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Placing Servers for Session-Oriented Services

Sumi Choi! and Yuval Shavitt?

Abstract—The provisioning of dynamic forms of services
is becoming the main stream of today’s network. In this pa-
per, we focus on services assisted by network servers and
different forms of associated sessions. We identify two types
of services: transparent, where the session is unaware of the
sexver location, and configurable, where the sessions need to
be configured to use their closest server. For both types we
formalize the problem of optimally placing network servers
and introduce approximated solutions. We present simula-
tion result of approximations and heuristics. We also solve
the location problem optimally for a special topology. We
show, through a series of examples, that our approaches can
be applied to a variety of different services.

1. INTRODUCTION

Active networks bring the ability to place services any-
where in the network. This will enable a model in which
companies sell the usage of the service instead of the soft-
ware that perform the service itself. This frees users from
managing the software (installation, regular updates, etc.)
and purchasing an expensive one when the service needs
are limited, and enables them to evaluate various competi-
tors in a short time period.

Another advantage of the service-in-the-network model
is the ability of Internet service providers (ISPs) to deploy
transparent services in their networks. Such services may
include caching, authentication, security related snooping,
DOSA alarms, etc.

While active networks give us the freedom to deploy
services anywhere in the network, we would like to limit
the number of such service centers, due to maintenance
costs and the overhead associated with each deployed ser-
vice (extra filters in the routers, extra delay for filtered
packets, etc.). Thus, one would like to place servers
wisely, either to make the maximum gain out of the num-
ber of servers it can afford to deploy, or to deploy the min-
imal number of servers needed to achieve certain level of
service. This paper is the first, we are aware of, that looks
and this problem.

The interaction in the Internet is done in sessions be-
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tween end points, and thus, if is natural to associate service
with sessions. A service performed on a session should
bring some quantifiable gain, and its usage entails some
cost. The same service may have different gain and cost
according to the deployment economic model. For exam-
ple, if an ISP deploys a caching service, the gain can be
either the saving in traffic inside its network, or the reduc-
tion of delay for the clients. The optimal placement of the
service need not be the same for these two optimization
criteria, though the service performed is the same.

One can classify session-oriented services according to
several criteria, which influence the mathematical mod-
eling of the optimization problem. In the following we
discuss: symmetry, the number of interacting parties, and
transparency.

In some sessions, the interaction of the parties with the
server is symmetric, while in others it is asymmetiic. Sym-
metric interaction occur either because the same type of
information flows both ways, like in a full duplex confer-
ence gateway, or because the ’cost’ of the flow does not
change when passing through the server, e.g., when the
cost is bandwidth and the service is a protocol conversion.
An example of an asymmetric interaction is a video com-
pression server where the cost in the consumed bandwidth.
The cost of getting the data to the server is much higher
than the cost of transmitting the data to the player.

Naturally, many of the services in the networks are be-
tween two parties: protocol conversions, application Jayer
conversion (a language translation service), compression
of a videophone session, and many more. Multi-party
services are also growing in numbers: conference calls,
games, etc. However, there are also some services which
seem to involve only one party, such as caching. We
claim that these are special cases of a session where one
end point, the content provider, is fixed and the other end
point, the client, is dynamic. A content caching service is
one that benefits the requesters with the delivery of locally
cached content. However, the content origin needs also
to interact with the cache to deliver the content. This is
not more than the case of an asymmetric session where the
‘cost’ of delivery from the server (cache) to one side (the
client) is higher than the cost of delivery of the content
from the other side (content origin) to the server (cache).
It is important to note that although caching is a special
case of a session service, results obtain for caching cannot



be applied to the general case of session servers, at least
not in all its forms.

Finally, servers may be transparently placed in the net-
work such that user need not be aware of their location,
or even about their existence. Or, they may be placed at
known locations requiring clients to demand a service di-
rectly to them. In the sequel we will elaborate about the
modeling of these two distinct cases.

