Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-01-40

2001-01-01

Services Provision in Ad Hoc Networks

Radu Handorean and Gruia-Catalin Roman

The client-server model continues to dominate distributed computing with increasingly more
flexible variants being deployed. Many are centered on the notion of discovering services at run
time and on allowing any system component to act as a service provider. The result is a growing
reliance on the service registration and discovery mechanisms. This paper addresses the issue
of facilitating such service provision capabilities in the presence of (logical and physical)
mobility exhibited by applications executing over ad hoc networks. The solution being discussed
entailes a new kind of service model, which we were able to build as an adaption... Read
complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Handorean, Radu and Roman, Gruia-Catalin, "Services Provision in Ad Hoc Networks" Report Number:
WUCS-01-40 (2001). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/274

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/274?utm_source=openscholarship.wustl.edu%2Fcse_research%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/274

Services Provision in Ad Hoc Networks

Radu Handorean and Gruia-Catalin Roman

Complete Abstract:

The client-server model continues to dominate distributed computing with increasingly more flexible
variants being deployed. Many are centered on the notion of discovering services at run time and on
allowing any system component to act as a service provider. The result is a growing reliance on the
service registration and discovery mechanisms. This paper addresses the issue of facilitating such
service provision capabilities in the presence of (logical and physical) mobility exhibited by applications
executing over ad hoc networks. The solution being discussed entailes a new kind of service model,
which we were able to build as an adaption layer on top of an existing coordination middleware, LIME
(Linda in a Mobile Environment).

https://openscholarship.wustl.edu/cse_research/274?utm_source=openscholarship.wustl.edu%2Fcse_research%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/274?utm_source=openscholarship.wustl.edu%2Fcse_research%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages

Service Provision in Ad Hoc Networks

Radu Handorean and Gruia-Catalin Roman

WUCS-01-40

November 2001

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130

Service Provision in Ad Hoc Networks

Radu Handorean and Gruia-Catalin Roman

Department of Computer Science
Washington University
Saint Louis, MO, 63130
{raduh, romanl@cs.wustl.edu

Abstract. The client-server model continues to dominate distributed computing
with increasingly more flexible variants being deployed. Many are centered on
the notion of discovering services at run time and on allowing any system
component ¢ act as a service provider. The result is a growing reliance on the
service registration and discovery mechanisms. This paper addresses the issue
of facilitating such service provisioa capabilities in the presence of (logical and
physical) mobility exhibited by applications executing over ad hoc networks.
The solution being discussed entails a new kind of service madel, which we
were abie 10 build as an adaptation layer on top of an existing ccordination
middleware, LIME (Linda in a Mobile Enviroument}.

1. Infroduction

As the network infrastructure continues Lo grow, more and more devices are being
attached directly to the network. The opportunity for applications to exploit an ever-
increasing range of resources is expanding rapidly. All entities, which must be
connected to the network, can provide services advertised over the network, making
the network a service repository. The number of such services is expected to grow
significantly in the coming years. Given the variety of devices accessing the network
and the ever-growing number of services that become available, a high-level approach
was needed to allow one to discover services dynamically, as the need arises.

In the client-server medel, which continues to dominate distributed computing, the
client knows the name of the server that supports the service it needs, has the code
necessary to access the server, and knows the communication protocol the server
expecls. More recent strategies allow one to advertise services, to lookup services and
to access them without explicit knowledge of the network structure and
communication details. Services offered by servers may be discovered at runtime.
They are being used through proxies they provide. A proxy abstracts the network
from the client programmer by offering a higher-level interface, specialized only in
service exploitation while the proxy’s interface to the server remains unknown to the
client. Services are advertised by publishing a profile containing attributes and
capabilities useful when searching for a service and proper service invocation. Clients
search for services using templates generated according to their momentary needs.
These templates must be matched by the advertised profiles. A service profile can

include the service’s location and a client can use this information in evaluating the
suitability of that service. However, in contrast to the classic client-server model,
publishing the location of a service it not a requirement for the service model to work,
since it does not play a key role in the process of discovery. Services use a service
registry to advertise their availability and clients use this registry to search the
services they need. This approach enables a much greater degree of run fime
flexibility.

