimony to reconstruct the ancestral states 

by assuming a squared change for a continuous character from state x to state y is (x-y)
2
. 

Coding sequence multiple sequence alignments. We obtained a set of 10,639 

human gene predictions from the ENSEMBL database with one-to-one orthologs in the 

chimpanzee, macaque, mouse, rat, dog, and cow genomes (Release 46) [161]. We limited 

our analysis to only those proteins where the human, chimpanzee, macaque, and at least 

75% of the mammalian genomes were present. To prevent spurious results arising from 
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comparing different isoforms from different species, we compared all of the human gene 

models against all of the chimpanzee gene models by BLAST searches, keeping the pair 

with the highest percent identity (and longest gene model in case of tie). We then 

compared this human gene model against all of the models from the other species, 

finding the best match among the gene models in the other species. We generated a 

multiple sequence alignment using the MUSCLE algorithm [162] and reverse translated 

these alignments to generate nucleotide alignments. We limited our analysis to only those 

proteins where the human, chimpanzee, macaque, and at least 75% of the mammalian 

genomes were present. Chi-squared analysis was used to determine the statistical 

significance of observed and expected genes with p<0.05 in suggested PTB candidate and 

overall human gene lists. 

Noncoding sequence multiple sequence alignments. We obtained a set of 

highly conserved elements from UCSC Genome Browser [163]. In total, 443,061 

noncoding sequences with a conservation score >=400 were tested. Of these elements, 

34% overlapped coding sequence by at least one nucleotide and were excluded from the 

analysis. The remaining noncoding elements span 47 MB (approximately 1.5% of the 

genome). Therefore, these sequences represent only the most highly conserved noncoding 

sequences and not the entire 6% of the noncoding genome that is functionally constrained 

[164]. The median total branch length for these elements was 0.235, which is 1/4 the 

synonymous rate. Therefore, these are not perfectly conserved sequences, but they are 

evolving substantially slower than the neutral expectation. From the 17-way MultiZ 

alignments that are publicly available (downloaded March 2007) [165], we extracted the 

human, chimpanzee, macaque, mouse, rat, dog and cow sequences. We filtered this 
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alignment set using two criteria. First, any alignment that contained 2 or more human 

homoplasies (the human nucleotide was equal to a conserved nucleotide in the 

mammalian outgroups, but different from the nucleotide shared between macaque and 

chimpanzee) were removed. Second, if the human sequence had a paralog with a percent 

difference less than twice the percent difference of the human-chimpanzee orthologs, 

then that sequence was excluded (e.g. if the human-chimpanzee sequences were 98% 

identical, the human paralog had to be less than 96% identical). This filter reduced the 

chance that a rapidly evolving human sequence was actually a misaligned paralog. 

Likelihood ratio tests. We used the phylogeny ( (Human, Chimpanzee), 

Macaque), ( (Mouse, Rat), (Dog, Cow))). The evolutionary models were implemented in 

the HYPHY package [166] and we used the Q-value software [139] to establish 

statistical thresholds to achieve 5% false discovery rates (p-value distributions and pi_0 

values in Figure 4.6). HYPHY creates a molecular evolution programming language, 

enabling comparison of multiple evolutionary models and phylogenies. The source code 

and documentation of the HYPHY tests is available from the Fay Laboratory.  

For both tests, the alternative model has one additional degree of freedom and the 

significance of the change in likelihood was determined using 
2 

 statistics. Both models 

use adjacent coding or conserved noncoding sequences to estimate the expectation for a 

given sequence that accounts for variable mutation rates across the genome as well as 

lineage-specific differences in effective population size by allowing for branch-specific 

differences in selective constraint. For the coding sequence, we used 20 adjacent genes, 

ten upstream and downstream when possible, to estimate the expected synonymous rate 

and average constraints on each lineage. Twenty genes were used because the 
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synonymous rate does vary across the genome in windows of approximately 10 MB 

[167]. For noncoding sequences, we concatenated blocks of 25 kb of conserved 

noncoding sequence. These blocks typically spanned about 1 MB of the genome. Each 

element in the middle 50% of the window was tested against the expectation for that 

window to limit edge effect. The window was then advanced to the element at the 50% 

percentile of the window.  

Previous studies of both coding [9, 46] and noncoding [11, 21] sequences identify 

regions evolving under positive selection by a rate of evolution faster than a neutral rate. 

However, we felt that this criterion is too restrictive since some genes may have an 

increased rate of evolution along the human lineage relative to other mammals, but not 

increased above the neutral rate. To include genes with a significantly increased rate in 

humans compared to other mammals for testing in a population association study, we 

identify genes as rapidly evolving by testing whether omega along the human (or 

human+human-chimpanzee ancestor) lineage is significantly higher than omega along the 

non-human lineages (or non-human+non-human-chimpanzee ancestor). Here, omega is 

dN/dS-adj or dNC/dNC-adj, where dNC is the noncoding rate and dS-adj and dNC-adj 

are the adjacent synonymous rates from the 10 upstream and 10 downstream genes and 

the adjacent noncoding rates from 25 kb of conserved noncoding sequences, respectively. 

Thus, we test whether the data is more likely under a model with 1 omega value or 2 

omega values (Figure 4.3). The coding sequence model used the MG94xHKY85 [168] 

model of codon evolution. The noncoding sequences model used an HKY85 model. We 

calculated gene-wise p-values for each gene locus by assigning each conserved element 

to its nearest RefSeq gene [141] and a Fisher’s combined p-value across the locus. Chi-
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squared analysis was used to determine the statistical significance of observed and 

expected genes with p<0.05 in suggested PTB candidate and overall human gene lists. 

Comparisons with published studies of rapid evolution. The following data 

was extracted from published studies for comparison with results from our coding 

analysis: genes with p<0.01 for test of dN/dS>1 from Nielson et al. [46]; genes with 

p<0.01 for test of dN>dS on human lineage Clark et al. [9]; genes with adjusted p<0.05 

for test of 1 omega versus 2 omegas (i.e. 1 on human lineage, 1 for other species) Arbiza 

et al [48]. For comparison with results from our noncoding analysis, we compared closest 

genes to human accelerated regions listed in Table S7 of Pollard et al. [11] and closest 

genes to regions in listed in Table S1 of Prabhakar et al [21]. Ensembl gene identification 

numbers and/or HUGO Gene Nomenclature Committee (HGNC) gene symbols, as 

available, were compared among studies to determine the degree of overlap. The Venny 

[169] online tool was used to visually represent the degree of overlap among studies as 

Venn diagrams (Figures 4.7 and 4.8).  

Our list of rapidly evolving coding region gene list showed low overlap with 

previous studies that required for dN/dS > 1 in their analyses (6% with Clark et al. [130], 

0% Nielson et al. [170]) and more overlap with Arbiza et al. [171] (26%), which 

considered rate acceleration on the human lineage by methods more similar to ours than 

those used by [130; 170] (Figure 4.7). For rapidly evolving conserved noncoding 

elements in humans, 22% of the elements we identified were in common with Prabhakar 

et al. [140]. Considering unique genes associated with rapidly evolving conserved 

noncoding elements in humans, 11% of our genes also were identified by Prabhakar et al. 
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[140], and 4% identified by Pollard et al. [132]. Similar to our study, 4% of unique genes 

in the Prabhakar study overlapped with those identified by Pollard et al. (Figure 4.8).  

