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 Due to the fact that executive control abilities are necessary for successful 

execution of many cognitive and real-world tasks, interest has arisen in determining how 

these abilities can be improved. A previous study demonstrated that both practice and 

strategy training improved performance in older adults on an executive control task 

requiring goal maintenance abilities (Paxton et al., 2006), but no previous research has 

investigated the amount of exposure to this executive control task during training.  Thus, 

questions remained about whether amount of exposure (e.g., extended experience with 

one task or limited experience with multiple tasks) or type of intervention (e.g., training 

or practice) improve performance through different cognitive mechanisms.  In order to 

address these questions, this dissertation study sought to determine whether practice and 

training interventions varying in amount of exposure to the trained task lead to 

improvement on the tasks trained and/or untrained transfer tasks.  Results demonstrated 

that, regardless of intervention condition, older adult participants become more accurate 

and efficient on the training task.  The strategy training intervention was only found to 

improve performance on the training task when analyses were conducted to evaluate 
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whether two primary trial types changed in divergent directions.  The lack of significant 

differences between training and practice interventions in raw scores on the training task 

replicates our previous study (Paxton et. al, 2006).  The training and practice 

interventions did not produce significantly different results for the near transfer tasks, and 

therefore, conclusions could not be drawn about whether training and practice improve 

performance using different cognitive mechanisms.  Also, compared with interventions 

involving limited experience with multiple goal maintenance tasks, interventions 

involving greater exposure to one goal maintenance task only led to a significant 

improvement in performance on the near transfer task when analyses were conducted to 

evaluate whether two primary trial types changed in divergent directions, and may have 

been influenced by pretest differences across training conditions.  No differences were 

found among the interventions in terms of facilitation of far transfer.  
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CHAPTER 1: OVERVIEW 
 

Consistent with the frontal theory of aging, previous studies have demonstrated 

that, relative to younger adults, older adults show impairment on various executive 

control tasks.  Successful execution of many experimental and real-world executive tasks 

require goal maintenance or the ability to use goal relevant information in order to 

prepare for and execute a goal.  One way of using goal relevant information to reach a 

goal is to activate, integrate, and maintain goal relevant information.  Older adults have 

been shown to show deficiencies in these goal maintenance abilities.   

Due to the fact that executive control abilities are necessary for successful 

execution of many cognitive and real-life tasks, interest has arisen in determining how 

these abilities can be improved.  Although studies have assessed the effects of various 

practice and training interventions on cognitive abilities such as memory and/or fluid 

intelligence, few studies have assessed the effectiveness of interventions on executive 

control abilities.  A previous study demonstrated that both practice and strategy training 

produced improved performance in older adults on an executive control task requiring 

that one activate, integrate, and maintain goal relevant information (Paxton et al., 2006).  

Still, questions remain about whether different intervention procedures such as training 

and practice improve performance through different cognitive mechanisms, which can be 

measured by ability to transfer improvement to untrained tasks. 

  Thus, this dissertation study compared performance in intervention and transfer 

tasks between conditions involving (a) simple practice on one task requiring goal 

maintenance ability, (b) simple practice on multiple tasks requiring goal maintenance 

ability, (c) strategy training on one task involving goal maintenance abilities, and (d) 
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multi task strategy training designed to improve the ability to apply goal maintenance 

strategies flexibly.  An additional component of this study that was not included in our 

previous study was the implementation of an approach to strategy training that 

encourages generalization by applying the strategy across multiple tasks that all share a 

common goal structure in the multi task intervention condition.  It was predicted that no 

differences would be uncovered between the strategy training and practice conditions on 

the task used in both interventions, which was predicted by the results of our previous 

study.  It was hypothesized that, compared with both practice and single task training 

conditions, the multi task strategy training condition would lead to greater improvements 

on the transfer tasks that were not involved in any of the interventions.  

Determining whether practice or strategy training differ in effectiveness in 

improving goal maintenance abilities has important implications for scientific theory and 

clinical practice.  First, determining the effectiveness of interventions could guide future 

research and clinical applications for improving executive control and other abilities in 

healthy individuals as well as those with a variety of psychiatric or neurological deficits.  

Furthermore, learning more about the effectiveness of these interventions and whether 

they lead to transfer to other tasks provides insight about the cognitive processes involved 

in the executive control tasks.  Additionally, we can gain insight about how cognitive 

processes are altered with practice and training interventions.  Thus, if different 

interventions have different influences on cognitive mechanisms, then it may be possible 

to design interventions specific to the cognitive process that is disordered in clinical 

populations.    

 



  
3 

CHAPTER 2:  LITERATURE REVIEW 

The first section of this chapter contains an overview of the literature on age-

related deficits in executive control and goal maintenance.  The second section includes a 

review of the literature on studies assessing the effectiveness of various interventions in 

improving cognitive performance in older adults.  The third section reviews questions 

that remain and motivate research on interventions aimed to improve executive control in 

older adults.   

Executive Control 

Overview of Executive Control 

Cognitive control has been defined as “the ability to orchestrate thought and 

action in accord with internal goals” (Miller & Cohen, 2001, p. 167).  Executive control 

includes complex behavioral output requiring planning and sequencing, attending to 

multiple tasks or switching among tasks, the ability to inhibit inappropriate responses, 

abstract reasoning ability, the ability to generate hypotheses, and concentration 

(Mesulam, 2002; Smith & Jonides, 1999; Miyake et al., 2000).  Conceptualization of 

executive control has arisen from neuropsychological studies of patients with frontal lobe 

damage, which has guided the selection of neuropsychological tests for assessment of 

frontal impairment (Stuss & Levine, 2002).  

Defining the concept of executive control has been challenging (Miyake et al., 

2000) and complicated by the fact that the relationship between executive control deficits 

and frontal lobe damage is not definite in every case and there are discrepancies about 

which cognitive processes are executive (Baddeley, 2002).    Furthermore, attention has 

been focused both on determining whether there are different executive abilities that can 
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be dissociated and on deriving a sensible way of taxonomizing.  This work has resulted in 

one such theory proposing that executive abilities can be dissociated into updating, 

shifting, and inhibition abilities (Miyake et al., 2000).   Furthermore, it has been asserted 

that abilities such as selective attention, inhibition, switching attention, goal planning, 

updating working memory, and managing information in working memory are executive 

control abilities (Smith & Jonides, 1999). 

For instance, working memory has been regarded as an important aspect of 

executive functioning and is required for successful completion of many cognitive and 

functional tasks.  Following an influential theory asserting that executive processes are 

involved in the way that information is stored in short term memory (Atkinson & 

Shiffrin, 1971).  Baddeley (1986) developed a widely used explanation for working 

memory.  Baddeley’s model describes a short-term storage system for visual and verbal 

information with the “central executive” where executive processes occur with 

information held in the verbal and visual stores.  Studies have supported the importance 

of updating or monitoring the contents of a working memory storage system so that new 

information can be stored by extinguishing the processing of old information (Miyake et 

al., 2000). Furthermore, the concept of “controlled attention” is proposed to represent 

maintenance and inhibition of information in working memory, which is used during a 

variety of executive control tasks such as those requiring that goals are maintained or that 

decisions are made despite conflicting information (Engle et al., 1999).   

Other important executive abilities are focused attention and inhibition, which are 

necessary in a variety of situations such as when two goals are in conflict (Smith & 

Jonides, 1999).  The Stroop task (Stroop, 1935) is a commonly used test that assesses 



  
5 

selective attention and ability to inhibit irrelevant stimuli.  In this task, participants are 

shown stimuli consisting of color names in different color ink.  They are instructed to 

either read the color name or report the color of the ink.  Because word reading occurs 

more automatically and faster than color naming, the ability to name the ink color is 

facilitated by a matching color name and interference occurs when the color name does 

not agree.   Thus, the ability to successfully identify the color requires that one attend to 

the goal and the stimuli while inhibiting the word name.  Another task assessing ability to 

inhibit information within a working memory store is a variant of the Sternberg task.  

When individuals are required to differentiate between items shown in a current memory 

set and items shown in a very recent memory set, neuroimaging research has suggested 

that successful performance requires that the relevant stimuli is held in working memory 

while the irrelevant stimuli is inhibited (Jonides et al., 2002).    

Age-related Deficits in Executive Control 

Examination of cognitive change with age has been an area of intense study with 

results showing that age-related cognitive decline is most notably evidenced by 

impairment in memory and executive functioning (Buckner, 2004). For example, older 

adults have shown impaired performance in comparison with young adults on 

neuropsychological tests regarded to assess executive functioning.  For instance, the 

Wisconsin Card Sorting Test (WCST) was developed with the purpose of assessing 

frontal functions (Milner, 1963) thought to represent shifting abilities (Miyake et al., 

2000). Older adults have demonstrated impaired performance relative to young adults on 

the WCST (Kramer, Humphrey, Larish, Logan, & Strayer, 1994; Rhodes, 2004).  

Similarly, several studies show impaired performance in older adults compared with 
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young adults on the Stroop task (Spieler, Balota, & Faust, 1996; Rush, Barch, & Braver, 

2006; West & Baylis, 1998), which assesses effectiveness of attention (Lezak, 2004) and 

ability to inhibit responding based on the more automatic color naming ability.   

Studies using more experimental cognitive tasks have provided additional 

evidence of executive control deficits with age.  This work has revealed deficits in a 

number of domains, including coordinating multiple task sets in working memory (Kray 

& Lindenberger, 2000; Verhaeghen et al., 2005), inhibiting a response based on 

misleading information (Jacoby, Bishara, Hessels, & Toth, 2005), anticipating a target in 

an antisaccade task (Nieuwenhuis et al., 2004), completing a complex working memory 

span task (Myerson, Emery, White, & Hale, 2003), rejecting familiar but incorrect items 

on a working memory recognition task (Oberauer, 2001, 2005), updating previously 

viewed information (Johnson, Mitchell, Raye, & Greene, 2004; Johnson, Reeder, Raye, 

& Mitchell, 2002), performing an event-based prospective memory task with  cues 

unrelated to ongoing activity (Einstein & McDaniel, 2005), and working memory 

impairment due to a deficit in inhibitory control (Hasher & Zacks, 1988).  It has been 

shown that as the executive control demands of a task increase, older adults’ pattern of 

performance becomes more divergent from young adults (e.g., Verhaeghen, Cerella, 

Bopp, & Basak, 2005).  Further evidence of executive control deficits has been derived 

from studies using summary or factor scores representing executive control abilities.  

Thus, in a study of older adults attempting to replicate the executive functioning factors 

identified in young adults (Miyake et al., 2000), significant age-related deficits were 

uncovered for factors representing updating, inhibition, and shifting factors, but the 

access factor did not show age-related deficits (Fisk & Sharp, 2004).  
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Furthermore, executive control abilities in older adults have been investigated 

using more ecologically valid tasks such as a task requiring that older adults plan and 

execute steps in a simulated cooking breakfast task.  Older adults showed significant 

deficits in working and prospective memory in this task (Craik & Bialystok, 2006).  In 

addition, researchers have found that the “real-life” ability to follow through in taking 

medication was predicted by performance on tests of working memory and executive 

control in older adults (Insel, Morrow, Brewer, & Figueredo, 2006).   In summary, age-

related executive control impairment has been shown in a variety of tasks and recent 

evidence suggests that these deficits likely influence everyday functioning.   

Prefrontal Cortex and Executive Control 

Evidence that the prefrontal cortex mediates executive control ability has been 

provided by studies demonstrating that damage to the prefrontal cortex results in 

impaired performance on tasks assessing these abilities. For example, such evidence is 

provided by studies demonstrating working memory impairment in primates with 

prefrontal cortex lesions (Goldman & Rosvold, 1970), difficulty on inhibition tasks in 

humans with prefrontal cortex tumors (Leimkuhler & Mesulam, 1985), and impairment 

in making decisions and being cognitively flexible in novel situations in patients with 

prefrontal damage (Godefroy & Rousseaux, 1997).  Furthermore, neuroimaging 

techniques such as functional magnetic resonance imaging (fMRI) have demonstrated 

increased activation in prefrontal cortex regions when individuals perform executive 

control tasks (see Braver & Ruge, 2006, for a review)  

Research studies assessing cognitive change with age also show that executive or 

cognitive control tasks are mediated by the prefrontal cortex in that performance on 
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executive control tasks has been shown to correlate with neuroanatomical changes in the 

prefrontal cortex with age.  For example, decline on a scale of executive control deriving 

items from tests assessing initiation, fluency, digit span, and visual span was correlated 

with longitudinal decline in cortical gray matter and an increase in white matter 

hyperintensities (Kramer et al., 2007).  Furthermore, structural MRI studies have 

demonstrated that performance on the Wisconsin Card Sorting Test is correlated with the 

volume of the prefrontal cortex (Gunning-Dixon & Raz, 2003). 

Frontal Theory of Aging 

Several theories have been put forth in attempt to explain the cognitive changes 

that occur with healthy aging such as reduced processing resources (Craik & Byrd, 1982), 

reduced ability to maintain and manipulate information in working memory (see Light, 

1991, for a review), reduced speed of processing (Cerella, 1985; Salthouse, 1996), and an 

inability to inhibit irrelevant stimuli (Hasher & Zacks, 1998).  The frontal theory of aging 

(West, 1996) postulates that the prefrontal cortex is among the brain areas most strongly 

affected by increasing age. Furthermore, the cognitive abilities mediated by the prefrontal 

cortex decline earlier than other cognitive abilities (Dempster, 1992; West, 1996), which 

has been supported by the observation that cognitive deficits in older adults resemble 

deficits observed in patients with frontal lobe damage (Moscovitch & Wincour, 1995).  

Furthermore, age-related decline has been observed in executive control abilities shown 

to be mediated by the prefrontal cortex.   

Additionally, the frontal theory of aging is supported by neurobiological evidence 

of age-related deficits in the prefrontal cortex (Arnsten, Cai, Steere, & Goldman-Rakic, 

1995; Cabeza, 2001; Peters, Sethares, & Moss, 1998; Raz et al.,  1997; Tisserand & 
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Jolles, 2003; Volkow et al., 1998).  It has been proposed that the neurotransmitter 

dopamine modulates lateral prefrontal cortex function and that dopamine projections to 

the dorsolateral prefrontal cortex are disrupted in older adults, leading to difficulties in 

executive control tasks (Braver & Barch, 2002).  Longitudinal studies measuring the 

volume of gray matter using magnetic resonance imaging (MRI) have provided evidence 

that the prefrontal cortex showed the greatest decline in brain volume with increasing age 

(see Raz, 2005, for a review).  Evidence from studies using fMRI suggest that older 

adults show either increased or reduced activation in comparison with young adults in the 

PFC.  Thus, there are several studies showing increased activation with age (Cabeza et 

al., 2002; Cabeza et al., 2004; Colcombe, Kramer, Erickson, & Scalf, 2005; Grady et al., 

1998; Haut, Kuwabara, Leach, & Callahan, 2000; Langenecker & Nielson, 2003; 

Langenecker, Nielson, & Roa, 2004; Logan et al., 2002; Persson et al., 2004; Rosen et al., 

2002; Rypma & D'Esposito, 2000; Townsend, Adamo, & Haist, 2006).   Enhanced 

activity in lateral PFC regions has been interpreted as reflecting either compensatory 

activation in response to reduced efficiency/integrity of activation (Buckner, 2005; 

Cabeza et al., 2004; Cabeza et al., 2002; Cabeza et al., 1997; Grady, 2000; Mattay et al., 

2006; Park et al., 2004; Rosen et al., 2002) or non-selective recruitment of task regions 

not necessarily helpful for task performance (Li, Lindenberger, & Sikstrom, 2001; Li & 

Lindenberger, 1999; Logan et al., 2002; Tisserand & Jolles, 2003).   

Given the substantial evidence reviewed about neural degradation with age, it is 

encouraging that research has shown that older adults can compensate for less efficient 

neural processing by activating different regions or the same regions at a greater 
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magnitude.  Research providing evidence of compensation suggests that more effective 

performance and processing can occur despite age-related neural changes.  

Goal Maintenance  

 Much experimental research aimed to better understand cognitive functioning in 

experimental tasks, in neuropsychological tests used for diagnosis, and in daily activities 

require executive control abilities.   Successful execution of many executive control tasks 

requires goal maintenance, which is conceptualized here as the ability to use goal relevant 

information effectively to complete a task goal. There are different ways that one can use 

goal relevant information to achieve a goal. One way is to use goal relevant information 

in order to prepare in advance by activating, integrating, and maintaining this information 

before responding.  It may be that use of goal relevant information in this way could 

compensate for age-related decline in executive control abilities such as working 

memory.  Specifically, one must activate the goal by attending to relevant information 

and ignoring irrelevant information presented in the environment.  Then, one must 

integrate this relevant goal-related information with the goal of the task in order to 

translate it into an action plan.  Finally, one must maintain this action plan until a 

response is required.  This approach to using goal relevant information is synonymous 

with using what is termed a proactive cognitive control strategy (Braver, Gray, & 

Burgess, 2007).   

Conversely, another strategy would be to exert minimal attention to the goal 

relevant information when it is first presented. Specifically, using this alternative 

approach would entail activating the goal-related information and translating it into an 

action plan at the time when a response is required.  This approach does not require that 



  
11 

the action plan be maintained and is referred to as reactive control (Braver et al., 2007).  

It has been proposed that optimal performance across varying tasks and responsibilities 

require a combination of reactive and proactive approaches (Braver et al., 2007).  For 

instance, preparing in advance for a response is more effective in situations where one 

must override a tendency to make an automatic, but inaccurate response.  Even though 

preparing in advance with a proactive strategy requires that one exert more neural 

resources across time, this approach will lead to better accuracy.  Alternatively, a reactive 

approach where one waits to integrate goal-related information with the goal of the task is 

likely a better approach when confronting a task with a very lengthy delay between the 

presentation of goal-related information and response.   

Examples of Tasks Requiring Goal Maintenance Abilities 

Examples of tasks requiring goal maintenance abilities will be described for 

further elucidation. The classic AX-Continuous Performance Test (AX-CPT; Rosvold, 

Mirsky, Sarason, Bransome, & Beck, 1956) involves the presentation of consecutive 

pairs of letters that appear on a computer screen individually.  The first letter of each pair 

is called the cue; the second letter is the probe.  Participants are told to make a target 

response for an X (probe) that follows an A (cue) and to make nontarget responses for 

any other cue-probe combination.  Because target (AX) trials occur with high frequency 

(70%), two types of biases are present that influence context goal maintenance in 

different ways.  First, use of goal relevant information is critical for inhibiting a target 

response bias that occurs when an X probe follows a non-A cue (BX trials).  Second, use 

of goal relevant information enables the target expectancy bias that can impair 

performance when an A cue is followed by a non-X probe (AY trials).  Thus, intact 
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representation and use of goal relevant information should lead to impaired AY 

performance but enhanced BX performance.  Conversely, individuals with impairments 

in goal maintenance should show poorer performance on BX compared with AY trials. 

Examination of approaches that individuals use on the AX-CPT has been useful in 

explaining differences in goal maintenance ability.  Proactive control on the AX-CPT 

task involves activating and using goal relevant information provided by the cue to 

prepare to respond to the upcoming probe in advance of its onset (i.e., when the  cue 

letter is A, expect X and prepare to make target response), which leads to increased AY 

errors but decreased BX errors.  In contrast, reactive control on the AX-CPT task 

involves minimal activation of the cue information at the time of cue presentation (i.e., 

expectancies for an X target are not developed following an A cue) but requires 

reactivation of the cue information when the probe appears and a target or nontarget 

response must be made (i.e., if the probe is X, recall if the cue was an A), which causes 

one to be less likely to make AY errors with an increase in BX interference (Braver, 

Gray, & Burgess, 2007).  

Furthermore, a more practical example of a task requiring goal maintenance 

abilities is a prospective memory task where one must remember to execute a particular 

action at a particular time.  For instance, trying to remember to take a certain medication 

after lunch would require goal maintenance.  For example, the goal to take medicine 

could be activated when you see a note posted in the kitchen causing you to attend to the 

goal of taking medicine after lunch.  Next, this goal relevant information must be 

translated into an action plan that involves planning to locate the medicine to take after 
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lunch.  Last, you must maintain this action plan until you have finished your lunch and 

have taken the medication. 

Age-related change in goal maintenance ability 

Evidence of difficulty in goal maintenance abilities is provided by research using 

the AX-CPT task.  In previous studies using the AX-CPT task older adults made fewer 

errors than young adults on AY trials, suggesting that the identity of the cue letter 

resulted in a stronger bias for young adults compared with older adults.  Further, older 

adults had longer reaction times than young adults on BX trials, suggesting that they 

experienced interference from the X probe letter on these trials (Braver et al., 2001; 

Braver et al., 2005).   One interpretation of this pattern of performance in older adults is 

that older adults are more likely to use a reactive approach to the AX-CPT task, whereas 

young adults use a more proactive approach.  Thus, older adults were not as adept in goal 

maintenance abilities requiring that they attend to the cue, integrate this with the goal of 

the task to form an action plan (i.e., after seeing an A cue, plan to make a target response 

if X follows A), and maintain the action plan.  Older adults’ pattern of performance 

demonstrated that they were less likely to activate the cue information and translate it into 

a plan to bias processing in advance, which may be due to difficulty at any step in the 

goal maintenance process.  A study that investigated the effects of manipulations on the 

length of cue presentation demonstrated that the different pattern of performance found in 

older adults is not due exclusively to a failure to maintain the identity of goal relevant 

information in the form of the cue on this task.  Thus, we proposed that another aspect of 

goal maintenance is responsible for age-related performance deficits (Paxton, Barch, 

Storandt, & Braver, 2006).  In a recent study comparing young and older adults in 
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patterns of brain activation while completing the AX-CPT task, older adults showed 

significantly greater activation in prefrontal regions at the time of the probe, whereas 

young adults showed significantly greater activation at the time of the cue.  Increased 

activation at the time of the probe in comparison with the cue provides additional support 

that older adults use a reactive approach in exerting neural resources at the time when a 

response is required instead of at the time of the cue (Paxton, Barch, Racine, & Braver, 

2008).   

Cognitive Interventions 

Overview 

 Goal maintenance abilities are necessary for many cognitive and executive control 

tasks that older adults often confront.  For instance, one must remember important goals 

that directly affect their own health and wellbeing (e.g., taking medication, following 

medical advice, exercising, cooking, paying bills), the well-being of their family (e.g., 

transporting and/or caring for health needs of friends and family), and responsibilities as 

members of society (e.g., safe driving, following through with responsibilities associated 

with employment or volunteer work).  As such, it would be beneficial to improve 

performance in these goal maintenance abilities in older adults.   Further, research aimed 

to identify means of improving goal maintenance abilities in older adults has the potential 

to be beneficial in providing insight about how older adults could be better able to 

function with many real-life executive control responsibilities.   

Research has been completed assessing different types of interventions (e.g., 

practice, strategy training) seeking to improve different abilities (e.g., memory, speed) in 

different populations (e.g., older adults, brain-injured patients).  In an attempt to examine 
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this literature in a coherent way, I will outline the methods and results of studies seeking 

to improve abilities in various populations according to the type of intervention used.     

Four different general classes of intervention methods will be presented ranging from the 

simplest with no change to the task (i.e., practice) to more complicated interventions 

involving many manipulations (i.e., explicit strategy training).   

Interventions Involving Practice 

When simple practice is used, it is assumed that the participant generates the 

approach or strategy used and that any improvement is due to the person’s intrinsic 

capacity to derive an effective means of improving.  Several studies have demonstrated 

that simple practice is effective in improving performance in older adults.  For example, 

older adults perform better on a similar fluid intelligence task after practicing a type of 

fluid intelligence ability consisting of figural relations problems (Baltes, Sowarka, & 

Kliegl, 1989; Blackburn, Papalia-Finlay, Foye, & Serlin, 1988).  Additionally, studies 

have shown that older adults benefit from practice to the same degree as young adults on 

a task- switching task (Kramer, Hahn, & Gopher, 1999) and the Stroop task (Davidson, 

Zacks, & Williams, 2003; Dulaney & Rogers, 1994).  Practice on the AX-CPT task 

resulted in older adults performing more like young adults with an effect that did not 

significantly differ from the effect of strategy training (Paxton et al., 2006).  Still, 

Jennings and colleagues (2005) found that practice with feedback on a recognition task 

did not improve accuracy but led to faster reaction times, whereas a more complicated 

training procedure improved both accuracy and showed transfer effects.    

Additionally, studies have examined the effect of practice with young adults using 

neuroimaging techniques.  For instance, young adults who practiced a visuospatial 
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working memory task for 5 weeks showed decreased reaction times and transfer of 

improvement in reaction times on a Stroop task (Oleson, Westerberg, & Klingberg, 

2004).  This study also found that activation in prefrontal and parietal areas increased 

after practice (Oleson et al., 2004).  Finding increased activation after practice in the 

same areas activated before practice is suggestive that the same strategy was used before 

and after the practice intervention with greater proficiency indicated after the intervention 

(Jonides, 2004).  These results of increased activation after practice contrast with studies 

showing decreased prefrontal activity after practice generating a verb when presented 

with a noun (Raichle et al., 1994).  Thus, these results suggest that practice leads to a 

decline in neural activation in regions including the prefrontal cortex when the task 

becomes automatic with practice, but practice results in increases in neural activation 

when the task is novel or demanding of attention or working memory capabilities (Oleson 

et al., 2003).  Another study with young adults provided evidence that an intervention of 

simple practice brought about increases in grey matter in the temporal and parietal 

regions after spending 3 months learning to juggle (Draganski et al., 2004).  Thus, 

functional and structural brain changes after practice suggest that the brain is malleable 

and that plasticity is possible due to simple practice, though a question remains about 

whether this is also true in older adults.  

It is encouraging to find that practice interventions lead to performance 

improvements and neural changes.  Thus, simple practice results in changes in a variety 

of abilities including fluid intelligence, executive control, and motor learning.   Practice 

effects could also influence results of investigations that use cognitive tests repeatedly 

over time.  Thus, it is important to study and understand the influence of simple practice 
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on performance and patterns of brain activation.  Although the studies reviewed provide 

evidence that simple practice is as effective as other interventions in improving 

performance on the task practiced, there is little evidence that simple practice leads to a 

transfer of benefit to novel or different tasks than those practiced for older adults.  Thus, 

it is of interest to determine whether the cognitive process that leads to improvement on a 

task with practice is the same process that leads to improvement with more involved and 

complicated intervention procedures.  

Interventions Involving Practice with Constraints 

Studies assessing the effectiveness of intervention involving practice with some 

aspect of the task being manipulated or constrained will be discussed next.  These 

interventions are more complicated because the way that the stimuli are presented is 

changed in some way so that the task demands different skills than the same task without 

the manipulation.  Still, these studies do not explicitly instruct participants to change the 

way that they confront the task even though the manipulations usually require that one 

change the approach used.  For instance, using a different condition than simple practice 

mentioned in the previous section, Jennings and colleagues (2005) used an intervention 

including practice with feedback and an incremental increase in the delay in which words 

were presented.  Results demonstrated that accuracy and reaction times improved on a 

recognition memory test after training, suggesting that these incremental increases in 

delay and the requirement that one recollect the stimuli aided in the ability to expand the 

amount of time that the individual could store the information (Jennings et al., 2005).   

A speed of processing intervention involved a discussion about the importance of 

speeded processing in many tasks followed by computerized practice with speeded tasks 
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wherein the difficulty increased incrementally. This training led to improved performance 

on a test of visual-processing speed (Edwards et al., 2005; Vance et al., 2007), which was 

maintained for 2 years (Vance et al., 2007).  Improved performance was also found in 

instrumental activities of daily living (Edwards et al., 2005), but no transfer to 

neuropsychological tests in other cognitive domains such as memory, executive 

functioning, or visuospatial skills were uncovered (Edwards et al., 2005; Vance et al., 

2007).   

While assessing dual task performance, Kramer and colleagues (1995) compared 

a variable priority condition where the priority placed on each condition varied within 

each task block and a fixed priority condition where the priority did not vary.  They 

found that both young and older adults in the variable priority condition showed 

improved performance on the trained test as well as a novel dual task test.  This observed 

ability to transfer benefit suggested that this variable training improved the ability to 

process the stimuli in such a way that it became automatic and allowed participants to 

gain generalizable skills in coordinating the components involved in a dual task activity 

(Kramer, Larish, & Strayer, 1995).  In a subsequent study, however, Bherer et al. (2005) 

used a paradigm where both tasks required the same motor response and found that both 

variable and fixed priority training led to improvements in performance with no 

significant difference in type of training.  Furthermore, it was determined that both older 

and young adults improved on a dual task ability when an individualized limits-testing 

training approach was used, suggesting that older adults possess reserved capacity for 

improvement (Bherer et al., 2006).  Another study assessing practice with a constrained 

task found that older adults performed like young adults on a measure of switch costs 



  
19 

when working memory demands were decreased.  Thus, when a task is structured or cues 

are used in a way that does not require that one keep track of switch trials, older adults 

perform like young adults, but they do not show as significant improvement when they 

must keep track of when a switch trial will occur without cues (Kramer et al., 1999).  

Furthermore, in a study assessing the effects of practice with a deadline procedure 

requiring that individuals increase their speed of response as they completed the task, 

older adults improved to a greater degree than young adults in reaction time on a working 

memory task (Baron & Mattila, 1989). 

In summary, improved performance in older adults has been demonstrated with 

several intervention methods where the task is constrained with incremental increases in 

delay or difficulty, decreases in time given to respond, use of cues, or practice varying the 

degree of effort exerted on different aspects of a task.  Thus, benefits in performance can 

be obtained with tasks structured in a way that makes it consistently challenging and/or 

requires adoption of a flexible approach to the task.  The benefits of these interventions 

were maintained across time when maintenance was assessed. Transfer of benefit was 

found for cognitive tasks that were very similar in demands and structure to those 

practiced.  Also the speed of processing intervention produced transfer of benefit to daily 

living skills.    

Plasticity Interventions 

Another set of intervention methods involves what will be referred to as plasticity 

training, which is motivated by the theory that age-related decline is reversible and 

deficits are due to impoverished environments (Baltes & Schaie, 1976).  Thus, this leads 

to the hypothesis that cognitive resources should be stimulated or exercised in a variety of 
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domains in order to promote more efficient teaching of new skills or general cognitive 

processing.  The plasticity interventions described in this section differ from simple 

practice in that they involve practice on multiple tasks instead of just one.  Practice on 

multiple tasks is what is hypothesized to lead to stimulation or exercise of cognitive 

functions.   

Mahncke and colleagues (2006) conducted a series of studies using a training 

intervention designed to stimulate and exercise language systems.  The goal of this 

intervention was to compensate for reduced use of neural resources and increased noise 

thought to interfere with effective processing in older adults.  The language-training 

protocol increased in difficulty according to criterion achieved and resulted in improved 

performance in comparison with a control group.  Additionally, transfer of improved 

performance was found on neuropsychological measures.    

It has been hypothesized that interventions will be beneficial if they lead to and 

increase neural activity.  Thus, a study compared training in theatre skills with visual arts 

training.  The theatre-training group was found to be superior to a control group on word 

recall performance and superior to a visual arts training group in problem solving ability.  

It was proposed that theatre training successfully improved cognitive performance 

because actors must multitask and the training stimulated effort on a novel set of tasks 

that involved multiple modalities (Noice, Noice, & Staines, 2004).    

Other studies have examined attention process training, (Sohlberg, McLaughlin, 

Pavese, Heidrich, & Posner, 2000, p. 656), which involves practice with a variety of 

auditory and visual attention tasks that increase in difficulty with experience.  This 

procedure is effective in training specific strategies or skills instead of improving 
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previously utilized skills or general attention abilities in patients with traumatic brain 

injury (e.g., Park, Proulx, & Towers, 1999).  For instance, attention process training led 

to greater improvement than an education intervention in performance on 

neuropsychological tests of executive control and working memory not used during 

training in brain-injured patients (Sohlberg et al., 2000).   

 Another study assessed the effect of an intervention involving practice on tasks 

requiring skills in several cognitive domains (e.g., attention, memory, nonverbal 

intelligence) with patients with Alzheimer’s disease and mild cognitive impairment.  The 

results demonstrated improvement on the tasks used in the intervention as well as transfer 

to multiple neuropsychological tests in those with Alzheimer's disease.  Individuals with 

mild cognitive impairment showed improvement that transferred to one 

neuropsychological test.  These results suggest that the intervention is effective in 

improving performance on the task trained and on some transfer tasks but suggests that 

training differentially affects different clinical populations  (Cipriani, Bianchetti, & 

Trabucchi, 2006).  

 In summary, these plasticity interventions involving multi task practice in a 

variety of domains including language, attention, dual task processing, memory, and 

reasoning has resulted in successful transfer of improvement to neuropsychological tests 

assessing more global cognitive skills.  These results suggest that efforts to stimulate 

cognitive resources through plasticity training produce an improvement in cognitive 

processing across domains. 
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Interventions Involving Explicit Training 

Another type of intervention aiming to improve performance on cognitive tests 

and abilities will be referred to as explicit training.  These interventions are characterized 

by explicitly instructing participants about how to approach tasks or use a strategy to 

improve performance.   For instance, Ball and colleagues (2002) completed a multi-site 

study that involved specific training in either verbal episodic memory, inductive 

reasoning ability to solve problems involving serial patterns, or speeded processing in 

visual search problems.  Training involved instructions about new strategies and practice 

with these strategies.  All groups showed significant improvement in the ability trained, 

although the effects of training did not transfer to cognitive domains that were not trained 

(Ball et al., 2002).  The benefits in performance specific to the ability trained were 

maintained for 5 years and led to an improvement in functional measures of speeded 

processing at 11 and 35 months after initial training on speeded processing abilities 

(Willis et al., 2006).   

