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Abstract— To provide flexibility in deploying new proto-
cols and services, general-purpose processing engines are be-
ing placed in the datapath of roufers. Such network proces-
sors are typically simple RISC multiprocessors that perform
forwarding and custom application processing of packets.
The inherent unpredictability of execution time of arbitrary
instruction code poses a significant challenge in providing
QoS guarantees for data flows that compete for such pro-
cessing resources in the network. However, we show that
network processing workloads are highly regular and pre-
dictable. Using estimates of execution times of various ap-
plications on packets of given lengths, we provide a method
for admission control and QoS scheduling of processing re-
sources, We present a processor scheduling algorithm called
Estimation-based Fair Queuing (EF(Q) which uses these es-
timates and provides significantly better delay guarantees
than processor scheduling algorithms which do not take
packet execution times into consideration.

Keywords— QoS scheduling, programmable router, ad-
mission control, active networks

i. INTRODUCTION

Over the past decade there has been rapid growth in the
need for reliable, robust, and high performance commu-
nication networks. This has been driven in large part by
the demands of the internet and general data communica-
tions. New protocols, services, standards, and network ap-
plications are being developed continuously. However, the
ability to deploy these in the current internet is greatly in-
hibited by the need for changes in the forwarding loops of
routers, which for performance considerations are usually
implemented in custom logic. To overcome this obstacle,
it has been proposed to place general-purpose processing
engines in the data path of routers. Such network proces-
sors extend the traditional store-and-forward paradigm to
a store-process-and-forward paradigm, which opens vast
possibilities for applications like simple QoS forwarding
to complex payload transcoding for wireless clients.

In terms of Quality-of-Service, general purpose process-
ing introduces an additional level of complexity into the
system, since not only link bandwidth, but also computa-
tional resources have to be shared among packets of com-
peting flows. While a significant amount of work has been
done with respect to designing systems which can pro-

vide guaranteed QoS to flows competing for bandwidth,
processor sharing poses several new problems in this do-
main. The problem that we are considering is aimed at
routers, where packet processing is performed at the out-
put port. The data path through the output port is shown
in Figure 1. Packets are received from the switch fabric
and queued in per-flow queues. Then the processor sched-
uler assigns packets from the n queues to the rn processors
as processors become idle. After processing, packets are
again quened in per-flow queues before the link scheduler
assigns them to be transmitted on the link.

We provide mechanisms for such a system to give guar-
anteed bandwidth and computational resources to incom-
ing flows. Guarantees in these two dimensions mean that a
flow always gets its reserved shares except when,

1. A flow requires computational resources in excess of its
reserved capacity and hence only a fraction of the incom-
ing traffic is processed and forwarded to the link scheduler,
possibly giving the flow a lesser share of its reserved band-
width.

2. Or equivalently, a flow exceeds its link share resulting
in too many packets being queued up at the link sched-
uler forcing the processor scheduler not to give the flow its
processing share.

Realizing such a system is fundamentally complicated
by the fact that the execution times of various applications
on packets are not known in advance, which limits appli-
cability of well known bandwidth scheduling algorithms.
Also, at a flow level, it is not clear as to how explicit or
implicit admission control can be done as the processing
requirements of a single flow are not known.

In this paper, we first present actual execution times of
various applications on packets of varying lengths, mea-
sured on a programmable router. We show that for the re-
stricted class of network applications, the processing times
are strongly correlated to the size of the data being pro-
cessed, i.e., to the packet length. We then use this corre-
lation to predict packet execution times to perform admis-
sion control and also to schedule packets for processing.
We present a scheduling algorithm called Estimation based
Fair Queuing (EFQ) which unlike bandwidth schedulers
uses the estimates of packet execution times and provides
better delay bounds than processor scheduling algorithms
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which do not use packet execution times at all.

