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ABSTRACT OF THE DISSERTATION 

 
Coordinate interstitial deletions of Retinoblastoma (RB1) and Neurobeachin 

(NBEA) genes on chromosome 13 in monoclonal gammopathy of undetermined 
significance (MGUS) and multiple myeloma 
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Numeric or structural chromosomal abnormalities are detected in nearly all 

patients with plasma cell dyscrasias, including primary amyloidosis, monoclonal 

gammopathy of undetermined significance (MGUS) and multiple myeloma (MM).  

Chromosome 13 deletions, most frequently monosomy 13, are detected in 10-

20% of MM cases by routine cytogenetics or metaphase fluorescent in situ 

hybridization (FISH) and are a significant predictor of shortened survival. 

Previous efforts to map somatically acquired DNA copy number losses on 

chromosome 13 have been limited by their low resolution. To identify DNA copy 

number losses on chromosome 13 at high resolution, we used genomic DNA 

isolated from CD138 enriched bone marrow cells (tumor) from twenty patients 



 xiv 

with MM, monoclonal gammopathy of undetermined significance (MGUS) or 

amyloidosis. We used matched skin biopsy (normal) genomic DNA to control for 

copy number polymorphisms and a novel aCGH array dedicated to chromosome 

13 to map somatic DNA gains and losses at unprecedented resolution (>385,000 

probes; median probe spacing 60bp). We identified RB1 and NBEA as being 

coordinately affected by copy number loss in MGUS and MM. To characterize 

these genes in the context of myeloma biology, we performed sequence and 

expression analysis on RB1 and found exonic mutations affecting RB1 were 

extremely rare, RB1 levels were decreased in patient samples harboring 

monosomy 13, and RB1 protein phosphorylation was not common. Expression 

analysis of NBEA revealed most patient samples harboring monosomy 13 had 

reduced NBEA, but to our surprise, a subset harbored high levels. Analysis of 

Nbea in hematopoietic tissues revealed although it was detected in thymus and 

spleen, using a fetal liver transplantation assay, Nbea was dispensable for 

hematopoietic development. Future studies investigating cooperation of RB1 and 

NBEA in plasma cell dyscrasias are warranted.  

 
 
 
 
 
 
 
 
 
 
 
 
 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 1 
 

Introduction 
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1.1 Plasma cells are terminally differentiated B cells responsible for 

antibody production  

Plasma cells are terminally differentiated B cells whose function is to produce 

and secrete antibodies in response to antigen exposure. Their development in 

adults begins in the bone marrow stemming from the common lymphoid 

precursor (CLP) that gives rise to mixed B, T and natural killer cell progeny.  

Primitive B cells undergo regulated changes as they differentiate into mature B 

cells ready to exit the bone marrow. These changes are marked by cell surface 

expression of specific proteins representing successful recombination events 

required for formation of the B cell receptor (BCR).  

 

Antibodies are comprised of two identical heavy chain subunits and two identical 

light chain subunits.  There are two different parts of an antibody that help it 

function effectively. First, the variable region, comprised of both heavy and light 

chains, is responsible for antigen recognition. Multiple mechanisms exist to 

increase the diversity of this region, ensuring maximal affinity for antigen targets. 

These include introduced mutations during VDJ end joining that occurs early in B 

cell development, and later, during somatic hypermutation that occurs in germinal 

centers (discussed below).  The second part of an antibody molecule is the 

constant region, comprised of heavy chains, of which there are five isotypes: 

µ,α,γ,ε,δ. These are each responsible for activation of different downstream 

pathways best suited to trigger effective immune responses.  
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Antibody production involves DNA rearrangements affecting both heavy and light 

chain molecules.  Their formation marks the different stages of early B cell 

development in the bone marrow that all occur before these cells have ‘seen’ 

antigen. Pre/pro-B cells, distinguished from CLPs by expression of B220, have 

not yet begun DNA rearrangements required for antibody formation. Heavy 

chains are formed first by recombination of diversity (D) to junction (J) segments, 

and then the variable (V) segments are recombined to DJ segments. Pro B cells 

have begun to rearrange their heavy chain loci and upon completion of 

successful formation of VDJ segments, are now termed early Pre-B cells. Late 

Pre-B cells are defined by detection of light chain rearrangement. Finally, upon 

completion of a functional cell surface expressed antibody (the BCR), these cells 

are now mature B cells ready to exit the bone marrow and home to the 

secondary lymphoid organs, lymph node and spleen.   

 

There are multiple types of B cells in the spleen including follicular (B2), marginal 

zone (MZ), and B1, each with different cell surface markers but all with the ability 

to mature into plasma cells. B2 cells predominate in number compared to the 

minor types MZ and B1 B cells. The latter two types contribute the first line of 

antibody-mediated defense, which is rapid, short-lived, and results in production 

and secretion of low-affinity antibodies. Long-lived plasma cells are mainly 

derived from the B2 cells [1] that respond to antigens presented by splenic 

dendritic cells and require CD4 T cells.  
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B2 cells migrate into Germinal Centers, a zone in the spleen comprised of rapid 

proliferation, where they mature into centroblasts. They will undergo two DNA 

modifying events including Somatic hypermutation (SHM) and class-switch 

recombination (CSR).  Both events involve activation-induced cytidine 

deaminase (AID), the enzyme responsible for deaminating a cytosine residue 

resulting in a uridine:guanosine (U:G) mismatch. In SHM, this mismatch can be 

repaired by a variety of mechanisms. First, the uridine can be interpreted as a 

deoxythymidine, leading to an adenine-thymidine base pair. Alternatively, uracil 

DNA glycosylase can recognize the uracil, remove it, and then it can be fixed by 

short patch base excision repair or mismatch repair. The involvement of low 

fidelity DNA polymerases enhances the chance for mistakes. These events occur 

within the variable region of antibody only, ultimately leading to generation of B 

cells with the ability to generate antibody with high affinity for antigen.  

 

CSR also involves AID, which generates double stranded breaks within the 

‘switch regions’ located between the sequences encoding for the different 

subtypes of heavy chain locus on human chromosome 14. This leads to 

intrachromosomal deletion recombination and production of transcripts encoding 

one type of heavy chain. Long lived, post germinal center plasma cells ultimately 

leave secondary lymphoid organs and home back to bone marrow. Mistakes 

occurring in the germinal center DNA modifying processes are believed to be  

responsible for chromosomal abnormalities found in PC diseases, since if breaks 

are not repaired properly, translocations and mutations occur.  
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1.2 Multiple Myeloma (MM) 
 
Multiple myeloma (MM) is a malignancy of terminally differentiated bone marrow 

plasma cells. It is the second most common hematological cancer in the United 

States, responsible for 2% of all cancer deaths. It accounts for approximately 

12,000 deaths a year and remains incurable in most patients.  MM (and MGUS- 

see below) prevalence is twice as high in African Americans than Caucasians [2]. 

Myeloma incidence progressively increases with age and rarely affects persons 

under the age of 30 (less than 0.3%) [3]. During the period 2000-2004, in the US 

the median age of diagnosis of MM was 71 years based on US Surveillance 

Epidemiology and End Results Programme (SEER). 

 

Myeloma is a progressive tumor with multiple defined stages. Smoldering 

(asymptomatic) multiple myeloma (SMM) is slow growing and may not progress 

for months or years. SMM is defined by greater than 10% PCs in the bone 

marrow and monoclonal protein greater than 3g/dl without end stage damage 

such as osteolytic bone lesions (Table 1). Also asymptomatic, indolent myeloma 

is similar to SMM, but patients may have mild anemia or a few bone lesions.  

 

Increased numbers of PCs in the bone marrow, renal failure, osteolytic lesions 

and anemia characterize advanced (symptomatic) myeloma (Table 1). These 

patients are treated immediately with high dose chemotherapy, stem cell 

transplants and/or other drugs including Thalidomide, Bortezomib, Pamidronate 

or Zoledronic acid (www.mmrc.com). Myeloma remains an incurable disease, 
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although patients are living longer due to newer therapies. Identification of MM 

cells outside the bone marrow cavity (extramedullary) defines aggressive MM 

(called primary or secondary plasmacytoma depending if prior MM was 

diagnosed).  During this advanced disease, myeloma cells have high rates of 

proliferation, and it is only during this advanced disease where cell lines have 

been isolated.  

 

1.3 Monoclonal Gammopathy of Undetermined Significance (MGUS) 

Like MM, MGUS is a disease associated with age. It is found in 2% of persons in 

the general population 50 years of age or older, and ~3% of patients age 70 and 

older [4]. MGUS is clinically defined by plasma cell percentages within normal 

range (<10%), but detection of monoclonal antibody in the serum or urine (levels 

less than 3g/dl; Table 1). The risk of developing MM from prior MGUS is ~1%, 

per year of having MGUS, and most patients die of other causes before ever 

developing overt MM [4]. Although the total numbers of plasma cells are in the 

normal range, it is reported that in order to actually detect monoclonal antibody, 

at least 5X109 clonal cells are required, representing at least 30 cell doublings 

[5]. MGUS cells therefore at some point undergo cell division, in addition to not 

being eliminated via apoptosis.  

 

1.4 MGUS likely always precedes MM 

MGUS can be (but is not always) detected prior to development of overt 

myeloma, and, although controversial, is posited to be a “premalignant” tumor. It 
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is a current interest in the field to determine whether all MM has a prior MGUS 

phase, since if so, myeloma prevention could ultimately become a reality. The 

difficulty in determining whether MGUS precedes all MM is the lack of patient 

data prior to MM diagnosis. Two recent studies provide evidence that MM is 

always preceded by an MGUS. First, a study presented at the American Society 

of Hematology Meeting (San Francisco, 2008) [6] analyzed retrospectively, 

serum samples from active duty service members and found most MM patients 

had a detected plasma cell serum abnormality up to 2.5 years prior to MM 

diagnosis.  Additionally, a very recent paper [7] examined patients for 1-8+ years 

via the prostate, lung, colorectal and ovarian screening trial, and found 

essentially all patients diagnosed with MM had a prior detection of monoclonal 

antibody. These data suggest MGUS is a preclinical stage and studies to 

elucidate ways to prevent MM are warranted.   

There is much interest in identifying risk factors associated with progression from 

MGUS to MM. It is known MGUS patients with higher amounts of monoclonal 

protein at diagnosis, or monoclonal antibody of IgA or IgM  (versus IgG) subtype 

have an increased risk of progression to MM [4]. Abnormal serum kappa/lambda 

ratio also confers higher risk for MGUS patients [8].  

 

1.5 Primary Amyloidosis 

Primary Amyloidosis is a PC disorder characterized by overproduction of 

immunoglobulin light chains that form insoluble fibril deposits in a variety of 

organs including heart, kidney, liver, nerves, and/or bowel. This leads to organ 
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dysfunction and if not treated, median survival of 10-14 months.  Amyloidosis 

PCs have many of the same chromosomal abnormalities detected in MGUS and 

MM patient samples (discussed below) [9].  