Numerous intervention studies have been pursued with aims to improve fluid 

intelligence abilities.  Many of these studies sought to train and improve figural relations 

abilities wherein participants studied rules used on figural relations problems that were 

similar in general structure to those used in the test.  It has been demonstrated that this 

training intervention results in improvements in performance (e.g., Plemons, Willis, & 

Baltes, 1978).  Figural relations training procedures produced stronger improvement 

effects in tasks most similar in structure and content to those trained (Willis, Blieszner, & 

Baltes, 1981).  These fluid intelligence training interventions have been criticized with 

assertions that they train skills specific to the task used during training instead of the 
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processes involved, which might result in the tasks becoming more like crystallized 

intelligence measures instead of fluid intelligence measures (Schaie, Willis, Hertzog, & 

Schulenbert, 1987).  

When three phases of training were investigated over a 7-year period, the greatest 

degree of improvement in fluid intelligence occurred after the initial phase of training.  

Still, plasticity occurred even at the time in the study when participants were oldest 

(Willis & Nesselroade, 1990).  A recent study examined longitudinal data to determine if 

the magnitude of training effects was associated with subsequent mental status changes.  

They found that, compared with nondemented individuals, demented individuals showed 

smaller training gains in reasoning ability compared 7 years prior (Boron, Willis, & 

Schaie, 2007).  

Encouraging results have been derived as a result of strategic memory training in 

older adults (Scogin et al., 1985; Verhaeghen et al., 1992).  Studies have demonstrated 

that individuals undergoing memory training maintain the benefits of this intervention 

over time (Sheikh et al., 1986; Neely & Backman, 1993).  One of the most popular 

memory-training techniques is the method of loci where each word to be remembered is 

associated with a particular location in a sequence.  Older adults improved significantly 

in number of words recalled after training (Kliegl, Smith, & Baltes, 1990), but an older 

group of older adults above age 75 improved to a lesser degree (Singer, Lindenberger, & 

Baltes, 2003).  When these effects were investigated using neuroimaging techniques, 

however, young adults benefited more than older adults from the memory training, and 

only young adults showed an increase in activation in the left dorsolateral prefrontal 

cortex.  Thus, it has been suggested that older adults may not show the same pattern of 
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neural activation because of reduction in resources such as speeded processing (Nyberg et 

al., 2003).    

Although there is significant evidence of age-related changes in executive control 

abilities, few studies have specifically investigated interventions seeking to improve 

executive control abilities such as goal maintenance.  Still, goal management training, 

which involved explicit instructions and practice with real-life examples in exerting 

control over behavior by pausing to plan how to approach sub goals, was shown to result 

in improvements in simulated tasks representing real-life scenarios as well as self-rated 

executive abilities in older adults (Levine, et al., 2007).  A study investigating logical 

reasoning ability in young adults demonstrated that an intervention with inhibition 

training involving warnings was successful in changing patterns of activation from 

posterior to anterior regions, but logical training and practice were not effective (Houde 

et al., 2000).  Thus, the specific type of explicit training used interacts with the type of 

executive control task being trained.  

A strategy training procedure aimed to improve goal maintenance abilities in 

older adults was assessed with the AX-CPT task.  The strategy training first involved 

explicit instructions and practice identifying the cue and deriving an action plan for the 

response.  Specifically, participants first practiced verbally identifying whether the  cue 

was A or not A and then practiced planning for their response by stating “if X, then red” 

when the  cue was A or “yellow” when the  cue was not A.  This strategy training 

intervention was effective in improving goal maintenance abilities on the AX-CPT task in 

older adults (Paxton et al., 2006).  Similar to the training with the AX-CPT involving the 

translation of contingency information from the cue into an action plan, Gollwitzer and 
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Brandstatter, (1997) used implementation intentions whereby one plans to take a certain 

action in the future when a specific event is encountered.  For instance, an 

implementation intention could be “I intend to do Y, when situation X is encountered” 

(Gollwistzer & Brandstatter, 1997, p. 187).  These researchers found that completion of a 

writing task was improved when participants planned when and where they would begin 

the task.  Thus, the process of using implementation intentions is like the strategy training 

on the AX-CPT in that the action is determined (e.g., press target button or begin writing 

paper) but is contingent on a particular event (e.g., if the probe is an X or if it is 

Wednesday morning).  Thus even though contingency planning on the AX-CPT and the 

implementation intentions were used with different types of tasks and populations, both 

techniques proved to be beneficial in improving the ability to follow through with goal 

directed behavior.  

Studies investigating the effects of interventions involving explicit instructions 

have demonstrated encouraging results in terms of improving the abilities trained and 

leading to maintenance of these improvements over time.  Most studies assessing explicit 

training protocols have targeted fluid intelligence and memory abilities with very few 

studies seeking to improve executive control abilities.  When the ability to transfer 

improvement to novel tasks was assessed, results were not encouraging, which has 

resulted in concerns that procedures may train abilities specific to the test used.   
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Questions Remaining about Cognitive Interventions 

Overview 

The investigation of interventions aimed to improve cognition has become an 

important area of inquiry in older adults and other individuals.   Nevertheless, drawing 

conclusions from the multiple studies in this area has been complicated by inconsistent 

results found across studies.   Burgess and Robertson (2002) pointed out several 

explanations to account for ambiguities in intervention studies across various 

populations.  These researchers attribute these inconsistencies to (a) the lack of 

agreement about the definition of the construct being evaluated, (b) differences in 

outcome measures across studies where some studies seek to improve very specific 

abilities and others aim to improve global intellectual ability, (c) differences in the 

populations of participants, and (d) differences in the methodologies used to assess 

outcomes (e.g., fMRI vs. paper test).  Although it is encouraging to find that many studies 

have shown improvement in cognitive performance as a result of interventions, there are 

several questions that remain.  The questions and topics described in this section focus on 

the aim to improve goal maintenance and executive control abilities because deficits in 

these areas are a significant concern for older adults. 

Training Goal Maintenance 

Can the strategy training procedure used in previous studies be applied to 

executive control tasks requiring goal maintenance abilities?  Although much has been 

learned about the effects of explicit training interventions in improving fluid intelligence 

abilities and memory, very few studies have used explicit training to improve or evaluate 

executive control abilities. An explicit training study of fluid intelligence abilities 
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demonstrated that higher scores on measures of strategy use were found to be associated 

with increased gains from pretest to posttest in a group receiving inductive reasoning 

strategy training.  Thus, it has been suggested that strategy use may be a mechanism by 

which explicit training is effective (Saczynski, Willis, & Schaie, 2002).  Evidence that 

older adults do not spontaneously derive effective strategies (Hybertson, Perdue, & 

Hybertson, 1982; Touron & Hertzog, 2004) motivates research with strategy training. 

Previous studies using strategy training have documented improvement in the domains of 

memory and reasoning in older adults.  Therefore, it is hypothesized that strategy training 

would assist with executive functioning abilities.  Previous results (e.g., with the AX-

CPT) reviewed above demonstrated that improved executive control abilities were 

observed after strategy training.  Thus, we ask whether the strategy training procedures 

used previously on the AX-CPT (Paxton et al., 2006) or in studies training memory or 

fluid intelligence would lead to improved performance on other tasks assessing goal 

maintenance or executive control abilities? 

Explicit Training versus Practice  

As reviewed in the previous sections, several different types of interventions have 

been studied and have shown some promise of improving cognitive performance in older 

adults.  Still, very few studies directly compare the effectiveness of different 

interventions.  One aim in comparing interventions is to determine which intervention is 

most effective.  Our ability to make conclusions about the mechanisms that are leading to 

improvement is aided by demonstration that one intervention in more effective than 

another on improving specific outcomes.  Identification of such mechanisms, however, 

has been clouded when two different interventions show very similar effects.  For 
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instance, no significant differences were found between an explicit training intervention 

and simple practice in a study using a figural relations tasks (Baltes, Sowarka, & Kliegl, 

1989) and the AX-CPT task (Paxton et al., 2006).  Thus, if explicit training and practice 

result in the same degree of change in performance on the task, then it would be sensible 

to promote the use of simple practice because it is the most efficient intervention.  

Nonetheless, another study demonstrated that specific mnemonic training is more 

effective than practice with self-generated strategies when a memory test is administered 

without support in the form of cues on a memory test (Derwinger Neely, Persson, Hill, & 

Backman, 2003).  

Even if explicit strategy training and practice both improve performance, it is 

possible that they do so through different mechanisms.  For instance, Schmidt and Bjork 

(1992) suggested that interventions that maximize performance during training do not 

lead to improvements in performance over time, whereas manipulations that hurt 

performance during training lead to better maintenance. Thus, the mechanism leading to 

benefit from training versus practice is complicated and likely to be influenced by several 

factors.  Additionally, it is assumed that when simple practice interventions are used, 

participants will generate their own strategy, which may or may not be effective.  Thus, if 

the strategy generated by a participant in the practice condition is effective, then practice 

may be beneficial in leading this strategy to become more automatic.  Alternatively, if a 

participant in the practice condition is not able to generate an effective strategy, then 

practice may not be helpful as additional experience with an ineffective approach does 

not make it effective.  Despite the importance of these questions in determining the 

cognitive mechanisms involved as a result of strategy training and practice interventions, 
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it is often not possible to observe the strategy that one spontaneously derives and how 

strategy use changes over time with and without direct intervention.  

Transfer 

It may be possible to differentiate between mechanisms leading to performance 

improvements via practice versus explicit training by looking at more diverse sets of 

measures.  Hence, one way of determining whether the cognitive process occurring as a 

result of an explicit training intervention differs from the process resulting from a 

practice intervention is to assess ability to transfer improvement to a task not used during 

the intervention.  The ability to transfer benefit suggests that a “generalizable task 

coordination or management skill” (Kramer et al., 1995, p. 69) or an effective way of 

approaching multiple tasks was gained during the intervention.  

Based on the review of the studies using interventions aiming to improve 

performance, it can be concluded that virtually any intervention will lead to an 

improvement in older adults on the task used.  Transfer of improvement to novel tasks is 

more challenging to achieve (Edwards et al., 2005; Kramer & Willis, 2002).  Thus, 

transfer effects are very desirable; such results suggest that a change has occurred in the 

way that the participant confronts the task or that the cognitive processing has been 

altered.  Also, any intervention would be most efficient if it not only improved 

performance on the trained task but others as well.  

In the previous review of studies using an intervention to improve cognitive 

performance in older adults, only a portion showed successful transfer.  Of those studies 

showing transfer, significant improvement was only obtained on a very similar transfer 

task.  Examination of studies producing effective transfer effects leads to two hypotheses 
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about how transfer effects might be facilitated.  First, studies using simple practice of 

working memory ability in young adults (Oleson et al., 2004), task constraints requiring 

the adjustment of one’s approach to a task as it becomes more demanding (Jennings & 

Jacoby, 2003; Kramer, Larish, & Strayer, 1995), and multitask practice aimed to 

stimulate cognitive resources (Cipriani, Bianchetti, & Trabucchi, 2006; Mahncke et al., 

2006; Noice, Noice, & Staines, 2004; Sohlberg et al., 2000) have demonstrated 

successful transfer of benefit to untrained tasks.  The authors of these studies have argued 

that, in order to achieve transfer, it appears to be required that a processing skill is trained 

instead of training skills needed for a specific task used during training. It is notable that 

interventions using multi task exercise aimed to stimulate neural resources led to transfer 

of benefit to novel neuropsychological tests in several studies.  Thus, these results 

suggest that successful transfer is facilitated when one learns to be flexible in the way 

that he or she approaches tasks (Kramer et al., 2005) or when one learns to be flexible in 

improving skills on multiple tasks (Cipriani, Bianchetti, & Trabucchi, 2006; Mahncke et 

al., 2006; Noice, Noice, & Staines, 2004; Sohlberg et al., 2000).  Thus, this leads to the 

hypothesis that interventions that train processing skills and flexibility will result in better 

transfer of benefits.   

The second hypothesis pertains to training effects and stems from an area of 

cognitive theory that has been examined in order to better understand memory 

functioning.  Transfer appropriate processing refers to the finding that memory 

performance is enhanced when the type of information emphasized by encoding is similar 

to the type of information required at the time of the memory test (Morris et al., 1977).  

McDaniel and Schlager (1990) proposed that this principle applies to learning and found 
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that practice discovering strategies transfers to other problem-solving tasks requiring 

development of new strategy.  These results raise a question of whether practicing the 

cognitive process of transferring skills learned to novel tasks would lead to better ability 

to transfer at a later time.  Furthermore, questions remain about whether the ability to 

observe and map analogies in the structure between different tasks that are similar in 

structure, referred to as relational reasoning (Hummel & Holyoak, 2005) could be trained 

with practice using the same strategy instructions on different tasks with similar general 

demands.  Thus, previous studies suggest that transfer is facilitated by practicing the 

process of applying a general strategy to multiple tasks, which is the process that is 

required for successful transfer of improvement to untrained tasks. Additionally, several 

previous studies have asserted that ability to show benefits of skill learning training on a 

retention test depends on the degree to which the “learning procedures are reinstated at 

test” (Healy, Fendrich, & Proctor, 1990, pp. 280).    

One of the primary goals of the current study was to evaluate whether strategy 

training and/or practice interventions facilitate transfer to untrained tasks.  In developing 

the interventions used in this study, I assumed that the development of appropriate 

strategies is necessary to perform well on goal maintenance tasks and that an appropriate 

strategy would need to be developed for the untrained transfer tasks in order for benefits 

of training to transfer.  Therefore, as described in detail in the future chapters, an 

intervention condition was developed that sought to train participants to apply a general 

strategy adaptively to new tasks.  Failure of this intervention to facilitate transfer could 

mean that strategies are not necessary for successful performance on novel untrained 
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tasks or that the intervention did not effectively train the ability to flexibly adapt 

strategies.   

Summary of questions motivating current study.   

 In summary, several questions have been presented inquiring about the 

effectiveness of strategy training and practice interventions that motivated the 

development of the current study.  Is strategy training more effective than practice in 

improving performance on executive control tasks?   Do strategy training and practice 

interventions improve performance with different cognitive mechanisms?  Will strategy 

training and practice show differences in ability to transfer improvement to an untrained 

task, suggesting differences in the cognitive process used?  

Theoretical motivation for study design 

 Most generally, the questions that motivated the current study centered on 

determination of the best intervention for improving goal maintenance abilities in older 

adults.  The discussion of interventions to improve cognitive functioning has focused on 

highly controlled laboratory interventions studies.  Before proceeding into the design for 

the current study, it is important to consider the advantages and disadvantages of the type 

of intervention used in the current study.   

 One type of intervention is what I refer to as direct practical interventions or 

when clinicians intervene with persons suffering from brain injury seek to directly 

improve daily living skills through instructing persons about how to perform them, 

providing compensatory strategies, and/or allowing practice with the skills.  In such real-

world interventions, both the training and outcome measures involve competing real-life 

daily living challenges.  As such, this type of intervention is highly relevant, and if 
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effective, immediately affects some aspect of one’s daily life.  When a daily living skill is 

trained, then it is simple to determine whether the training of the particular skill was 

effective in terms of immediate performance of the desired skill and performance over 

time.   Still, if multiple skills or areas of cognition were targeted at once, then it may be 

difficult to determine what aspect of the training was effective.   

 Another type of intervention is referred to as holistic practical interventions or 

when many different training components (e.g., social interaction, exercise, community 

work, problem solving, cognitive training) are combined in one training procedure.  In 

this type of intervention, training occurs through a combination of real-life and/or 

cognitive tests and outcome is evaluated with cognitive tests.  For instance, a holistic 

intervention involving weekly social meetings where a group of older adults worked 

together to solve problems resulted in those trained showing significantly greater 

improvements in speed, inductive reasoning, and divergent thinking (Stine-Morrow, 

Parisi, Morrow, & Park, 2008).  In another study, older adults with executive control 

deficits who regularly assisted elementary school students with reading showed an 

improvement on an executive control and memory task whereas the scores of those 

without the intervention declined over time (Carlson et al., 2008).  These holistic studies 

show promising results with methods that engage older adults in their community in ways 

that are likely to be enjoyable, increase feelings of self-efficacy, and may benefit the 

community.  Still, given that many factors were included in the intervention, it is not 

possible to know whether one particular aspect of the training procedure or the 

combination of all aspects of the procedure caused the improvement in performance.  



  
34 

 Most of the studies reviewed in Chapter 2 are what I refer to as controlled 

experimental studies where the interventions involve a single manipulations that is highly 

controlled such that the exact cause and underlying cognitive mechanisms of any 

performance change as a result of training can be identified.  These controlled 

interventions involve cognitive tests for training and outcome.  Although I assert that the  

ultimate goal of cognitive interventions is to improve real-life performance in daily living 

skills, the reliance on experimental cognitive tests causes this type of intervention to be 

far removed from real-life stimuli or experiences.  Nevertheless, I have chosen to use this 

type of intervention in the current study due to my goal to focus on one aspect of 

executive control abilities, goal maintenance, and gain knowledge about whether a 

particular intervention improves performance.  It may be more likely that an intervention 

with real-life stimuli would improve real-life performance or an intervention with 

multiple components would show greater benefits in performance.  Still, in the current 

study, I am interested in gaining more precise information about specific strategy training 

and practice intervention to determine if these types of interventions should be included 

in future studies with more real-life implications. Furthermore, focusing on the 

effectiveness of highly controlled interventions that target only goal maintenance abilities 

can provide more conclusive insight about what aspects of intervention procedures are or 

are not effective and provide information about the specific cognitive processes involved 

in the executive control tasks. 
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 CHAPTER THREE:  PURPOSE, RESEARCH DESIGN, AND HYPOTHESES 

Purpose 

 Consistent with the frontal theory of aging, previous studies have demonstrated 

that older adults show impairment on various executive control tasks requiring that they 

activate and maintain goal relevant information.  Even though research has demonstrated 

that various forms of practice or training lead to improved performance on abilities such 

as memory and reasoning in older adults, few studies have been specifically aimed at 

improving executive control abilities such as goal maintenance.   A previous study 

demonstrated that both practice and strategy training produced improved performance in 

older adults on an executive control task requiring the activation, maintenance and 

updating of goal relevant information (Paxton et al., 2006), but this study did not assess 

ability to transfer improvement to other tasks or to maintain improvements over time.  

Thus, questions remain about whether practice and strategy training led to improvements 

on the task through the same mechanisms or through different mechanisms.  For 

example, it is possible that both practice and strategy training altered a general cognitive 

process (e.g., ability to use a strategy for improved goal maintenance ability across tasks) 

or improved the learning of associations among the specific task stimuli. Alternatively, 

practice may improve the learning of task specific associations, while strategy use may 

improve a more general cognitive ability that would transfer to novel task situations.  As 

such, evaluating and attempting to facilitate the ability to transfer improvements to other 

tasks can help us to understand what types of strategic change occur when performance is 

improved through practice and training interventions.  Also, through evaluating transfer, 

we can determine the most effective rehabilitation techniques for improving age-related 
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cognitive changes.  Therefore, in this dissertation study four interventions were compared 

for effectiveness in improving performance, transfer of improvement to other tasks, and 

maintenance of improvement.  The interventions were (a) simple practice on one task 

requiring goal maintenance ability, (b) simple practice on three tasks requiring goal 

maintenance ability, (c) strategy training on one task requiring goal maintenance ability, 

and (d) multi task strategy training designed to improve the ability to apply goal 

maintenance strategies flexibly. Performance was first evaluated on the task used during 

all the training and practice interventions.  Additionally, performance was evaluated on 

untrained transfer tasks in order to investigate differences in the cognitive processes that 

occur after strategy training or practice. 

As reviewed, previous studies have suggested that transfer of benefits will be 

enhanced when interventions train processing skills, flexibility, and the ability to apply 

general strategies to new tasks.  In order to explore this prediction, we expanded the 

strategy training procedure used in our previous study (Paxton et al., 2006) to train 

flexibility and transfer skills.  Thus, in one condition of the proposed study, participants 

practiced applying a general goal maintenance strategy to three different tasks requiring 

goal maintenance abilities.  This multi task strategy training involves implementing an 

approach to strategy training that encourages generalizations through application of the 

strategy in multiple tasks that all share common features.  Specifically, all of the trained 

tasks were assumed to be facilitated by applying a proactive strategy of preparing in 

advance for the appropriate task response based on contextual cue or goal information.  

As this ability to apply learned material to new tasks is assumed to be required for 

successful transfer, it was hypothesized that participants in the multi task training 
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condition would be better able to transfer benefit to the untrained tasks than participants 

in the single task training condition or either of the practice conditions.  

Research Design 

 Participants were healthy older adults ranging in age from 65 through 80 who 

were randomly assigned to one of four groups (single task training, multi task training, 

single task practice, multi task practice).  Participants in all groups underwent four testing 

sessions.    

 All five cognitive tasks used in this study assessed executive control abilities.  

Furthermore, in all tasks used, theory predicts that performance improves when applying 

an approach of attending to and processing goal-related information in order to prepare in 

advance for a response.  First, the AX-CPT, described earlier, evaluates the ability to use 

goal-related information in the form of a cue in order to prepare in advance to make a 

probe response.  The Dot-CPT task is analogous to the AX-CPT task in structure but uses 

visual dot patterns instead of well-learned letters.  

The letter-number task switching test is a version of a category of tasks that assess 

the ability to coordinate and alternate between different goals.  Success on this task 

switching test requires that one attend to a cue designating whether to pay attention and 

make a judgment about the letter (and determine whether it is a consonant or vowel) or 

number (and determine whether it is odd or even).  Hence, goal maintenance abilities 

could be used to attend to the cue information and use the identity of the cue to prepare in 

advance for either the number or letter.    

The modified Sternberg test requires that participants decide whether a probe 

word was one of the four words previously presented in a memory set.  Numerous 
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incorrect probe stimuli are words that were presented in the memory set previously; 

therefore, this task assesses the ability to inhibit answers based on familiarity.  On the 

modified Sternberg task goal maintenance abilities could be used to attend closely to the 

memory set and prepare to look for only the words that were in the previously presented 

memory set at the time of the probe. 

The prospective memory/N-back (PM/N-back) test involves two N-back tasks 

assessing working memory (WM) ability as well as a prospective memory (PM) task.  

The prospective memory task requires that participants make an explicit response when 

the stimulus appears in a specified color while simultaneously performing the N-back 

task.  It has been asserted that assessing prospective memory combined with an ongoing 

task determines whether one continuously monitors in an effort to detect the prospective 

event or devotes attention to the ongoing task with intentions to detect the prospective 

memory event when it occurs (McDaniel & Einstein, 2007).   Prospective memory tasks 

that require more active strategic monitoring demand executive control abilities more 

than tasks where one retrieves the prospective memory goal only when the prospective 

event occurs.  The PM task used required goal maintenance abilities because the ongoing 

N-back task is challenging enough to demand significant cognitive resources.  

Furthermore, determining whether the stimuli appear in a particular color is also 

challenging because all words appear in different colors and one cannot assume that the 

designated target color will be obvious without strategic monitoring.  Thus, this PM task 

requires that one actively maintain and monitor for the occurrence of the designated color 

prospective event, which requires goal maintenance abilities.  
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During Session 1 (pretest), executive control ability was assessed with five 

cognitive measures of executive control ability (AX-CPT, letter-number task switching, 

modified Sternberg, Dot-CPT, and PM/N-back) and one self-report measure 

(Dysexecutive Questionnaire; DEX) to establish pretest level of performance.  In 

Sessions 2 and 3 (each lasting 1 to 2 hours) participants in the multi task training 

condition underwent focused strategy training with the AX-CPT, task switching, and 

modified Sternberg tasks.  Participants in the single task training condition underwent the 

same focused strategy training with only the AX-CPT during Sessions 2 and 3.  

Participants in the multi task practice condition practiced with the AX-CPT, task 

switching, and modified Sternberg tasks during Sessions 2 and 3.  Participants in the 

single task practice condition practiced with the only the AX-CPT task during Sessions 2 

and 3.  In Session 4 (posttest) all participants repeated the five cognitive measures and 

one self-report measure to assess for change from pretest performance.  These cognitive 

tasks included the three that were trained or practiced in Sessions 2 and 3 (AX-CPT, 

letter-number task switching, and modified Sternberg).  The transfer tasks were 

administered at Session 1 (pretest) and Session 4 (posttest), but were not presented during 

intervention sessions 2 and 3. The task resembling the AX-CPT with nonverbal stimuli, 

the Dot-CPT task, was included to assess near transfer, and the executive control task that 

does not resemble the trained or practiced tasks in structure, the PM/N-back task, was 

included to assess far transfer.  Please see Figure 1 for a description of the study design. 
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Figure 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

Study Design for participants at pretest, intervention sessions, and posttest.   
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Overview of Hypotheses 

First, it was expected that all participants would improve, at least slightly, from 

pretest to posttest due to simple exposure to the tasks.  Thus, it was expected that, 

regardless of condition, improvement would be observed from pretest to posttest (main 

effect of session).   

The effect of the training and practice interventions were first compared on the 

task that was included in all intervention conditions, the AX-CPT.  Because a previous 

study demonstrated that practice and training interventions are effective in modifying 

performance, no difference between strategy training and practice interventions was 

hypothesized.    Still, it is important to note that the conditions differ in amount of 

practice on the AX-CPT task in each session.  The single task practice condition involves 

300 trials of practice on the AX-CPT task, the multi task practice condition involves 100 

trials of practice on the AX-CPT task, the single task training condition involves 360 

trials of practice on the AX-CPT task incorporated in training procedure, and the multi 

task training condition involves 120 trials of practice on the AX-CPT in the course of the 

strategy training procedure.  Thus, participants in the single task practice and single task 

training conditions were exposed to a greater number of AX-CPT trials in both Session 2 

and 3 than the participants in the multi task training and multi task practice conditions.  

Hence, if it is assumed that the strategy training and practice interventions produce 

approximately equal effects when amount of practice is comparable, then it could be that 

the more substantial practice for single task conditions would produce a larger effect than 

the shorter practice in the multi task conditions.  Therefore, it was hypothesized that 

participants in the single task training condition would perform better than participants in 
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the multi task training condition due to extended practice with the AX-CPT.  Likewise, it 

was hypothesized that participants in the single task practice condition on the AX-CPT 

would perform better than those the multi task practice condition on the AX-CPT due to 

extended exposure.  No significant differences in AX-CPT performance were predicted 

between both strategy training and both practice conditions due to results of our previous 

study showing a lack of significant differences between training and practice 

interventions.  

We were also interested in comparing strategy training and practice in order to 

determine whether these interventions led to improvements in performance through 

similar or different cognitive mechanisms.  This question was explored by assessing 

ability to transfer improvement to tasks not used during the intervention. The strategy 

training condition involved learning a goal maintenance strategy to be applied to multiple 

tasks and gaining practice in applying the general strategy in a flexible manner across 

tasks.  It was hypothesized that the multi task strategy training intervention would 

improve ability to use an effective goal maintenance strategy and/or improve “processing 

skills” on the three tasks used.  Therefore, it was hypothesized that the multi task training 

condition would lead to improvement in the ability to use a strategy in a flexible and 

adaptable way on different untrained tasks.  Thus, based on these predictions and in 

comparison to the single task training condition and both practice interventions, the multi 

task training intervention was hypothesized to lead to better transfer to the two tasks not 

included in training, the Dot-CPT task and PM/N-back. 
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Hypotheses 

Hypothesis 1: Performance at Pretest 

Hypothesis 1. It was hypothesized that, at pretest, performance on the five executive 

control tasks would correlate positively with one another in all participants.  It was 

predicted that the task identified to measure near transfer, the Dot -CPT, would show 

stronger correlations with letter AX-CPT than other tasks, including the far transfer 

measure, the PM/N-back. Also, scores on the DEX Questionnaire indicating self-reported 

executive complaints were predicted to correlate negatively with performance on 

executive control tasks at pretest. 

Hypothesis 2: Performance on the AX-CPT 

Hypothesis 2a.  It was predicted that all participants would show improvement on 

the AX-CPT task from pretest to posttest due to the benefit of practice with the task at 

pretest and during the intervention sessions. 

 Hypothesis 2a predicts that a main effect of session would be uncovered for the 

proactive error and RT index scores.  It was predicted that this main effect would be 

qualified by an interaction described in Hypothesis 2b.   

Hypothesis 2b.   It was predicted that participants in the single task conditions 

would show significantly improved performance on the AX-CPT at posttest compared 

with pretest above and beyond improvement shown by participants in the multi task 

conditions.  Furthermore, it was predicted that participants in the single task practice 

condition would show a larger increase in proactive performance from pretest to posttest 
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compared with those in the multi task practice condition.  It was also hypothesized that 

participants in the single task training condition would show a greater increase in 

proactive performance than participants in the multi task training condition.   

Hypothesis 2b predicted an exposure condition by session interaction for AX-CPT 

proactive error and RT index scores.  It was predicted that the single task conditions 

would show greater increase in proactive index scores compared with the multi task 

conditions.  It was predicted that participants in the single task training condition would 

show larger increases in proactive error and RT index scores from pretest to posttest 

compared with participants in the multi task training condition.  It was predicted that 

participants in the single task practice condition would show larger increases in proactive 

error and RT index scores from pretest to posttest compared with participants in the multi 

task practice condition.    

Hypothesis 2c.  It was hypothesized that the degree of improvement in goal maintenance 

abilities from pretest to posttest on the AX-CPT would not be significantly different for 

the practice and training groups, which was predicted by results of the previous study 

(Paxton et al., 2006).   

 A session by training intervention interaction was not predicted for the proactive 

error and RT index scores.  It was predicted that proactive index scores would increase 

for participants in the practice and training conditions, but there would be no significant 

differences between the training and practice conditions.   
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Hypothesis 3: Performance on the task switching and modified Sternberg tests 

Hypothesis 3a.  For the task switching test, it was hypothesized that all participants 

would show worse performance in accuracy and RTs in mixed block repeat trials 

compared with pure block trials.  Likewise, it is expected that all participants would show 

worse performance in accuracy and RTs in mixed block switch trials compared with 

mixed block repeat trials on the task switching test.  Also, it was predicted that all 

participants would show worse accuracy and RT performance in recent negative trials 

compared with novel negative trials on the modified Sternberg.   

On the task switching test, it was predicted that a main effect of mixing cost 

(mixed block repeat trials vs. pure block trials) would be uncovered and follow-up 

analyses would demonstrate that number of errors and RTs would be higher for the mixed 

block repeat trials compared with the pure block trials.  Also, a main effect of switching 

cost was predicted (mixed block switch trials vs. mixed block repeat trials), and it was 

predicted that follow-up analyses would show that the number of errors and RTs would 

be greater for the mixed block switch trials compared with mixed block repeat trials.   

On the modified Sternberg task, a main effect of trial type (recent negative vs. 

novel negative) was expected, and it was predicted that follow-up analyses would show 

that participants produced greater errors and RTs on the recent negative trials compared 

with the novel negative trials.   

Hypothesis 3b.  It was predicted that all participants would show improvement on the 

task switching and modified Sternberg tests from pretest to posttest due to the benefit 

from exposure to these tests at pretest in all conditions.   
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A main effect of session was predicted for all task switching and modified 

Sternberg scores showing that performance improved from pretest to posttest.   

Hypothesis 3c.  Participants in the multi task conditions gained experience with the task 

switching and modified Sternberg tasks during the interventions sessions, whereas 

participants in the single task conditions only gained experience with these tasks during 

the pretest session.  Because those in the multi task conditions gained more experience 

with these two tasks during the two intervention sessions, it was hypothesized that the 

multi task groups would show a significantly greater improvement in performance from 

pretest to posttest than those in the single task conditions on the task switching and 

modified Sternberg.   

 A session by exposure condition (multi task vs. single task) interaction was 

expected.  It was predicted that multi task conditions would show greater change in 

scores from pretest to posttest compared with the single task conditions.   

Hypothesis 3d.  It was predicted that participants in the multi task training condition 

would show a significantly greater improvement in performance than participants in the 

multi task practice condition on the task switching and modified Sternberg tests at 

posttest compared with pretest.   

 It was expected that a session by exposure condition (multi task vs. single task) by 

training condition (training vs. practice) interaction would be found.  It was also 

predicted that multi task training condition would show greater change in scores from 

pretest to posttest than any of the other three training/exposure condition combinations 

(single task training, multi task practice, or multi task training).   
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Hypothesis 4: Performance on the near transfer task: Dot-CPT 

Hypothesis 4a.  It was hypothesized that all participants would show improvement on the 

Dot-CPT task from pretest to posttest due to simple exposure to the task at pretest.   

It was predicted that a main effect of session would be uncovered showing a 

significant increase in proactive error and RT index scores from pretest to posttest.   

Hypothesis 4b.  It was hypothesized that participants in the multi task training condition 

would show a significantly greater improvement in performance on the near transfer 

task, the Dot-CPT, from pretest to posttest compared with participants in the single task 

training, multi task practice, or single task practice conditions.    

 A session by exposure condition (single vs. multi task) by training condition 

(training vs. practice) interaction was expected.  Separate analyses for each 

exposure/training condition combination were predicted to show that multi task training 

condition produces the greatest increase in proactive error and RT index scores.  There 

were no predictions about differences among the single task training, multi task practice, 

and single task practice conditions on the Dot-CPT. 

Hypothesis 5: Performance on the far transfer task: WM N-back and PM 

Hypothesis 5a.  It was predicted that all participants would show improvement on the 

WM N-back and PM tasks from pretest to posttest due to simple exposure effects.  

