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Abstract

The recent popularity of catadioptic and multi-camera imaging systems indi-
cates a need to create formal models for general, non-perspective camera ge-
ometries. Development of algorithmic tools for interpreting images from a gen-
eralized camera model will lead to a better understanding of how to design
camera systems for particular tasks. Here we define the corollary to epi-polar
constraints for standard cameras — the relationship between two images of a
scene taken by generalized cameras from viewpoints related by discrete or dif-
ferential motions.

1 Introduction

The geometric relationships between several images taken of the same scene
from different viewpoints has been the central subject of study in the Computer
Vision community for many years [6]. The relationships have been formalized
for orthographic, affine, and perspective projections. Recently new camera de-
signs have appeared with different imaging geometries. For many purposes,
these non-standard camera systems have significant advantages over pinhole or
orthographic cameras.

The description and analysis of non-central projection camera systems ranges
from very general imaging systems to those whose imaging geometry is highly
congtrained. The most general case allows an arbitrary mapping between image
pixels and the part of the scene imaged by that pixel. This has been stud-
ied in the context of generating these images [11], and calibrating this imaging
device [4]. More specialized camera geometries include linear push-broom cam-
eras [5] and stereo panoramic cameras [9]. The equations of motion have been
studied for a number of specific non-standard camera systems, including esti-
mating optic flow from multi-camera systems (1, 2], and catadioptic systems [3].

Since new camera designs are constantly being proposed, it is useful to define
a general framework for the analysis of non-central projection cameras which
encompasses all new camera designs. The introduction and analysis of the
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Figure 1: Examples of camera capturing systems within the framework of this
paper. (left) A catadioptic system consisting of a camera looking at a curved
mirror. (middle-Jeft) An imaging system created with multiple flat mirrors.
(middle-right) A rigidly mounted system of multiple synchronized cameras.
(right) A scene being viewed through an optical interface which refracts the
visible light. Note that the lines captured by these camera systems do not all
pass through a single point (a non-central-projection).

oblique camera model [8] is one step in this direction, as it subsumes several of
the existing non-standard camera models, including the linear push-broom and
the stereo panoramic cameras. The oblique camera model is limited to camera
geometries where a point in the world is imaged at most once by the camera —
a system where none of the rays that are captured intersect.

In this work we remove all restrictions on the camera model, and provide an
analysis of the geometry relating two views from the most generalized camera
model, as considered by [11, 4]. This camera model encompasses all of the
imaging situation depicted in Figure 1, multiple-camera systems, catadioptic
imaging systems and cameras which view a scene through an optical interface.
The only requirement is that there exists a one to one mapping between image
pixels and the ray in space along which that pixel views. Specifically, there
are no constraints on the projection model. In fact, the analysis does not even
require a projection model; the geometric constraints rely only on the inverse
projection model; a mapping from image pixels to rays in the scene. This
mapping must be one to one, camera systems such as those depicted in Figure 2
are not considered. This mapping can be defined as a function of the image
coordinates, or simply a list, explicitly defining, for each pixel, which ray in
space it samples.

Calibrating this imaging system is significantly more difficult than calibrat-
ing a pinhole camera system. Also, many assumptions that are valid for normal
camera geometries may not be valid for the arbitrary sensor geometries cap-
tured within this general framework. There may be discontinuities in the image
capture process. Sampling issues which may be safely ignored for normal cam-
eras may cause problems in the image analysis from general cameras. Standard
feature detectors may fail because different parts of the image may have very dif-
ferent sampling properties. Classifying situations when sampling issues present
problems needs to be considered on an application specific basis. This work is
intended only to consider the geometric relationships, and to provide a general
framework for the analysis of new camera designs.



Image

AAYAYAYAVa
Plane
Camera
Center
L%
lmage ___~ " "~ @
pome T
L & Water
Potential Point Glass
Positions Air

Figure 2: Environments without a one to one mapping between pixel coordinates
and are the only imaging systems not included in this framework. For instance,
from figure 1d, if an object can appear either before or after the optical interface,
it is not known which line the pixel is sampling.

The following section describes some necessary background on the definition
and calibration of the general imaging model. Then the relationships between
two views of a static scene are illustrated, first for the case of the camera un-
dergoing a discrete motion, in Section 3, and then for the case of differential
motion, in Section 4. Section 5 gives two examples of real imaging systems
considered in this generalized model; the discrete motion of a camera looking
through an optic interface, and discrete and differential measurements from the
bizarre eye of a stomatopod.