A. Service Networks and Server Placement

Firstly, we consider overlay networks for providing ser-
vices. In this types of networks, service providers are in
control of a network overlayed on top of the underlying
network and configure their application sessions with as-
sociated servers. Session configurations usually aim at op-
timizing a certain metric value, which we refer to as cost,
such as the performance or the efficiency of the sessions
that applications try to optimize.

In the example of the conference center where the time
constraint is important, one can see the direct relationship
between the location of the servers and the latency of the
data stream because data coming from sending end-points
has to reach the server before delivered to the receivers.
In other cases, like in the content adaptation and the video
compression, the service changes the bandwidth consump-
tion of the sessions, and thus, the location of the servers
determines the total bandwidth consumption, which be-
cornes the minimization criterion. While the cost for the
session configuration and the criteria for the optimization
change with the application, the server placement problem
is generalized into a couple of formations.

One formation of the optimal server placement in the
overlay service network is described in the following sit-
vation. Suppose there is fixed budget, k, that limits the
number of servers to be placed in a network. The goal of
the problem is to find k locations for the servers that op-
timize the overall value of the session configuration cost.
The problem is closely related to the k-median problem
where one needs to place £ medians such that the sum of
the distances between the nodes and their closest median
is minimized. We discuss the relationship between the two
problems in Section I, In another form of the problem the
goal is to identify the minimum number of locations that
guarantee certain constraints on the session configuration
cost specified by the target application, e.g., maximum de-
lay between any pair of clients. This form of the problem
is closely related to the k-center problem.

Transparent servers are servers whose location, or
even their existence, is kept unknown to the end-points
(users). The main advantage of transparent servers is that
they require no configuration of the session end-points, yet

the server can only serve traffic that flows through it usu-
ally by intercepting it. In order to provide transparent ser-
vices, one has to place servers so that at least one of them
is located on each of the session routes. Therefore, trans-
parent servers enforce stronger constraints on the server
locations associated with each individual session. In this
case, the goal is to identify the minimum set of server loca-
tions that satisfies the constraint of each session. We view
the problem of transparent server placement as an instance
of the set cover problem and discuss it in section V1.

B. Applicability

The algorithms presented in this paper works on gath-
ered statistics of service traffic, and should result in good
placements based on the time of the day, or the day of
the week. Active networks enable the easy migration of
servers according to the usage pattern, and thus can im-
prove the overall performance.

We believe usage statistics is quite stable and back this
by the study performed by Krishnan ez al. [1] for caching.
In their study, they checked the daily client population for
a medium size web server and found that the day-to-day
correlation was minuscule: 2.7-7.5% of the clients user
population appeared in any two out of the 14 days sampled.
However, when the overall demand from a network region
was compared the correlation was very high between the
weekdays. As a result, the cost of placing servers (caches
in [1]) based on the overall statistics proved effective and
resulted in a penalty of 1-10% (compared to the optimal
daily placement) for most of the weekdays.

While we are not aware of similar statistics for other
services, it is not inconceivable that it will follow the
same pattern: low client return rate but fairly constant
service demands from sites or regions. For example,
large corporations have different cultures: some encour-
age the use of video conferences, some require data trans-
lation/conversion due to remote sites with different lan-
guage/equipment, etc. The same argument holds for re-
gions of the world where differences in culture create dif-
ferent demand for services and difference in the times ser-
vice is required.

C. Organization

In the next section, the background of this work is de-
tailed related to theoretical problems as well as to practical
service networks. Then, we illustrate the network model
and the metric formation in section IfI, proceed onto the
overlay service networks along with the k-median problem
in section I'V and section V, and also describe the transpar-
ent service networks and the session cover problem in sec-
tion VI In the last section we raise a few issne for future



research and summarize the paper contribution.

II. RELATED WORKS

The problem of placing servers for a group of single
clients has several well-known variants that were all stud-
ied extensively. One is the facility location problem, which
is an optimization problem in a set of n points with an as-
sociated cost for opening a facility (a server in our case).
The geal is to find a set of locations among the n points to
place facilities so as to minimize the sum of the distances
from each of the » points to the nearest facility location
and the cost of opening the facilities. The %-median prob-
lem is another related problem similar to the facility loca-
tion problem, but but here the number of locations is given,
k., and we minimize only the sum of the distances between
each of the n points and the nearest facility location. The &
center problem resembles the k-median problem, only the
optimization criteria is to minimize the maximum distance
between any of the n points and the nearest server.