A main effect of session was expected for each WM or PM variable evaluated, 

showing that participants produced better accuracy and faster RTs at posttest compared 

with pretest.   
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Hypothesis 5b.  It was predicted that all participants would show worse performance in 

terms of accuracy and RTs in the 2-back condition compared with the 1-back condition, 

indicating effects of increased working memory load.  Likewise, it was hypothesized that 

participants would show worse performance on the 1-PM-back condition compared with 

the 1-back condition due to greater prospective memory demands.   

 A main effect of working memory load (1 back vs. 2 back) was predicted to show 

that participants would be significantly less accurate and produce significantly slower 

RTs in the 2-back conditions in comparison with the 1-back condition.  Also, a main 

effect of prospective memory load (1-back vs. 1-PM-back) was predicted wherein it was 

expected that participants would be less accurate and produce slower RTs in the 1-PM-

back condition compared with the 1-back condition.   

Hypothesis 5c.  It was predicted that all participants would show more improvement in 

accuracy and RTs from pretest to posttest on the 2-back condition compared with the 1-

back condition indicated through WM cost scores.  Also, it was predicted that all 

participants would show more improvement on the 1-PM-back condition compared with 

the 1-back condition indicated through PM cost scores.   

A main effect of session was expected for WM and PM cost scores, which was 

predicted to show a change in WM cost scores demonstrating that 2-back scores improve 

more than 1-back scores from pretest to posttest. Also, a main effect of session was 

expected for PM cost scores, demonstrating a significant change in PM cost scores 

wherein 1-PM-back scores improve more than 1-back scores from pretest to posttest.   
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Hypothesis 5d.  It was hypothesized that the multi task training condition would show a 

greater increase in d’ and greater decrease in RTs from pretest to posttest on the far 

transfer test, the WM N-back and PM tasks, compared with the single task training, multi 

task practice, and single task practice conditions.   

 A session by exposure condition (multi task vs. single task) by training condition 

(training vs. practice) interaction was predicted for WM and PM cost scores.  Separate 

analyses for each exposure/training condition combination were predicted to demonstrate 

that a more significant change occurs for the multi task training condition in comparison 

with the single task training, single task practice, and multi task practice conditions.   

Hypothesis 6: Performance on the DEX 

Hypothesis 6a.  Given recent evidence that explicit training aimed to improve goal 

maintenance abilities in real-life situations improved DEX scores (Levine et al., 2007), it 

was hypothesized that DEX total scores would decline from pretest to posttest.   

 A main effect of session was expected demonstrating that DEX total scores 

declined significantly from pretest to posttest.   

Hypothesis 6b.  It was hypothesized that a quantitative measure of improvement in goal 

maintenance ability from pretest to posttest would show a positive relationship with a 

quantitative measure of decline in self-rating scores of daily executive control 

dysfunction on the DEX.   

 It was expected that residual scores for cognitive test performance representing 

change from pretest to posttest would correlate positively with the DEX residual score 

representing change from pretest to posttest.   
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CHAPTER FOUR:  METHOD 

Participants 

Ninety four older adults were recruited from the Washington University Aging 

and Development volunteer pool. After agreeing to undergo screening, all participants 

were administered the Short Blessed Orientation and Memory Scale (Katzman et al., 

1983) as a screening for possible dementia.  No participants were excluded due to a 

Blessed score of six or greater.  One participant was excluded from the study due to 

scoring above 6 on the 15-item Geriatric Depression Scale (GDS; Yesavage & Brink, 

1983).  Three participants were excluded due to failing to understand and complete the 

tasks at the pretest session and one participant was excluded because data for the AX-

CPT was not recorded due to computer malfunction.  Three participants did not return 

after the first session.  After these participants were excluded, data for eighty-six 

participants was analyzed.  

Table 1 shows demographic information for the participants who completed the 

study. Participants randomly assigned to one of the four training and exposure condition 

combinations (i.e., single task practice, single task training, multi task practice, multi task 

training) did not differ in age, F (3, 82) = .07, p = .98, years of education, F (3, 82) = .82, 

p = .49, Short Blessed scores, F (3.82) = 1.88, p = .14, or Geriatric Depression Scale 

scores, F (1, 82) = .33, p = .80.  All participants were Caucasian except for one person of 

unknown race in the multi task training condition. 

One participant in the multi task practice condition and two participants in the 

single task practice condition made 100% errors on the BX trials on the AX-CPT task 

during the pretest session.  One participant in each of the single task practice, single task 
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training, and multi task training conditions made 100% errors on BX trials on the Dot-

CPT task during the pretest session.  Because RTs were calculated for only correct trials, 

these participants did not have RTs for BX trials.  In order to calculate the proactive 

context processing RT index score (AY-BX) for these individuals, the mean RT for the 

participants in the same condition (e.g., single task practice) was used.   

Similarly, one participant in the multi task training condition made 100% target 

errors on the 2-back task at pretest.  One participant in the single task practice condition 

and two participants in the multi task practice condition made 100% PM errors on the 1-

PM-back task at pretest.  One participant in the multi task practice condition made 100% 

target errors on the 1-back task at posttest.  One participant in the multi task practice 

condition made 100% target errors on the 2-back task at posttest.  One participant in the 

single task practice condition and two participants in the multi task practice condition 

made 100% target errors on the 1-PM-back task at posttest.  Lastly, three participants in 

the multi task practice condition made 100% PM errors on the 1-PM-back task at 

posttest.   As with the AX-CPT, RTs were only calculated for correct trials, and therefore, 

these participants with 100% errors in the various PM/N-back tasks did not have RT 

scores.  Thus, in order to derive RT cost scores, the mean RT for the participants in the 

same condition (e.g., multi task practice) was used.   

  Some participants were missing data on various tasks (e.g., one participant did 

not complete 1-back condition of PM/N-back measure), and therefore, analyses assessing 

differences between pretest and posttest sessions only include participants with data for 

both sessions for the measure of interest.  In all tables showing mean performance at 

pretest and posttest, the number of participants included in the analyses is indicated.  
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Table 1 

Demographic Data for All Participants Included in Analyses.   

_____________________________________________________________________________________ 

      Condition 

Demographic  SP  ST  MP  MT  

Age (years)  72.35 (5.38) 72.57 (5.29) 73.00 (4.22) 72.76 (4.96)   

Sex (% male)  26  23  33  33 

Education (years)  15.17 (2.78) 14.43 (2.29) 15.62 (2.36) 14.76 (2.93) 

 

Screening 

GDS   .52 (.73)  .81 (1.40) .71 (1.19) .86 (1.46) 

Blessed   .52 (1.08) 1.14 (1.62) 1.33 (1.93) .48 (1.08) 

_____________________________________________________________________________________ 

Entries are means; standard deviations are in parentheses unless otherwise noted.   

SP: Single Task Practice, ST: Single Task Training, MP: Multi task Practice, MP: Multi task Training 

GDS: Geriatric Depression Scale, Blessed: Short Blessed test   
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Materials 

AX-CPT  

In the AX-CPT task (Braver et al., 2001; 2005; Paxton et al., 2006) participants 

were presented with 100 cue-probe pairs to which they responded by pushing the target 

button when an X probe appears after an A cue.  Participants were instructed to push the 

nontarget button for all other letters (e.g., all cues and probes that are not Xs that follow 

an A). The nontarget cue and probe letters were all other letters of the alphabet except K 

and Y, which were excluded because of their visual similarity to X.  Target trials (AX) 

occurred 70% of the time, and the three nontarget trial types (AY, BX, and BY) each 

appeared 10% of the time. The standard version of the AX-CPT with the long delay was 

used; participants viewed a cue letter for 750 ms followed by an unfilled delay of 5,000 

ms and then saw the probe letter for 750 ms.  The intertrial interval was 1,000 ms for all 

100 trials.   The cue and probe were presented in white letters on a black screen in bold 

size 48 Helvetica font.  The response buttons were referred to as red for the target button 

and yellow for the nontarget button, which corresponded to their color.  The dependent 

variables of interest were median RTs and proportion of errors on AY and BX trials.  The 

proportion of errors was calculated based on the total number of trials completed (of the 

10 total trials) for each of the AY and BX trial types.  

Letter-Number Task Switching 

A letter-number task-switching task was used wherein participants were presented 

with a cue (i.e., either a letter or number).  This cue indicated whether the letter should be 

classified as a consonant or a vowel or whether the number should be classified as odd or 

even when a letter-number pair appeared.  The cue appeared for 1,000 ms followed by a 
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5,000 ms delay and then the letter-number pair for 3,000 ms. The intertrial interval was 

1,000 ms. The cue was presented in white letters on a black screen with size 36 Times 

New Roman font.  The letter-number pair was presented in white on a black screen with 

size 38 Times New Roman font.  Participants were instructed to push the red button if a 

target appeared and the yellow button if a nontarget appeared.  Furthermore, a paper 

reminding participants of the conditions that warrant a target response (e.g., consonant 

and even) was in view when the instructions were given and while the participant 

completed the task.  There were four possible response combinations for target responses 

(consonant and even, consonant and odd, vowel and even, vowel and odd) that were 

randomly assigned to participants. 

This task included two pure blocks (one of letters and one of numbers) of 24 trials 

each wherein the judgment to be made was the same for all trials in the entire block. 

Thus, in these pure blocks the cue could be ignored.   Two mixed blocks of 24 trials each 

were also included wherein the judgment to be made varied from trial to trial based on 

the cue.  The order of administration of the four blocks was randomly assigned. The 

dependent measures were the average of the median RTs and proportion of errors on each 

of the pure blocks as well as median RTs and proportion of errors on each of two 

categories of trials in the mixed blocks, averaged across the two mixed blocks. One 

category of trials in the mixed blocks included trials that required the same response as 

on the previous trial; these are called task-repeat trials.  The other category included trials 

for which the response was different from that required on the previous one; these are 

called task-switch trials.  Mixing costs were defined as RTs and accuracy for task-repeat 

trials within the mixed blocks compared with trials in the pure-task block. Switching 
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costs were defined as RTs and errors for task-switch trials within the mixed block 

compared with task-repeat trials within the mixed blocks. 

 Modified Sternberg  

 A modified Sternberg task was used wherein participants studied a four-word 

memory set followed by a delay period and then one probe word.  They were instructed 

to determine whether the probe word was one of the four words.  Target responses 

entailed pushing the red button and nontarget responses entailed pushing the yellow 

button.  The word set appeared for 3,000 ms followed by a delay of 5,000 ms and the 

probe word for 1,000 ms.  Participants had 1,500 ms to respond with a 1,000 ms intertrial 

interval.  The words were presented in black on a white screen in lowercase size 18 

Chicago font.  Fifty percent of the trials consisted of positive probes, which were words 

that were in the current trial memory set presented immediately before the delay.  In 

order to increase difficulty of the task by making invalid probes more familiar and 

difficult to inhibit, 80% of the negative probes (i.e., words that were not part of the 

current trial memory set) were recent (i.e., in the word set just prior to the current set).  

Only 20% of the positive probes (i.e., words in the current memory set presented 

immediately before the delay) were recent (i.e., in the word set just prior to the current 

set). Additionally, on every trial, two of the four words presented in the memory set were 

the same as those presented in the previous trial.   

 The 480 stimulus words were one syllable nouns ranging in length from four to 

six letters and ranging in word frequency from 8 to 12 (M = 9.34, SD = 0.98) from the 

English Lexicon Project (http://elexicon.wustl.edu/). Words used in the Prospective 

memory/N-back task described later were excluded.  Words were randomly assigned to 
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four different word lists constructed for counterbalancing purposes.  Two word lists were 

used to produce two blocks of 60 trials each and were randomly assigned to participants 

for use at either pretest or posttest.  Each participant completed the task with different 

words list at pretest or posttest.  The other two words lists were each divided into six 5-

trial blocks and two 15-trial blocks, which were randomly ordered and assigned to 

participants in the training condition.  Each participant in the training condition 

completed training with one word list at Session 2 and another word list at Session 3.  

The determination of positive, negative, novel (i.e., not presented in the word set just 

prior to the current set) and recent trials was randomized.  Then a randomly ordered list 

of words was used to assign words in slots designated for positive, negative, novel, and 

recent words.  

The modified Sternberg task assessed the ability to inhibit answers based on 

familiarity.  Therefore, the dependent variables were the errors and median RT on the 

recent negative trials where the correct response is a nontarget response but the tendency 

to make a target response required inhibition abilities because of familiarity.  These 

recent negative error and RT scores were compared with the median RT on novel 

negative trials, which required a nontarget response to an unfamiliar word.  RTs were 

computed for correct trials only.   

Dot-CPT  

A variant of the AX-CPT task, the 100-trial Dot-CPT (MacDonald et al., 2005), 

involves dot patterns that represent the Braille letters excluding b, k, v, w, and x.  

Participants were instructed to make a target response when a Braille h immediately 
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follows a Braille l.  This task used the same frequency of target and nontarget trial types 

as in the AX-CPT task.     

Consistent with the AX-CPT task, the long delay condition was used.  Participants 

viewed a cue letter for 750 ms followed by an unfilled delay of 5,000 ms; then they saw 

the probe letter for 750 ms.  The intertrial interval was 1,000 ms.  Participants were 

instructed to respond with the red button for target responses and the yellow button for 

nontarget responses.  The Braille patterns were presented in white on a black screen in 

bold size 48 Helvetica font.  The Dot-CPT has convergent validity with the letter AX-

CPT task (MacDonald et al., 2005).  Therefore, median RTs and proportion of errors 

from the trials from the Dot-CPT task analogous to the AY and BX trials on the AX-CPT 

were used as dependent variables.  That is, trials wherein any Braille letter other than h 

following a Braille l were comparable to AY trials on the AX-CPT, and trials where the 

Braille letter h followed any other letter than a Braille l were comparable to BX trials on 

the AX-CPT. 

Prospective Memory/N-back 

A combined working memory and prospective memory task was performed. The 

WM task was a version of an N-back task in which participants match the current word 

with the word presented N trials previously.   Two separate conditions were performed, 

which manipulate working memory load.  In the 1-back condition, participants specified 

whether the word matches the one immediately before it.  In the 2-back condition, 

participants specified whether the word matches the one presented two trials before.  

Participants were instructed to press the red button for a target response and the yellow 

button for a nontarget response. 
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A third condition, called the 1-PM-back condition, assessed prospective memory 

by requiring that participants monitor for events requiring completion of a prospective 

goal within the context of performing the 1-back task.  The prospective task required that 

one make a distinct response (i.e., press the green button) to any word appearing in a 

specified ink color (indicated at the beginning of each block with an example of the 

specified color).  These trials were termed prospective memory (PM) trials.  On trials in 

which the prospective memory cue did not appear, participants performed the 1-back task 

identically to the 1-back condition described in the previous paragraph.  That is, they 

pressed the red button if the word is the same as in the previous trial and the yellow 

button if it is not.  If, however, the word appears in the specified color, they pressed the 

green button instead.  Word stimuli in all three task conditions varied randomly in ink 

color  (white, aqua, blue, purple) across trials, but this feature was only be relevant in the 

prospective memory condition 

 Before performing the PM/N-back task, each participant viewed each of the 

colors used in this task (white, aqua, blue, purple) and then were asked to verbally 

identify the colors on the computer screen to ensure that he or she can discriminate 

between color.   Each participant performed 72 trials each of the 1-back, 2-back, and 1-

PM-back conditions.  Five participants assigned to each intervention condition were 

randomly assigned to one of six possible orderings of the three conditions (1-back, 2-

back, 1-PM-back).  The same order was used in Sessions 1 and 4.   

Each of the three conditions contained 22 targets, split evenly between the first 

and second halves of the trials.  In the PM condition, there were four PM trials, which 

were always nontarget trials, again split evenly between the first and second halves of the 
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trials.  Each word appeared for 2,500 ms followed by an intertrial interval with fixation in 

the center of the screen for 1,000 msec.  The words were presented in white, aqua, blue, 

or purple on a black screen in size 48 Geneva font.  

There were three word lists for use in the 2-back condition.  Five of the 30 

participants in each intervention condition were randomly assigned to one of the six 

possible ordered combinations of 2-back word lists for Sessions 1 and 2.  There were four 

word lists for use in the 1-back and 1-PM-back conditions.  One participant in each group 

was randomly assigned to one of the 24 possible ordered combinations designating the 

order that each list was assigned for the two tasks (1-back and 1-PM-back) in Sessions 1 

and 4.  Six of the possible ordered combinations of word lists were chosen at random for 

the remaining participants in each of the three groups. 

The PM/ N-back task assessed working memory and prospective memory 

abilities.  The hit score (i.e., proportion of correct target responses) and false alarm scores 

(i.e., proportion of incorrect target responses to nontarget stimuli) for each condition (1-

back, 2-back, 1-PM-back) were converted to the z scores in a normal distribution.  Then, 

d’ was calculated as the z score for hits minus the z score for false alarms.  In the 1-PM-

back condition, d’ scores were derived for the target trials and percentage of errors were 

used as a dependent measure for the prospective memory trials.  The error scores for PM 

trials were reported as proportion of errors.  Adjustments were applied when the hit rate 

is 100% (2-1/n), or the false alarm rate is 0% (1-2 -1/n ) where n represents the number of 

possible hits or false alarms.  This d’ measure allows for consideration of different 

patterns of responding on target and nontarget trials instead of simply examining target 

trials.     
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Working memory abilities were evaluated by comparing the 1-back and 2-back 

conditions as it is expected that the 2- back condition places more demands on working 

memory ability.  Prospective memory ability was assessed by comparing the 1-back task 

with the 1-PM-back task as both these tasks have identical working memory demands, 

but the 1-PM-back also assessed prospective memory.   

Dysexecutive Questionnaire. 

Participants were given standard instructions and completed a computerized 

version of the self-rating Dysexecutive Questionnaire (DEX; Burgess, Alderman, Evans, 

Emslie, & Wilson, 1998). This scale consists of 20 statements about executive control 

that are rated on a 5-point scale with scale labels 0 (never), 1 (occasionally), 2 

(sometimes), 3 (fairly often), and 4  (very often).   Responses from each item were 

summed so that scores can range from 0 to 80 with a high scoring indicating frequent 

difficulty.   

Assessment of reliability of DEX scores has not been reported (Malloy & Grace, 

2005).  Factor analytic methods have been used to investigate validity of the DEX as a 

measure of executive ability.  When examining a neurological population, three out of 

five derived factors correlated well with measures of executive ability (Burgess et al., 

1998).  A subsequent study identified five factors in neurologically healthy population 

but did not find that the DEX scores correlated with scores on tests assessing executive 

abilities (Chan, 2001).  Five factors were derived for a sample of older adults (N = 20), 

and these factor scores demonstrated correlations with executive abilities.  For instance, a 

factor representing inhibition abilities correlated with errors on the Stroop (r = -.51, p = 

0.02) and the score on a single trial of a verbal recall test (r = -.61, p = .004; Amieva, 
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Phillips, & Della Sala, 2003).  As previous studies have suggested that DEX performance 

is best represented with multiple factors, it is important to determine valid factors to use 

in the current study.  Previous studies deriving factor scores have either used neurological 

populations (Burgess et al., 1998; Chan, 2001) or a small sample size (Amieva, Phillips, 

& Della Sala, 2003), and therefore, the DEX scores from the proposed were factor 

analyzed to derive factors.  As discussed in the results section, the factor analysis was 

inconclusive and therefore the sum of all 20 items was used as a dependent variable as 

recommended by a recent study (Gerstorf, Siedlecki, Tucker-Drob, & Salthouse, 2008). 

Procedure 

 The study involved four sessions lasting about 1.5 to 2 hours each for all 

participants.  Session 2 usually occurred within a week of Session 1.  Session 3 usually 

occurred within two weeks of Session 2.  Session 4 usually occurred within a week of 

Session 3.  

Session 1 (Pretest) 

 All participants performed the same six tasks in Session 1 (pretest) and Session 4 

(posttest).  After obtaining informed consent, all participants received standard 

instructions and completed the following tasks: AX-CPT, Dot-CPT, letter-number task 

switching, modified Sternberg, PM/ N-back, and DEX.  Participants were randomly 

assigned to one of the seven hundred twenty possible orderings of these six tasks.  

Accuracy and RTs were measured.  They completed each of the first five tasks by 

responding with button presses on a button box.  They responded with numbers on a 

keyboard for the DEX questionnaire.  
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 All participants underwent the same protocol for pretest and posttest.  The 

instructions for the AX-CPT were given while visible examples of the trial types and 

responses were presented.  Participants practiced with AX-CPT trials until it was 

apparent to the experimenter that he or she understood the directions.  Then participants 

completed one block of 100 trials.  On the Dot-CPT, participants were given instructions 

while a paper with the trial types and responses was shown.  Then participants practiced 

with the Dot-CPT, which was followed by one 100 trial block.   

On the task switching measure, participants observed a paper with example 

number or letter cues and example number/letter pairs while the examiner explained the 

basic instructions for the task.  Then, participants were instructed to complete a pure 

number task and the correct response combinations (e.g., even = red) were shown on a 

paper.  The participant practiced a pure number task until he or she demonstrated an 

understanding of the directions.  Then the pure letter task was described with a similar 

stimulus sheet followed by practice until the participant appeared to understand the task.  

Then the instructions for the mixed task were described followed by practice until the 

participant demonstrated an understanding.  After practicing enough to demonstrate 

comprehension of instructions, participants completed (a) one 24-trial pure block of 

number, (b) two 24-trial mixed blocks, and c) one 24-trial pure block of letter task in 

random order.  

The instructions for the modified Sternberg measure were presented with a paper 

available outlining the structure of the task.  Participants practiced until comprehension 

of instructions was demonstrated.  Then participants completed one 60-trial block of the 
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modified Sternberg task after completing a series of practice trials demonstrating 

understanding of the directions.  

 On the PM/N-back, participants were presented with a visual example of the 1-

back task while the experimenter provided instructions.  The participants practiced the 1-

back task until an understanding of the directions was demonstrated.  Then a paper with a 

visual example of the 2-back task was presented while the participant was instructed 

about the 2-back task.  The participants then practiced the 2-back task until it was 

apparent that he or she understood the directions.  Next the instructions for the 1-PM-

back were given with a visual example provided and then the participants practiced until 

it was clear that the directions were understood.  During pretest and posttest sessions, one 

block of 72 trials for the 1-back, 2-back, and 1-PM-back tasks were completed. 

Sessions 2 and 3 

  Multi Task Training Condition.  Participants were instructed that they would be 

learning strategies that were thought to assist in their ability to perform many tasks.  

Then, participants were told that performance may be improved on tasks presented in the 

first session by learning to identify initial information presented (often in the form of a 

cue), determine how it influences the goal of the task, and keep this goal in mind by 

verbally or silently rehearsing it over a delay.     

Participants were reminded of standard instructions for the AX-CPT task and 

allowed to practice until it was apparent to the examiner that they understand the task.  

Then, participants were explicitly told that 70% of the trials in the task were an A cue 

followed by an X probe and would require a red response.  They were also told that the 

investigators were interested in whether people perform differently if given instructions 
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about strategies to use in the task.  Then they were told to first pay attention to the  cue 

letter and decide if it was an A or not.  If it was an A, they were encouraged to prepare to 

see an X and push the red button.  If the letter was not A, they were encouraged to 

prepare to push the yellow button regardless of what letter appeared as the probe.  They 

were trained to verbally categorize (i.e., say A or not A) and attend to the cue at the time 

that it appeared in three blocks of 10 training trials.  The experimenter verbally 

categorized the cue letters on the first of these three blocks; the participant categorized 

the cues on the second block while the experimenter completed the task; then the 

participant categorized the cues while completing the task on the third block. 

Then participants were trained to use the cue to influence how they prepare for the 

probe.  They were reminded that when the cue was an A it was very likely that an X will 

follow; therefore, they should begin to prepare for a red response.  Participants were told 

to say "if X, red" when they see an A as the cue and "yellow" when they see a cue that 

was not an A.  The experimenter said these phrases for 10 trials while the person 

completed the task; then the participant said the phrases while the experimenter 

completed the task for 10 trials.  Finally, the participant completed one 10-trial block 

followed by one 30-trial block saying these phrases aloud while completing the task.  If 

the participant did not say the phrase out loud on a trial, the examiner did.  Then 

participants completed one 30-trial block where they said the phrases silently while 

completing the task.  

Next, participants were reminded of the standard instructions for the task 

switching test and practiced separately with each of the pure letter and number conditions 

as well as the mixed condition until it was apparent to the examiner that the participant 
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understood the task.  Then, participants were reminded that on the previous task (AX-

CPT), they learned to identify information presented in the cue, determined how it 

corresponds to a goal for the task, and kept this goal in mind by verbally or silently 

rehearsing it over a delay.  They were told that they would learn to apply the same 

approach to the current task.   

Strategy training on the task-switching task involved learning to apply the 

strategy separately for the pure number task, pure letter task, and mixed task.  They were 

instructed to approach the task by first identifying the goal stated by the cue (i.e., number 

or letter) and then to allow the identity of the cue to influence how they approach the 

stimuli (i.e., if odd, then red).  They were trained to verbally categorize (i.e., say letter or 

number) and attend to the cue at the time that it appeared in three blocks of three training 

trials.  The experimenter verbally categorized the cue words on the first of these three 

blocks; the participant categorized the cues on the second block while the experimenter 

completed the task; then the participant categorized the cues while completing the task on 

the third block.   

Then participants were trained to use the cue to influence how they prepared for 

the letter/number pair that followed.  They were reminded that when the cue was the 

word letter, they should prepare to determine if the letter that appeared is a consonant, 

and therefore, they prepared by saying “if consonant, then red.”  If the cue was the word 

number, they were instructed to prepare to determine whether the number was even, and 

say “if even, then red.”  The experimenter said these phrases for three trials while the 

person completed the task; then the participant said the phrases while the experimenter 

completed the task for three trials.  Finally, the participant completed one 3-trial block 
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followed by one 9-trial block saying these phrases aloud while completing the task.  If the 

participant did not say the phrase out loud on a trial, the examiner would.  Then 

participants completed one 9-trial block where they say the phrases silently while 

completing the task.  

 Next, participants were reminded of the standard instructions for the modified 

Sternberg task and allowed to practice with the task until it is apparent to the examiner 

that they understood the task.  Then, participants were reminded that on the previous 

tasks they learned to identify information presented in the cue, determined how it 

corresponds to a goal for the task, and kept this goal in mind by verbally or silently 

rehearsing it over a delay.  They were told that they would learn to apply the same 

approach to the current task.  Specifically, participants were instructed to approach the 

task by first identifying the stimuli presented (i.e., word 1, word 2, word 3, word 4) and 

then allowing the words to influence how they approach the probe (i.e., if word 1, word 

2, word 3, or word 4, then press red).  They were trained to verbally rehearse (i.e., say 

word 1, word 2, word 3 word 4) and attend to the word set at the time that it appeared in 

three blocks of three training trials.  The experimenter verbally recited the words 

presented on the first of these three blocks; the participant verbally recited the words on 

the second block while the experimenter completed the task; then the participant verbally 

recited the words while completing the task on the third block.   

Then participants were trained to recite the word set in order to prepare to respond 

to the single word that follows.  They were instructed to say “If word 1, word 2, word 3, 

word 4, then red” to prepare to respond with a target response if the single word is one of 

those in the memory set.  The experimenter recited the four words in this phrase for five 
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trials while the person completes the task; then the participant said the phrases while the 

experimenter completed the task for five trials.  Finally, the participant completed one 5-

trial block followed by one 15-trial block saying these phrases aloud while completing 

the task. If the participant did not say the phrase out loud on a trial, the examiner did.  

Then participants completed one 15-trial block where they said the phrases silently while 

completing the task.  

Single Task Training Condition 

Participants were instructed that they were learning strategies that are thought to 

assist in their ability to perform one of the tasks they completed in Session 1.  

Participants were reminded of standard instructions for the AX-CPT task and allowed to 

practice until it was apparent to the examiner that they understood the task.  Then, 

participants were explicitly told that 70% of the trials in the task were an A cue followed 

by an X probe and would require a red response.  They were also told that the 

investigators were interested in whether people perform differently if given instructions 

about strategies to use in the task.  Then they were told to first pay attention to the  cue 

letter and decide if it was an A or not.  If it was an A, they were encouraged to prepare to 

see an X and push the red button.  If the letter was not A, they were encouraged to 

prepare to push the yellow button regardless of what letter appeared as the probe.  They 

were trained to verbally categorize (i.e., say A or not A) and attend to the cue at the time 

that it appeared in three blocks of 10 training trials.  The experimenter verbally 

categorized the cue letters on the first of these three blocks; the participant categorized 

the cues on the second block while the experimenter completed the task; then the 

participant categorized the cues while completing the task on the third block. 
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Then participants were trained to use the cue to influence how they prepared for 

the probe.  They were reminded that when the cue was an A it was very likely that an X 

would follow; therefore, they should begin to prepare for a red response.  Participants 

were told to say "if X, red" when they saw an A cue and "yellow" when they saw a cue 

that was not an A.  The experimenter said these phrases for 10 trials while the participant 

completed the task; then the participant said the phrases while the experimenter 

completed the task for 10 trials.  Finally, the participant completed one 10-trial block 

followed by one 30-trial block saying these phrases aloud while completing the task.  If 

the participant did not say the phrase out loud on a trial, the examiner did.  Then 

participants completed one 30-trial block where they said the phrases silently while 

completing the task.  This procedure was repeated three times in both Session 2 and 3.   

Multi task Practice Condition. 

 Participants were reminded of standard instructions for the AX-CPT task and 

allowed to practice with the task until it was apparent to the examiner that he or she 

understood the task. Then, participants completed one block of 100 trials.  Participants 

were then reminded of the standard instructions for the task switching test and were 

allowed to practice until it was apparent to the examiner that he or she understood the 

task.  Then, participants completed one 24 trial block of the letter task, one 24 trial block 

of the number task, and two 24 trial blocks of the mixed task in the same order as Session 

1.  Then, participants were reminded of the standard instructions for the modified 

Sternberg task and were allowed to practice until it was apparent to the examiner that he 

or she understood the task.  Participants then completed one 60 trial block.   

 



  
69 

Single Task Practice Condition. 

 Participants were reminded of standard instructions for the AX-CPT task and 

allowed to practice with the task until it was apparent to the examiner that he or she 

understood the task. Then, participants completed three blocks of 100 trials each. 

Statistical Analyses 

Median reaction time (RT) scores and proportion of errors were derived for all 

dependent measures.  Even though there are many potential dependent variables in each 

task, the analyses focused only on those that are thought to be the strongest indices of 

different aspects of executive control targeted by the interventions.  The dependent 

variables are listed in Table 2.  The variables bolded in Table 2 were used in primary 

analyses.  

AX-CPT and Dot-CPT.  In the primary analyses evaluating the AX-CPT and Dot-

CPT, a composite measure of the strength of proactive context processing was used.  This 

measure combines the two trial types (AY, BX) that have been found to be the most 

salient measures of different aspects of context processing ability in previous studies 

(Braver et al., 2005; Paxton et al., 2006).  Specifically, the context processing index is 

computed as: (AY-BX)/(AY+BX) wherein a higher score indicates more proactive 

performance.  Separate index values were computed for errors and RT.  For errors, a 

correction factor was used in the case of zero errors in one or more trial types: 

(0.5)/(frequency of trials +1).  The proactive context processing index was used for 

simplicity of analyses and to examine the degree to which AY and BX scores changed in 

divergent directions from pretest to posttest.  Results based on analyses that separated AY 

and BX errors and RTs will be reviewed at the end of the Hypothesis 2 section for the 
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AX-CPT and Hypothesis 4 for the Dot-CPT.  The differences in results and conclusions 

when the proactive index scores were analyzed instead of the raw AY and BX error and 

RT scores will be described in the Hypothesis 2 and 4 results description and summary. 

Task Switching.  In the primary analyses for the task switching measure, 

switching and mixing cost index scores were used in order to assess the cost on 

performance of conditions with more executive demands compared with conditions that 

were less demanding.  Mixing cost was calculated separately for errors and RTs as: (task-

repeat trials from mixed blocks – all trials in pure blocks).  Switching cost was calculated 

separately for errors and RTs as: (task-switch trials from mixed block – task-repeat trials 

from mixed block).  Results did not differ in a conclusive manner when individual pure 

trial, mixed repeat trial, and mixed switch trial scores were used as dependent variables in 

analyses.   

Modified Sternberg. In the primary analyses for the modified Sternberg, a recency 

interference index was used to measure the cost on performance due to the more 

challenging recent negative trials compared with the easier novel negative trials.  The 

recency interference index was computed separately for errors and RTs as: (recent 

negative trials – novel negative trials).  Results did not differ in a conclusive manner 

when recent negative and novel negative trial scores were used as dependent variables in 

analyses.   

PM/N-back. The PM/N-back test involved three tasks or conditions: the working 

memory (WM) 1-back condition, the WM 2-back condition, and the prospective memory 

(PM) 1-PM-back condition.  In the sections that follow the conditions were presented 

individually to ensure that it is clear to the reader which condition is being discussed.  
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There are many potential dependent variables for the PM/N-back test, but the cost scores 

chosen and used in most analyses were thought to be the strongest indices of working 

memory and prospective memory abilities.  Conclusions did not differ significantly when 

analyses were conducted with d’ and RT raw scores.   

