Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-01-29

2001-01-01

A Termination Detection Protocol for Use in Mobile Ad Hoc
Networks

Gruia-Catalin Roman and Jamie Payton

As computing devices become smaller and wireless networking technologies improve, the
popularity of mobile computing continues to rise. In today's business world, many consider
devices such as cell phones, PDAs, and laptops as essential tools. As these and other devices
become increasingly independent of the wired infrastructure, new kinds of applications that
assume an ad hoc network infrastructure will need to be deployed. Such a setting poses new
challenges for the software developer, e.g., the lack of an established network topology,
bandwidth limitations, and frequent disconnections. In this paper, we begin to explore design
strategies for developing applications over... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Roman, Gruia-Catalin and Payton, Jamie, "A Termination Detection Protocol for Use in Mobile Ad Hoc
Networks" Report Number: WUCS-01-29 (2001). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/267

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/267?utm_source=openscholarship.wustl.edu%2Fcse_research%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/267

A Termination Detection Protocol for Use in Mobile Ad Hoc Networks

Gruia-Catalin Roman and Jamie Payton

Complete Abstract:

As computing devices become smaller and wireless networking technologies improve, the popularity of
mobile computing continues to rise. In today's business world, many consider devices such as cell
phones, PDAs, and laptops as essential tools. As these and other devices become increasingly
independent of the wired infrastructure, new kinds of applications that assume an ad hoc network
infrastructure will need to be deployed. Such a setting poses new challenges for the software developer,
e.g., the lack of an established network topology, bandwidth limitations, and frequent disconnections. In
this paper, we begin to explore design strategies for developing applications over ad hoc networks. The
study of termination detection in diffusing computations, along with the formulation of an algorithmic
solution amenable to usage in mobile ad joc networks, gives us the opportunity to bring to light several
important software engineering concerns and design strategies one might employ in a mobile setting. We
view this effort as a first step towards creating a repertoire of commonly used design solutions for
frequently encountered problems in the development of applications over mobile ad hoc networks.

https://openscholarship.wustl.edu/cse_research/267?utm_source=openscholarship.wustl.edu%2Fcse_research%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/267?utm_source=openscholarship.wustl.edu%2Fcse_research%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages

A Termination Detection Protocol for Use in
Mobile Ad Hoc Networks

Gruia-Catalin Roman and Jamie Payton

WUCS-01-29

October 2001

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130

A Termination Detection Protocol
for Use in Mobile Ad Hoc Networks

Gruia-Catalin Roman and Jamie Payton
Washington University in St. Louis
Campus Box 1045, One Brookings Drive
St. Louis, MO 63130-4899, USA
{roman, payton}@ cs.wustl.edu

ABSTRACT

As computing devices become smaller and wireless network-
ing technologies improve, the popularity of mobile comput-
ing continues to rise. In today’s business world, many con-
sider devices such as cell phones, PDAs, and laptops as es-
sential tools. Asthese and other devices become increasingly
independent of the wired infrastructure, new kinds of appli-
cations that assume an ad hoc network infrastructure will
need to be deployed. Such a setting poses new challenges for
the software developer, e.g., the lack of an established net-
work topology, bandwidth limitations, and frequent discon-
nections. In this paper, we begin to explore design strategies
for developing applications over ad hoc networks. The study
of termination detection in diffusing computations, along
with the formulation of an algorithmic solution amenable
to usage in mobile ad hoc networks, gives us the opportu-
nify to bring to light several important software engineer-
ing concerns and design strategies one might employ in a
mobile setting. We view this effort as a first step towards
creating a repertoire of commonly used design solutions for
frequently encountered problems in the development of ap-
plications over mobile ad hoc networks.

Keywords

Mobile computing, ad hoc network, termination detection,
diffusing computation, design.

1. INTRODUCTION

Mobile computing evokes images of a businessperson using
a laptop in a conference room, a PDA on a business trip, or
a cell phone in a taxicab. Mobile computing is not limited
to these applications. Exciting, yet practical, uses of mobile
devices are already in existence, and new mobile devices and
uses for them are emerging. Today, retail store employees
use mobile devices to check inventory, runners have devices
that compute their heart rate and speed while on the track,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advaniage and that copies
bear this notice and the fulk citation on the first page. To capy otherwise, to
republish, to post on servers or to redistribute t¢ lists, requires prior specific
permission and/or a fee.