In these problems, the service that the facilities provide
is in an abstract and simple form which is described as an
assignment of each end point to a server (a facility loca-
tion) in a metric space or a graph. Then, the objective term
to be optimized is given with the end-point-to-server dis-
tances and, in case of the facility location problem, with
the costs of opening facilities. In this work, we expand the
concept of services in the context of network applications
and discuss the corresponding server placement problems.

Another optimization problem which we find useful for
transparent servers is the set cover problem. In this prob-
lem, we are given sets of elements and a separate group
of elements, and we are required to find a minimal subset
such that every element in the group appears at least once
in the subset.

Although all the above problems are intractable, there
are approximation methods that find in polynomial time a
solution which is guaranteed to be within some ratio from
the optimal. The practicality of the approximations vary,
which is part of this study. Approximation algorithms for
the facility location problem have been proposed with fac-
tors of O(log(n)) (for the greedy algorithm [2]), 3.16 [3],
2.41 (4], and more recently 1.74 [5]. The k-median prob-
lem is harder to approximate due to the restriction on the
number of servers (k), however, there are approximations
with an exfra relaxation on that restriction. For general
graphs, Lin and Vitter [6] approximated the cost within a
factor of (1-+¢€) of optimal by relaxing the restriction of the
number of servers to be up to (1 + 1)(Inn + 1)k. Arora,
Raghavan, and Rao [7] extended the techniques of Lin and
Vitter to achieve a polynomial-time approximation for the
Euclidean space.
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Fig. 1. Anexample for the difference between the session server
location problem and the k-median and k-center problems.

To show the difference between the k-median problem
and our k-session server problem, consider a ring network
comprised of n nodes numbered 0 to n — 1 (n is even, see
Fig. 1). Suppose we have two sessions {depicted as arcs
in Fig. 1}: one between node 1 and node n/2 — 1 and one
between node n — 1 and node n/2 + 1. We would like to
place two servers in the network. For the 2-median prob-
lem, the optimal locations for these two servers are at node
0 and node n/2, with gives a cost of 4, since each of the
four nodes is exactly one hop away from its nearest server.
This is also the optimal location in the 2-center problem.
However, this choice of two locations is bad for the session
server problem because it requires both sessions to make a
detour of two hops, while the two servers can be placed on
the two session routes, requiring no detours.

For some special cases, the session server placement
problem was studied in the past. For the case where there
is one sender and a large number of receivers such as when
objects need to be cached, the problem was studied ex-
tensively. Polynomial solutions for trees and other reg-
ular topologies exist [1], [8], but when multiple sources
are considered only heuristics were suggested [1], [9]. As
we show in section IV-A, results obtained for the cache
location problem are not always indicative to the general
case. Needless to say, not all the variants studied in this pa-
per are covered by previous work, in particular, transpar-
ent server placement, which is studied in its general form
here, was studied in the past only for the simple tree and
ring cases [1], [8].

Choi et al. [10] study a configuration problem for a ses-
sion through a series of servers that are already placed in
the network. In their problem an optimal route and servers
are in search for a session given a network and the loca-
tions of the servers. This study was done in the context



of active network, a paradigm that enables the fast deploy-
ment of services inside the network. Thus, active network
research, in general, can benefit from the results of our
work where the servers need to be placed optimally.

II1. MODEL AND METRIC

The network is represented by a graph G = (V, E)
where V is the set of nodes, and B < V x V is the set
of links. The set of sessions, §, is a collection of tuples
8; = {¥;,Viy,...}, Where v; € V. Each tuple s; rep-
resents a session whose end-points are the nodes v;;. In
cases where the sessions are limited to unicast connections
s; contain exactly two nodes. We give some modeling ex-
amples in this section.