The paper is organized as follows: Section II provides
some related work. Section Il demonstrates the pre-
dictability of packet processing times and shows how ad-
mission control on processing resources can be done. Sec-
tion IV describes the scheduling algorithm EFQ in detail
and Section V presents the simulation results. Conclusions
are drawn in Section VI,

II. RELATED WORK

A significant amount of work has been done in
defining architectures for software based programmable
routers 1] {2] [3]. In particular we have extensively used
the router plugins architecture in our work [4] [3]. Most
systems enforce isolation of packet processing between
flows (e.g., malicious packets cannot effect the proper pro-
cessing of other packets). However, QoS issues at the level
of processing are addressed only in a few cases. The com-
monly used NodeOS specification [5] asks for packets to
be processed by individual threads to allow for an account-
ing mechanism. However, methods for admission con-
trol and QoS scheduling are not described. {6] describes
the problem of scheduling computational resources among
competing flows, but relies on being able to pre-determine
the processing time of packets. Also the more important
issue of correlating the cycle rate of a flow to the bit rate is
not addressed. There are also approaches where the ex-
pressiveness of the processing environment is restricted
(e.g, no loops) to give execution time guarantees [7], which
limits the usefulness to simple header processing applica-
tions.

Packet service disciplines and their associated perfor-
mance issues have been widely studied in the context of
bandwidth scheduling in packet-switched networks [8].
The performance of these disciplines has been compared
to Generalized Processor Sharing (GPS) [9], which has
been considered an ideal scheduling discipline based on
its end-to-end delay bounds and faimess properties. Packet
Fair Queuing (PFQ) disciplines, however, cannot be used
for processor scheduling. PFQ disciplines like WFQ,
WF?Q [10] use a notion of virtual time, whose correct up-

date in a processor scheduler, requires precise knowledge
of execution times of various packets in advance. Efforts
have been made to design service disciplines which iso-
late the scheduler properties that give rise to ideal fairness
and delay behavior, without emulating GPS [11]. Notable
among these are a class of schedulers called Rate Propor-
tional Servers [12] which decouple the update of system
virtual time from the finish times of packets in queues.
But even these service disciplines, while avoiding the com-
plexity of GPS emulation, schedule packets in order of pre-
determined finish times, which in turn requires the knowl-
edge of execution times of various packets in advance.

An exception to these is Start-Time Fair Queuing
(SFQ) [13] which has been deemed suitable for CPU
scheduling [14]. Since, SFQ does not need prior knowl-
edge of the execution times of packets (packet lengths in a
bandwidth scheduler), it can be used in scheduling compu-
tational resources too. But the worst case delay under SFQ
increases with the number of flows and can in fact worsen
in the presence of correlated cross-traffic as shown in [15].
Also, as we will show in later sections, SFQ tends to fa-
vor (provide lesser queuing delays) to flows which have a
higher average processing time per packet to reserved pro-
cessing rate ratio.

Our work is aimed at providing a way of estimating ex-
ecution times of packets, which is used on a flow level
for admission control and for QoS scheduling at a packet
level.

ITI. RESERVATION OF PROCESSING RESOURCES

A key compenent of quality of service is the definition
of the service that is requested by a flow. While this is
straightforward and well understood for bandwidth, reser-
vations for computational resources are not as clearly de-
fined. This comes from the unpredictability of general pur-
pose processing. In principle, the halting problem states
that it cannot be determined if an arbitrary program ever
terminates. Thus, the execution time of an arbitrary piece
of instruction code cannot be determined, in particular,
when the execution time depends on data fields in the
packet.



However, networking applications often require very
regular, predictable processing. Our measurements, which
are discussed below, indicate that for certain application
classes, the processing times are very tightly correlated to
the amount of data transmitted. This holds true on a per-
flow granularity, where processing requirements are de-
pendent on the flow bandwidth, as well as on a per-packet
granularity, where the processing time is dependent on the
packet size. This correlation can be exploited to predict
processing requirements of packets and flows and use the
prediction for admission control and scheduling.

A. Predictability of Processing Requirements
A.1 Application Types

Applications that process packets on routers can be
divided into two categories: header-processing applica-
tions and payload-processing applications [16]. Header-
processing applications are characterized by the fact that
the processing of the packet is restricted to read and write
operations in the header of the packet. This means that the
processing complexity is in general independent of the size
of the packet. Examples of header-processing applications
are IP forwarding, transport layer classification and QoS
routing. Payload-processing applications, in contrast, are
characterized by read and write operations to all the data
in the packet, in particular, the payload of the packet. It is
here that the processing complexity strongly correlates to
the packet size. Typically, payload processing applications
also show a header-processing overhead in addition to the
payload processing. Examples of payload-processing ap-
plications are IPSec encryption, packet compression, and
packet content transcoding (e.g., image format transcod-

ing).