Our model completely eliminates network awareness from the process of discovery
and utilization of a service. The client only has to ask for the service it needs and does
not have to know how the service will be reached. Our model differs from others by
providing a distributed service registry that is guaranteed to reflect the real
availability of services at every moment in a mobile ad hoc environment and a
communication technique that is not affected by physical or logical mobility. We
achieve a consistent representation of the available services by atomically updating
the view of the service repository as new connections are established or existing ones
break down. A data repository similar to the service registry can be used for
communication. This data repository offers both synchronous and asynchronous
communication and hides physical host movement or logical agent migration.

The reminder of the paper is organized as follows: Section 2 presents the
motivation for this research. Section 3 introduces a variation on the basic service
model, adapted for use in ad hoc mobility. Section 4 describes the implementation of
the service model in terms of an existing coordination middleware. Section 3
discusses lessons learned and future work.

2. Motivation

The service model is composed of three components: services, clients and a
discovery technology. Services provide useful functionality to clients. Clients use
services. The discovery technique enables services to publish their capabilities and
clients to find and use a needed service. As a result of a successful lockup, a ciient
may receive a piece of code that actually implements the service or facilitates the
communication to the server offering the service.

The discovery technique constitutes the main difference among various existing
implementations of the model. Sun Microsystems developed Jini [1, 2, 3, 4, 5] that
uses as a service registry lookup tables managed by special services called lookup
services. These tables may contain executable code in addition to information
describing the service. A Jini community cannot work without at least one lookup
service even if services and potential wsers are co-located (co-located refers to
services and potential clients residing on the same physical host). IETF offers the
Service Location Protocol [6, 7, 8, 9] where directory agents implement the service
registry. They store service profiles and the location of the service but no executable
code. The discovery of services involves first locating these directory agents. If no
directory agent is available, clients may multicast requests for services and servers
may multicast advertisernents of thejr services. The most common service types use,
by default, the service templates standardized by Internet Assigned Numbering

3]

Authority (IANA). Microsoft proposed Universal Plug'n’Play [10], which uses the
Simple Service Discovery Protocol [11]. This protocol also uses centralized directory
services, called proxies, for registration and lookup of services. If no such proxy is
available, SSDP uses multicast to announce new services or to ask for services. The
advertisement contains a Universal Resource Identifier (URI) that eventually leads to
an XML description of the service. This description is accessible only after the
service has been already discovered through a lookup service. The novelty of this
model is the auto configuration capability based on DHCP or AutoIP. The Salutation
project [12] also uses a relatively cenfralized service registry called Salutation
Manager (SLM). There may be several such managers available, but the clients and
servers can establish contact only via these SLMs. The advantage of this approach is
the fact that these SLMs can have ditferent transport protocols underneath, unlike the
above-mentioned models that all assume an IP transport layer. To realize this,
Salutation uses transport-dependent modules, called Transport Managers that
broadcast internally, helping SLMs from different transport media interact with each
other.

All these models assume (more or less) a fairly stable network. Nomadic
computing takes one step in breaking the wired network rigidity by allowing mobile
users to connect to the network via wireless means. It is important to note that the
universe in nomadic computing also includes a fixed component. The infrastructure
composed of base stations ensures communication in a communication cell. The
implementations of the service model may have some limitations in terms of
functionality because of the particularities of the new settings. The idea of using the
base stations as hosts for service registries is very appealing. However, overloading
the base station of a communication cell may lead to defensive behavior of its
software, e.g., terminating advertisement broadcasts or completely ignoring client
communication. The failure of a base station leads to a complete lack of
communication between the agents in its cell and between clients and services whose
communication is routed via this base station, even if they could communicate
directly. The similarity to classic networks with centralized service registries is
strong. In nomadic networking, reusability of communication frequencies is very
important, but introduces a new limitation. The larger the cell, the more devices inside
a cell, and the more frequencies needed. Since the range of available frequencies is
usually limited, this leads to a limitation of the devices in a cell, and implicitly to a
limitation of the service availability. Broadcast discovery is also limited to the current
cell, thereby limiting the scope of service advertisement. We can can still leverage off
much of the infrastructure used in classic networking, since many of the new
problems are sofved at a lower level in the stack of communication protocols. In
conclusion, even if the nomadic networks bring a certain degree of mobility, as long
as there is an infrastructure that must be used by the agents to communicate, the
differences from classic networks are little.

