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ABSTRACT

The design of ad hoc mobile applications often requires
the availability of a consistent view of the application state
among the participating hosts. Such views are important be-
cause they simplify both the programming and verification
tasks. Essential to constructing a consistent view is the abil-
ity to know what hosts are within proximity of each other,
i.e., form a group in support of the particular application.
In this paper we propose a protocol that aflows hosts within
communication range to maintain a consistent view of the
group membership despite movement and frequent discon-
nections. The novel features of this protocol are its reliance
on location information and a conservative notion of logical
connectivity that creates the illusion of announced discon-
nection. Movement patterns and delays are factored in the
policy that determines which physical connections are sus-
ceptible to disconnection. An implementation of the protocol
in Java is available for testing.

Keywords
Mohility, ad hoc network, group membership, consistency.

1 INTRODUCTION

Ad hoc mobile networks define a new computing environ-
ment ihat consists of hosts traveling through physical space
and communicating in an opportunistic manner via wireless
links. In the absence of a fixed network infrastructure, the
mobile hosts must discover each other’s presence and estab-
lish communication patterns dynarnically. In some cases the
hosts share a single broadcast medium in a limited region
of space while in other situations they may act as routers
for each other thus extending the range of communication
beyond the direct reach of the wireless transmitters. Al-
most always, communication is assumed to be symmetric
even though physically it is easy to envision circumstances
in which some hosts may be able to reach much farther than
some others.

The absence of a fixed network infrastructure, frequent and
unpredictable disconnections, bandwidih limitations, and
power considerations render the development of ad hoc mo-
bile applications a very challenging undertaking. Yet, ad hoc
networks are emerging as an important platform for new ap-
plications of practical importance. Some applications, such
as emergency response to a major disaster, must function
in sitvations characterized by a total collapse of the wired
infrastructure while others, such as mine surveying, bene-
fit from the flexibility of the ad hoc network structure [4].
Even when the wired infrastructure is available, as the num-
ber of devices present in a single room grows into the tens
or even hundreds, it becomes infeasible to provide them all
with wired connectivity.

Efforts are underway to construct the infrastructure required
to support such applications. Standards such as IEEE 802.11,
IEEE 802.15, and Bluetooth [2], are being developed to
make basic wireless connectivity possible. Protocols are be-
ing adapted or redesigned to accommodate the characteris-
tics of wireless communication, to facilitate interoperability
with the wired netwozks, to provide ad hoc routing capabil-
ities {3, 14, 19, and to offer broadcast and multicast func-
tionality. More recently, middleware is being developed for
coordination and communication in mobile systems, in an
effort to make mobility totally transparent to the application
programmer. Typical examples include IBM’s TSpaces [11],
Sun’s Jini and JavaSpace [12}, and LIME [15]. TSpaces pro-
vides tuple space access and event notification capabilities in
a mostly wired environment. Similar reliance on the client-
server architecture is found in Jini, which offers support for
service registration and discovery. Finally, LIME assumes a
coordination perspective that enables application program-
mers to reduce the effects of mobility to atomic changes in
the contents of a virtual global data structure. Its content is
dynamically determined by connectivity among hosts and is
presented to the application as a tuple space resulting from
the union of the tuple spaces residing on hosts in proximity to
eachother. All three examples use the same tuple space com-
munication strategy as in the Linda model [9]. This is not at
all surprising given Linda’s focus on content-based accessing
and spatial and temporal decoupling among processes.

LIME provided the initial impetus for this research. To con-



struct transparently a global data structure that is dynami-
cally restructured based on the arrival and departure of neigh-
baring hosts, ene must be able to determine who is around
at any point in time. This is not an entirely new problem.
Discovery protocols are routinely used in establishing con-
nectivity among wireless devices. The new element that we
bring to this problem is the concern with consistency. From
an application perspective, it is desirable in some cases that
the data structures presented to the application appear to be
the same on all participating hosts, i.e., all operations on the
data structares are serializable whether they originate with
the application or they are induced by the movement of hosts.
A precondition to accomplishing this is the need to main-
tain a consistent view of the group membership across all
the hosts in the group. Ricciardi and Birman [17] introduced
a strong group mermbership protocol to deal with crash fail-
ures. It relies on a scheme focused on the majority partition.
When 4 majority partition cannot be constituted, their ap-
proach treats all partitions as minority ones and effectively
halts system processing. Our approach differs in two impor-
tant respects. We focus on link failures, and we never halt
the systern.

The fact that distributed consensus is impossible in the pres-
ence of arbitrary lnk failures [7, 5, 10, a frequent event in ad
hoc networks, makes our job particularly difficult. In fixed
networks, one way of dealing with link failures and network
partitions is to assume that they are benign and short lived
and that the system has enough resources to resolve any data
discrepancies after the respective failure or partition disap-
pears {6, 1]. In the extreme case of the mobile ad hoc net-
work, connections are transient, partitioned networks may
never come together again, and, if they do, there may not
be sufficient memory to keep the historical data needed to
achieve consistency. Furthermore, lots of ad hoc mobile sys-
tems are real-time systemns, for instance, a group of vehicles
coordinating their route on the highway. In such systems,
any intermiadte inconsistency could be very costly. There-
fore the retransmission and reconcilation approach for group
data consistency is no longer a favorable choice in this ad
hoc mobile scenario. The only reasonable option is to hide
the mobility-induced link failures. The basic idea is to pro-
vide a service that makes mobility totally transparent to the
application and renders link failures unobservable to the pro-
cesses using the service.