Candidate rapidly evolving gene list. To minimize the number of tests we 

would perform and thereby retain more power to detect small effects, we selected a 

subset of genes likely to be involved in parturition, based on expression and functional 

information, to use as candidate genes. A candidate gene list was developed using genes 

identified as rapidly evolving from following categories: 10% FDR human lineage from 

coding screen, 10% FDR human lineage from noncoding screen and 5% FDR human-

chimpanzee lineage from coding screen. A total of 742 genes are included in this 

comprehensive list of rapidly evolving genes. To minimize the number of tests we would 

perform and thereby retain more power to detect small effects, we selected a subset of 

genes likely to be involved in parturition, based on expression and functional 

information, to use as candidate genes. Genes were included as candidates if at least 2 of 

3 conditions met: had a GO term suggesting possible biological role in parturition (e.g. 

extracellular matrix, calcium ion, DNA-binding/transcription, intracellular signaling, cell 

fate/apoptosis, cell growth); were previously identified as candidate gene; had expression 

included relevant tissues (e.g. uterus, placenta, brain) documented in Unigene [172]. 

Duplicated genes from a list developed by Bailey and colleagues [173] that were 

identified as pregnancy, fetal, placental or hormone-related genes were also included as 

candidates. A total of 150 of genes were used as candidate genes in subsequent analysis 

(Table 4.2). 

Human Subjects. Mothers of preterm or term infants were enrolled for genetic 

analysis by methods approved by Institutional Review Boards/Ethics Committees at each 
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participating institution. Informed consent was obtained for all participants. Mothers with 

PTB were included if the birth was spontaneous (non-iatrogenic), singleton, had no 

obvious precipitating stimulus (trauma, infection, drug use), and was less the 37 weeks 

(Yale University; New York University) or 36 weeks (University of Helsinki; University 

of Oulu; Centennial Hospital, Nashville, TN) of completed gestation. DNA from blood or 

saliva was prepared by standard methods. Race/ethnicity was assigned by self-report. For 

the US Black cohort, no differences in were found in the distribution of 24 ancestry 

informative markers selected across the genome comparing cases and controls (data not 

shown). All specimens were linked with demographic and medical data abstracted from 

maternal/neonatal records.  

Genotyping. Initial genotyping of the Finnish cohort was performed using the 

Affymetrix® Genome-Wide Human SNP Array 6.0. Genotypes were called from cell 

intensity data by the birdseed v2 algorithm, implemented in Affymetrix® Genotyping 

Console 3.0. Of 428 SNP 6.0 arrays available for analysis, only 392 samples had their 

raw intensity data converted to genotype calls using the birdseed v2 algorithm in 

Affymetrix Genotype Console 3.0, after poor quality chips (i.e. “out of bounds” 

designation or XY gender call by Genotyping Console) were excluded. We selected 

SNPs within the gene regions, defined as 5 kilobases (kb) upstream to 5 kb downstream 

of the most inclusive gene boundaries between those listed for the longest transcript 

documented in the Ensembl database and those defined in our comparative genomic 

analysis, of our 171 rapidly evolving candidate genes for analysis. A total of 12,444 

SNPs were located within our rapidly evolving genes. The gene coverage ranged from 0-

900 SNPs/gene region, with a median of 13 SNPs/gene region. 11 genes had no SNPs in 
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the gene region represented on the SNP 6.0 array. Genotyping for additional analysis of 

the Finnish cohort and replication analysis was performed using the Sequenom iPLEX 

massARRAY technology (Sequenom, San Diego, CA). 

Finnish cohort analysis. Data cleaning was performed with the Whole-genome 

Association Study Pipeline (WASP) software package [174] and PLINK [175]. An 

additional 6 individuals were excluded because of possible cryptic relatedness, as 

suggested by their presence in IBS distance-defined clusters far from the rest of the 

genotyped subjects. 58 individuals were removed due to a high genotype missing rate for 

the SNPs of interest (i.e. <95% call rate), leaving a total of 165 preterm and 163 control 

mothers in the final analysis. Of 12,444 SNPs selected, 9,610 SNPs were used in the final 

analysis after removing SNPs not in Hardy-Weinberg Equilibrium in controls (p<0.001), 

<95% genotype call rate, with minor allele frequency<0.05 or were duplicate probes. 

Allelic (
2
, df 1) and genotypic (

2
, df 2) tests for association, LD measures and odds 

ratios were estimated for each cohort using WASP and/or PLINK. Our primary analysis 

considered PTB affection status (i.e. delivery <36 weeks) as a binary trait, comparing 

allele and genotype frequencies between case and control groups by 
2 

test. We also 

examined gestational age and birth-weight Z-score as quantitative traits, standardized to 

normal distributions ( =0, =1) using a Wald test to compare the mean phenotype 

between different allele or genotype classes. 

A variety of measures were taken to ensure that results from these test were 

explained by true associations. First, genomic control measures of population 

substructure ( =1.07) indicated little inflation of statistics due to substructure. Correction 

for IBS clustering to bring  to 1 resulted in the same SNPs being found as most 
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significantly associated, suggesting that whatever minor population substructure may 

exist does not explain the association findings. Confounding of the results due to 

genotyping batch or location effects was not observed. Furthermore, minor allele 

frequencies observed in controls were generally consistent with HapMap estimates for 

Caucasians. As some SNPs are expected to show significant association with PTB by 

chance due to the large number of tests we are performing, we corrected for multiple 

testing using the simpleM method [176], which estimates the number of independent 

tests, given the LD relationships among SNPs, used to adjust the significance level. 

Extension of genotyping in Finnish cohort. Because FSHR showed evidence of 

enrichment of significant p-values as well as representing a plausible agent in parturition, 

we chose to examine the genes in greater depth. Of the 149 SNPs tested in FSHR in the 

Affymetrix analysis, 22 showed evidence of association (p<0.01) in the SNP 6.0 analysis 

and 9 were genotyped with the Sequenom technology for cross-platform validation. SNP 

genotypes showed high degree of concordance across platforms (~98%) and association 

results were consistent.  

To increase coverage, we genotyped an additional 42 SNPs spanning the FSHR 

gene region in a subset of the Finnish cohort (n= 105 preterm, 95 control mothers) based 

on DNA availability and quality. For SNP selection, data from the HapMap CEU 

population was examined in the Haploview program [177], using tagger and haplotype 

block functions, to identify regions of high LD. We selected 1 SNP per haplotype block, 

defined using the D’ confidence interval method [178], having the highest minor allele 

frequency (MAF) in the CEU population for genotyping. We also included coding SNPs 

and SNPs to improve coverage of conserved elements contributing to the gene’s 

77



 

designation as “rapidly evolving.” This selection scheme resulted in approximately 20-

30% coverage of the gene region at r
2
≥0.8. Data cleaning and analysis was conducted as 

described above. In total, 40 SNPs met quality control standards (Hardy-Weinberg 

Equilibrium in controls p>0.001, >95% call rate, MAF>0.01) and were analyzed. Of the 

SNPs genotyped to increase coverage, those that showed suggestive association (p<0.1; 

n=16) were examined further. 

Replication Analysis. 16 SNPs in FSHR showing potential association in the 

screening analysis (p<0.1) were genotyped in US White (147 preterm, 157 control), US 

Black (79 preterm, 164 controls) and US Hispanic (73 preterm, 292 control) mothers 

(Figure 4.4; Table 4.4). Data cleaning and analysis was performed as described above. 