Copyright 2001 ACM X-XXXXX-XX-XAOUXX ...$5.00.

and music lovers have MP3 players that can store and play
music anytime and anywhere. In the near future, the U.S.
Army will equip its soldiers with wearable devices to assist
in urban warfere strategy and communication.

The strong demand for mobile computing devices war-
rants the development of new, innovative software that is
designed for communication over ad hoe networks. A good
software development practice is to apply established design
strategies to the problem at hand. Few, if any, are currently
available in the ad hoc setting even though collections of
design strategies exist and are widely used in distributed
computing. The latter range from high levels of abstrac-
tion, e.g., design patterns [2, 6], to specific algorithms for
standard problems encountered in distributed system imple-
mentation, e.g., [7]. Our goal is to establish a repertoire of
design strategies for mobile computing applications over ad
hoc networks.

OQur first objective is to identify important problems in
mobile computing and to offer practitioners reasonable so-
lutions that will eventually be routinely included in deliv-
ered software. One such problem is termination detection in
diffusing computations, which we study in this paper. Qur
second abjective is to show that the development of mobile
applications demands a new way of thinking, one rooted in
formal methods even when applied informally. In presenting
our algorithmic solutions to the termination detection prob-
lem, we hope to demonstrate a pragmatic style of employ-
ing basic formal thinking skills to this new problem domain.
Finally, we seek to bring to life some of the complexities
of mobile computing for the benefit of mobile application
developers.

We focus on termination detection because it is an impor-
tant practical problem in distributed processing, important
in a mobile ad hoc network as well. In a field command
and control application, for instance, the commander must
be sure that all participants are in position and are ready
before issuing an attack directive. Similarly, in a wireless
classroom setting, all students must submit their test be-
fore the teacher opens up the discussion of possible problem
solutions.

A well-known soluticn to termination detection in diffus-
ing computations is the algorithm proposed by Dijkstra and
Scholten [5]. In this algorithm, a spanning tree of active
nodes is constructed by starting with a single active node
(the root) that gradually spreads the work to other nodes
in the network, awakening idle nodes as work requests are
passed along. Upon activation, a node becomes the child of

the activating node, causing a transition from idle to active
status. The activating node is always part of the tree. If a
node that is already in the tree receives a reguest for acti-
vation, it notifies the sender that the tree’s topology need
not change. A node can be removed from the tree when it is
an idle leaf node by notifying its parent which will remove
it from the lst of active children. Termination is detected
when the tree contains only one idle node—the root node.
The algorithm depends upon constant connection among the
child and parent nodes. In a mobile setting, however, it is
likely that a parent will become disconnected from the net-
work before a child can deliver a termination notice. When
designing applications in a mobile ad hoc networlk, coordi-
nation issues such as discovery of other nodes, synchroniza-
tion of actions, and exchange of information must be viewed
differently because of the high frequency of disconnections.
Solutions should allow for propagation of termination mes-
sages t0 be independent of the connectivity to the parent
node, and cannot depend on the existence of a wired in-
frastructure. Eventual delivery of termination signals to the
root node should be the only requirement.

The termination detection protacol for mobile systems
presented in [9] takes a hybrid approach that combines two
existing protocols, a weight-throwing scheme and a diffusion-
based scheme. This solution is defined for nomadic com-
puting, in which mobile devices are connected to the wired
infrastructure. No connection to the wired network exists
in a mobile ad hoc network. Ideas borrowed from termi-
nation detection in diffusing computations have been used
in mobile ad hoc networks for constructing a message de-
livery algorithm [8]. Thus, while termination detection in
mobile distributed systems has been studied, new solutions
to this particular problem are still needed for use in ad hoc
networks.

The remainder of the paper is organized as follows. In Sec-
tion 2, we specify the problem of termination detection in
diffusing computations for mobile ad hoc networks. Section
3 includes a discussion of an algorithm for termination detec-
tion. The algorithm focuses on peer-to-peer communication.
Section 4 contains a discussion of the results. Concluding
remarks are presented in Section 5.

