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Bone homeostasis is essential for health and is altered in many pathological conditions. A 

balance in the activity of osteoblasts (bone-building cells) and osteoclasts (bone-

resorbing cells) determines the state of bone metabolism, and a tip in this balance toward 

either cell type is detrimental to health. In clinical settings, the most common bone 

diseases favor increased osteoclast activity and include osteoporosis and rheumatoid 

arthritis. Heightened osteoclast differentiation and activation in these conditions causes 

bone loss which results in increased fracture risk, bone pain, and deformity. 

Understanding the mechanisms by which osteoclasts develop will elucidate important 

targets for therapy in these conditions. Osteoclasts differentiate from monocyte 

precursors when stimulated by the Ligand for Receptor Activator of NF-κB (RANKL). 

Recent research has identified many transcription factors that are activated by RANKL 
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and are important for osteoclast differentiation. One such family of transcription factors 

is NF-κB. We hypothesized that activators of NF-κB are necessary for RANKL-induced 

osteoclast differentiation. The Inhibitory kappaB Kinase (IKK) Complex, which consists 

of two catalytically active subunits, IKKα and IKKβ, and one regulatory subunit, NEMO, 

is the main stimulator of NF-κB downstream of RANK in osteoclast progenitors. Our lab 

and others show that this activation is critical for stimulation of NF-κB and 

osteoclastogenesis. We sought to further characterize the role of the IKK complex in 

osteoclastogenesis by conditionally deleting IKKβ from osteoclast precursors. Using this 

mouse model, we demonstrated that IKKβ is critical for differentiation of osteoclasts in 

vivo and in vitro, and that IKKβ supports osteoclastogenesis at the levels of 

differentiation and survival.   Our model provided a useful tool to study the structural 

components of IKKβ which are important for its function in osteoclast differentiation. 

Retroviral rescue experiments in which IKKβ KO monocytes were reconstituted with 

mutant forms of IKKβ revealed that activation loop serines are critical for IKKβ to 

support osteoclast differentiation. These experiments led to the discovery that constitutive 

activation of IKKβ results in spontaneous, RANK-independent osteoclast differentiation 

in vitro and osteolysis in vivo. Our work demonstrates that IKKβ is central to osteoclast 

differentiation and is therefore an important target in therapy for osteoclast-mediated 

disease.      
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RATIONALE AND OBJECTIVE OF THESIS 

 

Arthritis is a medical condition defined as inflammation of the joints and surrounding 

connective tissue. Currently, it is estimated that over 46 million Americans suffer from 

arthritis, and in 2003, total direct and indirect costs attributable to the condition were 

approximately $128 billion 1. Arthritis and its medical complications represent the 

leading cause of disability in the United States, and it has been projected that by the year 

2020, more than 60 million Americans will suffer from the condition 2. For this reason, it 

has been a priority of basic science research to understand the mechanisms underlying the 

onset and progression of arthritis and its complications in order to direct and guide 

implementation of preventative and therapeutic strategies. 

 

The most devastating complication of arthritis is the destruction of bone associated with 

inflammation of joints (osteolysis) which results in pain, deformity, and immobility.  

Osteolysis in arthritis is triggered by inflammatory mediators and accomplished by 

osteoclasts, cells that resorb bone 3. The discovery that osteoclasts are required for bone 

destruction associated with inflammatory conditions 4,5  has led to an intense effort to 

characterize the cell and the mechanisms involved in its differentiation and activity. 

Indeed, drugs targeting the osteoclast have been demonstrated to improve arthritis-

associated osteolysis and are now being considered in the therapy for osteolytic 

conditions 6. 
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The objective of this thesis is to investigate the molecular mechanisms utilized by the 

osteoclast focusing on the NF-κB pathway (see Background) as a means to better 

understand the process of osteoclast differentiation and to offer insight that will guide 

therapy of pathological conditions in which the osteoclast is the culprit.  

 

 

BACKGROUND 

 

 

Arthritis and the Osteoclast 

Arthritis is the leading cause of disability in the United States. Bone-loss associated with 

certain types of arthritis is a well-recognized relationship 7,8 and contributes greatly to the 

joint pain, deformation, and immobility which often accompanies arthritis. The discovery 

of bone-resorbing osteoclasts in arthritic joint tissue led to the hypothesis that osteoclasts 

are the culprits in arthritic osteolysis 9. Since this discovery, genetic studies in mice have 

confirmed that inflammatory cytokines present in inflamed joint tissue contribute to the 

hyperactivation of osteoclasts in this setting 5,10,11, and therapy targeting the osteoclast in 

patients with rheumatoid arthritis reduces the osteolysis associated with their condition 6. 

It is therefore critical to gain a deeper understanding of the osteoclast and the molecular 

mechanisms it utilizes to differentiate and become active in order to more effectively 

treat arthritis-associated osteolysis. 
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Osteoclast Biology 

The osteoclast is a multinucleated bone-resorbing cell which differentiates from 

monocyte precursors under the control of stimulation by two cytokines, Macrophage 

Colony Stimulating Factor (M-CSF) 12 and Ligand for the Receptor Activator of NF-κB 

(RANKL) 13. Mice devoid of either cytokine suffer from severe osteopetrosis owing to 

failure of osteoclast differentiation, which has become a well-established phenotype in 

animals that possess genetic defects in osteoclast differentiation and activity 14. The 

identification of genes whose dysfunction results in osteopetrosis has contributed 

tremendously to the understanding of the osteoclast.  

 

The mature osteoclast forms through stimulation of monocytes with M-CSF and RANKL 

which triggers a differentiation program leading to fusion of precursors, attachment to 

bone matrix, release of protons and proteases, and degradation of bone material 14. 

Inhibition of each of these parameters involved in formation and function of osteoclasts 

results in impairment of osteoclast activity. For example, mice devoid of the d2 subunit 

of the v0 v-ATPase 15 or DC-STAMP 16, which are critical in osteoclast precursor fusion 

display impaired osteoclast activity and increased bone mass. Deficiency in β3-Integrin 

results in an osteoclast which is unable to attach effectively to bone, and therefore is 

ineffective in resorbing bone substrate 17. Further, mice with a deficiency in Cathepsin K 

(Cath K), a protease released by active osteoclasts demonstrate high bone mass 18. 

Moreover, failure to acidify secretory vesicles in osteoclasts results in inefficient bone 

resorption 19 (Figure 1). Identification of additional proteins which contribute to the 
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functions of osteoclasts will likely yield a more complete understanding of osteoclast 

biology.    

 

Differentiation of the mature osteoclast from monocyte precursors involves integration of 

complex signaling cascades activated by RANKL, through TRAF6 20,21, including ERK 

and p38 MAP Kinases 22, PI3K 23, Akt 24, c-Src 25, PKC 26, and JNK 27 (Figure 2). 

Cooperation of these signals leads to a hierarchy of transcriptional regulation that results 

in osteoclast differentiation from precursors. Research has identified several transcription 

factors, such as NF-κB 28, AP-1 27,29, and NFATc1 30 whose deficiency results in 

impaired differentiation of osteoclasts from monocyte progenitors. It is now believed that 

the interplay between these transcription factors is critical for osteoclast differentiation 31.  

 

The most important transcription factor for the differentiation of the osteoclast is NF-κB. 

NF-κB is activated by RANKL, and several murine genetic models have demonstrated 

that NF-κB signaling defects result in impaired differentiation 28,32-39. Furthermore, NF-

κB appears to be the most upstream transcriptional regulator involved in osteoclast 

differentiation 31. Therefore, understanding NF-κB signaling in the context of osteoclast 

differentiation will likely contribute to new therapeutic approaches in the treatment of 

osteoclast mediated disease. 
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NF-κB Signaling 

NF-κB is a transcription factor activated primarily through receptor stimulation by 

extracellular ligands. NF-κB signaling is divided for convenience into two separate 

pathways, classical (or canonical) and non-canonical (alternative) 40 which have both 

recently been shown to play a role in osteoclast differentiation 32,33. In the classical 

pathway, signals such as RANKL, TNF-α, IL-1, and LPS result in activation of the 

Inhibitory κB Kinase (IKK) complex, the catalytic complex which is responsible for 

activation of NF-κB. The classical IKK complex consists of two kinases, IKKα and 

IKKβ, and a regulatory subunit, NEMO (or IKKγ). Once activated, IKK phosphorylates 

IκBα 41, which normally sequesters the NF-κB heterodimers p50/p65 in the cytosol in an 

inactive state. Phosphorylation of IκBα results in its ubiquitination and proteasomal 

degradation 42, which releases p50/p65(RelA) NF-κB heterodimers in the nucleus to 

activate gene transcription (Figure 3). In the alternative NF-κB pathway 43, extracellular 

signals such as RANKL, CD40L, and Lymphotoxin β stimulate activation of IKKα 

homodimers which phosphorylate the C-terminus of NF-κB2(p100) which serves an IκB 

function for RelB, holding it inactive in the cytosol. This phosphorylation results in 

proteasomal processing of p100 to p52, which partners with RelB to enter the nucleus 

and activate gene transcription as the alternative NF-κB pathway heterodimer (Figure 4). 

 

Efforts to define the relative contribution of each of these pathways to osteoclastogenesis 

have led to disparate conclusions. For example, mice devoid of active IKKα and 

alternative NF-κB activation by RANKL demonstrate no apparent bone phenotype and 
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are susceptible to inflammatory osteolysis 37. However, mice lacking RelB, the 

transactivating NF-κB member of the alternative pathway, show impaired osteoclast 

differentiation in vitro, and are resistant to pathological bone destruction induced by 

tumor metastasis and TNF injection 32. The reason for this discrepancy most likely rests 

in the individual systems used to challenge the osteoclast. Nevertheless, it is well 

accepted that the classical NF-κB pathway is indispensable for osteoclast differentiation, 

since deficiency of IKKβ or RelA results in impaired osteoclastogenesis and 

inflammatory osteolysis 33,37,38. Therefore investigation of classical NF-κB signaling 

downstream of RANKL will yield valuable insight into the basic mechanisms utilized by 

differentiating osteoclasts.     

 

The Kinase IKKβ 

IKKβ is the kinase responsible for activation of the classical NF-κB signaling pathway 

43,44. It is a 756-amino acid cytosolic serine kinase with three general domains, a kinase 

domain important for catalytic activity, a leucine zipper domain which is important for 

protein-protein interactions, and a helix-loop-helix domain which regulates the 

molecule’s kinase activity 45. Activation of IKKβ requires its association with NEMO 

through two Tryptophan residues (739 and 741) located in a caryoxyl terminal domain 

termed the NEMO-binding Domain (NBD) 46,47. Phosphorylation of two activation loop 

Serines (177 and 181) on IKKβ by an unknown kinase results in full activation of IKKβ 

48 which phosphorylates IκBα leading to NF-κB activation. Pharmacologic inhibition of 

IKKβ association with NEMO through the use of decoy peptides blocks activation of NF-
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κB, inhibits osteoclastogenesis, and prevents arthritis and associated bone loss in mice 

35,36. Phosphomimmetic mutation of IKKβ by mutating Serines 177 and 181 to Glutamic 

Acid results in constitutive activation, and mutation of Lysine 44 of IKKβ abrogates 

kinase activity 49 (Figure 5). 

 

IKKβ in the Osteoclast 

In order to determine the precise role of IKKβ in osteoclastogenesis, we created a mouse 

with a conditional deletion of IKKβ in osteoclast precursors by breeding mice possessing 

a loxP-flanked IKKβ gene 50 and mice transgenically expressing Cre recombinase under 

the control of the CD11b promoter 51. Conditional IKKβ knockout mice generated in this 

manner displayed many phenotypic anomalies including aberrant bone metabolism as a 

result of defective osteoclastogenesis (Figure 6). The primary goal of this thesis was to 

characterize the osteoclast phenotype of these mice, to use the model to study the 

structure function relationship of IKKβ in the differentiating osteoclast, and to draw 

conclusions regarding the importance of IKKβ in arthritic osteolysis. 
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FIGURE LEGENDS 

 

Figure 1: Schematic of Osteoclast Differentiation 

Osteoclasts differentiate from monocyte precursors when stimulated by M-CSF and 

RANKL, two cytokines secreted by osteoblast cells in normal bone metabolism. 

Stimulation of the receptors, c-fms and RANK, by M-CSF and RANKL, respectively, 

triggers the activation of the transcription factors, NF-κB, AP-1, and NFATc1 in the 

differentiating pre-osteoclast. These transcription factors coordinate the osteoclast 

differentiation program resulting in expression of proteins necessary for fusion of 

precursors (DC-STAMP), for bone attachment (β3-Interin), for cytoskeletal organization 

(c-Src), and for degradation of bone matrix (Cathepsin K and MMP9). Calcitonin 

Receptor and Tartrate-Resistant Acid Phosphatase (TRAP) are useful biomarkers for the 

mature osteoclast. 

 

Figure 2: Osteoclastogenic Signaling 

Stimulation of the receptor, RANK, by its ligand, RANKL, leads to activation of several 

kinases including IKK, JNK, ERK, p38, and Akt. These signals require association of the 

E3 Ubiquitin Ligase, TRAF6, with the RANK receptor. Interference with each of these 

kinases, as well as loss of TRAF6, results in impaired osteoclast differentiation. IKK 

activates NF-κB which induces the transcription factor, c-fos. NFATc1, considered the 

master regulator of osteoclastogenesis, is activated downstream of NF-κB and AP-1.  
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Figure 3: Classical NF-κB Signaling Pathway  

The Classical NF-κB heterodimer, p50/p65(RelA), is bound in an inactive state in the 

cytosol by IκBα. Extracellular Signals lead to activation of the classical IKK complex 

consisting of IKKα, IKKβ, and IKKγ (NEMO). IKKβ phosphorylates IκBα leading to its 

ubiquitylation and rapid degradation by the proteasome. As a result, P50/p65 (RelA) 

heterodimers translocate into the nucleus to activate gene transcription. 

 

Figure 4: Alternative NF-κB Signaling Pathway 

RelB, the transactivating factor of the alternative pathway, is sequestered in the cytosol 

by NF-κB p100. Extracellular signals result in activation of IKKα homodimers. IKKα 

phosphorylates p100 resulting in its proteasomal processing to p52. p52/RelB 

heterodimers then translocate into the nucleus to regulate gene transcription. 

 

Figure 5: Schematic Structure of IKKβ 

IKKβ consists of an N-terminal kinase domain (Kinase) which transfers phosphate from 

ATP to target serine and Threonine residues of substrate proteins, a Leucine Zipper 

domain (LZ) important for protein-protein interactions, a Helix-Loop-Helix domain 

(HLH) which modulates IKKβ kinase activity, and a C-terminal domain (NBD) that is 

critical for binding to NEMO. Binding of IKKβ to NEMO, through Tryptophan residues 

739 and 741, results in phosphorylation by an upstream kinase of Serines 177 and 181 in 

the activation loop in the kinase domain of IKKβ, leading to activation of IKKβ. Lysine 
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44 is the ATP-binding residue in IKKβ, and its mutation results in a kinase-inactive, 

dominant-negative molecule.  

 

Figure 6: Generation of Mice with a Conditional Deletion of IKKβ in Osteoclast 

Precursors 

We generated mice with a conditional loss of IKKβ in osteoclast precursors 

(OCPΔIKKβ) by crossing mice possessing loxP-flanked (floxed) IKKβ with mice 

harboring a Cre recombinase transgene under the control of the CD11b promoter. 

Resultant knockout mice (OCPΔIKKβ) displayed dense femurs (arrows) on X-ray 

compared with control littermates suggesting that IKKβ is critical for osteoclast 

differentiation from precursors.  
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DEFECTIVE OSTEOCLASTOGENESIS BY IKKβ-NULL PRECURSORS IS A 

RESULT OF RANKL-INDUCED JNK-DEPENDENT APOPTOSIS AND 
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It has previously been reported that IKKβ supports osteoclastogenesis 

through NF-B-mediated prevention of apoptosis. This finding suggests that the 

ligand for Receptor Activator of NF-B (RANKL), the master osteoclastogenic 

cytokine, induces apoptosis of osteoclast precursors (OCP’s) in the absence of 

IKKβ/NF-B competency. To validate this hypothesis, we sought to determine the 

pro-apoptotic signaling factors induced by RANKL in IKKβ-null osteoclast OCP’s 

and to rescue osteoclast differentiation in the absence of IKKβ through their 

inhibition. To accomplish this, we generated mice which lack IKKβ in multiple 
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hematopoietic lineages including OCP’s. We found that these mice possess both in 

vitro and in vivo defects in osteoclast generation, in concurrence with previous 

reports, and that this defect is a result of susceptibility to RANKL-mediated 

apoptosis as a result of gain-of-function of JNK activation. We demonstrate that 

differentiation of OCP’s depends on IKKβ since reduced IKKβ mRNA expression 

correlates with impaired induction of osteoclast differentiation markers in response 

to RANKL stimulation. We further show that fine-tuned inhibition of JNK 

activation in theses cells inhibits RANKL-induced apoptosis and restores the ability 

of IKKβ-null OCP’s to become mature osteoclasts. Our data highlight the pro-

osteoclastogenic and anti-apoptotic roles of IKKβ in OCP’s and identify a pro-

apoptotic mechanism activated within the RANK signalosome. 

 

INTRODUCTION 

 

Osteoclasts develop from bone marrow macrophage precursors under the control 

of two cytokines, Receptor Activator of NF-κB Ligand1 (RANKL) (1) and m-CSF (2). 

RANKL induces osteoclast commitment and development by signaling downstream to 

several transcription factors, the most important of which is NF-κB (3). NF-κB is a 

family of transcription factors whose activity coordinates a major component of the 

cellular inflammatory program, and its function is essential for osteoclastogenesis (4,5). 

NF-κB signaling involves two distinct but cooperating pathways, one canonical and one 
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alternative pathway (6), which has recently been shown to be critical in osteoclast 

biology (7). 

NF-κB is activated by the inhibitory κB kinase (IKK) complex, which is crucial 

for osteoclastogenesis. The IKK complex is composed of two catalytically active 

members, IKKα and IKKβ, and a regulatory subunit IKKγ/NEMO. IKKα mediates 

activation of the alternative pathway by phosphorylation of NF-κB2/p100 (6), while 

IKKβ is important for activation of the canonical pathway through phosphorylation of 

IκB (8). The importance of the signaling activity of the IKK complex in osteoclasts is 

demonstrated by the defect in osteoclastogenesis noted in mice lacking IKKα (9) or IKKβ 

(10). Despite the sequence homology of these two kinases, their relative importance in 

osteoclastogenesis is strikingly different. For example, osteoclasts devoid of active IKKα 

only demonstrate an in vitro defect in osteoclastogenesis, while the bone phenotype of the 

mouse is remarkably normal. On the other hand, mice with an inducible osteoclast 

precursor-specific deletion of IKKβ demonstrate both in vitro and in vivo defects in 

osteoclastogenesis and are resistant to inflammatory osteolysis (10). Given these findings, 

it is evident that investigating the mechanism by which IKK2 supports osteoclastogenesis 

will improve our understanding of osteoclast biology and diseases attributable to 

overactive osteoclasts. 

We and others have shown that diverse methods of IKK blockade arrest 

osteoclastogenesis by induction of apoptosis (10-12). We were interested in the pro-

apoptotic signals downstream of RANKL in the absence of IKKβ, and we hypothesized 

that inhibition of these signals would be sufficient to rescue the osteoclast defect of cells 
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lacking IKKβ. Our findings reveal that loss of IKKβ in osteoclast precursors (OCP’s) 

results in a gain-of-function of JNK activation in response to RANKL that results in 

apoptosis. Furthermore, fine-tuned inhibition of this gain-of-function in JNK activation is 

sufficient to rescue osteoclastogenesis in OCP’s lacking IKKβ. This finding demonstrates 

that the necessity of IKKβ for osteoclastogenesis may be evaded by inhibiting the pro-

apoptotic effects of RANKL and designates JNK activation in the osteoclast as a 

potential means to induce cell death in OCP’s.   

  

MATERIALS AND METHODS 

 

Reagents- Antibodies against IKKβ, IKKα, NEMO, Actin, JNK, p38, Akt, MKP1, 

phospho-c-jun, and c-jun as well as horseradish peroxidase-conjugated secondary 

antibodies were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). 

Antibodies against phospho-JNK, phospho-p38, phospho-Akt, and PARP were purchased 

from Cell Signaling Technologies, Inc. (Danvers, MA). Antibody against MKP5 was 

purchased from Abcam (Cambridge, MA). Cytokines were purchased from R&D 

Systems (Minneapolis, MN). TAT-TI-JIP was purchased from EMD Biosciences, Inc. 

(La Jolla, CA). Enhanced Chemiluminescence kit was purchased from Pierce 

Biotechnology, Inc (Rockford, IL). All other chemicals were purchased from Sigma (St. 

Louis, MO) unless otherwise indicated. 
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Animals- CD11b Cre Y-chromosomal transgenic and floxed IKKβ mice on a C57BL/6 

background were reported previously (12, 13). Male Cre+ Floxed IKKβ homozygotes 

were generated by crossing the above mice.  