PM/N-back Accuracy Scores. Accuracy performance on the PM/N-back was 

investigated using d’ scores evaluating hits versus false alarms for the 1-back, 2-back, 

and 1-PM-back tasks.   Prospective memory cue errors on the 1-PM-back task were also 

evaluated because this error score was not included in the d’ calculation.  Three cost 

index scores were used in as dependent variables for errors.  First, the working memory 

d’ cost index, (WM d’ Cost: 1-back d’ – 2-back d’), evaluated the cost or effect on 

accuracy of the added working memory demands of difficult 2-back task compared with 

the 1-back task.  Because higher d’ scores indicate better performance, the WM cost 

score was calculated with 2-back performance subtracted from 1-back performance in 

order to provide an index where a higher score is indicative of a greater WM cost and 

would be consistent with the direction of RT measures.  Additionally, the prospective 

memory d’ cost index (PM d’ Cost: 1-back d’ – 1-PM-back d’), measures the cost of the 

more challenging PM demands on performance and, similar to the WM d’ score, was 

scaled so that a higher score is indicative of a greater PM cost.  Lastly, the PM cue trials 

within the 1-PM-back condition (PM error cost: PM cue errors – 1-back matched low-

frequency nontarget errors) measured the cost of detecting PM cues during the PM task 

compared with matched low-frequency trials occurring during the 1-back task.  For 

clarification, the 1-back trials that were used as a comparison for calculating the PM cost 
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scores were 1-back nontarget trials that occurred with the same frequency as the PM trials 

in the 1-PM-back condition.  

PM/N-back RT Scores.  In evaluating RT performance, both target and nontarget 

trials were considered separately and therefore, 5 cost indices were calculated and used in 

analyses.  First, the WM Target RT cost index (2-back Target RT – 1-back Target RT) 

evaluated the cost of the more WM demanding 2-back condition compared with the 1-

back condition on target RT trials.  Similarly, the WM nontarget RT cost index, (2-back 

nontarget RT – 1-back nontarget RT), evaluated the same WM demands on nontarget 

trials.  The PM target RT cost index (1-PM-back target RT – 1-back target RT) evaluated 

the cost on performance of the PM demands on the 1-PM-back compared with the 1-back 

that does not entail a PM component.  Thus, the PM nontarget RT cost (1-PM-back 

nontarget RT – 1-back nontarget RT) evaluated PM cost on nontarget trials.  Finally, the 

PM cue RT cost index (1-PM-back PM Cue RT – 1-back PM Cue RT) evaluated the 

added difficulty of PM trials within the PM condition compared with 1-back trials that 

matched the PM trials within the PM task in frequency.   A higher score on all RT index 

scores is indicative of a greater RT cost.     

To evaluate hypotheses 2 – 6, performance was examined on the AX-CPT, Task 

Switching, Modified Sternberg, Dot-CPT, PM/N-back, and DEX with separate mixed 

model ANOVAs for errors and RTs.  Most analyses were conducted with one within-

subject factor, session (pretest vs. posttest), and two factorial between-subjects factors: 

training condition (training vs. practice) and exposure condition (single task versus multi 

task).  
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Table 2   

 Test Scores used as Dependent Variables   

______________________________________________________________________________________ 

Task       Dependent Variables 

  
  
   

Errors Reaction Time 
Composite 
Scores 

AX-CPT AY Errors AY RTs  

 BX Errors BX RTs  

 Proactive error index Proactive RT index 
 
Proactive sum 
 Dot AX-CPT AY Errors AY RTs  

 BX Errors BX RTs  

 Proactive error index Proactive RT index 
 
Proactive sum 
 Task Switching Mixing Error Cost Mixing RT Cost  

 Switching Error Cost Switching RT Cost  

 Pure block Errors Pure block RTs  

 Mixed block: Repeat Errors Mixed block: Repeat RTs  

 Mixed block: Switch Errors Mixed block: Switch RTs  

Modified 
Sternberg 

Recency Error 
Interference Recency RT Interference 

 

 Recent Negative Errors Recent Negative RTs  

 Novel Negative Errors Novel Negative RTs  

PM/N-back WM D’ Error Cost WM Target RT Cost  

 PM D’ Error Cost WM Nontarget RT Cost  

 PM Cue Error Cost PM Target RT Cost  

 1-back D’ PM Nontarget RT cost  

 2-back D’ PM Cue RT Cost  

 1-PM-back D’ 1-back Target RT  

 1-PM-back PM Errors 1-back Nontarget RT  

  2-back Target RT  

  2-back Nontarget RT  

  1-PM-back Target RT  

  1-PM-back Nontarget RT  

  1-PM-back PM RT  

DEX  DEX Total Score   
Note.  Bolded tasks were used as dependent variables in primary analyses.   
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CHAPTER FIVE:  RESULTS 

Hypothesis 1: Pretest Performance   

 Hypothesis 1 focuses on task performance during the pretest session only.  In line 

with the aim to evaluate the effects of interventions on performance from pretest to 

posttest, an important issue is whether participants in each of the between-subjects 

intervention groups differed significantly in performance at pretest.  The analysis of 

group effects at pretest served two purposes:  1) to determine whether there are group 

differences at pretest that might confound interpretation of differences between training 

and exposure conditions at posttest; and 2) to determine whether the pretest data from the 

four groups can be combined to test hypotheses about the interrelationships among 

performance on the different tasks.  

Separate ANOVAs were conducted with pretest scores for each dependent 

variable listed in Table 2 with training condition (training vs. practice) and exposure 

condition (multi task vs. single task) as between-subjects variables.  Two significant 

differences were uncovered at pretest.  First, the proactive RT index score on the AX-

CPT task, F (1, 84) = 3.83, p = .05, partial �2 = .04, showed higher scores in the multi 

task conditions than the single task conditions.  Second, Dot-CPT AY RT in the multi 

task conditions was significantly greater than the single task conditions, F (1, 84) = 5.80, 

p < .05, partial �2 = .07  

Hypothesis 1.  It was hypothesized that, at pretest, performance on the five executive 

control tasks would correlate positively with one another in all participants.  It was 

predicted that the task identified to measure near transfer, the Dot-CPT, would show 
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stronger correlations with the letter AX-CPT than other tasks, including the far transfer 

task, the PM/N-back.  Also, scores on the DEX indicating self-reported executive 

problems were predicted to correlate negatively with performance on executive control 

tasks at pretest.    

Given the large number of tasks used in this study, and because of our primary 

focus on the AX-CPT, examination of the relationship between dependent variables 

focused on comparing the relationship between the AX-CPT with each of the other tasks.   

These relationships were examined with Pearson product-moment correlations.  Only the 

correlations that were found to be statistically significant are described in the text.  

Relationship between AX-CPT and Dot-CPT.  First, the relationship between 

scores on the AX-CPT and Dot-CPT were compared to confirm that the Dot-CPT 

represents a near transfer task that assesses similar abilities.  The relationships that were 

theoretically predicted to be most important are bolded in Tables 3a and 3b, but all 

correlations between AX-CPT and Dot-CPT variables are shown for completeness.  As 

shown in Table 3a shows that, although there was no significant relationship uncovered 

between AX-CPT AY errors and Dot-CPT AY errors, AX-CPT BX errors showed a 

positive and significant relationship with Dot-CPT BX errors and AX-CPT proactive 

error index showed a positive and significant relationship with Dot-CPT proactive error 

index.  Likewise, Table 3b shows that AX-CPT AY RTs showed a positive significant 

relationship with Dot-CPT AY RTS, AX-CPT BX RTs showed a positive significant 

relationship with Dot-CPT BX RTs, and AX-CPT proactive RT index showed a positive 

significant relationship with Dot-CPT proactive RT index.  In summary, the AX-CPT and 

Dot-CPT measures show a significant relationship in the direction indicating that more 
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proactive performance on one task relates to more proactive performance on the other 

task. 

Table 3a  
Correlations between AX-CPT Scores and Dot AX-CPT Scores for All Participants at Pretest  
 
 AY Errors BX Errors Proactive  

Error Index 
Dot AY 
Errors 

.13 .05 .00 

Dot BX 
Errors 

.04 .39*** -.27* 

Dot  
Proactive 
Error Index 

.09 -.26* .24* 

Note. Greater AY errors, fewer BX errors, greater proactive error index scores are indicative of more 
proactive patterns of performance.  *p < .05, **p < .01,***p < .001 

 
 

Table 3b  
Correlations between AX-CPT Scores and Dot AX-CPT Scores for All Participants at Pretest  
 
 AY RT BX RT Proactive  

RT Index 
Dot AY RT 
 

.65*** .17 .10 

Dot BX RT 
 

.19 .41*** -.41*** 

Dot  
Proactive  
RT Index 

.13 -.34** .47*** 

Note. Greater AY RTs, lower BX RTs, and greater proactive RT index scores are indicative of more 
proactive patterns of performance.  *p < .05, **p < .01, ***p < .001 
 

 

Relationship between AX-CPT and PM/N-back. Next, the relationship between 

scores on the AX-CPT and PM/N-back were examined to confirm that the PM/N-back 

task represents a far transfer test that assesses similar abilities.  As shown in Table 3c, 

AX-CPT AY errors showed a significant positive relationship with WM d’ cost on the N-

back.  As discussed earlier, the d’ cost index scores were scaled so that a higher score 

indicates less accurate performance on the more difficult PM/N-back condition.  Thus, 
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this correlation between AY errors and WM d’ cost index scores suggested that more 

proactive AX-CPT performance (indicated through increased AY errors) is related to 

stronger cost of WM load on performance (i.e., a larger decrement in performance on 2-

back vs. 1-back).   This relationship is difficult to interpret given the theoretical 

assumption that proactive performance on AY trials involves working memory in order to 

maintain the identity of the A cue over the delay.  Thus, the correlation between the WM 

d’ cost index and AY errors might reflect WM abilities under low-load conditions (since 

AY trials also reflect a fairly low WM load).  There were no other significant correlations 

between accuracy on the AX-CPT and PM/N-back tasks.  It is especially important to 

note that there were no significant correlations between PM/N-back errors and the 

proactive error index for the AX-CPT, suggesting that more proactive error performance 

on the AX-CPT was not related to error performance on the PM/N-back tasks.   

For RTs, Table 3d shows that AX-CPT AY RTs showed a significant positive 

relationship with the PM RT cost (on nontarget trials), suggesting that increased AY RTs, 

indicating more proactive performance, corresponded to greater effects of the PM load on 

on-going performance.  Such effects might reflect expectancy or monitoring demands, 

because in both the PM task and AY trials, participants maintain expectancies about 

upcoming events based on goals or context (upcoming PM cues in the PM task, 

upcoming target probes on AY trials).   Also there was a significant negative relationship 

between BX RTs and WM nontarget RT cost, suggesting that those showing reactive 

performance through increased BX RTs are not as likely to show an increase in RTs on 

nontarget trials when WM demands are increased.  Finally, the AX-CPT proactive RT 

index showed a significant positive correlation with WM nontarget RT cost.  Thus, more 
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proactive AX-CPT RT performance is related to a greater increase in nontarget RT scores 

when WM demands are increased.  There was only one significant correlation between 

the AX-CPT proactive RT score and WM N-back or PM task RT measures, suggesting 

that proactive control in the AX-CPT, as measured with RT, is only weakly related to 

performance under high WM and PM conditions.  
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Table 3c 
Correlations between AX-CPT Scores and PM/N-back Scores for All Participants at Pretest 
 
 AY Errors BX Errors Proactive  

Error Index 
WM D’ Cost .24 ** .00 .13 
PM D’ Cost -.17 -.02 .10 
PM Cue 
Error Cost 

-.04 .05 -.10 

Note. Greater AY errors, fewer BX errors, greater proactive error index scores are indicative of more 
proactive patterns of performance.  *p = .05, **p < .05, ***p < .01, ****p < .001 

 
 
 

Table 3d  
Correlations between AX-CPT Scores and PM/N-back Scores for All Participants at Pretest 
 
 AY RT BX RT Proactive 

RT Index 
WM Target 
RT Cost 

.03 -.02 .03 

WM 
Nontarget 
RT Cost 

-.01 -.26 ** .25 ** 

PM Target 
RT Cost 

-.08 .01 -.03 

PM 
Nontarget 
RT Cost 

.25** -.07 .16 

PM  RT 
Cost 

-.07 -.05 .00 

Note. Greater AY RTs, lower BX RTs, and greater proactive RT index scores are indicative of more 
proactive patterns of performance. *p = .05, **p < .05, ***p < .01, ****p < .001 
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Relationship between AX-CPT and Task Switching. As shown in Table 3e, 

examination of correlations between the AX-CPT and task switching error scores 

demonstrated that there were no significant correlations.   

As shown in Table 3f, the AX-CPT BX RT scores showed a significantly positive 

correlation with switch cost RTs, suggesting that participants showing the slowest BX 

RTs also had the largest switch costs.   This might reflect a common form of interference 

effect.  However, there were no significant correlations between AX-CPT proactive RT 

index scores and switching or mixing costs, weakening the inference that switch costs are 

directly related to proactive control during the AX-CPT.    

Table 3e 
 Correlations between AX-CPT Scores and Task Switching Scores for All Participants at Pretest 

 
 AY Errors BX Errors Proactive  

Error Index 
Mixing Cost 
Errors 

-.19 -.04 .15 

Switching 
Cost Errors 

-.08 .12 .04 

Note. Greater AY errors, fewer BX errors, greater proactive error index scores are indicative of more 
proactive patterns of performance. *p = .05, **p < .05, ***p < .01, ****p < .001 

 
 
Table 3f 

Correlations between AX-CPT Scores and Task Switching Scores for all Participants at Pretest 

 
 AY RT BX RT Proactive  

RT Index 
Mixing Cost 
RT 

.04 -.09 .12 

Switch Cost 
RT 

.08 .23** -.19 

Note. Greater AY RTs, lower BX RTs, and greater proactive RT index scores are indicative of more 
proactive patterns of performance. *p = .05, **p < .05, ***p < .01, ****p < .001 
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 Relationship between AX-CPT and Modified Sternberg. As shown in Table 3g, 

significant positive correlations were uncovered between the AX-CPT AY and BX error 

scores and the modified Sternberg recency error interference cost scores.  These 

significant correlations suggest that increased errors on both AY and BX trials of the AX-

CPT, are related to increased recency interference-related errors on the Sternberg task.  

However, there was no correlation between the Sternberg interference-error cost measure 

and the proactive control error index in the AX-CPT.  The absence of this predicted 

correlation makes it harder to argue for a common relationship between WM interference 

in the Sternberg and proactive control in the AX-CPT.   

As shown in Table 3h, the modified Sternberg recency RT interference scores 

showed a significant negative correlation with AX-CPT BX RT, suggesting that 

individuals showing slower BX responses also tended to show more WM interference on 

the Sternberg task.  However, this effect was complicated by a significant positive 

correlation between the AX-CPT proactive RT index and the Sternberg recency RT 

interference measure, suggesting that individuals showing more recency RT interference 

on the Sternberg task also tended to show a more proactive RT pattern in the AX-CPT.  

Table 3g  
Correlations between AX-CPT Scores and Modified Sternberg Scores for All Participants at Pretest 
 
 AY Errors BX Errors Proactive 

Error Index 
Recency 
Interference 
Error Cost 
 

.31*** .31*** .04 

Note. Greater AY errors, fewer BX errors, greater proactive error index scores are indicative of more 
proactive patterns of performance. *p = .05, **p < .05, ***p < .01, ****p < .001 
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Table 3h  
Correlations between AX-CPT Scores and Modified Sternberg Scores for All Participants at Pretest 
 
 AY RT BX RT Proactive 

RT Index 
Recency 
Interference 
RT Cost 

-.02 -.24** .26** 

Note. Note. Greater AY RTs, lower BX RTs, and greater proactive RT index scores are indicative of more 
proactive patterns of performance. *p = .05, **p < .05, ***p < .01, ****p < .001 

 
 

 

Relationship between Dysexecutive Questionnaire (DEX) and performance on 

executive control tasks. It was hypothesized that scores on the DEX indicating executive 

complaints would correlate negatively with performance on executive control tasks at 

pretest.  Therefore, all correlations between the DEX total score and all dependent 

variables listed in Table 2 were examined.  However, only one significant correlation was 

uncovered between the DEX total score and the 1-back nontarget RT measure [r = .25, p 

< .05].  Thus, the lack of significant correlations suggest that this self-report measure of 

executive problems does not correlate with cognitive performance on the executive 

control tasks used in this study.  

Comparison of correlations between AX-CPT and Dot-CPT and AX-CPT and 

PM/N-back.  Hypothesis 1 also predicted that the relationship between AX-CPT and Dot 

AX-CPT variables would be significantly stronger than that found for the AX-CPT and 

other measures such as the far transfer task, the PM/N-back.  We used the methods 

suggested by Meng, Rosenthan and Rubin (1992) to compare the strength of the 

relationships between the Dot-CPT and the AX-CPT with the strength of relationship 

between the AX-CPT and cost scores for the WM 1-back or 2-back and PM tasks.  Only 
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correlations that were significant and predicted (i.e., on the diagonal in the tables such as 

Dot-CPT BX RT and AX-CPT BX RT) were tested.  

The strength of the relationship between AX-CPT proactive RT index and WM 

nontarget RT cost index was compared with the strength of the relationship between AX-

CPT proactive RT index and Dot-CPT proactive RT index.  As shown in Table 3i, the 

relationship between the AX-CPT and Dot-CPT proactive RT index scores was found to 

be trending toward showing a significantly stronger (p = .06) than that of AX-CPT 

proactive RT index and WM nontarget RT index scores.  Thus, as shown through the 

patterns of correlations presented in Tables 3a and 3b, the relationships between AX-CPT 

and Dot-CPT demonstrate that both tasks measure proactive error and RT performance in 

similar ways that are highly related.  As shown in Tables 3c and 3d, relationship between 

error and RT PM/N-back scores and AX-CPT errors was not related to proactive strategy 

use.  Thus, the Dot-CPT appears to be a better measure of context processing RT 

performance than the PM/N-back measures in that it shows a stronger relationship with 

the AX-CPT proactive RT measure and the significant relationships between AX-CPT 

and Dot-CPT variables reflected a more theoretically predicted pattern (e.g., AX-CPT 

AY RT correlating significantly with Dot-CPT AY RT) compared with a less 

theoretically predicted pattern between AX-CPT and PM/N-back variables (e.g., AX-

CPT BX RT correlating negatively with WM nontarget RT cost index scores, which 

suggests that more reactive AX-CPT performance is related to less effect of WM 

demands on the PM/N-back).   
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Table 3i.  
Strength of Significant Correlations Uncovered Between AX-CPT BX RT and Dot-CPT BX RT Compared 
with Strength of Significant Correlations Uncovered between AX-CPT BX RT and PM/N-back RT scores. 
 
 Correlation with 

AX-CPT 
Proactive RT 
Index 

Z score 
comparison 

P value 

Dot-CPT Proactive RT Index 
 
WM Nontarget RT Cost 

.47*** 
 
.25** 

1.56 .06 

Note. Greater proactive RT index scores are indicative of more proactive patterns of performance.  
*p = .05, **p < .05, ***p < .01, ****p < .001 

 
 
 

Hypothesis 1 Summary.  There were few significant differences at pretest between 

participants assigned to the various training and exposure conditions.  However, the 

variables that did show significant differences at pretest were not those that were found to 

produce significant differences as a result of interventions.   

The pattern of relationships uncovered between AX-CPT and Dot-CPT 

performance suggested that more proactive performance on one task relates to more 

proactive performance on the other task.  This finding was consistent with our theoretical 

prediction, and confirms that the Dot-CPT can serve as an appropriate near-transfer task 

for the AX-CPT.  Few of the relationships found between the AX-CPT and tasks other 

than the Dot-CPT showed a pattern suggesting that proactive performance on the AX-

CPT (i.e., greater AY errors/RTs, fewer BX errors/RT, or proactive index scores) was 

correlated with superior cognitive control on the other tasks (i.e., more accurate or faster 

performance, or reduced cost measures).  Although there were some significant 

correlations uncovered between the AX-CPT and PM/N-back, the pattern of relationships 

did not suggest that the PM/N-back assesses proactive control as well as the Dot-CPT 

task.  Therefore, it is concluded that the Dot-CPT was an appropriate near transfer task 
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and the PM/N-back was an appropriate far transfer task.  It is important to note that the 

choice to include the Dot-CPT as a near transfer task and the PM/N-back as the far 

transfer task was based on an a priori task process analysis.  Specifically, the Dot-CPT 

was chosen as the near transfer task due to the commonalities in structure between the 

AX-CPT and Dot-CPT and the PM/N-back task was chosen as the far transfer task due to 

the fact that there were fewer commonalities in structure between the AX-CPT and 

PM/N-back.  Thus, the near and far transfer tasks were chosen before the study was 

conducted and therefore, the correlation analyses reported above serve to confirm that 

they are appropriate measures, but the decision to include these tasks as transfer tasks 

was not dependent on the results of these analyses.  

 Performance on the DEX did not relate significantly to performance on the AX-

CPT, and DEX scores were found to be correlated with only one cognitive measure.  

Thus, it appears that self-reported executive control ability as measured by the DEX is 

not easily related to performance on the tests of executive control used in this study.   

 

Hypothesis 2: Performance on the AX-CPT  

Overview. Hypotheses 2a, 2b, and 2c for the AX-CPT task were examined with an 

ANOVA for the proactive context processing error index (i.e., AY-BX/AY+BX) with 

training condition (training vs. practice) and exposure condition (multi task vs. single 

task) as between-subjects variables and session (pretest vs. posttest) as a within-subjects 

variable.  An analogous ANOVA was performed for proactive context processing RT 

index scores.  In the sections below, each hypothesis is presented and followed by the 
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ANOVA results that address that hypothesis. Detailed accuracy and reaction time (RT) 

data for proactive context processing index scores are presented in Table 4.  

Hypothesis 2a. It was predicted that all participants would show improvement on the AX-

CPT task from pretest to posttest due to the benefit of practice with the task at pretest and 

during the intervention sessions.   

This hypothesis predicted a main effect of session demonstrating that performance 

becomes more proactive from pretest to posttest.  Consistent with this hypothesis, a 

significant main effect of session was revealed for errors, [F(1,82) = 6.22, p < .05, partial 

�2 = .07], with the proactive context processing error index increasing from pretest to 

posttest.  Additionally, a significant main effect of session was uncovered for the 

proactive RT index, [F (1,82) = 12.17, p < .01, partial �2 = .13], demonstrating that the 

proactive context processing RT index increased from pretest to posttest.  Thus, when 

collapsing across the exposure and training conditions, participants demonstrated a more 

proactive pattern of performance at posttest compared with pretest in errors and RTs.   

Hypothesis 2b. It was predicted that participants in the single task conditions would show 

significantly improved performance on the AX-CPT at posttest compared with pretest 

above and beyond improvement shown by participants in the multi task conditions. 

Furthermore, it was predicted that participants in the single task practice condition 

would show a larger increase in proactive performance from pretest to posttest compared 

with the multi task practice group.   It was also hypothesized that participants in the 

single task training condition would show a greater increase in proactive performance 

than participants in the multi task training condition.  
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The session related improvements in proactive control did not differ between the 

single task and multi task groups, in either errors, [F (1, 82) = .00, p = .98, partial �2 = 

.00, or RTs, [F (1, 82) = 1.2, p = .28, partial �2 = .01].  Additionally, simple effects test 

indicated an absence of difference between single task vs. multi task training or single 

task vs. multi task practice.   Thus, there is no evidence that performance from pretest to 

posttest was affected by differences in amount of experience with the AX-CPT as 

compared between single and multi task conditions.   

Hypothesis 2c.  It was predicted that the degree of improvement in goal maintenance 

abilities from pretest to posttest on the AX-CPT would not be significantly different for 

the practice and training groups, which is predicted by the results of the previous study 

(Paxton et al., 2006). 

Consistent with this hypothesis, the effect of training versus practice did not 

interact with the session effect in terms of errors, [F(1, 82) = .52, p = .47, partial �2 = 

.01].  However, for the proactive RT index, we did observe larger effects in the training 

conditions compared with the practice conditions  [training condition by session 

interaction: [F (1,82) = 4.33, p < .05, partial �2 =.05]].  A simple effects test indicated that 

in the training group, there was a significant improvement for the proactive RT index at 

posttest compared with pretest  [F (1,41) = 16.04, p < .001, partial �2 =.28].  In the 

practice condition there was no significant difference between pretest and posttest for the 

proactive RT index, [F (1, 43) = 1.09, p = .30, partial �2 =.03].  Additionally, a follow-up 

contrast revealed a statistically significant difference between the training and practice 
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groups at posttest for the proactive RT measure, [F (1,84) = 4.67, p < .05, partial �2 =.05].  

See Figure 2 for a graph depicting the effects of training versus practice on the proactive 

context processing RT index.  Thus, these data suggest that the training interventions 

were more effective than practice interventions in increasing proactive RT performance.  

There were no interactions between training and exposure conditions, suggesting that 

participants in the training conditions, regardless of whether it be the single task training 

or multi task training, showed more proactive RT performance from pretest to posttest.   
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Table 4 

Proactive Context Processing Error and RT Index Scores at Pretest and Posttest for All Conditions on the 

AX-CPT 

Errors 
  Multi Task Training  Multi Task Practice  Multi Task Total 

Pre  .00 (.30)    -.14 (.39)   -.07 (.35) 

Post  .08 (.28)    .00 (.33)    .04 (.30) 

N  21    21    42 

  Single Task Training  Single Task Practice  Single Task Total 

Pre  -.05 (.37)   -.13 (.37)   -.09 (.36) 

Post  .03 (.26)    .01 (.24)    .02 (.24) 

N  21    23    44 

_______________________________________________________________________

_ 
  Training Total   Practice Total   All Participants  

Pre   -.03 (.33)    -.14 (.37)   -.08 (.36) 

Post  .05 (.27)    .01 (.28) *   .03 (.27) ** 

N  42    44    86 

______________________________________________________________________________________
______________________________________________________________________________________ 

RTs 
Multi Task Training  Multi Task Practice  Multi Task Total 

Pre  .08 (.19)    .07 (.16)    .08 (.17) 

Post  .17 (.20)  **   .06 (.13)    .12 (.18) 

N  21    21    42 

  Single Task Training  Single Task Practice  Single Task Total 

Pre  .00 (.19)    .01 (.15)    .00 (.17)  

Post  .10 (.15)  ***   .07 (.13)    .08 (.14) *** 

N  21    23    44 

_______________________________________________________________________
_ 
   

Training Total   Practice Total   All Participants  

Pre         .04 (.19)    .04 (.16)    .04 (.17) 

Post  .14 (.18) ****   .07 (.13)    .10 (.16) *** 
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N  42    44    86 

______________________________________________________________________________________ 

Note. Entries are means; standard deviations are in parentheses.  

 **** p < .001, *** p < .01,  ** p < .05, * p = .05 

 

Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean AX-CPT Proactive Context Processing RT Index Scores for Participants in  

the Training and Practice Conditions at Pretest and Posttest 

 

 

*  

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

Practice Training
Training Condition

Pr
oa

ct
iv

e 
R

T
 In

de
x

Pretest
Posttest

 *   p < .05 
 ** p < .001 

** * 



  
91 

 

 

Hypothesis 2 Supplementary Analyses  

Examination of AY and BX scores in separate ANOVAs.  Although the proactive 

context processing index scores for errors and RTs were used in the primary analyses, it 

was of interest to more closely examine AY and BX error and RT scores separately.  

These analyses were pursued to determine if the significant differences in RT for training 

conditions were driven by AY trials, BX trials, or both.  Likewise, I was interested in 

determining whether either AY and/or BX errors, when examined in isolation, showed a 

pattern consistent with increased proactive performance, but that when these measures 

were combined into the proactive context processing indices they were not strong enough 

to produce a significant effect for exposure conditions.  Thus, an ANOVA for AY error 

scores was conducted with training condition (training vs. practice) and exposure 

condition (multi task vs. single task) as between-subjects variables and session (pretest 

vs. posttest) as a within-subjects variable.  Analogous ANOVAs were conducted for BX 

error scores, AY RTs, and BX RTs.  Table 5 shows error rates and Table 6 shows RT 

data for AY and BX trials on the AX-CPT.    

AY and BX errors in separate ANOVAs. When AY error scores were examined, 

there were no significant effects of session, [F (1, 82) = .06, p = .81, partial �2 = .00].  

Likewise, the session by training condition [F (1, 82) = .06, p = .81, partial �2 = .00], 

session by exposure condition [F (1, 82) = .53, p = .47, partial �2 = .01], and session by 
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training condition by exposure condition [F (1, 82) = .06, p = .81, partial �2 = .00] 

interactions were not significant.  

When BX error scores were examined, a main effect of session was uncovered, [F 

(1,82) = 5.44, p < .05, partial �2 = .06], which reflects a decrease in BX error scores from 

pretest to posttest for all participants.  This main effect of session for BX errors is 

consistent with the main effect of session for proactive context processing error indices 

demonstrating a general increase in proactive error performance for all participants.  The 

session by training condition [F (1, 82) = 2.60, p = .11, partial �2 = .03], session by 

exposure condition interaction [F (1, 82) = .34, p = .56, partial �2 = .00], and session by 

training condition by exposure condition [F (1, 82) = .17, p = .69, partial �2 = .00] 

interactions were not significant.  

AY and BX RTs in separate ANOVAs.  When examining AY RT scores, the main 

effect of session was not significant, [F (1, 82) = .01, p = .94, partial �2 =.00].  A main 

effect of training condition was uncovered, [F (1,82) = 8.26, p < .01, partial �2 =.09], with 

participants in the training conditions showing slower RTs across pretest and posttest 

sessions.  A significant session by training condition interaction was uncovered, [F (1,82) 

= 4.63, p < .05, partial �2 =.05].  As shown in Table 6, participants in the training 

conditions showed a non-significant increase in AY RTs, [F (1, 41) = 1.99, p = .17, 

partial �2 =.05], while participants in the practice conditions showed a non-significant 

decrease in AY RTs, [F (1, 43) = 2.40,  p = .13, partial �2 =.05].  This trend of increased 
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AY RTs in the training conditions and decreased AY RTs in the practice conditions was 

supported by the finding of significantly greater AY RTs at posttest in the training 

conditions compared with practice conditions, [F (1, 84) = 11.51, p < .01, partial �2 =.12].  

Also, a session by training condition by exposure condition interaction was found, [F 

(1,82) = 4.63, p < .05, partial �2 = .05].  As shown in Table 6, AY RTs showed a non-

significant decrease in all training/exposure condition combinations except the multi task 

training condition, which was the only condition to show a significant increase from 

pretest to posttest, [F (1,20) = 5.46, p < .05, partial �2 = .21].  This pattern was consistent 

with the overall proactive control pattern, which assumes that increased proactive control 

would lead to a slowing of AY RTs in the posttest session.  Thus, the multi task training, 

but not single task training, single task practice, or single task training conditions, 

produced AY slowing, consistent with a training-induced increase in proactive control.   

When BX RTs were examined, a main effect of session was uncovered, [F (1,82) 

= 14.17, p < .0001, partial �2 = .15], demonstrating that BX RTs decreased from pretest to 

posttest for participants in all conditions.  In contrast with the lack of significant effects 

for exposure condition when the proactive context processing indices were examined, a 

session by exposure condition interaction was marginally significant, [F (1,82) = 3.57, p 

= .06, partial �2 = .04].  Separate examination of each exposure condition demonstrated 

that participants in the single task conditions showed a significant decrease in BX RTs 

from pretest to posttest, [F (1, 43) = 15.59, p < .001, partial �2 = .27], while participants 

in the multi task conditions showed a non-significant decrease in BX RTs, [F (1, 41) = 
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1.78, p = .19, partial �2 =.04].  The session by training condition [F (1, 82) = 1.96, p = 

.17, partial �2 =.02] and session by training condition by exposure condition [F (1, 82) = 

.00, p = .96, partial �2 =.00] interactions were not significant.  The absence of an 

interaction might be due to power and therefore, change in performance on various AX-

CPT RT scores was explored separately for each of the training/exposure conditions. 

Interestingly, the single task training condition was the only training/exposure condition 

combination to show a significant decrease in BX RTs [F (1, 20) = 15.65, p < .01, partial 

�2 = .44] as the single task practice [F (1, 22) = 3.91, p = .06, partial �2 = .15], multi task 

training [F (1, 20) = 3.42, p = .08, partial �2 = .15], and multi task practice [F (1, 20) = 

.04, p = .85, partial �2 = .00] did not show a significant change in BX RT performance 

from pretest to posttest. 

Examination of AY and BX scores in single ANOVA.  Given that theory predicts 

that AY errors and RTs were hypothesized to increase and BX error and RTs were 

hypothesized to decrease as performance becomes more proactive, it is important to 

analyze these trial types together to determine whether interactions exist between them.  

Specifically, AY and BX error and RT scores were analyzed with analogous ANOVAs 

where trial type was an additional within subjects variable (AY vs. BX).  Table 7 shows 

ANOVA results for error rates and Table 8 shows ANOVA results for RT data for the 

AX-CPT. 

AY and BX Errors in single ANOVA. Consistent with the main effect of session 

for proactive context processing error indices demonstrating a general increase in 
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proactive error performance for all participants, a main effect of session, [F (1,82) = 4.27, 

p < .05, partial �2 = .05], was qualified by a session by trial type interaction, [F(1, 82) = 

4.71, p < .05, partial �2 = .05].  Specifically, examination of mean values shows that BX 

errors decreased significantly from pretest to posttest, [F (1, 82) = 5.44, p < .05, partial �2 

= .06], with no marked change in AY errors across sessions, [F (1, 82) = .06, p  = .81, 

partial �2 = .00].  There were no other significant effects for errors 

AY and BX RTs in single ANOVA.  When examining RT scores for AY and BX 

scores, a main effect of session, [F (1,82) = 11.00, p < .01, partial �2 =.12], and main 

effect of trial type, [F (1,82) = 9.52, p < .01, partial �2 =.10], were uncovered.  These 

effects were qualified by a session by trial type interaction, [F (1,82) = 12.26, p < .01, 

partial �2 =.13], demonstrating that BX RTs decrease significantly from pretest to 

posttest, [F (1,82) = 14.17, p < .001, partial �2 =.15] with no significant change in AY 

trials from pretest to posttest, [F (1, 82) = .01, p = .94, partial �2 = .00].  This finding is 

consistent with the main effect of session found for the proactive context processing RT 

indices, suggesting that all participants showed more proactive RT performance at 

posttest, which was driven by a decrease in BX RTs.   