 

1.6 Chromosomal abnormalities in plasma cell dyscrasias  

Numeric or structural chromosomal abnormalities are detected in nearly all 

MGUS and MM patients [10] and can be divided into groups (Figure 1) based on 

chromosome number.   About half of MM is hyperdiploid (48-75 chromosomes), 

characterized by trisomies usually involving chromosomes 3, 5, 7, 9, 11, 15, 19 

and 21.  Non-hyperdiploid myeloma is comprised of hypodiploid, (<45 

chromosomes), pseudodiploid (44-47 chromosomes), or near tetradiploid (75 or 

more). Near tetraploid appears to be 4N duplications of pseudodiploid or 

hypodiploid. Therefore, these three groups are usually grouped together as non-

hyperdiploid (<45 chromosomes or >75 chromosomes) [11]. This group is 

distinguished by lack of trisomies, and presence of primary translocations that 

juxtapose the strong heavy chain enhancers (IgH) located on chromosome 14 

with variant partner chromosomes. These translocations are found in a higher 

percentage of non-hyperdiploid cells (>70%) vs. of hyperdiploid  (<40%) of 

hyperdiploid MM [12]. The breakpoints within the IgH locus occur mostly at 

switch regions, but can also occur within VDJ sequences. These are thought to 

be mediated either by errors in switch recombination or somatic hypermutation. 

Additionally, since these mistakes occur during normal processes during B cell 

maturation within a germinal center, they are believed to be tumor-initiating 

events. 
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Within primary IgH translocations, the IgH locus is translocated to a variety of 

partner chromosomes at different frequencies (Table 2). The two most common 

translocations are the t(11;14)(q13;q32) and the t(4;14)(q32q23). The t(11;14) 

correlates with good prognosis, [13, 14] while the t(4;14) predicts poor prognosis 

[15]. Secondary translocations are detected in patient samples with advanced 

disease. In contrast to primary translocations, secondary translocations involve 

the IgH locus less and are structurally complex [12]. One of the common targets 

of secondary translocations is the c-MYC oncogene.  In addition to secondary 

translocations, late-stage MM samples harbor mutations affecting Ras, FGFR3, 

and/or P53.  

 

1.7 Monoallelic deletion of chromosome 13 is associated with poor 

prognosis 

Monoallelic deletion of chromosome 13 is detected in 30-50% of MGUS and MM. 

It is associated with reduced patient survival and decreased time to relapse, [11, 

15-18] although this association has been complicated by its method of 

detection. Analysis of monosomy 13 in PC dyscrasias is performed by 

cytogenetics, metaphase-fluorescent in situ hybridization (M-FISH), interphase 

FISH  (I-FISH), or comparative genomic hybridization (GCH). Cytogenetics and 

M-FISH require cell proliferation in culture, which is not needed for the latter two 

analyses. Because of this, up to one third of cytogenetic analyses fail and are 

uninformative.  Consistent with this, higher percentages of chromosomal 
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abnormalities are found in I-FISH [11].  

 

Multiple reports (using either interphase or metaphase methods) report 

monosomy 13 is associated with poor survival [11, 15-18]. However, it has 

become clear that only metaphase (cytogenetics or M-FISH) detected del 13 

associates with poor survival [15,16]. This becomes apparent if samples with del 

13 by I-FISH and M-FISH (or cytogenetics) are separated from those detected by 

I-FISH only. If the deletion is detected only by I-FISH, the poor survival 

association goes away [15,16]. These analyses highlight that there is a currently 

unknown abnormality/factor that confers the ability of these cells to grow in 

culture, which is contributes to the poor prognosis of those patients. 

 

Monosomy 13 is found both hyperdiploid and non-hyperdiploid samples, but is 

found in a higher percentage of hypodiploid tumors [16]. Hypodiploid status is 

associated with reduced patient survival compared to non-hyperdiploid tumors 

[19]. Cytogenetically detected del 13 confers poor outcome to both hyperdiploid 

and non- hyperdiploid patients, [20] but the reverse analysis revealed that 

dividing del 13 patients by ploidy status does not worsen patient outcome [15, 

20]. This suggests poor prognosis is determined by monosomy 13.  

 

Monosomy 13 is highly associated with the t(4;14)(q32;q23) translocation, also a 

predictor of poor patient prognosis [15]. Since almost all t(4;14) positive samples 

harbor monosomy 13, it is difficult to distinguish which abnormality is the cause 
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of the poor patient outcome. Monosomy 13 samples that do not have t(4;14) still 

predict poor outcome.  

 

If monosomy chromosome 13 were directly involved in the progression from 

MGUS to MM, then one would predict detection of monosomy 13 would be 

present in a lower percentage of MGUS samples vs. myeloma samples, 

representing MGUS patients progressing faster to MM.  Although reported in 

limited studies [21], more reports have found this not to be true [17,22]. Instead, 

the detection of monosomy 13 in MGUS at similar levels to MM supports the 

conclusion that monosomy 13 is an initiating event in PC transformation.  

 

1.8 Chromosome 13 Mapping Studies  

Previous efforts have been made to identify the important tumor- promoting 

regions on chromosome 13. Mapping studies using comparative genomic 

hybridization (CGH) analysis with 10Mb resolution identified 13q14-q21 and 

13q32-34 as regions on chromosome 13 commonly lost [23-25]. Fluorescent In 

Situ Hybridization (FISH), which probes for the presence or absence of known 

sequences, but with better resolution (1Mb) has highlighted similar regions [26-

29]. Whole genome array CGH (0.73Mb resolution) combined with gene 

expression analysis identified CUL4A (13q34) as a potentially relevant gene 

located within a 0.77Mb deletion on chromosome 13 [30]. Single nucleotide 

polymorphism (SNP) analysis (10Kb resolution) revealed a 1.9Mb minimally 

deleted region (MDR) in one patient spanning 13q13.3 to q21.3 [31].  
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The relatively low resolution of these studies has precluded identification of 

specific genes targeted by chromosome 13 deletions. The focus of this thesis 

was to indentify genes on chromosome 13 affected by copy number loss in 

MGUS, amyloidosis and myeloma patient samples. To this end, we employed 

high resolution aCGH using a novel, custom designed chromosome 13 focused 

array (Nimblegen) with median probe spacing of 60bp, on DNA isolated from 

primary CD138 selected cells with patient matched normal controls. We found 

the retinoblastoma (RB1) and neurobeachin (NBEA) genes were coordinately 

affected by copy number decrease in multiple patient samples. The focus of the 

thesis based on this result has been to characterize these two genes in PC 

diseases.  

 
 
1.9 Retinoblastoma (RB1) tumor suppressor 

Our aCGH analysis (Chapter 2, below) identified RB1 as being coordinately 

deleted with Neurobeachin (NBEA) in multiple patient samples taken from 

patients with MGUS or MM. RB1 was the first identified tumor suppressor gene, 

and is highly studied, as disabling the “RB1 pathway” is believed to be essential 

for virtually all tumor formation [32]. Mutations in, or deletions of, both copies are 

causative for development of retinoblastoma tumors in humans. Observations of 

retinoblastomas led to Knudson’s famous “two hit” model of tumor suppressor 

genes. Knudson observed patients with inherited predisposition to retinoblastoma 
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and correctly predicted that one defective tumor allele was inherited, and the 

other was somatically mutated [33].  

 

RB1 is a nuclear phosphoprotein that functions in multiple cellular processes 

including cell cycle, apoptosis, differentiation, and senescence. Its most well 

studied function is to inhibit cell cycle, which is regulated by phosphorylation. 

Hypo-phosphorylated is the “active” form of RB1 that represses transcription of 

cell cycle-promoting genes in two ways. First, RB1 can directly to bind to the 

transactivation domain of the E2F transcription factor [34, 35]. Second, while 

RB1/E2F complexes bind DNA, RB1 can recruit chromatin remodeling enzymes 

that downregulate gene expression [36-39]. Both events prevent transcription of 

E2F targets including genes required for replication, DNA metabolism and 

synthesis, cyclin E, and cyclin A [32, 40].  

 

RB1 has 16 serine/threonine phosphorylation sites whose phosphorylation status 

changes throughout cell cycle. RB1 gets partially phosphorylated during the cell 

cycle by cyclin dependent kinase (CDK, CDK4/CDK6) - Cyclin D (and then E) 

complexes.  CDKs require cyclins for active kinase activity. There are two protein 

families that act to inhibit cyclin/CDK complexes from phosphorylating RB1. First, 

the INK family (P16INK4a, P15INK4b, P18Ink4C, P19Ink4D) can specifically block the 

kinase activity of CDKs.  Second, the “Cip/Kip” family (p27KIP1, P21CIP1 and 

p57Kip2) can bind to and sequester cyclins from CDKs. Both of these negative 
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regulators, when intact, prevent phosphorylation (and therefore inactivation) of 

RB1. Together, these proteins comprise the “RB1 pathway”. 

 

1.10 Inactivation of RB1 pathway occurs via mutation, deletion, 

methylation, or phosphorylation  

Inactivation of the RB1 pathway occurs in different ways in a different tumor 

types.  Deletion or mutation of RB1 is found in retinoblastoma, breast, bone, 

brain, bladder, and some lung cancers. However, genetic inactivation of RB1 is 

not universal to all cancers, including those with heterozygous RB1 mutations 

[41]. In many tumors, the remaining RB1 is inactivated post-translationally by 

phosphorylation.  This occurs via deletion, mutation or methylation of the INK4a 

locus (CDKN2A) affecting p16. Alternatively, over-expression of Cyclin D, (which 

can activate CDK4/6) also results in hyper-phosphorylated RB1. Together, 

multiple mechanisms inactivate RB1. 

 

1.11 Neurobeachin (NBEA) is a BEACH domain containing protein 

implicated in vesicle trafficking 

Neurobeachin (NBEA, BCL8B) was identified in our study as being affected by 

copy number decrease by high-resolution aCGH analysis in plasma cell 

dyscrasias (Chapter 2, below). NBEA is a large gene whose genomic sequence 

spans 730Kb that produces a 9.5Kb transcript encoding a 327KDa protein. It is 

the largest member of the BCL8 gene family containing BCL8A-E [42]. All 

members of the family except NBEA are pseudogenes or produce sterile 
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transcripts [42]. It has homologs in mice (Nbea), C elegans (Sel-2), which is 

shared with LRBA [43] and drosophila  (rugose, DAKAP550). NBEA protein 

encodes multiple domains (Figure 1), including a Pleckstrin Homology (PH), 

BEACH, WD40 and a PKA binding.  