 

Cell Culture- Osteoclast precursors were enriched from bone marrow of 2-3-week-old 

mice. Briefly, whole marrow was flushed from long bones into α-MEM and was 

centrifuged at 453 rcf. Marrow pellets were resuspended in whole media (α-MEM with 

penicillin/streptomycin, 10% heat-inactivated fetal bovine serum) supplemented with 10 

ng/mL m-CSF. Cell suspensions were plated onto petri dishes at 37 oC in 5% CO2 for 5 

days and then were plated according to experimental conditions. 

 

Osteoclast Formation Assay- Osteoclast precursors were plated in triplicate at a density 

of 3.0 x 104 cells in 200 μL whole media supplemented with 10 ng/mL m-CSF and 

RANKL in 96-well tissue culture plates. TAT-TI-JIP was added at the time of cell plating 

(day 1). TNF-α and LPS were added at day 4 of the assay. Mature osteoclasts form 

between day 5 and day 6 of culture, at which point, the cells are fixed and stained for 

Tartrate-Resistant Acid Phosphatase (TRAP) to visualize osteoclasts (Leukocyte Acid 

Phosphatase Kit, Sigma, St. Louis, MO). TRAP-positive multinucleated cells with 3 or 

more nuclei were scored as osteoclasts.  

 

Protein Phosphorylation Assay- Osteoclast precursors were plated onto tissue culture 

dishes overnight in whole media supplemented with m-CSF. Cells were then serum 
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starved for 4-6 hours and stimulated with the indicated cytokine for a planned time 

course. At the allotted time, cells were lysed in cell lysis buffer containing (20 mM Tris 

HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 2.5 mM NaPyrophosphate, 1 

mM β-Glycerophosphate, 1% Triton, 1 mM Na3VO4, 1 μg/mL Leupeptin, 1 mM NaF, 1 

mM PMSF, and distilled deionized H2O). Protein concentration was measured by 

standard BCA assay (Pierce). 10-20 μg of total cell protein was used for Western blot. 

See below. 

 

Apoptosis Assay- Osteoclast precursors were plated onto tissue culture dishes overnight 

in whole media supplemented with m-CSF. Cells were serum starved for 6 hours and 

stimulated with 10 ng/mL RANKL for the indicated time. At the allotted time, cells were 

lysed as described above, protein was normalized, and samples were analyzed by 

Western blot. See below. 

 

Rescue of Apoptosis- Osteoclast precursors were plated onto tissue culture dishes for 24 

hours in whole media supplemented with m-CSF. Four groups of two plates of cells were 

plated in this assay. Each group was treated with either sterile PBS, 0.4 μM, 1.0 μM, or 

2.0 μM TAT-TI-JIP. Also at the time of plating, one plate from each group was 

stimulated with either sterile PBS or 20 ng/mL RANKL. After 24 hours, cells were lysed 

as described above, protein was normalized, and samples were analyzed by Western Blot. 

See below. 
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Osteoclast Differentiation Assay- Osteoclast precursors were plated in whole media 

supplemented with m-CSF. Cells were either not stimulated, or were stimulated with 10 

ng/mL RANKL for 5 days. Total RNA was isolated from cells using TRIzol reagent 

(Invitrogen, Carlsbad, CA) according to the manufacturer’s standard protocol. 

 

Reverse Transcription- 1.0 μg total RNA was subjected to reverse transcription under the 

following conditions. 1.0 μg RNA and 1.0 μg random hexamer primer in 10 μL nuclease-

free deionized H2O in PCR tubes were heated to 70 oC for 5 minutes, cooled to 42 oC, and 

set on ice. The following components were then added at the indicated amounts or 

concentrations for a total reaction volume of 20 μL: 1 x RT AMV buffer (Roche, Palo 

Alto, CA), 40U RNAseIn (Promega, San Luis Obispo, CA), 1.25 mM dNTP’s, 5 mM 

NaPyruvate, 5 U Reverse Transcriptase Enzyme, AMV (Roche). To produce cDNA, 

tubes were placed in a thermocycler programmed as follows. 42 oC for 60 minutes, 50 oC 

for  10 minutes, 95 oC for 5 minutes, and 4 oC to hold. 

 

Bone Resorption Assay- Bone marrow osteoclast precursors were plated onto BD Biocoat 

Osteologic tissue culture slides (BD Biosciences, San Jose, CA) in the presence of 10 

ng/ml m-CSF and RANKL with or without 0.4 µM TAT-TI-JIP for the indicated times. 

Resorption pits were determined as clear areas in the osteologic matrix. Representative 

photographs were taken at 10X magnification.       
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Real-Time PCR- Triplicate samples of 4 μL cDNA product (5X diluted), 10 μL Sybr 

Green PCR Master Mix (Applied Biosystems, Inc. Foster City, CA), 0.1 μL each of 10 

μM forward and reverse primer stocks, and 6 μL nuclease-free deionized H2O were 

subjected to real time PCR according to the following program in a 7300 AB Real Time 

PCR System: 50 oC for 2 minutes, 95 oC for 10 minutes, (95 oC for 15 seconds, 60 oC for 

1 minute) x 40 cycles. Results were analyzed using AB RQ Study Software. Real Time 

PCR primers were designed using Primer Express Software (Applied Biosystems, Inc.) 

mouse Actin Forward 5’-CTTCTACAATGAGCTGCGTG-3’, mouse Actin Reverse 5’-

TCATGAGGTAGTCTGTCAGG-3’, mouse TRAP Forward 5’-

CGACCATTGTTAGCCACATACG-3’, mouse TRAP Reverse 5’- 

CACATAGCCCACACCGTTCTC-3’, mouse Calcitonin Receptor Forward 5’-

CAAGAACCTTAGCTGCCAGAG-3’, mouse Calcitonin Receptor Reverse 5’-

CAAGCACGCGGACAATGTTG-3’, mouse MMP9 Forward 5’-

CAGGGAGATGCCCATTTCG-3’, mouse MMP9 Reverse 5’-

GGGCACCATTTGGAGTTTCCA-3’, mouse A20 Forward 5’-

CAGAAAAAAGTGGTGAAGGTGTGA-3’, mouse A20 Reverse 5’-

CCAGGCTCTGACCTCTGTTACA-3’, mouse cIAP1 (birc2) Forward 5’-

GTGATGGTGGCTTGAGATGTTG-3’, mouse cIAP1 (birc2) Reverse 5’-

CAAGAACTCACACCTTGGAAACC-3’, mouse cIAP2 (birc3) Forward 5’-

GAAGTGGGCTGCGGTATCA-3’, mouse cIAP2 (birc3) Reverse 5’-

GCGCTGTCTTGAACCATGTTC-3’, mouse Bcl-xL Forward 5’-

GCGGCTGGGACACTTTTG-3’, mouse Bcl-xL Reverse 5’-
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CAGAACCACACCAGCCACAGT-3’, mouse XIAP Forward 5’-

CGGATCGTTACTTTTGGAACATG-3’, mouse XIAP Reverse 5’-

CGCCTTCACCTAAAGCATAAAATC-3’, mouse Cathepsin K Forward 5’- 

GGAAGAAGACTCACCAGAAGC-3’, mouse Cathepsin K Reverse 5’- 

GTCATATAGCCGCCTCCACAG-3’, mouse β3 Integrin Forward 5’- 

TTACCCCGTGGACATCTACTA-3’, mouse β3 Integrin Reverse 5’- 

AGTCTTCCATCCAGGGCAATA-3’, mouse GAPDH Forward 5’-

CTTCACCACCATGGAGAAGGC-3’, mouse GAPDH Reverse 5’-

GACGGACACATTGGGGGTAG-3’.  

 

Western Blot Assay- Total cell lysates were boiled in the presence of an equal volume of 

2X SDS sample buffer consisting of (0.5 M Tris-HCl, pH 6.8, 10% (w/v) SDS, 10% 

glycerol, 0.05% (w/v) bromphenol blue, 3% β-Mercaptoethanol, and distilled water) for 5 

min and subjected to electrophoresis on 8–10% SDS-PAGE. The proteins were 

transferred to nitrocellulose membranes using a semi-dry blotter (Bio-Rad, Hercules, CA) 

and incubated in blocking solution (10% skim milk prepared in phosphate-buffered saline 

containing 0.05% Tween 20) to reduce nonspecific binding. The membranes were 

washed with phosphate-buffered saline/Tween buffer and exposed to primary antibodies 

(16 h at 4 oC), washed again four times, and incubated with the respective secondary 

horseradish peroxidase-conjugated antibodies (1 h at room temperature). The membranes 

were washed extensively (4 X 15 min), and an ECL detection assay was performed 

following the manufacturer’s directions. 
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Western Blot Quantification-Where indicated, protein expression was quantified using 

Quantity One 1-D Analysis Software, BioRad (Hercules, CA). 

Histology- Long bones were collected from mice and fixed in 10% buffered formalin for 

24 hours. Bones were then decalcified for 7 days in decalcification buffer consisting of 

(14% (w/v) EDTA, H4NOH pH 7.2), dehydrated in graded ethanol (30%-70%), cleared 

through xylene, and embedded in paraffin. Paraffin sections were stained histochemically 

for TRAP to visualize osteoclasts or immunohistochemically for TdT-mediated dUTP 

Nick End Labeling (TUNEL) with the ApopTag Peroxidase In Situ Apoptosis Detection 

Kit (Millipore/Chemicon International, Temecula, CA) to detect apoptotic cells.   

 

RESULTS 

 

Mice with an Osteoclast Precursor- IKKDeficiency Demonstrate in vitro and in vivo 

Defects in Osteoclastogenesis 

IKKβ has been shown to be necessary for osteoclast formation (10). To define the 

mechanism through which IKKβ supports osteoclastogenesis, we generated mice with a 

deficiency of IKKβ in multiple hematopoietic lineages including OCP’s by crossing 

CD11b Cre recombinase transgenic mice (13) with mice possessing floxed IKKβ (14) 

(Supplementary Figure 1). In this study, we focus on the osteoclast phenotype, so we will 

refer to the resultant knockout (Cre-positive floxed/floxed IKKβ) mice as OCPIKKor 

Cre+ f/f. OCPIKKmice possess a hampered ability to generate osteoclasts in vivo as 
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evidenced by a significantly reduced number of TRAP-positive osteoclasts compared 

with controls observed by histochemical staining for TRAP in long bones (fig. 1A). This 

is further supported by lack of IKKβ protein in osteoclast precursors of OCPIKKmice 

(fig. 1B). We demonstrate that this defect is cell-autonomous by culturing bone marrow-

derived OCP’s in the presence of m-CSF and RANKL. OCPIKKcells form significantly 

fewer multinucleated osteoclasts (fig. 1C, panel g) compared with Cre-positive IKKβ 

wild-type/wild-type (wt/wt) (fig. 1C, panel a) and Cre-positive IKKβ wild-type/floxed 

(wt/f) heterozygous littermate controls (fig. 1C, panel d). Furthermore, stimulation with 

TNF-α or LPS (fig. 1C, panels h and i) is insufficient to rescue the osteoclast defect of 

OCPΔIKKβ cells. Compared with WT cells, Cre-positive IKKβ (wt/f) OCP’s also show 

decreased IKKβ protein expression (fig. 1B), but this difference does not result in 

impaired osteoclastogenesis (fig. 1C, panels d-f). 

 

OCPIKK are Prone to RANKL-Induced Apoptosis and Display Defective Osteoclast 

Differentiation 

IKKβ has previously been demonstrated to protect OCP’s from TNF--mediated 

apoptosis (10). We sought to determine whether IKKβ-deficient OCP’s are similarly 

susceptible to apoptosis in response to RANKL and to test whether the absence of IKKβ 

results in defective osteoclast differentiation. To accomplish this, we cultured 

OCPIKKand control OCP’s in the presence of m-CSF and RANKL for zero or five days 

to induce osteoclast differentiation. We measured by real-time PCR the expression of 

several markers for osteoclast differentiation. We observe a significant decrease in the 
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expression of m-RNA for the osteoclast markers β3 Integrin (Fig. 2A), Cathepsin K (Fig. 

2 B), Calcitonin Receptor (Fig. 2C), Matrix Metalloproteinase 9 (Fig. 2D), and TRAP 

(Fig. 2E) in RANKL-stimulated OCPIKKcells compared with controls. This failure to 

express osteoclast markers in osteoclastogenic conditions correlates with up to an 81% 

reduction in expression of IKKβ mRNA in OCPIKKcells compared with controls (Fig. 

2F). Interestingly, in OCPIKKcells that express higher levels of IKKβ mRNA- 63% 

reduction compared with control OCP’s- osteoclast marker expression after RANKL 

stimulation is not affected, yet they still fail to form multinucleated osteoclasts in in vitro 

culture (Supplementary Figure 2). This finding indicates that IKKβ also serves a 

differentiation-independent function to support osteoclastogenesis. These observations 

lead us to surmise that IKKβ is essential at various stages for differentiation and survival 

of RANKL-stimulated OCP’s.  

Therefore, we tested whether OCPIKKcells were more susceptible to apoptosis 

than control cells. First, we cultured OCPIKKand control OCP’s in the presence of 

whole media supplemented with fetal bovine serum and m-CSF to promote survival and 

measured by real-time PCR the expression of mRNA for several NF-B-controlled anti-

apoptotic proteins (15). We note significant reduction in expression of mRNA for A20, 

cellular inhibitor of apoptosis 2 (c-IAP2), c-IAP1, Bcl-xL, and X-linked inhibitor of 

apoptosis (XIAP) in OCPIKKcompared with control cells (fig. 2G). 

To determine whether OCPIKK undergo apoptosis in response to RANKL, we 

exposed serum-starved OCPIKKand control OCP’s to RANKL for a time-course of four 

hours. We detected the kinetics of poly-ADP Ribose Polymerase (PARP) cleavage by 
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Western blot as a molecular signature of apoptosis. We note disappearance of full-length 

PARP in OCPIKKcells after 1 hour while in control cells, the integrity of full-length 

PARP is preserved over the time-course of RANKL exposure (fig. 2H), which indicates 

that RANKL has a pro-apoptotic effect on osteoclast precursors deficient in IKKβ. We 

conclude that IKKβ is necessary for osteoclast differentiation and the survival of 

osteoclast precursors exposed to RANKL. 

In order to determine whether apoptosis of osteoclasts or OCP’s from 

OCPIKKmice contributes to the paucity of osteoclasts observed in vivo, we stained 

sections of long bones of OCPIKKand control mice immunohistochemically with the 

TUNEL method to detect apoptosis. We note a significantly greater number of TUNEL-

positive peritrabecular nuclei resembling apoptotic osteoclasts and OCP’s in 

OCPIKKcompared with control long bones (fig. 3A and B). Based on our data, we 

conclude that apoptosis contributes to the osteoclast defect in OCPIKKmice. 

 

OCPIKK Possess a Gain-of-Function in JNK Activation 

We were interested in potential pro-apoptotic signals induced by RANKL in 

differentiating IKKβ-deficient OCP’s. To address this, we performed a phospho-protein 

screen by Western blot analysis in OCPIKKand control OCP’s after stimulation with a 

time course of RANKL or TNF-α. We postulated that OCPIKKkinase signaling would 

possess a signature which would favor apoptosis. We noted several aberrations in the 

pattern of protein phosphorylation in OCPIKKcompared with control cells. Of particular 

interest was an increase and prolongation of JNK phosphorylation in response to RANKL 
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(fig. 4A and B) and TNF-α (fig. 4A) in OCPIKKcompared with control OCP’s. 

Interestingly, p38 (fig. 4A) and Akt (fig. 4B) phosphorylation remain unaffected in the 

absence of IKK, suggesting that JNK downregulation is a specific function of IKKβ. 

We observe that MAP Kinase Phosphatase 1 (MKP1) protein resynthesis after 

degradation and MKP5 protein synthesis are dampened after RANKL stimulation of 

OCPIKKcells compared with controls. In particular, MKP1 and MKP5 protein levels 

maximize after 30 minutes of RANKL stimulation of control OCP’s (fig. 4C). This time 

point correlates with downregulation of JNK phosphorylation after RANKL stimulation 

(fig. 4A and B). In OCPIKKcells, JNK phosphorylation is sustained at 30 minutes of 

RANKL stimulation (fig. 4A and B), which correlates with the absence of detectable 

MKP1 and MKP5 protein at this time point in OCPIKK cells (fig. 4C). Since MKP1 (16) 

and MKP5 (17) serve as JNK phosphatases, MKP induction may serve as an IKKβ-

dependent mechanism for JNK downregulation after RANKL stimulation. We postulated 

that the gain-of-function of JNK activation may result in apoptosis of OCPIKKcells.        

   

Inhibition of JNK Blocks RANKL-Induced Apoptosis of Osteoclast Precursors and 

Rescues Osteoclastogenesis in IKKβ-Deficient Osteoclast Precursors 

JNK activation has been linked to RANKL-induced apoptosis of differentiating 

osteoclasts (15). We hypothesized that since OCPIKKcells are susceptible to RANKL-

induced apoptosis, inhibition of RANKL- mediated JNK activation in these cells would 

rescue osteoclastogenesis. We took advantage of a cell-permeable peptide (TAT-TI-JIP) 

to specifically inhibit JNK activation (18) after RANKL stimulation. In WT OCP’s, 
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TAT-TI-JIP peptides inhibit osteoclastogenesis at concentrations above 1 M (not 

shown). This finding is expected given the established importance of c-jun in osteoclast 

differentiation (19,20). Surprisingly, TAT-TI-JIP peptides enhance osteoclastogenesis in 

WT cells at a concentration of 0.4 M (fig. 5B panel b). We hypothesized that this 

concentration of TAT-TI-JIP is sufficient to block the pro-apoptotic action of JNK 

without affecting the activity of JNK toward c-jun after RANKL stimulation. Indeed, 0.4 

M of TAT-TI-JIP blocks RANKL-induced PARP cleavage without dramatically 

altering RANKL-induced phosphorylation of c-jun (fig. 5A). At a concentration of 1 M, 

TAT-TI-JIP inhibits RANKL-induced PARP cleavage in OCP’s, but it also inhibits c-jun 

phosphorylation (fig. 5A), which explains the inhibitory affect of this concentration on 

osteoclastogenesis. These results suggest that JNK serves two distinct functions in 

osteoclast differentiation and survival. Since low dose TAT-TI-JIP inhibits apoptosis of 

OCP’s induced by RANKL stimulation without affecting c-jun activation, we tested this 

concentration for its potential to rescue osteoclastogenesis of OCP’s in the absence of 

IKK. Indeed, in the in vitro osteoclastogenesis assay, 0.4 M TAT-TI-JIP peptide 

rescues osteoclastogenesis of OCPIKKcells (fig. 5B). For example, OCPIKKcells (fig. 

5B, panel c) treated with RANKL produce less than 5% of the number of TRAP-positive 

osteoclasts produced by control OCP’s (fig. 5B, panel a). However, TAT-TI-JIP 

treatment of OCPIKK cells (fig. 5B, panel d) results in slightly, but statistically not 

significant, higher number of TRAP-positive osteoclasts compared with non-TAT-TI-

JIP-treated controls (fig. 5B, panel a). Importantly, JIP peptide-treated control OCP’s 

(fig. 5B panel b) produced more osteoclasts in in vitro culture than JIP peptide-treated 
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IKKβ deficient OCP’s (fig. 5B panel d), indicating that OCPΔIKKβ possess defects in 

osteoclast differentiation that are independent of JNK-mediated apoptosis. 

Finally, we sought to determine whether rescue of osteoclastogenesis in OCPΔIKKβ 

through JNK inhibition results in a concomitant rescue of bone resorption. To accomplish 

this, we plated WT and OCPΔIKKβ osteoclast precursors on an artificial bone substrate in 

osteoclastogenic conditions in the presence and absence of 0.4 µM TAT-TI-JIP. 

Resorption pits created by RANKL-treated OCPΔIKKβ cells (fig.6, panel b) were 

significantly smaller (22+/-3% resorption area compared with controls) than those created 

by control osteoclasts (fig. 6, panel a), indicating that OCPΔIKKβ are defective in resorbing 

bone. However, when we treated OCPΔIKKβ cells with TAT-TI-JIP (fig. 6, panel d), we 

restored resorption pit size over that noted in WT non-TAT-TI-JIP treated cells (165+/-

7% of control) (Fig. 6, panel a). Consistent with our in vitro osteoclastogenesis assay data 

shown in figure 5, resorption pit size of TAT-TI-JIP-treated WT osteoclasts (fig. 6, panel 

c) is two fold larger than that of TAT-TI-JIP-treated OCPΔIKKβ (210+/-14%) indicating 

that IKKβ also acts through mechanisms independent of JNK inhibition to support 

osteoclastogenesis.  