Consistent with the session by training type interaction found for the proactive 

context processing RT indices, a session by trial by training condition interaction was 

revealed when AY and BX RTs were examined, F (1, 82) = 4.93, p < .05, partial �2 =.06.  

Further examination of performance from pretest to posttest in each trial type 
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demonstrated that participants in the training conditions showed a significant decrease in 

BX RTs from pretest to posttest, F(1,41) = 16.31, p < .001, partial �2 =.29, while 

participants in the practice conditions showed a trend toward decreased BX RTs [F (1,43) 

= 2.51, p =.12, partial �2 = .06].  Participants in the training conditions showed a non-

significant trend of increased AY RTs from pretest to posttest [F (1, 41) = 1.99, p = .17, 

partial �2 = .05] while participants in the practice conditions showed a trend of decreased 

AY RTs from pretest to posttest [F (1, 43) = 2.40, p =.13, partial �2 =.05].  This trend of 

increased AY RTs in the training conditions and decreased AY RTs in the practice 

conditions was supported by the finding of significantly longer AY RTs at posttest in the 

training conditions compared with practice conditions, [F (1, 84) = 11.51, p < .01, partial 

�2 = .12].  Still, as is apparent in Table 8, the multi task training condition was the only 

condition combination to show an increase in AY RTs from pretest to posttest, and drives 

the finding that the mean AY RTs for training conditions (including multi task training 

and single task training) increase from pretest to posttest.    

Also, in contrast with the lack of significant effects for intervention test number 

when the proactive context processing indices were examined, a session by exposure 

condition interaction was revealed, [F (1,82) = 5.53, p < .05, partial �2 =.06], when AY 

and BX RTs were examined.  When performance for participants in the single task 

conditions was examined separately, a significant decrease in RTs was uncovered, [F (1, 

43) = 15.59, p < .001, partial �2 =.27], whereas the decrease in RTs for the multi-task 

conditions was not significant, [F (1, 41) = .49, p = .49, partial �2 = .01].  Thus, the single 
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task conditions (in which participants gained more experience with the AX-CPT) led to a 

general decrease in RT from pretest to posttest.  This effect was not specific to trial type 

and therefore was not shown with the more specific proactive context processing index. 

Examination of Composite proactive index scores.  It was important to investigate 

the combined effect of proactive error and RT performance in an effort to gain additional 

insight about the pattern of results for training and exposure conditions.  Thus, the sum of 

the AX-CPT proactive error index scores and AX-CPT proactive RT index scores was 

computed and used as the dependent variable in ANOVAs with session as a within 

subjects variable and training condition (training vs. practice) and exposure condition 

(single vs. multi task) as between subjects variables.  Table 9 shows the composite 

proactive index scores.  

A main effect of session was uncovered for the composite proactive index, [F (1, 

82) = 11.61, p < .01, partial �2 =  .12], demonstrating that composite proactive index 

scores increased significantly from pretest to posttest for all participants.  As shown in 

Table 9, participants in all conditions showed significant improvements over time, and 

the session by training condition [F (1, 82) = .01, p = .92, partial �2 = .00], session by 

exposure condition [F (1, 82) = .14, p = .71, partial �2 =  .00], and session by training 

condition by exposure condition [F (1, 82) = .13 p = .72, partial �2 =  .00] interactions 

were not significant.  Still, when each training/exposure condition combination was 

examined separately, only the single task training condition showed a marginally 
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significant increase in composite proactive index scores, [F (1, 20) = 4.27, p = .05, partial 

�2 =  .18].   

 AX-CPT Summary.   Results demonstrated that, regardless of intervention 

condition, older adult participants become more accurate and efficient on the training 

task.  Further examination of AY and BX scores for all participants indicated that there 

was a significant decrease in BX error and RT scores from pretest to posttest, but no 

significant change in AY errors or RTs.    

In contrast the results did not conform to Hypothesis 2b as there was no effect of 

exposure condition on AX-CPT performance as assessed with proactive error or RT 

index scores.  Additionally, there were no differences in exposure condition for AY or 

BX error scores.  Participants in single task conditions showed a non-specific (collapsed 

across AY and BX) greater decrease in RT from pretest to posttest.  Overall, there was no 

evidence that participants with extended exposure to the AX-CPT showed greater 

benefits in proactive performance compared with participants in the multi task exposure 

conditions.   

In terms of Hypothesis 2c, participants assigned to the training conditions showed 

a greater increase in proactive RT index scores compared with participants in the practice 

conditions.  Further inspection of AY and BX RT scores indicated that there was a 

significant difference between training conditions in the pattern with which AY and BX 

RTs change from pretest to posttest.  Specifically, participants in the training conditions 

showed a significant decrease in BX RTs and non-significant increase in AY RTs while 

participants in the practice conditions showed a non-significant decrease in BX RTs and a 
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non-significant decrease in AY RTs.  Although the increase in AY RTs for training 

participants was driven by a significant increase for only the multi task training condition, 

those in either training condition combination showed a more proactive pattern of 

performance in terms of BX RTs compared with all participants in the practice 

conditions.  The single task training condition was the only training/exposure condition 

combination that produced a significant decrease in BX RTs and a significant increase in 

composite proactive index scores.  In summary, training was found to be more effective 

than practice when the relationship between change in AY and BX RT performance was 

evaluated such that the tendency for AY scores to increase and BX scores to decrease 

was compared (e.g., proactive RT index or trial type interaction in ANOVA).  Still, when 

individual error and RT scores were evaluated separately, there was no evidence that the 

training condition was more effective than practice in leading to more proactive 

performance.  Participants in the multi task training condition were the only participants 

to show a more proactive significant increase in AY RT scores and participants in the 

single task training condition were the only participants to show a more proactive 

significant decrease in BX RT scores.  
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Table 5. 

Errors at Pretest and Posttest in AY and BX Trial Types All Conditions on the AX-CPT 

________________________________________________________________ 
Trial Type  Multi Task Training Multi Task Practice  Multi Task Total 

AY 

Pre  .03 (.08)   .02 (.06)    .03 (.07) 

Post  .04 (.09)   .03 (.07)    .04 (.08)  

N  21   21    42 

BX           

Pre  .03 (.05)   .10 (.22)    .06 (.16) 

Post  .01 (.05)   .03 (.07)    .02 (.06)  

N  21   21    42 

 

   Single Task Training Single Task Practice  Single Task Total 

AY 

Pre  .04 (.12)   .02 (.05)    .03 (.09) 

Post  .03 (.06)   .02 (.04)    .02 (.05)  

N  21   23    44 

BX           

Pre  .07 (.20)   .12 (.29)    .10 (.25) 

Post  .05 (.20)  **  .02 (.06)    .03 (.14)  

N  21   23    44 

________________________________________________________________ 
    

Training Total  Practice Total   All Participants  

AY 

Pre  .04 (.10)   .02 (.06)    .03 (.08)  

 Post  .04 (.08)   .03 (.05)    .03 (.07)  

 N  42   44    86 

BX           

Pre  .05 (.14)   .11 (.26)    .08 (.21)   

Post  .03 (.14)   .02(.07) **   .03 (.11)  **  

N  42   44    86 

______________________________________________________________________________________ 

Note.  Entries are means; standard deviations are in parentheses.   

**** p < .001, *** p < .01,  ** p < .05, * p = .05 
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Table 6 

Median RTs at Pretest and Posttest in AY and BX Trial Types for All Conditions on the AX-CPT 

_____________________________________________________________________________________

_ 

Trial Type  Multi Task Training Multi Task Practice Multi Task Total 

AY 

Pre  716.36 (117.64)  694.83 (142.93)  705.60 (129.75)   

Post  780.57 (175.16) ** 667.02 (93.90)  723.80 (150.23)   

N  21   21   42 

BX           

Pre  654.14 (273.04)  617.57 (203.56)  635.86 (238.58)  

Post  577.45 (251.17)  607.83 (187.78)  592.64 (219.57)   

N  21   21   42 

 

   Single Task Training Single Task Practice Single Task Total 

AY 

Pre  714.55 (97.56)  655.78 (78.31)  683.83 (91.90) 

Post  698.60 (95.16)  638.63 (81.92)  667.25 (92.54) 

N  21   23   44 

BX           

Pre  756.40 (264.02)  674.52 (216.41)  713.60 (241.03) 

Post  595.07 (210.99) *** 575.24 (180.05)  584.70 (193.37) **** 

N  21   23   44 

_____________________________________________________________________ 
 
   Training Total  Practice Total  All Participants  

AY 

Pre  715.45 (106.75)  674.42 (114.14)  694.46 (111.86)   

Post  739.58 (145.27)  652.18 (87.98)  694.87 (126.87)   

N  42   44   86 

BX           

Pre  705.27 (270.27)  647.34 (209.91)  675.63 (241.61)   

Post  586.26 (229.28) **** 590.80 (182.37)  588.58 (205.39) ****  

N  42   44   86 

 

Note.  Entries are means; standard deviations are in parentheses.   

**** p < .001, *** p < .01,  ** p < .05, * p = .05 
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Table 7.  ANOVA Summary for AX-CPT Errors 
_____________________________________________________________________________________ 
 
Source     df      F         �2 

_____________________________________________________________________________________ 
 
Between subjects 

 
     Training (T)    1   .63 
 
     Exposure (E)    1   .69 
 
     T x E     1   .55 
 
     Error 1    82 
 

Within subjects 

 
Session (S)    1   4.27 *   .05 
 
     S x T     1   1.95    
 
     S x E     1    .73   
 
     S x T x E    1    .08 
   
     Error 2    82 
 
Trial Type (TT)    1   2.19 
 
    TT x T    1   1.68 
   
    TT x E    1     .82 
 
    TT x T x E    1     .17 
 
    Error 3    82 
 
S x TT     1   4.71 *   .05 
 
   S x TT x T    1   2.35 
 
   S x TT x E    1     .05  
 
   S x TT x T x E    1     .21 
   
   Error 4    82 
_____________________________________________________________________________________ 
 
*p < .05.  ** p < .01.  *** p < .001.  **** p < .0001. 
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Table 8.  ANOVA Summary for AX-CPT RTs 
_____________________________________________________________________________________ 
 
Source     df      F         �2 

____________________________________________________________________________________ 
 
Between subjects 

 
     Training (T)    1   2.78 
 
     Exposure (E)    1     .00 
 
     T x E     1     .13 
 
     Error 1    82 
 

Within subjects 

 
Session (S)    1   11.00 **   .12 
 
     S x T     1      .12    
 
     S x E     1    5.53 *   .06  
 
     S x T x E    1     .69 
   
     Error 2    82 
 
Trial Type (TT)    1   9.52 **   .10 
 
    TT x T    1     .79 
   
    TT x E    1   3.22 
 
    TT x T x E    1    .46 
 
    Error 3    82 
 
S x TT     1   12.26 **   .13 
 
   S x TT x T    1     4.93 *   .06 
 
   S x TT x E    1     1.10 
 
   S x TT x T x E    1      .92 
   
   Error 4    82 
_____________________________________________________________________________________ 
 
*p < .05.  ** p < .01.  *** p < .001.  **** p < .0001. 
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Table 9 

Composite Proactive Index Scores at Pretest and Posttest for All Conditions on the AX-CPT  

 

  Multi Task Training  Multi Task Practice  Multi Task Total 

Pre  .07 (.41)    -.07 (.44)   .00 (.43) 

Post  .25 (.38)    .06 (.38)    .16 (.40) ** 

N  21    21    42 

 

  Single Task Training  Single Task Practice  Single Task Total 

Pre  -.05 (.51)   -.12 (.42)   -.09 (.46) 

Post  .13 (.33) *   .08 (.31)    .10 (.32) ** 

N  21    23    44 

_______________________________________________________________________ 
 
  Training Total   Practice Total   All Participants  

Pre  .01 (.46)    -.10 (.42)   -.04 (.44) 

Post  .19 (.36) ***   .07 (.34)  **   .13 (.36) *** 

N  42    44    86 

________________________________________________________________________ 
Note.  Entries are means; standard deviations are in parentheses.   

**** p < .001, *** p < .01,  ** p < .05, * p = .05 
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Hypothesis 3: Performance on the Task Switching and Modified Sternberg 

Hypothesis 3a.  It was hypothesized that all participants would show worse performance 

in accuracy and RTs in mixed block trials compared with pure block trials.  Likewise, it 

was expected that all participants would show worse performance in accuracy and RTs 

in mixed block switch trials compared with mixed block repeat trials. Also, it was 

predicted that all participants would show worse accuracy and RT performance in recent 

negative trials compared with novel negative trials on the modified Sternberg.   

 Overview. For the task switching measure, Hypothesis 3a was examined with 

separate ANOVAs for errors and RTs with training (training vs. practice) and exposure 

(single task vs. multi task) conditions as between-subjects variables and session (pretest 

vs. posttest) and mixing cost (repeat trials in mixed blocks vs. all trials in pure blocks) as 

within-subjects variables.  Additional ANOVAs for errors and RTs were conducted with 

switch cost (switch vs. repeat trials in mixed blocks) as a within-subjects variable instead 

of mixing cost. 

For the modified Sternberg measure, Hypothesis 3a was approached with separate 

ANOVAs for errors and RTs with training (training vs. practice) and exposure (single 

task vs. multi task) conditions as between-subjects variables and session (pretest vs. 

posttest) and trial type (recent negative vs. novel negative) as within-subjects variables. 

Task Switching. In the task switching accuracy analysis, a main effect of trial type 

was found when mixing cost was a within-subjects variable, [F (1, 77) = 8.76, p < .01, 

partial �2 = .10], demonstrating that significantly more errors were made for mixed block 

repeat trials than pure block trials. A main effect of trial type was uncovered when switch 



  
106 

cost was a within-subjects variable, [F (1, 77) = 24.80, p < .001, partial �2 = .24], 

showing that significantly more errors were made on switch trials than repeat trials.  Due 

to these significant trial type effects for switching and mixing costs, the switching and 

mixing cost values were used as dependent variables in the analyses that follow.  

When task switching RTs were examined with mixing cost as a within subjects 

variable, a main effect of trial type was found, [F (1, 77) = 105.36, p < .001, partial �2 = 

.58], showing that RTs for repeat trials were significantly greater than those found for 

pure block trials.  Likewise when switching costs were analyzed, a main effect of trial 

type was found, [F (1, 77) = 58.31, p < .001, partial �2 = .43], demonstrating that switch 

trial RTs were significantly greater than repeat trial RTs. Therefore, mixing and 

switching cost values were used as dependent variables in all analyses that follow.  

Modified Sternberg. There was a main effect of trial for errors, [F (1, 79) = 58.18, 

p < .001, partial �2 = .42], and RTs, [F (1, 79) = 106.34, p < .001, partial �2 = .57], 

demonstrating that more errors and larger RT values were shown on negative recent trials 

compared with negative novel trials.  Due to this effect of trial type, the analyses 

following involve a recency interference cost scores (negative recent – negative novel) to 

indicate increased difficulty of the negative recent trials in comparison to the negative 

novel trials.  

Hypothesis 3b. It was predicted that all participants would show improvement on the task 

switching and modified Sternberg tasks from pretest to posttest due to benefit from 

exposure to the task at pretest in all conditions.    
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After verifying significant differences between trial types, Hypotheses 3b, 3c, and 

3d for the task switching measures were approached with mixing cost scores (repeat trials 

from mixed blocks – all trials in pure blocks) and switching costs scores (switch trials 

from mixed block – repeat trials from mixed block) as dependent variables.  Separate 

ANOVAs for mixing error cost scores, mixing RT cost scores, switching error cost 

scores, and switching RT cost scores were conducted with training (training vs. practice) 

and exposure (single task vs. multi task) conditions as between-subjects variables and 

session (pretest vs. posttest) as a within subjects variable.  In the sections below, each 

hypothesis is presented followed by the ANOVA results that address that hypothesis.  

Detailed accuracy and RT data for mixing and switch costs are presented in Table 10 and 

11.  

After verifying significant differences among trial types, Hypotheses 3b, 3c, and 

3d for the modified Sternberg task were approached with the recency interference score 

(recent negative – novel negative) as a dependent variable.  Separate ANOVAs were 

conducted for recency interference error and RT cost scores with training (training vs. 

practice) and exposure (single task vs. multi task) conditions as between-subjects 

variables and session (pretest vs. posttest) and as a within-subjects variable.  Detailed 

accuracy and RT data for each trial type are presented in Table 12 and 13. 

Task Switching. A main effect of session was not significant for mixing error cost 

scores, [F (1, 77) = 1.01, p = .32, partial �2 = .01], or switching error cost scores, [F (1, 

77) = .17, p = .68, partial �2 = .00], suggesting that participants’ accuracy performance 

did not change significantly from pretest to posttest.  When RTs were examined, the main 

effect of session was significant for mixing RT cost scores, [F (1, 77) = 4.62, p < .05, 
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partial �2 = .06], demonstrating that mixing costs decreased from pretest to posttest.  The 

main effect of session was not significant for switching RT cost scores, [F (1, 77) = 1.54, 

p = .22, partial �2 = .02].   

Modified Sternberg. On the Modified Sternberg task, the main effect of session 

was not significant for the error, [F (1, 79) = .01, p = .91, partial �2 = .00], or RT recency 

interference cost scores, [F (1, 79) = .12, p = .74, partial �2 = .00].  

Hypothesis 3c. Participants in the multi task conditions gained experience with the task 

switching and modified Sternberg tasks during the interventions sessions, whereas 

participants in the single task conditions only gained experience with these tasks during 

the pretest session.  Because participants in the multi task conditions gained more 

experience with these two tasks during the two intervention sessions, it was hypothesized 

that participants in the multi task conditions (i.e., multi task training and multi task 

practice) would show a significantly greater improvement in performance than those in 

the single conditions on the task switching and the modified Sternberg at posttest 

compared with pretest. 

Task Switching. The hypothesis that multi task conditions produce a greater 

improvement in performance would predict that session by exposure condition 

interactions would be uncovered.  However, a session by exposure condition interaction 

for mixing error cost was not found, [F (1, 77) = .44, p = .51, partial �2 = .01].  Still, the 

main effect of exposure condition for mixing error cost was marginally significant,  [F (1, 

77) = 4.00, p = .05, partial �2 = .05], demonstrating that participants in the single task 
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condition showed less of a cost associated with task-repeat trials compared with pure 

trials compared with those in the multi task condition on both pretest and posttest 

sessions.  The session by exposure condition interaction was not significant for switching 

error cost scores, [F (1, 77) = 1.95, p = .17, partial �2 = .03], mixing RT cost scores [F ( 1, 

77) = 2.92, p = .09, partial �2 = .04], or switching RT cost scores [F (1, 77) = .92, p = .34, 

partial �2 = .01].  Thus, the lack of significant interactions between exposure condition 

and session suggests that the main effects of session in mixing cost discussed above are 

not related to amount of exposure.  In summary, these analyses did not support the 

hypotheses that the multi task intervention conditions would produce greater performance 

changes as there were no significant effects of exposure condition when changes in 

performance from pretest to posttest were examined.  

Modified Sternberg. On the modified Sternberg measure, the session by exposure 

condition interactions was not significant for recency interference error cost scores, [F (1, 

79) = .12, p = .74, partial �2 = .00], or recency interference RT cost scores, [F (1, 79) = 

.06, p = .82, partial �2 = .00]. Thus, these results do not support the hypothesis that multi 

task conditions that provided more exposure to the modified Sternberg task would 

produce a greater improvement in interference cost than the single task conditions.   

Hypothesis 3d.  It was predicted that the multi task training group would show 

significantly greater improvement in performance than the multi task practice group on 

the task switching and modified Sternberg tasks at posttest compared with pretest.  
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 Overview.   Hypothesis 3d predicting a significant difference between multi task 

training and multi task practice would be supported through a significant session by 

training condition by exposure condition interaction in the ANOVAs described for 

Hypotheses 3b, 3c, and 3d (i.e., training and exposure conditions as between subjects 

variables and session as a within subjects variable).  If such an interaction was uncovered, 

then contrasts between training/exposure condition combinations would be expected to 

demonstrate that the multi task training condition showed a more significant change in 

task switching and modified Sternberg scores than the multi task practice condition.   

Task Switching. The session by training condition interaction was not significant 

for mixing error cost [F (1, 77) = .04, p = .85, partial �2 = .00], switching error cost [F (1, 

77) = .20, p = .66, partial �2 = .00], mixing RT cost [F (1, 77) = .04, p = .85, partial �2 = 

.00], or switching RT cost [F (1, 77) = .67, p = .42, partial �2 = .01].  Likewise, the 

session by training by exposure condition interaction was not significant for mixing error 

cost [F (1, 77) = 2. 70, p = .11, partial �2 = .04], switching error cost [F (1, 77) = .08, p = 

.78, partial �2 = .00], mixing RT cost [F (1, 77) = .13, p = .72, partial �2 = .00], or 

switching RT cost [F (1, 77) = 1.19, p = .28, partial �2 = .02].  Thus, there is no evidence 

that the multi task training condition was significantly more effective than the multi task 

practice condition in changing task switching scores from pretest to posttest.  

Modified Sternberg. The session by training condition interaction was not 

significant for recency interference error cost scores [F (1, 79) = .40, p = .53, partial �2 = 

.01] or recency interference RT cost scores [F (1, 79) = .00, p = .99, partial �2 = .00]. 
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Likewise, the session by training by exposure condition interaction was not significant 

for recency interference error cost scores [F (1, 79) = .10, p = .75, partial �2 = .00] or 

recency interference RT cost scores [F (1, 79) = .08, p = .77, partial �2 = .00].  Thus, there 

is no evidence that the multi task training condition was significantly more effective than 

the multi task practice condition in changing modified Sternberg scores from pretest to 

posttest.  

Task Switching and Modified Sternberg Summary.  In contrast to Hypothesis 3b, 

among all variables examined on the task switching and modified Sternberg measures, 

only the mixing cost RT measure from the task switching test showed a significant 

improvement in performance from pretest to posttest for all participants.  Hypothesis 3c 

predicted that participants in the multi task conditions would show greater improvement 

from pretest to posttest due to gaining additional experience with the task switching and 

modified Sternberg measures during the intervention sessions.  In contrast to this 

hypothesis, performance on the task switching and modified Sternberg measures did not 

show greater change from pretest to posttest for those in multi task conditions.  

Furthermore, in contrast to Hypothesis 3d stating that participants in the multi task 

training condition would show greater improvement from pretest to posttest, there were 

no significant effects of training and/or exposure combinations in any of the task 

switching or modified Sternberg scores.  Thus, there was no evidence that the multi task 

training intervention led to a greater increase in performance compared with the other 

training/exposure condition combinations. 
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Table 10 

Errors at Pretest and Posttest for All Conditions on the Task Switching Measure 
_____________________________________________________________________________________ 

Multi Task Training   Multi Task Practice Multi Task Total 

Mixing Cost     

Pre        .03 (.07)   .00 (.10)   .01 (.09) 

     Post  .00 (.02)   .02 (.04)   .01 (.03) 

  N  19   21   40 

Switching Cost  

Pre          .03 (.07)   .03 (.07)   .03 (.07) 

     Post  .03 (.06)   .01 (.04)   .02 (.05) 

 N  19   21   40 

 

Single Task Training   Single Task Practice Single Task Total 

Mixing Cost     

Pre          .04 (.10)   .08 (.17)   06 (.14) 

     Post  .04 (.14)   .04 (.09)   .04 (.12) 

  N  19   22   41 

Switching Cost  

Pre         .02 (.05)   .01 (.07)   .02 (.06) 

     Post  .04 (.07)   .03 (.04)   .03 (.05) 

 N  19   22   41 

______________________________________________________________________________________ 

      

Training Total    Practice Total  Total 

Mixing Cost     

Pre          .04 (.08)   .04 (.15)   .04 (.12) 

     Post  .02 (.10)   .03 (.07)   .02 (.09) 

  N  38   43   81 

Switching Cost  

Pre         .02 (.06)   .02 (.07)   .02 (.07) 

     Post  .03 (.06)   .02 (.04)   .03 (.05) 

 N  38   43   81 

_____________________________________________________________________________________ 

Note.  Entries are means; standard deviations are in parentheses.   

**** p < .001, *** p < .01,  ** p < .05, * p = .05 
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Table 11 

RTs at Pretest and Posttest for All Conditions on the Task Switching Measure 

_____________________________________________________________________________________ 

Multi Task Training   Multi Task Practice    Multi Task Total 

Mixing Cost     

Pre         224.11 (189.72)  179.65 (205.82)  200.77 (197.08) 

    Post  130.25 (180.56) ** 93.64 (137.38)  111.03 (158.33) *** 

 N  19   21   40 

Switching Cost  

Pre          103.95 (235.03)  122.14 (266.57)  113.50 (249.04) 

    Post  86.97 (235.95)  121.76 (176.19)  105.24 (204.75) 

N  19   21   40 

     

Single Task Training   Single Task Practice Single Task Total 

Mixing Cost     

Pre          186.58 (165.78)  159.77 (138.42)     172.20 (150.37) 

    Post  189.00 (203.65)  136.85 (182.81)  161.02 (191.79) 

 N  19   22      41 

Switching Cost  

Pre          144.45 (220.04)  207.89 (160.32)     178.49 (190.54) 

    Post  135.63 (169.41)  82.75 (116.01) **    107.70 (140.35) * 

N  19   22       41 

______________________________________________________________________________________ 

      

Training Total    Practice Total  Total 

Mixing Cost    

Pre          204.34 (176.75)  169.48 (172.78)  185.82 (174.74)  

    Post  159.63 (192.15)  115.75 (161.43)  135.78 (173.56) ** 

 N  38   43   81 

Switching Cost  

Pre          124.20 (225.50)  166.01 (220.38)  146.40 (222.39) 

    Post  111.30 (204.10)  101.80 (147.99)  107.98 (172.13) 

N  38   43   81 

_____________________________________________________________________________________ 

Note.  Entries are means; standard deviations are in parentheses.   

**** p < .001, *** p < .01,  ** p < .05, * p = .05 
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Table 12 

Errors at Pretest and Posttest for All Conditions on the Modified Sternberg Measure 

_____________________________________________________________________________________ 

Multi Task Training   Multi Task Practice Multi Task Total 

Recency Interference Score    

Pre          .07 (.10)   .06 (.08)   .07 (.09) 

     Post  .09 (.14)   .06 (.10)   .07 (.12) 

  N  20   20   40 

 

Single Task Training   Single Task Practice Single Task Total 

Recency Interference Score    

Pre         .07 (.10)   .12 (.14)   .10 (.12)  

     Post  .07 (.12)   .11 (.12)   .09 (.12) 

  N  20   23   43 

_____________________________________________________________________________________ 

 

Training Total    Practice Total  Total 

Recency Interference Score    

Pre          .07 (.10)   .09 (.11)   .08 (.11) 

     Post  .08 (.13)   .09 (.11)   .08 (.12) 

  N  40   43   83 

_____________________________________________________________________________________ 

Note.  Entries are means; standard deviations are in parentheses.   

**** p < .001, *** p < .01,  ** p < .05, * p = .05 
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Table 13 

RTs at Pretest and Posttest for All Conditions on the Modified Sternberg Measure 

_____________________________________________________________________________________ 

Multi Task Training   Multi Task Practice Multi Task Total 

Recency Interference Score    

Pre         96.20 (140.55)  77.58 (104.81)  86.89 (122.74) 

     Post  93.30 (107.23)  84.15 (64.46)  88.73 (87.45) 

  N  20   20   40 

 

Single Task Training   Single Task Practice Single Task Total 

Recency Interference Score    

Pre         101.00 (118.44)  76.24 (125.17)  87.76 (121.28) 

     Post  116.38 (120.07)  80.91 (106.04)  97.41 (112.84) 

  N  20   23   43 

_____________________________________________________________________________________ 

 

Training Total    Practice Total  Total 

Recency Interference Score    

Pre          98.60 (128.31)  76.86 (114.79)  87.34 (121.24) 

     Post  104.84 (112.97)  82.42 (88.16)  93.22 (100.88) 

  N  40   43   83 

_____________________________________________________________________________________ 

Note.  Entries are means; standard deviations are in parentheses.   

**** p < .001, *** p < .01,  ** p < .05, * p = .05 
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Hypothesis 4: Performance on the Near Transfer Task: Dot-CPT 

Overview. Hypotheses 4a and 4b for the Dot-CPT task were examined with an 

ANOVA where the proactive context processing error index (i.e., AY-BX/AY+BX) was 

the dependent variable and training condition (training vs. practice) and exposure 

condition (multi task vs. single task) were between-subjects variables and session (pretest 

vs. posttest) was a within-subjects variable.  An analogous ANOVA was performed for 

proactive context processing RT index scores.  In the sections below, each hypothesis is 

presented followed by the ANOVA results that address that hypothesis.  Detailed 

accuracy and RT data for proactive context processing index scores are presented in 

Table 14.  

Hypothesis 4a.  It was hypothesized that all participants would show improvement on the 

Dot-CPT task from pretest to posttest due to simple exposure to the task at pretest.    

A significant main effect of session was uncovered for the proactive context 

processing error index, [F (1, 81) = 4.48, p < .05, partial �2 = .05], demonstrating an 

increase in proactive context processing error index scores from pretest to posttest.  For 

the context processing RT scores, the main effect of session was not significant, [F (1, 

81) = 1.37, p = .25, partial �2  =  .02].  

Hypothesis 4b. It was hypothesized that participants in the multi task training condition 

would show a significantly greater increase in proactive performance on the near 

transfer task, the Dot-CPT, from pretest to posttest than participants in the single task 

training, multi task practice, or single task practice conditions.   
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Hypothesis 4b predicting a significant difference between multi task training and 

the other three training/exposure condition combinations would be supported through a 

significant session by training condition by exposure condition interaction in the 

ANOVAs described for hypotheses 4a and 4b (i.e., training and exposure conditions as 

between subjects variables and session as a within subjects variable).  If such an 

interaction was uncovered, then contrasts between training/exposure condition 

combinations would be expected to demonstrate that the multi task training condition 

showed a more significant change in proactive error and RT scores from pretest to 

posttest.   

First, the effect of training condition (training vs. practice) was examined.  This 

factor did not interact with session for either the proactive error [F (1, 81) = .90, p = .35, 

partial �2= .01] or RT [F (1, 81) = 00, p = .96, partial �2= .00] indices.  Still, as apparent 

through inspection of scores in Table 12, the training conditions showed a greater 

increase in proactive error scores from pretest to posttest compared with the practice 

conditions.  Specifically, when the training and practice conditions were analyzed 

separately, participants in the training condition showed a significant main effect of 

session for Dot-CPT proactive error index scores, [F (1, 40) = 4.76, p < .05, partial �2= 

.09] while the participants in the practice condition did not show a significant main effect 

of session, [F (1, 43) = .75, p = .39, partial �2= .02].  

Next, the effect of exposure condition (single task vs. multi task) was examined. 

This effect was not significant for the proactive RT index [F (1, 81) = .50, p = .49, partial 

�2= .01], but it did interact with session for the proactive error index [F (1,81) = 4.68, p < 
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.05, partial �2= .06].  Participants in the single task groups showed a significant pretest to 

posttest improvement in proactive control in error scores [F (1, 42) = 7.57, p < .01, partial 

�2= .15], but participants in the multi task conditions did not show any improvement [F 

(1, 41) = .00, p = .97, partial �2= .00].  Figure 3 shows the significant effect of exposure 

condition on change from pretest to posttest in proactive error index scores.  Although it 

is encouraging to observe that participants in the single task conditions showed a 

significant increase in proactive error index scores, this result should be interpreted with 

caution.  As is obvious from visual inspection of Figure 3, participants in the single task 

conditions showed a trend toward significantly lower scores at the pretest session than 

participants in the multi task condition, [F (1, 84) = 3.02, p = .09].  Also, the difference 

between posttest scores for participants in the single task conditions and participants in 

the multi task conditions did not approach significance, [F (1, 84) = .84 p  = .36].  

 The omnibus ANOVA presented above did not uncover a session by training 

condition by exposure condition interaction for proactive errors [F (1, 81) = .10, p = .75, 

partial �2= .00] or RTs [F (1, 81) = 1.30, p = .26, partial �2= .02].  Still, because there was 

evidence that the training condition was more effective than the practice condition and 

the single task condition was more effective than the multi task condition in producing 

proactive error scores, it was of interest to determine whether the single task training 

condition would be more effective than other conditions.  Therefore, each 

training/exposure condition combination was examined individually.  These analyses 

indicated that the single task training condition was the only condition combination that 

resulted in a significant increase in proactive error index scores from pretest to posttest, 

[F (1, 19) = 5.64, p < .05, partial �2= .23].  Conversely, the multi task practice condition 
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showed a non-significant decrease, [F (1, 20) = .59, p = .45, partial �2= .03], and the multi 

task training, [F (1, 20) = .45, p = .51, partial �2= .02] and the single task practice, [F (1, 

22) = 2.55, p = .12, partial �2= .10] conditions showed a non-significant increase in 

proactive error index scores from pretest to posttest.  
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Table 14. 