2. PROBLEM SPECIFICATION

A mobile ad hoc network is formed when a collection of
mobile hosts equipped with wireless capabilities become con-
nected without assistance from any wired resources. Con-
nections get established when devices move within communi-
cation range. The network topology changes as hosts join or
leave the ad hoc network. Connections within such networks
are affected by power limitations, resource availability, phys-
ical locations, etc. Typically, the mobile hosts communicate
directly in a point-to-point fashion, but protocols for ad hoc
routing are being developed. In this paper, we assume only
the case of pair wise connectivity.

Our interest is to examine the issue of terminationr detec-
tion in such networks. We focus on diffusing computations
because, in the ad hoc setting, it is desirable to keep the
number of participants in a computation as small as possi-
ble. We simply assume that the computation spreads cut as
nodes *bump” into each other. The challenge, of course, will
be to let the source of the computation know that all hosts
touched by the computation actually terminated despite the
fact that connectivity becomes available in an opportunistic

and unpredictable manner.

Making termination detection of diffusing computations
possible in this setting is not just an interesting problem,
but is one that must be solved in order to produce certain
types of applications. For instance, termination detection is
important to applications that perform multiphase process-
ing. A practical example is epidemic software updates. In
epidemic updates, the software is updated locally on 2 host.
In the first phase of processing, the update is propagated
to all other hosts. The originator of the update must know
that all hosts received the update. In the second phase of
processing, the originator begins to notify hosts that the
software can be activated. This phase does not require the
host to obtain knowledge of completion of processing. An
instance of this type of software update might occur when
a new communication key is generated and sent to others
in the group. The old communication key is kept until all
participants have received the new key. The originator of
the new key, then, must know that all others have received
the new key so that the old key can be destroyed. The orig-
inator can then send a message to indicate that the old key
should be used no longer.

Informally, the problem we are trying to solve can be cap-
tured as follows. All mobile hosts are initially idle except for
a single host, called the root, which initiates the computa-
tion and is charged with ultimately detecting the termina-
tion. The root node can activate idle hosts in the mobile ad
hoc network by sending a request for a fask to be performed,
while connected. The first such request to be received by a
node becomes its activation message. A host that becomes
active may, in turn, activate other hosts. Notice that an
idle host can become active only when it receives an activa-
tion message from an active node in the computation. The
active nodes later become idle once their processing is com-
plete. It should also be noted that throughout this process
connections are established and dissolved very frequently,
which often results in leaving a node completely isolated
or in the formation of ever-changing, disjoint subnets. To
detect termination, it is necessary to ascertain at the root
node that, at some point after the start of computation, all
mobile hosts in the ad hoc network that were once activated
are idle again. In the general case, the problem is clearly
unsolvable since a disconnected active node could simply
depart, never to return. As such, examining what might be
reasonable ways to constrain the problems will be an inte-
gral part of the proposed solution and a guide for 2 general
design strategy.

Formally, let V' be the set containing all nodes represent-
ing mobile hosts. V is fixed, i.e., the set of all mobile nodes
may be very large but closed. Let vp be a distinguished
node, representing the root of the diffusing computation.
Let E be a set containing all communication links that are
up at any instant in time. Clearly B changes over time, as
hasts change physical location and connections are dropped
or established. The combination of ¥V and F forms a logical
connectivity graph, G(V, E}. Each connected subgraph of G
represents an ad hoc network., Furthermore, let us assume
that each node w has an associated Boolean variable called
w.idle. Another variable called u.done is needed to log the
fact that termination was detected. Since detection is car-
ried out only at the root node vo, u.done remains false for
all other nodes. Given these assumptions, the termination
detection problem assumes its classical formulation:

Given?
W=<VYu:ueViuidle >

stable W
construct a protocel such that?

vp.done detects W,

3. ALGORITHMIC SOLUTION

In this section we introduce our algorithm for termination
detection in diffusing computations aver mobile ad hoc net-
works. For purposes of exposition, we assume that the set of
mobile hosts is closed and communication is point-to-point
{ad hoc routing is not used). Finally, 2 node may be acti-
vated af most once. We will be able to eliminate this last
restriction later in the paper. The details of the algorithm
are shown in Figure 1. Note that the algorithm assumes
synchronous communication. In Figure 1, the symbols %"
and “” represent set union and difference, respectively.