A2 Measurements

We have measured the processing times for four appli-
cations: IP forwarding, which is a header-processing ap-
plication, and encryption (CAST), compression (Adaptive
Huffman Coding), and forward error correction (Reed-
Solomon), which are payload-processing applications.
The packet processing times were acquired using a pro-
grammable line card [17] on the Washington University
Gigabit Router [18]. Processing was performed in the
Crossbow [4]/ANN [3] operating system.

The measured results are shown in Figure 2 over a range
of packet sizes. The average processing times are shown
as lines and the error bars indicate the range of the 95%
percentile of processing times. Note that we use time as
the unit for processing cost. This is done to simplify the
description of the scheduling algorithm and its analysis. In

a realistic network, processing cost should be translated to
processor cycles per second and then adapted to the partic-
ular router system, where the packets get processed.

For IP forwarding, the processing time is practically
constant for all packet sizes, which shows the per packet
processing cost of header processing. However, the pro-
cessing times of the three payload processing applications
are clearly dependent on the packet size. The per packet
processing time for these applications can be extrapolated
for packets of size 0. With these observations, we can
approximate the processing cost ¢ of a packet of length
! when processed by application g as

e=og+f-1, (1)

where o, is the per packet processing cost and (3, is the per
byte processing cost of application a. The processing re-
quirements of these applications can then be described by
two parameters, o, and 8,. These parameters are shown
for the three applications in Table 1.

A.3 Online Estimation

Though the parameters ¢, and 3, have been determined
from traces, given this strong cormrelation between packet
sizes and execution times, it is possible to determine these
parameters online and in fact improve them, using sim-
ple linear least squares regression techniques. As packets
are processed the router maintains variables denoting the
sums, E Cis Z li1 E C%? E 5121 Z(Q ’ lt): E(li ) ‘l%) for each
application a. These variables are updated on the arrival of
anew (¢pt1, lnt1) pair. The parameters to be used in the
estimation can then be computed as

P _2mCi b= Y lifn
DY S S AT

g zzq_ﬁazli-

However, it should be noted that there are also applica-
tions, where the processing time cannot be as nicely cor-
related to packet size as shown above. An example for
such an application is MPEG encoding. For MPEG en-
coding a whole video frame is required to perform effec-
tive compression. With unencoded video frames typically
exceeding a packet size, processing can only be performed
once several packets of a flow are buffered. In this case
the processing time varies significantly between packets,
but it can be expected to be more evenly distributed over
frames (i.e., I-frame to I-frame). Hence, in such a case the
parameters should be maintained for the group of packets
constituting a single frame, which are always processed
together.
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Fig. 2. Processing Times of Programmable Router Applications. The error bars indicate 95%-percentile of processing times

Application ¢ | per-packet cost ¢, | per-byte cost 8, | expansion factor -,
(us per packet) {15 per byte)
IP forwarding 51 0 1
Encryption 320 13 1
Compression 970 7.6 0.13-0.34
FEC coding 320 9.2 1.14
TABLE I

PACKET PROCESSING PARAMETERS.

B. Bandwidth Expansion

Processing of packets on routers can also affect the size
of the packets after the processing is completed. For many
types of applications (e.g., encryption, routing lookup) the
packet size is not changed, but a few applications can sig-
nificantly change the bandwidth of a flow (e.g., compres-
sion, FEC). To take these changes into account, we define
an expansion factor, v,, that is the average output band-
width divided by the input bandwidth. This factor is also
shown in Table I. Note that the expansion factor can be
dependent on packet size and data as for the compression
application.

C. Admission Control

In an environment, where we want to be able to give
service guarantees to data flows, it is typically necessary
to explicitly reserve resources for that flow. This happens
during the flow setup and allows the network to route a new

flow in such a fashion that enough bandwidth is available
on the chosen path. Now that we have shown that the pro-
cessing requirements for a stream of data can be described
in a simple manner, we can integrate this information into
the flow setup process.