In this paper we discuss an algorithm for accomplishing this
task in an ad hoc environment. We rely on location infor-
mation to decide when a host within communication range
is admitted to or eliminated from a group. The policy is
conservative in nature in order to ensure that all commu-
nication activities within a group and the changes in group
membership appear to be atormic, i.e., are sertalizable trans-
actions. The algorithm accommodates both the merging of
groups and the partition of one group into multiple disjoint
groups. Our membership service assumes a low-level mech-

anism that monitors the movement and location of the par-
ticipating processes and prevents any harmful link failure by
mandating an announced disconnection (from the group) be-
fore a link failure affecting the group could happen. In this
way, processes using the membership service in the ad hoc
environment can implement consistent, faulttolerant algo-
rithms under reasonable assumptions about host failures and
continuity of movement.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a formal definition of the problem. Section 3
introduces the concept of safe distance and presents our so-
lution strategy for the group membership problem. Section 4
describes an implementation of our protocol. Section 5 ana-
lyzes the relationships between safe distance, network delay
and mobile host speed. Discussions and conclusions appear
in Sections 6 and 7, respectively.

2 PROBLEM DEFINITION

Our ultimate goal is to provide application developers with
the ability to maintain a consistent global data structure in a
setting in which mobile hosts come and go as they please and
engage in (ransient collaborative activities. Applications that
require this level of consistency are not common today, but
with the advent of wireless communication, the situation is
expected to change drarmatically. Any situation that demands
(for legat or technical reasons) the presence of two or more
specific entities to carry out a task may impose the need fora
consistent membership view. One ¢an envision the futuristic
notion of an electronic witness to a contractual transaction
or the circumstance in which routine maintenance of com-
mercial aircraft requires secure logging in the presence of an
FAA inspector carrying an authorized electronic badge.

In this context, the group membership problem reduces to
knowing who is present, willing to cooperate on a specific
task, and able to do so reliably. We assume that hosts and
links do not fail, i.e., mechanisms exist to overcome the ef-
fects of transient failures. The only threat to maintaining a
consistent group membership view comes from the mobil-
ity of hosts traveling in and out of each other’s {ransmission
range. Motion is assumed to be continuous, random, and
subject to a known maximum speed Hmitation. Hosts may
shut down intentionally, but, if this happens, they will de-
clare their intention to do so before powering down the trans-
mitter. In the remainder of this section we provide a formal
characterization of the problem.

We model a mobile ad hoc network as a graph Cp =
G(V, Eg), where V is the set of mobile hosts and Ey is a
set of bi-directional communication links among the hosts.
Graph Cy changes over time. The presence of an edge (u,v)
indicates that host  is within transmission range of host v,
and vice versa. We refer to this graph as the physical con-
nectivity graph. In practice, each host can make itself known
to its neighbors by generating a beacon at regular intervals
and by listening to signals from other hosts around. When



a beacon ceases to be heard, a node is considered to be no
longer within transmission range. The frequency of the bea-
con transmissions determines the accuracy of the informa-
tion available at each host.

Since any atternpt to maintain an accurate picture of the
physical connectivity graph Cy in the presence of unexpected
disconnections is infeasible, we introduce the notion of a
logical connectivity graph, call it ' = G(V, E). The lat-
ter is a subgraph of the former. The two share the same set
of vertices (hosts) but the logical graph is missing some of
the edges (links). The choice of edges to inchude in the log-
ical graph is determined by some group management pol-
icy designed to overcome the difficulties caused by unan-
nounced disconnections taking place in the physical system.
The choice of policy is not relevant at this point in the defini-
tion but it is critical when it comes to demonstrating the fea-
sibility of the algorithm used to solve the group membership
maintenance problem. Before proposing our formulation of
the problem we need to define one more concept, the notion
of 2 group. A group G is connected subgraph of the logical
connectivity graph C. Since each host u is always a mem-
ber of some group, we use G(u) to denote the group that
includes u, and we extend the notation to V(%) and E(u) to
refer to the vertices and edges of the group. Clearly, the log-
ical connectivity graph ¢ is always partitioned into a set of
disconnected groups. As the underlying physical connectiv-
ity graph changes, so does the logical one. The group man-
agement policy is assumed to add a new edge to the logical
graph after it appears at the physical level and satisfies cer-
tain properties, and to remove it from the logical connectiv-
ity graph before it is likely that it might disappear from the
physical graph or no longer satisfies certain properties.

The group membership maintenance problem is defined as
the requirement for each host in the logical connectivity
graph to have knowledge of what other hosts are members
of its group and for such knowledge to be consistent across
the entire group at all times. Any feasible solution to this
problem requires one to make some reasonable assumptions
about host movement and network delays, to define a group
membership policy, and to develop a protocol that serializes
all configaration changes. In this paper, we assume a ran-
dom mobility model in which a node, at any point in time,
can move in any direction at any speed subject to some up-
per bound V5,0, We purposely choose this extreme case in
order o explore the limits imposed on the membership prob-
lem by ad hoc mobility. We also assume that ad hoc routing
exists and the network has bounded delay, i.e., a message is
always delivered within time ¢, if a physical path exists be-
tween the origin and destination of the message. Under these
assumptions, the requirement of our membership service has
the following two specific goals: (1) No message between
group members can be lost. (2) Messages are sent and re-
ceived in the same configuration. We achieve the first goal
by employing a policy in which admission to the group is

based on location and the second goal by creating a synchro-
nization barrier between successive configuration changes.
The basic ideas behind our solution strategy are explained in
the next section.