The diffusing computation begins with a single node being
active. We refer to this node as the root because it serves
as the starting point for the construction of an activation
tree that will keep track of all the nodes participating in the
computation. Once active, a node may request help from
other nodes that are within communication range and still
in the idle state (action I'ssuedActivatingRequestg). Since
(for now) nodes can be activated at most once, the recipi-
ent of an activation request must not have been previously
activated. This is the reason why the activation action is
guarded by a condition, which in practice would only be
known by the other party in the communication. The use of
the guard simplifies the algorithm presentation but it hides
the presence of some additional message exchanges between
the two nodes. As a matter of fact, even if we were to re-
move the restriction, the information of whether or not a
work request activated a new node or it involved a node
already active would still need to be communicated to the
requester since the latter must keep track of all the nodes
it activated throughout its life time. Work requests circu-
lating among active nodes (action ssueAnother Requests)
are simply carried out without affecting the bookkeeping
process associated with detecting termination.

When a node is activated, both participants record the
fact but in different ways. The activating node places the ac-
tivated node in its list of children (variable ActivatedChildren)
while the node being activated transitions from idle to ac-
tive (action AcceptWorkReguest). Implicitly, the newly ac-
tivated node is added as a leaf to a tree rooted at the source
of the diffusing computation. The tree is stored in a dis-
tributed manner by having each parent keep track of its
own children. Ignoring node termination for the moment,
every active node is reachable (in principle) along a path

YThe stability requirement indicates that, once established,
W will continue to hold forever.

*Detection is defined as a combination of two properties.
First, once set, the termination flag v0.done guarantees that
all nodes are idle. Second, if all nodes become idle, the fact
is eventually recorded by setting the termination flag. The
first condition is a safety property while the second is a
progress property.

from the root but (in fact) many of the links may no longer
be up since nodes may have moved out of range with respect
to each other.

An activated node that no longer has a task to perform
may terminate (action NodeTerminates) at any time by
changing its state from active to idle—the record of hav-
ing been activated already (auxiliary variable activeted) re-
mains unchanged and, because of the fechnical restriction
that a node can be activated at most once, the node is ef-
fectively removed from the computation. The transition to
the idle state is accompanied by the generation of an idle
report, which is stored locally as part of an completion his-
tory (variable idleReports). This may appear at first o
have broken the activation tree but this is not so. The paz-
ent/child relation is captured by the local list of children
while the node is active and by the idle report once the
node becomes idle. The distinction is important. First, a
node that generated an idle report is in fact idle. Second,
idle reports stored in the local completion histories need not
remain with the node that generated them but they can
travel from one node to another according to a set of rules
that maintain the integrity of the tree and, eventually, make
it possible for the root to declare the computation as being
finished, Idle nodes maintain a virtual presence in the ac-
tivation tree even though they may be long gone and out
of reach. A path from the root to the idle node still exists
but the information about the tree structure is scattered
among nodes that may or may not have been involved with
the computation. Nevertheless, premature termination de-
tection cannot happen because a decision at the root cannot
be taken before all the idle reports are collected. If any re-
port is missing there is always a node present at the root
that will point to it, directly or indirectly.

If the system enters a state in which all nodes are idle and
if all idle reports reach the root, termination detection be-
comes & trivial exercise. One simply remaoves each leaf of the
tree (representing an idle node with no children that could
possibly be still active) and repeats the process until the
only node left in the tree is the idle root. The fact that all
nodes eventually terminate is one of the assumptions made
in the definition of the problem. But how will the idle Te-
ports reach the root? In the static network, connections stay
up and idle reporis could be funneled to the root along the
paths in the tree. In the mobile setting, we could make the
assumption that every node eventually meets the root and
transfers the idle report but this would be much too strong,
In the algorithm as presented, we abstract the notion that
an idle report eventually reaches the root by postulating the
existence of a partial order over the universe of nodes, hav-
ing a lowest bound, the root node. Under this assumption,
& node carrying some portion of the completion history sim-
ply passes all it knows to any node lower with respect to
the partial order. It can be easily shown that the distance
between the current location of an idle report and the root
(measured in terms of the shortest path in the partial order)
decreases with each such transfer of information. With each
encounter the idle reports get closer and closer to the root.
By induction we can establish that they eventually reach
the root. Even with the partial order in place, the proof
still needs to rely on the assumption that a node carrying
idle reports eventually meets another node that is logically
closer to the root. Without this, no solution exists since
nodes may go away never to come back. The information