 

NBEA is one of a group of five known mammalian genes containing a highly 

conserved BEACH (beige and Chediak-Higashi) domain. BEACH domain 

containing proteins are found in Drosophila melanogaster (six), Caenorhabditis 

elegans (three), Arabidopsis thaliana (five), Dictyostelium discoideum (six) and 

Saccharomyces cerevisiae (one). 

 

Homozygous deletions within or upstream of the BEACH domain (leading to 

truncated proteins) in the Lysosomal Trafficking Regulator gene (LYST,CHS1) 

are found in patients with Chediak-Higashi Syndrome (CHS) [44-46]. This is a 

rare, autosomal recessive disorder characterized by variable albinism, bleeding 

tendency, progressive neurologic abnormalities and severe immunodeficiency 

with lack of natural killer cell activity. The cellular hallmark of CHS is enlarged 

lysosomal and lysosomal related organelles in almost all granulated cells, [47-49] 

(suggesting the BEACH domain regulates vesicle size, structure or function 

[47,49].  

 

Other mammalian BEACH encoding proteins are implicated aspects of vesicle 

function. LPS-Responsive Vesicle Trafficking, Beach and Anchor containing 
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(LRBA, BGL, CDC4L), which like NBEA, encodes a Protein kinase A (PKA) 

binding domain (discussed below) is implicated in vesicle release in polarized 

cells [50]. Neutral Spingomyelinase Activation Associated Factor (NSMAF, FAN) 

encoding the protein FAN is implicated in TNF signaling and activation of neutral 

sphingomyelinase. Nsmaf deficient mice have slightly enlarged lysosomes [51]. 

The protein encoded by the WD Repeat and FVYE Domain-containing 3 

(WDFY3, ALFY) gene binds Phosphoinositol 3 phosphate that regulates 

endocytic and autophagic trafficking [52]. Finally, NBEA is implicated in induced 

vesicular release at the neuromuscular junction [53, 54].  

 

Crystal structure analysis of the BEACH domain and the 130amino acids N-

terminal to it revealed it lies C-terminal to a Pleckstrin Homology domain that is 

not conserved by sequence, but by structure [55]. The BEACH domain physically 

interacts with the PH domain, suggesting these two domains function as a single 

unit [55].  Although PH domains can bind either to fatty acids or proteins, the 

interaction of the PH domain with the BEACH domain physically blocks the alpha 

helix known to mediate fatty acid binding, suggesting the PH domain of NBEA 

mediates protein-protein interactions [55].  

 

1.12 NBEA is a Protein Kinase A (PKA) Anchoring Protein (AKAP) 

In addition to the domains discussed above, NBEA encodes a PKA binding site. 

PKA the term used to describe its enzyme complex composed of four regulatory 

subunits (RIα,  RIβ ,RIIα and RIIβ) and two catalytic subunits (Cα and Cβ) with 
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serine/threonine kinase activity that is activated in response to increases in 

cAMP.  Murine Nbea binds to PKA regulatory subunits RIIα (Kd 10nM) and RIIβ  

(Kd: 30nM) [53]. Mouse and human NBEA are highly conserved within the PKA 

binding region, and therefore human NBEA is predicted to bind PKA, although 

this has not yet been shown. Neurobeachin is therefore characterized as an 

AKAP thought to localize PKA to correct cellular locations.  When levels of cAMP 

increase, PKA signaling only occurs at correct locations, which facilitates 

appropriate phosphorylation of downstream targets.  

 

1.13 NBEA expression is highest in brain 

NBEA transcripts and protein are detected at very high levels in both mouse and 

human brain [42, 53, 54, our own data]. Lower, but relatively robust transcripts 

are found in uterus, adrenal gland, ovary, testes, lung and kidney with even lower 

expression in heart, spleen, stomach, and small intestine  [42, 54]. Mice that lack 

Nbea die immediately after birth due to a block in synaptic transmission at the 

neuromuscular junction, supporting a functional role in the nervous system [54].  

 

1.14 NBEA spans the common fragile site, FRA13A 

Fragile sites are nonrandom, weak regions of the genome that have mostly been 

identified in vitro by culturing cells in the presence of agents that delay or inhibit 

replication, such as aphidicolin and then examining metaphase spreads. They 

have received considerable attention since breaks that result from fragile sites 

can result in translocations, deletion or gene amplification that may contribute to 
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cancer development. Common fragile sites are present in virtually all individuals 

while rare fragile sites are found in less than 5% of the population. There are 

over 80 common and at least 27 rare common fragile sites in the human genome 

[56]. Rare fragile sites occur due to mutation of di- or tri-nucleotide repeats and  

are detected at very low frequency [57], while the specifics of common fragile 

sites are not completely understood. 

  

NBEA spans the 650Kb common fragile site FRA13A [58]. FISH mapping 

revealed breaks within 650Kb of NBEA and were detected from intron one to 41, 

although most breaks (74%) were located in a 245Kb region spanning NBEA 

exons 34 to 40 [59]. Consistent with other common fragile sites, sequence 

analysis of the 345Kb region revealed that it is AT rich (65%) and lack the di or 

tri-nucleotide repeats found in rare fragile sites [58].  

 

The main goal of this thesis project was to identify genes with copy number loss 

in DNA isolated from purified tumor cells from patient samples with PC 

dyscrasias. We identified RB1 and NBEA as being coordinately affected by copy 

number loss (Chapter 2). Since we were interested in further characterizing 

these genes in the context of myeloma biology, we performed sequence and 

expression analysis on RB1 (Chapter 3), and expression and hematopoietic 

analysis on NBEA (Chapter 4).  The work presented in this dissertation, as with 

most scientific endeavors, leaves many questions and avenues to pursue. These 

are discussed in Chapter 5.  
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1.17 Figure 
 
 

Figure 1 
 
 
 
 

 

Figure 1. NBEA protein and exon structure 
A. NBEA protein domains. Numbers correspond to amino acids. B. 
NBEA exon structure. Some exons are numbered (top) and sizes of 
the four largest introns are shown on bottom.  
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Identification of chromosome 13 genes 
affected by DNA copy number decrease in 
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2.1 Abstract 
 
Chromosome 13 deletions, detected by metaphase cytogenetics, predict poor 

outcome in multiple myeloma (MM), but the gene(s) responsible have not been 

conclusively identified. We sought to identify tumor suppressor genes on 

chromosome 13 using a novel array comparative genomic hybridization (aCGH) 

strategy. We identified DNA copy number losses on chromosome 13 using 

genomic DNA isolated from CD138 enriched bone marrow cells (tumor) from 

twenty patients with MM, monoclonal gammopathy of undetermined significance 

(MGUS) or amyloidosis. We used matched skin biopsy (normal control) genomic 

DNA to internally control for copy number polymorphisms and a novel aCGH 

array dedicated to chromosome 13 to map somatic DNA gains and losses at 

unprecedented resolution (>385,000 probes; median probe spacing 60bp). Two 

distinct minimally deleted regions at 13q14.2 and 13q13 were defined that 

affected the RB1 and NBEA genes, respectively. RB1 is a canonical tumor 

suppressor previously implicated in MM. NBEA is implicated in membrane 

trafficking in neurons, PKA binding, and has no known role in cancer. Non-coding 

micro RNAs on chromosome 13 were not affected by interstitial deletions. Both 

the RB1 and NBEA genes were deleted in 40% of cases (8/20; 5 patients with 

monosomy 13 detected by traditional methods and three patients with interstitial 

deletions detected by aCGH). Our data suggest further investigation of RB1 and 

NBEA in MM is warranted.  
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2.2 Introduction 
 
Chromosomal abnormalities in plasma cell (PC) dyscrasias  

Multiple myeloma (MM) is a malignancy of terminally differentiated bone marrow 

plasma cells. It is the second most common hematological cancer in the United 

States, responsible for 2% of all cancer deaths. Overt MM can be preceded by 

Monoclonal Gammopathy of Undetermined Significance (MGUS), a premalignant 

tumor characterized by an accumulation of clonal plasma cells in the bone 

marrow. Primary Amyloidosis is a PC disorder characterized by overproduction of 

immunoglobulin light chains that form insoluble fibril deposits in a variety of 

organs. Amyloidosis PCs have many of the same chromosomal abnormalities 

detected in MGUS and MM patient samples [1.] 

 

Numeric or structural chromosomal abnormalities are detected in nearly all 

MGUS and MM patients [2] and can be divided into two main groups 

(hyperdiploid and non-hyperdiploid) based on chromosome number.   About half 

of MM is hyperdiploid (48-75 chromosomes), characterized by trisomies usually 

involving chromosomes 3, 5, 7, 9, 11, 15, 19 and 21.  Non-hyperdiploid myeloma 

is comprised of hypodiploid, (<45 chromosomes), pseudodiploid (44-47 

chromosomes), or near tetradiploid (75 or more). Near tetraploid appears to be 

4N duplications of pseudodiploid or hypodiploid. Therefore, these latter three 

groups are usually grouped together as non-hyperdiploid (<45 chromosomes or 

>75 chromosomes) [3].  
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Non-hyperdiploid MM is distinguished by lack of trisomies, and presence of 

primary translocations that juxtapose the strong heavy chain enhancers (IgH) 

located on chromosome 14 with variant partner chromosomes. The three most 

common translocations detected are the t(11;14)(q13;q32), t(4;14)(p16.3;q32), 

and t(14;16)(q32;q23) affecting the Cyclin D1, FGFR3/MMSET and c-MAF 

genes, respectively. The t(11;14) correlates with good prognosis, [4,5] while the 

t(4;14) predicts poor prognosis [6]. In disease progression, other genetic events 

are detected including secondary IgH translocations, c-MYC translocations, and 

mutations affecting Ras, and/or P53. Monosomy 13 is found both hyperdiploid 

and non-hyperdiploid samples, but is found in a higher percentage of hypodiploid 

tumors [7]. It is detected in 30-50% of MGUS and MM its detection by 

cytogenetic or M-FISH is a potent predictor of reduced patient survival and 

decreased time to relapse [6-9]. 

 

13q14 and 13q34 are regions previously implicated as affected by copy 

number decrease in MM 

Previous efforts have been made to identify the important tumor- promoting 

regions on chromosome 13. Mapping studies using comparative genomic 

hybridization (CGH) analysis with 10Mb resolution identified 13q14-q21 and 

13q32-34 as regions on chromosome 13 commonly lost [10-12]. Fluorescent In 

Situ Hybridization (FISH), which probes for the presence or absence of known 

sequences, but with better resolution (1Mb) has highlighted similar regions [13-

17]. Whole genome array CGH (0.73Mb resolution) combined with gene 
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expression analysis identified CUL4A (13q34) as a potentially relevant gene 

located within a 0.77Mb deletion on chromosome 13 [18]. Single nucleotide 

polymorphism (SNP) analysis (10Kb resolution) revealed a 1.9Mb minimally 

deleted region (MDR) in one patient spanning 13q13.3 to q21.3 [19].  