3 SOLUTION STRATEGY

Our ultimate goal is to assist software developers in their
efforts to design and build mobile applications over ad hoc
networks. The key to our strategy is to provide, at the ap-
plication level, the appearance of stability in a domain that
is characterized by high degrees of dynamic restructuring,
caused mostly by frequent disconnections. Even though
many different factors can contribute to comnwmication fail-
ures, we assume that short-lived transient failures are masked
by the communication layer thus relegating all disconnec-
tions to the mobility of hosts. In such a setting, the appli-
cation programmer perceives the configuration (i.e., group
membership) to be stable if changes to it are atomic, i.e.,
cannot affect any operation already in progress. This is why
the problem definition requires all messages to be sent and
received in the same configuration. Operations that are at
a level of granularity above that of message passing would
work the same way. One can simply think of two types of
transactions that must be serialized: operations issued by the
application and configuration changes triggered by mobility.
To accomplish this, a system needs the ability to determine
the constellation of groups within communication range and
under what conditions it is prudent to redefine the way mo-
bile hosts are placed together into groups. A strategy that is
too conservative may impede application progress by keep-
ing apart hosts that need to and can work together while one
that is too aggressive may make it impossible to preserve
the appearance that configurations are more or less stable. A
group discovery protocol is used to determine who is around.
A reconfiguration protocol enforces the atomicity of config-
uration changes which include merging groups that are in
contact and splitting groups that are being threatened by the
possibility of unexpected disconnections. Key to this proto-
col is the notion of safe distance among hosts and groups,
i.e., the idea that if hosts are “close enough”, disconnection
is not possible and that if they are "just far enough” there
is plenty of time to carry out a configuration change before
disconnection occurs. In the remainder of this section we ex-
plain the safe-distance concept and present the discovery and
reconfiguration protacols.

Key Concept: Safe Distance

Given two mobile hosts equipped with compatible wireless
transmitters of equal range K, we state that the distance be-
tween them is a safe distance if it does not exceed a thresh-
old 7(v,t,t'), defined as the maximum distance at which
one can guarantee that any communication task that takes
at most ¢ time units can be completed with certainty, assum-
ing the two hosts move randomly at a speed that does not
exceed v, and the upper bound for a single atomic configu-
ration change is ¢'. Clearly, safe distance cannot be defined



in absolute terms but must be considered relative to a con-
text having certain mobility and application characteristics.
For example, in Figure 1(a) mobile hosts a and b are within
communication range {I?), i.e., they are able to talk to each
other directly. They may want to be in the same group and
start coordination or resource sharing immediately. Yet, they
cannot do so at this point if they wish to guarantee message
delivery within the group. This is because a and & can move
out of each other’s range immediately after acknowledging
membership in the same group, with the result being that
messages between them could not be delivered successfully.
The problem arises from the mobile nature of the hosts and
the asynchronous nature of message passing. Our solution is
to require a and b to agree on membership in the same group
only when they are “close enough”, i.e., they are at a distance

r< R—2us(t+1) (D

In this context, ¢ is the upper bound for network latency (be-
cause the consistency requirement is reliable message deliv-
ery) and t' is the time needed for a group level operation
(merge or split) already in progress to compiete. The factor
2v accounts for the worst case movement pattern, i.e., a sit-
uation in which @ and b are moving in opposite directions at
maximum speed. One can readily see that with this restric-
tion, the reliable message delivery between group members
is guaranteed because it takes more than ¢ + ¢ time for the
two group members to become physically disconnected, no
matter how they move. Within this time any message deliv-
ery completes even if a configuration change is in progress.

@ )

Figure 1: An example of safe distance

We call a group safe if any two members of the group are
connected via a path along which all consecutive hosts are
at a safe distance. We extend the notion of safe distance
from pairs of hosts to pairs of (safe) groups by reqguiring that
at least two hosts, one in each of the two groups, are at a
safe distance. While this definition seems to assume that the
safe distance is independent of group size, this assumption is
generally not true because both simple message delivery and
reconfiguration actually depend on the number of hops that
messages must traverse en route. Because the time bound
on message-passing depends on the group size, our approach
works only when the group size is limited by the nature of the
application or is constrained by the reconfiguration protocol.

The concept of safe distance is used 1o determine when two
groups can be merged and when a group must be split in
order to maintain the requirements for group membership.
To find out whether two groups are within safe distance, one
has to know the location of all hosts in the region. Since it
is too expensive for everyone to keep track of the location
of others ali the time, we designate a leader for each group
to do the job. All hosts in a group constantly report their
location to the leader, and the leader keeps the map (II) of
the group, checking constantly to see if the group members
are still within safe distance of each other and whether new
hosts are present in the region. The map of a group records
the spatial location of group members.

Group Discovery Protocol

For a mobile host to join a group, or for a group to merge
with another group, it must be able to find out which other
groups are present in its vicinity. The discovery protocol car-
ries out this function and serves as a supporting layer for the
group membership maintenance protocol, i.e., the reconfig-
uration protocol. In our discovery protocol, hosts in each
group use safe distance as a criteria for finding out who is
close encugh to be a merge candidate and they report any
positive discoveries to their respective leader. Without loss
of generality, we assume that every mobile host has a unique
identifier (id), belongs to precisely one group and keeps a
group member list (7). As mentioned in the previous section,
every group has an assigned leader. We choose the identifier
(id) of the leader to serve as the identifier for its group {gid)
as well. By definition, an isolated host is a group containing
itself as a single member. Our discovery mechanism requires
every host to periodically broadcast a hello message which
contains its location information (zy) and its group identi-
fier (gid). When two groups move close, several members
of one group may receive hello messages from members of
the other group. When a host u receives a hello message, it
checks the sender’s group identifier and location, If « finds
the sender, say v, to be a member of another group located
within safe distance, « passes on the information to its group
leader that, in turn, will use it for merge related operations.
As all group members are involved in discovery, it is pos-
sible for the group leader to receive multiple copies of the
same notification regarding the appearance of one host. Du-
plicates are discarded.