 

DISCUSSION 

In previous studies, we and others have shown that IKK-NF-κB function is necessary for 

osteoclastogenesis (4,10,12). The diverse activities of the individual IKK and NF-κB 

members suggest that each molecule plays a unique role in the overall program of 

osteoclast development. It has been demonstrated that IKKβ protects OCP’s from 
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apoptosis in response to TNF-α (10). While this finding is consistent with previous 

reports regarding the function of IKKβ in other settings (21), its precise role downstream 

of RANK during osteoclastogenesis has remained unclear. The most likely possibility is 

that IKKβ serves some capacity in osteoclastogenesis that is dependent upon NF-κB-p65 

action. However, the exact function of p65 in the osteoclast remains to be elucidated. It 

has been suggested that IKKβ may be important for the survival and differentiation of 

OCP’s (10). We show that OCP’s deficient in IKKβ display a defect in osteoclast 

differentiation, which is consistent with impaired induction of mRNA for the osteoclast 

markers: β3 Integrin, Cathepsin K, Calcitonin Receptor, MMP9, and TRAP after RANKL 

stimulation.     

 We also show that IKKβ-deficient OCP’s are susceptible to apoptosis in response 

to RANKL stimulation. Based on our real-time PCR data, this phenomenon is likely to 

partially result from impaired NF-κB-mediated transcription of anti-apoptotic genes. 

However, the pro-apoptotic function of RANKL in osteoclast precursors has not been 

fully described. Importantly, in OCPΔIKKβ cells which expressed higher levels of IKKβ 

mRNA, induction of osteoclast differentiation markers was not affected, although 

impaired in vitro osteoclastogenesis was still observed (Supplementary Figure 2). We 

examined the expression of mRNA for DC-STAMP (22) and ATP6v0d2 (23), two genes 

known to be important in osteoclast fusion, in these cells to determine whether a fusion 

deficiency was responsible for the defect. Induction of these markers was equivalent to 

controls in this population of OCPΔIKKβ cells (data not shown). Although induction of 

other unknown osteoclast fusogenic genes may be impaired in RANKL-treated OCPΔIKKβ 
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cells, our data suggests that RANKL-induced apoptosis is a major contributor to the 

osteoclast defect in these cells. 

 We hypothesized that the kinase signaling environment downstream of RANK in 

OCPΔIKKβ cells would reveal pro-apoptotic signaling changes. Among several observed 

signaling aberrations, we noted in particular that JNK displayed a more robust and 

prolonged phosphorylation profile after RANKL stimulation in OCP’s which lack IKKβ. 

Since JNK activation has been correlated with RANKL-induced apoptosis previously 

(15), we postulated that OCPΔIKKβ cells undergo apoptosis as a result of RANKL 

mediated JNK activation. Indeed, by inhibiting JNK-dependent apoptosis, we rescued 

osteoclastogenesis in OCPΔIKKβ cells.  

We believe that OCPΔIKKβ cells undergo RANKL-induced JNK-dependent 

apoptosis early after RANKL stimulation, at a stage prior to the mature osteoclast, for 

two reasons. First, the number of multinucleated osteoclasts of RANKL-stimulated 

OCPΔIKKβ cells never approaches that of controls cells (unpublished observations). 

Second, TAT-TI-JIP only rescues the osteoclast defect of OCPΔIKKβ if added to the 

culture at the same time as RANKL stimulation (Supplementary Figure 3, panel c). When 

treated with TAT-TI-JIP 48 hours after RANKL stimulation, JNK-inhibition does not 

fully rescue osteoclastogenesis of OCPΔIKKβ cells (Supplementary Figure 3, panel d). 

Whether the absence of IKKβ protein is essential for the gain-of-function of JNK 

in response to RANKL is unknown. For example, it is probable that a downstream 

effector of IKKβ signaling and not IKKβ itself, is responsible for inhibition of JNK after 

RANKL stimulation.   In any case, we demonstrate that fine-tuned inhibition of JNK in 
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OCPΔIKKβ cells rescues osteoclastogenesis. Our data suggest a model whereby RANKL 

stimulation of OCP’s leads to activation and eventual downregulation of JNK through 

MAP kinase phosphatase synthesis. In the absence of IKKβ, RANKL-mediated MKP1 

and MKP5 synthesis are defective leading to enhancement and prolongation of JNK 

phosphorylation and activation resulting in apoptosis. One may postulate that blockade of 

JNK-downregulation through inhibition of the JNK phosphatases will result in enhanced 

and prolonged RANKL-induced JNK activity that is anti-osteoclastogenic.  

The mechanism of JNK-mediated apoptosis in response to RANKL is not well 

defined. It has previously been demonstrated that in response to TNF-α in NF-κB-

deficient cells, JNK activation leads to caspase-8 - independent cleavage of the pro-

apoptotic protein, bid, resulting in mitochondrial release of smac and apoptosis (24). 

Since RANKL stimulation of OCP’s does not result in caspase-8 activation, it is likely 

that enhanced JNK activity in the absence of IKKβ directly leads to apoptosis of OCP’s 

after RANKL stimulation. Because lower expression of IKKβ in OCPΔIKKβ cells prevents 

osteoclast differentiation, it is unlikely that inhibition of JNK-mediated apoptosis will 

rescue osteoclastogenesis in the complete absence of IKKβ. Observing the rescuing effect 

of a low-dose JNK inhibitor on osteoclastogenesis in OCPΔIKKβ, therefore, requires a 

permissive level of IKKβ expression that allows differentiation to occur but does not 

inhibit apoptosis. We believe our CD11b Cre-mediated deletion of IKKβ was a 

successful tool in this regard.  

In addition to MAP kinase phosphatases, several potential connections between 

the absence of IKKβ and enhanced JNK activation exist. For example, known target 
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genes of NF-κB serve to downregulate JNK activation such as Gadd45β, which 

specifically inhibits TNF-α-mediated MKK7 activation of  JNK (25). Additionally, XIAP 

is a target of NF-κB which downregulates JNK activation in response to TNF-α (26). 

Furthermore, A20 has been postulated to play a role in NF-κB-mediated inhibition of 

JNK activation by downregulating TRAF2 (27), although this hypothesis has never been 

validated. Since OCPΔIKKβ display reduced XIAP and A20 expression, it will be 

interesting to test whether these mechanisms of crosstalk between IKKβ and JNK hold 

true in RANKL signaling during osteoclastogenesis.          

It is important to note that JNK-mediated c-jun activation is required for efficient 

osteoclastogenesis (19). c-jun activation leads to a partnership between AP-1 and NFAT1 

which induces expression of NFAT2 and differentiation of osteoclasts (20). Therefore, 

inhibition of the RANKL-RANK-JNK pathway is a candidate for treatment of 

osteoporosis (28). In light of the opposing effects of the two arms of JNK activation in 

the osteoclast, it will be critical to sort out the pro and anti-osteoclastogenic means of 

RANKL-mediated JNK activation.   

 Our results highlight the necessity of IKKβ in osteoclastogenesis. We demonstrate 

that IKKβ is important for both differentiation and survival of osteoclasts. Given that we 

are able to rescue osteoclastogenesis in OCPΔIKKβ cells through inhibition of JNK-induced 

apoptosis, we conclude that IKKβ acts, at least partially, through down-modulation of 

JNK activity to support cell survival during osteoclastogenesis. Our results, therefore, 

suggest that hyperactivation of JNK and inhibition of IKKβ in OCP’s are potential means 

to treat osteoclast-mediated disease.  
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FIGURE LEGENDS 

 

Figure 1. Mice with IKKβ–deleted osteoclast precursors possess a defect in in vivo and in 

vitro osteoclastogenesis. (A) Histochemical TRAP stain at growth plate of femur of 

CD11b Cre-positive wt/wt IKKβ and CD11b Cre-positive floxed/floxed IKKβ 

(OCPΔIKKβ) mice to visualize osteoclasts. Arrows indicate osteoclasts. (B) Western blot 

for indicated proteins in total cell lysates of osteoclast precursors from CD11b Cre-

negative, CD11b Cre-positive wt/floxed IKKβ, and CD11b Cre-positive floxed/floxed 

IKKβ mice. (C and D) Osteoclast precursors from CD11b Cre-positive wt/wt IKKβ, 

CD11b Cre-positive wt/floxed IKKβ, and CD11b Cre-positive floxed/floxed IKKβ mice 

were cultured in osteoclastogenic conditions. (C) Cells were either not stimulated (a, d, 

g), or were further stimulated with 10 ng/ml TNF-α (b, e, h) or 100 ng/ml LPS (c, f, i) on 

day 4 of culture. Cells were fixed and histochemically stained for TRAP to visualize 

osteoclasts on day 6 of culture. (D) Quantification of C. TRAP-positive multinucleated 

cells (MNC’s) with 3 or more nuclei were scored as osteoclasts. Asterisk indicates p < 

0.005 for difference between number of TRAP-positive MNC’s in wells represented by d 

and g. 

 

Figure 2. OCPΔIKKβ are defective in osteoclast differentiation and demonstrate increased 

susceptibility to apoptosis. OCPΔIKKβ and control OCP’s were plated in whole media 

supplemented with 10 ng/ml m-CSF. Cells were either not stimulated or were stimulated 

with 10 ng/ml RANKL for 5 days to induce osteoclast differentiation. mRNA was 
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collected and analyzed by real-time PCR for markers of osteoclast differentiation: (A) β3-

Integrin, (B) Cathepsin K (Cath K), (C) Calcitonin Receptor (CtR), (D) Matrix 

Metalloproteinase 9 (MMP9), and (E) Tartrate-Resistant Acid Phosphatase (TRAP) as 

well as (F) IKKβ (IKK2). GAPDH served as the internal standard for cDNA 

normalization. Data are presented as relative quantification with WT non-stimulated 

levels serving as the reference point (relative expression value of 1). Values represent 

mean quantification plus the standard error of the mean.  (G) OCPΔIKKβ and control 

OCP’s were plated in whole media supplemented with 10 ng/ml m-CSF. mRNA was 

collected and analyzed by real-time PCR for the indicated NF-κB-regulated anti-

apoptotic proteins: A20, cIAP2 (cellular inhibitor of apoptosis 2), cIAP1 (cellular 

inhibitor of apoptosis 1), XIAP (X-linked inhibitor of apoptosis), and Bcl-xL. β-Actin 

served as the internal standard for cDNA normalization. Data are presented as relative 

quantification with control levels serving as the reference point (relative expression value 

of 1). Values represent mean quantification plus the standard error of the mean. Data are 

representative of three independent experiments. (H) OCPΔIKKβ and control OCP’s were 

serum starved and were either not stimulated or were stimulated with 10 ng/ml RANKL 

for 15, 30, 45, 60, or 240 minutes. Total cell lysates were analyzed by Western blot for 

integrity of full length PARP (f-PARP). β-Actin served as the loading control. 

 

Figure 3. Apoptosis contributes to the in vivo deficiency of osteoclasts in OCPΔIKKβ mice. 

(A)  Immunoperoxidase TUNEL stain and hematoxylin counterstain of histological 

sections of growth plate of humerus from OCPΔIKKβ and control mice to visualize 
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apoptosis of peritrabecular osteoclasts and OCP’s.  Upper images taken at 10X 

magnification, and lower images are panels from upper images taken at 40X 

magnification. (B) Graph depicting quantification of TUNEL positive peritrabecular 

nuclei per 40X field visualized by light microscopy. Arrows indicate apoptotic nuclei. 

Asterisk denotes p < 0.001. (C) TRAP stain of sections taken from same paraffin 

embedded bones used for TUNEL stain in (A) to demonstrate correlation between 

apoptosis and defective in vivo osteoclastogenesis.  

 

Figure 4 . Loss of IKKβ in OCP’s results in a gain-of-function in JNK phosphorylation. 

OCPΔIKKβ and control OCP’s were serum starved for 4-6 hours. (A) Cells were either not 

stimulated or were stimulated with 10 ng/ml RANKL or TNF-α for 5, 10, or 30 minutes. 

(B) Cells were either not stimulated or were stimulated with 10 ng/ml RANKL for 7.5, 

15, 30, or 60 minutes. Total cell lysates were then analyzed by Western blot for the 

indicated phosphorylated proteins and whole proteins. Equal loading for phosphorylated 

proteins was determined by stripping the membrane and re-probing for the respective 

whole protein (A and B). (C) Cells were stimulated with 10 ng/ml RANKL for 10, 15, 30, 

or 120 min. Total cell lysates were then analyzed by Western blot for MKP5 and MKP1. 

β-Actin served as the loading control. 

 

Figure 5. Inhibition of RANKL-mediated JNK-induced apoptosis rescues 

osteoclastogenesis defect in OCP’s deficient in IKKβ. (A) OCP’s from Cre+ wild-

type/floxed IKKβ mice were plated in whole media supplemented with 10 ng/ml m-CSF. 
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Four groups of cells were treated at the time of plating with either no TAT-TI-JIP or with 

0.4 μM, 1.0 μM, or 2.0 μM TAT-TI-JIP. Also at the time of plating, one sample in each 

group was stimulated with 20 ng/ml RANKL. Cells were lysed after 24 hours of 

stimulation and total cell lysates were analyzed by Western blot for cleaved PARP (c-

PARP), phosphorylated c-jun (p-c jun), and total c-jun. Cleaved PARP and phospho-c jun 

quantification in the different conditions is shown in numerical and graph form under the 

corresponding blot image. (B) OCPΔIKKβ and control OCP’s were plated in 

osteoclastogenic conditions. At the time of plating, one group of cells from each 

population was either left untreated (a and c) or treated with 0.4 μM TAT-TI-JIP (b and 

d). Cells were fixed and histochemically stained for TRAP to visualize osteoclasts on day 

6 of culture. Quantification is shown in graph below. TRAP-positive multinucleated cells 

(MNC’s) with 3 or more nuclei were scored as osteoclasts. Data are representative of 

three independent experiments, and error bars represent standard error of the mean. 

Asterisk indicates p < 0.0001 for difference between number of TRAP-positive MNC’s in 

wells represented by a and c. No significant difference exists between a and d.   

 

Figure 6. Inhibition of JNK in OCPΔIKKβ cells rescues bone resorption. Control (panels a 

and c) and OCPΔIKKβ (panels b and d) osteoclast precursors were plated onto BD Biocoat 

Osteologic tissue culture slides in osteoclastogenic conditions in the absence (panels a 

and b) or presence (panels c and d) of 0.4 µM TAT-TI-JIP. Cells were removed from the 

slides with deionized water, and resorption pits were noted as clear areas. Images were 

taken at 10X magnification. 
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Supplementary Figure 1. Deletion of IKKβ in multiple hematopoietic tissues. Southern 

blot for IKKβ gene from DNA of bone, thymus (thym), and spleen of CD11b Cre + 

floxed/floxed IKKβ mice. Floxed; loxP-flanked, Δ; deleted by Cre. 

 

Supplementary Figure 2. OCPΔIKKβ with insufficient suppression of IKKβ mRNA show 

defective osteoclast phenotype in vitro despite normal induction of osteoclast markers. 

Control and OCPΔIKKβ osteoclast precursors were either not treated (unstim) or were 

treated with RANKL for 5 days. At day 5, mRNA was collected from cells for analysis of 

gene expression for (A) β3-Integrin, (B) TRAP, (C) Calcitonin Receptor, and (D) IKKβ. 

RANKL-treated cells were also TRAP-stained (E) for visualization of osteoclasts. 

 

Supplementary Figure 3. Requirement for early inhibition of JNK for rescue of 

osteoclastogenesis in OCPΔIKKβ. Control (a) and OCPΔIKKβ (b-d) osteoclast precursors 

were treated with RANKL for 5 days. For JNK inhibition, OCPΔIKKβ cells were either not 

treated (b) or were treated with 0.4 µM TAT-TI-JIP at the same time as the first RANKL 

stimulation (c) or 48 hours later (d).  
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SUMMARY: 

Osteoclasts differentiate from monocytes through stimulation of Receptor-Activator of 

NF-κB (RANK). Many downstream effectors of RANK play a positive role in 

osteoclastogenesis, but their relative importance in osteoclast differentiation is unclear. 

We report the discovery that introduction of constitutively activated IKKβ (IKKβSSEE) 

into monocytes stimulates differentiation of bona-fide osteoclasts in the absence of 

RANK Ligand (RANKL). This phenomenon is independent of upstream signals, since 

IKKβSSEE induced the development of bone-resorbing osteoclasts from RANK and IKKα-

knockout monocytes and in conditions in which NEMO-IKKβ association was inhibited. 
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NF-κB p100 and p105 -but not RelB- were critical mediators of this effect. More 

importantly, adenoviral gene transfer of IKKβSSEE induced osteoclasts and osteolysis in 

calvariae and knees of mice. Our data establish the sufficiency of IKKβ activation for 

osteolysis and suggest that IKKβ gain-of-function may be a causative factor in conditions 

of pathological bone destruction refractory to RANK/RANKL proximal therapeutic 

interventions.  

 

INTRODUCTION: 

Healthy bone balance is dependent on the concerted activity of osteoblasts, bone 

forming cells, and osteoclasts, bone resorbing cells. In pathological conditions such as 

rheumatoid arthritis, osteoporosis, and osteolytic cancer metastasis, bone balance tips in 

favor of increased osteoclast activity, stemming from heightened osteoclast 

differentiation and activation1. These conditions result in significant bone pain and 

increased risk of fracture. Therefore, therapies which target the osteoclast are in the 

armament for treatment of these conditions2. On the other hand, gene mutations that 

disrupt osteoclast differentiation lead to development of osteopetrotic dense bones 

compromising bone homeostasis3. This class of bone diseases is incurable owing to 

osteoclast deficiency and lack of bone resorption. Undoubtedly, increasing understanding 

of the factors which regulate the osteoclast in health and disease will offer important 

insight into new effective therapies for bone loss associated with pathological conditions 

and for osteopetrosis. 
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The osteoclast is the sole bone resorbing cell, and it differentiates from a 

monocyte precursor through the concerted action of two cytokines, Ligand for the 

Receptor Activator for NF-κB (RANKL) and Macrophage Colony Stimulating Factor 

(M-CSF)1. Upon stimulation of their cognate receptors, RANK and c-Fms respectively, a 

series of signaling events induces activation of transcription factors such as NF-κB, AP-1, 

and NFATc1 which results in fusion of precursors and expression of genes required for 

osteoclast function, including β3-Integrin, Cathepsin K, Tartrate Resistant Acid 

Phosphatase (TRAP), and Matrix Metalloproteinase 9 (MMP9)4. With expression of all 

necessary genes for osteoclast differentiation, the ability of the osteoclast to resorb bone 

requires tight regulation of the actin cytoskeleton. Indeed, genetic murine models have 

revealed a number of proteins such as c-Src5, β3-Integrin6, ITAM containing adaptors7,8, 

and the small GTPase Rac9 whose activity is required for cytoskeletal regulation and 

bone resorption. These molecules contribute to formation of the actin ring which is the 

signature of a polarized osteoclast capable of resorbing bone10. 

The complement of proteins whose expression and activation are important for 

osteoclast differentiation and function make up a growing list, but the relative importance 

of these genes remains unclear given the varied phenotypes of osteoclasts or osteoclast 

precursors devoid of any of them. A well-studied family of transcription factors which is 

required for osteoclastogenesis is NF-κB. Recent findings have revealed that NF-κB p100 

and p105 are both required together for osteoclast differentiation11. Additionally, 

p65/RelA12 and RelB13 have been shown to play complementary roles in osteoclast 

survival and differentiation, respectively. The complex interplay between NF-κB family 
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members in the context of osteoclast differentiation remains to be worked out, but it is 

clear that factors which activate NF-κB are logical targets for the treatment of osteoclast-

mediated disease.  

The IκB Kinase (IKK) Complex is responsible for NF-κB activation downstream 

of RANK. Upstream signals lead to association of two catalytically active kinases, IKKα 

and IKKβ with the non-catalytic member, IKKγ/NEMO. This association is required for 

activation of IKK through phosphorylation of two IKK activation loop serines, via an 

unidentified upstream kinase. IKK then phosphorylates IκB targeting it for proteasomal 

degradation allowing NF-κB to enter the nucleus and regulate gene transcription14-16. We 

and others have shown that inhibition of IKK activation through pharmacological 

inhibition of IKK association with NEMO abrogates osteoclastogenesis and 

inflammatory osteolysis17,18. Furthermore, mice devoid of IKKα19 or IKKβ20,21 

demonstrate an impaired ability for osteoclast development in vitro. In a study comparing 

the relative contributions of the catalytic IKK members to osteoclast development in vivo, 

mice devoid of IKKβ displayed osteopetrosis and resistance to inflammatory bone 

erosion, while mice lacking active IKKα showed no obvious skeletal phenotype20.  This 

finding implicates IKKβ as an important target for therapy in osteoclast-mediated disease.  

We now report that IKKβ is not only necessary for RANKL-mediated 

osteoclastogenesis, but its activation is sufficient for RANK-independent osteoclast 

formation. Using retroviral delivery of constitutively active IKKβ (IKKβSSEE), we reveal 

a signal for differentiation of functional osteoclasts that occurs downstream of RANK. 