A reservation for a flow j§ with incoming bandwidth B;
that is processed by application a needs to reserve -y, - B;
bandwidth on the outgoing link. The amount of processing
P; that is required (as fraction of one processor) depends
on the bandwidth of the flow, the average size of packets
I3, and the application parameters:

Bj-c
l
Thus, flow j can be admitted to any router that has Py

processing power and -y, - B; outgoing bandwidth avail-

able. How an efficient or optimal route can be found with
these parameters is outside the scope of this paper. In prin-
ciple, an optimal route can be found by combining pro-

_ B
—

Py =

) (aa+/3a 'E)-



cessing and transmission costs into one metric [19]. An-
other approach is to aggregate processing availability in-
formation together with bandwidth and topology data sim-
ilar to PNNI [20].

IV. PROCESSOR SCHEDULING

The choice of the packet service discipline for schedul-
ing the processing resources is an important issue in guar-
anteeing end-to-end delay bounds and ensuring fair shar-
ing of processors among competing flows.

We note that the exact processing time of an applica-
tion on a packet of a given size cannot be pre-determined
and hence precludes the use of many well known packet
scheduling algorithms. However, we can use a good es-
timate of the execution time using parameters obtained in
Section III for designing a scheduling algorithm that has
good delay and fairness properties. In this section we de-
scribe how we build upon the class of rate-proportionat
servers, which have desirable properties that allow the use
of these estimates to design a processor scheduling algo-
rithm called Estimation-based Fair Queuing (EFQ).

A. Rate Proportional Servers

A.1l Definition

Rate Proportional Servers (RPS) are a class of schedul-
ing algorithms designed according to the methodology
presented in [12], which allows the designer to trade fair-
ness of the algorithm with implementation complexity.
Generally speaking, a rate-proportional server is a work-
conserving server with the following properties:

1. The server has an associated system potential, which is
updated to reflect the total work done by the server.

2. Bach flow in the system has an associated potential.
When a flow becomes backlogged, its potential is set equal
to the system potential. When a flow is already back-
logged, its potential is updated to reflect the normalized
service received from the server.

By imposing conditions for the potential functions as
given in [12] and by serving packets from flows such that
at any instant the individual potentials of all backlogged
flows are equal, it can be shown that rate proportional
servers have delay and fairness properties comparable to
GPS. WF?Q+ [15] is an important example of a scheduler
belonging to this class.

We build on this methodology in designing the EFQ
processor scheduling algorithm for two important reasons.
First, the methodology helps in designing algorithms with
delay bounds and fairness comparable to GPS without
the complexity of GPS emulation. More importantly, the
methodology provides us with enough flexibility to decou-

ple the update of system potential from the exact finish
times of the packets in the queues, which addresses the
problem of not knowing the exact processing times in ad-
vance.

A.2 Packet Selection Policy

A scheduling algorithm with optimal fairness would
have to schedule single processing cycles according to
the fluid Rate Proportional Server. However, in network
processors, the smallest unit of processing is a complete
packet. Context switching between packets is not consid-
ered here, because saving and recovering processing state
is a relatively expensive operation compared to the short
overall processing time for a packet. Thus, to approximate
a fluid RPS, packets should be scheduled in order of their
finish time with the earliest finish time first. While this
works perfectly fine for bandwidth schedulers, the lack of
the knowledge of the actual execution times of the pack-
ets, makes an exact implementation infeasible for proces-
sor schedulers.

However, to derive an approximate scheduler of this
class, we can generalize the definition of a packet-by-
packet RPS. Such a scheduler schedules two packets, 7 and
k, of flows A and B, in the order in which they are more
likely to finish processing, i.e., if FJ and Fj¥ are random
variables representing the finish times of these packets in
the fluid RPS, then packet 7 is scheduled for service before
k, if

P(F] > Ff) > 05.

Hence, it is the knowledge of the distributions of FJ and
F,f which determines the accuracy with which schedulers
can approximate GPS even if they use the same potential
(or virtual time) functions. Also, since the potentials of
individual flows are updated according to the normalized
service received by the flows from the system, the finish
time FJ is
. j
-rs

where F, is the potential and R, is the rate of service re-
served by flow A. While these are known in advance when
determining FJ, W, which represents the service time re-
quired by packet 7, is not. Thus, the random variable F7 is
directly determined by W.

Start-time Fair Queuing (SFQ) [13] (with a modified
system virtual time) and WF?Q+ [15] are scheduling algo-
rithms belonging to this class that represent the extremes
with respect to the amount of knowledge of FJ. SFQ does
not use any information about the service time of a packet
and hence, according to the above policy, SFQ schedules
packets in increasing order of P,, which makes it suitable



for processor scheduling. WF2Q+, on the other hand, as-
sumes that the exact service times of all packets are known
in advance and thus determines the right order of servicing
packets with probability 1.