A higher degree of freedom and a fully decentralized architecture can be obtained
in mobile ad hoc networks, at the expense of new challenges. Mobile ad hoc networks
are opportunistically formed structures that change in response to the movement of
physically mobile hosts running potentially mobile code. The new wireless
technologies allow devices to freely join and leave networks, form communities, and
exchange data and services at will, without the need for any infrastructure setup and

system administration. Application level communication has to keep up with the
physical layer communication progress. Frequent disconnections inherent in ad hoc
retworks lead to inconsistency of data in centralized service directories. Architectures
based on centralized lookup directories are no longer suitable. The broadcast
implementations need a high frequency of messages in order to preserve this
consistency. This leads to an increased consumption of bandwidth. The service model
used needs to adapt to the new conditions.

As an example, a routing protocol that tries to adapt quickly to connections that
come up and break down may lead to an overhead that will eventually make it
inefficient in such an environment. In another example, if the node hosting the service
registry suddenly becomes unavailable, the entire advertising and lookup of services
becomes paralyzed even if the pair of nodes representing a service and a potential
client remains connected. This scenario is depicted in Figure 1{eft).

service

cannot
register lookup

\
\cadnot use .
]

1Y
jservice | .

. h e -

3
-
-
-’
-
-
w
3
’
’
;
-
-~ -

’

)
1
3 i -
serviy USESEIVICE [elient
L

1 N/
AN communication,
v n ’ : .. range -
*rommunigation s S e -
N ~
ringe £ s e -

Fig. L. Left: The client could use the service but it cannot discover it since the service registry
is not accessible. Right: A client discovers a service that is no Ionger reachable

Our aim is to make these two nodes communicate. Furthermore, because of
frequent disconnections, the service registry should immediately refiect changes
affecting service availability. Services that are no longer reachable should not be
available for discovery. In Figure 1 (right) we present a scenario that can happen in
Jini, where the advertisement of a service is still available in the lookup table until its
lease expires. In a model addressing these issues, all nodes should be simple users or
providers of services. However, the systemn should not depend on the behavior of a

single node. Broadcast discovery reduces the timeline to discrete moments when
clients can update their knowledge about the available services introducing intervals
of inconsistency of duration up to the frequency of broadcasts. In ad ho¢ networking,
frequent disconnections may prevent a client from ever discovering the service i
needs, even if the service is present and it periodically announces its availability via
broadcast messages. The new challenge is to permit users and programs to be as
effective as possible in this environment of uncertain connectivity, without changing
their manner of operation (i.e., by preserving the interface). The advertising and
lookup of services in this setting need a lightweight model that supports direct
communijcation and offers a higher degree of decoupling. A consistent, distributed,
and simple implementation of the service registry is the key to the solution.

3. Service Model Revisited for Mobility

Each active entity, with the ability to perform some computation will be called an
agent. Agents represent application components or devices. An agent can be a client,
a server, or both. An agent that can migrate from one host to another will be called a
mobile agent. Two agents that reside on the same host are co-located. Hosts are
assumed to be mobile, can move freely through space, and form ad hoc networks
when within communication range.

Services are advertised by publishing a profile that contains the capabilities of the
service and attributes describing these capabilities, so the clients can discover and use
the services properly. The interface used to access services refers only to capabilities
advertised in the profile. Location information is not needed to discover the service
requested by the client. The client can use the attributes to decide if the service meets
its requirements in terms of quality of service parameters. Along with the profile, the
server provides a service proxy. This proxy will represent the service locally to the
client.

Clients search for services using a template that defines what the needed service
profile must match. If a service profile satisfying all client’s requirements is available,
the service proxy, as part of the profile, is returned to the client. The client will use
the proxy to interact with the service as if it were local.

The interface provides primitives for service advertisement and lookup and the
proxy offers the service interface. Every agent has its own service registry where it
advertises the services it provides. The registries of co-located agenis are
automatically shared. Thus, an agent requesting a service that is provided by a co-
located agent can always access the service. If two hosts are within communication
range they form a community and their service registries engage, forming a federated
service registry. Upon engagement, the primitives operating on the local service
registry are extended automatically to the entire set of service registries present in the
ad hoc network. An agent in the community will access this federated registry via the
same AP, i.e., via its own local registry. The sharing of the service registries is thus
completely transparent to agents.