IKKβSSEE-but not wild-type IKKβ nor IKKαSSEE-induces osteoclast differentiation from 
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bone marrow, spleen, and fetal liver monocytes. These osteoclasts express all markers for 

normal osteoclasts, they form actin rings, and they resorb bone demonstrating that they 

are indeed authentic osteoclasts. Importantly, RANK is not a requirement since IKKβSSEE 

induces formation of bone resorbing osteoclasts from RANK-null spleen monocytes. 

Furthermore, we show that the classical IKK complex is not a requirement for active 

IKKβ to drive osteoclastogenesis, since IKKβSSEE induces formation of bone-resorbing 

osteoclasts from IKKα null fetal liver monocytes and when NEMO binding is inhibited. 

Finally, adenoviral gene transfer of IKKβSSEE in knees and calvariae of mice is sufficient 

for development of massive osteolysis. In summary, our findings demonstrate for the first 

time that a single activated kinase is sufficient for RANK-independent osteoclast 

differentiation and that active IKKβ alone leads to the development of osteolytic disease. 

These data highlight the centrality of IKKβ in osteoclast differentiation and implicate 

gain-of-function of IKKβ in pathological bone destruction.  

 

RESULTS: 

Constitutively Active IKKβ Induces RANKL-Independent Osteoclast 

Differentiation from Monocytes 

Recently, we and others have demonstrated the necessity for IKKβ in osteoclast 

differentiation 20,21. In an effort to identify mutations in IKKβ which could prevent or 

enhance its ability to rescue osteoclast differentiation in IKKβ knockout (KO) osteoclast 

precursors, we made the surprising observation that introduction of the constitutively 

activated form of IKKβ (IKKβSSEE), but not the wild-type (IKKβWT) form, into wild-type 
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or IKKβ KO bone marrow-derived macrophages induced the formation of TRAP-positive 

osteoclasts in the absence of RANKL administration (Fig. 1A, and Supplementary 

Figures 1 and 2). These cells were morphologically indistinguishable from RANKL-

induced osteoclasts. Levels of IKKβWT and IKKβSSEE protein were comparable (Fig. 1B), 

whereas IKKβSSEE but not IKKβWT was recognized by an antibody specific for IKKβ 

phosphorylated at activation loop serines (Fig. 1C). These observations suggest that the 

kinase domain of IKKβSSEE exists in an active conformation and further assert that 

mutation of IKKβ activation loop serines 177 and 181 to glutamic acid, and not 

overexpression of IKKβ per se, is the factor responsible for the formation of osteoclasts 

in the absence of RANKL.  

 Further characterization showed that IKKβSSEE, but not GFP or IKKβWT, induced 

expression of RelB and c-fos, two transcription factors known to be critical for normal 

osteoclast differentiation13,22. IKKβSSEE but not IKKβWT, also induced the expression of 

β3-Integrin and Cathepsin K, two markers for mature osteoclasts and genes whose 

products are required for osteoclast bone resorption6, 23,  (Fig. 1C). Quantitative real-time 

PCR analysis revealed that IKKβSSEE induced expression of mRNA for calcitonin 

receptor, cathepsin K, TRAP, and β3-integrin, indicating that these cells possess the 

molecular signature for true osteoclasts (Fig. 1D). This notion was further supported by 

experiments showing that, similar to RANKL-induced cells, osteoclasts derived through 

introduction of IKKβSSEE into precursors form actin rings and are capable of resorbing 

artificial (Supplementary Figure  3) and authentic bone matrix (Fig. 1E). Expression of 

IKKβSSEE by RANKL-independent osteoclasts was demonstrated using IKKβSSEE-GFP 
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fusion construct (Fig. 1F).  These data provide evidence that the TRAP+ multinucleated 

cells induced through expression of constitutively active IKKβ in macrophages are 

authentic osteoclasts. Furthermore, the fact that both bone marrow and spleen-derived 

macrophages were susceptible to osteoclast induction by IKKβSSEE argued against the 

theoretical possibility that IKKβSSEE may induce osteoclastogenesis in a paracrine 

fashion. 

 Given the implications of this finding in studying osteoclast signaling in various 

genetic models for osteoclast impairment which result in embryonic lethality, we sought 

to examine whether stimulation of osteoclast differentiation through introduction of 

IKKβSSEE was a phenomenon restricted to precursors obtained from adult tissue. To this 

end, IKKβSSEE– infected but not GFP or IKKβWT– infected fetal liver cells formed 

authentic osteoclasts with visible actin rings, a critical step in osteoclast polarization10, 

which are capable of resorbing dentin slices (Fig. 1E). Actin rings and resorption pits 

were observed in IKKβWT-infected cells only after RANKL administration (Fig. 1E, 

Supplementary Figure 4). These observations reveal that IKKβSSEE is sufficient to 

induce an authentic program for functional osteoclasts from adult and fetal precursor cells 

independent from RANKL. To verify the specificity of the osteoclastogenic effect of the 

phosphomimmetic mutation, we mutated IKKβ activation loop Serines to Alanine 

(IKKβSSAA). This mutation resulted in an activation deficient molecule which failed to 

rescue basal and IL-1-induced osteoclastogenesis in IKKβ KO monocytes (Fig. 1G and 

H). This result indicates that phosphomimmetic mutation of IKKβ activation loop Serines 

is a specific inducer of the osteoclast program.   
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IKKβSSEE Rescues RANK Knockout Osteoclast Phenotype 

Having established that RANKL is dispensable for IKKβSSEE-mediated 

osteoclastogenesis, we sought to determine whether intrinsic RANK signaling played a 

role in this phenomenon. To accomplish this, the RANKL decoy molecule 

osteoprotegerin (OPG-Fc) 10,24 and RANK-null cells were employed. OPG-Fc completely 

inhibited RANKL-induced osteoclastogenesis in IKKβWT -infected macrophages but had 

absolutely no effect on IKKβSSEE–induced osteoclast differentiation indicating that 

IKKβSSEE induces osteoclastogenesis without RANKL (fig. 2A). Furthermore, IKKβSSEE, 

but not IKKβWT nor GFP, induced the formation of osteoclasts from RANK knockout 

cells (Fig. 2B), excluding the possible necessity for an intrinsic effect of RANK. 

Importantly, RANK KO spleen-derived macrophages expressing GFP or IKKβWT failed 

to form osteoclasts in response to RANKL (Fig. 2B). IKKβSSEE- induced osteoclasts were 

also observed to form actin rings and resorb dentin (Fig. 2C). Consistent with this result, 

Western blot revealed that IKKβSSEE introduction into, but not RANKL treatment of, 

RANK KO cells resulted in expression of c-fos and RelB as well as c-src, β3-Integrin, 

and Cathepsin K (Fig. 2D), indicating that IKKβSSEE-induced RANK-KO osteoclasts are 

indeed bona fide osteoclasts which appear molecularly identical to those derived from 

RANKL treatment of wild-type precursors. Furthermore, quantitative real-time PCR 

revealed that IKKβSSEE induces expression of mRNA for TRAP, Calcitonin Receptor, 

Cathepsin K, and β3-Integrin in RANK KO cells (Fig. 2E). These data prove that 

IKKβSSEE functions independent of RANK to induce a program for differentiation of 

functional osteoclasts. 
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IKKβSSEE Acts Independently from the Classical IKK Complex to Drive 

Osteoclastogenesis 

Activation of IKKβ by upstream signals requires its association, via two carboxyl-

terminal tryptophans (W739 and W741), with the non-catalytic IKK member, NEMO25, 

26. We and others have shown that inhibition of this association blocks RANKL-induced 

IKK activity and inhibits osteoclastogenesis and osteolysis17,18. Since IKKβSSEE induces 

osteoclastogenesis independent from RANK signaling, we tested if IKKβSSEE could also 

induce osteoclastogenesis in the absence of NEMO binding. We employed 

pharmacologic and molecular approaches to test this hypothesis. First, we determined 

that while administration of cell-permeable NBD peptides, which inhibit the association 

of IKKβ with NEMO, blocks RANKL-induced osteoclast differentiation, NBD did not 

inhibit osteoclastogenesis in response to transduction of IKKβSSEE (Fig. 3A). Second, 

while compound mutations of W739 and W741 to Alanine in the presence of the S177 

and S181 to Glutamic Acid (IKKβSSEE/WA) prevent IKKβSSEE from binding to NEMO 

(Fig. 3B,C), IKKβSSEE/WA is still capable of inducing RANKL-independent 

osteoclastogenesis from bone marrow macrophages to the same degree as IKKβSSEE 

(figure 3D). This quadruple IKK mutant is expressed properly and retains its kinase 

activity (Fig 3E, F). Collectively, these results solidify the conclusion that IKKβSSEE 

induces RANKL-independent osteoclastogenesis without binding to NEMO, uncoupling 

the mechanism of IKKβSSEE – induced osteoclastogenesis from virtually all known 

upstream stimuli important for osteoclast differentiation and activation. Furthermore, this 

result suggests that in the setting of osteoclast differentiation, IKKβ binding to NEMO is 



 74

only important for IKKβ activation loop phosphorylation, after which point the 

association is not required for IKKβ to induce osteoclastogenesis. 

 Since NEMO association was not required for this phenomenon, we hypothesized 

that IKKβSSEE could induce osteoclastogenesis without formation of the classical IKK 

complex which includes IKKα, a kinase that has been shown required for 

osteoclastogenesis in vitro19. First, we confirmed that IKKα-null fetal liver-derived 

macrophages (FLC) transduced with GFP do not differentiate into osteoclasts (Fig. 4A) 

and fail to express mRNA for the osteoclast markers TRAP, Cathepsin K, and calcitonin 

receptor in response to RANKL stimulation while induction of these markers is normal in 

littermate control cells treated with RANKL (Fig. 4C). However, transduction of IKKα 

knockout FLCs with IKKβSSEE restores osteoclastogenesis even in the absence of 

RANKL administration, rescues the ability of these cells to form normal actin rings and 

to resorb bone (Fig. 4A), and induces expression of typical signaling proteins (Fig. 4B) 

and expression of mRNA for Cathepsin K, TRAP, and Calcitonin Receptor (Fig. 4C). 

These data indicate that formation of the classical IKK complex and the IKKα-mediated 

non-canonical NF-B signaling pathway are not a requirement for IKKβSSEE to stimulate 

RANK-independent osteoclastogenesis. 

 

Requirement for Coordinated NF-κB Activation in IKKβSSEE–Induced 

Osteoclastogenesis 

In an effort to identify the mechanism underlying IKKβSSEE-induced osteoclastogenesis, 

we examined the status of essential NF-B subunits compared with RANKL-treated 
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conditions. We observed elevated total levels of RelB in the cytosol of IKKβSSEE – 

expressing cells at all time points assessed, including non-stimulated, compared with 

GFP and IKKβWT expressing cells. RelB translocation into the nucleus was only slightly 

stimulated by RANKL in the time course of one hour. We also observed reduced levels 

of IB which coincided with a dramatically increased level of RelA protein in the 

nucleus in the absence of RANKL stimulation and at all time points tested in IKKβSSEE 

compared with GFP and IKKβWT expressing cells, indicating that the constitutively 

activated form of IKKβ induces continuous IκBα processing (Fig. 5A). These data 

suggest that IKKβSSEE may act through an NF-κB-dependent mechanism to induce 

RANK-independent osteoclast differentiation. To test this hypothesis, we began by 

challenging RelB knockout cells with IKKβSSEE, since we repeatedly observed induction 

of RelB protein expression in response to IKKβSSEE in macrophages and since a positive 

role for RelB in osteoclast differentiation was recently described13. To our surprise, RelB 

knockout bone marrow-derived macrophages were capable of differentiating into TRAP+ 

osteoclasts which express Cathepsin K in the absence of RANKL-administration when 

expressing IKKβSSEE but not IKKβWT (Fig. 5B,C). Real-time PCR analysis also revealed 

that while induction of expression of mRNA for Calcitonin Receptor and TRAP in 

response to RANKL administration was impaired in RelB knockout cells, IKKβSSEE 

rescued the induction to levels equivalent to that seen in WT cells expressing IKKβSSEE 

(Fig. 5D). These data indicate that IKKβSSEE does not require RelB to induce osteoclast 

differentiation.   
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 Given the observation that IKKβSSEE induces nuclear translocation of RelA and 

induces increased expression of RelB, we further explored the possibility that these NF-

B subunits may act as mediators of the IKKβSSEE effect. However, overexpression of 

RelA, RelB, or a combination of RelA and RelB (Fig. 5E) did not induce osteoclast 

differentiation of bone marrow-derived macrophages. To verify activity of the RelA and 

RelB in this setting, we observed that RelA induced expression of IκBα and that RelA 

and RelB as well as the combination of RelA and RelB induced expression of p100. (Fig. 

5F).Collectively, these results indicate that IKKβSSEE is a specific activator of NF-κB 

capable of inducing osteoclast differentiation and simple ectopic overexpression of RelA 

plus RelB is insufficient to coordinate this effect. 

 Phosphorylation of T-loop residues is a hallmark of activation for many kinases27. 

Given the specificity of IKKβ T-loop activation as a mediator of osteoclast 

differentiation, we asked whether constitutive activation of other kinases through 

phosphomimetic mutations could induce osteoclast differentiation or whether this effect 

is specific to IKKβ. IKKα and IKKβ share significant primary and secondary structural 

homology15, so we reasoned that, in contrast to other less-related kinases, constitutive 

activation of IKKα through phosphomimetic mutation (S176/180E) would be most likely 

to induce an osteoclast program like IKKβSSEE.  We found that when expressed at 

comparable levels (Fig. 5E), IKKβSSEE induces osteoclast differentiation from bone 

marrow macrophages, whereas IKKαSSEE had no such effect (Fig. 5F), demonstrating that 

IKKβ is the specific kinase activator of the osteoclast program.  
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 It has been established that a combination of both NF-κB1/p50 and NF-κB2/p52 

subunits are absolutely required for osteoclast differentiation11. We wished to determine 

whether IKKβSSEE-induced RANK-independent osteoclastogenesis also requires NF-κB1 

and 2. To accomplish this, we transduced control and NF-κB1-/- / NF-κB2-/- (NF-κB 

dKO) spleen macrophages with GFP, IKKβWT, and IKKβSSEE (Fig. 5G) and performed 

TRAP staining for osteoclasts in the absence of RANKL administration. While control 

cells expressing IKKβSSEE produced a significant number of osteoclasts capable of 

resorbing bone coinciding with expression of mRNA for Cathepsin K, no osteoclasts 

were observed in NF-κB dKO cells (Fig. 5H,I) despite constitutive IκBα processing 

(Supplementary Figure 5). These results indicate that IKKβSSEE-mediated induction of 

osteoclastogenesis requires NF-κB-mediated gene regulation. 

  

Constitutively Active IKKβ is Sufficient for the Establishment of in vivo Osteolysis 

To determine the relevance of active IKKβ to osteoclastogenesis and osteolysis in vivo, 

we performed gene transfer experiments in mice. We injected mice with adenovirus 

expressing IKKβSSEE or lacZ supracalvarially or intra-articularly into the knee joint 

(Supplementary Figure 6). While lacZ did not induce an osteoclast response in either 

calvariae or knees, IKKβSSEE stimulated a massive local osteolytic response in both 

settings characterized by bone destruction and the appearance of osteoclasts at sites of 

bone erosion (Fig. 6A,B). To support the role of kinase activity of IKKβ in mediating this 

effect, joints injected with adenoviral IKKβSSEE showed intense immunostaining for 

phosphorylated IκBα at sites of synovial inflammation and osteoclastic articular bone 
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erosion, while LacZ-infected knees stained negatively for articular osteoclasts and 

phosphorylated IκBα (Fig. 6B).       

 

DISCUSSION: 

We provide novel evidence that osteoclast differentiation from monocyte 

progenitors can be triggered by an autonomous intracellular signal downstream, yet 

independent of the RANK receptor. The IKK complex has been implicated in RANKL-

induced osteoclast differentiation17-21, but the sufficiency of this single enzyme to 

independently induce osteoclastogenesis is surprising. The fact that constitutively 

activated IKKβ induces osteoclast differentiation raises several questions. First and 

foremost, phosphorylation of IKKβ is not unique to the RANKL/RANK signaling 

complex, so why do other receptor signaling complexes which activate IKKβ fail to 

induce osteoclast differentiation? The answer to this question, most likely, lies in the 

tuning of IKK-mediated NF-κB activation by RANK. It has recently been demonstrated 

that at the level of promoter binding and gene activation, the timing of NF-κB oscillations 

in concert with AP-1 determines transcriptional output28. These oscillations are 

differentially regulated by TNF and RANKL, despite their activation by both cytokines, 

resulting in transcription at different promoters. Our data predicts that NF-κB activation 

through IKKβ in monocyte progenitors is more sustained and prolonged by RANKL than 

other cytokines and that prolonged activation of IKK/NF-κB results in transcription at 

osteoclast-specific gene promoters. Second, in light of its osteoclastogenic function, it is 

interesting to consider how closely IKKβSSEE mimics the molecule when activated 
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through NEMO association-dependent phosphorylation. It is possible that IKKβSSEE takes 

on functions not performed by IKKβ in normal settings. In support of this speculation, we 

observe that infection of monocytes with IKKβSSEE results in p100 processing to p52, 

which is usually considered to be a function of IKKα29. Perhaps atypical functions like 

this contribute to its osteoclastogenic activity. Nevertheless, the ability of IKKβSSEE to 

induce the osteoclast is entirely dependent on kinase activity, since mutation of the ATP-

binding lysine to methionine in the kinase domain completely abrogated the IKKβSSEE 

osteoclastogenic function (Supplementary Figure 7).  Another explanation of the high 

specificity with which active IKKβSSEE prompts osteoclastogenesis in monocytes despite 

the fact that this kinase can be activated by numerous stimuli in other systems devoid of 

osteoclasts, can be attributed to the fact that upstream ligands prompt complex 

stimulatory and inhibitory circuits to modulate their responses. These complex circuits 

emanating from ligand/receptor interactions are absent from the IKKβSSEE response, 

suggesting that the immediate IKK response is induction of osteoclastogenesis whereas 

upstream receptor-based regulatory signals induced by various stimuli, such as TNF, 

lipopolysaccharide, IL-1, etc, provide networks that counteract the IKKβSSEE 

osteoclastogenic effect. 

In addition to IKKβ, several kinases have been demonstrated to play a role in 

osteoclast differentiation including ERK and p38 MAP Kinases30, PI3K31, Akt32, c-Src33, 

PKC34, and JNK35. Many of these kinases have been demonstrated to be essential to 

osteoclastogenesis, but it has been difficult to sort out their individual contributions to 

differentiation for two main reasons. First, survival defects mask the effect of null 
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mutations on differentiation. Second, no kinase has ever been studied for its sufficiency 

to activate the osteoclast program. Our discovery that constitutively activated IKKβ 

stimulates osteoclast differentiation led us to question the uniqueness of IKKβ in 

accomplishing this function. To address this, we mutated IKKα to create a constitutively 

active mutant with significant structural and sequence similarity to IKKβSSEE. This 

molecule was insufficient for osteoclastogenesis, which led us to conclude that IKKβ is 

uniquely situated to stimulate the osteoclast program. In this regard, it is interesting that 

IKKβSSEE did not require IKKα or NEMO, its members in the traditional IKK complex 15. 

This observation strongly suggests that the function of IKKα and NEMO in the setting of 

osteoclast differentiation is to facilitate activation of IKKβ. 

It is important to consider the extent to which IKKβSSEE-induced osteoclasts 

resemble those induced by RANKL. With regard to their ability to resorb bone, they are 

indeed bone fide osteoclasts. This is supported by the fact that the same transcription 

factors which are important for RANKL-induced osteoclast differentiation are also 

upregulated by IKKβSSEE, including RelB, c-Fos, and nuclear p65/RelA. Furthermore, our 

analysis revealed that IKKβSSEE potently induced expression of markers for RANKL-

induced osteoclasts, TRAP, Cathepsin K, Calcitonin Receptor, and β3-Integrin. In 

addition to these, preliminary mRNA expression array revealed significant upregulation 

of DC-STAMP, OSCAR, as well as MMP9, further validating the IKKβSSEE-induced 

osteoclast phenotype. 

Differentiation of the osteoclast requires NF-κB11. To determine whether the 

phenotype we observed similarly requires NF-κB we tested the ability of IKKβSSEE to 
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drive osteoclastogenesis in NF-κB1/2 double knockout spleen monocytes, in which it 

failed. In addition to NF-κB, other transcription factors may play a role in the IKKβSSEE 

effect. c-Fos has been implicated downstream of NF-κB for osteoclastogenesis, and in the 

NF-κB1/2 double knockout, failure of c-Fos upregulation in response to RANKL has 

been shown to lead to impaired differentiation36. We saw no defect in c-Fos upregulation 

by IKKβSSEE in the NF-κB1/2-null setting meaning that c-Fos induction is not sufficient 

for osteoclastogenesis (Unpublished data, J.O. and Y.A.). Therefore, NF-κB must serve 

functions other than c-Fos upregulation which are necessary for osteoclast differentiation. 