Meta-analysis of data for significant SNPs was done using the Mantel-Haenszel method, 

after successfully passing the test of homogeneity.  
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Figure 4.1. Allometric analysis of brain size, body size, and gestational length by 

linear regression. 

 

Brain to body weight ratios for adults (A) and neonates (B) are shown for humans (red), 

other primates (blue), and other mammals (black). The black line shows least squares fits 

to the 91 mammalian species. Neonatal brain (C) and body size (D) to gestational time 

ratios are displayed for the same species. The blue line shows least squares fits to 15 

primate species. Allometric data was acquired by Sacher and Staffeldt (1974). 
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Figure 4.2A. Phylogenetic analysis of brain size, body size, and gestational length in 

primates. 

 

Gestational time to neonatal brain size natural logarithm-transformed ratios are shown for each species and 

color coded along each lineage as inferred by parsimony. Allometric data was acquired by Sacher and 

Staffeldt (1974) and phylogeny by Purvis (1995)   
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Figure 4.2B. Phylogenetic analysis of brain size, body size, and gestational length in 

primates. 

 

Gestational time to neonatal body size natural logarithm-transformed ratios are shown for each species and 

color coded along each lineage as inferred by parsimony. Allometric data was acquired by Sacher and 

Staffeldt (1974) and phylogeny by Purvis (1995) . 
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Figure 4.4. Flowchart representing study design for testing association of rapidly 

evolving genes with preterm birth. 
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Figure 4.6: Distributions of p-values for coding and noncoding screens used to 

determine false discovery rate thresholds for significance. 

 

 

Panel A depicts the distribution of p-values for test for significant rate acceleration on 

human lineage compared to other mammalian lineages for coding sequences. Panel B 

depicts the distribution of p-values for test for significant rate acceleration on human-

chimpanzee lineage compared to other mammalian lineages for coding sequences. Panel 

C depicts the distribution of gene-wise p-values for test for significant rate acceleration 

on human lineage compared to other mammalian lineages for noncoding sequences. 
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Figure 4.7: Venn diagram illustrating the overlap between the results of our coding 
analysis and similar studies. 

 

 

 

Genes identified by Arbiza et al. (2006), Clark et al. (2003), Nielson et al. (2005) are 
compared to genes we identified as rapidly evolving on the human lineage (10% FDR, 
Panel A) or on the human+human-chimpanzee ancestor lineage (5% FDR, Panel B). 
Panel C depicts the overlap between genes we identified as rapidly evolving on the 
human lineage (10% FDR) or on the human+human-chimpanzee ancestor lineage (5% 
FDR). 
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Table 4.2: Candidate rapidly evolving genes examined for association with preterm 

birth. 

 

Gene Ensembl ID Chromosome Gene region 

start (bp)
A
 

Gene region 

stop (bp) 

ENSG00000187980 PLA2G2C 1 20,358,071 20,379,247 

ENSG00000054118 THRAP3 1 36,457,626 36,547,744 

ENSG00000197587 DMBX1 1 46,693,885 46,769,955 

ENSG00000134245 WNT2B 1 112,804,363 112,872,035 

ENSG00000163554 SPTA1 1 156,842,020 156,928,130 

ENSG00000133055 MYBPH 1 201,398,562 201,416,565 

ENSG00000133063 CHIT1 1 201,436,600 201,496,865 

ENSG00000117335 CD46 1 205,987,025 206,040,481 

ENSG00000162814 SPATA17 1 215,879,672 216,238,784 

ENSG00000143771 CNIH4 1 222,606,183 222,638,777 

ENSG00000183814 LIN9 1 224,480,481 224,577,619 

ENSG00000084674 APOB 2 21,072,806 21,334,249 

ENSG00000170820 FSHR 2 48,936,801 49,262,724 

ENSG00000028116 VRK2 2 57,432,980 58,284,303 

ENSG00000168758 SEMA4C 2 96,884,204 96,905,699 

ENSG00000196228 SULT1C3 2 108,123,399 108,265,257 

ENSG00000125571 IL1F7 2 113,382,017 113,412,506 

ENSG00000183840 GPR39 2 132,885,617 133,125,602 

ENSG00000169554 ZEB2 2 144,811,277 145,811,772 

ENSG00000183091 NEB 2 152,045,110 152,304,406 

ENSG00000138399 FASTKD1 2 170,089,515 170,147,595 

ENSG00000138435 CHRNA1 2 175,316,097 175,359,048 

ENSG00000064933 PMS1 2 190,352,355 190,508,863 

ENSG00000013441 CLK1 2 201,411,164 201,442,667 

ENSG00000116117 PARD3B 2 204,824,164 206,193,781 

ENSG00000163283 ALPP 2 232,931,318 232,959,619 

ENSG00000163286 ALPPL2 2 232,975,096 233,011,310 

ENSG00000157985 CENTG2 2 235,971,127 236,715,338 

ENSG00000168387 ASB14 3 57,252,242 57,297,334 

ENSG00000189283 FHIT 3 59,361,681 60,575,887 

ENSG00000196353 CPNE4 3 132,731,274 133,593,392 

ENSG00000169744 LDB2 4 15,988,937 16,703,648 

ENSG00000145241 CENPC1  4 68,015,584 68,104,114 

ENSG00000083857 FAT 4 187,740,918 188,341,814 

ENSG00000205096 DUX4_HUMAN 4 191,214,485 191,232,642 

ENSG00000174358 SLC6A19 5 1,249,710 1,281,385 

ENSG00000171540 OTP 5 76,948,651 76,999,618 

ENSG00000164292 RHOBTB3 5 95,087,606 95,162,827 

ENSG00000170482 SLC23A1 5 138,722,343 138,751,981 

ENSG00000204956 PCDHGA1 5 140,685,388 140,698,003 
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ENSG00000173210 ABLIM3 5 148,496,326 148,625,192 