A.3 Misordering Delay

Different schedulers using the same potential functions
and ordering packets for execution according to the above
defined policy can give varying delays to flows based on
their knowledge of the random variables WJ. To quan-
tify these delays, assume that a scheduler of this class can
be characterized by random variables x,; j, which de-
note the event that the scheduler (with its knowledge of
W and ka) makes a mistake in ordering packets j and
k. Le, P[xqpe = 0] is the probability that the sched-
uler orders the packets of these two flows correctly, while
P[xg5 pe = 1] is the probability that the scheduler makes
a mistake in the ordering. Then, the average misordering
delay, d,, as seen by a packet of flow A, is the additional
delay caused only due to the scheduler misordering pack-
ets of flow A and flow B, which is

R;, W’

G.
(P + ? - F, ) (2)
This accounts for the time spent by the server in servic-
ing additional traffic from flow B before processing packet
from flow A. It is these additional delays caused by mis-
ordering of packets that we intend to reduce using the es-
timates of the packet execution times we derived in Sec-
tion IIT which improves the scheduler’s knowledge of WJ.

da P[Xa) b‘»—l]

B. Estimation-Based Fair Queuing

Estimation based Fair Queuing (EFQ) is a scheduling
discipline designed for processor schedulers that uses the
estimates of the packet execution times in ordering packets
of various flows for processing. While the packet selection
policy of any Rate Proportional Server can be changed to
use these estimates, EFQ is derived by modifying WF2Q+
which is known to have the tightest delay bounds and low
time-complexity among bandwidth schedulers.

EFQ, like WF2Q+, uses a notion of system virtual time
(system potential), defined by

V(t -}~ ';r) = ma:c(V(i) + T, min’ieB(t+7)Si))

where B(t) represents the set of backlogged flows at time
¢ and S; the start-tag associated with flow 4 as defined be-
low. The above definition of V() makes WF?Q+ a Rate-
Proportional Server. It differs from that of SFQ, in that
it has a linear component, which ensures that the delay
bounds provided are within one packet servicing time of a
corresponding GPS server [15].

For each flow ¢ in the system, EFQ maintains a start tag,
S; (potential of flow 1), a finish tag, F}, and an estimated
finish time tag, EF;. Consider a packet &k of flow 2, with a
reserved rate r;, that arrives at time ai—“ . When this packet
reaches the head of the queue, 5; is updated using,

S; = V{af),
if queue ¢ is empty, else
S, =Fj.
EI; is updated using

k
EF;, = S+E—

i

where E{" is the estimated number of instructions required
to process packet k. This estimate is derived from the
length of the packet L and the parameters oy, and 3, of
the application processing the flow using Equation 1:

Ef = o, + B LY.

‘When the processor finishes processing this packet, the ac-
tual finish tag F; is updated using feedback from the pro-
cessor: .
RS+
LS
where A is the actual number of instructions required to
process packet k. This ensures that each flow is correctly
charged for processing time, even if the initial estimate
was incorrect.
Given these tags, the EFQ scheduler, schedules packets
in increasing order of their estimated finish time tags B F;.

C. Example

The following illustrates the behavior of EFQ and com-
pares it to that of SFQ and WF2Q+. Consider a set of
flows, all of which send packets of the same length but at
different rates and are processed by the same application.
Fig. 3 shows six such flows, with flow 1 reserving 50% of
the processing resource and the rest of the flows reserving
10% each. The size of a packet in Fig. 3 represents the ac-
tual processing time of that packet. Note, however, that the
estimates for all packets are the equal, since they all have
the same length and are processed by the same application.

WF2Q+ achieves an optimally fair schedule, because
it is assumed the scheduler knows the actual processing
times. Thus, the packets of flow 1 and the other flows al-
ternate (due to the rate reservations). Out of flows 2-6, the
packet of flow 2 is processed first, because it has the lowest
actual execution time and therefore the lowest finish time.
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Fig. 3. All flows have backlogged packets of the same Iength and are processed by the same application. The figure shows the
actual execution times of packets as their size and the processing order derived by different scheduling disciplines.