2 General Imaging Model

‘The general imaging model abstracts away from exactly what path light takes as
it passes through the lenses and mirrors of an arbitrary imaging system. Instead,
it identifies each image sensor reading with the region of space that affects that
sensor. A reasonable model of this region of space is a cone emanating from
some point. A complete definition of the imaging model has been defined in
terms of “raxels” [4], (see Figure 3).

A raxel includes the following information about how a particular pixel sam-
ples the scene. This sampling is assumed to be centered around a ray starting
at a point X,Y,Z, with a direction parameterized by (¢,0). This pixel cap-
tures light from a cone around that ray, whose aspect ratio and orientation is
given by (fa, fi, T). The light intensity captured may also be attenuated, these
radiometric quantities may also differ for every pixel.

For the geometric analysis of multiple images, we simplify this calibration
so that i only includes the definition of the ray that the pixel samples. This
gives a simpler calibration problem which requires determining, for each pixel,
the Pliicker vectors of the sampled line. Since Pliicker vectors are required for
the mathematical analysis presented later, the following section gives a brief
introduction.
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Figure 3: (Top) The generalized imaging system defined in [4] expresses, for
each pixel, a description of how that pixel samples the light-field. This sam-
pling is assumed to be centered around a ray starting at a point X,Y,Z, with
a direction parameterized by (¢,6), relative to a coordinate system attached to
the camera. The pixel captures light from a cone around that ray, whose aspect
ratio and orientation is given by (f,, f5,T). The light intensity captured may
also be attenuated, these radiometric quantities may also differ for every pixel.
(Bottom) The simplified imaging model parameterizes only the ray along which
the scene is sampled, and does not consider radiometric properties. The ray is
parameterized by its Pliicker vectors g, ¢'.



2.1 PHicker Vectors

In order to describe the line in space that each pixel samples in this more general
camera setting, we need a mechanism to describe arbitrary lines in space. There
are many parameterizations of lines, but Pliicker vectors [10] give a convenient
mechanism for the types of transformations that are required. The Pliicker
vectors of a line are a pair of 3-vectors: ¢,¢’, named the direction vector and
moment vector. g is a vector of any length in the direction of the line. Then,
for any point P on the line ¢’ = g x P There are two constraints that this pair of
vectors must satisfy. First, ¢-¢’ = 0, and second, the remaining five parameters
are homogeneous, their overall scale does not affect which line they describe.
It is often convenient to force the direction vector to be a umit vector, which
defines a scale for the homogeneous parameters.

If q is a unit vector, the point {g x ¢') is the point on the line (defined by
¢,q") closest to the origin. The set of all points that lie on a line with these
Pliicker vectors is given by:

(gxg)+agq,VaeR (1)

2.2 Plicker Calibration

The simplified calibration is an arbitrary mapping between pixel coordinates
and the ray captured by that pixel. The calibration function is the mapping
between each pixel captured by the camera and the line of sight captured by
that pixel. This line is defined by its Pliicker vectors. The calibration of this
camera system defines the mapping between pixel coordinates and lines. The
line captured by pixel (z,¥) is {¢(z,y),¢'{z,y)). Most of the remainder of this
paper discusses the constraint given by corresponding points in two images, or
the optic flow at a point. In this case we drop the coordinates (x,y), and list
the Plucker vectors simply as ¢,¢'.

The analysis of differential camera motion is only possible if the imaging
system smoothly samples the environment — that is if the ray sampled hy
one pixel is close to the ray sampled by neighboring pixels. In these cases, it
is possible to define how the Pliicker vectors of the sampled ray change with
respect to a change of location in the image. That is to say, the following
quantities are also defined (and computed as part of the calibration process).

dq(z,y) Oq(z,y) 84 (z,y) O¢'(2,y)
9z 7 Qy T Bx T By

These are four vector quantities, for intuition, in a standard normalized pin-
hole camera, ¢'(z,y) is uniformly zero, aq_g:;y_)_ = (1,0,0}, and aq—é‘;’ﬂ = (0,1, 0).
The calibration for the more generalized imaging system discussed in /4] (find-
ing all of the parameters of the raxel) suffices to define the parameters of the
Pliicker Calibration. Additionally, the main contribution of this work is a theo-
retical model which encompasses many different specialized camera geometries.
For any specific such geometry, the calibration process can be simplified. Given



this background, we can now consider the relationships between multiple images
captured by these generalized cameras.