Identification of these targets will lead to a better understanding of NF-κB in the 

osteoclast.  

 Another puzzling question prompted by our data regards the mechanism through 

which IKKβSSEE induces formation of the Actin ring. It is known that complicated 

signaling at the membrane of osteoclasts associated with integrin stimulation ultimately 

results in formation of the actin ring which allows formation of the sealing zone and bone 

resorption7,37. Our data suggests that the initial requirements for actin ring formation are 

transcriptional and are downstream of IKK, since RANK knockout cells can be induced 

to form actin rings and resorb bone when expressing IKKβSSEE. In this setting, integrin 

signaling at the bone-osteoclast interface most likely leads to actin organization. Our 

discovery provides a direct approach to identify the essential components for 

establishment of the actin ring. 

NF-κB is a critical regulator of the inflammatory cellular program38, and 

inflammatory cytokines have been linked to enhanced osteoclast function39,40. Since 
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TNF-α has been shown to induce osteoclast differentiation in certain settings41, we sought 

to determine whether this inflammatory factor was required for IKKβSSEE to induce 

osteoclast differentiation.  Using IKKβSSEE-transduced TNF-α knockout bone marrow 

monocytes, we found that TNF-α  is not required for IKKβSSEE to accomplish its effect in 

osteoclast differentiation (Unpublished data, J.O. and Y.A.). Therefore, the mechanism 

we observe for IKKβSSEE- induced osteoclastogenesis is uncoupled from inflammatory 

signaling with respect to TNF.  However, IKKβSSEE is capable of inducing secretion of 

TNF by wild-type cells suggesting that this kinase may modulate osteoclastogenesis as 

well as inflammatory osteolysis at varying levels. 

Consistent with our in vitro findings, adenoviral gene transfer experiments 

revealed that IKKβSSEE is also sufficient for the establishment of osteolysis in vivo. The 

clinical significance of our findings is highlighted by our observations that IKKβSSEE-

induced osteoclastogenesis is refractory to intervention with OPG and deletion of 

RANK/RANKL. In this regard, a number of conditions in human patients are associated 

with heightened bone turnover in the setting of inflammation for which a cause has not 

been identified42. Given the potency with which activated IKKβ induces osteoclast 

appearance and bone destruction in this model, it is important to consider IKKβ gain-of-

function as an independent cause and a target in therapy for these and all conditions of 

inflammatory bone destruction. Further, given the potency at which IKKβSSEE induces 

bone resorption, this molecule positions itself as a strong therapeutic strategy for 

osteopetrotic diseases. 
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In summary, our data highlight the critical role of IKKβ in osteoclast 

differentiation and osteolysis. We have found that constitutively active IKKβ unfolds the 

osteoclast program in the absence of upstream signals. This result raises the possibility 

that other kinase effectors of RANK in osteoclast differentiation may be involved in 

IKKβ activation. We report the first evidence of RANK-independent osteoclast 

differentiation that is induced through a single kinase, and we propose that gain-of-

function in human IKKβ may lead to a subset of genetic diseases resulting in bone 

destruction which would be refractory to treatments targeting proximal RANK and TNF 

signaling molecules. 

 

METHODS: 

Reagents. Antibodies against IKKβ, IKKα, IκBα, NEMO, Actin, RelA, RelB, c-Fos, c-

Src, β3-Intergin, Histone H1, and horseradish peroxidase (HRP)-conjugated secondary 

antibodies were from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Antibodies 

against phospho- IKKβ, p100, and p105 were from Cell Signaling Technologies, Inc. 

(Danvers, MA). Antibodies against Flag epitope were from Sigma (St. Louis, MO). 

Antibody against V5 epitope was from Novus (Littleton, CO). Antibody against 

Cathepsin K was from Millipore/Chemicon (Temecula, CA). HRP-conjugated secondary 

antibody for immunohistochemistry was from Vector Laboratories (Burlingame, CA) 

Cytokines were purchased from R&D Systems (Minneapolis, MN). All other chemicals 

were purchased from Sigma (St. Louis, MO) unless otherwise indicated.  
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Animals and Cells. All mice were housed in a controlled barrier facility at Washington 

University (St. Louis, MO). TRAP Cre mice 43 were from Dr. Roodman (University of 

Pittsburgh, PA). Floxed IKKβ 44 mice were from Dr. Pasparakis (University of Cologne, 

Germany). TRAP Cre floxed/floxed IKKβ mice were generated by crossing TRAP Cre 

transgenic mice with floxed IKKβ mice. IKKα heterozygous mice 19 were obtained from 

Dr. Akira (Osaka University, Japan). RelB KO 45 and control bone marrow was from Dr. 

Novack (Washington University, St. Louis, MO). RANK KO 46 and control spleens as 

well as NF-κB double KO 36 and control spleens were provided by Dr. Xing (University 

of Rochester Medical Center, N.Y.)  For in vivo experiments, wild-type C57BL/6 mice at 

5-6 weeks of age were used.  

 

Plasmids. pMxs retroviral expression plasmid was from Dr. T. Kitamura (University of 

Tokyo, Japan). Mouse cDNA for IKKα was kindly provided by Dr. Kenneth Marcu 

(Stony Brook, NY). IKKβ and RelB cDNA were purchased from ATCC. RelA cDNA 

was provided by Dr. C. Sasaki (NIA, Baltimore, MD). All expression constructs were 

subcloned into pMxs using standard techniques. The following mutations were generated 

using the QuickChange II Site Directed Mutagenesis Kit (Stratagene, La Jolla, CA) with 

primer pairs in parentheses: IKKβSSEE (IKKβ_S177_181E_f, 

GAGCTGGATCAGGGCGAACTGTGCACGGAATTTGTGGGGACTCTGC, and 

IKKβ_S177_181E_r, 

GCAGAGTCCCCACAAATTCCGTGCACAGTTCGCCCTGATCCAGCTC). Note that 

the constitutive activating effect of this mutation of IKKβ has been established 
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previously47,48. IKKβSSAA (IKKβ_S177_181A_f, 

GAGCTGGATCAGGGCGCTCTGTGCACGGCATTTGTGGGGACTCTGC, and 

IKKβ_S177_181A_r, 

GCAGAGTCCCCACAAATGCCGTGCACAGAGCGCCCTGATCCAGCTC); 

IKKβWWAA (IKKβ_W739_741A_f, 

GACTCTAGACGCGAGCGCGTTACAGATGGAGGATG, and IKKβ_W739_741A_r, 

CATCCTCCATCTGTAACGCGCTCGCGTCTAGAGTC); IKKβKM (IKKβ_K44M_f, 

GTGAACAGATCGCCATCATGCAATGCCGACAGGAGC, and IKKβ_K44M_r, 

GCTCCTGTCGGCATTGCATGATGGCGATCTGTTCAC); IKKαSSEE  

(IKKα_S176_180E_f, 

GATGTTGATCAAGGAGAGCTCTGTACAGAATTTGTGGGAACATTGC, and 

IKKα-S176_180E_r, 

GCAATGTTCCCACAAATTCTGTACAGAGCTCTCCTTGATCAACATC).  

 

Generation of Bone Marrow, Spleen, and Fetal Liver-Derived 

Monocyte/Macrophages. Whole marrow was flushed from long bones into α- Minimum 

Essential Medium (MEM). Spleens and d18.5 fetal livers were crushed into cell 

suspensions in α-MEM and were centrifuged at 453 rcf. Cell pellets were resuspended in 

whole media (α-MEM with 1X penicillin/streptomycin, 10% heat-inactivated fetal bovine 

serum (FBS)). Monocytes/ macrophages were produced by growing cell suspensions in 

the presence of 10 ng/ml M-CSF. Monocytes/ macrophages were allowed to proliferate 
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for 3 days at 37 oC in 5% CO2 at which point they were infected with retrovirus. See 

below. 

 

Generation and Use of Retrovirus. The use of Plat-E retrovirus packaging cells stably 

expressing retroviral structural proteins gag-pol and env for transient production of high 

titer retrovirus was described previously49. Briefly, 8µg pMx vectors expressing our gene of 

interest were transfected into 5 million plat-E cells (grown in DMEM supplemented with 10% 

FBS, 10ng/ml M-CSF, and penicillin/streptomycin) using Fugene 6 (Roche, Palo Alto, CA) 

according to manufacturer’s instructions. Twenty-four hrs post transfection, media was 

exchanged to remove transfection reagent. Twenty-four and 48 hrs post media exchange, 

supernatant was collected and pooled. In parallel, monocyte/macrophage cultures from bone 

marrow, spleen, or fetal liver were developed on petri dishes, washed with PBS, and infected with 

retrovirus in infection mix (50% virus supernatant, 50% αMEM containing 10% FBS, 10ng/ml 

M-CSF, penicillin/streptomycin, and 4µg/ml hexadimethrine bromide). Twenty-four hrs post 

infection, cells were selected in αMEM containing 10% FBS, 10ng/ml M-CSF, 

penicillin/streptomycin, and 2µg/ml puromycin for 72 hrs, at which point selection media was 

removed, cells were washed, and grown for 24 additional hrs without puromycin. At this point, 

cells were lifted, counted, and plated for downstream experiments. Of note, IKKβSSEE-expressing 

cells fused, spread, and assumed osteoclast morphology within 30 minutes of plating on a tissue 

culture-treated surface, indicating that gene expression which occurred during viral transduction 

and selection contributed to osteoclast differentiation. A representative image depicting this 

phenomenon 30 min. post-plating is depicted in supplementary figure 2.   
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In vitro Osteoclastogenesis. IKKβSSEE expressing cells were cultured in 10ng/ml M-

CSF, while GFP and IKKβWT-expressing cells were cultured in 10ng/ml M-CSF plus 

100ng/ml RANKL for 4 days. IKKβSSEE induced spontaneous osteoclastogenesis in the 

absence of RANKL, while RANKL was required for osteoclasts to form from 

monocyte/macrophages expressing GFP or IKKβWT. At this point, cells were fixed and 

TRAP stained using the Leukocyte Acid Phosphatase Kit (Sigma, St. Louis, MO). TRAP-

positive cells with three or more nuclei were scored as osteoclasts. 

 

Inhibitor Studies. For inhibition of osteoclastogenesis, cells were treated with 100ng/ml 

OPG/Fc Chimera (R&D Systems, Minneapolis, MN), 25µM TAT-NBD 

(YGRKKRRQRRR-G-TTLDWSWLQME) or 25µM TAT-mutant NBD 

(YGRKKRRQRRR-G-TTLDASALQME) during the entire course of retroviral 

transduction and in vitro osteoclast differentiation. The efficacy of TAT-NBD in 

inhibition of RANKL-induced osteoclastogenesis has been established previously 17.       

 

RNA Isolation and cDNA Production. RNA was isolated from macrophage or 

osteoclast cultures using the Total RNA Isolation Mini Kit (Agilent Technologies, Santa 

Clara, CA) according to manufacturer’s instructions. Reverse transcription was 

performed as follows: 1.0 μg RNA and 1.0 μg random hexamer primer in 10  μl nuclease-

free deionized H2O in PCR tubes were heated to 70 oC for 5 minutes, cooled to 42 oC, and 

set on ice. The following components were then added at the indicated amounts or 

concentrations for a total reaction volume of 20 μl: 1x AMV RT buffer (Roche, Palo 
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Alto, CA), 40U RNAseIn (Promega, San Luis Obispo, CA), 1.25 mM dNTPs, 5 mM 

Sodium Pyruvate, 5 U Reverse Transcriptase Enzyme, AMV (Roche). To produce 

cDNA, tubes were placed in a thermocycler programmed as follows: 42 oC for 60 

minutes, 50 oC for 10 minutes, and 95 oC for 5 minutes. 

 

Quantitative Real-Time PCR. Triplicate samples of 4 μl cDNA product (5X diluted), 

10 μl Sybr Green PCR Master Mix (Applied Biosystems, Inc. Foster City, CA), 0.1 μl 

each of 10 μM forward and reverse primer stocks, and 6 μL nuclease-free deionized H2O 

were subjected to real-time PCR according to the following program in an ABI 7300 Real 

Time PCR System: 50 oC for 2 minutes, 95 oC for 10 minutes, (95 oC for 15 seconds, 60 

oC for 1 minute) x 40 cycles. Results were analyzed using AB RQ Study Software. Real 

Time PCR primers were designed using Primer Express Software (Applied Biosystems, 

Inc.) mouse RANK Forward 5’-CTGCCTCCTGGGCTTCTTCT-3’, mouse RANK 

Reverse 5’-CCCCTGGTGTGCTTCTAGCT-3’, mouse TRAP Forward 5’-

CGACCATTGTTAGCCACATACG-3’, mouse TRAP Reverse 5’- 

CACATAGCCCACACCGTTCTC-3’, mouse Calcitonin Receptor Forward 5’-

CAAGAACCTTAGCTGCCAGAG-3’, mouse Calcitonin Receptor Reverse 5’-

CAAGCACGCGGACAATGTTG-3’, mouse Cathepsin K Forward 5’- 

GGAAGAAGACTCACCAGAAGC-3’, mouse Cathepsin K Reverse 5’- 

GTCATATAGCCGCCTCCACAG-3’, mouse β3 Integrin Forward 5’- 

TTACCCCGTGGACATCTACTA-3’, mouse β3 Integrin Reverse 5’- 

AGTCTTCCATCCAGGGCAATA-3’, mouse GAPDH Forward 5’-
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CTTCACCACCATGGAGAAGGC-3’, mouse GAPDH Reverse 5’-

GACGGACACATTGGGGGTAG-3’.  

 

Western Blotting. Equivalent amounts of total cell protein were boiled in the presence of 

an equal volume of 2X SDS sample buffer consisting of (0.5 M Tris-HCl, pH 6.8, 10% 

(w/v) SDS, 10% glycerol, 0.05% (w/v) bromphenol blue, 3% β-Mercaptoethanol (v/v), 

and distilled water) for 5 min. and subjected to electrophoresis on 8–10% SDS-PAGE. 

Proteins were transferred to nitrocellulose membranes using a semi-dry blotter (Bio-Rad, 

Hercules, CA) and incubated in blocking solution (10% skim milk prepared in phosphate-

buffered saline containing 0.05% Tween 20) to reduce nonspecific binding. The 

membranes were washed with PBS/Tween buffer and exposed to primary antibodies (16 

h at 4 oC), washed (4 x 15 min.), and incubated with the appropriate secondary 

horseradish peroxidase-conjugated antibodies (1 h at room temperature). The membranes 

were washed extensively (4 X 15 min.), and an ECL detection assay was performed 

following the manufacturer’s instructions. 

 

Co-Immunoprecipitation. Cells expressing GFP, flag IKKβWT, flag IKKβWA, flag 

IKKβSSEE, or flag IKKβSSEE/WA were lysed in immunoprecipitation (IP) buffer (10mM 

Tris pH 7.4, 150mM NaCl, 0.5% NP-40 (IGEPAL) 1mM EDTA, 1mM NaF, 1mM 

PMSF, 1mM Na3VO4, and 1X protease inhibitor cocktail) at 4oC. Protein was measured 

by BCA Assay (Pierce, Rockford, IL) and normalized. Non-specific binding was 

removed by rocking total cell lysate at 4oC with GammaBind G Sepharose beads (GE 
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Lifesciences) and 100ng normal mouse IgG for 2 hrs at 4oC. Beads and normal antibody 

were centrifuged and supernatant was incubated with GammaBind G Sepharose beads 

and 1 µg/ml mouse anti-Flag M2 antibody (Sigma, St. Louis, MO) at 4oC for 16 hrs. 

Immune complexes were centrifuged with beads. Supernatant was removed by vacuum 

suction, and 2X sample buffer (0.5 M Tris-HCl, pH 6.8, 10% (w/v) SDS, 10% glycerol, 0.05% 

(w/v) bromphenol blue, 3% β-Mercaptoethanol, and distilled water) was added to beads which 

were boiled for 5 minutes to elute the complex components.   

 

In vitro Kinase Assay. Plat E cells expressing indicated flag-tagged IKKβ constructs 

were lysed in IP buffer. IKKβ was immunoprecipitated with M2 antibody, washed twice 

with IP buffer, once with kinase assay buffer (Cell Signaling Technologies Danvers, 

MA), and incubated for 30 minutes at 30oC in 30 µl kinase assay buffer with 1µg GST-

IκBα, 2.5mM MgCl2, and 16µM ATP. Reaction was terminated with 30 µl reducing 

sample buffer. Samples were analyzed by Western blot.  

 

Bone Resorption Assays. Osteoclasts were cultured on 5mm2 100µm thick dentin slices 

for 5 days in a 48-well tissue culture plate. To visualize resorption pits and tracks, slices 

were exposed to 0.5N NaOH, and cells were removed by mechanical agitation. Slices 

were washed in PBS three times and stained with 0.1% toluidine blue (w/v) in PBS for 10 

minutes. Stained slices were rinsed with PBS and blotted dry, and pits were visualized by 

light microscopy. For assessment of resorption of artificial bone matrix, macrophages or 

osteoclasts were cultured on BD Biocoat Osteologic tissue culture slides (BD 
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Biosciences, San Jose, CA) for 4 days, and resorption areas were determined as clear 

areas in the osteologic matrix as visualized by light microscopy. 

 

Actin Ring Staining. Macrophages expressing IKKβSSEE cultured on dentin in M-CSF 

(IKKβSSEE-induced osteoclasts) or expressing GFP or IKKβWT cultured on dentin in M-

CSF or M-CSF + RANKL were fixed in 4% paraformaldehyde in PBS for 5 minutes at 

room temperature. Fixed macrophages or osteoclasts on dentin slices were washed with 

PBS three times and permeabilized in 0.2% Triton X 100 in PBS for 10 minutes at room 

temperature. Dentin slices were washed three times with PBS and then incubated in a 

1:40 dilution of Alexa Fluor-488 phalloidin (Invitrogen Molecular Probes, Eugene, OR) 

for 10 minutes in a dark humidified chamber at room temperature. Slices were washed 

with PBS and mounted onto microscope slides for visualization of actin rings with 

fluorescent microscopy. 

   

Generation and Use of Adenovirus. Adenovirus expressing IKKβSSEE was generated by 

subcloning from the pMx parental vector into Ad5 CMV K-NpA Shuttle using EcoR1 

and Not1 restriction endonucleases (New England Biolabs, Ipswich, MA). 

Recombination50, production and characterization (pfu/particle) of virus was provided by 

Viraquest, Inc. (North Liberty, IA). For local in vivo gene transfer in mice, 1 x 107 pfu of 

virus diluted in 10µl sterile PBS were injected intra-articularly into the knee joint 

capsule. Contralateral knees on the same mouse served as experimental (Ad IKKβSSEE) 

and control (AdntLacZ). For calvarial osteolysis, 1 x 107 pfu of virus diluted in 50µl 
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sterile PBS were injected supracalvarially. Seven days post-injection, knees and calvariae 

were fixed, decalcified, and analyzed histologically for osteoclasts and osteolysis. In 

calvarial injection experiment, RANKL and LPS were used as positive controls for 

osteolysis. 1µg mouse RANKL diluted in 50µl sterile PBS or 20µg LPS (055:B5 Sigma, 

St. Louis, MO) diluted in 50µl sterile PBS were injected over calvaria. LPS and RANKL 

were injected every-other-day. 

 

X-Gal Staining. Bones were incubated at 37o C for 15 minutes in staining buffer 

consisting of 2mM MgCl2, 5mM K3FE(CN)6, 5mM K4FE(CN)6, and 1mg/ml X-Gal in 

PBS, pH 7.4. 

 

Histology. Long bones and calvariae were collected from mice and fixed in 10% buffered 

formalin for 24 hours. Bones were then decalcified for 7 days in decalcification buffer 

consisting of (14% (w/v) EDTA, H4NOH pH 7.2), dehydrated in graded ethanol (30%-

70%), cleared through xylene, and embedded in paraffin. Paraffin sections were stained 

histochemically for TRAP to visualize osteoclasts or H&E to assess tissue architecture. 

Immunohistochemistry was performed according to antibody manufacturer’s instructions 

for immunoperoxidase staining. 

 

Microscopy. Cells and histological sections were imaged under white or ultraviolet light 

on an inverted microscope (Olympus IX-51). For f-actin visualization, ultraviolet light 
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was passed through a FITC filter cube to localize green phalloidin. Digital images were 

captured using a CCD camera (Olympus DP70, 12 mega-pixel resolution). 
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FIGURE LEGENDS 

Figure 1. IKKβSSEE Induces bona fide Osteoclasts from Bone Marrow, Spleen, and 

Fetal Liver Progenitors 

(A) Bone marrow macrophages from IKKβ-KO and littermate mice were infected with 

retroviruses expressing GFP, IKKβWT or IKKβSSEE and cultured with M-CSF alone or M-

CSF+RANKL for 4 days. Cells were fixed and TRAP stained to determine 

osteoclastogenesis. Arrows denote osteoclasts. Lower panel, quantification; flx, loxP 

flanked.  