Consider a group communication application such as a
conference call. In this case, the session cost is determined
by the average latency of the data delivery from speakers to
listeners. Assuming d(u, v) is the latency from « to v, the
value of the cost given to a configuration of a conference
call session s; = (vy,, ..., ¥, } with the center at v, is

Z wy - 2d('U;'k,’Uc)

‘U,‘kEs,'

cost(s;) =

where w; is the weight of session s;, that can be used,
e.g., if one would like to give equal weight for all ses-
sions regardless the number of participants, we can set
w; = 1/|s;]. Remember that s; is only one group out of
the large group of sessions, .5, that are served by the same
Servers.

To demonstrate the difference between symmetric and
asymmetric cost consider unicast sessions that uses com-
pression server. When the optimization criterion is the
end-to-end delay the cost of a session s; passing through a
server v, is given by

cost(s;) = d{vi;,ve) + d(ve, vi,)

where d(wv;,v;) is the transmission delay between node
v; and node v;. However, if the optimization criterion is
the bandwidth consumption the cost of session s; passing
through a server v, is given by

69)

cost(s;} = bwipd(viy, ve) + bwousd{ve, viy)

where d(w;,vy) is the hop-distance between node v; and
node vy, and dw;, and bwe,; are the data bandwidth rates
into and out of the compression server, respectively. One
may define din (vi, v;) = bwind(vi,v;)} and dyye(vi, v5) =
buwgyed(vs, v;) and rewrite Equation (1) as

@)

cost(s;) = din (i, , ve) + dowt (e, Uiy )

This is the case of asymmetric cost function to the server.
Note that the same application is symmetric for one crite-
rion and asymmetric for another.

While the costs associated with applications allow
one to determine better locations for placing a server
for each session, the transparent servers add other con-
straints, a route for each session. So, for a unicast ses-
sion 8; = (wy;,vs,), & route is given as r; = {v;, =
Uiys Uig, - - - Uiy = Vig }. The server for the session is to
be placed on the route.

IV. SERVERS IN OVERLAY NETWORKS

In this section, we consider an overlay network where
individual sessions can be configured with a server dynam-
ically. The problem is stated as follows.

We assume that there is budget for k(< n) servers and
given a set of sessions. The goal is to find the % locations
for the servers in the network that minimize the costs in-
volved with serving the sessions. Let ¢;; be the cost of
serving session ¢ with a server localed at node j. When
the length of session routes is used for the cost, the cost is
defined as ¢;; = 3, ¢, d(viy,v5) The ¢i; values can be
calculated efficiently after running an all-pair shortest-path
algorithm. Now, let z;; be a variable indicating whether
session ¢ is using a server at node j. The following 0-1
integer program (IP) solves the server placement problem
for the sessions:

minimize Z Z ciiZi;  (3)
568 jeV
subject to (4)
VieS, Y my = 1 (5)
jev
dou < s 6)
Jjev
Yie S,VieV Tij X yYs (N
Vie S,VieV z,y; € {0,1} (8)

Solving this program is AP-hard thus it is usually done
by relaxing condition (8) and allowing the z;; indicators
to take rational values between 0 and 1. Surprisingly, this
integer program has the exact same structure as the stan-
dard program for the k-median problem. Note that here,
we have 1|9} z;; variables instead of n? variables which
are used in the original £-median problem. In the worst
case, this is only a factor of n more variables.

Thus, results obtained for the k-median problem are also
valid for our problem with proper adjustment. Specifi-
cally, we can use the ¢-approximation suggested by Lin
and Vitter [6] which finds locations at the cost not more
than (1 + €} of the optimal cost, but it might need a fac-



tor of up to {1 + %)(Inn + 1) more service centers. This
is most likely the best one can hope to achieve for the k-
median problem if an e-approximation is desired for the
cost [7].