State churacterization for node 4

ifle - Boolean, true if and oaly if the node is in an idle state, initiaily true except for the initiator of the
diffusing computation

oot = true if and caoly if the node is the initiator of the diffusing computation

aclivatedChildren - a yet of sctivated nodes, initially cmpty

idleReports — a set of pairs of the form (idle node, activated nodes)

id ~ unique node identifier

done - Boolean, trae if the root detected termination, falge for all other nodes, initially false

channcl(4,) - Boolean, true if communication link between A and B is up

Auxiliary Varjables
‘activated = {activatedChildren: #)
nover.aclivated = ~activated
uetive = —idle

Actions at 4

DetectTermination
Precondition:
roat A idle A idleReports = 0
Effect:

done := true

fssueActivalingllequesty - A sends ac activation message to I
Precondition:
aclive A channel{A, B} A B.never_activated A work o be.done_by B

Effect:
nclivaledChildren := activatedChildren -+ { B}
send job{insk) to B
IssucAnotherRequesty

Precondition:
active A channel(A, B) A B.aclivaled A B.aclive A work_to_be_done.by.B

Effect:
send job(fesk) to B
AcceptWorkRequest - activation message arrives at A from B
Let the mesgage be job(task)
Effect:
if never_activated then
fdle 1= false
end
perform_the tosk
NodeTerminates - nade A terminates

Precondition:
aclive A ro_work.lo.de

Effect:
idle i= true
idluReperts 1= idleReports + {(4, activaledChildren)}
PropagaicidleReports - node A meets node B
Precondition:
channel{A, B) A (B.id < A.id)
Effect:
if {dleReports #£ 0 then
send nodelnfo{idleReporis) to B
idieReports ==)
end
AccaptidieReports ~ node A receives computation states from B
Let the message be nadefnfo(new_reports)
Effect:
idleReporis := idleReporls 4+ new_reporis
RemoveldleLeaves

Precondition:
((z, =} € idleReporis) A {y € z) A (y,8) € idleReports
Effect:
idleReports 1= idleReports — {(z, 2)} + {{z,2 —)} — {{».0)}

Figure 1: Termination Detection Algorithm for Mobile Ad Hoc Networks

they held would be lost and no final determination of the
termination status would be possible. This is one of the
realities of mobile computing in ad hoc networks.

We discussed earlier the method by which the root re-
cursively prunes the activation tree. This process, however,
need not wait to be carried out by the root. Any node that
has sufficient information should carry out the pruning. If
the (incomplete) completion history stored at the node con-
tains a leaf and also the idle report associated with the par-
ent, the information about the leaf may be eliminated in
both places without any negative impact on the detection
process and the integrity of the activation tree.

()

(<)

@ © @

(e)

&)

Figure 2: Example Activation Tree

An example of an activation tree that our algorithm might
produce is shown in Figure 2. Active nodes in the activation
tree are shaded. A snapshot of the ad hoc network topology
at the fime that the diffusing computation begins is shown in
Figure 2a. Node A is the originator of the computation, and
becomes the root of the activation tree (Figure 2b). Node

A activates node B and node C. These nodes are added to
the activation tree (Figure 2¢). Node B activates two more
nodes, node D and node E. At some point, node C finishes its
work and becomes idle (Figure 2d). Node D activates node
F and node @, which are added to the tree. In the meantime,
node B terminates (Figure 2¢). Notice that B is the parent
of D, and is terminated, but not removed from the tree. The
labeled hexagons indicate where the information about that
parent/child relation is actually stored. For instance, node
E is idle and its idle report resides at node B. Similarly the
idle report of B is stored at A. By contrast, the active node
D still stores its relation to its children. A snapshot of the
network topology after termination is detected is shown in
Figure 2f.

4. DISCUSSION

In this section, we revisit some of the assumptions made
earlier and some subtle aspects of the solution.