ENSG00000065029 ZNF76 6 35,330,427 35,376,740 

ENSG00000180872 DEFB112 6 50,131,694 50,461,861 

ENSG00000135346 CGA 6 87,847,192 87,893,643 

ENSG00000164520 RAET1E 6 150,246,014 150,258,863 

ENSG00000048052 HDAC9 7 18,279,517 19,021,186 

ENSG00000196335 STK31 7 23,711,404 23,843,843 

ENSG00000105954 NPVF 7 25,213,311 25,256,794 

ENSG00000091138 SLC26A3 7 107,188,393 107,275,261 

ENSG00000178234 GALNT11 7 151,348,797 151,463,085 

ENSG00000156006 NAT2 8 18,280,063 18,341,561 

ENSG00000120907 ADRA1A 8 26,662,251 26,968,234 

ENSG00000198363 ASPH 8 62,573,374 63,945,182 

ENSG00000064218 DMRT3 9 961,964 986,732 

ENSG00000153707 PTPRD 9 8,145,485 10,571,307 

ENSG00000106829 TLE4 9 81,284,764 81,955,007 

ENSG00000156345 CCRK 9 89,766,183 89,784,487 

ENSG00000182752 PAPPA 9 117,840,886 118,209,421 

ENSG00000167123 CEECAM1 9 130,201,775 130,253,724 

ENSG00000165997 ARL5B 10 18,983,319 19,274,735 

ENSG00000095794 CREM 10 35,450,807 35,546,892 

ENSG00000165731 RET 10 42,796,962 42,950,850 

ENSG00000095587 TLL2 10 98,109,356 98,268,658 

ENSG00000166407 LMO1 11 8,197,433 8,345,763 

ENSG00000166961 MGC35295 11 60,276,052 60,305,780 

ENSG00000149021 SCGB1A1 11 61,938,099 62,054,461 

ENSG00000173153 ESRRA 11 63,824,620 63,845,786 

ENSG00000204571 KRTAP5-11 11 70,963,408 70,987,532 

ENSG00000118113 MMP8 11 102,083,599 102,105,868 

ENSG00000204403 CASP12 11 103,980,451 104,254,354 

ENSG00000137713 PPP2R1B 11 111,097,898 111,156,373 

ENSG00000064309 CDON 11 125,320,174 125,512,554 

ENSG00000111266 DUSP16 12 12,513,420 12,632,500 

ENSG00000123360 PDE1B 12 53,224,671 53,264,290 

ENSG00000110958 PTGES3 12 55,338,379 55,373,318 

ENSG00000151846 PABPC3 13 24,563,276 24,575,705 

ENSG00000150893 FREM2 13 38,058,234 38,379,883 

ENSG00000174126 ENSG00000174126 13 40,907,081 40,917,746 

ENSG00000139842 CUL4A 13 112,906,151 112,984,825 

ENSG00000092054 MYH7 14 22,947,820 22,987,727 

ENSG00000196792 STRN3 14 30,427,761 30,570,340 

ENSG00000151322 NPAS3 14 32,428,709 33,386,974 

ENSG00000136352 NKX2-1 14 35,997,916 36,065,064 

ENSG00000198807 PAX9 14 36,195,877 36,683,420 

ENSG00000184302 SIX6 14 60,034,147 60,062,098 
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ENSG00000140009 ESR2 14 63,556,569 63,824,462 

ENSG00000100815 TRIP11 14 91,500,614 91,581,139 

ENSG00000182256 GABRG3 15 24,794,429 25,456,729 

ENSG00000198838 RYR3 15 31,385,469 31,950,591 

ENSG00000154237 LRRK1 15 99,271,983 99,432,838 

ENSG00000131650 KREMEN2 16 2,949,218 2,963,381 

ENSG00000183632 TP53TG3 16 32,546,984 32,574,764 

ENSG00000102962 CCL22 16 55,930,968 55,962,600 

ENSG00000050820 BCAR1 16 73,815,429 73,864,452 

ENSG00000186153 WWOX 16 76,653,469 77,833,566 

ENSG00000070444 MNT 17 2,229,115 2,256,834 

ENSG00000006047 YBX2 17 7,127,322 7,143,598 

ENSG00000133020 MYH8 17 10,229,495 10,271,188 

ENSG00000141048 MYH4 17 10,280,658 10,318,846 

ENSG00000125414 MYH2 17 10,360,323 10,433,169 

ENSG00000176160 HSF5 17 53,847,530 53,925,744 

ENSG00000213218 CSH3 17 59,298,106 59,309,848 

ENSG00000136488 CSH2 17 59,298,288 59,332,647 

ENSG00000136487 GH2 17 59,306,304 59,317,955 

ENSG00000189162 CSH1 17 59,343,295 59,354,930 

ENSG00000171634 BPTF 17 63,206,700 63,416,200 

ENSG00000089685 BIRC5 17 73,714,361 73,738,310 

ENSG00000181409 AATK 17 76,700,703 76,759,467 

ENSG00000186765 FSCN2 17 77,105,153 77,119,582 

ENSG00000101605 MYOM1 18 3,051,806 3,215,106 

ENSG00000101489 BRUNOL4 18 33,072,000 34,124,249 

ENSG00000133313 CNDP2 18 70,309,577 70,344,336 

ENSG00000131196 NFATC1 18 75,266,605 75,440,665 

ENSG00000174837 EMR1 19 6,833,582 6,908,102 

ENSG00000132024 CC2D1A 19 13,873,014 13,907,691 

ENSG00000127507 EMR2 19 14,699,205 14,755,353 

ENSG00000189231 PSG3 19 47,912,635 47,941,508 

ENSG00000131113 PSG1 19 48,044,852 48,080,711 

ENSG00000170848 PSG6 19 48,093,080 48,118,883 

ENSG00000170853 PSG11 19 48,198,649 48,227,471 

ENSG00000124435 PSG2 19 48,255,202 48,283,665 

ENSG00000204941 PSG4 19 48,358,736 48,406,630 

ENSG00000008438 PGLYRP1 19 51,209,255 51,223,144 

ENSG00000105499 PLA2G4C 19 53,237,916 53,310,865 

ENSG00000104826 LHB 19 54,206,049 54,217,159 

ENSG00000104827 CGHB_HUMAN  19 54,212,940 54,224,444 

ENSG00000189052 CGHB_HUMAN  19 54,233,875 54,245,378 

ENSG00000213030 CGB 19 54,237,709 54,249,212 

ENSG00000196337 CGB7 19 54,244,344 54,258,929 

ENSG00000171101 SIGLECP3 19 56,357,397 56,395,399 
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ENSG00000131848 ZSCAN5 19 61,415,347 61,576,564 

ENSG00000125780 TGM3 20 2,216,426 2,274,202 

ENSG00000101452 DHX35 20 37,019,406 37,243,569 

ENSG00000064655 EYA2 20 44,941,086 45,255,897 

ENSG00000101181 GTPBP5 20 60,186,496 60,216,218 

ENSG00000060491 OGFR 20 60,901,622 60,920,797 

ENSG00000154640 BTG3 21 17,882,811 17,949,761 

ENSG00000157554 ERG 21 38,670,792 38,990,795 

ENSG00000100302 RASD2 22 34,223,536 34,284,987 

ENSG00000188677 PARVB 22 42,721,506 42,901,434 
 

A
 Positions refer to NCBI36 (hg18, March 2006 assembly) build of the human genome. 
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Chapter 5: Association of cystolic phospholipase A2 gamma, PLA2G4C, with PTB risk
**

 

 

 

Abstract  

Correlating differences in genomic sequences with differences in reproductive 

physiology across species may led to new insights into mechanisms underlying birth 

timing. PLA2G4C, a phospholipase A isoform involved in prostaglandin synthesis, 

emerged from a comparative genomics screen of highly conserved noncoding elements as 

rapidly evolving in humans. Detailed structural and phylogenic analysis of PLA2G4C 

suggested a short genomic element within the gene duplicated from a paralogous highly 

conserved element on chromosome 1 specifically in primates. To examine whether this 

gene demonstrating primate-specific evolution was associated with birth timing, we 

genotyped common variation in PLA2G4C in US Hispanic (n= 73 preterm, 292 control), 

US White (n= 147 preterm, 157 control) and US Black (n= 79 preterm, 166 control) 

mothers. SNPs rs8110925 and rs2307276 in US Hispanics and rs11564620 in US Whites 

were significant after correcting for multiple tests (p<0.004). Additionally, rs11564620 

(Thr360Pro) was associated with increased metabolite levels of the prostaglandin 

thromboxane in healthy individuals (p=0.02), suggesting this variant may affect 

PLA2G4C activity. Association findings suggest variation in PLA2G4C gene may 

influence PTB risk by increasing levels of prostaglandins, which are known to regulate 

labor.  