It is important to note that the result above does not
assume symmetry in the graph distances, i.e., d(v;, vy}
may be different from d(v,v;). In addition, the result
above does not require the triangle inequality to hold, i.e.,
d(v;, v;) may be larger than d(v;, vg) + d{vg, v;). Savage
et al. [11] showed that for about 50% of the routes in the
Internet there exists other routes through some other node
which are shorter, or in other words, 50% of the routes in
the Internet participate in some triangle that does not obey
the triangle inequality. It is worth mentioning that in most
cases the inequality is not violated by a large percentage. If
one wishes to assume cost symmetry and that cost obey the
triangle inequality, better approximations exist [12], [7].

Also, it is important to note that our formulation above
holds for all the other non-transparent cases discussed in
the introductory part of the paper. This includes asymmet-
ric costs, e.g., different cost for end-points such as trans-
mitter and receiver in case of bandwidth optimization with
a compression server. (This is not to be confused with
the asymmetric link cost mentioned in the previous para-
graph.) For the two server case, when we need to place
two types of servers such as an encoder and a decoder, we
can use an indicator variable for each server pair and each
session and obtain the same IP structure.

A. A simulation study

We generated networks based on the newly discovered
power-log law [13]. Our generator is based on the algo-
rithm suggested by Albert and Barabasi [14]. In all the
generated network we picked the parameter to be my =
4,m = 3,p = 0.1, ¢ = 0. For each instance we generated
10n sessions that are randomly generated according to two
models, where 7 is the number of nodes in the network. In
the wuniform model, both session end points were selected
uniformly from the network nodes. In the Zipf model, we
selected one end-point uniformly and the other according
to the Zipf disuibution (with parameter 0.8) which was
found to reflect better the distribution of service provider,
say a web server, in the network [15]. Each point in our
simulations represents 10 random session distribution on
three different networks, total of 30 runs.

As the service model, we considered unicast sessions
which requires one server. We set the session cost metric
to be the hop count, i.e., for session s; = (v;,, v;,) the cost
is given by

cost(s;) = d(viy, ve) + d(Ve, viy)
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Fig. 2. The cost as a function of the number of servers, in a
network of 300 nodes

Here, d(u,v) is the hop count. Cleatly, the optimization
goal is to minimize the total cost.

We simulated three algorithms:!

» Random where the & session servers are placed ran-
domly in the network nodes with even probability.

s Greedy where we greedily select the location that re-
duces the total session cost the most. We iterate this pro-
cess k times.

« 1-Greedy [1] where we first check the best locations for
two servers together and then at each additional step we
check all the possibility to remove one server and add two
new.

« ¢-Approx 6] first converts the 0-1 integer program for-
mulation into a fractional linear program by allowing frac-
tional assignments of servers, and computes a solution.
Secondly, using the fractional server assignments and the
value of ¢, it bounds the distance between a session and
a server, and forms a set cover problem where the cover
of each session is defined as a set of servers satisfying the
bound. Lastly, it applies the greedy set cover algorithm to
the set cover problem to obtain a final set of servers.

In the first set of simulations, we measured the resulted
cost as a function of the number of servers. Figures 2 and 3
present the cost for networks of 300 and 60 nodes, respec-
tively. The number of sessions was ten times the number
of nodes, and we varied the number of servers, k. The
cost is normalized such that 1.0 represents no detours due
to server placement. It is clear that Random is perform-
ing much worse than Greedy and is not a suitable candi-
date as a placement algorithm. The difference between
Greedy and I-Greedy is quite large for small networks but
diminishes for larger networks. For the mirror placement
problem Jamin et al. [9] report almost no difference be-

*We did not simufated the approximation algorithm presented above
due to its high computational requirement.
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Fig. 3. The cost as a function of the number of servers, in a
network of 60 nodes
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Fig. 4. 'The cost as a function of the network size, when the
number of servers is fixed to 3% of the network size

tween these two algorithms (and 2-Greedy, as well) maybe
because they fail to look at smaller networks. All algo-
rithms demonstrate a diminishing return curve: for the first
servers we gaim much in performance but as the number of
servers increases this gain diminishes. The same phenom-
ena was observed for placement of mirrors by Jamin ef
al. [9]. It is surprising, though, that for only a small num-
ber of servers, even just twelve, we already improve per-
formance such that the detour overhead is less than 20%.
We note that the knee point where the cost curves flatten is
around 3-4% of the number of nodes.