Maintaining the consistency of data in the service registry is a very important issue
in such a rapidly changing environment. In our model, an ad for a specific service can

be discovered if and only if the service is available. The update of the content of the
federated service registry occurs atomically, at the moment of engagement or
disengagement of each host. Discovery and accessibility of remote servers is scoped
by host connectivity. Thus, when the host of the service becomes unreachable (.e.,
gets disconnected), the local repository atomically becomes unavailable as well and
the service camnot be discovered anymore. This helps solve several important
problems. First, it eliminates the need for a centralized directory for registration and
lookup. Second, it guarantees that two hosts within communication range are able to
exchange services. Third, it prevents a client from discovering a service that is not
available anymore at the time of the lookup. Figure 2 presents the use of the
distributed service registry.

Agentl Agent2
1
. 1
l Service A : Client C
)
disconnected
)
i
.]
I Ad for Service A l !
Local service registry Local service registry
Agentl Agent?2
. within communication range Client C
Service A <& H
1
I

I . l‘ ----------- T TTTTTh discovery
Ad for Service A Sfederated service registry)
_______________________ 1
Local service registry Local service registry
Agentl mmm T — Agent2

Service A

Ad for Service A federated service registry

Local service registry Local service registry

Fig. 2. Local tuple space sharing and service proxy utilization

4.Coordination-Based Design Solution

We implemented the service model as a veneer on top of LIME [13, 14], a
middieware for mobility with strong support for coordination in ad hoc networks. The
veneer, a thin adaptation layer, uses LIME tuple spaces to store service advertisements
and pattern matching to find services of interest. More significantly, our veneer
exploits the transient tuple space sharing feature of LIME to provide consistent views
of the available services in the entire ad hoc network in a uniform manner i.e., as if all
service advertisements were part of the local registry. This allows us to achieve the
deployment of the new service infrastructure in an ad hoc setting with minimal
programming effort. This section provides an overview of the implementation and
discusses some of the technical difficulties we encountered during this on-going
development effort.

4.1 LME Overview

LIME is a middleware supporting applications that involve physical and logical
mobility. LIME extends the Linda [15] coordination model by adding suppori for
coordination in ad hoc networks. The global and persistent tuple space of Linda is
replaced in LIME by tuple spaces carried by individual agents residing on hosts that
can be mobile. These local tuple spaces are automatically shared among co-located
agents and transparently shared among all hosts within communication range. The
resulting federated tuple space acts as a distributed repository of elementary data units
called tuples. Tuples are sequences of typed values and can centain data or code.
These tuples can be added to a tuple space using an out (tuple) operation and can
be removed by executing ar in (template) operation. Tuples can also be read
from the tuple space using the rd (template} operation. Tuples are selected using
pattern matching between a template and the tuples available in the tuple space. The
template can be composed of actrals and formals. Actuals are values, while formals
are types that are used as wild cards. Both in and rd are blocking operations. LIME
offers an extension to this synchronous communication by providing probe variants
for the (raditional blocking operations, eg, rdp{template) and
inp(template) . If no matching tuple is found, a NULL value is returned. For
any of these operations, if several tuples match the pattern, one is selected non-
deterministically. LIME also implements several other extensions of the basic Linda
primitives designed to handle groups of tuples e.g., outg, rdg and ing.

Another extension to the basic Linda model are the location parameters LIME
primitives can use. Hosts and agents store information about their location,
information that can be used to define a projection of the transiently shared tuple
space. For example, an out operation could specify a destination location for the
tuple it writes. This tuple will be written to the local wple space of the agent issuing

the out operation and then it will migrate to the specified destination, if available.
The in and rd operations can also use location information to restrict the scope of
their actions to a projection of the complete federated tuple space.

Finally, LIME offers mechanisms to react to changes in the contents of tuple spaces
i.e. support for reactive programming. A reaction is specified by providing a template
and a piece of code that must execute in response to the appearance of a matching
tuple in a particular tuple space. Two types of reactions are available in LIME. Strong
reactions are executed atomically with the context change that enables them. For
practical reasons, these reactions can only be enabled by tuples residing in the local
tuple space. Achieving the atomicity of execution in a distributed environment
involves transactions across multiple hosts, which are expensive to implement in
highly dynamic environments. Another reason for this restriction is the possibility of
creating chains of reactions spanning the network, i.e., global transactions whose
scope may expand out of control. LIME also offers weak reactions to detect changes in
the federated tuple space. If a matching tuple is found, the execution of the code
associated with a weak reaction is guaranteed to take place eventually if the
connectivity is preserved, but not atomically with the detection of the tuple. For
technical reasons, blocking operations are not allowed in the code associated with a
reaction.