 

                                                 
**

 This chapter is adapted from: Plunkett J, et al. Primate-specific evolution of noncoding 

element insertion into PLA2G4C and human preterm birth. In preparation. 
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Introduction 

A growing body of evidence supports genetic influences on PTB risk; however, 

few genes have been consistently associated with the disorder [179; 180]. Investigators 

have typically focused on candidate genes selected based on predicted parturition 

physiology; however, this approach may be limited by the divergence in physiological 

mechanisms between humans and model organisms that have been typically studied. For 

example, while a rapid decline in progesterone plays a prominent role in initiating 

parturition in rodents and sheep, this signal does not seem to precede human labor [181]. 

Other parturition-related traits, such as placental morphology and source of progesterone, 

also differ importantly in humans compared to model organisms typically studied and 

may limit what generalizations can be made [181]. 

Differences in parturition physiology between apes, including humans, and other 

mammals may have developed in response to uniquely human adaptations including 

relatively large human head size and narrow birth canal cross-sectional area [127]. Genes 

involved in parturition likely have evolved differentially along the human and/or higher 

primate phylogenetic lineages to decrease the length of gestation and alleviate the 

complications arising from these constraints. As a result, the set of genes rapidly evolving 

on the human and/or higher primate lineage likely includes genes that play important 

roles in regulating parturition and potentially influence PTB risk. Consistent with our 

hypothesis, we identified FSHR as rapidly evolving by nucleotide substitution and as 

associated with PTB risk across independent populations [136]. 

In addition to nucleotide substitution, genomic rearrangements account for an 

important portion of genomic divergence among species. For example, Frazer et al. [182] 
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and Wetterbom et al. [183] observed insertions and deletions frequently when comparing 

genome sequences among humans, chimpanzees and other primate species. Moreover, 

these rearrangements may account for a larger fraction of genomic divergence than 

nucleotide substitutions [183]. Rearrangements can lead to loss or acquisition of exons, 

splice sites and promoters, facilitating differences in expression patterns, such as those 

observed for transcript variants of CHRM3 and SFTPB with differing transposable 

element insertion events [184; 185]. Hence, genomic rearrangement may contribute to 

rapid evolution along the human and/or higher primate lineages in response to unique 

physiological constraints.  

We hypothesize that genes with genomic rearrangements from the ancestral state 

occurring on the human and/or higher primate lineages may play important roles in birth 

timing and preterm delivery. Here, we examine common variants in a gene, PLA2G4C, in 

which we have identified a primate-specific insertion event and whose expression in the 

uterus [186] and role in prostaglandin synthesis suggest a potential role in parturition, for 

association with PTB. 

 

Results 

Evolutionary history of a primate-specific PLA2G4C noncoding element. We 

identified genes showing evidence of rapid evolution along the human lineage, based on 

evidence from a comparative genomic screen of highly conserved noncoding elements as 

described in [136]. Among the rapidly evolving genes emerging from our noncoding 

screen, PLA2G4C was identified as the most statistically significant gene (human lineage 

p=2.2x10
-7

, significant at 10% False Discovery Rate threshold) that was also included in 

109



 

a list of PTB candidate genes [134]. Because the reported deletion of PLA2G4C in cattle 

[187] contrasted with its presence in the 17-way MultiZ alignments [165] we used to 

identify the gene as rapidly evolving (Figure 5.1A), we examined the history of this 

region in greater depth. We compared sequence surrounding the 130 basepair (bp) highly 

conserved noncoding element in intron 14 of PLA2G4C on chromosome 19q13.3, which 

strongly motivated the gene’s designation as rapidly evolving along the human lineage, to 

other mammalian and primate genomes. From such comparisons, we determined that this 

130 bp element on human chromosome 19 was highly similar to a highly conserved 

noncoding element on human chromosome 1 (BLASTN 114/130 bp identical (87%), 

BLAST expect value= 5x10
-38

; Figure 5.1B). Subsequent analysis showed the MultiZ 

alignments we used in our comparative genomics screen had misaligned the human 

chromosome 19 element with sequences in other mammals which were orthologous to 

human chromosome 1. When appropriate alignments were examined, we observed that 

the human chromosome 19 element was nearly identical in higher primate species 

(chimpanzee, gorilla, orangutan, macaque) examined, but, absent in syntenic sequences 

in lower primates (lemur, bushbaby, tarsier) and other mammalian species. Chromosome 

1 elements from higher primates are more similar to lower primates and other 

mammalian species than chromosome 19 elements (Figure 5.2). The chromosome 1 

element occurs in the 5’ untranslated region of RNF11, a gene involved in inflammatory 

signaling, as it does in mouse.  Thus, a duplication of chromosome 1 noncoding element 

to chromosome 19 likely occurred before the last common ancestor between apes and 

macaque. A phylogenetic tree of coding sequences for PLA2G4C follows the expected 

mammalian phylogeny (Figure 5.3), suggesting that the duplication did not include 
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coding sequences. Together these results suggest that neither element would qualify as 

rapidly evolving along the human lineage due to nucleotide substitution, but, the 

chromosome 19 element may represent a primate-specific change meriting further study. 

Association with preterm birth. Because of recent data that suggests heritability 

of risk of PTB acts largely or exclusively through the maternal genome [29; 30; 32], we 

genotyped US Hispanic (73 preterm, 292 control), US Whites (n= 147 preterm, 157 

control) and US Blacks (n= 79 preterm, 166 control) mothers for 14 SNPs in the 

PLA2G4C gene region (Table 5.1). The results from these analyses, reported in Table 5.2, 

include two SNPs, rs8110925 and rs2307276, in the US Hispanics and one in the US 

Whites, rs11564620, that were significant after correcting for 14 tests (p<0.004). The 

direction of effect was generally consistent across populations for these SNPs, as noted in 

Table 5.2. Meta-analysis p-values for SNPs rs8110925, rs2307276, and rs11564620 were 

also statistically significant after correcting for 14 tests (p<0.004; Figure 5.4).  

Additionally, 2, 3 and 4 SNP haplotypes containing SNPs rs8110925 and 

rs2307276 were significant in the US Hispanics after correcting for 18 haplotype 

comparisons (p<0.003), although not more significant than single SNP association 

findings (Table 5.3). 2 SNP haplotypes containing rs11564620 were moderately 

significant (p<0.05) in US Whites (Table 5.3). Linkage disequilibrium (LD) among SNPs 

rs8110925, rs2307276, and rs11564620 was very low (r
2
<0.1) in the three populations 

studied (Figure 5.5), suggesting multiple independent associations were observed. 

Association with prostaglandin concentrations. To test the potential functional 

effect of associated PLA2G4C variants on prostaglandin metabolism, we compared levels 

of metabolites of prostaglandin E2 (PGE), prostaglandin I2 (PGI) and thromboxane (11-
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DTXB2) among genotype classes for associated SNPs rs8110925, rs2307276, and 

rs11564620 in healthy individuals using a two-sided Wald test (Table 5.4). Of note, 

rs11564620, a nonsynonymous coding polymorphism, is associated with 11-DTXB2 

levels (p=0.04) despite the limited sample size available. The minor allele of rs11564620, 

present at approximately 10% frequency in US Whites, is associated with both risk for 

PTB and higher 11-DTXB2 levels (Wilcoxon one-sided p=0.02; Figure 5.6).  

 

Discussion 

Genomic analysis of PLA2G4C indicated that the conserved element which 

brought the gene to our attention was highly similar to a conserved element on human 

chromosome 1. Further study suggested that the conserved element on chromosome 1 

was duplicated to chromosome 19 along the primate lineage. As a result, human 

chromosome 19 noncoding element in intron 14 of PLA2G4C seems to represent a 

primate-specific change involving amplification and subsequent divergence rather than a 

region of increased nucleotide substitution, per se. We propose this duplicated element 

insertion represents a primate-specific change with a potential regulatory role in human 

parturition. 