Proactive Context Processing Error and RT Index Scores at Pretest and Posttest for All Conditions on the 
Dot-CPT 

______________________________________________________________________________________ 

     Errors 
  Multi Task Training  Multi Task Practice  Multi Task Total 

Pre  .11 (.37)    .12 (.38)    .11 (.37) 

Post  .17 (.32)    .05 (.29)    .11 (.31) 

N  21    21    42 

  Single Task Training  Single Task Practice  Single Task Total 

Pre  -.10 (.48)   -.02 (.54)   -.06 (.51) 

Post  .17 (.37)  **   .18 (.35)    .18 (.35) *** 

N  20    23    43 

_______________________________________________________________________ 
  Training Total   Practice Total   All Participants  

Pre  .01 (.43)    .05 (.47)    .03 (.45) 

Post  .17 (.34)  **   .12 (.33)    .14 (.33) ** 

N  41    44    85 

______________________________________________________________________________________

______________________________________________________________________________________ 

RTs 
Multi Task Training  Multi Task Practice  Multi Task Total 

Pre  .15 (.15)    .08 (.16)    .11 (.16) 

Post  .14 (.15)    .10 (.14)    .12 (.15) 

N  21    21    42 

  Single Task Training  Single Task Practice  Single Task Total 

Pre  .09 (.16)    .08 (.17)    .08 (.16) 

Post  .14 (.13)    .09 (.15)    .11 (.14) 

N  20    23    43  

______________________________________________________________________________________  

  Training Total   Practice Total   All Participants  

Pre   .12 (.16)    .08 (.16)    .10 (.16) 

Post  .14 (.14)    .10 (.15)    .12 (.14) 

N  41    44    85 

_____________________________________________________________________________________ 

Note.  Entries are means; standard deviations are in parentheses.   

**** p < .001, *** p < .01,  ** p < .05, * p = .05 
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Figure 3 
 
 
 

        * p < .01 
 
 
 
 
Mean Dot-CPT Proactive Context Processing Error Index Scores for Participants in the  

Single and Multi Task Conditions at Pretest and Posttest 
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Hypothesis 4: Supplementary Analyses 

Examination of AY and BX scores in separate ANOVAs.  Although the proactive 

context processing index scores for errors and RTs were used in the primary analyses, it 

was of interest to more closely examine AY and BX error and RT scores separately. 

Thus, an ANOVA for AY error scores was conducted with training condition (training 

vs. practice) and exposure condition (multi task vs. single task) as between-subjects 

variables and session (pretest vs. posttest) as a within-subjects variable. Analogous 

ANOVAs were conducted separately for BX error scores, AY RTs, and BX RTs.  Table 

15 shows error rates and Table 16 shows RT data for AY and BX trials on the Dot-CPT.    

AY and BX errors in separate ANOVAs.  In contrast to the main effect of session 

for proactive error index scores demonstrating a general increase in proactive error 

performance for all participants, the main effect of session was not significant for AY 

errors, [F (1, 81) = .18, p = .67, partial �2 = .00].  The session by exposure condition 

interaction was marginally significant, [F (1,81) = 3.07, p = .08, partial �2 =  .04].  

Specifically, participants in the single task conditions showed a non-significant increase 

in AY errors [F (1, 42) = 2.35, p = .13, partial �2 =  .05] while participants in the multi 

task conditions showed a non-significant decrease in AY errors [F (1, 41) = .87, p = .36, 

partial �2 =  .02].   The session by training condition [F (1, 81) = .23, p = .63, partial �2 = 

.00] and session by training by exposure condition [F (1, 81) = .21, p = .65, partial �2 = 

.00] interactions were not significant.  
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When BX errors were investigated, a main effect of session was uncovered, [F 

(1,81) = 9.54, p < .01, partial �2 =  .11], demonstrating that BX errors decreased from 

pretest to posttest for all participants.  A session by exposure condition interaction 

showed a trend toward significance, [F (1,81) = 2.63, p = .11, partial �2 =  .03].  When the 

exposure conditions were tested separately, the single task condition showed a significant 

decrease in BX errors from pretest to posttest, [F (1,42) = 8.83, p < .01, partial �2 =  .17], 

while participants in the multi task conditions showed a non-significant decrease in BX 

errors, [F (1, 41) = 1.46, p = .23, partial �2 = .03].  The trend toward a significant session 

by exposure condition interaction for BX errors should be interpreted cautiously because 

examination of pretest performance demonstrated that participants in the single task 

condition showed a trend toward significantly greater BX errors at pretest compared with 

participants in the multi task conditions, [F (1, 84) = 2.92, p = .09].  Also, there was not a 

significant difference between scores for participants in single and multi task conditions 

at posttest, [F (1, 84) = .32, p = .57].  These differences at pretest in BX error scores 

correspond to the pretest differences found for proactive error index scores discussed in 

the Hypothesis 4b section.  The session by training condition [F (1, 81) = 1.28, p = .26, 

partial �2 =  .02] and session by training by exposure condition [F (1, 81) = .78, p = .38, 

partial �2 =  .01] interactions were not significant.   

AY and BX RTs in separate ANOVAs. When AY RTs were explored, a main effect 

of session was uncovered, [F (1,81) = 19.33, p < .001, partial �2 = .19], demonstrating 

that AY RTs decreased from pretest to posttest.  These RT results demonstrating that AY 
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RTs decreased indicate a shift to a more reactive pattern, which is consistent with the lack 

of significant effects found when proactive context processing RT index scores were 

investigated.  A session by exposure condition interaction was uncovered for AY RTs, [F 

(1,81) = 4.32, p < .05, partial �2 =  .05].  When exposure conditions were investigated 

separately, participants in the single task conditions showed a marginally significant 

decrease in AY RTs from pretest to posttest, [F (1,42) = 3.77, p = .06, partial �2 =  .08], 

and participants in the multi task conditions showed a significant decrease in AY RTs, [F 

(1,41) = 17.30, p < .01, partial �2 =  .30].   The session by training condition, [F (1, 81) = 

.25, p = .62, partial �2 = .00] and session by training condition by exposure condition [F 

(1, 81) = 1.66, p = .20, partial �2 = .02] interactions were not significant.   

When BX RTs were investigated, a main effect of session was uncovered, [F 

(1,81) = 8.87, p < .01, partial �2 =  .10], demonstrating that BX RTs decreased for all 

participants from pretest to posttest.  The session by training condition [F (1, 81) = .10, p 

= .75, partial �2 =  .00], session by exposure condition [F (1, 81) = .08, p = .78, partial �2 

=  .00], and session by training condition by exposure condition [F (1, 81) = .54, p = .46, 

partial �2 =  .01] interaction were not significant.  

Examination of AY and BX scores in single ANOVA. It is also important to 

investigate scores on AY and BX trials together in the same ANOVA to determine 

whether interactions exist between them.  Specifically, AY and BX error and RT scores 

were analyzed with analogous ANOVAs where trial type was an additional within 
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subjects variable (AY versus BX).  Table 17 shows ANOVA results for error rates and 

Table 18 shows ANOVA results for RT data for the Dot-CPT. 

AY and BX Errors in single ANOVA.  First, a main effect of session was 

uncovered, [F (1,81) = 6.25, p < .05, partial �2 =  .07] showing a decrease in errors from 

pretest to posttest.  This effect was qualified by a session by trial interaction, [F (1, 81) = 

8.03, p < .01, partial �2 = .09], with AY errors showing a nonsignificant increase from 

pretest to posttest, [F (1, 81) = .18, p = .67, partial �2 = .09],  and BX errors showing a 

significant decrease, [F (1,81) = 9.54, p < .01, partial �2 = .11].  Furthermore, a session by 

trial type by exposure interaction was uncovered for error scores, [F (1,81) = 5.04, p < 

.05, partial �2 = .06].  Examination of performance from pretest to posttest for each trial 

type revealed that participants in the single task conditions showed a significant decrease 

in BX errors from pretest to posttest, [F (1,42) = 8.83, p < .01, partial �2 = .17].  

Participants in the multi task conditions also showed a decrease in BX errors, but this did 

not approach significance, [F (1, 41) = 1.46, p = .23, partial �2 = .03).  A nonsignificant 

increase in AY errors was demonstrated with participants in the single task conditions, [F 

(1, 42) = 2.35, p =.13, partial �2 = .05] and multi task conditions, [F (1, 41) = .87, p =.36, 

partial �2 = .02].  There were no other significant effects for error scores. 

AY and BX RTs. When AY and BX RTs were explored, a main effect of session 

was uncovered, [F (1,81) = 21.48, p < .001, partial �2 = .21], demonstrating that RTs 

decreased for both AY and BX trials from pretest to posttest.  Also, a main effect of trial 
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for RTs, [F (1, 81) = 46.63, p < .001, partial �2 = .37] revealed that AY RTs were greater 

than BX RTs across sessions and conditions.  These RT results are consistent with the 

lack of significant effects found for training and test number conditions when proactive 

context processing RT index scores were investigated.  There were no other significant 

effects for RT scores 

Examination of composite proactive index scores. Given that there were 

differences in the pattern of RTs between single and multi task conditions that were not 

detected when the proactive context processing RT index was analyzed alone, it was 

important to investigate the combined effect of proactive error and RT performance. 

Thus, the composite proactive index score (sum of Dot-CPT proactive error index scores 

and Dot-CPT proactive RT index scores) was used as the dependent variable in ANOVAs 

with session as a within subjects variable and training condition (training vs. practice) 

and exposure condition (single vs. multi task) as between subjects variables.  Table 19 

shows composite proactive index scores.  

A main effect of session was uncovered for the composite proactive index scores, 

[F (1, 81) = 5.75, p < .05, partial �2 =  .07], demonstrating that composite proactive index 

scores increased significantly from pretest to posttest for all participants.  A session by 

exposure intervention condition interaction was also found, [F (1, 81) = 5.29, p < .05, 

partial �2 =  .06].  When each exposure condition was analyzed separately, the single task 

condition showed a significant increase in composite proactive index scores from pretest 

to posttest, [F (1, 42) = 9.25, p < .01, partial �2 =  .18], while participants in the multi task 

conditions did not show a significant change in composite proactive index scores from 
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pretest to posttest, [F (1, 41) = .01, p = .94, partial �2= .00].  These results with the 

composite proactive index confirmed results with proactive error index scores presented 

above showing that participants in the single task condition demonstrated a significantly 

greater proactive shift from pretest to posttest compared with participants in the multi 

task conditions.  The session by training condition [F (1, 81) = .87, p = .35, partial �2 =  

.01] and the session by training by exposure condition [F (1, 81) = .00, p = .97, partial �2 

=  .00] interactions were not significant.  Still, given that the training conditions brought 

about more proactive performance on the Dot-CPT proactive error scores, it is important 

to investigate whether the single task training condition would produce more proactive 

performance on the Dot-CPT composite scores.  Thus, when the change in performance 

from pretest to posttest was examined with Dot-CPT composite proactive index scores 

for participants in each training/exposure condition combination, only participants in the 

single task training conditions showed a significant increase in composite proactive index 

scores from pretest to posttest, [F (1, 19) = 7.02, p < .05, partial �2 = .27].  Conversely, 

participants in the single task practice [F (1, 22) = 2.93, p = .10,  partial �2 = .12], multi 

task practice [F (1, 2) = .24, p = .63, , partial �2 = .01] and multi task training [F (1, 20) = 

.26, p = .62, partial �2 = .01] did not show a significant increase in composite proactive 

index scores from pretest to posttest. 

 Dot-CPT Summary. Hypothesis 4a predicted that participants in all conditions 

would become more proactive from pretest to posttest, and a significantly more proactive 

pattern of performance was found for Dot-CPT proactive error index, composite 
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proactive index, BX errors, and BX RT scores.  Conversely, proactive RT index scores 

and AY error scores did not show a significantly more proactive pattern of performance 

from pretest to posttest for all participants.  AY RTs showed a significantly more reactive 

change (decrease in scores instead of a more proactive increase) from pretest to posttest, 

which was in contrast to hypotheses that all participants would become more proactive as 

a result of exposure to the task at pretest.  

Hypothesis 4b predicted that participants in the multi task training condition 

would show a greater increase in proactive performance compared with the other three 

training/exposure condition combinations.  When proactive error index and composite 

proactive index scores assessing the degree with which AY and BX scores changed in 

divergent directions were analyzed, participants in the training conditions were found to 

produce a significant increase in proactive performance from pretest to posttest, but did 

not differ significantly from the pattern of performance found for participants in the 

practice conditions.  When each training/exposure condition combination was assessed, 

participants in the single task training condition showed a significant increase in 

proactive error index and composite proactive index scores, but did not differ 

significantly from the scores for participants in the other three training/exposure 

condition combinations.   Participants in single task conditions showed significantly 

greater proactive performance compared with participants in the multi task conditions for 

the proactive error index, composite proactive index scores, and the interaction between 

AY and BX errors within the trial factor of an ANOVA.  Thus, there was significant 

evidence that participants in the single task conditions showed a more proactive pattern 

of performance when the degree with which AY and BX scores changed in divergent 
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directions was analyzed.  Also, the AY RT scores, which showed a pattern of becoming  

more reactive from pretest to posttest for all participants, showed a significantly less 

reactive change for single task participants compared with multi task participants.  

Although there were no significant differences between participants according to 

exposure condition, participants in the single task conditions showed a significant 

decrease in BX errors an a non-significant increase in AY errors while participants in the 

multiple tasks conditions showed a non-significant decrease in BX error and a non-

significant decrease in AY errors.  In summary, the results suggest that training 

conditions may be helpful in facilitating proactive change when the differences in pattern 

of performance between AY and BX errors are assessed, but those in the training 

conditions do not show significantly divergent patterns of performance compared with 

those in the practice conditions.  There was substantial evidence that single task 

participants show a more proactive change in comparison with participants in the multi 

task conditions when the pattern of performance between AY and BX was compared with 

proactive index measures.  There were hints that individual AY and BX error scores 

showed a greater degree of proactive change for those in the single task conditions, but 

they did not differ significantly from performance for those assigned to the multi task 

conditions.  Still, as mentioned above, evidence that the single task conditions led to 

more proactive change should be interpreted with caution due to trend level differences in 

BX error and proactive error index scores at pretest.  

Summary of AX-CPT and Dot-CPT results.  

Overall, results demonstrated that participants in the training conditions showed 

significantly increased proactive performance according on the AX-CPT according to 
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proactive RT index scores whereas participants in the single task conditions showed the 

greatest increase in Dot-CPT proactive error index scores.  Thus, the common element in 

the intervention conditions that led to improvement in proactive performance on the AX-

CPT and Dot-CPT is the single task training condition.  Moreover, participants in the 

single task training condition were the only participants to show at least trend level 

significantly increased proactive performance on AX-CPT composite proactive index 

scores, Dot-CPT proactive error index scores, and Dot-CPT composite proactive error 

index scores.  Aside from the single task training condition, there was no other 

training/exposure combination that led to significant improvement on both the AX-CPT 

and Dot-CPT without another condition combination also showing significant change 

from pretest to posttest.  

It is interesting that RTs were most affected on the AX-CPT task while errors 

were most affected on the Dot-CPT task.  Furthermore, change in AX-CPT RT proactive 

index scores from pretest to posttest showed a positive and significantly correlation with 

change in Dot-CPT proactive error index scores from pretest to posttest (r = .27, p < .05).     
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 Table 15. 

Errors at Pretest and Posttest in AY and BX Trial Types for All Conditions on the Dot-CPT 
______________________________________________________________________________________ 

Trial Type  Multi Task Training Multi Task Practice Multi Task Total 

AY 

Pre  .11 (.13)   .07 (.10)   .09 (.12) 

Post  .09 (.15)   .05 (.07)   .07 (.11) 

N  21   21   42 

BX           

Pre  .10 (.24)   .03 (.06)   .06 (.18) 

Post  .02 (.05)   .04 (.06)   .03 (.06) 

N  21   21   42   

  

Single Task Training Single Task Practice Single Task Total 

AY 

Pre  .05 (.07)   .07 (.11)   .06 (.09) 

Post  .09 (.13)   .09 (.11)   .09 (.12) 

N  20    23   43 

BX           

Pre  .16 (.31)   .15 (.31)   .16 (.30) 

Post  .04 (.14)  *  .05 (.17)  *  .04 (.16) *** 

N  20   23   44 

_______________________________________________________________________ 
    

Training Total  Practice Total  All Participants  

AY 

Pre  .08 (.11)   .07 (.10)   .07 (.11)  

Post  .09 (.14)   .07 (.09)   .08 (.12)  

N  41   44   85 

BX           

Pre  .13 (.27)   .09 (.23)   .11 (.25) 

Post  .03 (.10) **  .04 (.13)   .04 (.12) *** 

N  41   44   85 

________________________________________________________________________ 
Note.  Entries are means; standard deviations are in parentheses, 

 **** p < .001, *** p < .01,  ** p < .05,  * p = .05 
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Table 16 

 RTs at Pretest and Posttest in AY and BX Trial Types for All Conditions on the Dot-CPT 

______________________________________________________________________________________ 

Trial Type  Multi Task Training Multi Task Practice Multi Task Total 

AY 

Pre  894.38 (115.89)  798.67 (138.59)  846.52 (135.15) 

Post  805.10 (126.96) *** 728.79 (92.18) **  766.94 (116.19) **** 

N  21   21   42 

BX           

Pre  679.69 (212.14)  705.60 (219.49)  692.64 (213.60) 

Post  629.40 (213.80)  606.83 (158.57)  618.12 (186.26) ** 

N  21   21   42 

 

   Single Task Training Single Task Practice Single Task Total 

AY 

Pre  778.10 (115.97)  783.85 (115.46)  781.17 (114.35) 

Post  772.29 (117.26) ** 733.41 (113.73)  751.97 (115.75) 

N  20   23   43 

BX           

Pre  689.20 (240.69)  691.24 (203.70)  690.29 (218.96) 

Post  622.52 (234.59)  638.87 (222.18)  631.07 (225.66) 

N  20    23   43 

 
   Training Total  Practice Total  All Participants  

AY 

Pre  837.66 (128.71)  790.92 (125.74)  813.46 (128.58) 

Post  788.69 (121.84) ** 731.20 (102.84) *** 759.28 (115.53) **** 

 N  41   44   85 

BX           

Pre  684.33 (223.70)  698.09 (209.02)  691.45 (215.04) 

Post  625.96 (221.71)  623.58 (192.91) ** 624.74 (206.25) *** 

N  41   44   85 

_____________________________________________________________________________________ 

Note.  Entries are means; standard deviations are in parentheses.   

**** p < .001, *** p < .01,  ** p < .05, * p = .05 
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Table 17.  ANOVA Summary for Dot-CPT Errors 
_____________________________________________________________________________________ 
 
Source     df      F         �2 

_____________________________________________________________________________________ 
 
Between subjects 

 
     Training (T)    1     .38 
 
     Exposure (E)    1   1.43 
 
     T x E     1     .82 
 
     Error 1    81 
 

Within subjects 

 
Session (S)    1   6.25 *   .07 
 
     S x T     1     .56    
 
     S x E     1     .28   
 
     S x T x E    1   1.02 
   
     Error 2    81 
 
Trial Type (TT)    1     .04 
 
    TT x T    1     .03 
   
    TT x E    1   2.17 
 
    TT x T x E    1    .08 
 
    Error 3    81 
 
S x TT     1   8.03 **   .09 
 
   S x TT x T    1   1.44 
 
   S x TT x E    1   5.04 *   .06  
 
   S x TT x T x E    1     .27 
   
   Error 4    81 
_____________________________________________________________________________________ 
 
*p < .05.  ** p < .01.  *** p < .001.  **** p < .0001. 
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Table 18.  ANOVA Summary for Dot-CPT RTs 
_____________________________________________________________________________________ 
 
Source     df      F         �2 

_____________________________________________________________________________________ 
 
Between subjects 

 
     Training (T)    1   .69 
 
     Exposure (E)    1   .45 
 
     T x E     1   .55 
 
     Error 1    81 
 

Within subjects 

 
Session (S)    1              21.48 ****  .21 
 
     S x T     1    .26    
 
     S x E     1               1.46     
 
     S x T x E    1   .00 
   
     Error 2    81 
 
Trial Type (TT)    1             46.63 ****  .37 
 
    TT x T    1               2.32 
   
    TT x E    1               1.34 
 
    TT x T x E    1    .63 
 
    Error 3    81 
 
S x TT     1   .31    
 
   S x TT x T    1   .00   
 
   S x TT x E    1   .56 
 
   S x TT x T x E    1               1.63 
   
   Error 4    81 
_____________________________________________________________________________________ 
 
*p < .05.  ** p < .01.  *** p < .001.  **** p < .0001. 
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Table 19 

Composite Proactive Index Scores at Pretest and Posttest for All Conditions on the Dot-CPT 

      
  Multi Task Training  Multi Task Practice  Multi Task Total 

Pre  .26 (.42)    .19 (.46)    .23 (.44) 

Post  .31 (.37)    .15 (.34)    .23 (.36) 

N  21    21    42 

 

  Single Task Training  Single Task Practice  Single Task Total 

Pre  -.01 (.57)   .06 (.58)    .03 (.57) 

Post  .29 (.41) **   .27 (.40)    .28 (.40) *** 

N  20    23    43 

_______________________________________________________________________ 
 
  Training Total   Practice Total   All Participants  

Pre  .13 (.51)    .12 (.53)    .12 (.52) 

Post  .30 (.39) **   .21 (.37)    .26 (.38) ** 

N  41    44    85 

_____________________________________________________________________________________ 

Note.  Entries are means; standard deviations are in parentheses.   

**** p < .001, *** p < .01,  ** p < .05, * p = .05 
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Hypothesis 5: Performance on the Far Transfer Task: PM/N-back  

Hypothesis 5a:  It was predicted that all groups would show improvement on the PM/N-

back task from pretest to posttest due to simple exposure effects.     

For Hypothesis 5a, in order to evaluate whether performance changed 

significantly from pretest to posttest, a mixed model ANOVA was conducted for each of 

the PM/N-back dependent variables listed in Table 2 and not in bolded font.  Session 

(pretest vs. posttest) was a within subjects variable and exposure condition (single task 

vs. multi task) and training condition (training vs. practice) were between subjects 

variables.  

As shown in Table 20, the only accuracy measure showing a significant 

improvement in performance from pretest to posttest was the 1-back d’ scores.  Some RT 

measures showed a significant improvement in performance from pretest to posttest such 

as 1-back target RT, 1-back nontarget RT, 2-back target RT, and 1-PM-back nontarget 

RT.   Although not presented in this table or in text, it is also important to note that when 

change from pretest to posttest was evaluated for these individual accuracy and RT 

scores, there were no significant effects of training condition or exposure condition.   

Hypothesis 5b.  It was also predicted that all participants would show worse performance 

in terms of d’ scores and RTs in 2-back condition compared with the 1-back condition 

indicating effects of increased working memory load.  Likewise, it was hypothesized that 

participants would show worse performance on the 1-PM-back condition compared with 

the 1-back condition due to greater prospective memory demands. 
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Investigation of the effects of increased working memory (WM) and prospective 

memory (PM) demands on PM/N-back performance was conducted with separate 

ANOVAs for d’ and RT scores.  To investigate the effects of working memory load 

(WM-load) on d’ scores, an ANOVA assessed working memory load where session 

(pretest vs. posttest) and working memory load (WM-load; 1-back vs. 2-back) were 

within-subjects variables.  To investigate the effects of prospective memory load (PM-

load) on d’ scores, an ANOVA was used with session and prospective memory condition 

(1-back vs. 1-PM-back) as within-subjects variables.  Investigation of WM-load and PM-

load for RTs was completed with analogous ANOVAs with an additional within subjects 

variable of target type (target vs. nontarget RT).   

A main effect of WM load was uncovered for d’ scores, [F (1, 73) = 247.65, p < 

.001, partial �2 = .77], showing that d’ scores were significantly lower in the 2-back 

condition compared with the 1-back condition.  When prospective memory condition was 

evaluated for d’ scores, a main effect of PM load was shown, [F (1, 74) = 64.63, p < .001, 

partial �2 = .47], showing that d’ prime scores were lower in the PM condition compared 

for the 1-back condition.  RT scores showed a main effect of WM load, [F (1,75) = 

135.12, p < .001, partial �2 = .64], indicating that RTs were significantly greater for the 2-

back condition compared with the 1-back condition.  Evaluation of PM RTs showed a 

main effect of load, [F (1, 76) = 726.72, p < .001, partial �2 = .92], demonstrating greater 

RTs in the condition with greater PM demands, 1-PM-back condition, compared with the 

condition with less PM demands, the 1-back condition.  The use of more concise cost 

index scores described in the Statistical Analyses section was justified by results 
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confirming that performance was worse in more difficult WM and PM conditions paired 

with the fact that no effects of training or exposure intervention conditions were 

uncovered for individual scores.  Thus, all analyses that follow used only the cost index 

scores.  It is important to note that when exploratory analyses were completed with d’ and 

RT scores for each condition, and results did not differ in a conclusive way.   

Overview of Analyses for Hypotheses 5c and 5d. All of the analyses for 

Hypotheses 5c and 5d were examined with the WM and PM cost scores that were bolded 

in Table 2.  As presented in the Statistical Analyses section, the WM index scores 

evaluated the cost of the more WM demanding 2-back condition compared with the 1-

back condition.  The PM cost index scores evaluated the cost on performance of the PM 

demands on the 1-PM-back compared with nontarget trials from the 1-back that did not 

entail a PM component.  A higher score on all d’ and RT WM cost indicates greater WM 

cost while the PM cost index scores indicates greater PM cost.     

Examination of accuracy was completed with the three error cost scores as 

dependent variables in separate mixed model ANOVAs with training condition and 

exposure condition as between subjects variables and session as a within subjects 

variable.  Analogous ANOVAs were conducted for the five bolded RT cost index scores 

presented in Table 2.  In the sections below, each hypothesis is presented followed by the 

ANOVA results that address that hypothesis.  Table 21 shows error cost index scores for 

all conditions.  Table 22 shows WM RT cost index scores and Table 23 show the PM RT 

cost index scores for all participants for all conditions. 

Hypothesis 5c. It was predicted that all participants would show more improvement in d’ 

scores and RTs from pretest to posttest on the 2-back condition compared with the 1-back 
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condition indicated through a significant change in WM cost scores from pretest to 

posttest.  Also, it was predicted that all participants would show more improvement on 

the 1-PM-back condition compared with the 1-back condition indicated through a 

significant change in PM cost scores from pretest to posttest. 

 Errors: WM load.  The main effect of session was not significant for WM cost 

error scores, [F (1, 70) = .18, p = .67, partial �2 = .00], suggesting that WM cost does not 

change from pretest to posttest for all participants.  Thus, the lack of a significant session 

effect indicates that participants did not show a reduced effect of WM load at posttest 

relative to pretest.  

Errors: PM load. The main effect of session was not significant for PM d’ error 

cost scores [F (1, 71) = .54, p = .47, partial �2 = .01] or PM cue error cost scores [F (1, 

73) = .19, p = .67, partial �2 = .00], suggesting that the cost associated with PM load did 

not decrease significantly from pretest to posttest for all participants.  

RT: WM load.  The main effect of session was not significant for WM target RT 

cost index scores, [F (1, 72) = .00, p = .95, partial �2 = .00].  A significant main effect of 

session was uncovered for WM nontarget RT index scores, [F (1, 72) = 8.03, p < .01, 

partial �2 = .10], demonstrating a significant increase in WM RT cost from pretest to 

posttest.  This latter effect was opposite to what was theoretically predicted.  Hence, 

follow-up analyses revealed that the effect was due to a significant reduction in RT in the 

low WM load 1-back condition from pretest to posttest, [F (1, 72) = 23.90, p < .001, 
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partial �2 = .25], rather than a significant change in performance in the high-load 2-back 

condition from pretest to posttest, [F (1, 72) = .61, p = .44, partial �2 = .01]. 

RT: PM load. When PM RT cost was evaluated, the main effect of session was 

not significant for PM target RT cost index, [F (1, 73) = .28, p = .60, partial �2 = .00] and 

PM nontarget RT cost index [F (1, 73) = 2.27, p = .14, partial �2 = .03].  However, when 

PM cue RT cost index scores were evaluated, a main effect of session was found, [F (1, 

73) = 5.24, p < .05, partial �2 = .07], showing that PM cue RT cost increased significantly 

from pretest to posttest.  Thus, the lack of a significant session effect for target and 

nontarget PM trials suggested that performance in the PM condition did improve from 

pretest to posttest.  The RT cost for PM cue trials was significant, but increased in the 

posttest relative to pretest.  Follow-up analyses indicated that this effect was due to 

significantly faster RTs in the no-PM load 1-back condition at posttest compared with 

pretest, [F (1 76) = 19.82, p < .001, partial �2 = .21], rather than a significant change in 

the RTs from pretest to posttest for the 1-PM-back PM condition, [F (1, 76) = .13, p = 

.73, partial �2 = .00].   

Hypothesis 5d.  It was hypothesized that participants the multi task training condition 

would show a greater increase in d' and greater decrease in RTs from pretest to posttest 

on all PN/N-back tasks than participants in the single task training, multi task practice, 

and single task practice conditions.  
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Errors: WM load. The analysis of WM d’ cost index scores did not produce a 

significant session by training condition, [F (1, 70) = .19, p = .66, partial �2 = .00], 

session by exposure condition [F (1, 70) = .12, p = .73, partial �2 = .00], or session by 

training by exposure condition [F (1, 70) = 1.24, p = .27, partial �2 = .02] interaction.  

Errors: PM load. In the analyses for PM d’ cost index presented in Hypothesis 

5b, the main effect of session was not significant.  Similarly, the analysis of PM d’ cost 

index scores did not produce a significant session by training condition, [F (1, 71) = .26, 

p = .61, partial �2 = .00] or session by exposure condition [F (1, 71) = .13, p = .72, partial 

�2 = .00] interaction.  Still, the session by training by exposure condition [F (1, 71) = 

4.44, p < .05, partial �2 = .06] interaction was significant.  When each training/exposure 

condition combination was examined separately, only the single task training condition 

showed a significant increase in PM d’ cost index scores from pretest to posttest, [F (1, 

20) = 5.78, p < .05, partial �2 = .22].  The multi task practice [F(1, 18) = .60, p =. 45, 

partial �2 = .03], multi task training [F (1, 15) = .40, p = .54, partial �2 = .03], and single 

task practice [F (1, 18) = .68, p = .42, partial �2 = .04] conditions showed a non-

significant decrease in PM d’ cost index scores from pretest to posttest.   

The session by training condition [F (1, 73) = .28, p =.60, partial �2 = .00], session 

by exposure condition [F (1, 73) = .51, p = .48, partial �2 = .01], and session by training 
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condition by exposure condition [F (1, 73) = .22, p = .64, partial �2 = .00] interactions 

were not significant for the PM cue error cost index score.   

RTs: WM and PM load.   For the WM target RT cost analysis, the session by 

training condition [F (1, 72) = .05, p = .82, partial �2 = .00], session by exposure 

condition [F (1, 72) = .05, p = .83, partial �2 = .00], and session by training condition by 

exposure condition [F (1, 72) = 1.33, p = .25, partial �2 = .02] interactions were not 

significant.  For the WM nontarget RT cost analysis, the session by training condition [F 

(1, 72) = .17, p =.68, partial �2 = .00], session by exposure condition [F (1, 72) = .09, p = 

.77, partial �2 = .00], and session by training condition by exposure condition [F (1, 72) = 

.90, p = .35, partial �2 = .01] interactions were not significant.  For the PM target RT cost 

analysis, the session by training condition [F (1, 73) = .10, p = .76, partial �2 = .00], 

session by exposure condition [F (1, 73) = 1.45, p = .23, partial �2 = .02], and session by 

training condition by exposure condition [F (1, 73) = .04, p = .84, partial �2 = .00] 

interactions were not significant.  For the PM nontarget RT cost analysis, the session by 

training condition [F (1, 73) = .93, p = .34, partial �2 = .01], session by exposure 

condition [F (1, 73) = .21, p = .65, partial �2 = .00], and session by training condition by 

exposure condition [F (1, 73) = .94, p = .34, partial �2 = .01] interactions were not 

significant.  Although the session by exposure condition [F (1, 73) = .09, p = .77, partial 

�2 = .00] and the session by training condition by exposure condition [F (1, 73) = .19, p = 
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.67, partial �2 = .00] interactions were not significant for PM cue RT cost index scores, 

the session by training condition interaction was significant [F (1, 73) = 7.13, p < .05, 

partial �2 = .09].   When training conditions were investigated separately, the training 

conditions showed a significant increase in PM cue RT cost scores from pretest to 

posttest, [F (1, 36) = 12.44, p < .01, partial �2 = .26] while the practice intervention 

conditions showed a non-significant decrease in PM cue RT cost scores [F (1, 39) = .08, 

p = .79, partial �2 = .00].  Follow-up analyses indicated that these effects were again 

primarily due significant changes in PM cue trials for the no-PM load 1-back conditions 

for practice [F (1, 39) = 8.18, p < .01, partial �2 = .17] and training [F (1, 36) = 11.61, p < 

.01, partial �2 = .24] while the change on PM cue trials for the PM condition were only 

significant for the training condition [F (1, 36) = 4.88, p < .05, partial �2 = .12], but not 

the practice conditions [F (1, 39 = 1.72, p  = .20, partial �2 = .04].  

PM/N-back Summary.  It was predicted in Hypothesis 5a that all participants 

would improve from pretest to posttest, but an improvement was found for only one 

accuracy score and four out of seven RT scores.  Also, in contrast to Hypothesis 5c, there 

was no posttest improvements observed in the high WM (2-back) or PM conditions. 

Hypothesis 5d predicted that the multi task training condition would show more 

significant improvements in performance from pretest to posttest than the other 

conditions.  However, there were no interpretable effects of training or exposure 

conditions.   
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Table 20 
 
Errors and RTs at Pretest and Posttest for All Participants on PM/N-back Measure. 
 