4.2 Service Representation

Each service is represented by a profile stored in a tuple. This tuple contains fields
for a service id, a list of attributes, a list of capabilities, a proxy object, and some
information about the communication between the proxy object and the server. When
the service registers, the system assigns it a globally unique service id. This id will
represent the service as long as it is available, and can be used for rediscovery of the
same service. The attributes quantify the capabilities of the service (e.g., “color” and
“laser” can be attributes for a service adverlising the “print” capability). The client
may use atiributes when searching for services to filter the results. The proxy object is
the front end of any service. The client uses the proxy object to access the service as if
the service were implemented locally. The proxy object may have one of two
behaviors: it may fully implement the service with no remote communication, or it
may provide an interface to a remote service provider while hiding the details of the
communication protocol from the client. The latter situation is encountered when the
service needs a specific piece of hardware to execute the job (e.g., a printer), or other
resource that cannot migrate to the client. The protocol used by the server and the
proxy for their private communication is arbitrary. It can be a well-known protocoi
(e.g., Java RMI) or a proprietary protocol that is well suited for the application needs
(e.g., LIME).

While the proxy hides the network from the client, the proxy must know where the
server is located. In the presence of mobility, the location information may change
upon migration of the service. For example, if the agent providing the service moves
to another host, the IP address changes but the port number may not. Likewise, if the
proxy and the server use RMI to communicate, it is very likely for the server to use
the same registration string at the new location, even though its IP changed. This led

us to a design that splits the location information in two parts. One part represents the
physical location of the agent running the server and the other part represents a logical
address within the addressing space available at the physical location (e.g., the range
of useable ports or the RMI registration sirings). While mobility causes physical
location to change, this logical address is not likely to change. Since the physical
location is unique for all servers run by each mobile agent but the logical address is
specific to each server and does not change, we chose to publish them separately. The
physical location is published along with the agent’s id in a special tuple space, called
the locatien tuple space (ServiceLocationTupleSpace). This tuple space
contains one location tuple for each agent, and the content is updated upon agent
migration. This way, an agent needs to update only one tuple when it migrates,
regardless of the number of services it provides. The logical address is part of the
tuple that contains the advertisement of the service. Upon migration, these tuples will
follow the agent automatically and unchanged.

[Service_ID,
Agent_ID,
Attributes,
Capabilities, Proxy,
Class_File,
Logical_Location]

[Agent_ID,

. o)
Agent_Location] Agent

- C

O

ServiceLocationTupleSpace LookupServiceTupleSpace

Tig. 3. The agent and the two local tuple spaces storing the service profiles and the agent’s
physical location

4.3 Service Access

The taples describing the services an agent wants to publish are writien (using the
out operation) into a tuple space local to the agent, called lookup tuple space. By
using the same name (LookupTupleSpace) for all local lookup tuple spaces, we
are able to take advantage of LIME's transparent sharing of tuple spaces with the same
name. Thus, each agent’s lookup tuple space is automatically shared with any co-
located agents. Upon engagement with a new host or group of hosts, this tuple space
is shared with all the agents in the community, forming a federated lookup tuple

space. Since engagement and disengagement are atomic operations, each agent sees a
consistent and up to date set of services available across the ad hoc network.

A client searches for services by querying the federated lookup tuple space using a
template that describes the desired service. In this template, the client can request a
service with a specific id, services that have certain attributes, services that implement
certain interfaces, or a combination of the above. A tuple is considered to match the
client’s requirements if the service it advertises has all the propertes the client
demands. For example, if a client wants a color (attribute) printer (interface), a service
that only specifies printing as a capability without giving details about the quality of
printing will not be returned as a possible match for the query.