3 Discrete Motion

Suppose, in two generalized images, we have a correspondence between pixel
{w1,%1) in the first image and pixel (za,%2) in a second image. In our camera
system, these points are projections of a 3d point which lies along lines in space
described by Pliicker vectors {g1,q:}, and {g2,¢:'). The camera viewpoinis
are related by an arbitrary rigid transformation. There is a rotation R and a
translation T which takes points in the coordinate system of the first camera
and transforms them into the coordinate system of the second camera.

After this rigid transformation, the Pliicker vectors of the first line in the
second coordinate system become:

(Rg1, Bgy + R(T x q1}) {2)

Since we have a pair of corresponding points, this line must intersect the line
defined by the pixel coordinates of the corresponding point in the second camera.
A pair of lines with Pliicker vectors {g,,q,'), and {gs, ¢’} intersect if and only
if:

Q% G+ % = 0. (3)

This allows us to write down the constraint given by the correspondence of
a. point between two images, combining Equations 2 and 3

g (Rgy + R(T % q1)) + ¢Rqn = 0.

‘This completely defines how two views of a point constrain the discrete motion
of a generalized camera (using the convention that [T, is the skew symmetric
matrix such that [T],v = T x v for any vector v):

Generalized Epi-polar Constraint

TRq} + ¢T R{T)aqy + ¢4 Ry = 0. {4)

For standard perspective projection cameras, gi = ¢4 = 0, and what remains:
7 R[T]zq1 = 0, is the classical epi-polar constraint defined by the Essential
mafrix.

Given the camera transformation R, T and corresponding points, it is pos-
sible to determine the 3D coordinates of the world point in view. Using Equa-
tion 1, and transforming the firs$ line into the second coordinate system, solving



for the position of the point in space amounts to finding the intersection of the
corresponding rays. This requires solving for the parameters o, cva, which is
the corollary of the depth in typical cameras:

Rlp xq)+onm) +T = (g2 X gh) + s

Collecting terms leads to the following vector equation whose solution allows
the reconstruction of scene point P in the coordinate system of the first camera.

Generalized Point Reconstruction

solve foray: anRgy — angqe = (g2 X ¢3) — Rlq % q1) = T,
P=g xq +an

4 Differential Motion

In the differential case, we will consider the image of a point P in space which is
moving with a translation velocity ¢, and an angular velocity, (relative to origin
of the camera coordinate system) . The instantaneous velocity of the 3D point
is:

P=gx P+t
For a point in space to lie on a line with Pliicker vectors (g, ¢’}, the following
must hold true:

Pxg—q =0;

As the point moves, the Pliicker vectors of the lines incident upon that point
change. Together, the motion of the point and the change in the Pliicker vectors
of the line incident on that point must obey:

d -
Z(Pxg—qg) =
g *a-d)=00r
Pxg—Pxg—¢ =0
In terms of the parameters of motion, this gives:
(BxP+ixqg+Pxg—¢=0.
GxP+8xq=d —Pxd. (5)

Which are constraints relating the camera motion and the line coordinates in-
cident on a point in 3D for a particular rigid motion. On the image plane, the



image of this point is undergoing a motion characterized by its optic flow, (u, v)
on the image plane. Combining this optic low with the camera calibration, one
can calculate how the coordinates of the Pliicker vectors must be changing:

(6)

so that we can consider ¢ and §' to be image measurements. Then we can
substitute Equation 1 into Equation 5 to get:

@x((gxg)+ag)+i) xg=¢ —((g x ¢') +ag) x ¢.
or,
@x(gxgNxgta@xgxg+ixg=q¢—(gxg)xd+agxg (7)

The following identities hold when |g| = 1,

@x(gxg))xg = (F-9){gx(),and,
@xgxg) = @ -q¢g-4,
(axq)yx¢ = —(d-duq,

Simplifying Equation 7 and collecting terms gives:
a(@-qlg~F—gx @) +ixg=¢+{¢ dg— (@ q)(gx ) (8)
Multiplying by “xg”, this becomes:
@ xg)+({Exg)xg=¢ xq+ (@ g)d +aqd.