 
We employed high-resolution array CGH to identify genes on chromosome 13 

with DNA copy number loss. Our novel, chromosome 13 array enabled 

identification of recurring interstitial deletions involving 13q14.2 and 13q13. The 

high resolution of the array enabled mapping the MDR in 13q14 to exon 20 of 

RB1 encoding part of the ‘pocket domain’ responsible for binding E2F 

transcription factors [20,21]. All patients with an interstitial deletion affecting RB1 

also harbored a deletion within a novel MM gene, NBEA (13q13). Our data 

suggest that copy number loss of multiple genes on chromosome 13 including 

RB1 and NBEA could contribute to MM/MGUS biology.  
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2.3 Methods 
 
2.3A Patients 
  
Human bone marrow samples and skin punch biopsies were obtained during 

office visits after informed, written consent. Patient identification remained 

anonymous via use of Unique Patient Numbers (UPN). Cytogenetics and M-FISH 

were performed in clinic and those data were provided to us. 

 
 
2.3B Isolation of plasma cells (PC) 
 
Whole bone marrow was subjected to a ficoll gradient (Stem Cell Technologies, 

Vancouver, BC). Remaining mononuclear cells were stained with human CD138 

microbeads and run over an AutoMACS magnetic column on an AutoMACS Cell 

Separator (Miltenyi Biotec, Aubern, CA). Fluorescence activated cell-sorting 

analysis using a PE-CD138 human antibody (Miltenyi Biotec, Aubern, CA) 

confirmed  >97% purity (Figure 1). CD138+ and skin DNA was isolated using the 

Qiagen Miniprep Kit (Valencia, CA). 

 

2.3C Array CGH Platform  

The first 20 patient samples with ≥500,000 CD138+ cells were selected for 

aCGH, which required 1.5mg DNA. CD138+ (tumor) DNA was labeled with Cy3 

and skin (normal control) DNA was labeled with Cy5. The custom array 

contained 385,272 oligonucleotide probes. Nimblegen built, and performed probe 

design and sample hybridization to the custom array (www.Nimblegen.com). 

Sequence source for the probe design was HG17/UCSC (http://genome.ucsc.edu/).  
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2.3D Circular Binary Segment (CBS) Analysis 

Systematic CBS analysis [22] was performed using Signal Map Software 

(Nimblegen, Madison, WI).  Data was analyzed using a non-overlapping window, 

which averaged the signal intensity from each probe over a 600bp region. Since 

probes were spaced approximately every 60bp apart, each window averaged 10 

probes. This approach was used to condense the data and provided clean 

segment breaks. Systematic thresholds were set to eliminate false positives. 

Criteria for calling segments were: ≥3 data points involved (representing ~30 

probes; 1800bp) and log2 ratio <-0.25. Magnified plots were generated with 

Graphpad/Prism 4, Version 4.02 (Graphpad Software Inc, San Diego, CA). 

 

2.3E Process Control and whole chromosome plots 

Process Control analysis was performed on unaveraged data set (no windows 

were used to condense data). Data was normalized using qspline [23]. To 

eliminate outliers, the raw data for the skin (reference, control) samples from 

each patient was analyzed.  Probes with signal intensity >3X SD above the mean 

were discarded (range: 8,000-17,000, averaged 10,000 per patient  (2-4.4% of 

total). Process control employs techniques using a Shewhart control chart, [24] a 

graphical and analytical tool used in industry for quality control purposes. It is 

applied to aCGH analysis to determine which probe intensities are different 

enough from mean variability to be considered meaningful. Probe intensity ratios 

were considered “significant” if they satisfied: eight probes in a row on one side 

of the overall mean. They also had to pass either A) two of three probes in a row 
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beyond two units of overall SD, or B) four of five points in a row beyond one unit 

SD [25,26]. If an eight-probe region (representing   ~480bp) passed the criteria, 

the first and last of the eight probes were mapped (~3.8Kb).  Genes were 

mapped by aligning probes of interest to the Human Build 36.2 genome. Whole 

chromosome plots using this same data set were generated using the program 

[R] (Figure 2A).  

 

2.3F PCR and sequence analysis of microdeletion 

PCR was performed on original un-amplified patient genomic DNA. Control DNA 

was kindly provided by Rhonda Ries, Dept. of Medicine, Washington University 

School of Medicine, Lab of Timothy Ley (WUSM)). Primers: 

RBValFWD3:CCATTGCCCACAGTCAGAAA 

RBValREV3:GGTAGGGGAATAGGGGGTGA. Products were cloned into 

TOPO2.1 vector (Invitrogen, Carlsbad, CA) and sequenced at the Protein and 

Nucleic Acid Core Laboratories, Washington University. 

 

2.3G Real Time PCR 

Real time PCR assays were performed on the original, unamplified genomic DNA 

isolated from CD138 cells from patient samples using the Taqman Universal 

PCR Master Mix.  Primer concentration: 900nM; probe concentration: 2.5mM, 

10ng template. Reactions were run on 7300 Real Time PCR System, and 

analyzed using 7300 System Software (Applied Biosystems, Foster City, CA). 

RBRTFwd1:5’GAATTAGAACATATCATCTGGACCCTTT3’   
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RBRTRev1:5’GGTCCAAATGCCTGTCTCTCA3’RBExon20Probe:5’56FAMCCA

GCACACCCTGCAGAATGAGTATGAA36-TAMSp3’ 

Glypican6Fwd:5’TTCTGGTTCGGGCAAACTTG3’  

Glypican6Rev:5’GAAGGCGCCACTCAGACTGT3' 

Glypican6Probe:5’56FAMCGACCGCAGTTTGCCCAGCG36-TAMSp3’  

NBEARTF1:5’AATGGGTTACTACTGAAAACCTAGTGTAAA3’ 

NBEARTR1:5’TCGCCATCTAGTTTCATCAGTATACAG3’ 

NBEAProbe:5’56FAMCACAGAAAACTGAAATTGGGAGGCTTATGTGTAA36-

TAMSp3’. The DDCt method was used since control reactions confirmed equal 

efficiency of primer/probes. Reactions were performed in triplicate and repeated 

three (RB1) or two times (NBEA).  

 

2.3H I-FISH 

I-FISH was performed using standard techniques. Probes: LSI 13/RB1, and 

CEP7 (Vysis Inc., Downers Grove, IL, USA). For each hybridization, a minimum 

of 100 non-overlapping nuclei was analyzed.  
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2.4 Results 
 
2.4A Patient characteristics 

Deletions affecting chromosome 13 occur at similar frequencies in a variety of 

plasma cell dyscrasias, [3,11,16,27] so patients with the diagnosis of MM, 

MGUS, or amyloidosis, regardless of chromosome 13 status, were selected for 

array comparative genomic hybridization (aCGH). Twenty patients were selected 

solely on the basis bone marrow plasma cell yield after CD138 enrichment 

(Table 1, Table 2, Figure 1). We excluded low-yield samples to avoid the need 

for whole genome amplification (WGA), which can introduce bias or mutation 

(personal communication Matthew Walter, 2008). Genomic DNA was isolated 

from CD138-enriched bone marrow samples (tumor) as well as from patient-

matched skin biopsy samples (normal) controls. Patient-matched skin biopsy 

samples were an important internal control for copy number polymorphisms 

known to occur in healthy populations [28,29]. 

To identify DNA copy number alterations across chromosome 13 with the 

greatest possible resolution, we performed comparative genomic hybridization 

using a custom CGH array (Nimblegen Inc, Madison, WI) dedicated to 

chromosome 13. The custom array had 385,272 probes spanning the entire 

length of chromosome 13 with median probe spacing of 60 base pairs. 
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2.4B DNA copy number losses identified by circular binary segment 

analysis  

Array CGH data were plotted linearly along chromosome 13 using log2 tumor: 

germline signal intensity ratios. By eye, some regions of copy number change 

were obvious (Figure 2), but to systematically identify regions of DNA copy 

number loss across chromosome 13, we performed two independent, 

unsupervised analyses of the data. To identify minimally deleted regions (MDRs) 

across patient samples, we first used a CBS algorithm using stringent criteria to 

identify interstitial deletions [22]. 

By CBS analysis, eight of the 20 patient samples (40%) harbored at least one 

region of interstitial DNA copy number loss with a mean deletion size of 596Kb 

(range: 1.2Kb to 16Mb, Table 3). Among the eight patients with DNA copy 

number loss, the mean number of deletions was five (range: 1 to 13).  The 

finding of a greater number of chromosome 13 deletions than previously reported 

using lower resolution techniques [12-14] suggested that our strategy could be 

useful for finding novel regions on chromosome 13 contributing to plasma cell 

diseases. 

 

2.4C Array CGH identifies interstitial deletions not detected by FISH or 

cytogenetics 

We compared chromosome 13 status determined by aCGH to analyses of 

chromosome 13 using standard techniques including metaphase cytogenetics, 
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metaphase fluorescent in situ hybridization (M-FISH) and interphase fluorescent 

in situ hybridization (I-FISH; Figure 2). Because the aCGH raw data were 

normalized to balance fluorochrome intensity, monosomy 13 (i.e. non-interstitial 

deletions) was undetectable via aCGH analysis. We therefore relied on clinical 

cytogenetic data for detection on monosomy 13 (Table 1, Figure 2). By 

cytogenetics, five of the 20 patient samples (25%) had monosomy 13 (Table 1, 

Figure 2). Additionally, two patients with monosomy 13 (22848 and 92896) also 

had aCGH-detected DNA copy number losses suggesting homozygous deletion 

at those loci (Table 3).  A 1200bp deletion in patient sample 22848 did not map 

to known genes or microRNAs at 13q31, while patient sample 92896 harbored 

two deletions affecting KATNAL1 and DNAJC3 genes.  

 

Notably, cytogenetic and FISH analysis failed to detect chromosome 13 DNA 

copy number loss in 25% of cases (5/20) that were positive by aCGH (Figure 2).  

This data demonstrates that high-resolution array CGH has the ability to detect 

chromosome 13 deletions undetected by standard FISH and cytogenetics. This 

result also highlights the utility of unbiased analysis of the entire chromosome to 

identify novel regions on chromosome 13 whose copy number changes could 

direct the study of genes relevant to MGUS and MM pathogenesis.   

 

2.4D Mapping of chromosome 13 genes affected by DNA copy losses 

To identify chromosome 13 genes whose loss could contribute to MM 

pathogenesis, we mapped all known genes that fell within the regions of copy 
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number loss identified by CBS analysis. We found 28 of 43 (65%) deleted 

segments mapped to at least one gene, rather than non-coding DNA (Table 3). 