There are several things one can do to reduce discovery costs.
First, each host may attach discovery information to its pe-
riodic location updates to the leader rather than send them
separately. This pushes the discovery information towards
the leader almost for free, since the location and new neigh-
bor information represent only a few bytes that fit easily in
a single packet. The cost associated with this piggy-backing
method is the need for each host to keep a short-term mem-
ory (£) of newly discovered neighbors. Second, by utiliz-
ing neighborhood information already available at the MAC
layer, a host may send neighbor greetings only when the
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Figure 2: Merging Process

MAC layer discovers a new neighbor. This reduces the dis-
covery cost significantly in the case when the network topol-
ogy changes infrequently. The drawback for this method is
its dependence on the implementation of the MAC layer on
the specific host supporting the application. We chose not to
do so in our prototype. The group discovery protacol allows
the group leader to maintain a list of groups which are close
enough to be considered for merging. We present the group
merging protocol in the next section.

Reconfiguration Protocol

The reconfiguration protocol is the key layer in our group
membership service. It secks to merge groups in contact and
to split groups that can no longer stay together. From the in-
formation collected in group discovery, a leader may find that
there are one or more potential candidate groups in its vicin-
ity suitable f or merging. If so, it will initiate merging nego-
tiations with the set (@) of candidates. Once an agreement is
reached regarding who is to participate and who is responsi-
ble for coordinating the merger, all affected hosts receive a
formal notification about the configuration change from the
coordinator. After that, in order to prevent messages sent in
one configuration from being processed in a different config-
uration, all participants must perform a barrier synchroniza-
tion. One way of accomplishing this is to flush the messages
in transit before doing anything in the new configuaration.
In addition, the participants need to delay the processing of
messages arriving from “future” configurations until the sy-
chronization is completed. Message delaying can be accom-
plished by tagging each message with a configuration se-
guence number (7). Flushing requires the participating hosts
to send extra messages whose arrivals guarantee that no more
messages originating from a prior configuration are in tran-
sit. The result is an atomic configuration change. Another

way of creating the synchronization boundary is by using a
time-out delay, if message delivery has a time bound. Parti-
tioning works in the same way but without any negotiation
because it involves only one group at a time. Next, we use
several simple examples to illustrate the merging and parti-
tion processes.

An example of merging

Figure 2 depicts the merging process between two groups,
G1 and G2. G1 contains hosts @ and b, the Iatter being the
leader. G2 contains hosts 1, v, w, and has u as its leader. As-
sume u finds G1 to be in its vicinity through the discovery
data sent in by v, and G1 is safe for merging. Next, w initi-
ates the merger by sending a merge-request message to b, the
leader of G1. I willing to participate in the merger, b sends
back an acknowledgment (ACK) along with its group mem-
bership list and its configuration sequence number; other-
wise, it sends back a disagreement message (NACK), which
forces u to abort the merger with G1. If « gets back an ACK,
as in Figure 2, it generates a new configuration number by
adding one to the larger of the current configuration numbers
of the two groups. Next, it sends a merge-commit to b and
a merge-order to its own members. Both the merge-commit
and merge-order messages contain the new group member-
ship list, the new configuration number, and the new leader
identity. Upon receiving the merge-commit message, b sends
amerge-orderto its own members. A host enters the flushing
phase after it gets a merge-order message. It sends a flush-
message to all other members of its original group and stops
sending any other messages until it has received all the ex-
pected flush-message(s) from its group members in the old
configuration. The dashed arrows in Figure 2 and 3 repre-
sent flush messages. After receiving all the expected flush-
message(s), a host enters the new configuration and all new
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Figure 4: The Partition Process

messages it sends will have the new configuration number in
their headers.! Clearly, hosts may enter the new configura-
tion at different times. It is possible for a host that is still
in the old configuration to receive a message from a host
that has already reached the new configuration, as shown in
Figure 3. In such cases, the recipient must postpone the pro-
cessing of this “future” message until the new configuration
is established, thus pretending that the message is “received”

White the fiush mechanism is a straightforward way to achieve the de-
sired synchronization, it is expensive for large groups. In such cases we can
repiace it with a time-out mechanism, i.e., every host stops sending mes-
sages for the duration of cne round trip in the network.

in the new configuration. Otherwise, the consistency require-
ment that messages must be sent and received in the same
view would be violated. Obviously, implementation of this
requires a host to check each received message for the con-
figuration in which it was sent before it is processed.

It is possible for » and b to initiate the merging at the same
time. In this case, 4 tie-breaking mechanism decides who is
to coordinate the merger. We use the 4d as the tie-breaker.
The host with the lower ¢d aborts its merger request when
the collision happens. Additional complications may ap-
pear when more than two groups are involved. For example,
u might have entered a merging process with other groups



when it receives b’s merge-request message, or it may no
longer be a leader because of a merge with other groups or
due to a partition process. In all such cases, u replies with a
NACK.