Collecting the terms that relate to the distance of the point along the sampled
ray gives, and then dividing by a gives:

—(Fxq) xq+ ¢ x g+ (- q)d
[o 4

(@xqg—q) =

which can be written more cleanly to define the optic flow for a generalized
camera under differential motion:

Generalized Optic Flow Equation

Ixgxg—¢ xg— (& -9 ©

=& xqg+
q q o




For standard perspective projection cameras, ¢’ = 0, and ¢’ = 0, and this
simplifies to the standard optic flow equation (for spherical cameras):

C ix g) x
q=(w><Q)+(—a)‘—q

To solve for the camera motion it is useful to find an expression relating
the optic flow to the motion parameters that does not include the depth of the
point. This differential form of the epi-polar constraint is:

§x ((Fxq) xq)= (@ xqg) x{({fxq) xq).

This same process can be applied to generalized cameras, giving:

Generalized Differential Epi-polar Constraint

(-—dxg)x(fxg)xqg=-¢ xqg—(@-9)¢)=0, (10)

which, like the formulation for planar and spherical cameras, is bilinear in the
translation and the rotation and independent of the depth of the point.

5 Applications

In this section we illustrate the two view geometry for two different imaging
systems that fall in the generalized camera model. The first involves a camera
looking through an optic interface, the second is a simulation of the eye of a
shrimp (stomatopod). Each of these imaging systems is a non-central projection.

5.1 Vision through optical interfaces

Many visual measurement processes, especially measurement tasks in various
physical sciences, require a camera to view a scene of interest through an optical
interface. Light refracts as it passes through an optical interface, so the standard
pinhole model does not model the set of rays, in the scene of interest, that the
camera is capturing.

The calibration of a view through an optic interface is highly application
dependent. As an example application we considered a camera that is imaging
a lava lamp (an toy consisting of a glass jar with colored wax and water which is
heated from below. The heat causes globules of wax to rise — where they cool
and subsequently sink). The infrinsic camera calibration was caleulated from
many images of a planar checkerboard pattern [12]. This checkerboard was then
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Figure 4: Left: The rays imaged by the camera at the left are refracted at
the optic interface. Projecting these rays back through the optic interface to
another camera position defines the epi-polar geometry for this camera pair.

augmented to include an arm which it inside the lava lamp at a known relative
position from the checkerboard. An image of the checkerboard with the (now)
calibrated camera allows for the solution of the position of the augmenting arm
in 3D. Eight thousand images of this form were talken. This was sufficient so
that 17% of the pixels imaging the lava lamp had 2 or more samples of 3D
points, sufficient to define the ray in the lava lamp along which they view. The
calibration data was interpolated to extend to the remaining pixels which did
not capture multiple 3D points in the calibration data set.

The calibration data was used to create a simulated views of the lava lamp.
Figure 6 shows two views of the lava lamp, a point in the left view and the
corresponding epi-polar curve in the right image.

5.2 Analysis of biological vision systems

Biological vision systems exhibit an astonishing diversity of design and function.
Many mammals have eyes that are similar to standard video cameras, so pinhole
camera model is a reasonable model for the imaging process. Insects, on the
other the hand, tend to have more panoramic vision. For some insects this is
relatively close to a central projection and the eye approximates the mathemat-
ical form of a spherical camera. For other systems, however, the view cannot be
modeled by any central projection. One example of this is the astounding eye
of the stomatopod 7.

The set of rays captured by the stomatopod eye was estimated from pub-
lished goniometer measurements [7]. A simulation of the view from one eye is
shown in Figure 8. The strip along the middle of the eye is known to have
16 visual pigments (as opposed to human eyes, which have 3). One theory on

10



Figure 5: Two of the calibration images used to solve for the mapping from
image pixels to rays inside the lava lamp, through the optic interface. The
3D position of the checkerboard is determined from its image in a calibrated
camera, this defines the 3D position of the arm that is inside the lava lamp.

the formation of this eye is that the two hemispherical regions are optimized to
estimate the eye rotation. As the eye rotates, the thin strip samples different
parts of the visual field to paint or mosaic a high (color) resolution image of the
environment. This is supported by reports of the natural motion of the shrimp
eye which appears as a continual slow random scanning motion. Although it
appears that data from all three regions may not be used to compute motion in
this biological system, the equations given in Sections 3 and 4 would allow the
analysis of either the two views or the flow field.
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Figure 8: (top) Epi-polar geometry for two views from a simulated stomatopod
eye, and (bottom) The optic flow field for a rigid motion while imaging a fronto-

parallel plane.
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