EFQ expects all packets to have the same execution
times. Thus, EFQ could pick any order of packets 2-6 to al-
ternate with packets from flow 1. The worst case, which in-
troduces most misordering delay, is shown in Fig. 3. Here,
the packet of flow 2 is processed after packets of flows
6,5,4 and 3 are processed, which all use more processing
time than expected by scheduler. As a result, the packet
from flow 2 experiences an additional delay due to the vari-
ation in actual processing times of these packets. However,
these variations are much smaller (and bounded, for the ap-
plications in consideration) than the total processing times
of the packets themselves. In particular, these delays are
much smaller than those introduced by SFQ.

As shown in the example, in the worst case SFQ could
delay the processing of the first packet of flow 1 until after
packets from all other flows are processed. This is due to
all initial packets having the same start time.

In summary, EFQ processes most packets in the same
order as WF?Q+. When either a flow reserves a much
higher rate than others or has greatly differing process-
ing requirements (due to differing packet sizes or ap-
plications), the variations in the actual executions times
compared to estimated execution times do not change the
scheduling order . Also, even in the case when the schedul-
ing order of packets in EFQ varies from that of WE2Q+,
the additional delay that is experienced by a packet is
bounded by the variation in execution times as opposed
to the fotal execution times of packets as in SFQ.

D. Analysis

From the example given above, it can be seen that for
N flows, in the worst case, SFQ introduces a misordering
delay of
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This is obtained by using V& : x,; p» = 1 with the misor-
dered packets being of maximum size and using Vb : Fj, =
P, in Equation 2, since the scheduler can make a mistake
only when P, < F,. Results in Section V also show that
SFQ actually favors (i.e., gives lesser delays to) flows with
packets which require greater average normalized service
(i.e., higher —%ZE).

To analyze ﬁFQ, assume that for a given packet length,
the packet execution time estimates obtained in section III
can be represented by uniform random variables Wg ly-
ing in the range B — VJ, EI + VJ]. The EFQ scheduler
misorders packet 7 and k when it determines that
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Hence from Equation 2, the misordering delay for packet
4 due to packet k is limited to
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and the worst case misordering delay is bounded by
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From the above equation we can see that as the num-
ber of flows increases, dppg only increases with the vari-
ations in execution times as opposed to dgpg Which in-
creases with total processing times. Also note that, with a



betier estimation, e.g., by including higher order moments
in characterizing W7, EFQ can more accurately determine
the right scheduling order, resulting in a smaller §grg and
thus approximating WF2Q+.

V. SIMULATION EXPERIMENTS

In this section, we present simulation experiments to
demonstrate the improved performance of EFQ as com-
pared to SFQ.

A. Simulation Setup

To compare the delay characteristics of the two sched-
ulers, we use the following simulation setup. First, we
obtain fraces of the actual execution times of packets from
different flows that are processed by different applications
on the programmable router. These traces are then used by
a packet generator to feed the two simulated schedulers:
SFQ and EFQ. The speed of the processor in the simulator
is 2GHz (about 10 times the speed of the processor on the
Smart Port Card (SPC) [17] on which the actual measure-
ments were made). The system has 32 flows with different
packet sizes, which are processed by the four different ap-
plications. All the flows reserve the same processing rate
and adjust their sending rates to just saturate their share of
the processing resource. These flows together require just
below 100% of the system’s processing resources. Thus,
they can all be admitted and the measured delays are only
due to scheduling and not due to queuing backlog.

B. Delay Plots

Fig. 4 shows the delays of various packets of a flow,
which is processed by the forwarding application. The in-
terarrival time of the packets of the flow is approximately
163 microseconds, which is just enough to saturate the
flow’s share of processing resources. Note the high and
bursty delays experienced by the packets of the flow when
scheduled by SFQ as shown in Fig. 4(a). Since SFQ al-
ways schedules packets with the minimum virtual time, a
single packet of a flow can be delayed in the worst case by
the equivalent of the sum of one packet processing time of
all other flows. In the simulation this translates to a worst
case misordering delay of 8218 microseconds. The max-
imum delay actually observed in Fig. 4(a) is about 6100
microseconds, implying an observed maximum misorder-
ing delay of 6100 — 163 = 5937 microseconds.