An example of partitioning

Figure 4 illustrates the partition process. Assume that two
subgroups of the group G, 21 and Z2, are moving away from
each other. By constantly checking the locations of its group
members, the leader u is able to identify if its group is in
a safe spatial configuration, given predefined distance-based
safety criteria. Once the leader « deems the configuration to
be no longer safe, it immediately issues & split-order mes-
sage to all the group members. A split-order contains three
pieces of information: (1) the new leader (gid) for the re-
cipient, (2) the new group membership list for the recipient,
and (3) the new configuration number, which is the old con-
figuration number incremented by one. The new leader for
each subgroup is determined arbitrarily by u, the old leader.
Upon receiving a split-order message, a host enters a mes-
sage flushing phase, similar to the third phase in the merge
process. Each host waits until it is sure that all messages sent
to it by group members in the previous configuration are re-
ceived, either by receiving all the expected flush messages or
by employing a time-out delay. Each newly assigned leader
assumes its leadership role after the synchronization.

The group leader must check its group configuration fre-
quently enough in order to discover any unsafe situation in
a timely fashion. As we will see in the analysis section, the
threshold for safe distance does depend on the checking fre-
quency, in addition to factors discussed earlier. The example
above shows a process in which a group partitions itself into
two other groups. In general, a leader might find it necessary
to split its group into more than two subgroups in order to
preserve the safe distance property. The partition process is
the same. Next we explain how the leader determines when
the group configuration is not safe and how to split it into
safe sub groups.

The split algorithm

To determine if its group configuration is safe, the leader
maintains a logical connectivity graph. In the logical con-
nectivity graph, two nodes have an edge of weight one be-
tween them if the physical distance between them is less than
a partition safe distance (d,) and no edge between them oth-
erwise. Whenever a new location is reported, the graph is
updated by recomputing all the edges to the reporting node.
This takes O(iV) steps per update, where IV is the number of
nodes in the group. Given the logical connectivity graph, the
depth first search (DES) algorithm can be used by the leader
to determine connected clusters in O{NV) steps. So the total
time complexity for our splitting algorithm is linear.

Figure 5 shows the support functions used in the protocol
presentation that follows. A brief description of each func-
tion is included. Figure 6 summarizes the state variables a

node neels to keep for the execution of the protocol.

The protocol is presented in Figure 7. The table lists each
action taken by host u, the action’s precondition, and the ac-
tion’s effect, given the satisfaction of the precondition. There
are two types of actions in the system. The first column of
the figure shows actions that are triggered by a change in the
local state at host «. The second column lists actions that are
triggered by the arrival of the message at host %. Each of the
actions in the latter group have the form GET MESSAGE. For
each of these, there is a corresponding SEND MESSAGE. For
example, GET NEIGHBORHELLO at host w is coupled with a
SEND NEIGHBORHELLO at another host. The figure shows
only the protocol executed at a single host, u, in the system.
Each host in the network has its own instance of the actions
shown.

Our implementation of the group membership maintenance
protocol is discussed in the next section.

4 IMPLEMENTATION

The implementation of the protocol is written entirely in
Java. The package’s main component is the Gr oupMenber
object, which contains several threads that control commu-
nication between the hosts in the network. Each different
type of communication is handled by a different Java thread.
These threads coordinate with each other through their owner
object, the GroupMember. As required by the algorithm,
this communication includes beaconing (using a multicast) a
hello message, listening for other hosts’ hello messages, for-
warding discovery information to the group leader, respond-
ing to merging and partitioning instructions, and updating the
group leader with current location information. Group lead-
ers carry the additional responsibilities of listening to their
group members, communicating with other nearby group
leaders, and periodically calculating the group’s safety.

The group membership package presupposes ad hoc routing

State Variables

id mnode identifier

gid :group identifier

Y :node location constantly updated by

some external mechanism
T :group transaction sequence number
T :group mermber list
£ :the set of newly discovered leaders
It :group map containing all members’ [ocations
(empty except for the leader)
S} :the set of merging contacts, all of which
are leaders of other groups
{empty except for the leader)

Témer  :monitors the periodic Jocation update

Figure 6: State Variables



Support Functions

update(£, gid);
update(@, £,
update(Il, v, zy');
MergeSafe(I1,IT, P,

ClearQldChannels();
GeneratePartitions(I1, Py,

add gid to the list of newly discovered leaders.

update merge contact list & with newly discovered leaders from a member’s report.
update group map IT with group member v’s new location, zy’.

verify that the merger of II with II' is safe, according to policy P.

P includes safe distance information and the merging status of this group member.
For example, if a host is in the process of merging, it is not safe to start a merger.
clear all group communication channels.

generate partitions for II, subject to policy P.

This function generates a set of triples of the form (I ,ew, Tnew, Jidnew)-

Figure 5: Support Functions

with multicast support to be running on every host partici-
pating in the network. Therefore many of the messages dis-
cussed above are routed through other hosts in the network.
As such, the leader of a group need not be directly connected
to every member of the group.

The interface to the group membership protocol builds on
the EventObject and Eventldistener classes in the
Java language. An application running on a host that uses
the group membership package to participate in groups in
the network simply creates a GroupMember object, It then
registers as a listener to GroupChangedEvents generated
by its GroupMember object. When a new group config-
uration arises, the group membership package generates a
GroupChangedEvent that is passed to all registered lis-
teners. The application can take further actions, based on the
implementation of this listener.