Single SNP and haplotype association results implicate the role of SNPs 

rs8110925, rs2307276, and rs11564620 in conferring PTB risk (Tables 5.2 and 5.3). The 

associated SNPs are located in an 8 kilobase (kb) region of the 3’ end of PLA2G4C, near 

the genomic element of interest (Figure 5.7), but show little LD with each other (Figure 

5.5) or other SNPs in PLA2G4C documented in the International HapMap Project 

database [151]. Of note, Polyphen [188] and SIFT [189] programs predict rs11564620, a 
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nonsynonymous polymorphism in exon 13 resulting in a change in amino acid 360 from 

threonine to proline, to be possibly damaging to the protein structure. This 8 kb region 

also includes coding sequence for aspartic acid 385, one of the three amino acids that 

make up the putative active site of the enzyme [190], such that the proline substitution 

may alter the active site’s physical conformation. Supporting the potential functional 

effect of rs11564620, this polymorphism is associated with 11-DTXB2 levels in healthy 

individuals (p=0.02; Figure 5.6), with proline allele carriers having elevated thromboxane 

metabolite levels, compared to threonine homozygotes.  

PLA2G4C encodes cytosolic phospholipase A2 gamma, which hydrolizes 

phospholipids from the cellular membrane to free arachidonic acid, from which 

prostaglandins, including prostaglandins D, E, F, I2 (also known as prostacyclin), and 

thromboxane A2 are generated. Prostaglandins likely play an important role in 

parturition. Pharmacologically, prostaglandins are used to induce abortion, for cervical 

ripening and labor induction, and drugs inhibiting prostaglandin synthesis are successful 

in preventing preterm labor [191]. Levels of prostaglandins, including thromboxane A2, 

are elevated in pregnant compared to non-pregnant women, and in later (36 weeks) 

compared to earlier (20, 30 weeks) gestation [192], suggesting a link between 

prostaglandin abundance and parturition timing. Prostaglandins may facilitate labor by 

several mechanisms. These hormones are known uterotonic agents and also promote 

luteolysis and the onset of labor in species that exhibit progesterone withdrawal prior to 

birth [193]. Prostaglandins may also facilitate delivery by affecting placenta function, 

since thromboxane A2 induces platelet aggregation and acts as a vasoconstrictor [192]. 
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Hence, higher prostaglandin levels than expected may initiate parturition prematurely and 

lead to preterm delivery.  

The PLA2G4C enzyme is the only cytosolic phospholipase A2 family member 

that is constitutively associated with the cellular membrane, the site of prostaglandin 

synthesis, rather than translocating to the membrane in response to calcium signaling 

[186]. Hence, dysregulation of PLA2G4C may alter prostaglandins levels independent of 

other parturition signals, such as oxytocin [194], that act via intracellular calcium 

signaling. For example, rs11564620 may contribute to a conformational change in the 

enzyme’s active site, rendering it more active than usual and leading to increased 

synthesis of prostaglandins, as demonstrated by our observation of higher levels of 

thromboxane A2 in minor allele carriers for this polymorphism. Moreover, multiple 

splice isoforms of PLA2G4C exist, differing in transcript length, presence of certain 

exons and overlapping exons with different boundaries (AceView, NCBI, 

http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/). As a result, variation in 

PLA2G4C may contribute to differences in tissue-specific expression or relative 

abundance of various PLA2G4C isoforms, potentially altering function. Further study of 

the region encompassing these SNPs, including the genomic element of interest, is 

needed to examine the mechanism by which variation in PLA2G4C influences birth 

timing. 

Specialization within multi-gene families, like the large phospholipase A2 gene 

family, can create individualized functions among paralogous genes. For example, 

PLA2G4C has a continuous association with the cellular membrane, unlike other 

phospholipase A2 genes, potentially differentiating its role in prostaglandin synthesis 
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from those of other family members. Genomic variation, such as the element insertion 

observed in PLA2G4C, may contribute to gene specialization, as demonstrated by 

divergence in PLA2G4C expression patterns in humans versus mice, who lack the 

element insertion and express PLA2G4C only in ovary and oocytes [195]. Specialized 

genes are potentially better therapeutic targets than gene products with multiple roles 

within cell, since pharmaceutically targeting such genes may lead to fewer side effects. 

As a result, PLA2G4C may be a useful target for designing novel therapies to prolong 

pregnancy and reduce the incidence of PTB. 

 

Material and Methods 

Genomic alignments to investigate evolutionary history of PLA2G4C. Noting 

the deletion of PLA2G4C reported in the Taurine Cattle genome [187] contrasted with its 

presence in the 17-way MultiZ alignments [165] we used to identify the gene as rapidly 

evolving (analysis conducted Spring 2007 and presented in [136]), we examined the 

history of this region in greater depth. We extracted sequence surrounding the 130 bp 

highly conserved noncoding element (human chromosome 19: 48,560,500 -48,560,630; 

hg19 genome build) which largely contributed to our designation of PLA2G4C as rapid 

evolving along the human lineage. A BLASTN search of the element revealed highly 

identical conserved noncoding elements on human chromosomes 1 (87% identity) and 2 

(85% identity) (Figure 5.1B). We compared the human chromosome 19 and chromosome 

1 sequences to 31 eutherian mammalian genomes using Ensembl Genomic alignments 

(accessed September 2009), and ClustalW alignment, and to specific primate genomes 

using BLASTN searches of human, chimpanzee, gorilla, orangutan, macaque, and 
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bushbaby genomes (accessed September 2009). We then reconstructed history of the 

element by creating phylogenies using the neighbor joining with Kimura distances and 

maximum likelihood methods with sequences homologous to the human chromosome 19 

element (Figures 5.2) and coding sequences homologous to human PLA2G4C (Figure 

5.3). 

Human subjects. Study subjects were enrolled for genetic analysis by methods 

approved by Institutional Review Boards/Ethics Committees at each participating 

institution. Informed consent was obtained for all participants. Mothers with PTB were 

included if the birth was spontaneous (non-iatrogenic), singleton, had no obvious 

precipitating stimulus (trauma, infection, drug use), and was less than 37 weeks (Yale 

University; New York University) or 36 weeks (University of Helsinki; University of 

Oulu; Centennial Hospital, Nashville, TN) of completed gestation. Control mothers were 

included if they delivered two or more children at 37 weeks or later spontaneously. 

Healthy volunteers were recruited at Vanderbilt University for studies of prostaglandin 

metabolism. DNA from blood or saliva was prepared by standard methods. 

Race/ethnicity was assigned by self-report. All specimens were linked with demographic 

and medical data abstracted from maternal/neonatal records. DNA from blood or saliva 

was prepared by standard methods.  

Prostaglandin metabolite levels. For individuals enrolled in the prostaglandin 

study, urine was collected by standard methods. Levels of the urinary metabolites of 

prostaglandin E (PGE), prostaglandin I (PGI) and thromboxane (11-DTXB2) were 

quantified by mass spectrometry and normalized to creatinine levels, an indicator of renal 

function, in 44 healthy control individuals of Black, Hispanic or White race (median age 
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29, 60% male, 77% White).  