It is clear from the figures that under the Zipf distribu-
tion we get much better improvement than when the ses-
sion end-points are uniformly selected. This hold for all
three algorithms. The reason for this is that when one end-
point is selected using the Zipf distribution, by placing
servers near the few nodes that participate in many ses-
sions (say, popular web sites), we get a good cover of most
of the sessions.

In another set of simulations, we set the number of

servers, &, to be a constani factor of the network size and
varied the number of nades in the network. Since we found
in figures 2 and 3 that the reasonable cost-performance
trade-off is around 3-4% we selected x£=0.03. The results
where we vary the number of nodes between 40 and 500
are depicted in Figure 4. As before, the cost is normalized
such that 1.0 represents no detours due to server place-
ment. We can observe here that for all the tested aigo-
rithms the performance improves with the network size.
This is because, the diameter of these networks increases
logarithmically [16] with the number of nodes while we
increase the number of servers linearly. It is also visible,
that /-Greedy is improving performance over Greedy quite
significantly even for the 500 node network.
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Finally we present comparison of the e-Approx algo-
rithm against the other methods. Due to the computational



complexity of this algorithm we bring here (see Figure 5)
simulations for rather small networks. As can be expected,
the e-Approx performs better from all the rest for both uni-
form and Zipf distributions. For the Zipf distribution the
difference diminishes quickly, for as little as 40 nodes it
becomes close to none; for uniform distribution the gap re-
mains evident in all the simulated network sizes. Figure 6
compares the number of servers placed by the e-Approx al-
gorithm to the fixed bound & = 0.1n in other algorithms
(Note that the approximation may place up to 1.5In(n)k
servers).

The increase in the number of servers placed by the ¢-
Approx for the Zipf distribution for networks with more
than 40 nodes becomes negligible but so is the gain com-
pared to greedy in the performance. For the uniform distri-
bution e-Approx places more session-servers which might
explain it performance advantage over greedy. Thus, we
conclude that the greedy algorithms are more efficient and
simpler to implement and seem to perform comparably to
e-Approx.

B. Extra constraints

‘We can incorporate in the IP formulation for placement
problem described above additional constraints on the in-
dividual sessions. The two most practical are to limit the
maximum increase in the cost of a session or to limit the
maximum cost for any single session. This can be done by
filtering out all the z;; variables that violate the required
condition. For example, to constraint the end-to-end de-
lay of a session and assuming ¢;; represent delay we can
simply add a condition

Vie S, eV, st.cy >Up =y =0

Of course, this type of formulation should be used only
if the constraint is not very restrictive. Too restrictive con-
straint can render the problem unsolvable. In this case, one
should use different formulation, based on set cover, that
is presented in Section VI

V. OPTIMAL PLACEMENT OF NON-TRANSPARENT
SERVERS ON A LINE

We presented an IP formulation for the server placement
problem of overlay networks in the previous section. Al-
though it is an infractable problem for general networks,
for which we gave practical heuristics, we show in this sec-
tion an optimal solution for the optimal server placement
problem in the special case of line networks.

Consider a line of n nodes numbered from 0 to n — 1.
The input is the set of sessions s; € S, such that 5; =
{vi,,¥s,). A node can accommodate both a session end-
point and a server.

FC(Lj}
no servers here
/_/;\
nd i ]
\
i2)
A"
Ctl.3)

Fig. 7. The definition of C{j, ¥').

Let FC(l,, {;) be the extra detour cost on the segment
(lo, 1;), where two servers are located at {,, and ;, and no
server is located inside the segment. Forn -1 > [, >
{; > 0 this cost can be easily computed from the input in
O(n?|S)):

« A session whose both end-points are inside the segment
contribute to the cost the shortest detour between cne of
the session end-point and the segment edge. Thus, if we
have [, > w;; > v, > [; the cost of session s; is given by
2min{d(ly, v, ), d(vin, i:) }.

+ A session that has exactly one end-point inside the seg-
ment is not detoured since it is served by either I, or /.