The first concern we need to address is the assumption
that a node carrying idle reports eventually meets another
node closer to the root. In truth, nodes may leave the net-
work at any time, never to return. The question we must
ask is, how do we ensure that termination is detected at the
root if a node never returns its idle report? One possible so-
lution is to employ some timeout mechanism and o “push
out” of consideration the wayward node. In other setbings,
we may employ probabilistic analysis or may be able to take
advantage of known movement patterns, e.g., carts moving
back and forth on a given set of tracks.

‘We also assumed that a host may be activated at most
once. This was only to help us explain the essence of the
algorithm. A simple modification to the code offers an easy
way out. If each node keeps an activation counter, we can
treat each new activation as if it involves a completely new
node whose identity is defined by a pair consisting of the
node identifier and the activation counter. The space taken
by the activation counter may be reclaimed, if so needed,
when the termination is known by the participant, not just
by the root.

We also postulated the existence of a partial ordering for
message delivery purposes. An obvious question is, how can
nodes involved in the compuation be arranged in a partial or-
dering? An obvious answer is to assign numerical identifiers
to hosts. There are several possibilities. One possibility is
to statically assign identifiers to nodes based upon the loca-
tion at the start of the computation. However, hosts move
a great deal making static assingment too inflexible. Dy-
namic assignment of identifiers is another possibility. One
approach of particular interest dynamically assigns numer-
ical values to hosts according to their relative distance to
the destination. This approach, the Disconnected Transi-
tive Communication (DTC) model [3], uses a value called
a utility to determine if one host is closer to ancther. If a
host is closer to the destination, it means that the probabil-
ity that it will bump into the destination host within a given
time frame would be higher. A node sends a utility probe
to connected nodes, which calculate their respective utility
on demand. Utility responses are collected, and the message
is set to the node with the highest utility (the node that is
most likely to meet the destination node). In effect, 2 partial
ordering is constructed using the inverse of the utility value
such that the destination node is the least element. The
existence of other bodies of work with similar goals is en-

couraging, e.g., research on epidemic routing [10]. The goal
of epideric routing is to deliver a message to a particular
host in an ad hoc network in which ad hoc routing is used,
relying only on temporary pair wise connections between
hosts. In this work, host identifiers are assigned according
to the last bits in the hosts’s IP address. Algorithms for
token based mutual exclusion dynamically assign numerical
identifiers to hosts in such a way that a total ordering is
formed {4, 11].

Returning to the notion of using a partial order for mes-
sage delivery in our algorithm, it is interesting to note that
it is possible to capture a rich set of assumptions about the
delivery policy:

{1} I we assume that every node will eventually encounter
the root in its travels, all nodes may be viewed as being
immediately greater than the root node. Two non-root
nodes that meet would not exchange any data since,
according to this partial order; they are not compara-
ble with each other.

(2} M wedesire to involve in the delivery process only nodes
that participated already in the computation, we need
to make available to each activated node sorne notion
of distance relative to the root, e.g., depth in the acti-
vation tree. Two nodes can easily determine whether
they both participated in the computation and their
relative ordering relation.

(8) If the ad hoe network is self-organizing in some hierar-
chical fashion, it is possible to direct the data to the
lowest common ancestor of a given node and the root
node and, once reaching the ancestor, to redirect the
information down to the root node.

{(4) If the root has a fixed location, a node that is heading
in that particular direction may be viewed as being
closer to the root. This suggests that the geometry of
the space can play a role in the data transfer policy.
Also, as mentioned before, it highlights the fact that
the partial order need not he defined in a static man-
ner but in a way that takes into consideration motion
patterns.

These ideas clearly deserve further exploration and we plan
to examine them in future work, outside the scope of this
paper.

Throughout, we assumed that hosts communicate in a
point to point fashion. However, it is likely that in the
future, mast hosts will utilize ad hoc routing. When ad
koc routing is introduced, clusters of connected nodes will
form and dissipate opportunistically as the hosts enter and
leave the communication range. In this setfing, a cluster
can divide into multiple clusters and/or merge with another
cluster. How can our algorithm be modified to accomodate
these changes? Clusters can be thought of as containing
all active nodes. Clusters shrink as active nodes become
idle, and grow as nodes become active. Each cluster has a
“leader.” One of the leaders is the originator of the diffusing
computation. Bach leader would be responsible for commu-
nicating with other clusters, and updating and passing on
the information needed to maintain the activation tree. An
idle node can freely depart knowing that the leader will have
all the data required to carry out the algerithm. The leader

is also responsible for negotiating cluster merging and parti-
tioning. If a computation spans several clusters, each leader
must detect termination in its cluster before the originator
of the computation can detect termination. This leader node
is similar to a clusterhead [1, 12] or cluster representatives
that are used in ad hoc routing protocols.