Genotyping. We genotyped 14 SNPs spanning the PLA2G4C gene region (Table 

5.1) on human chromosome 19 in cohorts of US Hispanics (n= 73 preterm, 292 control 

mothers), US Whites (n= 147 preterm, 157 control mothers) and US Blacks (n= 79 

preterm, 166 control mothers). For SNP selection, data from the HapMap CEU 

population was examined in the Haploview program [177], using tagger and haplotype 

block functions, to identify regions of high LD. We selected 1 SNP per haplotype block, 

defined using the D’ confidence interval method [178], having the highest minor allele 

frequency (MAF) in the CEU population for genotyping. We also included coding SNPs 

and SNPs to improve coverage of conserved elements contributing to the gene’s 

designation as “rapidly evolving.” This selection scheme resulted in approximately 35% 

coverage of the gene region at r
2
≥0.8. SNPs showing evidence of association in one or 

more cohort (p<0.01; n=4) were then genotyped in healthy individuals on whom data on 

their concentrations of several prostaglandin metabolites was available to examine 

potential functional effects of the variants. All SNPs were genotyped using the Sequenom 

iPLEX massARRAY technology (Sequenom, San Diego, CA).  

Data Analysis. Data cleaning and analysis was performed with Whole-genome 

Association Study Pipeline (WASP) [174] and PLINK [175]. We excluded individuals 

based on genotyping quality (<90% call rate) and possible cryptic relatedness and SNPs 

based on the following criteria: not in Hardy-Weinberg Equilibrium in controls (p<0.001 

2
 test), <90% genotype call rate, MAF<0.01). Linkage disequilibrium among SNPs 

tested was determined using the Haploview program [177]. 
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Our analysis considered PTB affection status (i.e. delivery <37 weeks) as a binary 

trait, comparing frequencies between case and control groups of alleles and genotypes by 

2 test. Sliding windows of 2,3 and 4 SNP haplotypes also were compared between cases 

and controls [175]. Meta-analysis of data for significant SNPs was done using the 

Mantel-Haenszel method. We corrected for multiple testing using the simpleM method 

[176], which estimates the number of independent tests, given the LD relationships 

among SNPs, used to obtain a Bonferroni-corrected critical value. 

To test the potential functional effect of associated PLA2G4C variants on 

prostaglandin metabolism, we examined the levels of PGE, PGI, and 11-DTXB2, 

standardized to normal distributions ( =0, =1), as quantitative traits. A Wald test was 

performed to compare the mean phenotype between different allele or genotype classes 

for associated SNPs. We also tested whether rs11564620 risk-allele carriers had higher 

prostaglandin levels than noncarriers, by comparing the 11-DTXB2 value distribution 

among genotype classes with box plots and one-sided Wilcoxon nonparametric test 

performed in R [158]. 
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Figure 5.2: Phylogeny with sequences homologous to human chromosomes 19 noncoding element. 

 
Species name followed by a number indicates from which chromosome the sequence is derived or by a 

letter indicates that multiple copies homologous to the human chromosome 19 noncoding element were 

identified for that species. Sequences from lower primates and other mammalian species are more similar 

to higher primate sequences orthologous to human chromosome 1noncoding element (indicated in blue) 

than sequences orthologous to human chromosome 19 noncoding element (indicated in red). A duplication 

of chromosome 1 noncoding element to chromosome 19 likely occurred before the last common ancestor 

between apes and macaque. 
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Figure 5.3: Phylogeny with coding sequences homologous to human PLA2G4C. 

 
Species name followed by a letter indicates that multiple copies homologous to human PLA2G4C were 

identified for that species. Phylogenetic tree of coding sequences follows expected relationships between 

species, suggesting that the duplication event of chromosome 1sequence to chromosome 19 did not include 

coding sequence. 
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Figure 5.5: Linkage Disequilibrium among SNPs tested in PLA2G4C. 

 

 

 
 

Linkage disequilibrium among SNPs tested in PLA2G4C for US Hispanics (A), US 

Whites (B), and US Blacks (C). 
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Figure 5.6: Comparison of thromboxane metabolite levels among rs11564620 

genotype classes in healthy control population. 

 

 

 

Median thromboxane metabolite levels are significantly greater among risk-allele 

carriers, by Wilcoxon one-sided test. 
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Table 5.3: Case-control association results for 2, 3 and 4 SNP haplotypes in the 

PLA2G4C gene region tested across 3 independent US populations. 

 

 US Hispanics US White US Blacks 

p-value p-value p-value 

2-SNP Haplotypes 

rs11564650-rs8110925 9.54x10
-3 a 0.10 0.59 

rs8110925-rs2307276 6.98x10
-5 b 0.98 0.24 

rs2307276-rs1366442 8.82x10
-3 0.64 0.64 

rs1366442-rs11564620 0.04 0.03 0.90 

rs11564620-rs11668556 0.25 0.03 0.63 

rs11668556-rs1653554 0.49 0.82 0.42 

rs1653554-rs2307279 NA
c
 0.47 0.68 

3-SNP Haplotypes 

rs11564650-rs8110925-rs2307276 9.60x10
-4 b 0.19 0.39 

rs8110925-rs2307276-rs1366442 5.79x10
-4 b

 0.84 0.50 

rs2307276-rs1366442-rs11564620 0.03 0.06 0.79 

rs1366442-rs11564620-rs11668556 0.06 0.08 0.92 

rs11564620-rs11668556-rs1653554 0.31 0.09 0.30 

rs11668556-rs1653554-rs2307279 NA
c
 0.91 0.89 

4-SNP Haplotypes 

rs11564650-rs8110925-rs2307276-rs1366442 3.26x10
-3

 0.24 0.67 

rs8110925-rs2307276-rs1366442-rs11564620 1.25x10
-3 b 0.13 0.46 

rs2307276-rs1366442-rs11564620-

rs11668556 

0.08 0.17 0.93 

rs1366442-rs11564620-rs11668556-

rs1653554 

0.08 0.25 0.47 

rs11564620-rs11668556-rs1653554-

rs2307279 

NA
c
 0.11 0.54 

 

a
Bolded numbers indicate p-value <0.05. 

b
Haplotype significant correcting for 18 comparisons (p< 2.78x10

-3
). 

c 
One or more marker excluded for failing one or more of the following measures: Hardy-

Weinberg Equilibrium failure in controls p<0.001, <90% call rate, MAF<0.01. 
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Chapter 6: Conclusions and future directions 

State of preterm birth genetics prior to this work 

Despite the important public health consequences of PTB [3; 4], determinants of 

human parturition remain largely uncharacterized, making prediction and prevention of 

PTB difficult. Genetic studies are one way in which we can attempt to better understand 

this disorder. Prior to this work, little work had been done to characterize genetic 

influences on PTB comprehensively. For example, while a variety of evidence suggested 

that PTB was influenced by complex genetic and environmental factors, no study had 

tested genetic and non-genetic models to support this notion explicitly. Additionally, few 

specific genes were associated with PTB at the initiation of this work. Importantly, few 

studies examined genes outside of the inflammation and infection pathways, limiting the 

potential of genetic studies to identify new biology. As a result, we began this work to 

describe genetic influences on PTB in greater depth and identify novel genes associated 

with this disorder.  

Dissertation specific aims 

Because the etiology of PTB is complex and likely involves both genetic and 

environmental risk factors, developing a model for the genetic influences on PTB may 

facilitate gene discovery. As little work had been done to systematically identify a genetic 

model for PTB,we used sibling risk estimates and segregation analyses to identify one. 