None of the regions identified in our study mapped either of two micro RNA 

clusters on chromosome 13 known to undergo deletions or be downregulated in 

CLL [30]. (miR 15-16 at 13q14 and MiR 17-92 at 13q31.3) were not affected in 

our samples.  

 

To independently identify genes with copy number loss on chromosome 13, we 

performed a separate, unsupervised analysis of the data by using an 

independent Process Control algorithm [24] shown to reliably call aCGH probe 

signals that deviate significantly from baseline (Figure 3). This second analysis 

identified 216 probes that mapped to 42 genes (Table 4). Twenty of the 42 genes 

(48%) identified by Process Control were also identified by the CBS analysis, 

underscoring the robustness of the aCGH data set (Table 3).  

 

2.4E RB1 and NBEA are recurrent targets of interstitial deletions in MGUS 

and MM  

The region most affected in our patient group encompassed 13q12 to 13q14.3, 

(25 to 50Mb), Figure 2). CBS analysis of the log2 plots from three of five patient 

samples with interstitial deletions (58762, 64511, and 95295) revealed two 

distinct MDRs within 13q12-14.3 (Figure 2 shaded bars, Figure 4-5). Patient 

sample 95295 harbored two DNA copy number losses that were extremely small 

(106Kb and 1200bp, respectively) and defined the MDRs at 13q14.2 and 13q13 
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(Figure 2, 4-5, Table 3). Within 13q14.2, only the RB1 gene was affected in all 

three patient samples (Figure 4). Strikingly, the 13q14.2 MDR mapped to exon 

20 of RB1, encoding the ‘pocket domain’ of RB1 critical to its tumor suppressor 

function [30].  

Inspection of the log2 plots from the same three patient samples revealed each 

harbored a second and distinct interstitial deletion at 13q13, 13Mb centromeric to 

the RB1 locus (Figure 2, 5). This second 13q13 MDR mapped to a single gene 

not previously implicated in myeloma biology: neurobeachin (NBEA, BCL8B, 

Figure 5). Every patient sample in our set that harbored a deletion affecting RB1 

(three with interstitial deletions and five with monosomy 13) simultaneously 

harbored copy number losses affecting the novel myeloma associated gene 

NBEA (Table 3, Figure 2, 4-5). 

 

2.4F Confirmation of small interstitial deletion in patient sample 95295 

leads to identification of novel RB1 mutation 

Since the segment of DNA copy number decrease within RB1 in patient 95295 

was small (3.49Kb) and contributed significantly to the mapping of the 13q14 

MDR, we first performed PCR spanning the microdeletion on the same tumor 

and skin genomic DNA used in the aCGH analysis (Figure 4). Amplification of a 

truncated band and sequence analysis of the PCR product confirmed this 

deletion tumor-associated (Figure 4). This result confirms the novel micro-

deletion affecting RB1 in patient sample 95295. 
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To further characterize the small deletion in patient sample 95295, the PCR 

product was subcloned and sequenced. This revealed the deletion spanned 

3486bp total, removing 2813bp of intron 19, all of exon 20, and 527bp of intron 

20 (Figure 5). Additionally, in the middle of the deletion was an insertion of 435 

base pairs identical to another sequence on chromosome 13, 35Kb downstream 

of the RB1 locus and situated in the opposite orientation. This inserted sequence 

encoded a conserved splice acceptor and almost perfect branch sequence.  To 

determine whether splicing into this region, or around this region occurred, we 

amplified cDNA from this patient sample and performed sequence analysis. We 

found that the transcript had been spliced from exon19 directly to exon 21, 

skipping the potential splice acceptor site within the insertion. This transcript 

revealed deletion of exon 20 that predicts a truncated protein, which we refer to 

as RB1del20. 

 

Analysis of the RB1del20 sequence revealed that splicing from exon 19 to 21 

predicts a frame shift, such that there would be 17 unique amino acids followed 

by a stop codon. Therefore, this transcript is predicted to encode a truncated 

protein that would have 17 unique amino acids and a loss of 275 3’amino acids, 

with a predicted total size of about 70kD. Exon 20 encodes part of the ‘pocket 

domain’ comprised of the A and B regions, required for binding to E2F.  
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Some RB1 mutations are predicted to encode unstable transcripts resulting in no 

or very little protein expression [31]. We therefore sought to determine whether 

RB1del20 would result in either robust or no protein expression. Both WT full 

length RB1 and RB1del20 were subcloned into the MSCV expression construct, 

and these DNA’s were transfected into 293T cells. We found robust expression 

of both WT and RB1del20 protein (Figure 5). A point mutation within RB1, R661W 

is associated with low-penetrance retinoblastoma and lacks the ability to bind 

E2F [31].  Since our truncated RB1del20 lacks 113 AA of the B domain within the 

RB Pocket, it is highly unlikely it will retain the ability to actually bind E2F. 

Together, our aCGH analysis led to the identification of a novel RB1 mutation, 

predicting inactive RB1 protein in patient sample 95295. 

 

2.4G Confirmation of interstitial deletions affecting RB1 and NBEA genes 

To quantify and confirm the DNA copy loss across all three patient samples with 

interstitial RB1 deletions (58762, 64511 and 95295), real time PCR was 

performed on CD138 purified tumor genomic DNA (Figure 4). Consistent with 

the qualitative PCR, patient sample 95295 had virtually no signal using a primer-

probe set at this locus (fold copy number: 0.02). Patient samples 58762 and 

64511 had a fold copy number of 0.86 and 0.62, respectively, consistent with 

loss of one copy of RB1. These results are concordant with the aCGH log2 ratios 

for this region (average log2 ratio of probes that span microdeletion:  95295: -

0.977; 58762: -0.518; 64511: -0.754).  
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A similar analysis was used to quantify and confirm the interstitial NBEA 

deletions in patient samples 58762, 64511, and 95295. Consistent with the 

aCGH data, patient sample 95295 revealed homozygous deletion (fold copy 

number:  0.14). Patient samples 58762 and 64511 revealed heterozygous loss of 

NBEA (fold copy number: 1.22 and 0.9, respectively; Figure 6). These data 

confirm non-contiguous interstitial deletions on chromosome 13, affecting 

simultaneously the NBEA and RB1 genes in three of 20 patient samples (15%).  

 

2.4H Whole genome aCGH confirms large deletions detected within patient       

sample 95295 

We were fortunate to have enough DNA from patient samples 95295, which 

marked both MDR’s at 13q13 and 13q14.2. Whole genome aCGH (1.1Kb median 

probe spacing) analysis was performed on this sample (Figure 7) and revealed 

similar interstitial deletions to those found by the original analysis. The small 

deletion within RB1 was undetectable by this analysis, due to the lower 

resolution, and further highlighting the extremely high resolution of the 

chromosome 13 novel array. Together, a separate analysis confirms the changes 

we detected within patient sample 95295.  
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2.5 Discussion 

We used a novel ultra high-resolution aCGH strategy to map somatic 

chromosome 13 deletions with unprecedented resolution in 20 patients with MM, 

MGUS or amyloidosis. We used a custom CGH array dedicated solely to 

chromosome 13 (60bp median probe spacing) and genomic DNA from patient-

matched skin biopsy samples as controls to eliminate signal noise due to DNA 

copy number polymorphisms [28,29]. 

 

We avoided noise introduced by whole genome amplification strategies by using 

non-amplified genomic DNA from cases with high yields of CD138+ bone marrow 

mononuclear cells. Patients with low bone marrow tumor burden may therefore 

have been underrepresented in this study. However, analysis by standard 

techniques of FISH and cytogenetics detected chromosome 13 deletions at 

expected frequencies [3,6] (Table 1) suggesting our patients were generally 

representative of other MM, MGUS and amyloidosis cohorts. Although our 

detection of del[13] by I-FISH was lower than other reports, our analysis was 

performed on non-enriched paraffin embedded bone marrow samples, which 

likely explains this discrepancy.  

 

We found two regions of recurrent DNA copy number loss that were non-

overlapping and mapped to two genes: RB1, the canonical tumor suppressor at 

13q14.2, and NBEA at 13q13, a gene whose role in cancer is less clear.  Two 

independent, unsupervised analyses (CBS and Process Control) generated gene 
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lists affected in our patient set that largely overlapped  (Table 3-4) demonstrating 

the high quality of our aCGH data. Both lists included the RB1 and NBEA genes. 

Visual inspection of log2 plots at these loci in high-resolution and PCR confirmed 

the identification of these as bona fide deletion events (Figure 2, 3-7; data not 

shown). Extremely small (homozygous) deletions (3.49Kb and 106Kb) in a single 

patient (95295) significantly narrowed the MDRs we identified. In sample 95295, 

NBEA and RB1 were the only two genes on chromosome 13 affected by DNA 

copy number loss.  Re-sequencing analysis of the RB1 gene within this patient 

sample revealed only homozygous SNPs (Chapter 3) demonstrating 

isodisomy/gene conversion across all or part of chromosome 13. These data 

strongly suggest that chromosome 13 DNA copy number decreases in this 

patient (i.e. RB1 and/or NBEA loci) were selected for during disease 

development and likely contribute to MM biology.  

 

Because homozygous deletions of RB1 are rare in MM [15,32], we did consider 

the possibility that patient sample 95295 might be an outlier. This patient 

harbored the t(4;14) translocation, and had rapidly progressive disease 

characterized by treatment resistance (not shown).  If the 95295 sample is 

removed from our analysis, however, our conclusions remain substantially 

unchanged. Two distinct MDRs are still defined by the remaining interstitial 

deletions and identify a small number of candidate genes. At 13q13, NBEA 

remains the sole gene affected. Without sample 95295, the MDR at the gene-rich 

13q14.2 locus expands to include: SUCLA2, NUDT15, MED4, ITM2B, RB1, 
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P2RY5 and RCBTB2.  In bladder cancer it was found genes nearby to RB1 

(including ITM2B and P2RY5) contribute to disease [33]. Until further 

experiments are performed, we cannot formally exclude the possibility that 

additional 13q14.2 genes contribute to myeloma biology.  

 

Unsurprisingly, use of different window sizes within CBS analysis results in slight 

differences in chromosome breaks. We chose the 600bp window (avg. signal for 

ten probes in a row; probes spaced every ~60bp apart) since it provided clean 

segment breaks and mostly identified region consistent with visual analysis of the 

data. Both RB1 and NBEA were called by all analyses independent of window 

size. A 428Kb region 384Kb telomeric to RB1 within sample 95295 was not 

called by CBS with the 600bp window, but was called by the 1200 and 3000bp 

windows. This region affected the FNDC3A, MLNR, RAD17P2 and CDADC1 

genes. Whole genome aCGH performed on sample 95295, also detected this 

428Kb region (Figure 7) suggesting this is probably a true deletion. Even though 

these genes were affected by copy loss in patient sample 64511, RB1 and NBEA 

remain the only genes affected in three patient samples. None of those four 

genes were found in our microarray analysis of a large, independent patient set 

to be decreased in samples with monosomy 13 (Chapter 3).  