« A session that contains the segment (whose end-point
are at both sides of the segment) is also served by either [,
or I;, and thus is not detoured.

» A sessions whose end-points are on either side of the
segment is not detoured through the segment since, in the
worst case, it can be served by the closest of I, and ;. This
session does not contribute to the cost of detours in this
segrments.

Thus, we only need to consider in the calculation of
FC{l,, ;) sessions whose both end points are inside the
segrment.

Ifl, = n—1 we assume in the calculation that no server
exists at node n — 1, and similarly if I; = 0 we assume
no server at node (. This is due to the observation that
a solution with a server at node 0 cannot be better than a
solution with this server moved to node 1, since sessions
are, at least, one hop long, and thus a session that has an
end-point at node 0 must pass through or terminate at node
1. The same reasoning works for the location of a server
atnode n — 1.

We use dynamic programming to build an optimal solu-
tion to a segment from the optimal solution for shorter seg-
ments. Let C'({,, &) be the overall extra-cost of detours in
the segment [0, /o], when &’ servers are located optimally
in it, while one is forced to be at I,. Figure 7 shows an
example of such a segment. Note thatn —1 > [, > 0, and
we do not need to consider the case where &' > 7.

The minimal extra cost for detours is given by C(n —



1, k+1), and what we seek is the location of the k servers
in this case. For the base case, it is casy to see that for all
n—12122,C(,2) = mingysq FC(I, ')+ FC{I',0).
Note, that in the calculation of FC(I',0) we assume no
server at node 0, the base case calculation of C{{, 2) indeed
calculate the optimal position of two servers, such that one
is inside the segment and one is at node [. For &' > 2, we
have:

Claiml For k' > 2andl > K,

C(l, )= min {CU, ¥ -1)+FC(, "}

k>USk -1

&)

Proof: The optimal placement of & — 1 servers in the
segment [0,/ — 1] and a server at [, must have the closest
server to [ be placed somewhere in the segment [0, — 1]
and the rest of the servers optimally distributed between
this server and node 0. Therefore the optimal cost is the
minimum cost of these [ — k cases, ]

Theorem 2 C(n — 1,k + 1) is the optimal cost of placing
k servers in the line [0,n — 1].

Proof: 'We showed in claim 1 above that C(I, k')
position optimally &’ servers is the segment [0, [}. The cal-
culation of F'C(n — 1, I}, assume no server at location
n — 1 thus applying claim 1 for C{n — 1,5+ 1) will result
is placing only % servers, hence the theorem holds. - |

The algorithm now is straight forward: first calculate
C(l,2) forn —1 > | > 2. Next for each ' > 2 compute
C, k), for all k > k' > 2. The complexity of this
algorithms is O(n?|S]) to compute the FC() values, and
O(n?-k) to compute C(I’, k'). Thus overall, the algorithm
complexity is O(n?|S]). 2

This formulation can also be used to improve the dy-
namic programming of the cache location problem sug-
gested by Krishnan et al. [1] from O(n3k) to O(n2k).

V1. TRANSPARENT SERVERS

For service networks with transparent servers, we have
a stronger constraint on the server locations: a server has
to be located on the route of every session, Thus the rout-
ing should be part of the input for this problem, and what
we seek is a minimum number of servers satisfying the
constraint. This approach for solving the server placement
problem can also be applied to the situation when the main
goal of an application is to guarantee strong constraints or
quality of services to their sessions, e.g., end-to-end delay.

We formulate both problems as a set cover problem.
Given a network graph G = (V| E) and a set of sessions S,

2Note that if || < k there is a trivial solution, thus the lack of 2 max
term in the complexity

we define a session cover sc; for each node v; € V as the
set of sessions in .5, such that the corresponding node w;
satisfies the constraints of the sessions in s¢;. In case of the
transparent servers, s¢; contains the sessions whose route
include the node v;. For the applications with per-session
constraint, se¢; contains the sessions whose constraint can
be accommodated by the node v;. Note that the constraint
can be determined in the same method as the cost metric
was defined in Section III.