Once the client has obtained a copy of the matching tuple, it has access to the
service proxy, and can call methods using the interface that the proxy object
implements. There is no standardization for service interfaces. If the client does not
know anything about the proxy interface, it could use the Java reflection mechanism
to discover what a proxy can do, but the semantics of the method and argument names
ave difficult to correctly interpret automatically. This led us to favor an approach that
assumes a common Fava interface known to both the programmer of the client and the
programmer of the service. This way, the client can correctly prepare the arguments
and call the methods on the proxy object.

4.4 Service Continuity upon Migration — Mobility Implications

Mobile agents run the clients and the services. At some point, an agent running a
client or an agent providing a service may decide to migrate to a new host. With tuple
space based communication no special measures are required to resume collaboration
between the client and the server when migration occurs and if client and server
remain within communication range. The tuple spaces {associated with the application
and used for client/server coordination) are automatically transferred to the new
location, and the respective tuple spaces continue to be uniformly accessed since the
location does not influence the process of tuple retrieval.

If the agent running the client decides to move, a private socket protacol between
the proxy and its server must reopen the communication channel with the server using
the same location information. If RMI is being used for communication, the client
will reuse the location information to contact the remote RMI registry and obtain a
new proxy object. This is necessary because the RMI implementation embeds the
location of both communication ends in the proxy object generated (i.e., an RMI stub
object cannot be transferred and reused on a different host from the one where it was -
deployed by the RMI infrastructure — the stub is tied to the host where is was first
deployed).

If the agent running server code migrates, its physical location tuple must be
updated. The clients will need to reconnect to the server using the new location
information. In the case of RMI communication, the server also needs to re-register
with the new RMI registry at the new location. The client will need to download a
new proxy object (RMI stub file} from the RMI registry using the new physical
location information.

10

Agent migration in LIME is supported via pCode. The implementation preserves
the memory state, but not the execution state, This means that at its destination, the
agent restarts execution with the memory initialized to the content present when the
migration was triggered. This initialization includes the re-registration of the services.
Having the memory content preserved helps implementing a resume behavior. That is,
it can only perform those actions from the registration that are absolutely needed (e.g.,
it can only update the location tuple). This also allows the client and the server to
resume the communication frem a certain point without restarting the entire task.

4,5 Discussion

LIME offers support for implementing the service model in the mobile ad hoc
networking enviromment. The transient sharing of the tuple spaces used in LIME
enables the atomic update of the service registry, maintaining its consistency across
connected hosts. A single interface allows access to the entire federated tuple space as
if it were local. However, some changes in the functionality of LIME were required.
The initial public release of LIME has typical Linda-style pattern-matching
capabilities. The actuals in the template fields must match exactly the type of the
corresponding fields in the tuple being examined. It tums out that we needed
additional flexibility in our implementation. We changed the matching algorithm to
allow polymorphism in pattern matching, i.e., a field containing a formal in a template
will match the corresponding field in a tuple if the latter implements the interface, or
subclasses the pattern type. This is necessary in order o enable clients to use services
they discover for the first time and for which they know only an interface that the
service implements. The stricter pattern matching would have required the client to
already have the class file of the proxy it receives, thus reducing the usability of the
services. Given the particularities of the Java programming language, in order (o use
an object, the JVM must have access to the class file of which the object is an
instance. To use a service that is discovered for the first time, the client needs to
obtain the class file of the proxy object, not only an instance of it. In Jini or in simple
RMI based applications, the class file is obtained via HTTP download from the host
that offers the service. We provide this class file via the registration tuple. This code
on demand approach helps keep a small footprint for services on the client side. The
code can de downloaded if needed and discarded when no longer useful. The
approach also enables dynamic updates to the latest version of the service advertised
by a server.

The pattern matching policy used has a big impact on the representation of a
service in the tuple space. Because of the Linda-style pattern matching, a tuple can
match only templates of the same arity. A service can advertise itself by publishing
multiple capabilities and attributes. A client may be interested in only part of service’s
portfolio. This eventually leads to a situation where the template generated by the
client needs to match only part of the service’s advertisement. Because of the strict
pattern matching implementation currently available, the representation of a service in
the tuple space is a group of tuples that covers the cartesian product of the set of
attributes and the set of capabilities advertised by the service. We can reduce the
number of tuples and, implicitly, the memory usage and the time for service jookup