(B) Expression levels of IKKβWT and IKKβSSEE in control and IKKβ KO macrophages 

were measured by Western blot. Expression of endogenous NEMO is shown as control.  

(C) Western blot for expression of NF-κB molecules and osteoclast markers in total cell 

lysates of spleen cells infected with indicated viruses. Actin expression indicates equal 

loading. OC+, osteoclast positive control total cell lysate. (B and C) pMx, retroviral 

expression vector.   

(D) Relative expression of mRNA for osteoclast markers assessed by quantitative real-

time PCR. GAPDH served as internal standard for cDNA normalization. Values are 

expressed as relative quantity plus the standard error of the mean.  

(E) Fetal liver cells (FLCs) were plated on dentin slices to determine bone resorbing 

activity. Slices were stained with toluidine (Tol.) blue and phalloidin to visualize 

resorption tracks (darker staining areas) and actin ring formation, respectively. Cells were 

cultured in M-CSF alone except where indicated. Scale bars indicate magnification of 

actin images. 
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(F) Spleen macrophages infected with retrovirus expressing IKKβSSEE-EGFP Fusion 

cultured in M-CSF were visualized by fluorescent microscopy (lower panel) and then 

TRAP stained to visualize osteoclasts (upper panel). (G) Control and IKKβ KO 

monocytes were transduced with viruses expressing GFP or the indicated forms of IKKβ. 

These cells were treated with M-CSF and RANKL and TRAP stained to visualize 

osteoclasts. (H) Western blot to demonstrate expression of the indicated IKKβ constructs. 

 

Figure 2. IKKβSSEE-induced Osteoclastogenesis does not Require RANKL/RANK 

Upstream Signals  

(A) Bone marrow macrophages were cultured in the presence of M-CSF alone or in the 

presence of M-CSF plus RANKL each in the absence or presence of OPG/Fc chimera. 

IKKβSSEE- expressing cells were cultured with M-CSF in the absence or presence of 

OPG/Fc chimera. Cells were TRAP stained to visualize osteoclasts.  

(B) WT, RANK +/?, or RANK-/- spleen-derived macrophages were infected with a 

retrovirus expressing GFP, IKKβWT, or IKKβSSEE. These cells were cultured in the 

presence of M-CSF alone or in combination with RANKL for four days and TRAP 

stained to visualize osteoclasts. 

(C) WT and RANK-/- spleen-derived macrophages were infected with a retrovirus 

expressing IKKβWT or IKKβSSEE. These cells were cultured in the presence of M-CSF 

alone or in combination with RANKL for four days on dentin and were stained with 

phalloidin or toluidine (Tol.) blue to visualize actin rings and resorption pits, 

respectively. Scale bars indicate relative magnification of images. 
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(D) WT (+/+) or RANK KO (-/-) spleen cells infected with the indicated viruses were 

cultured in the presence of M-CSF or M-CSF + RANKL (RL), and total cell lysates were 

analyzed by Wesern blot for expression of indicated proteins. Lower panel, quantitative 

real-time PCR analysis to verify absence of RANK mRNA expression in RANK KO 

cells. (E) Relative expression of mRNA for osteoclast markers assessed by quantitative 

real-time PCR. GAPDH served as internal standard for cDNA normalization. Values are 

expressed as relative quantity plus the standard error of the mean. 

 

Figure 3. IKKβSSEE Induces Osteoclastogenesis Independent from NEMO 

Association 

(A) Bone marrow macrophages expressing IKKβSSEE were cultured in the presence of M-

CSF without NBD or with NBD or mutant NBD (mNBD). Cells expressing IKKβWT 

were treated with RANKL to induce osteoclast differentiation in the absence of NBD or 

in the presence of NBD or mNBD. Cells were TRAP stained for osteoclasts. Right panel, 

quantification.  

(B) Schematic diagram of IKKβ constructs utilized in (C and D). Kinase, kinase domain; 

LZ, leucine zipper; HLH, helix-loop-helix; NBD, NEMO-binding domain. Not shown to 

scale.  

(C) Co-immunoprecipitation depicting ability of Tryptophan 739 and 741 to Alanine 

mutations to prevent binding of IKKβWT and IKKβSSEE to NEMO.  

(D) TRAP stain of cells expressing GFP or the IKKβ constructs shown in (B).    

(E) Luciferase assay for NF-κB induction by constructs shown in (B). 



 104

(F)  Kinase assay for constructs shown in B. p-IκBα, phosphorylated IκBα. 

 

Figure 4. IKKβSSEE Induction of Osteoclasts does not Require IKKα 

(A) WT and IKKα-null FLCs expressing GFP were cultured with M-CSF in the absence 

or presence of RANKL, or IKKβSSEE with M-CSF alone. TRAP staining for 

osteoclastogenesis; phalloidin staining for actin ring formation; toluidine (Tol.) blue 

staining for dentin resorption. Scale bars indicate magnification of actin image. (B) 

Western blot for expression of selected NF-κB pathway markers. Actin blot shows equal 

loading. OC+, osteoclast positive control. n.s., non-specific band. (C) Relative expression 

of mRNA for selected markers of osteoclastogenesis assessed by quantitative real-time 

PCR. Levels normalized to GAPDH. 

 

Figure 5. IKKβSSEE Induction of Osteoclastogenesis Requires Coordinated NF-κB 

Signaling  

(A) Western blot for expression levels of key NF-κB signaling molecules in total cell 

lysates (left panel) and cytosol and nuclear fractions (right panel) of spleen-derived 

macrophages expressing GFP, IKKβWT, or IKKβSSEE  not treated or treated with RANKL 

for the indicated times.  

(B) TRAP stain of WT and RelB KO bone marrow macrophages expressing IKKβSSEE 

cultured in the presence of M-CSF without RANKL.  

(C) Western blot for the indicated proteins in WT and RelB KO cells expressing GFP, 

IKKβWT, or IKKβSSEE cultured with M-CSF. OC+, osteoclast positive control.  
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(D) Relative mRNA expression of selected osteoclast markers in WT and Rel B KO cells 

treated with RANKL or expressing IKKβSSEE not treated with RANKL.  

(E and F) Protein expression and osteoclastogenesis, respectively, were measured 

following expression of GFP, IKKβWT, IKKβSSEE, IKKαSSEE, p65(RelA), RelB, or 

p65+RelB in bone marrow macrophages cultured with M-CSF.  

(G-I) Control or NF-κB double knockout (dKO) spleen cells transduced with GFP, 

IKKβWT, or IKKβSSEE were analyzed to determine (G) protein expression levels, (H) 

osteoclastogenesis and bone resorption, and (I) Cathepsin K mRNA expression. Cells in 

(I) were cultured in the presence of M-CSF without RANKL. 

 

Figure 6. Active IKKβ is Sufficient for Osteolysis  

(A) Images of TRAP stained histological slides of calvarial bones of mice injected 

supracalvarially with adenovirus expressing lac Z (Ad LacZ) or IKKβSSEE (Ad 

IKKβSSEE), LPS, or RANKL. Arrows indicate areas of osteoclastic bone erosion. Scale 

bars, 200µm.  

(B) Images of H&E, TRAP, and Immunoperoxidase-phospho-IκBα stained histological 

slides of knees of mice injected intra-articularly with adenovirus expressing lac Z (Ad 

LacZ) or IKKβSSEE (Ad IKKβSSEE). Arrows indicate areas of pathological osteoclastic 

bone erosion at the articular surface (osteoclasts stain pink). Asterisks denote areas of 

inflammatory cell infiltrate into the synovial space. Arrowheads show positive stain for 

phosphorylated IκBα, indicative of active IKKβ. Objective used for capturing image is 

labeled above panels. Scale bars, 200µm. 
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Supplementary Figure 1. High Resolution Image Demonstrating RANKL-Independent 

Osteoclastogenic Effect of IKKβSSEE in the Absence of Endogenous IKKβ. In an 

independent experiment from figure 1A of main text, IKKβ KO cells were retrovirally 

transduced with GFP, IKKβWT, or IKKβSSEE and were either cultured in M-CSF or M-

CSF + RANKL. Cells were TRAP stained to visualize osteoclasts (indicated with 

arrows).   

 

Supplementary Figure 2. IKKβSSEE-Transduced cells 30 min. Post-Plating. Image 

capturing the phenomenon of the assumption of osteoclast morphology (arrows) by 

IKKβSSEE but not GFP - expressing cells 30 minutes after plating on a tissue culture 

surface. This observation indicates that gene expression which occurs during the 

retroviral infection and selection process is responsible for osteoclast differentiation.  

 

Supplementary Figure 3. Resorption of Artificial Matrix by Osteoclasts Generated by 

Expression of IKKβSSEE. Spleen cells expressing IKKβWT and IKKβSSEE  were grown in 

M-CSF alone or in combination with RANKL and were TRAP stained or plated on 

osteologic (Osteo.) substrate to assess osteoclast activity. Clear areas indicated by 

arrowheads represent osteoclastic resorption of substrate. 
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Supplementary Figure 4. High Resolution Image of Resorption Pits Generated by 

RANKL and IKKβSSEE – Induced Osteoclasts. Monocytes were retrovirally transduced 

with either IKKβWT or IKKβSSEE. Cells were then plated on dentin slices and grown in the 

presence of M-CSF (IKKβSSEE) or M-CSF + RANKL (IKKβWT) for 5 days. Slices were 

stained with toluidine blue and visualized by light microscopy. This high resolution 

image depicts the regular pattern of the dentin slice best visualized when not resorbed 

(IKKβWT in M-CSF). Arrows indicate resorption pits and tracks which appear as dark 

staining irregularities in the dentin slice. 

 

Supplementary Figure 5. Constitutive IκBα Processing Induced by IKKβSSEE in Control 

and NF-κB dKO Cells. Monocytes were retrovirally transduced with either GFP, 

IKKβWT, or IKKβSSEE. Total cell lysates were immunoblotted for the indicated proteins. 

This data indicates that basal IκBα level is normal in the absence of subunits NF-κB1 and 

2. IKKβSSEE induces constitutive processing of IκBα independently from these two 

subunits, but this phenomenon is insufficient to induce osteoclasts without NF-κB1 and 

2. OC+, osteoclast positive control.   

 

Supplementary Figure 6. Adenoviral Gene Transfer in vivo. Knees of mice were intra-

articularly injected with adenovirus expressing LacZ or IKKβSSEE. One week post-

injection, legs were analyzed by X-gal staining for LacZ expression. Retro-patellar 

location of blue stain (arrowhead) indicates the intra-joint localization of gene expression. 

Scale bar, 1 cm. 
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Supplementary Figure 7. Kinase Activity is responsible for IKKβSSEE-induced 

osteoclastogenesis. (A) Spleen macrophages were infected with retrovirus expressing 

GFP, IKKβ, IKKβSSEE, or IKKβSSEE KM. Cells were TRAP-stained to visualize 

osteoclasts. (B) NF-κB luciferase and (C) in vitro kinase assays for indicated constructs.  
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CHAPTER 4 

INFLAMMATORY CYTOKINE SECRETION AND  

OSETOCLAST DIFFERENTIATION INDUCED BY ACTIVATION 

 OF IKKβ IN MACROPHAGES ARE UNCOUPLED EVENTS 
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ABSTRACT 

 

We have previously demonstrated that constitutively active IKKβ (IKKβSSEE) induces a 

program for differentiation of fully functional osteoclasts in the absence of RANK 

signaling. This finding, coupled with the fact that IKKβ is required for normal osteoclast 

differentiation in response to RANKL treatment of macrophages, argues that IKKβ 

activation is necessary for osteoclast differentiation and constitutive activation of IKKβ is 

sufficient. It is known that IKKβ activates NF-κB which is an inducer of both 

osteoclastogenic and inflammatory signals. We sought to determine whether 

inflammatory signals contribute to the osteoclastogenic effect of constitutively active 

IKKβ in macrophages. We confirmed that, in conjunction with induction of 

osteoclastogenesis, IKKβSSEE induces expression of both TNFα and IL-1β, two pro-

inflammatory cytokines linked to osteoclastogenesis and inflammatory osteolysis. 

However, using macrophages genetically deficient in TNFα or the IL-1 type 1 receptor, 

we determined that neither TNFα nor IL-1β are required for osteoclast differentiation 

induced by IKKβSSEE. These results confirm that in vitro, osteoclast differentiation and 

the cellular inflammatory response, with respect to TNFα and IL-1 are uncoupled. 

Furthermore, we confirm that pure activation IKKβ is capable of inducing 

osteoclastogenesis from macrophages in an autocrine stimulation-independent, cell-

autonomous manner.  
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INTRODUCTION 

 

Rheumatoid Arthritis (RA) is an autoimmune disease characterized by chronic 

inflammation of the joints resulting in joint pain, swelling, immobility, and deformity. 

Although the initiating event responsible for RA is unknown, several factors are believed 

to play a role in the pathogenesis of the disease. It is known that several cell types interact 

in the inflamed joint and contribute to the progression of RA including synovial 

fibroblasts and lymphocytes, which secrete pro-inflammatory factors, and osteoclasts 

which degrade bone in response to these factors 1. The role of cytokines in progression of 

RA is well established 2. For example, synovial mononuclear cell cultures from patients 

affected by RA were demonstrated to produce the pro-inflammatory cytokine, TNFα 3, 

which was later localized to the inflamed synovial membrane in tissue sections of RA 

patients4. Further, mice engineered to express high levels of human TNFα develop 

spontaneous arthritis with cartilage and bone destruction 5, and neutralizing antibodies 

against TNFα  significantly reduced the clinical severity of arthritis in a murine model for 

the disease 6. It is believed that TNFα contributes to the bone destruction mediated by 

osteoclasts in arthritis 7. Whether TNF itself is sufficient for osteoclast differentiation 8,9 

or whether TNF enhances established osteoclastogenesis 10 is controversial, but it is clear 

that osteoclasts are necessary for TNF-mediated bone destruction 11. IL-1 is another 

cytokine known to contribute to the pathogenesis of arthritis as IL-1 gene expression has 

been demonstrated in the synovium of patients with RA 12, and IL-1 blockade ameliorates 

the joint destruction associated with experimental arthritis in mice 13. The role of IL-1 in 
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mediating bone destruction in arthritis has been suggested based on the observation that 

IL-1 knockout mice were resistant to TNF-mediated bone destruction 14 and that IL-1 is 

essential for TNF-mediated osteoclastogenesis in vitro 15. Factors that influence TNF and 

IL-1 expression in the setting of RA are candidate targets in the treatment of the bone 

destruction associated with the disease.  

 

NF-κB is a family of transcription factors that plays a critical role in the inflammatory 

response 16. It is known that TNF and IL-1 are gene targets for NF-κB 17,18 and that these 

cytokines also activate NF-κB 19,20 creating a positive feedback loop which may 

contribute to chronic inflammatory diseases. It has been shown in mice that disruption of 

NF-κB or upstream activators of NF-κB are resistant to different models for 

inflammatory arthritis and bone destruction 21-25. Given the therapeutic value of TNF and 

IL-1 blockade in arthritis 2, it is likely that NF-κB mediated activation of TNF and IL-1 

contributes to the inflammation and bone destruction associated with arthritis. We 

wondered whether osteoclastogenesis driven by constitutive activation of NF-κB 

(reported in Chapter 3 of this thesis) was a result of continuous secretion and therefore 

autocrine stimulation of monocytes by TNF or IL-1.    

 

We used retrovirus mediated delivery of constitutively activated IKKβ (IKKβSSEE) into 

monocytes to activate NF-κB, and we demonstrated that in response to IKKβSSEE, TNFα 

and IL-1β are upregulated at both mRNA and protein levels. However, TNFα and IL-1R 

knockout monocytes were stimulated to become osteoclasts in response to IKKβSSEE, 
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which demonstrates that pro-inflammatory autocrine signaling does not contribute to 

spontaneous osteoclast differentiation driven by constitutively active IKKβ. These 

observations suggest that IKKβ-driven transcriptional activity within IKKβSSEE – 

expressing monocytes leads to osteoclast differentiation in a cell-autonomous manner, 

which provides strong evidence that osteoclast differentiation can be stimulated by a 

single signaling pathway downstream of RANK. 

 

RESULTS  

 

Constitutively Active IKKβ Induces both Pro-Inflammatory and Osteoclastogenic 

Programs 

 

NF-κB is an important stimulator of  the production of the inflammatory cytokines, TNF 

and IL-1 17,18. We have shown that constitutively active IKKβ (IKKβSSEE), which is an 

upstream activator of NF-κB, triggers osteoclast differentiation from monocytes in the 

absence of RANKL. Since TNF and IL-1 have been demonstrated to induce 

osteoclastogenesis in certain settings independent from the RANKL/RANK signaling 

pathway 9, we sought to determine whether IKKβSSEE induces production of TNF and IL-

1 in macrophages and, further, whether these molecules are responsible for triggering 

spontaneous osteoclast differentiation promoted by IKKβSSEE. We confirmed by Western 

blot that IKKβSSEE but not WT IKKβ induced nuclear translocation of p65/RelA in 

macrophages, which demonstrates the ability of phosphomimmetic Serine to Glutamic 
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Acid mutations in the t-loop of IKKβ to activate NF-κB in macrophages (Fig. 1). In a 

culture system in which wild-type bone marrow macrophages were induced by IKKβSSEE 

to differentiate into mature osteoclasts (Fig. 2A), we measured production of the mRNA 

for the osteoclastogenic cytokine, RANKL, and its receptor RANK. We determined that 

RANKL mRNA was not detectible in our culture system in GFP, WT IKKβ, or IKKβSSEE 

expressing cells (Fig. 2B), suggesting that IKKβSSEE induces osteoclastogenesis without 

positive feedback by RANKL. Furthermore, mRNA for the receptor RANK was not 

induced by IKKβSSEE (Fig. 2B), which argued against the possibility that IKKβSSEE – 

expressing cells may be more sensitive to undetectable levels of RANKL in the culture 

through receptor upregulation. This result is consistent with our previous findings in 

which we show that the osteoclastogenic effect of IKKSSEE is a RANK/RANKL-

independent event. Next, to determine whether activation of IKKβ in macrophages results 

in production of pro-inflammatory cytokines, we measured mRNA levels for the pro-

inflammatory cytokines, TNFα and IL-1β. We determined that IKKβSSEE induces 

increased expression of mRNA for both TNFα and IL-1β compared with GFP and WT 

IKKβ – expressing macrophages (Fig. 2C). Interestingly, TNFα mRNA level was only 

induced 3 fold, while mRNA for IL-1β was increased by more than 1000 fold (Fig. 2C). 

Nevertheless, the level of TNFα protein secreted into the culture media measured by 

ELISA was 7.8 fold greater in IKKβSSEE – expressing cells compared with GFP 

expressing cells (p<0.005), and IL-1β protein measured in the media of IKKβSSEE – 

expressing cells was 22.6 fold greater than in the media of GFP – expressing cells 

(p<0.005) (Fig. 2D). WT IKKβ did not induce increased TNFα or IL-1β protein secretion 
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from macrophages compared with GFP. These results demonstrate that in macrophages, 

constitutively active IKKβ induces secretion of pro-inflammatory cytokines, which have 

been shown to contribute to osteoclast differentiation 8-10,15.  

 

TNFα is Dispensable for Induction of Spontaneous Osteoclast Formation by IKKβSSEE 

 

Whether TNFα or IL-1β was a causative factor for osteoclastogenesis in response to 

activation of IKKβ was unclear. To address this question, we tested the ability of 

IKKβSSEE to induce osteoclastogenesis from bone marrow macrophages isolated from 

TNFα knockout mice, which are defective in TNFα production 26. We retrovirally 

expressed either GFP, WT IKKβ, or IKKβSSEE in WT and TNFα KO macrophages. 

Western blot revealed equivalent expression of IKKβ constructs (Fig. 3A). However, 

although IKKβSSEE induced secretion of TNFα from WT macrophages, this induction did 

not occur in TNFα KO macrophages (Fig. 3B). Nevertheless, TNFα KO macrophages 

were induced by IKKβSSEE to become osteoclasts to the same extent as WT macrophages 

(Fig. 3C), indicating that IKKβSSEE – induced TNFα autocrine stimulation of 

macrophages is not responsible for the spontaneous osteoclast differentiation induced by 

constitutive activation of IKKβ. Interestingly, we observed reduced IL-1β secretion by 

TNFα KO compared with WT macrophages expressing IKKβSSEE (p<0.005) (Fig. 3D). 