Errors 
_______________________________________________________________________ 

Trial Type  Pre    Post   F (df)     

 
1-back  D’  3.75 (.48)  3.90 (.36)  (1, 75) = 6.27*  
 
  
2-back  D’  2.87 (.75)  2.95 (.59)  (1, 80) = .36 . 
    
  
1-PM-back  D’  3.19 (.80)  3.24 (.84)  (1, 81) = .35  
 
  
1-PM-back PM cue trials .16 (.23)   .17 (.24)   (1, 84) = .28 
 
_____________________________________________________________________________________  

RTs 
_______________________________________________________________________ 

Trial Type  Pre   Post   F (df)  

 
1-back target RT  753.25 (145.69)  704.92 (145.74)  (1, 76) = 14.20 *** 
 
 
1-back nontarget RT 721.39 (117.53)  670.33 (115.14)  (1, 76) = 27.01 *** 
 
 
2-back target RT  924.20 (194.03)  847.98 (186.70)  (1, 82) = 17.76 *** 
 
 
2-back nontarget RT 804.51 (135.02)  798.00 (140.59)  (1, 82) = .25 
 
 
1-PM-back target RT 1021.61 (179.22)  980.82 (178.73)  (1, 84) = 3.57 
 
 
1-PM-back nontarget RT 1003.02 (198.57)  919.82 (169.82)  (1, 84) = 17.17 *** 
 
 
1-PM-back PM cue RT 973.09 (217.84)  969.01 (230.85)  (1, 84) = .02 
______________________________________________________________________________________ 

Note.  Entries are means; standard deviations are in parentheses.  Greater D’ scores are indicative of 

increased accuracy, greater 1-PM-back PM errors are indicative of decreased accuracy. 

*** p < .001, **p < .01.,  * p < .05.   
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Table 21.  
Error Cost Scores at Pretest and Posttest for All Conditions on the PM/N-back Measure 
______________________________________________________________________________________ 

 

Cost Score   Multi Task Training Multi Task Practice Multi Task Total 

WM D’ Cost:  Pre  1.02 (.71)  .85 (.77)   .92 (.74)  

Post  .87 (.69)   1.02 (.51)  .95 (.59) 

 N  15    19    34 

PM D’ Cost: Pre  .78 (.85)   .53 (1.07)  .64 (.97) 

Post  .64 (.70)   .76 (.93)   .70 (.82) 

N  16    19    35 

PM Cue Cost:  Pre  .16 (.19)   .12 (.23)   .14 (.21) 

Post  .20 (.23)   .16 (.31)   .18 (.27) 

                   N  16    20    36 

       Single Task Training   Single Task Practice Single Task Total 

WM D’ Cost:  Pre  .98 (.98)   .82 (.58)   .90 (.81) 

 Post  1.12 (.41)  .83 (.62)   .98 (.53) 

 N     21    19    40 

PM D’ Cost:  Pre  .40 (.58)   .69 (.88)   .54 (.74) 

Post  .82 (1.02) *  .51 (.65)   .68 (.87) 

N   21    19    40 

PM Cue Cost:  Pre   .13 (.18)   .19 (.26)   .15 (.22) 

Post  .15 (.21)   .15 (.19)   .15 (.20) 

   N   21    20    41 
_____________________________________________________________________________________ 

Training Total        Practice Total  All Participants  

WM D’ Cost:  Pre  .99 (.87)   .84 (.67)   .91 (.77) 

Post  1.02 (.55)  .92 (.57)   .97 (.56) 

N   36    38    74 

PM D’ Cost:  Pre  .56 (.73)   .61 (.97)   .59 (.85) 

   Post  .74 (.89)   .63 (.80)   .69 (.84) 

N   37     38    75 

PM Cue Cost:  Pre  .14 (.18)   .15 (.24)   .15 (.21) 

Post  .18 (.22)   .15 (.25)   .16 (.24) 

N   37    40    77 

_____________________________________________________________________________________ 

Note.  Entries are means; standard deviations are in parentheses,  *** p < .001, ** p < .01,  * p < .05,  
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Table 22   
RT Cost Scores at Pretest and Posttest for All WM conditions on the PM/N-back Measure 
______________________________________________________________________________________ 

 

Cost Score  Multi Task Training Multi Task Practice Multi Task Total 

WM Target RT Cost:  

Pre 212.06 (172.97)  152.33 (165.29)  178.87 (169.00) 

Post 177.199.43)  179.86 (204.55)  178.84 (199.40) 

 N 16   20   36 

WM Nontarget RT Cost:  

Pre 87.06 (110.16)  66.95 (66.57)  75.89 (87.39) 

Post 113.75 (134.58)  107.90 (77.81)  110.50 (105.16) ** 

      N 16   20   36 

Single Task Training Single Task Practice Single Task Total 

WM Target RT Cost:  

Pre 151.76 (193.39)  210.21 (120.27)  179.53 (163.49) 

Post 178.79 (142.88)  195.45 (171.51)  186.70 (155.30) 

  N 21   19   40  

WM Nontarget RT Cost:  

Pre 54.07 (132.12)  145.76 (139.33)  97.63 (141.64) 

Post 113.69 (97.73) **  169.29 (144.36)  140.10 (123.72)** 

      N 21   19   19 

_____________________________________________________________________________________  

Training Total          Practice Total  All Participants  

WM Target RT Cost:  

Pre 177.84 (184.83)  180.53 (146.19)  179.22 (165.01) 

Post 178.26 (167.07)  187.45 (186.86)  182.98 (176.38) 

 N 37    39   76 

WM Nontarget RT Cost:  

Pre 68.34 (122.59)  105.35 (113.74)  87.33 (118.81) 

Post 113.72 (113.37) ** 137.81 (117.75)  126.08 (115.50) *** 

      N 37   39   76 

_____________________________________________________________________________________ 

Note.  Entries are means; standard deviations are in parentheses.   

**** p < .001, *** p < .01,  ** p < .05, * p = .05 
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Table 23  
RT Cost Scores at Pretest and Posttest for All PM conditions on the PM/N-back Measure 
______________________________________________________________________________________ 

 

Cost Score   Multi Task Training Multi Task Practice     Multi Task Total 

PM Target RT Cost: Pre 329.47 (185.03)  283.23 (178.17)         303.78 (180.13) 

     Post 315.56 (149.19)  263.72 (208.79)         286.76 (184.08) 

      N 16   20          36 

PM Nontarget RT Cost: Pre 308.56 (100.85)  282.45 (131.49)         294.06 (117.98) 

     Post 166.84 (109.91)  241.00 (163.93)         252.49 (141.19) 

       N 16   20          36  

PM Cue RT Cost:  Pre 245.69 (182.02)  277.97 (165.63)         263.62 (171.33) 

     Post 414.75 (200.26) ** 262.67 (164.13)         330.26 (194.13) 

       N 16   20          36   

Single Task Training Single Task Practice Single Task Total 

PM Target RT Cost: Pre 226.62 (119.74)  274.50 (153.88)         249.98 (137.86)  

     Post 281.60 (146.24) ** 304.50 (126.53)         292.77 (135.77) 

      N 21   20          41  

PM Nontarget RT Cost: Pre 231.76 (119.93)  329.23 (185.85)         279.30 (161.34) 

     Post 250.00 (103.41)  265.95 (143.06)         258.04 (123.00) 

       N 21   20          41  

PM Cue RT Cost:  Pre 214.10 (213.27)  295.74 (259.15)         253.92 (237.42) 

     Post 339.79 (208.08) ** 288.35 (267.65)         314.70 (237.39) 

       N 21   20          41   

_____________________________________________________________________________________      

Training Total        Practice Total        All Participants  

PM Target RT Cost: Pre 271.09 (157.79)  278.86 (164.38)        275.13 (160.24) 

     Post 296.28 (146.45)  284.11 (171.65)        289.96 (159.11) 

      N 37   40         77 

PM Nontarget RT Cost: Pre 264.97 (117.12)  305.84 (160.66)        286.20 (142.01) 

     Post 257.57 (105.08)  253.48 (152.39)        255.44 (130.96) 

       N 37   40          77  

PM Cue RT Cost:  Pre 227.76 (198.37)  286.85 (214.85)        258.46 (207.87) 

     Post 372.20 (205.38) *** 275.51 (219.53)        321.97 (216.97) ** 

       N 37   40         77   

_____________________________________________________________________________________ 

Note.  Entries are means; standard deviations are in parentheses.   

**** p < .001, *** p < .01,  ** p < .05, * p = .05 
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Hypothesis 6: Performance on the DEX  

Hypothesis 6a. Given recent evidence that explicit training aimed to improve goal 

maintenance abilities in real-life situations improved DEX scores (Levine et al., 2007), it 

was hypothesized that DEX total scores would decline from pretest to posttest.    

Although I conducted a factor analysis to determine appropriate factor scores for 

the DEX, these analyses were inconclusive.  Still, a recent study showed conclusive 

evidence that the twenty questions assessing executive complaints on the DEX are best 

represented as a single factor, the sum of all items (Gerstorf et al., 2008).  Thus, 

hypothesis 6a was tested with an ANOVA comparing the DEX total scores with training 

condition and exposure condition as between-subjects variables and session as a within-

subjects variable.  Table 24 shows DEX total scores for all exposure and training 

condition combinations.   

The main effect of session was not significant [F (1, 80) = .01, p = .94, partial �2 = 

.00], suggesting that all participants did not show a decline in DEX scores from pretest to 

posttest.  The session by training condition [F (1, 80) = .83, p = .36, partial �2 = .01] and 

session by exposure condition [F (1, 80) = .22, p = .64, partial �2 = .00] interactions were 

not significant.  Still, a session by training condition by exposure condition was 

uncovered, [F (1, 80) = 5.27, p < .05, partial �2 = .06], suggesting that degree of change 

on the DEX varied as a function of training and exposure conditions.  Therefore, each 

training/exposure condition combination was examined separately for change from 

pretest to posttest.  DEX total scores showed a non-significant decrease from pretest to 
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posttest in the single task practice [F (1, 22) = 2.55, p = .12, partial �2 = .10] and multi 

task training [F (1, 20) = 1.15, p = .30, partial �2 = .05] conditions, but the single task 

training [F(1, 18) = 2.62, p = .12, partial �2 = .13] and multi task practice [F (1, 20) = .18, 

p = .68, partial �2 = .01] conditions showed a non-significant increase from pretest to 

posttest.  Due to the lack of significant change in any of the conditions, it cannot be 

concluded that the training or exposure condition interventions affected DEX total scores.  

Hypothesis 6b.  It was hypothesized that a quantitative measure of improvement in goal 

maintenance ability from pretest to posttest would show a positive relationship with a 

quantitative measure of decline in self-rating scores of daily executive control 

dysfunction.  

Regression analyses were used to derive the residual scores representing change 

in performance from pretest to posttest for each all cognitive tests (i.e., AX-CPT, Dot-

CPT, task switching, modified Sternberg, and PM/N-back) and the DEX using all test 

variables listed in Table 2.  It was hypothesized that a positive correlation between DEX 

residual scores and the cognitive residual scores would indicate that self-rating of 

executive dysfunction decreases with improvement on executive control task.   

The DEX residual score only correlated with three cognitive residual scores: task 

switching mixing RT cost [r = .25, p < .05], task switching mixed repeat RTs [r = .26, p 

< .05], and 1-PM-back nontarget RT [r = .27, p < .05].  Finding only three significant 

correlations out of forty seven tests suggest the possibility of a false positive (and indeed 

these correlations are weak enough that they do not survive correction for multiple 
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comparisons).  Thus, these results are convergent with the findings described in the 

Hypothesis 1 section suggesting that self-ratings on the DEX do not relate well to 

performance on laboratory-based executive control tasks, or change over time on these 

tasks.    

DEX Summary.  Although Hypothesis 6a predicted that DEX scores would 

decrease from pretest to posttest, no overall change in DEX scores for all participants was 

found and differences in decline among training and exposure conditions were not 

interpretable.  Hypothesis 6b predicted that change in DEX total scores from pretest to 

posttest would be related to change in cognitive test performance from pretest to posttest, 

but only three out of forty seven possible correlations were significantly correlated, and 

therefore, it was concluded that the DEX does not relate to change in performance over 

time.  
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Table 24.  

Total Scores at Pretest and Posttest for All Conditions on the DEX 

_____________________________________________________________________________________ 

 

  Multi Task Training Multi Task Practice Multi Task Total 

Pre  15.24 (10.74)  14.00 (9.05)  14.62 (9.83) 

Post  14.05 (9.31)  14.67 (10.06)  14.36 (9.58) 

N  21   21   42 

   

Single Task Training Single Task Practice Single Task Total 

Pre  14.95 (9.06)  12.74 (6.98)  13.74 (7.97) 

Post  17.47 (11.31)  10.96 (6.32)  13.90 (9.40) 

N  19    23   42   

_____________________________________________________________________________________ 

         

Training Total        Practice Total  All Participants  

Pre  15.10 (9.85)  13.34 (7.96)  14.18 (8.90)  

Post  15.68 (10.32)  12.73 (8.43)  14.13 (9.44) 

N  40   44   84 

_____________________________________________________________________________________ 

Note.  Entries are means; standard deviations are in parentheses.   

**** p < .001, *** p < .01,  ** p < .05, * p = .05 
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Supplemental Analyses 

Examination of Variability on AX-CPT.  The results presented in the section for 

Hypothesis 2 outlined how performance on AX-CPT errors and median RTs change as a 

result of the various interventions, but a question remains about whether the variability in 

RTs changes after participants have undergone these various interventions.  Furthermore, 

one might argue that an effective intervention should not only change the proportion of 

errors and RTs, but also lead to increased consistency in performance.  Thus, it is 

important to evaluate consistency of performance change in order to determine whether 

the intervention changes performance by way of a permanent shift in the cognitive 

process used, which would likely result in more consistent performance.  Thus, the 

coefficient of variation (standard deviation/mean) was computed for AY and BX RT 

measures at pretest and posttest.  When these coefficient of variation scores were 

compared between training and exposure conditions at posttest, a significant difference 

was found between AY coefficient of variation between participants in the single-task 

and multi task conditions, [F (1, 84) = 5.02, p < .05, partial �2 = .06].  RT variation was 

lower at posttest  for participants single task conditions (M = .16) compared with the 

multi task conditions (M = .20). When the single task conditions were examined 

separately, there was a significant change from pretest to posttest for AY coefficient of 

variation scores, [F (1, 43) = 5.83, p = .01, partial �2 = .12], but the change for multi task 

conditions was not significant [F (1, 41) = .06, p = .80, partial �2 = .00].  See Figure 4 for 

a graphical representation of changes in the AY RT coefficient of variation in the 

exposure conditions.  There were no significant differences between training conditions 
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for AY or BX trials and no differences between exposure conditions for BX trials at 

posttest.  

A question arises about whether performance becomes more or less stable as 

participants become more proactive on the AX-CPT.  Therefore, I was motivated to 

investigate how proactive change in performance from pretest to posttest relates with 

consistency in performance from pretest to posttest.  Thus, finding that a change in 

performance from pretest to posttest is related to more consistent performance would 

suggest that the intervention brought about a change in the way that the task is 

consistently approached and would lead to effective long-term changes.  Alternatively, 

finding that change in performance is related to less consistent performance would 

suggest that the means by which participants are improving their performance is apt to 

change over time and is more susceptible to situational factors such as fluctuating 

attention.   

Specifically, the relationship between a coefficient of variation change indices 

(i.e., posttest – pretest) for RTs on AY and BX trials and proactive change indices (i.e., 

posttest – pretest) for RT on the AX-CPT were examined.  When all participants were 

analyzed, there was a significantly positive relationship between proactive change RT 

index and BX RT coefficient of variation change index [r = .34, p < .01], suggesting that 

as the proactive context processing RT index increases, BX RTs show more variability.  

The direction of this relationship is opposite to that which would be expected as it is 

anticipated that more proactive performance would lead to less variable and more 

consistent performance.  When these correlations were examined separately for training 

and exposure interventions, participants in the practice conditions showed a significantly 
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stronger positive relationship between BX RT coefficient of variation change score and 

proactive RT change score (r = .66, p < .001) than did participants in the training 

conditions (r = .09, p  = .60; z = -3.06, p = .01).  When exposure condition was examined 

separately, the relationship uncovered between BX RT coefficient of variation change 

scores and proactive RT change scores did not differ significantly for participants in the 

single task conditions (r = .41, p < .01) and those in the multi task conditions (r = .30, p = 

.07).  Thus, for all participants except those in the training conditions, an increase in 

proactive RT performance from pretest to posttest is significantly related to an increase in 

variability in BX RT.    This suggests that, compared with practice interventions, training 

interventions lead to less variable BX RT performance at posttest compared with pretest.  
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Pretest and Posttest AX-CPT AY RT Coefficient of Variation Scores  

 

 

 

 

 

 

 

 

*  p < .05 

Figure 4 
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CHAPTER SIX – DISCUSSION 

Overview 

The goal of the present study was to evaluate training (i.e., practice versus 

training) and exposure (i.e., single task versus multi task) intervention conditions in order 

to determine the most effective way to improve goal maintenance abilities on the task 

trained and transfer tasks in older adults.  The present investigation attempted to address 

the following questions: (1) will the strategy training procedure used in our previous 

study (Paxton et al., 2006) with the AX-CPT improve performance more than practice 

interventions on the AX-CPT and other executive control tasks requiring goal 

maintenance abilities; (2) will the single task conditions involving extended experience 

with only the AX-CPT or multi task conditions with three goal maintenance tasks show 

differences in performance from pretest to posttest; (3) will benefits in performance 

derived from practice and/or strategy training interventions transfer to untrained tasks; (4) 

will transfer be facilitated by the multi task training condition which was designed to 

provide participants with experience flexibly transferring a goal maintenance strategy to 

multiple tasks during training; and (5) will training and/or exposure conditions used 

during intervention sessions improve performance using different cognitive mechanisms?  

 

Pretest Performance  

One of the primary aims of this study was to assess the effectiveness of various 

interventions in improving performance on the near and far transfer tasks.  Before 

discussing these effects, it is important to examine the relationship between performance 

on these tests at pretest to assess the strength of relationship between the test used in all 
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interventions, the AX-CPT, and the near and far transfer testes.  Specifically, if the Dot-

CPT is an appropriate test of near transfer, then we would expect that performance on this 

test would show stronger correlations with the trained task, the AX-CPT, compared with 

the far transfer task, the PM/N-back.    

Relationship between the AX-CPT and near and far transfer tasks at pretest.  The 

Dot-CPT task was chosen as the test to evaluate near transfer because it is identical to the 

AX-CPT with dot patterns replacing letters as stimuli.  The PM/N-back task was chosen 

as a measure of far transfer because it does not resemble the AX-CPT in structure, but 

entails three conditions with different levels of difficulty and demands on goal 

maintenance abilities.  It was hypothesized that, compared with the PM/N-back, the Dot-

CPT would show a stronger relationship with the AX-CPT due to the similarity in task 

structure.  Proactive performance on the AX-CPT was significantly related to more 

proactive performance on the Dot-CPT.  Even though some scores on the PM/N-back 

were significantly related to some scores on the AX-CPT, the significant correlations did 

not suggest that the PM/N-back was related to a proactive pattern of performance on the 

AX-CPT (i.e., only one significant correlation between PM/N-back score and AX-CPT 

proactive index scores) on the AX-CPT.  Thus, we concluded that: 1) the Dot-CPT was a 

more effective measure of near transfer due to a correspondence between proactive 

performance on the AX-CPT and Dot-CPT, and 2) the PM/N-back was an appropriate 

measure of far transfer because it correlated weakly with some indices of AX-CPT 

performance, but was not as closely related as the near transfer measure.   
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Change in performance from pretest to posttest in all participants.  

Performance on all tasks except the DEX showed some evidence of significant 

improvement (i.e., decrease in error or RT scores or more proactive pattern on the AX-

CPT or Dot-CPT trials when AY and BX trials were compared directly) from pretest to 

posttest.  Significant improvement on tasks was observed for some trial types, but not 

others.  For instance, on the AX-CPT, BX errors and RTs decreased significant from 

pretest to posttest, while AY trials showed no significant change for all participants. The 

lack of significant change in AX-CPT AY errors from pretest to posttest differs from 

results of our previous study (Paxton et al., 2006) where AY errors showed a statistically 

significant increase.  A question arises about why we did not see a significant increase in 

AY errors, and the possible explanations for this may be found in examining the 

differences between this study and the previous study.  Unlike the previous study where 

the posttest session occurred immediately after the training or practice intervention, the 

current study required that participants maintain what they learned over the course of 

days or weeks.  Participants may not have been able to maintain any changes in AY 

errors on the AX-CPT over the course of time.  This result suggests that improvements in 

the ability to use proactive control to inhibit a prepotent response based on stimulus 

response associations on BX trials may be more sustainable than improvements in the 

ability to use proactive control to predict upcoming events (AY trials). 

Effects of Interventions on AX-CPT Performance 

Effects of training on AX-CPT performance. As described above, one of the goals 

of this study was to determine whether proactive training was more effective than 

practice in leading to a more proactive pattern of performance on the task trained, the 
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AX-CPT.  As shown by the primary and supplementary results for Hypothesis 2, the 

training condition can be concluded to be preferable to the practice conditions in terms 

of: 1) improvement in proactive context processing RT index on the AX-CPT; 2) a non-

significant improvement in proactive pattern on AY RTs (driven by multi task training 

condition); and 3) more stable and consistent BX RT scores when AX-CPT RTs became 

more proactive from pretest to posttest.  I found no evidence of practice conditions being 

preferable to training conditions or evidence of training conditions producing reactive 

performance.  Thus, it can be concluded that training interventions were more effective 

than practice intervention in improving proactive context processing performance when 

measured with scores assessing the degree to which AY and BX scores changed in 

divergent directions from pretest to posttest.  

Finding that training interventions were significantly different than practice 

interventions in terms of improving proactive context processing RT scores was 

consistent with our theoretically-based predictions.  Still, the pattern was different from 

that observed in a previous study, in which the training and practice groups were also 

compared in terms of improvements in proactive AX-CPT performance (Paxton et al., 

2006).  In that study, we could not establish that the training group showed significantly 

greater benefits than the practice group.   It could be that the different patterns of results 

uncovered between training and practice groups in the current study was due to having 

slightly greater power to detect differences in the current study compared with the 

previous study.  Participants in the training conditions (i.e., single task training and multi 

task training) totaled 42 participants with 44 participants in the practice conditions (i.e., 

single task practice and multi task practice) whereas in the previous study, there were 33 
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participants in the training group, 36 participants in the instruction control group, and 36 

participants in the practice control group.  Also, as mentioned earlier, the current study 

required that participants maintain what they learned over the course of days or weeks 

whereas the previous study assessed training and practice effects directly after the 

intervention. Furthermore, our finding that training interventions led to significantly 

greater proactive improvement in the current study when AY and BX performance 

patterns were directly compared, but not the previous study, leads to a few suggestions.  

First, these results suggest that training and practice may not produce different patterns of 

performance when maintenance is not required (in the previous study), but training is 

more effective in improving proactive performance as measured in BX errors and RTs or 

the pattern of performance in AY and BX trials when maintenance is required (in the 

current study).  Another difference between the two studies is that the current study 

involved two intervention sessions whereas the previous study involved one intervention 

session.  Thus, it could be that the process of learning the strategy training instructions in 

the first intervention study followed by retrieval and more practice in the second 

intervention session led to better encoding of a more proactive strategy, which resulted in 

significant improvement when AY and BX trials were directly compared in analyses.  

Effects of exposure condition on AX-CPT Performance. One aim of this study was 

to determine whether more extensive experience with the AX-CPT as provided by the 

single task conditions would produce greater proactive performance benefits on the AX-

CPT.  The results demonstrated that single task conditions were preferable to multi task 

conditions in terms of: 1) non-specific decrease in RT scores from pretest to posttest; and 

2) increasing consistency of performance on AY RT at posttest.  There was also a trend 
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level difference between single and multi task conditions in BX RTs.  Still, enhanced 

experience with the AX-CPT provided by the single tasks conditions were not found to 

be preferable to multi task conditions in terms of changes in the pattern of performance 

on AY RTs from pretest to posttest.  Specifically, participants in the single task 

conditions, but not the multi task condition, showed a significant decrease in AY RTs, 

which is consistent with a shift toward a more reactive instead of proactive pattern of 

performance.   Thus, compared with multi task conditions, single task conditions were 

found to be more effective in producing proactive patterns of performance in BX RT 

scores and increasing consistency in AY RT, but led to more reactive performance on AY 

RTs.  

Ideally, an effective intervention would produce more proactive performance on 

both AY and BX trials, but the single task condition only improved proactive 

performance on BX RTs. The faster AY RT performance combined with no change in 

AY error performance suggests results was not due to a speed accuracy trade-off, but is 

indicative of faster and more accurate performance.  Given that these findings are counter 

to hypotheses and prior results (Paxton et al., 2006), it is difficult to determine how 

enhanced experience with the AX-CPT produced more reactive performance on AY 

trials.  It is important to consider that these findings could be due to some aspect of the 

study design.  For instance, participants in the single task conditions were exposed to 600 

AX-CPT trials over the course of two intervention sessions.  It could be that participants 

initially become more proactive and produced more AY errors and longer AY RTs, but 

with greater amounts of practice, they may have realized that they were responding 

incorrectly and put effort into overcoming the bias to then self-correct.  It is also possible 
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that participants became more proactive with experience, but were unable to maintain this 

change from the time of the last intervention session until the posttest session.  

Effects of Interventions on Task Switching and Modified Sternberg  Performance 

Effects of exposure conditions on task switching and modified Sternberg 

performance.  In contrast to my hypotheses, there were no significant differences 

between single and multi task conditions in term of change in cost scores on the task 

switching or modified Sternberg measures from pretest to posttest.  It was surprising that 

the enhanced experience provided by the multi task conditions did not lead to an 

improvement in either errors or RT on the task switching or modified Sternberg 

measures.  It is possible that the lack of significant change is due to participants making 

few errors at pretest, and therefore, not showing much room for improvement.  

Effects of training conditions on task switching and modified Sternberg 

performance.  Also, counter to hypotheses, the training intervention did not have a 

significant effect on error or RT performance on the task switching or modified Sternberg 

tasks.  The training procedures were designed to be as similar as possible to the strategy 

training procedures on the AX-CPT in terms of instructing participants to use information 

presented early in each trial in order to prepare in advance for later responses.  Even 

though the strategy training interventions were effective in producing more proactive 

performance on the AX-CPT, the lack of significant change on the task switching and 

modified Sternberg tasks suggests that the strategy training procedures designed for these 

tasks were not effective.  It is possible that training proactive performance is not as 

straightforward on other tasks as it is on the AX-CPT, in which a very specific pattern of 

performance has been identified to be consistent with proactive performance.  It is 
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interesting that visual inspection of RT values reveal that, compared with participants in 

the training conditions, participants in the practice conditions showed greater decreases in 

RTs from pretest to posttest.  This numerical pattern hints at the possibility that the 

training was detrimental to performance and interfered with the ability to effectively use 

spontaneously developed strategies for performing the tasks.  The training procedures 

developed for both the task switching and modified Sternberg required that participants 

first state aloud the information that would be used to make a response (e.g., whether they 

are identifying the number or letter of the pair for task switching and the four words 

presented for the modified Sternberg).  Then participants were required to practice stating 

aloud and silently the specific stimuli that would correspond with a target response (e.g., 

if odd, then red for the task switching test and the four words for the modified Sternberg).  

Even though the strategy training procedures were consistent with an approach that 

would lead to correct responses, it could be that having to state these response 

contingencies as required by the training procedures interfered with the ability to perform 

the task quickly and effectively.  

Effects of Interventions on Dot-CPT  Performance (Near Transfer) 

It was hypothesized that participants in the multi task training condition would 

show the greatest improvement in proactive performance on the Dot-CPT due to this 

condition being designed to train participants to flexibly apply the same strategy to 

different tasks.  However, the training conditions did not differ significantly in their 

influence on proactive performance on the Dot-CPT.  Thus, even though the strategy 

training procedures were found to be effective for increasing proactive RT performance 

on the AX-CPT, these benefits of learning to use a proactive strategy on the AX-CPT 



  
164 

showed minimal transfer to the Dot-CPT.  Specifically, there were hints that training was 

effective in producing a significant increase in Dot-CPT proactive error index scores, but 

there was not a significant difference between proactive error index scores between 

training and practice participants. We also hypothesized that the multi task conditions 

would be more effective than the single task conditions in leading to enhanced 

performance on the Dot-CPT.  However, in contrast, the single task conditions were 

found to be preferable to multi task conditions in terms of: 1) increasing proactive 

performance on proactive context processing error scores; 2) increasing proactive 

performance in terms of composite proactive context processing index; 3) less reactive 

performance on AY RTs compared with multi task participants; and 4) showing a greater 

decrease in BX errors when AY and BX errors were analyzed together.  Thus, in 

conclusion, participants in the single task conditions showed more proactive error 

performance on the Dot-CPT when the degree to which AY and BX error scores changed 

in divergent directions was assessed with proactive index scores or within a single 

ANOVA.  Still, as noted in the results section, these results for the single task conditions 

should be interpreted with caution due to the possibility that they were driven by pretest 

differences.   

Although we hypothesized that strategy training with multiple tasks would 

facilitate transfer, it is still encouraging that the additional experience on the AX-CPT 

provided by the single task condition showed some evidence of more proactive BX error 

performance on a task with similar structure, but different stimuli, the Dot-CPT.  Given 

that the AX-CPT and Dot-CPT have different stimuli, we can conclude that participants 

in the single task conditions learned something more general than stimulus response 
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mappings specific to the letter stimuli on the AX-CPT.  Thus, it could be that experience 

with the AX-CPT led to the adoption of a general proactive strategy such that initial cue 

information was attended to, maintained, and integrated into an action plan that is used on 

the Dot-CPT to lead to more proactive error performance.  Alternatively, it could be that 

participants learn to apply a strategy specific to the structure of the AX-CPT and Dot-

CPT such as knowing that when any letter other than A appears, prepare for a nontarget 

response on the AX-CPT, which is transferred and adapted where the appropriate Dot-

CPT symbols replace the letters.  The results discussed thus far do not allow for 

differentiation between these two possibilities.  

Single task training as an effective intervention for AX-CPT and Dot-CPT 

performance? As reviewed above, AX-CPT results suggested that the single task training 

condition may be preferable for improving proactive performance in BX RT and 

composite proactive scores, but there were no differences between the two training 

conditions (single task training vs. multi task training) in terms of effectiveness in 

improving proactive performance on context processing RT index scores, which accounts 

for both AY and BX RT performance on the AX-CPT.  The single task training condition 

was found to be the only training/exposure condition combination that led to a significant 

increase in Dot-CPT proactive error index scores and a significant increase in Dot-CPT 

composite proactive index scores from pretest to posttest.  Thus, although not evident in 

the omnibus analyses, these results demonstrate that the single task training condition 

produces significant increases in proactive performance on the trained task (i.e., AX-CPT 

BX RTs and composite proactive index score) and the near transfer task (i.e., Dot-CPT 

proactive error index and composite proactive index score).  It is encouraging that the 
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same combination of increased experience and strategy training on the AX-CPT aided 

performance on both the AX-CPT and Dot-CPT tasks.   

Effects of Interventions on PM/N-back  Performance (Far Transfer) 

One of the primary questions addressed in this study was whether benefits of 

extended exposure or strategy training proven to benefit AX-CPT performance in the 

previous study (Paxton et al., 2006) would transfer to an untrained task. Further, it was 

hypothesized that participants in the multi task training condition would show the greatest 

improvement on the PM/N-back.  Although we found that some of the PM/N-back scores 

improved from pretest to posttest, there were no interpretable findings demonstrating that 

training or exposure conditions affected performance on this far transfer test.  Failure to 

find any enhanced effect for multi task or training conditions suggests that these 

interventions did not result in either the learning of an effective strategy and or the ability 

to flexibly apply an effective strategy to the PM/N-back.  The inability of the our 

procedure to produce far transfer measured by the PM/N-back could be due to the 

procedure used in the intervention conditions or the far transfer task used, which will be 

addressed in the following section.     

Possible explanations for lack of far transfer: cognitive tasks assessed.  In this 

section, I will discuss differences between the tasks used as a possible explanation as to 

why skills gained through additional experience with the AX-CPT showed some 

evidence of transfer to the Dot-CPT, but not the PM/N-back.  The AX-CPT and Dot-CPT 

are very similar in structure with a single cue and single probe and were designed to 

assess whether participants develop a proactive bias by expecting to see an X probe when 

an A cue appears.  This bias is very specific to this task as it is believed to be created by 
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the greater proportion of trials where an X probe follows an A probe.  Thus, on the AX-

CPT and Dot-CPT, proactive performance is indicated by a very specific pattern of 

performance, increased errors and RTs on AY trials and decreased errors and RTs on BX 

trials.  On the other hand, the PM/N-back task requires that participants remember the 

overall goal of the task (e.g., make a target response when a previously presented word 

appears) and maintain the identity of the stimuli in working memory (e.g., the last word 

was “tree,” if the next word is “tree,” then press the target button).  Thus, more proactive 

performance on the PM/N-back task involves remembering the task instructions and 

stimuli, which is assumed to lead to a general decrease in errors and RT scores.  Still, the 

PM/N-back task was structured quite differently from the AX-CPT and Dot-CPT, and 

may be less selective in detecting patterns of performance associated with proactive 

control.  Instead, effective cognitive control on the PM/N-back would be expected to 

improve performance on all types of task trials.  Thus, it is possible that even in the 

training conditions, participants were not able to generalize enough about common 

features between the AX-CPT and PM/N-back in order to apply a proactive strategy to 

the PM/N-back task.  