For EFQ, much lower delays can be seen in Fig. 4(b).
This illustrates two things. Firstly, given the small exe-
cution time of forwarding as compared to other applica-
tions, the finish times of the packets of this flow where
so different compared to the finish times of the packets
of other flows that the errors in estimates did not change

the scheduling order (i.e., Equation 5 wasn’t satisfied for
most comparisons of finish times). Secondly, the worst
case delay that could be experienced by these packets is
only 1312 microseconds which would occur if there were
maximum variations in the estimated execution times for
packets from all other flows at the same time. In the sim-
ulation, the maximum misordering delay observed is about
900 — 163 = 737 microseconds.

Fig. 5 shows the delays experienced by a flow being pro-
cessed by the CAST encryption application, with the aver-
age packet size of the flow being 200 bytes and having a
higher average processing time per packet compared to the
forwarded flow. While the average delays experienced by
the packets when scheduled using EFQ is close to the in-
terarrival time of the packets, which indicates a very low
misordering delay, the average delays seen in Fig. 5(a) are
about thrice the interarrival time of the packets. Fig. 6
shows the delays experienced by a flow (with 1000 byte
packets) being processed by the FEC application which re-
quires much greater processing time per packet compared
to the above flows. Here, the average delays seen by the
packets when scheduled by SFQ are actually /ess than the
interarrival time of the packets! This indicates an average
negative misordering delay by SFQ, while the delays due
to EFQ are just about the interarrival time of the packets.

Two important conclusions can be drawn from these
plots:

1. SFQ gives much higher (less tight) misordering delay
bounds than EFQ.

2. Across flows, while the misordering delays due to EFQ
are on an average close to zero, they vary from high pos-
itive misordering delays (e.g., the delay of about 35 times
the interarrival rate seen by the forwarding flow) to low
negative misordering delays when scheduled using SFQ.

C. Biased Delay Bounds Due To SFQ

The second conclusion can be explained by the work
couserving nature of the two schedulers. If SFQ gives high
positive misordering delays to some flows, there should be
flows in the system which get low and in fact negative mis-
ordering delays, while EFQ gives low (close to zero) aver-
age misordering delays for all flows. In fact, we actually
show a correlation between the misordering delay experi-
enced by the packets of a flow and the average processing
time per packet to reserved processing rate ratio (i.c., Eg:—g

SFQ favors and gives less misordering delays to flows
with higher average processing time to reserved rate ra-
tio over flows with a lower ratio. Given a set of flows
with the same potential, since SFQ can schedule them in
any random order, it is very likely that a packet of a flow
with higher average processing time to reserved rate ra-
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Fig. 4. Packet delays for a flow processed by forwarding application.

tio is scheduled before at least a few flows with lower
ratios, resulting in lower delays for such flows. EFQ by
Jjust using the estimates is able to rightly reverse this order.
Fig. 7 shows the average misordering delay introduced by
the two schedulers plotted with increasing average packet
execution times. Note that all the flows have the same re-
served processing rates. This plot clearly shows the above
conjectured correlation between average misordering de-
lay and average processing time per packet to reserved rate
ratio.

In summary, the simulation shows three main results.
One is that the analytically derived worst case misordering
delay is almost reached by the SFQ scheduler as shown in
Fig. 4(a). Second, EFQ shows a much lower and smoother
scheduling delay. This is due to the delay depending on
the variance of the processing times rather than the abso-
lute processing times as in SFQ. Third, SFQ introduces
unfairness by favoring flows with high processing time to
reserved rate ratios. This behavior is not shown by EFQ,
which provides fairness over a wide range of processing
requirements.

VI. CONCLUSIONS

In this work, we have presented an approach to provid-
ing QoS guarantees for flows that are processed on nodes
in the network. We have shown that network processing
applications exhibit very regular and predictable process-
ing patterns, which help overcome the obstacle of theoret-
ically undeterminable computation times of arbitrary pro-
grams. The processing time estimations can be approxi-
mated by a linear function that we use for admission con-
trol. The Estimation-based Fair Queuing (EFQ) algorithm

also uses these estimates to fairly and efficiently assign
packets to processing engines. The analysis and simula-
tion results show that EFQ performs significantly better in
terms of misordering delay and fairness than a SFQ sched-
uler.

We believe these results are an important step in provid-
ing the type of QoS guarantees that are common for band-
width schedulers in an environment where flows compete
for processing resources.
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