Therefore, active IKKβ partially relies on TNFα for maximal IL-1β production, but 

reduced IL-1β production in the TNFα – null setting does not result in impaired 

spontaneous osteoclast differentiation.  
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IL-1 Does Not Mediate the Osteoclastogenic Effect of Constitutively Active IKKβ 

 

To determine whether constitutively active IKKβ requires IL-1β autocrine stimulation to 

induce osteoclastogenesis, we tested the ability of IKKβSSEE to induce osteoclasts from 

macrophages lacking the IL-1α/β type 1 receptor 27. IL-1 signaling is required for 

osteoclast bone erosion in response to systemic inflammation 14, so the possibility exists 

that IKKβSSEE may induce osteoclast differentiation through production of IL-1. We 

observed that although IL-1β failed to enhance RANKL-mediated osteoclastogenesis 

from IL-1 receptor knockout macrophages (Fig 4 A. B), these cells were not defective in 

osteoclastogenesis induced by expression of IKKβSSEE(Fig 4 B), despite equivalent 

expression of IKKβ constructs in WT and IL-1 receptor knockout macrophages (Fig 4 

C). These results indicate that IL-1 does not mediate the osteoclastogenic effect of 

constitutive activation of IKKβ. 

 

DISCUSSION       

 

Osteoclastogenesis in the setting of inflammation has been widely documented 28-30, and 

it is known that NF-κB is a critical mediator of both inflammatory as well as 

osteoclastogenic signaling 31. We discovered that constitutively activating NF-κB by 

expressing active IKKβ (IKKβSSEE) in monocytes induces osteoclast differentiation 

without upregulating RANKL or its receptor, RANK. We therefore hypothesized that 
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constitutively active IKKβ induced osteoclast differentiation either from within the 

monocyte in a cell-autonomous fashion or through secretion of and autocrine stimulation 

by pro-inflammatory mediators. Although RANKL, the most important osteoclastogenic 

cytokine, is required for inflammatory osteoclastogenesis in response to certain in vivo 

models of arthritis 32, it has been proposed that the inflammatory cytokines TNF and IL-1 

may compensate for RANKL to induce osteoclast differentiation from isolated 

monocytes 8,9.  Since activation of NF-κB is associated with production of TNF and IL-1 

17,18, we sought to determine whether IKKβSSEE induced osteoclast differentiation through 

these pro-inflammatory cytokines. In addition to stimulation of osteoclast differentiation, 

we observed induction of both TNFα and IL-1β secretion by macrophages expressing 

constitutively active IKKβ. However, genetic disruption of TNF or the IL-1 type 1 

receptor had no effect on the osteoclastogenic phenotype induced by IKKβSSEE. 

Therefore, we have demonstrated that there are separate and exclusive programs for 

osteoclast differentiation and inflammation induced downstream of IKKβ activation. 

Furthermore, the fact that autocrine stimulation by TNFα and IL-1β does not mediate 

osteoclast differentiation induced by constitutively active IKKβ strongly suggests that the 

program for osteoclastogenesis can be encoded entirely through NF-κB downstream of 

IKKβ. This finding, in addition to the fact that IKKβ is required for osteoclast 

differentiation induced by RANKL 33, supports the notion that IKKβ is a critical target in 

treating inflammatory bone erosion and other osteoclast – mediated diseases.    
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METHODS 

 

Reagents: Antibodies against IKKβ, Actin, and RelA as well as horseradish peroxidase-

conjugated secondary antibodies were purchased from Santa Cruz Biotechnology, Inc. 

(Santa Cruz, CA). Antibody against Flag epitope was purchased from Sigma (St. Louis, 

MO). Cytokines were purchased from R&D Systems (Minneapolis, MN). Enhanced 

Chemiluminescence kit was purchased from Pierce Biotechnology, Inc (Rockford, IL). 

All other chemicals were purchased from Sigma (St. Louis, MO) unless otherwise 

indicated. 

 

Animals: All mice were purchased from Jackson Laboratories (Bar Harbor, Maine) and 

were housed in a controlled barrier facility at Washington University (St. Louis, MO). 

 

Plasmids: pMxs retroviral expression plasmid was a generous gift from Dr. Toshio 

Kitamura (University of Tokyo, Japan). IKKβ cDNA was purchased from ATCC,  

I.M.A.G.E. Clone ID #4482634. All expression constructs were subcloned into pMxs 

using standard techniques. The following mutations were generated using the 

QuickChange II Site Directed Mutagenesis Kit (Stratagene, La Jolla, CA) with primer 

pairs in parentheses: IKKβSSEE (IKKβ_S177_181E_f, 

GAGCTGGATCAGGGCGAACTGTGCACGGAATTTGTGGGGACTCTGC, and 

IKKβ_S177_181E_r, 

GCAGAGTCCCCACAAATTCCGTGCACAGTTCGCCCTGATCCAGCTC). Note that 
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the constitutive activating effect of this mutation of IKKβ has been established previously 

34,35. 

 

Macrophage Culture: Whole marrow was flushed from long bones into α- Minimum 

Essential Medium (MEM). Spleens were crushed into cell suspensions in α-MEM and 

were centrifuged at 453 rcf. Cell pellets were resuspended in whole media (α-MEM with 

1X penicillin/streptomycin, 10% heat-inactivated fetal bovine serum (FBS)). Monocytes/ 

macrophages were produced by growing cell suspensions in the presence of 10 ng/ml M-

CSF. Monocytes/ macrophages were allowed to proliferate for 3 days at 37 oC in 5% CO2 

at which point they were infected with retrovirus. See below. 

 

Infection of Macrophages: The use of Plat-E retrovirus packaging cells stably expressing 

retroviral structural proteins gag-pol and env for transient production of high titer 

retrovirus was described previously 36. Briefly, 8µg pMx vectors expressing our gene of 

interest were transfected into 5 million plat-E cells (grown in DMEM supplemented with 10% 

FBS, 10ng/ml M-CSF, and penicillin/streptomycin) using Fugene 6 (Roche, Palo Alto, CA) 

according to manufacturer’s instructions. Twenty-four hrs post transfection, media was 

exchanged to remove transfection reagent. Twenty-four and 48 hrs post media exchange, 

supernatant was collected and pooled. In parallel, monocyte/macrophage cultures from bone 

marrow, spleen, or fetal liver were developed on petri dishes, washed with PBS, and infected with 

retrovirus in infection mix (50% virus supernatant, 50% αMEM containing 10% FBS, 10ng/ml 

M-CSF, penicillin/streptomycin, and 4µg/ml hexadimethrine bromide). Twenty-four hrs post 

infection, cells were selected in αMEM containing 10% FBS, 10ng/ml M-CSF, 
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penicillin/streptomycin, and 2µg/ml puromycin for 72 hrs, at which point selection media was 

removed, cells were washed, and grown for 24 additional hrs without puromycin. At this point, 

cells were lifted, counted, and plated for downstream experiments. 

 

Osteoclast Differentiation: IKKβSSEE expressing cells were cultured in 10ng/ml M-CSF, 

while GFP and IKKβWT-expressing cells were cultured in 10ng/ml M-CSF plus 100ng/ml 

RANKL for 4 days. IKKβSSEE induced spontaneous osteoclastogenesis in the absence of 

RANKL, while RANKL was required for osteoclasts to form from 

monocyte/macrophages expressing GFP or IKKβWT. At this point, cells were fixed and 

TRAP stained using the Leukocyte Acid Phosphatase Kit (Sigma, St. Louis, MO). TRAP-

positive cells with three or more nuclei were scored as osteoclasts. 

 

Western Blot: Equivalent amounts of total cell protein were boiled in the presence of an 

equal volume of 2X SDS sample buffer consisting of (0.5 M Tris-HCl, pH 6.8, 10% 

(w/v) SDS, 10% glycerol, 0.05% (w/v) bromphenol blue, 3% β-Mercaptoethanol (v/v), 

and distilled water) for 5 min. and subjected to electrophoresis on 8–10% SDS-PAGE. 

Proteins were transferred to nitrocellulose membranes using a semi-dry blotter (Bio-Rad, 

Hercules, CA) and incubated in blocking solution (10% skim milk prepared in phosphate-

buffered saline containing 0.05% Tween 20) to reduce nonspecific binding. The 

membranes were washed with PBS/Tween buffer and exposed to primary antibodies (16 

h at 4 oC), washed (4 x 15 min.), and incubated with the appropriate secondary 

horseradish peroxidase-conjugated antibodies (1 h at room temperature). The membranes 
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were washed extensively (4 X 15 min.), and an ECL detection assay was performed 

following the manufacturer’s instructions. 

 

Enzyme Linked Immunosorbent Assay: Supernatants were collected from 6-well plates 

of 1x106 cells expressing various constructs and were rapidly frozen at -80oC. TNFα or 

IL-1β concentrations were measured in thawed supernatants by ELISA using Quantikine 

kits from R&D Systems (Minneapolis, MN).    

 

Isolation of RNA and cDNA Production: RNA was isolated from macrophage or 

osteoclast cultures using the Total RNA Isolation Mini Kit (Agilent Technologies, Santa 

Clara, CA) according to manufacturer’s instructions. Reverse transcription was 

performed as follows: 1.0 μg RNA and 1.0 μg random hexamer primer in 10  μl nuclease-

free deionized H2O in PCR tubes were heated to 70 oC for 5 minutes, cooled to 42 oC, and 

set on ice. The following components were then added at the indicated amounts or 

concentrations for a total reaction volume of 20 μl: 1x AMV RT buffer (Roche, Palo 

Alto, CA), 40U RNAseIn (Promega, San Luis Obispo, CA), 1.25 mM dNTPs, 5 mM 

Sodium Pyruvate, 5 U Reverse Transcriptase Enzyme, AMV (Roche). To produce 

cDNA, tubes were placed in a thermocycler programmed as follows: 42 oC for 60 

minutes, 50 oC for 10 minutes, and 95 oC for 5 minutes. 
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Quantitative Real-Time PCR: Triplicate samples of 4 μl cDNA product (5X diluted), 10 

μl Sybr Green PCR Master Mix (Applied Biosystems, Inc. Foster City, CA), 0.1 μl each 

of 10 μM forward and reverse primer stocks, and 6 μL nuclease-free deionized H2O were 

subjected to real-time PCR according to the following program in an ABI 7300 Real 

Time PCR System: 50 oC for 2 minutes, 95 oC for 10 minutes, (95 oC for 15 seconds, 60 

oC for 1 minute) x 40 cycles. Results were analyzed using AB RQ Study Software. Real 

Time PCR primers were designed using Primer Express Software (Applied Biosystems, 

Inc.) mouse RANK Forward 5’-CTGCCTCCTGGGCTTCTTCT-3’, mouse RANK 

Reverse 5’-CCCCTGGTGTGCTTCTAGCT-3’; mouse RANKL Forward 5’- 

CCTGAGGCCCAGCCATTT-3’ mouse RANKL Reverse 5’- 

AGCCTCGATCGTGGTACCAA-3’; mouse TNFα Forward 5’- 

GACACCATGAGCACAGAAAGCATGATCCGC-3’ mouse TNFα Reverse 5’- 

CGAAGTTCAGTAGACAGAAGAGCGTGGTGG-3’; mouse IL-1β Forward 5’-

GCTTCCTTGTGCAAGTGTCTGA-3’ mouse IL-1β Reverse 5’-

TCAAAAGGTGGCATTTCACAGT-3’.   

 

Microscopy: Cells were imaged under white light on an inverted microscope (Olympus 

IX-51). Digital images were captured using a CCD camera (Olympus DP70, 12 mega-

pixel resolution). 

 

Statistics: Students two-tailed T-test for comparison between means was used for all 

analyses.  
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FIGURE LEGENDS 

 

Figure 1: Constitutively Active IKKβ Induces NF-κB Nuclear Translocation 

WT macrophages were infected (infx) with retroviruses expressing GFP or flag-tagged 

WT IKKβ or IKKβSSEE for either 0, 1, 2, 4, or 6 days. Nuclei were extracted and blotted 

for p65/RelA (lower two panels). Cytosolic fraction was blotted with flag antibody to 

detect retrovirally expressed IKKβ (upper pannel). ns, non-specific antibody reactivity; 

N, nucleus; C, cytosol.   

 

Figure 2: Induction of Osteoclastogenesis and Inflammatory Cytokine Secretion by 

IKKβSSEE 

WT macrophages were infected with retroviruses expressing GFP, WT IKKβ (WT), or 

IKKβSSEE (SSEE). (A) Cells were plated for osteoclastogenesis. GFP, WT IKKβ, and 

IKKβSSEE expressing cells were cultured in M-CSF alone. Where indicated, WT IKKβ – 

expressing cells were treated with RANKL to induce osteoclastogenesis. Cells were 

TRAP-stained to visualize osteoclasts. (B) mRNA was collected from cells, and RANK 

and RANKL gene expression were measured by quantitative real-time PCR. MC3T3, 

mouse bone stromal cell line. Values are expressed as mean quantitation plus standard 

error of the mean. (C) TNFα and IL-1β gene expression levels were measured by 

quantitative real-time PCR. Values are expressed as mean quantitation plus standard error 

of the mean. (D) Media supernatants were harvested from cultures of macrophages (or 

osteoclasts in the case with IKKβSSEE-expressing cells) expressing the indicated 
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constructs. TNFα and IL-1β protein concentrations were measured by ELISA. (*),  

p<0.005.     

 

 

Figure 3: TNFα Autocrine Stimulation is not Responsible for IKKβSSEE – Induced 

Osteoclastogenesis. (A) Macrophages from TNF KO and WT littermates were collected 

and infected with retroviruses expressing either GFP, WT IKKβ, or IKKβSSEE. Cells were 

lysed and total IKKβ protein was detected by Western blot. Actin was blotted as a 

loading control. (B) Media supernatant was collected from cultures of cells expressing 

either GFP, WT IKKβ, or IKKβSSEE. TNFα protein concentration in media was measured 

by ELISA. (**), p<0.001. (C) Cells were grown in media supplemented with M-CSF 

(without RANKL) and were TRAP-stained to visualize osteoclasts. (D) Media 

supernatant was collected from cultures of WT and TNFα KO cells expressing either 

GFP, WT IKKβ, or IKKβSSEE. IL-1β protein concentration in media was measured by 

ELISA. (*), p<0.005 

 

 

Figure 4: IL-1 Receptor Autocrine Stimulation is not an Essential Mediator of the 

Osteoclastogenic Effect of Constitutively Active IKKβ. (A) Macrophages were isolated 

from WT or IL-1 receptor knockout mice and were infected with retroviruses expressing 

either GFP, WT IKKβ (WT), or IKKβSSEE (SSEE). Cells were grown in the presence M-

CSF (without RANKL) or were supplemented with RANKL or RANKL and IL-1β as 
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indicated. Cells were TRAP-stained to visualize osteoclasts. (B) Quantification of (A). 

(C) Expression of IKKβ constructs in cells from (A).   
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CHAPTER 5 

ACTIVATION OF THE ALTERNATIVE NF-κB PATHWAY 

BY CONSTITUTIVELY ACTIVE IKKβ  
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INTRODUCTION 

 

NF-κB is a family of transcription factors which serves diverse functions in development, 

immunity, and bone metabolism. Traditionally, NF-κB signaling is divided into two 

pathways, classical (canonical) and alternative (non-canonical) 1,2. In classical NF-κB 

signaling, extracellular signals such as TNF or IL-1, activate an IKK complex comprising 

IKKα, IKKβ, and IKKγ (NEMO). IKK then phosphorylates IκBα, which holds NF-κB in 

the cytoplasm in an inactive state. Upon phosphorylation, IκBα becomes ubiquitinated 

and rapidly degraded by the proteasome. Classical NF-κB heterodimers consisting of p50 

and p65/RelA are released from cytoplasmic sequestration, enter the nucleus, and activate 

gene transcription. In the alternative signaling pathway, signals from cytokines such as 

BAFF and lymphotoxin β lead to activation of IKKα which phosphorylates the C-

terminal IκB portion of NF-κB p100. This event results in ubiquitination and proteosomal 

processing of p100 to p52 leading to nuclear translocation of the p52/RelB heterodimer 

and gene transcription 3. 

 

The ability of the two NF-κB pathways to interact or be coordinated at multiple levels has 

been suggested. For example, RANKL, the pro-osteoclastogenic cytokine, is known to 

activate both classical and alternative NF-κB 4,5. In addition, the kinase, NIK, has been 

shown to activate both IKKβ 6 and IKKα 7,8, responsible for activation of classical and 

alternative NF-κB signaling, respectively. Furthermore, the level and activity of RelB, the 

alternative NF-κB signaling pathway transactivator, are set by activity of the classical 
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pathway 9. The inability of these two pathways to compensate for each other in 

development highlights the notion that they are indeed separate signaling modules 10, but 

whether they are coordinated in disease states is unknown. Interestingly, constitutive 

activation of classical NF-κB has been demonstrated to compensate for absence of 

alternative signaling through BAFFR in B-cell development 11, raising the possibility that 

activation of IKKβ may regulate alternative signaling in certain settings.   

 

We have shown that constitutively active IKKβ is capable of inducing osteoclastogenesis 

from monocytes in the absence of IKKα, a setting in which alternative NF-κB signaling 

induced by RANKL is inhibited. We now demonstrate that constitutively active IKKβ 

(IKKβSSEE) induces nuclear translocation of RelB in monocytes. This event is likely a 

result of processing of p100 to p52, which we show can be induced by IKKβSSEE in the 

absence of IKKα. Whether the activation of RelB by IKKβSSEE contributes to the 

osteoclast differentiation observed in the absence of IKKα is unclear. Further, it is 

uncertain whether alternative NF-κB can be activated by IKKβ in pathological settings. It 

will be important to identify the mechanism by which constitutive activation of IKKβ 

leads to RelB nuclear translocation, as this will lead to a better understanding of NF-κB 

regulation in the setting of normal physiology and disease. 
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RESULTS 

 

Constitutively Active IKKβ Induces RelB Nuclear Translocation 

 

A signature of RANKL-induced osteoclast differentiation is activation of both Classical 

and Alternative NF-κB signaling 4,5,12. We have shown that constitutive activation of NF-

κB by IKKβSSEE results in differentiation of osteoclasts. Although this phenomenon was 

also observed in the absence of RelB, we noted that RelB protein levels were 

constitutively increased in cells expressing IKKβSSEE, but not WT IKKβ. We sought to 

determine whether in addition to increased RelB expression, IKKβSSEE also induced RelB 

nuclear translocation. We performed nuclear/cytosolic fractionation in monocytes, which 

we infected with retroviruses expressing GFP, WT IKKβ, or IKKβSSEE. We observed that 

indeed, RelB was induced to enter the nucleus after 4 days of infection with IKKβSSEE, 

but not WT IKKβ or GFP (Fig. 1). This indicates that constitutive activation of IKKβ, 

normally considered an activator of the Classical NF-κB pathway, can also activate the 

Alternative NF-κB pathway in monocytes.  

 

Constitutively Active IKKβ Induces p100 Processing to p52 

 

We sought to determine the mechanism responsible for IKKβSSEE – induced RelB nuclear 

translocation. It is known that p100 processing to p52 is required for activation of the 

Alternative NF-κB pathway 2,8. We hypothesized that IKKβSSEE may induce processing 
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of p100 to p52 resulting in RelB activation. We expressed GFP, WT IKKβ, and IKKβSSEE 

in WT and NF-κB1/2 double knockout (DKO) monocytes. We observed that IKKβSSEE, 

but not WT IKKβ or GFP, induced production of p52 in WT but not NF-κB1/2 DKO 

monocytes (Fig. 2). The absence of p52 in cells lacking the precursor, p100, suggests the 

authenticity of the p52 product. The ability of WT IKKβ and IKKβSSEE to induce 

processing of IκBα even in the absence of NF-κB1 and NF-κB2 demonstrates that NF-κB 

is not required for IKKβ activity.   

 

Production of p52 by IKKβSSEE does not require IKKα 

 

It is known that NIK activates the alternative NF-κB pathway through IKKα 13. We 

wondered whether IKKα is required for IKKβSSEE mediated p52 processing. We 

expressed GFP or IKKβSSEE in WT and IKKα KO fetal liver – derived monocytes and 

detected p52 expression by Western blot. We observed that even in the absence of IKKα, 

IKKβSSEE induced the processing of p100 to p52 (Fig. 3). This result suggests that active 

IKKβ may act on p100 directly to produce p52 and activate the alternative NF-κB 

pathway. It will be important to determine whether this crosstalk between classical and 

alternative NF-κB signaling has functional significance in the setting of bone pathology.       
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METHODS 

 

Reagents: Antibodies against IKKβ, Actin, IκBα, and RelB as well as horseradish 

peroxidase-conjugated secondary antibodies were purchased from Santa Cruz 

Biotechnology, Inc. (Santa Cruz, CA). Antibody against Flag epitope was purchased 

from Sigma (St. Louis, MO). Antibodies against IKKα and p100/p52 were from Cell 

Signaling Technologies, Inc (Danvers, MA). Cytokines were purchased from R&D 

Systems (Minneapolis, MN). Enhanced Chemiluminescence kit was purchased from 

Pierce Biotechnology, Inc (Rockford, IL). All other chemicals were purchased from 

Sigma (St. Louis, MO) unless otherwise indicated. 