The GroupMember interface allows the user to specify the
parameters needed for safe distance calculation. For exam-
ple, the creator of the GroupMember can specify the host’s
maximum speed and its communication range. In addition
to parameters for safe distance, the GroupMenbex creator
also specifies the frequency of the hello beacon and the fre-
quency of the group update messages to be sent to the leader.

While the implementation of the algorithm was a straightfor-
ward exercise in the use of Java threads and socket program-
ming, some differences worth noting cause the implemen-
tation to vary from the examples presented in the previous
sections. As presented, the protocol assumes that application
level messages and the group membership protocol messages
are sent on the same channel. As indicated in the discussion
on merging and partitioning, ensuring that messages are re-
ceived in a FIFO order and that application messages are sent
and received in the same group configuration requires some
additional work. The example presented in the previous sec-
tion used flush messages and configuration numbers to ac-
complish this. The implementation, however, attempts to
separate as much as possible the group discovery and main-
tepance from the application level and therefore leaves the
flush messages and configuration numbers presented as part

of the example protocol to the particular application. This
separation allows each application to choose its own mecha-
nism for ensuring atomicity. Applications with weak consis-
tency requirements may use the group membership package
without any atomicity guarantees.

Another concern addressed in the design was the clean sepa-
ration between the group membership package and the appli-
cation. By building on a model already integral to the Java
language, the simple interface requires only that the appli-
cation programmer understand the Java event model to snc-
cessfully use the package. The simple interface composed
of a single type of listener and a single type of event pro-
vides the desired ease of understanding. Figure 8 shows
the public interface of the GroupMembex object. The con-
structor accepts parameters for the safe distance caiculation.
With a handle to the GroupMenber object, the programmer
can start, stop, pause, and resume the GroupMember ob-
Jject. These methods affect the running of the threads that the
GroupMember object uses for communication. The pro-
grammer ¢an also add and remove a GroupChangedLis-
tener. The two final methods are not used often by the
application programmer as they are used by other packages
necessary for the group membership protocol to function
properly. The first method allows a location generating pack-
age (e.g. a GPS mounitor) to update the physical location of
the host. The second method allows the GroupMember to
respond to beacon events that are generated by a separate
beaconing package. These beacons are the multicasted hello
messages discussed previously., Figure 9 shows an example
usage of the group membership package.

As indicated in the previous sections, this protocol was de-
veloped because the LIME middleware requires the ability
to transparently reconstruct global virtual data structures to
reflect the physical mobility inherent in ad hoc networks.
The LIME middleware as released requires a mobile agent
or host to explicitly announce its intention to engage or dis-
engage from a group. The integration of this protocol with
the LIME middleware transforms the processes of engage-
ment and disengagement into transparent reconciliations of
L.IME information when agents or hosts move in the network



Actions triggered by changes in the local state

NEIGHBORGREETINGS(u)
Precondition:
2 new neighbor, v, is detected;
Effect:
SEND NEIGHBORHELLO(, gid) to v;

LOCATIONUPDATE(u)
Precondition:
Timer expires or £ changes;
Effect:
reset Timer;
SEND INFORMLEADER(u,zy,£) o gid;

MERGE(w)
Precondition:
w is the leader;
O contains merging contacts;
Effect:
add v»’s members to a new map (lnew = 1)
add w’s members to a new list (frnew = TH
foreachvin @
SEND MERGINGREQUEST(u,II) to v
if GET MERGINGACK (v, 7y, I1y)
update group map ({new = Mpew + [Tu);
update group member list (Tnew = Taew U {1, });
store Ty
if GET MERGINGNACK (v}
v will not participate in merger;
remove v from ©;
if © is not empty
set 7 to the max of all 7, received;
foreach v in ©
SEND MCOMMIT(Tnew, §2d, Ty, Taew) [0 ¥}
for each win
SEND MERGE(#new, git, Trew) 10 w;
emply ©;
update group member list (7 = Apewk
update group map @I = Mpew);

PARTITION(u)
Precondition:
u is the leader;
partition predicted based on location updates;
Effect:
T = GeneratePartitions(Il, P);
for each (Inew, Mrew, §idnew) in ¥
for each w in Tnew
SEND PARTITION{I 0w, Fnew, §inew, T) t0 1w}
empty T,

Actions triggered by the arrival of a message

GET NEIGHBORHELLO(w, gid)
Precondition:
trie;
Effect:
update(E, gid);

GET INFORMLEADER{v, 2y, £)
Precondition:
1 is the leader;
Effect:
update(©, £');
update(TL, v, xy');

GET MERGINGREQUEST(w,IF)
Precondition:
true;
Effect:
it MergeSafe(IL I, P)
SEND MERGINGACK (u, 7, I} to v
empty ©;
update safety condition P;
clse
SEND MERGINGNACK(n) to w;

GET MCOMMIT(Tnetw, Jidnenr, Tuy Tnew )
Precondition:
4 is the leader;
transaction numbers match (v == 7.);
Effect:
ClearOQldChannels();
for eachw in
SEND MERGE(Tnew, 9idnew, Thew) 10 w;
update group id {gid = gid');
update transaction sequence (v = Tnew);
update group member list (7 = new);
empty IT;

GET MERGE(Tnew, §ilnew, Tnew)
Precondition:
true
Effect:
ClearOldChannels();
update group id (gid = gidnew);
update transaction sequeRce {7 = Tuew):
update group member list (7 = Tnew):

GET PARTITION(IL pew, Mrew, §dnew, Thew)
Precondition:
true;
Effect:
ClearOldChannels();
update group id (gid = gidpew);
update transaction sequence {T = Tpew);
update group list (7 = Tnew);
if u == gid
update group map (IF = Huew);