We examined two standard measures of familial aggregation, the sibling risk 

ratio, s, and the sibling-sibling odds ratio (sib-sib OR) to test whether siblings of 

preterm infants were at higher risk for preterm delivery themselves. Risk to siblings of an 

affected individual was elevated above the population prevalence of a given disorder, as 
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indicated by S ( S (95% CI): 4.3 (4.0-4.6)), and above that of siblings of unaffected 

individuals, as indicated by the sib-sib OR (sib-sib OR adjusted for known risk factors 

(95% CI): 4.2 (3.9-4.5)). These results suggest that the PTB aggregates in families, which 

may be explained in part by genetics. 

Additionally, we performed segregation analyses to identify the best fitting 

genetic model for gestational age, a quantitative proxy for PTB. We performed 

segregation analysis for gestational age as a quantitative trait either attributed to the 

infant, infant’s gestational age, or to the mother, by averaging the gestational ages at 

which her children were delivered, using 96 multiplex preterm families. Additionally, as 

pregnancies in which either the mother [10; 13] or father [6; 7] is Black are at increased 

risk for preterm delivery, we performed segregation analysis for each phenotype in the 

total sample, as well as stratified by Black and White race, to test for heterogeneity 

between these two groups. Results from our segregation analyses lend further support to a 

genetic component contributing to birth timing since sporadic (i.e. no familial 

resemblance) and nontransmission (i.e. environmental factors alone contribute to 

gestational age) models are strongly rejected. Moreover, these results corroborate the 

conceptualization of PTB as a complex diseases are influenced by a variety of factors, 

none necessary and sufficient to cause the disorder itself, in contrast to Mendelian 

disorders in which alterations of a single gene can lead to disease. Analyses of gestational 

age attributed to the infant support a model in which mother’s genome and/or maternally-

inherited genes acting in the fetus are largely responsible for birth timing, with a smaller 

contribution from the paternally-inherited alleles in the fetal genome. Additionally, 

results from a heterogeneity 
2
 test comparing race-stratified analyses suggest that 
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genetic influences on birth timing may differ between Blacks and Whites. Overall, as 

multiple genes in the mother’s genome may explain the bulk of genetic influences on 

birth timing and heterogeneity exists among racial groups, future studies to identify 

specific genes influencing PTB perhaps will be most fruitful by using large scale studies 

of mothers’ genomes and by considering racial composition of the study samples 

carefully in their statistical analysis. 

We also aimed to discover specific genes associated with PTB using an a priori 

method, a screen of genes selected based on an evolutionary-motivated filter, rather than 

predicted parturition physiology. Because humans are born developmentally less mature 

than other mammals [124; 125], birth timing mechanisms may differ between humans 

and model organisms that have been typically studied [126]; as a result,we screened 150 

genes, selected because of their rapid evolution along the human lineage, compared to 

other mammalian species, rather than our current understanding of parturition. An initial 

screen of over 8000 SNPs in 165 preterm and 163 Finnish mothers identified an 

enrichment of variants in FSHR associated with PTB and prompted further study of the 

gene. Additionally, the phospholipase gene, PLA2G4C, was examined in greater depth, as 

it was identified as the gene with the most statistically significant evidence for rapid 

evolution that was also included in a list of PTB candidate genes [134]. Several variants 

in PLA2G4C showed potential association and were considered for follow-up analysis. 

To validate our initial findings,we examined 74 variants showing moderate levels 

of association in Finnish mothers in three additional US populations. Three SNPs in 

PLA2G4C and one SNP in FSHR were statistically significant after correcting for the 

number of independent tests performed for each gene. Meta-analysis p-values for these 
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variants were also significant correcting for multiple comparisons, supporting the role of 

PLA2G4C and FSHR in PTB.  

Additional work to identify variants in these genes with functional effects was 

also initiated. First, we compared metabolite levels of three important downstream targets 

of PLA2G4C among genotype classes for significantly associated SNPs in healthy 

controls. The nonsynonymous SNP rs11564620 (Thr360Pro) was associated with levels 

of the prostaglandin thromboxane, suggesting this variant may affect PLA2G4C activity. 

Secondly, because the robustly associated SNP in FSHR was intronic and unlikely to 

have a direct effect on function, we initiated sequencing of coding and highly conserved 

non-coding regions in the gene in Finnish preterm and control mothers to identify 

additional variants, which may have functional effects. 

Together, these experiments better characterize the nature of genetic influences on 

PTB and provide evidence for novel genes involved in this disorder. 

Future directions 

While two novel genes have been associated with PTB as the result of this 

dissertation project, additional work will be needed to dissect the genetic underpinnings 

of PTB robustly and apply this new knowledge towards improved patient care. Such 

work may include identifying additional variants in FSHR and PLA2G4C and 

determining the ability of highly associated SNPs to predict PTB. Because this work has 

examined only common variants, investigating rare variants may be particularly 

enlightening. Rare variants tend to have stronger effects on phenotype and may underlie 

associations attributed to common variants [196]. A single rare variant or a combination 

of multiple rare variants in FSHR, PLA2G4C or other genes may contribute to PTB risk, 

as has been shown for other common diseases, like type 1 diabetes and obesity [197]; 

136



 

thus, whole exome or targeted sequencing may identify risk-promoting variants in FSHR 

and PLA2G4C, and additional genes involved in PTB. For genetic variants of interest, 

gravid women may be followed prospectively to compare the pregnancy histories 

between women with high risk and low risk genotypes. Further study of the proteins 

encoded by FSHR and PLA2G4C will also be important to understand the biological 

mechanism by which these genes influence PTB risk. In addition to extensions of our 

work on PTB, the evolutionarily-motivated approach we used to identify FSHR and 

PLA2G4C also may be applied to other traits that differ between humans and other 

mammalian species, such as neurological and language-related traits, to assist gene 

discovery.  

Alternative approaches may also be used to identify additional genes associated 

with PTB. Unbiased genome-wide screens, such as the case-control screen conducted on 

a Danish cohort as part of the National Institutes of Health Gene Environment 

Association Studies (GENEVA) program, may identify novel genes and pathways for 

birth timing, as for other complex disorders like type 2 diabetes [198]. Additionally, non-

additive genetic effects, such as copy number or structural variation, may be important 

avenues for future research. Moreover, because complex disorders likely depend on a 

number of interacting factors, including genetic, epigenetic and environmental risk 

factors [31], some polymorphisms may only increase risk in the context of other genetic 

polymorphisms or certain environmental factors; as a result, considering polymorphisms 

in multiple genes or gene-environment interactions may increase our power to detect 

genetic effects. Investigators have applied this approach in candidate gene studies of 

PTB, including two studies of IL6 found association with the gene and disorder only in 
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the presence of bacterial vaginosis [35] or microbial invasion of intra-amniotic cavity 

[37]. Similarly, a study found interactive effects for TNF x IL6 x IL6R, but no main 

effects for any of the genes [34]. As a result, testing for gene-gene and gene-environment 

interactions globally may improve our ability to discover novel PTB genes. Such 

approaches may enable investigators to identify novel genes and pathways involved in 

birth timing with important clinical applications. 

Overall, future studies to understand genetic influences on PTB likely will include 

identifying additional genes and specific variants associated with risk and followed with 

work to examine biological mechanisms for their involvement in birth timing. In the 

same way that the study of other complex disorders has affected the field of PTB 

genetics, the evolutionarily-motivated approach for prioritizing genes for inclusion in 

association studies we used to identify FSHR and PLA2G4C may be extended to other 

complex traits. 
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