By selecting a set of session covers C such that
Use;ecse; = 9, we find a set of locations that satisfy the
constraint of all the session in S. The goal of our prob-
lem is to minimize the set ¢, thus minimize the number of
servers. This is an instance of the set cover problem. Al-
though it is A"P-complete there are good and simple ap-
proximations that are practical in the context of networks.
Johnson [17] showed a 1 + Inn approximation to the gen-
eral problem. The approximation is achieved by a greedy
algorithm which starts with a maximal cover for a group of
elements and successively adds remaining maximal covers
for the uncovered elements. This approximation cannot be
improved even if we know an upper bound on the set size
[18].

A. Simulation results

We generated the networks as described in Section I'V-
A, and the routes were selected to be shortest paths. We
simulated the following algorithms
» Random: Where at each iteration a server is placed ran-
domly in the network nodes that are part of some session
route, with even probability. Once a session is covered, its
route is removed from the session pool, to avoid selection
of a node due to a session which is already covered.

» End-point Placement (EPP): We find the session end
point which is most frequently used and place the first
server at that node. We remove all the session that were
covered, and repeat iteratively.

« Greedy [17]: Where we greedily select the location that
optimizes the increase of the cover, the algorithm appears
in [19].

+ 1-Greedy [1]: Where we first pick the best two locations
and then at each additional step we check all the possibility
to remove one server and add two new.

Figure 8 shows how the number of servers found by the
algorithms vary as a function of the network size. Unlike
with the overlay network case, here the difference between
Greedy and I-Greedy are negligible to non-existent. For
both session selection processes, the number of servers re-
quired grows sub-linearly with the number of nodes. Ran-
dom fails miserably and requires about half of the nodes
to be servers. Here too, the Zipf distribution requires less
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Fig. 8. The number of session servers as a function of the net-
work and session size for the greedy, the end-point place-
ment and the randomized algorithms

servers, about half for Greedy. For the Zipf distribution,
EPP performs very close to Greedy and much better than
Random while for the uniform distribution £PP is only
slightly better than Random.

We also simulated the session cover problem for per-
session constraint using the same service model with a
stretch factor constraint on session hop distance. Formally,
the constraint can be stated as

cost(s;) <0 x d(v;,,vi,)

where § is a stretch factor. Note, that for this constraint
the transparent location problem is a special case where
d = 1. We set é to be 1.5 for our simulation and the
result is shown in Figure 9. Comparing the curves for
Greedy and I-Greedy in Figure 8 and Figure 9(a) we see
that we need less servers for § = 1.5 since the constraint
is relaxed. Figure 9(b} shows how the number of required
servers changes with § for a network of 300 nodes. The
large decrease at § = 1.5 and § = 2 are since we used
minimum hop as our cost and the average session length
for the tested network was 2.

Figure 9(c) shows the ratio of the cover cost where
¢ = 1.5 to the cost where § = 1. Interestingly, the addi-
tional overhead from relaxing the constraint of the server
placement is minuscule, less than 1%, while the gain in re-
ducing the number of servers is noticeable (about 20% in
Fig. 9(b)).

VII. CONCLUDING REMARKS

‘We note, that in our formulation we did not consider the
processing delay at the servers. This was omitted since
it is constant and thus does not effect the location prob-
lems. However, in some cases we need to take this into
account, e.g., when we define a stretch factor on the delay,
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one needs to add the processing delay to the calculation of
cost.

Another issue we did not touched in this paper is the
load on the servers. For example, one can add the con-
straint } ;o5 27 < M to the optimization problem of Eq.
(3) to limit the maximum load of any server by M.

To summarize, this work is the first to identify the
importance of the location problems for session servers.
We formulize two different classes of this problem and
identify many extensions. We presented approximations,
heuristics, and exact solutions to several variants of the
problem, and sirnulated some of them.

Several architectures have been proposed for deploy-
ing and dynamically configuring services in active net-
works [20] and active services [21]. Placing services or
servers is a critical issue particularly in such networks,
which should benefit the most from our work. We also
believe that there is more room for further research in this
area.
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