Finally, we note that the activation tree is what we often
refer to as a global virtual data structure. If is an abstract
representation of the global system state that has an explicit,
concrete, but distributed, representation which is being ma-
nipulated by actions at the local level. The semantics of
these actions are associated with constrained changes in the
local data but can also be assigned global semantics that
capture their impact on the overall system. Local seman-
tics relate to coding the programs while global semantics
facilitate reasoning about the computation.

5. CONCLUSION

In this paper, we have examined the problem of detecting
termination in diffusing computations. While this problem
is well-researched, it has been studied mostly in a distributed
computing context. When studying termination detection
in a mobile ad hoc network environment, we found that the
frequent disconnections among hosts renders the standard
solution ineffective. In turn, we devised a new algorithm
to achieve termination detection in mobile ad hoc networks,
one that does not rely on persistent connections among hosts
to achieve the termination condition.

By identifying termination detection as a useful problem
and offering a solution well suited to mabile ad hoc networks,
we have begun the journey toward achieving our goals. First,
we took the first step towards providing a practical solution
to an important problem faced in developing applications
for mobile computing. Second, in working on the termina-
tion detection problem, we put forth additional reasons why
goal-directed routing is emerging as an important problem
in mobile computing. Finally, we have hinted at a formal,
yet pragmatic way to think about problems in the mobile
computing domain by relying in our correctness arguments
on informal application of well-established proof techniques
and on the notion of global virtual data structures.

Acknowledgements

This research was supported in part by the National Sci-
ence Foundation under Grant No. CCR-9970939. Any opin-
ions, findings, and conclusions or recommendations expressed
in this paper are those of the authors and do not necessaxily
reflect the views of the National Science Foundation.

6. REFERENCES

{l] D. Baker and A. Ephremides. A distributed algorithm for
organizing mobile radio telecommunication networks. In
Proceedings of the Second International Conference on
Distributed Computer Systems, pages 476-483, Apr. 1981.
F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal. A System of Paiterns: Peitern Oriented
Softwere Architecture. Wiley, 1996.

[3] X. Chen and A, Murphy. Enabling disconnected transitive
communicaiton in mobile ad hoc networks. In Proceedings
af Workshop on Principles of Mobile Computing, pages
21-27, August 2001,

[4] D. Dhamdhere and 5. Kulkarni. A token based k-resilient
mutual exclusion algorithm for distributed systems.
Information Processing Letters, 50:151-157, 1994.

[2

—

[5] E. Dijikstra and B. Scholten. Termination detection for
diffusing computations. Infermetion Processing Letters,
11{1):1-4, 1980.

[6] B. Gamma, R. Helr, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, October 1994.

[7] N. Lynch. Distribuied Algorithms. Morgan Kaufmann
Publishers, 1996.

{8] A. Murphy, G.-C. Roman, and G. Varghese. Tracking
mobile units for dependable message delivery. Technical
Report WUCS-99-30, Washington University, Department
of Computer Science, St. Louis, Missouri, 1999. To appear
in IEEE Transactions on Sofiware Engineering.

[9] Y. Tseng and C. Tan. Termination detection protocols for
mobile distributed systems. IEEE Transactions on Paralle!
and Distributed Systems, 12{6), June 2001.

[10] A. Vahdat and D. Becker. Epidemic routing for
partially-connected ad hoc networks. Technical Report
C5-2000-06, Duke University, July 2000.

{11} J. Walter, J. Welch, and N. Vaidya. A mutual exclusion
algorithm for ad hoc mobile networks. In Proceedings of
2nd International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications, Oct.
1998,

[12] J. Zavgren. Ntdr mobility management protocols and
procedures. In Proceedings of the IEEE Military
Communrications Conference, Nov. 1997,

	A Termination Detection Protocol for Use in Mobile Ad Hoc Networks
	Recommended Citation
	A Termination Detection Protocol for Use in Mobile Ad Hoc Networks

	tmp.1439916845.pdf.LRhMa