Figure 7: Protocol specification for host u




public class GroupMember implements GroupBeaconListener {
public GroupMember (InetAddress leaderAdd, Location loc,

int period,

int range,
int networkDelay);

int updatePeriod,

public
public
public
public
public
public
pubiic
public

void starti{}:
void stopl):

void pausel);
void resume();

int maxSpeed,

synchronized void addGroupChangedListener (GroupChangedListener gel);
synchronized void removeGroupChangedListener{GroupChangedListener gol);
void setbocation{Location newLocation);

void newGroupBeacon{GroupBeaconEvent gbe);

Figure 8: The Public Interface of the Group Membership Package

// The test class monitors the changes to a particular group member’s group
// An instance of this class runs on each participating host
public class Test implements GreoupChangedListener {

// keep & handle to the group member object

private GroupMember g;

// integer count of the number of changes that have occurred

private int changes = 0;
public Test(GroupMember g) {
this.g = g;

// make this object a listener for events generated by the package
g.addGroupChangedLlistener (this) ;

// this method is required by the GroupChangediistener interface
// it is called when a new GroupChangedEvent occurs
public void groupChanged{GroupChangedEvent gce) {

// log the receipt of the change

changes++;
System.out.println(* ‘Change:

** + changes) ;

public static void main(String{] args) {
// create a new GroupMember object for this host

GroupMember g =

new GroupMenber (TnetAddress.getLocalHost(),
new Location(0,0)},

1666, 3, 0, 100, 0);

// create an instance of the Test class to monitor the GroupMember

Test t = new Test{g};
// start the GroupMember
g.start{);

Figure 9: An Example Use of the Group Membembersip Package

thereby changing their status with respect to the protocol’s
safety requirements.

Because the group membership package is completely inde-
pendent of LIME or any other application that may use it,
changes to the package do not affect LIME, as long as the
changes to the package do not affect its interface. This al-
lows for future ‘pluggable’ versions of the group member-
ship package to replace the current version. One can envi-
sion an implementation in which the safe distance is based
on something more complex than physical location.

5 SAFEDISTANCE ANALYSIS
The key feature of our algorithm is the use of location infor-
mation and safe distance in the group membership manage-
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ment. The leader of a group checks frequently the members’
locations to make sure that only those that are guaranteed to
stay connected with the group for at least £ +¢' more units of
time remain in the group, where ¢ is the time specified by the
application layer and ¢’ is the time bound for configuration
changes. The combination of ¢ and #' determines the safe
distance for a specific operation, which could be the merg-
ing operation, the partitioning operation, or any other group
operations specified by the application. Let’s assume that £4
is the maximum delay between the time a control message
is issued and the time it is received and processed, i.e., the
sum of the maximum network delay and the maximum pro-
cess queuning delays both at the sender and the receiver. For
convenience, we refer to ¢4 as the network delay. In the case



of splitting, the maximum time it takes for a group to be par-
titioned successfully is twice the network delay.

If the leader continuously monitors the group configuration
and all member locations are up to date, then mobility-
induced unznnounced disconnection can be caught in ad-
vance and dealt with successfully by requiring t' > 2  #4.
Yet, the leader’s information about members’ locations is al-
ways a little bit cut of date. If members sample and report
their locations every t,, units of time, the location informa-
tion the leader has about 2 member could be outdated by
time #, + ty. Taking this into consideration, the reserved
time T must be greater than &, + £ + 2 *#4 = t, + Stu.
Whether or not we can use d, = R — 2V, .. (¢, + 3t4) as
the safe distance for partitioning depends on the requirement
for merging. Because we do not aliow a merging process to
be aborted once committed, the computation of safe distance
for partitioning also needs to account for the time associated
with the merging process. Consider the following scenario:
right before a commit in a merging process, the group con-
figuration is safe using safe distance d,.; right after the com-
mit, a leader might discover that its group is no longer safe,
and a partion process needs to be carried out immediately.
However, the merging process hasn’t finished. This is not
acceptable. Taking into account that the two-phase merging
process needs at most an execution time of 4t (4 messages),
and the configuration needs to be safe right after merging, the
total reserved time for both merging and partitioning needs
to be £, 4 3ty + dtq = £, + Tig. In other words, the safe
distance for both merging and partitioning is

de =R — 2Vinaz (tu + Ttd) {2)

Using the same distance for merging and partitioning intro-
duces the problem of ‘shuttle nodes’, i.e., if a node is moving
in and out the safe boundary, merges and partitions accur re-
peatedly. To avoid this, one can further tighten the safe dis-
tance for merging, ereating a ‘buffer zone’, and thus reducing
the probability of shuttling.

Our algorithm also requires Vo to be no greater than Vg,
i.e., the maximum admissible speed for the specific wireless
network system the mobile hosts are using. Most wireless
network systems (e.g. DECT, GSM, PCS, ETACS) have a
maximum admissible speed. When a mobile node is mov-
ing too fast, it simply becomes invisible to the network. For
GSM and PCS, V.4 is about 50m/s; for DECT microcel-
lular system, Vi, is about 11m/s. Without the condition
for Vinee < Vadm, 2 speed change from V < Voum to
V' > Vaam creates an unannounced disconnection. Speed
monitoring would be needed to prevent this kind of unan-
nounced disconnection from happening.