11

by changing again the pattern-matching algorithm. We plan to adapt the pattern
matching policy so that each field contains an element that is a set and a field in the
template will match a field in a tuple if the template field represents a subset of the
corresponding field in the tuple. The set inclusion should be understood as using the
polymorphism mentioned above. This change will allow us to the use only one tuple
for each advertised service, where the fields representing the attributes and
capabilities are sets both in the tuple and in the template. The basic element in pattern
matching algorithms is the evaluation of a predicate over the elements being checked.
In our case these elements are corresponding fields from the tuple and the template. In
the first step we relaxed the strict Linda-like pattern matching by enabling the object
oriented polymorphism in predicate evaluation. Next step is to refax even more the
algorithm by providing a way to overcome the limitation introduced by the arity of
tuples or templates. A template with n fields could match at most the tuples of arity n.
While this condition is still preserved, introducing set inclusion predicates, will allow
us to relax further the comparison of individual fields. Other policies may allow
templates to specify a range of values for the data in the tuples or any other type of
predicate to be used. Our current plan is to include application-supplied field
matching conditions

The semantics of the lookup operation can vary from implementation to
implementation. One could choose to block the client until the lookup operation
returns successfully. Another implementation may allow the client to continue
execuiion if an attempt {o use a service fails. A third case may allow the client to
announce its interest for a service and its desire to be notified when the service
becomes available. In some cases, the client may need more than one service of a
given type, an implementation of the look up primitive that handles groups of tuples.
Other situations may permit a client to use a service whenever the latter becomes
available. All these kinds for implementation of the lookup primitive are eas ily
constructed on top of LIME.

Finally, another interesting observation is that the clients and the servers could use
the entire LIME API as an extension to the standard Java APL This API can be
explicitly used for communication and coordination.

5. Conclusions

This paper examined the service model (widely used in client-server systems) with
respect to its ability to support flexible application development in an ad hoc
networking environment. We have been able to show that the complexity of the ad
hoc networking can be hidden behind a simple service registry interface that can offer
transparent access to both local and remote services in a uniforim way. The effects of
mobility are completely masked and expressed simply as changes in the contents of a
local service registry. This study serves also as a demonstration of expressive power
of coordination models, and of the LIME middleware, in particular.

12

References

U RSN

10.

11.

12.
13.

14.

15.

W. K. Edwards: Core Jini. The Sun Microsystems Press. Fava Series. 1999

J. Newmarch, "Guide to JINT Technologies", APress, November 2000

Jini home page http/fwww.sun.convjini/

Jini specifications http://www.sun.com/jinifspecs/

The community resource for Jini techuology hitp://www.jint.org/

E. Guttman, Service Location Protocol: Automatic Discavery of [P Network Services,
IEEE Internet Computing, 3(4y: 45-33, July 1999

C. Renner, Introduction to the SLP Implementation, 2000, hitp://www.lkn.e-technik.tu-
muenchen.de/~chris/sip/IntroSLP.html

C. Perkins, White Paper on SLP, 1997.

htep://playaround.sun.com/srvioc/sip white paper.htm]

E. Guttman, C. Perking, RFC 2608: Service Location Protocol, Sun Microsystems, June
1999.

Universal Piug and Play Forum. Universal Plug and Play home page.
http:/;www.apnp.orgf, 2001
Y. Goland, T. Cai, P. Leach, Y. Gu: Simple Service Discovery Protocol
htip:www.upnp.org/download/draft cai sedp vl 03.txt

Microsoft Corporation, Shivaun Albright, Hewlett-Packard Company, QOctober 1999
Salutation Specifications, http:/www.salutation.org/, 2001

Murphy, A. L., Picco, G. P, and Roman, G-C., “LIME: A Middleware for Physical and
Logical Mobility,” Proceedings of the 21 International Conference on Distributed
Computing Systems, April 2001, pp. 524-533.

Picco, G.P., Murphy, AL, and Roman, G-C.,, "Lime: Linda meets Mobility," In
Proceedings of the 215t International Conference on Software Engineering, May 1999,
pp. 368-377.

D. Gelernter, N. Carriero, “Coordination Languages and Their Significance™,
Communications of the ACM, vol. 35, no. 2 feb 1992, pp. 96-107

13

	Services Provision in Ad Hoc Networks
	Recommended Citation
	Services Provision in Ad Hoc Networks

	tmp.1439916845.pdf.6SRPu