 

The region of copy number decrease detected in patient sample 64511 at 

13q14.2 (appears complex as the log2 ratios vary (Figure 4).  I-FISH analysis of 

this patient revealed potentially multiple clones as the copy number of RB1 was 
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complex (Table 2).  Almost 30 percent of the cells were null for both copies of 

RB1, 10.5% had three copies and 9.5% had four copies. Due to this finding, it is 

not surprising the aCGH results at this locus were varied and suggests this 

sample is comprised of multiple clones. 

 

Our aCGH identified the novel myeloma associated gene, NBEA that was 

affected by copy number decrease. NBEA spans 730Kb and encompasses the 

FRA13A fragile site [34]. Although common fragile sites are detected in normal 

cells, some fragile sites are prone to translocations or deletion and are thought to 

contribute to malignancy via alteration of expression of affected genes. For 

example, FRA3B (3p14.2) is involved in a translocation detected in renal cancer 

and affects the Fragile Histidine Triad (FHIT, FRA3B, AP3Aase) gene that likely 

functions as a tumor suppressor [35]. The breakpoints we observed were 

centromeric to the most fragile FRA13A breakpoint region in NBEA, suggesting 

that the NBEA deletion events we observed were not “bystander mutations” and 

suggest breaks within NBEA could have pro- tumor affects (Chapter 4). 

 

In addition to RB1 and NBEA, our data reveal a number of genes worth noting.  

Located on 13q34, CUL4A was a gene of interest in the context of our analysis, 

given previous reports [18] that identified it as a target in MM. CUL4A was not 

identified within the minimally deleted regions we describe here. This does not 

exclude a potential role for CUL4A in MM biology, as MM is a disease with 

diverse clinical presentations and complex genetics. Our analysis did identify 
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TFDP1 (DP1), also located at 13q34. DP1 is known to heterodimerize with E2F1 

[36] and therefore the RB1 pathway may be altered in those patient samples with 

TFDP1 deletions. The deletions affecting RB1 and TFDP1 were mutually 

exclusive; patient samples never harbored both, suggesting affecting two 

different genes in the same pathway could be leading to the same downstream 

effects. TFDP1 was not identified in our microarray analysis of genes 

downregulated in del 13 samples (Chapter 3). Further experiments are required 

to independently confirm the copy loss detected within TFDP1 and to address its 

potential functional contribution to myeloma biology.   

 

Finally, there has been a great deal of interest in the microRNAs known to exist 

on chromosome 13.  There are two miRNA clusters on chromosome 13. First, 

miR-15a and miR-16-1, located at 13q14.3 are deleted or downregulated in 

lymphocytic leukemia (CLL) patient samples [30]. These miRNA’s result in 

downregulation of the antiapoptotic molecule BCL2; therefore in patient samples 

with loss of miRNA-15a and miR-16-1 BCL2 is stabilized, leading to tumor cell 

survival [37]. The other miRNA cluster (miRNA-H1 miRNA-17, miRNA-18, 

miRNA-19a, miRNA-20, miRNA-19b-1 and miRNA-92-1) is located at 13q31.3 

and a recent report indicates this cluster is upregulated MM [36]. None of the 

deletions we identified overlapped either of these miRNA loci.  Our data suggest 

in our patient samples miRNA’s were not targeted by copy number decrease, 

although since identification of new miRNA’s and determining how they are 
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regulated is still ongoing, it remains a formal possibility they contribute to 

myeloma biology. 

 

Our data demonstrate for the first time recurring non-contiguous coordinate 

interstitial deletions affecting the RB1 and NBEA genes on chromosome 13 in 

myeloma.  Examination of larger patient groups will be required to validate the 

associations we observed, but our data support a multi-gene model to explain the 

biological effects of chromosome 13 deletions in myeloma. Loss of an entire 

chromosome might be the simplest mechanism for a myeloma cell to inactivate 

multiple genes at distinct loci, and provides an attractive explanation for the 

prevalence of whole chromosome 13 deletions in MM. Our data suggest 

compound heterozygosity of RB1 and NBEA may contribute to MM/MGUS 

biology.  
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2.9 Figures and Tables 
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Figure 1 
  

 
 
 
 

Figure 1. Purity of CD138 Selection from human bone marrow 

Shown is FACS analysis of whole bone marrow sample prior to CD138 selection 

(left) and after selection (right). Samples were stained with human PE-CD138 

antibody.  
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Figure 2 

 

 
 
 
 

Figure 2. Array CGH identifies DNA copy number loss on chromosome 13 

not detected by FISH or cytogenetics 

A. Whole chromosome 13 log2 plots of four patients with visually detectable 

chromosome 13 copy number loss (58762, 64511, 95295 and 68319).   B.  Pie 

chart summary of chromosome 13 abnormalities detected by cytogenetics, M-

FISH, I FISH and/or aCGH.   Eight patient samples harbored a chromosome 13 

abnormality detected by aCGH. Five of these appeared normal by cytogenetic 
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and FISH analysis. The number of patient samples is indicated in parentheses. 

C. Visual analysis of patients with interstitial deletions revealed by CBS analysis 

(black lines) within 23 to 50Mb (13q12-13q14.3) on chromosome 13.  Figure is to 

scale except for deletions smaller than 150Kb, which required scaling up to be 

visualized. Exact sizes of all segments shown are in Table 2. Cytogenetic data 

was used for whole chromosome 13-deletion information (gray lines).  Eight 

patient samples had coordinate copy number loss involving RB1 and NBEA (five 

patient samples with whole chromosome 13 deletion and three with interstitial 

deletions) highlighted by vertical rectangles. Patient sample 95295 harbored 

interstitial deletions affecting only RB1 and NBEA and defined the minimally 

deleted region across these eight samples. Patient sample 92896 had 

monosomy chromosome 13 by cytogenetics, but also a region of copy number 

loss indicated by black spot, suggesting homozygous deletion at that site.  
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Figure 3 

 

Figure 3. Significant chromosome 13 probes representing DNA copy 

number changes identified by Process Control. 
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A. Probes representing deleted and amplified regions in any of the 20 patient 

samples identified by Process Control Analysis. Data are plotted in a linear 

fashion across chromosome 13 beginning with the p arm to the left and 

extending throughout the long q arm to the right. 8844 probes marked regions of 

DNA copy number decrease and 6706 probes marked regions of DNA copy 

number increase. Arrowhead indicates region of copy number loss in 13q14. B. 

Process Control probes as in A detected in two or more patients. In two or more 

patient samples, 216 probes indicated DNA copy loss and 274 probes indicated 

DNA copy number gains. We found 69 of the 216 probes with DNA copy number 

decrease mapped to 42 genes (Table S2, Table 2).  
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Figure 4 

 
 

Figure 4. High-resolution aCGH and PCR analysis confirms RB1 is a target 
of recurrent interstitial deletions at 13q14.2  

 
A. Magnified view of DNA copy number losses located at 13q14.2. The smallest 

region of overlap across all three patients was defined by patient 95295, and 

mapped to exon 20 of RB1 (arrowhead). Locations of two genes in the region are 

shown for reference at the bottom. Each dot represents the average signal of ten 

consecutive probes.  Figure includes 1244 data points spanning 1.29Mb. The 
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region telomeric to RB1 within sample 95295 was not called by the 600bp CBS 

analysis, and therefore genes within that region are not listed in (Table 2; 

methods). That region was called by the analysis using different window sizes 

(1200bp or 300bp). Genes affected were FNDC3A, MLNR and CDAC1. Both 

RB1 and NBEA were called by all analyses independent of window size. B. PCR 

analysis confirms RB1 deletion within tumor sample of patient 95295. Germline 

skin DNA from patient sample 95295 (Skin: S), and an independent control 

sample (pooled DNA isolated from blood of four normal donors, Control: C), 

produced the expected full-length (4.4Kb) PCR product. In contrast, CD138 

purified tumor plasma cells from patient sample 95295 (Tumor: T) revealed a 

smaller PCR product (1.5Kb). Sequence analysis revealed the micro-deletion 

spanned 3486bp, which removed 2813bp of the 3’ end of intron 19, all of exon 20 

(146bp), and 527bp of the beginning of intron 20. In the middle of the sequencing 

product was a 435bp insertion with sequence identity to a region located 35Kb 

downstream of RB1 on chromosome 13 that did not map to any known gene, and 

was situated in the opposite orientation. The full-length 4.4Kb band was not 

detected in the tumor sample, suggesting a homozygous deletion. Water control 

is shown. Size in Kb is shown on left of gel image.  C. Real Time PCR analysis 

confirms RB1 copy number changes identified by aCGH. Control is patient 

54092, with no DNA copy number changes detected by aCGH, FISH, or 

cytogenetics (Table 1 and S1, data not shown). Error bars are SD of three 

experiments each performed in triplicate.  

 



 66 

Figure 5 
 

 
 
Figure 5. The novel RB1 mutation, RB1del20 encodes a transcript resulting in  
 
expressed truncated protein 
 

A. Schematic of novel RB1 deletion in patient sample 95295 revealing deletions 

within intron 19, all of exon 20, and within intron 20. Numbers above lines 

represent length (bp) of retained sequences (and full length sequence in Normal, 

above). Gray box depicts insertion within deletion. B. Western Blot analysis of 

subcloned normal and mutated forms of RB1 in MSCV vector transiently 
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transfected into 293T cells. Truncated proteins run at predicted sizes (RB1 at 

110kDa and RB1del20 ~85kDa).  
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Figure 6 

 

 
Figure 6. NBEA is a target of recurrent interstitial deletions at 13q13  

A. Magnified view of overlapping region of DNA copy number loss across patient 

samples 58762, 64511 and 95295. The only gene identified within this region is 

NBEA. The region of DNA copy number decrease within patient 64511 spanned 

885Kb mapping to exon 1-9 of NBEA. Within patient 95295, the region spanned 

107Kb mapping to NBEA exons 3-19. Each dot represents the average signal of 

10 consecutive probes as in Figure 2. Plots include 950 data points spanning a 

region of 0.998Mb. In patient samples 58762 and 64511 there appears to be a 
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small region with DNA copy increase. Examination of the raw data within this 

region from the reference sample (skin) from all 20 patients revealed the average 

of these probes was below 10,000, suggesting this is not an array artifact and 

was also flagged by CBS algorithm. B. Real time PCR confirms DNA copy 

number loss within NBEA. Control is patient 54092, with no DNA copy number 

changes detected by aCGH, FISH, or cytogenetics (Table 1 and S1, data not 

shown). Error bars are SD of two experiments performed in triplicate. 
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Figure 7 
 