Figure 10 illustrates the relation between the safe distance
r and the maximum admissible network delay t, with rea-
sonable values of R = 150m, V. = 10m/s and location
reporting frequency of 1 Hz (f,, = 1s). It shows that as the
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delay bound increases, the safe distance decreases.

150 u v T T T T 1
A= 10m
=1
V.= 1omis
100 -
£
8
5
3
o
2
@
sof- _
o . . . . . : L : b
0 81 0z 03 04 05 08 07 08 09 1

Maxismum notveork laytoncy 1, {soc)

Figure 10: Safe distance vs. network delay

Figure 11 shows the relation between the safe distance
threshold, the upper bound on speed, and the network de-
lay bound. The region above the top curve corresponds to
ds < 0. In this parameter space we cannot provide any con-
sistency guarantees for a group containing more than one
member. On the other hand, if a mobile system’s network
delay bound and maximum speed bound fall into the region
below the (d; = 90m) curve, we could provide the group
view consistency guarantee by using 90 as maximum safe
distance.
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Figure 11: Relation between safe distance, speed bound and
delay bound



The correctness of our algorithm relies on the assumption
that the network has a delay bound. At this moment, we are
not aware of any ad hoc routing protocals which can pro-
vide a good delay bound. Yet, it is conceivable that a routing
protocel with good delay bound for prioritized group con-
trol messages is possible by restricting group size and using
location information.

6 DISCUSSION

Maintaining a consistent view of the global state in a dis-
tributed network is difficult in general and essentially impos-
sible in the presence of unannounced disconnections. In ad
hoc mobile systems, mobility-induced unannounced discon-
nection occurs frequently, as part of the normal operation of
the network. In this paper, we have presented an algorithm
that maintains a consistent group membership view in an ad
hoc network. The novel feature of this algorithm is its ability
to create the illusion of announced disconnection. By using
location information about the mobile hosts in the region,
the membership service is able to guarantee to the applica-
tion layer results that are not affected by mobility-induced
unanunounced disconnection, in the absence of node failures.

Group membership services were traditionally studied [8]
for distributed applications running on top of a reliable, usu-
ally fixed, wire-line network in which link failures and net-
work partitions are rare. The Transis project [6, 20] has dealt
with membership services and group communication in envi-
ronments in which the network itself may be partitioned due
to node and link failures, and nodes may operate for extended
periods of time in disconnected mode. The idea of using lo-
cation information in ad hoc networks is not entirely new.
Ko and Vaidya [I3], for instance, used location information
to improve the efficiency of ad hoc routing. Prakash and Bal-
doni [16] used location information in the determination of
group membership when the network stays connected.

Y
yd/

(a) (b)

Figure 12: Contribution of velocity information

In addition to being applicable to ad hoc networks, our ba-
sic strategy is very general. At present, our algorithm makes
the assumption that all mobile nodes in the system have a
known maximum speed. Unbounded speed is another pos-
sible source of unannounced disconnection. Low speed is a
requirement for most wireless networks. In systems involv-
ing mobile nodes that can control their own velocity, e.g.,
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cars and planes, a safe relative velocity threshold can be used
in the decision of merging and splitting. Of course, in such
cases we would have to assume a maximum acceleration for
the mobile nodes in order to make disconnection predictions
possible.

The quality of our membership service can be improved
when velocity information about each mobile host is avail-
able. For example, let’s consider cases (a) and (b) of Figure
12. In case (a), hosts & and y are moving away from each
other, while in (b), they are moving in the same direction.
Clearly, 2 and y are less likely to disconnect in the latter
case than in the former. Translating this into the language of
safe distance, the maximum safe distance between x and y is
greater in case (b) than in case (a). In the current algorithm,
as we assume the velocity information is not available, we
cannot differentiate cases (a) and (b}, so we have to consider
the worst case movement scenario for each pair of hosts, i.e.,
they may be moving away from each other at the maximum
relative speed at any point of time. When velocity informa-
tion is available, as in Figure 12, the safe distance threshold
between hosts - and y can change dynamically according to
the formuia

R_lﬁw_ﬁyl't“lamam'tzl 3)
where @pqq 1s the maximum acceleration for all hosts and ¢
is the time needed for a group operation already in progress
to finish. Simple changes to our algorithm allow us to use the
velocity information: (1) each host includes its velocity in-
formation in hello messages and location-update messages,
and (2} the safe distance is computed using Equation (3) with
t = ty, + Ttq. The rest of the algorithm remains unchanged.

Although only safe physical distance is used in our prota-
col to avoid unannounced disconnection, other physical at-
tributes can also be used to determine safety. For instance, if
link failure is predictable through monitoring the bandwidth
change between two nodes, a similar group membership pro-
tocol can be built by exploiting a similar concept of ‘safe
bandwidth’,

7 CONCLUSION

The motivation for this work rests with our desire to provide
data consistency in applications that execute over ad hoc net-
works. The idea is to allow software on each host to view
and modify data that is distributed across mobile hosts as if
it were accessible through a single shared global virtual data
structure while the hosts are within proximity of each other.
The first step in this direction was to develop the ability to
maintain a consistent view of the list of participants in the
application, i.e., a group. Despite the presence of disconnec-
tions, we were able to accomplish this by drawing a sharp
distinction between physical and logical connectivity, ie.,
even when connectivity is actually available, group member-
ship is controlled by the kind of guarantees the application
demands. This approach represents a new direction in net-
working, one that factors into protocols information about



mobility and space. This work also provides a practical so-
lution to masking mobitity induced unannounced disconnec-
tions in ad hoc mobile systems.
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