 Conclusions about near and far transfer.  The inability of the interventions to 

facilitate far transfer paired with some evidence of near transfer achieved for participants 

in single task conditions (when AY and BX performance was compared) allows for 

conclusions about the cognitive processes that were used to facilitate near transfer.  Thus, 

the improvement found in Dot-CPT proactive error index scores after extended exposure 

to the AX-CPT suggests that it is possible for participants to gain a skill (e.g., either 

stimulus response mapping or a general strategy) on the AX-CPT that can be transferred 
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to another similar task.  In contrast, the lack of evidence for far transfer to the PM/N-back 

tasks suggests that what is learned on the AX-CPT and transferred to the Dot-CPT may 

be specific to these two tasks, as a result of their very similar structure.  Given that what 

was learned on the AX-CPT in the single task condition showed some evidence of 

transfer to the Dot-CPT task, it is safest to assume that participants learned a stimulus 

response associations on the AX-CPT through extended experience that could be altered 

to apply to stimuli on the Dot-CPT.  

 These findings are consistent with a hypothesis generated based on several 

previous studies that tasks requiring procedural skills (e.g., AX-CPT) will produce 

limited transfer whereas tasks based on facts or declarative information (e.g., learning 

facts with associative strategies) will produce more robust transfer (Healy, 2007).  Also, 

our findings of greater near transfer than far transfer agree with several previous studies 

finding that strategy training and/or practice interventions only benefit untrained tasks 

that are very similar in structure to the trained tasks (Baltes, Dittmann-Kohli, & Kliegl, 

1986; Willis, Blieszner, & Baltes, 1981).  Interestingly, in a recent study, training lasting 

45 days that consisted of practicing working memory tasks resulted in improvement in 

the task trained and transfer to two near transfer tasks: 1.) a working memory with 

different stimuli and similar structure and 2.) the same task with increased difficulty, but 

did not result in far transfer to a task with dissimilar stimuli and structure (Li et al., 2008).  

Additionally, a recent study with older adults over the age of 80 used visual working 

memory training tasks and found improvement on the trained task, but only near transfer 

to untrained visual working memory tasks (Buschkuehl et al., 2008).  They did not find 

transfer to verbal working memory tasks (e.g., digit span), and interpreted the failure to 
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find transfer effects to a different type of working memory task as being due to the 

possibility that the participants may have developed strategies specific to the training 

tasks during the training phase (Buschkuehl et al., 2008).. The results of these previous 

studies are similar to our current results in finding limited transfer, which leaves lingering 

questions about the cognitive mechanisms enabling near transfer, and the cognitive 

mechanisms that were not used, but were necessary for far transfer to be achieved. 

DEX  Performance 

Relationship between self-reported executive complaints on the DEX and 

performance on executive control tasks.  It was hypothesized that participants’ self-

reported executive control abilities in daily life as measured by the DEX would correlate 

negatively with performance on tests of goal maintenance abilities at pretest.  The DEX 

total scores only correlated significantly with one measure of goal maintenance ability 

out of thirty-six possible correlations.  Therefore, it was concluded that the DEX total 

scores did not relate to goal maintenance abilities as assessed by the tasks included in this 

study.   Thus, the DEX may not be sensitive to objective cognitive performance, which 

may be due to the limitations of the measures used in this study or a general weakness of 

this self-report instrument or a weakness of self-report measures more generally.  The 

lack of a significant relationship observed between DEX self-rating scores and objective 

cognitive measures in the current study was also consistent with previous studies. In 

studies with neurologically normal participants across the lifespan using simple DEX 

scores (Gerstorf et al., 2008) and other studies using DEX factors studies, very few 

relationships have been uncovered between DEX performance and objective cognitive 

measures (Chan, 2001; Amieva et al., 2003).  Furthermore, in a study of neurologically 
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impaired participants, there was only one significant correlation when DEX self-report 

scores were correlated with neuropsychological test scores.  In contrast,  

neuropsychological tests scores did tend to correlate significantly with DEX ratings made 

by caregivers (Burgess, Alderman, Evans, Emslie, & Wilson, 1998).  These results 

demonstrate the potential limitations of self-report measures, and suggest that self-ratings 

on the DEX do not correspond strongly with performance on cognitive tests.  

Change in DEX performance from pretest to posttest. In contrast to hypotheses, 

DEX performance did not change significantly from pretest to posttest for all participants 

and change in DEX scores from pretest to posttest was not affected in an interpretable 

way by training or exposure conditions.  Also, change in DEX scores was not found to 

relate significantly to change in performance on the cognitive measures.  Thus, this 

finding is not surprising given that DEX scores did not relate to pretest performance and 

provides further evidence that self-reported executive control does not relate to objective 

scores on the tests of executive control used in this study.  

 

Conclusions about Strategy Training Versus Practice 

There was some evidence that strategy training interventions were found to be 

more effective than practice interventions.  Strategy training on the AX-CPT was found 

to lead to a significantly more proactive pattern of RT performance on the AX-CPT test 

when the degree with which the pattern of performance observed between AY and BX 

scores reflected a proactive pattern.  There were hints that strategy training led to more 

proactive error performance on the near transfer task (Dot-CPT), but did not lead to a 

more proactive pattern of performance on the Dot-CPT than practice interventions.  Also, 
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there were no effects of strategy training on the far transfer task.  Also, as discussed in 

the section for the task switching and modified Sternberg tasks, results suggest that the 

training procedures developed for task switching and modified Sternberg tests were not 

effective in improving performance, but the results do not provide insight as to why the 

strategy training procedures were not beneficial. These findings suggest that strategy 

training produced the greatest benefit on one of the specific tasks that was trained.  

One of the primary questions that motivated the development of this study was 

whether training and practice lead to improvements in proactive performance on the AX-

CPT using similar or different cognitive mechanisms.  Thus, the transfer tasks were 

included with the aim of determining whether participants in the training and practice 

intervention conditions used similar or different cognitive mechanisms.  Unfortunately, 

there were no differences between training and practice interventions in ability to 

facilitate transfer to untrained tasks.  These findings that strategy training only benefited 

performance on the task trained when a specific pattern of performance was examined is 

consistent with previous results showing that transfer does not always occur after strategy 

training (Ball et al., 2002; Healy, Wohldmann, Parker, & Bourne, 2005; Healy, 

Wohldmann, Sutton, & Bourne, 2006).  Thus, it is impossible to draw interpretable 

conclusions about the cognitive mechanisms used in order to produce more proactive 

performance on the AX-CPT.  Thus, the primary conclusion that can be drawn about the 

strategy training intervention is that it results in some improvement on the task trained 

when analyses are aimed to evaluate whether the results show a specific hypothesized 

pattern of increased AY scores and decreased BX scores.  This finding is consistent with 

previous studies in older adults showing that strategy training improves the specific task 
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trained whether it be an executive control task (Levine et al., 2007), reasoning task (Ball 

et al, 2002; Plemons et al., 1978; Willis et al., 1981), or a memory task (Scogin et al., 

1985; Verhaeghen et al., 1992; Kliegl et al., 1990).  Finding that AX-CPT strategy 

training intervention did not transfer to untrained tasks suggests that the proactive 

strategy training procedure did not lead to the development of a general proactive 

strategy that can be flexibly applied to novel tasks.  

Our results suggest that the strategy training procedure employed in the current 

study provided a very specific sequence of actions to be made in response to specific 

stimuli.   This procedure is similar to skill learning that relies only on mental 

representation of goals and the learning of specific steps to execute in order to perform 

well (i.e., pay attention to whether the letter is A; if the letter is A, then say “if x, then 

red’).  A question arises about whether all strategy training procedures are so specific to 

the task trained that they do not lead to generalizable benefits.  Interestingly, in a recent 

study, performance on a complex task was compared between participants given a list of 

actions to follow and participants given a sequence of steps with environmental 

contingencies for actions (Taatgen, Huss, Dickison, & Anderson, 2008).  The latter 

condition was designed to give general, non-specific instructions that would be flexible 

enough to be adapted to environmental cues and unanticipated circumstances.  Thus, 

participants in the latter condition were more accurate and faster.  Interestingly, being 

given less specific instructions that allowed for adaptation based on environmental input 

lead to more flexibility and generalization as evidenced through more complete solutions 

and faster performance.  These results and the theoretical reasoning supporting them 

suggest that providing a simpler, more adaptable strategy is more likely to result in 
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transfer effects.  Thus, it could be that the strategy training procedures used on the all 

training tests in the current study were too specific to be easily adapted and transferred to 

a new task.   

 

Interpretation of limited intervention effects.  

 Although the performance for all participants (regardless of intervention 

condition) changed significantly from pretest to posttest on several measures, there were 

few significant interactions between intervention condition and change in performance 

from pretest to posttest.  As stated previously, strategy training was only found to be 

more effective than practice when a specific pattern of performance was investigated on 

the trained task, the AX-CPT.  Likewise, enhanced exposure to the trained task led to a 

significant improvement on the near transfer task, the Dot-CPT, but only when a specific 

pattern of performance was assessed.  Moreover, these results need to be interpreted with 

caution due to pretest differences in performance.  The lack of transfer suggests that 

neither training nor practice with the AX-CPT lead to widely generalizable skills, 

because the greatest benefit of training and/or practice with the AX-CPT was found on a 

task with identical structure, the Dot-CPT.  These results suggest that what is gained 

through training and/or practice with the AX-CPT are skills that are highly specific to the 

structure and demands of the AX-CPT.   These findings are consistent with results 

showing that proceduralized tasks show very little transfer and show performance 

benefits when the same skills are required at initial test and outcome assessment (Healy et 

al., 1990).  For example, a study showed that improvements on a skill learning task were 

only found when participants practiced with the exact same task (e.g., prose letter 
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detection instead of detection of letters in scrambled form), suggesting that there is not 

much adaptability in the skills learned (Healy et al., 1990).  Furthermore, results from a 

study examining retention differences in aspects of a decoding task requiring abstract 

versus procedural processing suggested that procedural processing leads to better 

retention of the specific skill, whereas abstract processing leads to more generalizable 

skills that are not retained (Clawson, Healy, Ericsson, & Bourne, 2001). Thus, the 

researchers responsible for these prior studies have asserted that retention of learning is 

best facilitated by learning a specific proceduralized skill instead of one that is 

generalizable.  Additionally, this prior work also found that the expectations that 

participants develop during training have a greater influence on post-training 

performance than any pre-training expectations (Bourne, Healy, Pauli, Parker, & 

Birbaumer, 2005).  This suggests that the actual content and structure of the training 

procedure has an effect on the performance gains that arise from it.   

 Overall, these patterns from the skill training literature are highly consistent with 

the findings from the current study, where proceduralized learning of the AX-CPT 

through strategy training or practice may have best facilitated performance on that very 

skill (AX-CPT performance) rather than a more generalizable set of skills or processes.  

Thus, training of the AX-CPT may have improved proceduralized AX-CPT skills, which 

led to retention of performance gains, but without any additional transfer to new tasks 

(Healy, 2007).   

Given that the current results suggest that what is gained through enhanced 

experience and/or training with the AX-CPT is very proceduralized, it is important to ask 

what aspects of this task result in it being proceduralized instead of responsive to strategy 
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changes.  The  AX-CPT may not appear to be difficult enough for participants to be 

motivated  to put effort into developing specific strategies.  It could be that participants 

approach it with the idea that they must just encode the stimulus response rules and will 

perform well.   Although performance changes across time and performance differences 

among groups of participants have demonstrated statistically significant and reliable 

differences, the error rates and RTs effects were relatively small in general.   

Given the growing interest in studying cognitive interventions in executive 

control abilities, it is important to consider whether all tasks could be highly 

proceduralized as the results of the current study suggest that the AX-CPT is.  We did not 

find significant differences for many of the task switching or modified Sternberg scores 

even for participants that gained experience with these tasks during the intervention 

sessions.  Thus, it could be that these tasks are less proceduralized and gains were not 

maintained from intervention session to posttest.  As stated previously, performance at 

pretest may have been near ceiling and not allowing for much improvement in scores.  

Still, it is important to attempt to decode whether abstract or proceduralized skills are 

being gained in interventions studies by comparing similar tasks or subtasks.  As 

discussed in a later section outlining studies showing more successful transfer effects, it 

appears that not all tasks used in interventions studies elicit proceduralized learning of 

skills specific to one task, but train more abstract processing skills.     

Conclusions about Multi Task Training Condition 

 The multi task training condition was designed to train participants to flexibly 

apply the same general strategy to the AX-CPT, task switching, and modified Sternberg 

tests.  Hence, it was hypothesized that, compared with other training/exposure 
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combinations, participants in the multi task training condition would show greater 

improvement on task switching, modified Sternberg, Dot-CPT, and PM/N-back scores.  

In contrast to hypotheses, the multi task training condition was not found to be more 

effective than other interventions in improving performance on the trained tasks or 

untrained transfer tasks.  There are two possible interpretations for our finding that the 

multi task training condition failed to facilitate transfer to untrained tasks.  First, it could 

be that transfer cannot be facilitated by an intervention aimed to train the ability to 

flexibly apply a general strategy.  Alternatively, it may possible be possible to train 

participants to flexibly apply a general proactive strategy, but we just did not observe 

these effects in this study.  These alternative explanations for the lack of success in the 

multi task training intervention will be explored. 

Explanation #1: Transfer cannot be facilitated by practice applying a general 

strategy to novel tasks.  As discussed in the training section above, many studies have 

shown that strategy training facilitates improved performance on the training task, but 

does not facilitate transfer to untrained tasks.  Such evidence suggests that it may not be 

possible to train participants to apply a strategy in a flexible manner in order to achieve 

transfer as was discussed more thoroughly in a previous section.  

Explanation #2: Transfer can be facilitated by training in applying a general strategy 

to novel tasks, but was not shown in the current study. Given that previous studies have 

shown that very slight variations in training procedures can produce different results in 

terms of performance on tasks trained and transfer tasks (e.g., Derwinger et al., 2003), it 

is important to consider aspects of the study design that may have resulted in multi task 

training condition failing to produce the desired transfer effects.  To assess what aspect of 
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the procedure might have resulted in the failure to produce transfer, it is helpful to 

consider the processes that likely would be required in order for a multi task training 

condition to be effective such as: (1) successfully encoding and applying the strategy on 

the trained task in a way that enhances performance on that task; (2) understanding that 

the same general strategy can be used on multiple tasks, and (3) flexibly adapting the 

successfully applied strategy used on the training task to a novel task. 

The first process described above suggests that each training procedure must 

effectively improve performance on the task trained, and this was only satisfied for the 

AX-CPT when AY and BX performance was compared.   As discussed earlier, the 

strategy training procedures designed for the task switching and modified Sternberg tasks 

did not improve performance on these tasks, suggesting that these training procedures 

were not effective.  The participants might not have comprehended that the same 

proactive strategy could be applied flexibly to novel tasks when strategies for task 

switching and modified Sternberg that were not effective, even on the tasks trained.   

Another reason that the multi task training condition may have failed to be 

effective in producing transfer is that the procedure failed to teach participants to learn a 

general proactive strategy and realize that it can be flexibly applied to other tests. 

Although instructions emphasized that the strategy training procedures for the AX-CPT, 

task switching, and modified Sternberg were similar and adapted from the AX-CPT to fit 

the goals of the current task, it is possible that the commonalities among strategy training 

procedures were not clear enough or were not understood.  Furthermore, it is possible that 

the training procedures used did not emphasize the commonalities between the AX-CPT 
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strategy training procedure and the strategy training procedures for the task switching and 

modified Sternberg tasks enough to train flexibility.  

 Even if participants were able to effectively use the training strategies on each of 

the three training tasks and recognize the commonalities among the three strategies, 

participants in the multi task condition may not have obtained the flexibility or problem 

solving skills necessary to apply strategies learned to an untrained task.  This could have 

arisen for two reasons.  First, participants may not have realized that adapting and 

applying the general proactive strategy would help performance on a new test at posttest, 

and thus, did not attempt to do so.  Alternatively, participants in the multi task conditions 

may have attempted to apply the general proactive strategy to new tests at posttest, but 

were not able to do so due to failing to gain specific skills in flexibly adapting the general 

strategies.  This reasoning coincides with the theory that transfer is facilitated when one 

develops skills in generating novel strategies that are needed to complete the training and 

transfer tasks, which was referred to as “transfer-appropriate training” (McDaniel & 

Schlager, 1990, pp. 154).  Similarly, Healy et al. (2006) propose that, “effective 

performance on a skill at test demands that training of the skill include the same 

configuration of procedures required during testing” (pp. 545).   If it is true that the 

processes engaged during training must be the same as those required in order to perform 

better on the transfer task, then our failure to find transfer may be due to the fact that the 

multi task training condition did not actually allow for attainment of skills in flexibly 

adapting strategies to be applied on untrained tasks.  Thus, participants may have 

understood that the strategies needed to be adapted for each task, but the multi task 

training procedure did not require that the participants actually flexibly adapt the 



  
179 

strategies.  Hence, participants might have depended on the examiner to provide 

instructions about how to flexibly adapt the general proactive strategies to untrained 

tasks, and therefore, the skills learned during training were not the same skills required 

for successful transfer at posttest.   

How might we develop more effective interventions for facilitating far transfer? 

 As discussed in Chapter 2, transfer is both very desirable and difficult to achieve, 

especially in older adults (Dahlin, Nyberg, Backman, Stigsdotter Neely, 2008a; 

Derwinger et al., 2003; Stigsdotter Neely et al., 1993; Ball et al., 2002).   Given that far 

transfer is difficult to achieve, it is not too surprising that far transfer was not achieved 

with any of the intervention conditions used in this study.  Still, the failure to achieve far 

transfer in this study raises the possibility that the procedures used in our study did not 

possess some necessary elements common to interventions that lead to transfer.  Thus, it 

is important to examine the interventions that appear more promising in terms of 

facilitating transfer.  

 First, effective transfer has been observed in previous studies employing 

intervention procedures involving a change in task structure or procedures.  These 

interventions often involved ongoing feedback about performance, gradual increases in 

task difficulty dependent on performance, and/or variability in task presentation. These 

procedures were designed to require participants to gain experience with particular 

cognitive processes that may enable participants to develop the flexibility to transfer 

benefits.  For example, as discussed in Chapter 2, in a variable priority training in which 

the demands for coordinating dual task conditions changed during the training, 

participants were able to improve on the dual task test on which they were trained as well 
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as novel dual task test (Kramer, Larish, & Strayer, 1995).  These results suggested that 

the aspect of the training procedure requiring participants to learn to coordinate task 

demands enabled learning of a generalizable coordinating skill (Kramer, Larish, Strayer, 

1995).  Similar transfer effects were found with a variable training procedure in a later 

study (Bherer et al., 2005).  Another successful transfer intervention involved recognition 

memory, in which increasing the lag between words to be recognized, resulted in 

improvements in performance on the recognition memory test as well as transfer of 

improvement to other neuropsychological measures (Jennings et al., 2005).  Finally, a 

recent study in young adults found transfer effects to measures of fluid intelligence after 

participants were trained on a demanding working memory training task in which 

difficulty incrementally increased (Jaeggi, Buschkuehl, Jonides, & Perrig, 2008).  These 

results suggest that an effective intervention allows the participant to gain skills in 

flexibility and ability to adapt to changing task demands while practicing the cognitive 

processes required for the training task.    

 Several studies have shown transfer in executive control tasks, using a procedure 

in which extensive practice is given with several different tasks thought to entail the same 

cognitive process and particular neural network.  For example, successful transfer was 

found for young adults in executive control domains such as updating (Dahlin et al., 

2008) or interference resolution (Persson & Reuter-Lorenz, 2008), when practice was 

given in multiple tasks that putatively tapped into that domain.  Additionally, older adults 

who underwent plasticity training designed to stimulate and exercise language processes, 

demonstrated transfer of benefits to neuropsychological tests (Mahncke et al., 2006).  

Similarly, plasticity training on attention processes led to successful transfer in brain 
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injured participants (Sohlberg et al., 2000) and plasticity training in multiple cognitive 

domains transferred to result in improvements in neuropsychological tests in patients 

with Alzheimer’s disease (Cipriani, Bianchetti, & Trabucchi, 2006).  The success of such 

interventions supports the idea that transfer can occur when the trained and transfer tasks 

engage the same cognitive processes and brain regions.  

 Additionally, many researchers propose that transfer is achieved through 

interventions that train the processing system instead of changing the approach or 

strategy used on the training task (Jaeggi et al., 2008).  For instance, young adults who 

practiced a working memory task for 5 weeks showed decreased RTs and transfer of 

improvement in RT on the Stroop test (Oleson, Westerberg, & Klingberg, 2004).  It was 

also determined that fMRI activation in the prefrontal and parietal areas increased after 

practice in the same areas activated before practice, which suggests that the same strategy 

was used before and after the practice intervention, but with greater proficiency after the 

intervention (Jonides, 2004).   Furthermore, these results suggest that successful transfer 

does not necessarily require that a new strategy be introduced and learned, but instead 

that becoming proficient on a task may lead to spontaneous adoption of an effective 

processing strategy, simply as a side effect of practicing/exercising the cognitive 

processes engaged during the task.   

  The idea that spontaneous adoption of a cognitive strategy may be important for 

transfer is supported by recent study on memory training (Lustig & Flegal, 2008).  In the 

study, participants trained on a specific memory strategy performed worse on a word 

memory transfer task than participants who were encouraged to generate their own 

strategy during training tasks (Lustig & Flegal, 2008).  These results were interpreted as 
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suggesting that strategy self-generation is important for both training and transfer, 

because performance on the training task was related to performance on the transfer task.  

Alternatively, these researchers suggested that participants trained on specific strategies 

may not have been able to transfer the strategies they learned, because transfer 

performance in this group was only related to pretest ability on a vocabulary measure and 

not to training performance.  Overall, these results suggest that allowing and encouraging 

participants to generate strategies on their own instead of training specific strategies may 

be the best means of achieving transfer.  Still, it must be considered that even when 

strategies are not explicitly trained, it is still possible that participants will develop 

strategies specific to the training tasks, which may interfere with far transfer (Buschkuehl 

et al., 2008).  In conclusion, results from the recent literature on cognitive training 

suggest that future research should not aim to directly change the cognitive mechanism or 

strategy used, but rather to enable practice and thus, improvements, in a spontaneously 

developed approach or strategy.  

 Finally, close inspection of the intervention procedures used in studies that 

achieved transfer revealed that the intervention sessions were usually quite extensive.  

For instance, training sessions ranged from 8 – 19 sessions (Jaeggi et al., 2008), 10 

sessions within a two week period (Persson & Reuter-Lorenz, 2008), 5 weeks of training 

(Dahlin et al., 2008a), 8 training sessions per week for 3 weeks (Jennings & Jacoby, 

2003), and about 24 days (Klingberg, Forssberg, & Westerberg, 2002) in various studies 

showing transfer effects.  Furthermore, a significant relationship between time spent 

training and improvement from pretest to posttest was uncovered, suggesting that more 

training leads to more benefit (Jaeggi et al., 2008).  In the current study only two training 
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sessions were provided, which was substantially less time training than other studies 

showing transfer.   Hence, in the future, studies seeking to facilitate transfer should 

employ intervention procedures with a lengthy and frequent training schedule.   

Plasticity in Aging 

 Results from several studies including this dissertation study show that older 

adults show performance benefits (at least on the task trained) as a result of cognitive 

interventions, suggesting that the brains of healthy older adults remain plastic with 

increasing age (e.g.,. Baltes et al., 1989; Mahncke et al., 2006; Paxton et al, 2006).  Still, 

many previous studies have shown that young adults show greater benefit than older 

adults from cognitive interventions aimed to improve abilities such as episodic memory 

(Jones et al., 2006).  Furthermore, several recent studies have shown significant 

improvement on the working memory task trained in older adults, but failed to show 

substantial transfer or transfer to tasks very similar in structure (Buschkuehl et al., 2008; 

Dahlin et al., 2008a; Li et al., 2008).  An fMRI study investigating transfer and training 

effects on some of the same measures assessed in (Dahlin et al., 2008a), suggested that 

older adults’ failure to transfer benefits of training could be due to older adults’ impaired 

ability to use the same brain region, specifically the striatum, during both training and 

transfer (Dahlin et al., 2008b).  Several studies were reviewed above and in Chapter 2 in 

order to glean information about the effectiveness of various interventions in to facilitate 

improvements in performance on the task trained and in novel transfer tasks.  A portion 

of the studies reviewed in this discussion showing significant training and transfer effects 

involved young adult participants, and therefore, it must be considered that intervention 

procedures used in previous studies that led to promising transfer effects in young adults 
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(e.g., Jaeggi  et al., 2008; Persson & Reuter-Lorenz, 2008) might not show such 

promising transfer effects in older adults.  Further research assessing the effectiveness of 

various interventions in facilitating improvements in performance on trained and transfer 

tasks are necessary in order to gain understanding about how cognitive plasticity differs 

between healthy older and younger adults.  

Limitations 

 There were several limitations of this dissertation study.  As discussed in the 

section on transfer effects, there were only two intervention sessions in this study, which 

is a less intensive intervention than used in many studies showing transfer.  Also, less 

than 24 participants were assigned to each intervention condition, which limited the 

power to detect significant differences.  Aside from the AX-CPT and Dot-CPT, the 

measures of executive control that were included may not be sensitive measures of 

proactive control and may not benefit from use of a proactive strategy. 

 The current study did not include a no-contact control group.  Thus, some of the 

improvements from pre to post test could have reflected simple practice effects rather 

than any effects of specific practice or training.  To address this issue, a no-contact 

control group is being recruited. I will compare effects in this no-contact control group 

with effects for all participants to determine if there are overall differences between 

participants undergoing any intervention.  I will also compare the differences between 

posttest and pretest performance for participants in the no-contact control condition and 

participants in each of the interventions conditions to determine if the significant effects 

found for training and single task conditions are significantly greater than the 

performance changes that can be expected even with no interventions. 
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Future Directions 

 Facilitating Transfer.  The results of this study raise several questions that could 

be addressed by further investigations.  Questions remain as a result of finding that the 

Dot-CPT, which is very similar to the AX-CPT, showed some evidence of transfer 

effects, but the PM/N-back, that was dissimilar from the AX-CPT, did not show transfer.  

Thus, it is important to further investigate the types of tasks that would show near transfer 

effects after enhanced experience with the AX-CPT.   Hence, one possible way to 

investigate the parameters of transfer of benefit due to more experience with the AX-CPT 

would be to investigate transfer effects on several tasks that were more similar to the AX-

CPT than the PM/N-back, but not as similar to the AX-CPT as the Dot-CPT.  Such an 

investigation would provide information about how similar a task must be to the AX-CPT 

in order to benefit from increased experience with the AX-CPT.  Thus, such information 

would allow for more confident conclusions about the cognitive mechanism by which 

transfer occurs, such as whether participants simply learn stimulus-response mappings on 

the AX-CPT that can be directly modified to apply to the Dot-CPT or whether they learn 

a more general proactive strategy.  

 Improving the multi task training condition. As discussed in a previous section, 

several aspects of the multi task training intervention procedure may have resulted in its 

failure to produce transfer, even assuming that it is possible to train participants to 

transfer strategies to an untrained task.  One way of determining which aspect of the 

multi task training procedure led to ineffective results would be to conduct studies 

investigating effects of this intervention with theoretically driven alterations to the 

procedure.  Such changes to the procedure could be aimed to more specifically target 
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specific processes that are thought to be necessary for the multi task training procedure to 

be effective.  In regard to contemplating future studies, I’ve focused on one specific 

explanation for the failure of the multi task training condition to produce transfer: that 

participants in the multi task training condition did not actually learn the skills necessary 

to apply a general proactive strategy to untrained tasks, because they relied on the 

experimenter to provide explicit strategies during the intervention sessions.  Likewise, 

McDaniel and Schlager (1990) suggest that skills for generating novel strategies in new 

situations are only gained when one is required to derive a strategy to solve a problem. 

Given that ability to transfer a general strategy to untrained tasks requires that one 

actually derive the strategy independently, it may have been more effective to train 

participants to use the AX-CPT proactive strategy and then ask them to generate an 

effective strategy with the aim of using initially presented information to prepare in 

advance for responses on the task switching and modified Sternberg tasks.  Asking 

participants to self-generate effective proactive strategies and flexibly apply them to a 

novel task during training would more closely reflect the cognitive process of flexibly 

transferring a strategy that is required for effective transfer of strategy training benefits to 

an untrained task.  Also, it is possible that self generated strategies for all trained tasks 

except the AX-CPT (i.e., task switching and modified Sternberg) may be more effective 

than the strategy training procedures provided, especially when considering that the 

strategy training procedures on these tasks did not lead to an improvement in 

performance.  It is important to investigate transfer effects after changing the multi task 

training procedure to require that participants must discover or derive an effective way of 

adapting the general proactive strategy.  Thus, through such an evaluation, we could test 
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whether the failure of the multi task training condition to produce transfer was due to the 

failure of the procedure to train participants to effectively adapt and apply a general 

strategy training procedure.  

 Efforts to facilitate early diagnosis of dementia. One interesting area of inquiry 

that could potentially assist with the early detection of dementia would be to investigate 

the degree to which ability to improve over time helps to discriminate between those with 

and without mild cognitive impairment (MCI) or early dementia.  It has been suggested 

that, compared with a single test score, cognitive plasticity (i.e., ability to benefit from 

some type of training or practice intervention) as assessed by posttest – pretest scores 

might be a better indicator of participants at risk for, or with early stage dementia.  This 

hypothesis is based on the idea that individuals suffering from early stage dementia or at 

risk for dementia will have difficulty learning and improving due to cognitive 

impairments associated with the dementia process (Baltes, Kuhl, & Sowarka, 1992).   

Studies training fluid intelligence (Baltes, et al., 1992) and training cognitive domains 

associated with dementia (e.g., visuospatial, verbal recall, executive control, verbal 

fluency; Fernandez-Ballesteros, Zamarron, & Tarrage, 2005) demonstrated that posttest 

vs. pretest change scores were better than pretest scores at discriminating between 

healthy older participants and those with Alzheimer’s disease (AD) or MCI.  Further, it 

has been shown that participants who were determined to be at risk for dementia did not 

benefit from fluid intelligence training, while healthy participants did benefit (Baltes et 

al., 1992).    

 Thus, it is of interest to determine whether individuals who are at risk for 

dementia or in very early stages would benefit from interventions designed to improve 
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executive control on tasks such as the AX-CPT and Dot-CPT.  When patients with AD 

were compared with age-matched healthy controls on the AX-CPT, the AD patients 

showed a pattern of performance suggesting impaired context processing evidenced by 

greater BX errors and a tendency to respond quickly instead of accurately on BX trials 

(Braver et al., 2005).  These results suggest that participants with AD have more room to 

improve than the healthy older adults assessed in the current study.  It would also be 

important to investigate whether different interventions affect those determined to be at 

risk for dementia and healthy elderly in different ways, which could possibly provide 

insight into the cognitive mechanism employed by each of these groups while performing 

the AX-CPT and Dot-CPT tasks.   

Also, given that it is often difficult to discriminate between participants with 

different types of neurodegenerative disorders leading to dementia such as AD, Dementia 

with Lewy Bodies, and Frontotemporal dementia (e.g., Welsh-Bohmer, 2008).  It would 

be informative, through longitudinal investigations, to determine whether there are 

differences in ability to benefit from training among those at risk for dementia that 

proceed to develop different types of dementia.  Also, by comparing practice and training 

interventions in participants at risk for dementia, information regarding the degree to 

which the ability to spontaneously derive strategies is affected by the dementia process 

(or different in different forms of dementia) could be provided.  It may be that executive 

difficulties occurring early in the disease process may lead to difficulty generating and 

maintaining an effective strategy, and therefore, the strategy training intervention would 

provide necessary structure and direction for improving performance.  Thus, to answer 

these questions and better understand ability to discriminate among at risk and healthy 
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older adult as well as between different types of dementia, it would be informative to use 

procedures used in the current study to compare training and practice on the AX-CPT and 

Dot-CPT in a longitudinal study with older adults with and without a diagnosis of 

dementia.  

Conclusions 

This study sought to address five primary questions.   The answer to the first 

question is that the strategy training procedure used in our previous study with the AX-

CPT (Paxton et al., 2006) was successful in improving AX-CPT performance when the 

pattern of RTs was compared between trial types.  Moreover, the performance 

improvements were greater than those observed for purely practice-based interventions in 

terms of producing a specific pattern of performance for RTs associated with stronger 

proactive control.  The answer to the second question was that the single task 

interventions, focused solely on the AX-CPT, led to improvement in near transfer 

performance in terms of producing a more proactive pattern in errors on the Dot-CPT 

when AY and BX errors were examined together.  Moreover, this improvement in ability 

of participants in the single task conditions to show a specific pattern of error 

performance associated with stronger proactive control was greater than that observed for 

participants who underwent the multi task intervention procedure.  The answer to the 

third question was that there were only slight suggestions that strategy training affected 

performance on the near transfer task and was not found to be significantly different from 

practice interventions in terms of facilitating transfer to untrained tasks. The answer to 

our fourth question was that transfer was not facilitated by the multi task training 

condition, which was designed to provide participants with experience transferring a goal 
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maintenance strategy to multiple tasks during training.  Lastly, the answer to the fifth 

question was that conclusions cannot be drawn from the current results regarding whether 

training or multi task interventions used during intervention sessions led to improved 

performance by engaging different cognitive mechanisms than engaged by the practice 

interventions or single task interventions. 
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