 

 
 
 
Figure 7. Whole genome aCGH analysis of patient sample 95295 reveals 

similar regions of copy number loss found in chromosome 13- focused 

array 

Whole genome aCGH (Nimblegen, median probe spacing 1.1Kb) was performed 

on DNA isolated from patient sample 95295. The data from chromosome 13 is 

shown.  
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Chapter 3 
 

Characterization of Retinoblastoma (RB1) in 
Multiple Myeloma 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published in part as:  
O’Neal, et al.  Neurobeachin (NBEA) is a target of recurrent interstitial deletions 
at 13q13 in patients with MGUS and multiple myeloma. Exp. Hem. 2009; 37:234-
44. 
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3.1 Abstract 
 
We identified RB1 as part of a minimally deleted region on chromosome 13 

affected by copy loss in myeloma, and therefore set out to characterize RB1 

mutation status and expression in myeloma primary samples and cell lines. Re-

sequencing analysis of all 27 RB1 exons on DNA purified from CD138 selected 

cells from 41 primary patient samples revealed no exonic mutations, suggesting 

retained RB1 alleles in myeloma are wild type. We examined whether patient 

samples and myeloma cell lines with monosomy 13 expressed reduced levels of 

RB1 transcripts or protein, respectively, and found lower RB1 transcripts and 

protein in cells with monosomy chromosome 13.  Since RB1 can be inactivated 

by phosphorylation, we sought to determine whether RB1 protein was 

phosphorylated in MM. We found RB1 was phosphorylated in MM cell lines, but 

RB1 phosphorylation was rare in primary patient samples. Together, our data 

suggest a model whereby wild type RB1 protein is expressed at lower dose in 

samples with monosomy 13, and becomes phosphorylated late in 

myelomagenesis.  
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3.2 Introduction 
 
3.2A RB1 is a tumor suppressor gene regulated by phosphorylation 

RB1 was the first identified tumor suppressor gene, and is highly studied, as 

disabling the “RB1 pathway” is believed to be essential for virtually all tumor 

formation [1]. Mutations in, or deletions of, both copies of RB1 in the retina are 

causative for development of retinoblastoma tumors in humans. Studies of DNA 

isolated from retinoblastoma patients led to Knudson’s famous “two hit” model of 

tumor suppressor genes. Knudson observed patients with inherited 

predisposition to retinoblastoma and correctly predicted that one defective RB1 

allele was inherited, and the other was somatically mutated, ultimately leading to 

inactivation of both copies of the gene [2]. 

 

RB1 is a nuclear phosphoprotein that functions in multiple cellular processes 

including cell cycle, apoptosis, differentiation, and senescence. It’s most well 

studied function is to inhibit the cell cycle, which is regulated by phosphorylation. 

Hypo-phosphorylated is the “active” form of RB1 that represses transcription of 

cell cycle-promoting genes in two ways. First, RB1 can directly to bind to the 

transactivation domain of the E2F transcription factor [3,4] Second, while 

RB1/E2F complexes bind DNA, RB1 can recruit chromatin remodeling enzymes 

that downregulate gene expression [5-8]. Both events prevent transcription of 

E2F targets including genes required for replication, DNA metabolism and 

synthesis, cyclin E, and cyclin A [9,10].  
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RB1 has 16 serine/threonine phosphorylation sites whose phosphorylation status 

changes throughout cell cycle. RB1 gets partially phosphorylated during the cell 

cycle by cyclin dependent kinase (CDK, CDK4/CDK6) - Cyclin D (and then E) 

complexes.  CDK’s require cyclins for active kinase activity. There are two 

protein families that act to inhibit cyclin/CDK complexes from phosphorylating 

RB1. First, the INK family (P16INK4a, P15INK4b, P18Ink4C, P19Ink4D) can specifically 

block the kinase activity of CDKs.  Second, the “Cip/Kip” family (p27KIP1, P21CIP1 

and p57Kip2) can bind to and sequester cyclins from CDKs. Both of these 

negative regulators, when intact, prevent phosphorylation (and therefore 

inactivation) of RB1. Together, these proteins comprise the “RB1 pathway”. 

 

Inactivation of RB1 pathway occurs via mutation, deletion, methylation, or 

phosphorylation  

Inactivation of the RB1 pathway occurs in different ways in a different tumor 

types.  Deletion or mutation of RB1 is found in retinoblastoma, breast, bone, 

brain, bladder, and some lung cancers. However, genetic inactivation of RB1 is 

not universal to all cancers, including those with heterozygous RB1 mutations 

[10]. In many tumors, the remaining RB1 is inactivated post-translationally by 

phosphorylation.  This occurs via deletion, mutation or methylation of the INK4a 

locus (CDKN2A) affecting p16. Alternatively, over-expression of Cyclin D, (which 

can activate CDK4/6) also results in hyper-phosphorylated RB1. Together, 

multiple mechanisms inactivate RB1. 
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We identified RB1 as being part of a minimally deleted region in plasma cell 

dyscrasias, and therefore sought to further characterize RB1 in myeloma. Our 

aCGH, cytogenetic, and FISH analysis of chromosome 13 in primary patient 

samples revealed that samples with deletions affecting one copy of RB1, 

retained the remaining allele (except for sample 95295, that harbored a 

homozygous mutation), in MGUS and MM (Chapter 2). We examined whether 

patient samples and myeloma cell lines with monosomy 13 expressed reduced 

levels of RB1 transcripts or protein, respectively, and found lower RB1 transcripts 

in primary patient samples and protein in cell lines with monosomy chromosome 

13. To determine if RB1 is inactivated in MM via mutation, we performed 

comprehensive re-sequencing of RB1 in 41 primary patient samples and found 

inactivating mutations of RB1 to be a very rare event in myeloma. 

Immunohistochemistry and Western blot analysis on primary patient samples and 

MM cell lines, respectively, revealed RB1 was phosphorylated in MM cell lines, 

but not primary patient samples, suggesting phosphorylation of RB1 is a late 

event in myeloma.  
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3.3 Methods 

Large-scale sequencing of RB1 in primary human samples 

High-throughput sequence analysis of RB1 was performed by the Genome 

Sequencing Center at Washington University (WUSTL) as described [11] 

Detailed protocols are available on WUSM GSC website 

(http://genome.wustl.edu/platforms.cgi?id=7). PCR validation of RB1 SNPs was 

performed on genomic DNA isolated from CD138+ selected bone marrow (tumor) 

and skin biopsy (normal) patient samples. The independent control DNA was 

kindly provided by Rhonda Reis, Division of Oncology, WUSTL. Products were 

cloned into and sequenced from TOPO2.1 vector (Invitrogen, Carlsbad, CA).  

 

Microarray Expression Analysis 

Two independent microarray datasets were analyzed. First, a Mayo Clinic 

dataset [12] included 162 samples (101 MM, 24 SMM, 22 MGUS, and 15 normal 

PC’s; GEO GSE6477; chromosome 13 status was determined by FISH). Second, 

we used a multiple myeloma research consortium (http://www.themmrc.org; 

MMRC) dataset that included 100 MM samples (Chromosome 13 status was 

determined by aCGH).  

 

Expression values were derived against a PM/MM difference background using 

Robust Multichip Average (RMA) [13]. Present/Absent probes were called using 

Affymetrix Microarray Suite version 5. Only probes detected in at least one 
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sample were used in subsequent comparisons. In pooled Chromosome 13 

Deletion versus no Deletion comparisons, Significance Analysis of Microarrays 

(SAM), [14] was used to detect differentially expressed genes based on a q-value 

of less than 5%. SAM was run with 100 permutations for correction of False 

Discovery Rate. These genes were clustered and visualized in DChip [15] 

(http://www.dchip.org). aCGH data was first smoothed with region=2, outlier 

scale =4, smoothing SD=2 and trimming proportion of 0.025. CBS was then run 

with default parameters (alpha=0.01, window.size= NULL, with 10000 

permutations). 

 

Western blot and cell lines 

LP-1, KMS-11, OPM-2 and UTMC2 lines were provided by W. Michael Kuehl, 

(Genetics Branch, NIH) and maintained in RPMI with 1% Penicillin/Streptomycin 

(both Cambrex Bioscience, Walkersville, MD), 10% fetal bovine serum  

(HyClone, Logan, Utah). RPMI-8226, U266, and H929 cells were obtained from 

and grown per ATCC recommendations. Lysates were prepared as described 

[16] Antibodies: total RB1: IF8 (Santa Cruz Biotechnologies, Santa Cruz, CA); 

anti-phospho-RB1(Serine Ser807/811; Cell Signaling, Beverly, MA); Actin 

(Sigma, St. Louis, MO). 

 

FACS analysis 

One million cells/sample were permeabilized and fixed using the protocol in the 

BRDU kit (BD Pharmingen, San Diego, CA), since this method was found to be 
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amenable to adaptation for our intracellular RB1 staining. Prior to antibody 

staining, a block step was added to prevent non-specific antibody binding (20 

minute incubation of cells in PBS with 2.5g/500mL Bovine Serum Albumin; 

Sigma-Aldrich, St. Louis, MO). Cells were stained with same phospho- Ser 

807/811 antibody used in Western Analysis.  

 

Immunohistochemical staining of RB1 in primary samples 

This analysis was performed per standard techniques in clinical pathology lab at 

Washington University. Antibodies: total RB1 antibody (4H1, Cell Signaling, 

Boston, MA); phospho-Serine 807/811 antibody used in Western and FACS 

analysis was used for this analysis. Samples were scored blind for generation of 

semi-quantitative analysis.  

 

Analysis of murine hematopoeisis 

Rb1 WT (n=4) and HET (n=6) mice were provided by Katherine Wikenheiser 

(Dept. of Pathology, University of Cincinnati) initially generated by Tyler Jacks 

[17]. These were provided to us as fifth generation C57BLACK/6 X129 mix. We 

performed backcrossing to  C57BLACK/6 generation ten. Two and a half month 

old mice were analyzed. Mice were injected i.p. with 200ml 10%w/v SRBC or 

PBS (generation five mice- all other experiments-generation ten) and analyzed 

mice seven days post treatment. FACS analysis and blood counts were 

performed as described previously [18]. 
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3.4 Results 

3.4A Retained RB1 alleles in MGUS/MM patient samples are mostly wild 

type  

Our data suggested one copy of RB1 is a target of deletions in MM, yet in most 

patient samples (7/8 in our set) the other copy is retained. Limited sequence 

analysis in myeloma has failed to show mutations in RB1 exons 20-24 [19] 

(mutation hotspots in retinoblastoma) [20, 21] but other domains of RB1 have not 

been re-sequenced in MM. We therefore performed comprehensive sequencing 

of all 27 RB1 exons and surrounding intronic sequences in 41 MM/MGUS patient 

samples (including 16 of our 20 patient set; Table 1). We found no non-

synonymous sequence changes affecting the coding or promoter sequences (bp 

-474 to -182) of RB1, suggesting that, in contrast to retinoblastoma tumors, most 

myeloma tumors retain at least one wild-type RB1 allele.   