 

Animals and Cells: All mice were housed in a controlled barrier facility at Washington 

University (St. Louis, MO). IKKα heterozygous mice 12 were obtained from Dr. Akira 

(Osaka University, Japan). RelB KO 5 and control bone marrow was obtained from Dr. 

Novack (Washington University, St. Louis, MO). NF-κB double KO 14 and control 

spleens were a generous gift from Dr. Lianping Xing (University of Rochester Medical 

Center, N.Y.) 

 

Plasmids: pMxs retroviral expression plasmid was a generous gift from Dr. Toshio 

Kitamura (University of Tokyo, Japan). IKKβ cDNA was purchased from ATCC,  

I.M.A.G.E. Clone ID #4482634. All expression constructs were subcloned into pMxs 

using standard techniques. The following mutations were generated using the 
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QuickChange II Site Directed Mutagenesis Kit (Stratagene, La Jolla, CA) with primer 

pairs in parentheses: IKKβSSEE (IKKβ_S177_181E_f, 

GAGCTGGATCAGGGCGAACTGTGCACGGAATTTGTGGGGACTCTGC, and 

IKKβ_S177_181E_r, 

GCAGAGTCCCCACAAATTCCGTGCACAGTTCGCCCTGATCCAGCTC). Note that 

the constitutive activating effect of this mutation of IKKβ has been established previously 

6,15. 

 

Macrophage Culture: Whole marrow was flushed from long bones into α- Minimum 

Essential Medium (MEM). Spleens and Fetal livers were crushed into cell suspension in 

α-MEM and were centrifuged at 453 rcf. Cell pellets were resuspended in whole media 

(α-MEM with 1X penicillin/streptomycin, 10% heat-inactivated fetal bovine serum 

(FBS)). Monocytes/ macrophages were produced by growing cell suspensions in the 

presence of 10 ng/ml M-CSF. Monocytes/ macrophages were allowed to proliferate for 3 

days at 37 oC in 5% CO2 at which point they were infected with retrovirus. See below. 

 

Infection of Macrophages: The use of Plat-E retrovirus packaging cells stably 

expressing retroviral structural proteins gag-pol and env for transient production of high 

titer retrovirus was described previously 16. Briefly, 8µg pMx vectors expressing our gene of 

interest were transfected into 5 million plat-E cells (grown in DMEM supplemented with 10% 

FBS, 10ng/ml M-CSF, and penicillin/streptomycin) using Fugene 6 (Roche, Palo Alto, CA) 

according to manufacturer’s instructions. Twenty-four hrs post transfection, media was 
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exchanged to remove transfection reagent. Twenty-four and 48 hrs post media exchange, 

supernatant was collected and pooled. In parallel, monocyte/macrophage cultures from bone 

marrow, spleen, or fetal liver were developed on petri dishes, washed with PBS, and infected with 

retrovirus in infection mix (50% virus supernatant, 50% αMEM containing 10% FBS, 10ng/ml 

M-CSF, penicillin/streptomycin, and 4µg/ml hexadimethrine bromide). Twenty-four hrs post 

infection, cells were selected in αMEM containing 10% FBS, 10ng/ml M-CSF, 

penicillin/streptomycin, and 2µg/ml puromycin for 72 hrs, at which point selection media was 

removed, cells were washed, and grown for 24 additional hrs without puromycin. At this point, 

cells were lifted, counted, and plated for downstream experiments. 

 

Western Blot: Equivalent amounts of total cell protein were boiled in the presence of an 

equal volume of 2X SDS sample buffer consisting of (0.5 M Tris-HCl, pH 6.8, 10% 

(w/v) SDS, 10% glycerol, 0.05% (w/v) bromphenol blue, 3% β-Mercaptoethanol (v/v), 

and distilled water) for 5 min. and subjected to electrophoresis on 8–10% SDS-PAGE. 

Proteins were transferred to nitrocellulose membranes using a semi-dry blotter (Bio-Rad, 

Hercules, CA) and incubated in blocking solution (10% skim milk prepared in phosphate-

buffered saline containing 0.05% Tween 20) to reduce nonspecific binding. The 

membranes were washed with PBS/Tween buffer and exposed to primary antibodies (16 

h at 4 oC), washed (4 x 15 min.), and incubated with the appropriate secondary 

horseradish peroxidase-conjugated antibodies (1 h at room temperature). The membranes 

were washed extensively (4 X 15 min.), and an ECL detection assay was performed 

following the manufacturer’s instructions. 
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 FIGURE LEGENDS 

 

Figure 1. Expression of IKKβSSEE in Monocytes results in RelB Activation 

Wild-type monocytes were infected with retroviruses expressing either GFP or flag-

tagged WT IKKβ or IKKβSSEE for either 0, 1, 2, 4, or 6 days. Nuclear fractions were 

separated from cytosolic fractions. Retroviral IKKβ was detected in the cytosolic fraction 

by Western blot for flag. RelB was detected in nuclear fraction by Western blot. N, 

nuclear. C, cytosolic. ns, non-specific background band.   

 

Figure 2. IKKβSSEE induces p100 processing to p52 

Wildtype and NF-κB1/2 double knockout (DKO) monocytes were infected with 

retroviruses expressing either GFP or flag-tagged WT IKKβ or IKKβSSEE. Expression of 

indicated proteins was detected in total cell lysates by Western Blot. OC+, osteoclast 

positive control total cell lysate.  

 

Figure 3. IKKα – independent p52 production by IKKβSSEE  

WT and IKKα KO monocytes were infected with retroviruses expressing either GFP or 

flag-tagged IKKβSSEE. Expression of the indicated proteins was detected by Western blot. 

OC+, osteoclast positive control total cell lysate.    
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FIGURES 
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Figure 2        
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Figure 3 
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SUMMARY OF RESULTS 

 

IKKβ is Necessary for Osteoclast Differentiation and Prevents JNK-Mediated 

Apoptosis in Differentiating Pre-Osteoclasts 

We began with the hypothesis that since NF-κB activity is absolutely critical for 

osteoclast differentiation 1, then upstream activators of NF-κB would play an important 

role in osteoclastogenesis. We focused on IKKβ to build on previous work in our 

laboratory which demonstrated that the NEMO – IKKβ interaction is important for 

osteoclast differentiation 2. Further, an osteoclast defect resulting in resistance to 

inflammatory osteolysis was noted in mice lacking IKKβ in hematopoietic tissues 3. This 

fact, coupled with the observation that IKKα activation is dispensable for 

osteoclastogenesis 3 led us to investigate the role IKKβ plays in response to RANKL in 

the setting of osteoclastogenesis. 

 

To this end, we used Cre/loxP technology to produce a mouse lacking IKKβ specifically 

in osteoclast precursors (OCPs) by crossing mice possessing homozygous floxed IKKβ 

alleles 4 with mice transgenically expressing Cre recombinase under the control of the 

CD11b promoter 5. Initial observation of Cre-expressing, homozygous floxed IKKβ 

(OCPΔIKKβ) mice revealed a defect in bone metabolism, since OCPΔIKKβ demonstrated 

shorter and more radio-dense bones on x-ray. Macrophages from these mice isolated 

from both spleen and bone marrow showed decreased IKKβ expression at both mRNA 
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and protein levels. This confirmed that our genetic targeting of IKKβ in osteoclast 

precursors was successful and resulted in defects in bone metabolism.  

 

To determine whether deletion of IKKβ in OCPs affects osteoclast differentiation, we 

cultured control and OCPΔIKKβ cells in the presence of M-CSF and RANKL to induce 

osteoclast differentiation in vitro. Differentiation of OCPΔIKKβ cells into osteoclasts in 

vitro was severely impaired, and long bones of OCPΔIKKβ mice possessed significantly 

fewer osteoclasts than control littermates. We demonstrated a defect in RelA nuclear 

translocation in response to RANKL in OCPΔIKKβ cells as well, confirming that IKKβ 

mediated NF-κB activation in response to RANKL is important for osteoclastogenesis. In 

order to determine the cause for impaired osteoclastogenesis in OCPΔIKKβ cells, we 

performed quantitative real-time PCR for osteoclast-specific gene expression after 

treatment of WT and OCPΔIKKβ cells with M-CSF and RANKL, we noted significantly 

reduced induction of osteoclast genes in OCPΔIKKβ cells compared with control cells. This 

finding correlated well with our observation that absence of IKKβ results in defective 

differentiation of monocytes into osteoclasts. We also determined by real-time PCR that 

OCPΔIKKβ cells showed reduced expression of NF-κB-controlled anti-apoptotic proteins. 

We hypothesized that perhaps RANKL induced apoptosis of OCPΔIKKβ cells as a result. 

Indeed, RANKL treatment of OCPΔIKKβ but not control cells for 4 hrs resulted in PARP 

cleavage, an indicator of apoptosis. Furthermore, OCPΔIKKβ mice possessed many 

apoptotic osteoclasts associated with bony trabeculae in long bones, suggesting that 

osteoclast lineage cells in OCPΔIKKβ mice were susceptible to apoptosis in vivo.  
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Analysis of kinase signaling downstream of RANK stimulation in OCPΔIKKβ cells 

revealed a gain-of-function of JNK compared with WT cells. Since JNK hyperactivity 

has been linked to apoptosis in response to RANKL in differentiating osteoclasts 6, we 

hypothesized that inhibition of JNK may rescue the osteoclast defect in OCPΔIKKβ cells. 

Indeed, treatment of OCPΔIKKβ monocytes with low doses of a cell-permeable peptide 

inhibitor of JNK restored osteoclastogenesis in OCPΔIKKβ. This rescue phenomenon was 

only observed with incomplete deletion of IKKβ, whereas OCPs with more efficient 

deletion of IKKβ (with less IKKβ mRNA expression) could not be differentiated into 

osteoclasts even with JNK inhibition. We concluded that IKKβ serves two functions 

which are important for osteoclastogenesis. First, IKKβ inhibits JNK-mediated apoptosis 

in response to RANKL. Second, IKKβ facilitates the osteoclast differentiation program 

downstream of RANKL. 

 

Constitutive Activation of IKKβ is Sufficient for Osteoclastogenesis 

With an established genetic model for deficiency of IKKβ in osteoclast precursors in 

hand, our next step was to identify the residues and domains of IKKβ which are 

important for its function in the setting of osteoclast differentiation. We took the 

approach of retroviral re-introduction of WT IKKβ or mutant forms of IKKβ into 

OCPΔIKKβ cells to attempt to rescue osteoclastogenesis. We chose K44M as a negative 

control, since this molecule lacks kinase activity 7. Also, in order to test phosphorylation 

– dependent loss-of-function and gain-of-function, we tested S177/181A (IKKβSSAA) and 
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S177/181E (IKKβSSEE), respectively. Mutation of T-loop Serines to Alanine renders 

IKKβ refractory to signal-induced activation, while mutation to Glutamic Acid creates a 

constitutively active form of IKKβ 8. In response to RANKL, WT IKKβ restored 

osteoclastogenesis in OCPΔIKKβ. IKKβK44M and IKKβSSAA failed to rescue 

osteoclastogenesis, indicating that RANKL-induced serine phosphorylation of IKKβ is 

required for osteoclast differentiation. IKKβSSEE also rescued osteoclastogenesis from 

OCPΔIKKβ, and upon closer examination, we made the surprising discovery that IKKβSSEE 

induced osteoclast differentiation in the absence of RANKL administration. 

 

This finding led to the hypothesis that phosphorylation of IKKβ at Serines 177 and 181 in 

response to RANK stimulation by RANKL represents a molecular switch that activates 

the osteoclast differentiation program. Our subsequent investigation was focused on 

challenging this hypothesis. First, we characterized the osteoclasts induced by IKKβSSEE 

to determine if they met the criteria for authentic osteoclasts derived by RANKL 

stimulation of M-CSF-dependent monocytes. Our examination revealed that IKKβSSEE – 

induced osteoclasts expressed all markers of mature osteoclasts, formed actin rings, and 

resorbed bone. We determined that, indeed, constitutively active IKKβ induces 

differentiation of bona fide osteoclasts. 

 

We further demonstrated that IKKβSSEE induced osteoclasts in the absence of the 

receptor, RANK, and in the presence of inhibitory concentrations of OPG-fc (which 
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interferes with RANKL stimulation of monocytes). These results led us to conclude that 

IKKβSSEE induces differentiation of osteoclasts in a RANK – independent manner.  

 

Next, we desired to dissect the molecular environment surrounding IKKβ in the 

monocyte. Since IKKβ is a member of the IKK complex 7, and all the members of this 

complex play an essential role in osteoclastogenesis 2,9-11, we wondered if the integrity of 

the IKK complex was critical for IKKβSSEE to induce osteoclastogenesis. We found that 

constitutively active IKKβ could induce osteoclastogenesis in the absence of endogenous 

IKKβ and IKKα and in conditions in which NEMO- IKKβ association were inhibited 

pharmacologically and genetically. We concluded that IKKβSSEE acts independently and 

autonomously with respect to the IKK complex to induce osteoclastogenesis. This result 

suggests that the function of the IKK complex downstream of RANKL is to allow for 

phosphorylation and activation of IKKβ, which then triggers osteoclast differentiation.  

 

We looked downstream to determine which factors were necessary for IKKβSSEE to 

induce RANK-independent osteoclastogenesis. Nuclear/cytosol fractionation experiments 

revealed that IKKβSSEE induces nuclear translocation of NF-κB subunits RelA and RelB 

and also stimulates increased production of total RelB. Although RelB plays a role in 

RANKL-induced osteoclast differentiation 12, IKKβSSEE induced bone resorbing 

osteoclasts from RelB knockout spleen monocytes. Importantly, NF-κB1/NF-κB2 double 

knockout macrophages did not become osteoclasts when expressing IKKβSSEE, 

demonstrating a pivotal role for NF-κB in this phenomenon. These results suggested that 
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constitutive activation of NF-κB by IKKβSSEE is sufficient for RANK-independent 

osteoclast differentiation. Overexpression of IKKαSSEE, RelB, or RelA failed to induce 

osteoclast differentiation, highlighting the specificity of IKKβ as an inducer of 

osteoclastogenesis. 

 

Importantly, kinase activity of IKKβSSEE was critical for mediating its osteoclastogenic 

effect, since mutation of Lysine 44 to Methionine in the presence of S177/181E 

mutations abrogated the effect. IKKβSSEE demonstrated some qualities which were 

surprising. For example, it induced processing of p100 to p52 in monocytes, a function 

which is thought to be mediated by IKKα. The role of this phenomenon in inducing 

osteoclasts in response to IKKβSSEE is unclear at this point.  

 

We wished to determine whether activation of IKKβ in an in vivo setting possesses 

pathological significance. Indeed, adenoviral gene transfer of IKKβSSEE into knees of 

mice results in massive inflammation and bone erosion, mimicking the findings in 

rheumatoid arthritis.  

 

These data provide evidence that IKKβ is a specific inducer of osteoclast differentiation 

and that gain-of-function in IKKβ may contribute to the pathogenesis of inflammatory 

osteolysis. Therefore, therapy targeting the activation of IKKβ may represent a successful 

approach to ameliorate pathological bone loss. 
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Inflammation and Osteoclastogenesis Induced by Constitutively Active IKKβ are 

Uncoupled 

It is well known that NF-κB is a crucial mediator of osteoclastogenic 1,13 as well as 

inflammatory  signaling 14-16. Inflammatory inducers such as TNFα and IL-1β have been 

shown to contribute to osteoclast differentiation 17,18, so we wondered whether IKKβSSEE 

– mediated induction of osteoclastogenesis required these inflammatory modulators. We 

demonstrated by quantitative real-time PCR and ELISA that in addition to stimulating 

osteoclastogenesis, IKKβSSEE induced expression of the pro-inflammatory cytokines, 

TNFα and IL-1β, by monocytes. Since these two cytokines have been shown to induce 

RANK-independent osteoclast differentiation from monocytes in the presence of TGF-β 

19, we wondered if TNFα and IL-1β were responsible for inducing osteoclast 

differentiation in our system. We demonstrated in TNFα knockout and IL-1 receptor 

knockout monocytes that IKKβSSEE was still capable of inducing osteoclast 

differentiation in vitro. Whether the inflammatory component downstream of IKKβSSEE 

plays a role in the arthritis pathogenesis in the adenoviral IKKβSSEE in vivo model is still 

to be investigated, but it is absolutely clear that constitutively active IKKβ can drive 

osteoclastogenesis in a cell-autonomous, NF-κB-dependent, inflammatory cytokine-

independent manner.  

 

Altogether, our work has identified IKKβ as a central regulator of the osteoclast program. 

It is essential for normal differentiation of osteoclasts in response to RANKL, and gain-

of-function results in spontaneous osteoclast formation in the absence of RANKL. It is 
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likely that IKKβ gain-of-function – whether mutational or signal-induced - plays a role in 

osteolysis in patients with inflammatory diseases, and our work leads us to strongly 

support targeting of IKKβ for amelioration of these conditions.             

 

FUTURE DIRECTIONS 

 

Screening Patients with Inflammatory Bone Loss for IKKβ Gain-of-Function 

Mutations 

Our results strongly suggest that gain-of-function in IKKβ results in spontaneous 

osteoclastogenesis that occurs in the absence of upstream signals. Since IKKβ is an 

essential downstream component in RANKL-induced osteoclast differentiation 10, and 

since gain-of-function in the RANKL/RANK pathway results in pathological conditions 

of heightened bone turnover 20,21, it is likely that gain-of-function mutations in IKKβ 

could cause osteolysis in human patients. Currently, genetic diagnosis of many of these 

conditions remains elusive 22,23. A diagnostic approach which involves screening for 

IKKβ mutations may lend insight into the pathogenesis of these and other inflammatory 

conditions involving heightened bone turnover.  

 

Identification of Substrates of IKKβ Important in Osteoclastogenesis 

IKKβ has recently been shown to phosphorylate several proteins in addition to its 

canonical target, IκBα 24. When we overexpressed p65/RelA in monocytes, mimicking 

the outcome of phosphorylation-dependent degradation of IκBα, we did not observe 
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induction of osteoclastogenesis. However, given that IKKβSSEE induces 

osteoclastogenesis in a kinase-dependent manner, it is likely that there are additional 

targets of IKKβ in the monocyte which mediate this effect. We propose a high-power 

approach to screen multiple targets of IKKβSSEE with the use of phosphoprotein detection 

by mass spectrometry 25. Identification of these molecules will lead to a better 

understanding of the mechanisms through which IKKβ activates the osteoclast program. 

Furthermore, identification of these molecules will lend insight into potential modes of 

therapy for inflammatory conditions.   

 

Structure Function Analysis of IKKβ for Therapeutic Peptide Design 

We have demonstrated that constitutively active IKKβ is an extremely specific inducer of 

osteoclast differentiation. Constitutively active IKKα, although possessing more than 

50% sequence conservation with IKKβ 7, fails to induce osteoclastogenesis. We 

rationalize that we can take advantage of the differences between IKKβ and IKKα in 

order to learn which unique regions in IKKβ confer its osteoclast – inducing properties. 

This can be accomplished through domain swapping by PCR to generate chimeric 

molecules. Also, structurally unique regions in IKKβ can be sequentially mutated to 

determine the minimum essential structure which preserves IKKβ function. Important 

regions may be further investigated biochemically to determine how they regulate IKKβ 

activity, and they can be targeted or mimicked molecularly to interfere with IKKβ 

function. This approach will lead to novel therapeutic modalities in inflammatory 

diseases.     
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Amelioration of Osteopetrosis  

Osteopetrosis is a condition of dense brittle bone owing mostly to defective osteoclast 

function or differentiation 26. Most forms of clinical and experimental osteopetrosis are 

amenable to bone marrow transplantation, which means that correction of a defect in the 

hematopoietic compartment rescues the osteoclast defect. We have identified a potential 

approach using viral gene transfer of constitutively active IKKβ to correct an osteoclast 

differentiation defect in cells. Theoretically, using this approach, osteoclast precursors 

from an osteopetrotic mouse or congenic mouse, and perhaps a patient whose 

osteopetrosis results from defective osteoclast differentiation, may be infected with a 

virus expressing active IKKβ and then reintroduced locally into bone. IKKβ would 

trigger osteoclast differentiation in progenitors and would correct the osteopetrosis. There 

are potential pitfalls of this approach related to NF-κB-mediated inflammation. 

Nevertheless, exploring new means to cure this disease may prove to be therapeutically 

beneficial in the future.  
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PERSPECTIVES 

 

Given the wide range of pathological conditions in which NF-κB activity is believed to 

play a role, an intense effort to develop drugs which target the NF-κB signaling pathway 

is logical and justified. Our data provide evidence that these drugs may prove to be 

beneficial in reducing bone – destructive effects of inflammatory conditions. Exciting 

progress has been made toward discovery of selective small-molecule inhibitors of IKKβ, 

which are now in the pre-clinical phase of testing 27. Given the central role for IKKβ in 

differentiation of the osteoclast, the continued effort to target this molecule provides hope 

for effective therapy in patients with conditions of inflammatory osteolysis and other 

conditions of pathologically heightened bone turnover.    
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