We detected eleven intronic SNPs (Table 1).  Since myeloma is twice as 

prevalent in African American populations compared to Caucasians 

(www.seer.cancer.gov), race matched minor allele frequencies (MAFs) from our 

patient samples were compared to published MAFs in the Hap Map database for 

the nine of eleven SNPs with available data (Table 2). Two RB1 SNPs (rs198580 

and rs198617) were significantly more common in our Caucasian patients (P < 

0.001 and P < 0.018, respectively), suggesting a possible role in MM 
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pathogenesis. No significant differences were found between subgroups for the 

other seven SNPs.  

We identified six novel SNPs, not reported in the NCBI or HapMap databases 

(Table 3).  To confirm this result, DNA from tumor samples with novel SNPs 

were used for PCR and subsequent sequence analysis. To determine whether 

these were tumor-associated changes, the matched skin samples were 

subjected to the same analysis. The novel SNPs were confirmed, and all were 

found to be present in both tumor and matched skin genomic DNA, 

demonstrating these to not be tumor associated and instead normal sequence 

variants. Since both the known and novel SNPs were located near exon 

boundaries (range: 10-171bp from the start or end of an exon), we considered 

the possibility that RB1 SNPs might play a role in MM pathogenesis by affecting 

RNA splicing. Examination of RB1 cDNA isolated from seven patients with 

reported or novel SNPs revealed only RB1 transcripts of expected size (not 

shown). Together, our re-sequencing analysis demonstrated no somatic 

mutations affecting RB1 in the retained allele. 

 
 
 
3.4B RB1 protein is decreased in MM cell lines with monosomy 13  

Even in the setting of chromosome 13 deletions, RB1 transcripts are abundant in 

MM cells, consistent with the finding that epigenetic silencing of the RB1 

promoter does not occur in MM [22]. To determine whether RB1 protein levels 

were related to chromosome 13 copy number, we performed Western Blot 
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analysis on a panel of MM cell lines with known genetic copy number of the RB1 

locus.  RB1 protein was detected in all cell lines that retained at least one RB1 

allele (Figure 1). U266, shown to have undergone rare biallelic loss of RB1  [23] 

involving deletion of exon 13 and 14 [24] expressed no RB1 protein as expected, 

as did UTMC2 cells (Figure 1).  LP-1 and KMS-11 cells, which retain only one 

copy of chromosome 13, [23] expressed lower levels of RB1 protein than OPM-2 

and RPMI-8226 cells, which retain two copies of the RB1 locus [23]. These data 

suggest RB1 protein levels were related to RB1 genomic copy number in 

myeloma cell lines.  

To further confirm this result, we performed FACS analysis to examine RB1 

protein levels on a per-cell basis.  Consistent with the Western Blot analysis, we 

found cell lines with two copies of RB1 (OPM2) had higher protein than those 

cells with one genomic copy of RB1 (LP-1; Figure 1).   

3.4C RB1 transcripts are decreased in primary patient samples with 

monosomy 13 

Our cell line data implied RB1 protein levels were related to genomic copy 

number. We hypothesized RB1 transcript levels would be decreased in primary 

patient samples with monosomy chromosome 13.  Since our data set was 

relatively small, examined a large patient data set that included patient samples 

with and without monosomy 13.  We analyzed two published data sets 

comprising 162 (101 MM, 24SMM, 22 MGUS, and 15 normal PC’s; Mayo GSE 

6477; [11] and 100 (MMRC) patient samples (methods) and compared RB1 
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transcript levels between patient samples with our without monoallelic deletion of 

chromosome 13. In both datasets, RB1 transcript levels were decreased in 

patient samples with monosomy 13 (Table 4; Mayo: -0.69 Fold Change; MMRC  

-0.67 Fold Change). These data suggested in the majority of patient samples, 

RB1 transcript levels were decreased in samples harboring copy number loss of 

chromosome 13, consistent with prior reports [25-27]. 

 
 
3.4D Rb1 heterozygous mice have normal hematopoeisis 

Although at odds with RB1’s canonical tumor suppressor role, our RB1 

expression data above prompted us to consider a model of RB1 

haploinsufficiency, whereby half RB1 protein dose alters the B cell compartment 

to contribute to MM pathogenesis. To this end, we examined hematopoietic 

compartments of Rb1 heterozygous mice (Rb1+/-; [17] compared to wild type 

(Rb1+/+) littermates. We found similar absolute spleen weights (Rb1+/+: average 

0.067g, SD: 0.005, n=4; Rb1+/-: average 0.064g, SD 0.008, n=6) and peripheral 

blood counts (Rb1+/+: 5.80k/µl, SD 2.02, n=4; Rb1+/-: 8.74k/µl, SD 4.40, n=6) in 

both groups of mice. We found similar distributions of B cells (B220), myeloid 

cells (GR-1/MAC1), and T cells (CD4, CD8) isolated from bone marrow and 

spleen mononuclear cells at baseline (Figure 2).  

 

To determine whether haploinsufficiency of Rb1 affects the B cell compartment in 

stress conditions, wild type and heterozygous mice were inoculated with sheep 

red blood cells, known to induce germinal center (GC) reactions [28]. Spleen 
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weights and plasma cell percentages increased in all mice independent of 

genotype to similar levels cells (Figure 2, not shown), suggesting GC reactions 

formed independent of Rb1 genotype. Together, these data fail to support a role 

of RB1 haploinsufficiency as the single genetic abnormality in MM pathogenesis, 

and suggests additional events cooperate with RB1 deletions in myeloma 

pathogenesis.  

 
 

3.4E RB1 protein is phosphorylated in MM cell lines, but is rarely 

phosphoryated in primary patient samples 

Since we did not find RB1 mutations in this study, we hypothesized RB1 would 

be inactivated by phosphorylation in MM.  Western Blot analysis was performed 

on the same MM cell line panel as above using an antibody that recognizes only 

phosphorylated RB1 protein (Ser807/811). All MM lines that retained at least one 

copy of RB1, expressed phosphorylated RB1 protein (Figure 1) consistent with a 

previous analysis [29]. Levels of phosphorylated RB1 protein, as with total RB1 

protein above, were more abundant in cells with two RB1 alleles compared to 

those with one. These data show RB1 protein is phosphorylated MM cell lines.  

Since MM cell lines are isolated from plasmacytomas, (extramedullary, late stage 

myeloma), we wanted to determine whether RB1 protein was phosphorylated in 

primary patient samples. To address this, we performed immunohistochemical 

staining of a set of 25 primary patient samples (1 MGUS, 1SMM, 22MM, and 1 

PCL) using two RB1 antibodies (Figure 3, Table 5). First, we used an antibody 
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(4H1) that recognizes RB1 protein independent of phosphorylation status. The 

second antibody recognizes only phosphorylated RB1 protein (Serine 807/811). 

As expected, total RB1 protein was found in most patient samples using the 

antibody that binds to RB1 independent of phosphorylation status. To our 

surprise, we found very little to no phosphorylated RB1 in most patient samples, 

independent of disease stage. These data suggest a model whereby RB1 protein 

is phosphorylated only very late in myeloma development.  
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3.5 Discussion 

Mutation of RB1 is rare in Myeloma 

The RB1 tumor suppressor has a long and famous history, as it was the first 

identified tumor suppressor gene and the basis for Knudsen’s model of tumor 

suppressor genes originally worked out by examining RB1 in retinoblastoma 

patients [2]. In myeloma, RB1 has gained much attention since it is a recurrent 

site of deletion and in fact, the RB1 locus is commonly used as the probe in 

clinical FISH analysis to examine chromosome 13 deletions. Our aCGH analysis 

revealed RB1 was the sole gene affected in a minimally deleted region at13q14.2 

(Chapter 2).  

 

We hypothesized retained RB1 alleles would be mutated in myeloma. We 

performed large- scale exonic sequencing of RB1 on 41 primary CD138 purified 

patient sample DNAs, but did not detect mutations affecting RB1 exons. The only 

tumor-associated RB1 exonic mutation we identified was found by aCGH, and 

not this sequence analysis (Chapter 2). The deletion was not identified by large-

scale sequencing approach because of the small amplicon size, which was 

entirely deleted in patient sample 95295.  The wild type RB1 sequence in sample 

95295 was likely amplified from the WT RB1 allele present in residual normal 

plasma cells. Overall, our sequence analysis revealed retained RB1 alleles are 

essentially unaffected by exonic mutation in myeloma. This suggests that if 
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inactivation of RB1 is relevant to MM pathogenesis, it occurs via a different 

mechanism than mutation of the RB1 coding sequence.  

 

Inactivation of “RB1 pathway” in myeloma remains controversial and 

largely unconvincing 

There are multiple ways tumor cells can inactivate the “RB1 pathway” ultimately 

leading to phosphorylated and inactive RB1 protein unable to regulated cell 

cycle. Methylation of the CDKN2A locus (encoding P16INK4A and P19ARF) results 

in reduced to no expression of P16, leading to downstream activation of 

cyclin/CDK complexes and subsequent RB1 phoshorylation. Methylation of 

CDKN2A is detected in 23-53% of myeloma patient samples. [22,30-32]. 

However, most studies report lack of P16 downregulation in samples with 

CDKN2A [32,33]. P16 methylation is not related to plasma cell labeling index 

[32], patient or progression- free survival [30, 32]. P15 methylation is detected in 

17-35% of MM samples, but RB1, P18 and P14 were not [22,30]. Methylation of 

genes within the “CIP/KIP” family is rare [33]. Although methylation of some 

genes within the RB1 pathway is detected in MM, levels may be insufficient to 

sufficiently downregulate gene expression. Together, there is lack of convincing 

evidence that methylation of INK4 and CIP/KIP loci contribute to MM. 

 

Up-regulation of Cyclin 1, 2, or 3 is reported to be universal in myeloma [34] via 

the (11;14)(q13;32) translocation, trisomy 11, translocations affecting genes that 

positively regulate cyclin D2 (c-MAF via the t(14;16)(q32;q23), or by as yet 
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undetermined mechanisms. These predict Cyclin D accumulation, formation of 

Cyclin D-CDK4/6 complexes, phosphorylation (and inactivation) of RB1, and 

increased cell cycle due to inactivation of RB1 via phosphorylation. However, 

multiple lines of evidence lead to the conclusion that the expression of cyclin D 

does not lead to myeloma cell growth via increased proliferation. Paradoxically, 

the presence of the t(11;14)(q13;32) translocation confers good prognosis [35] as 

does detection of cyclin D1 expression [36]. Proliferation rates (BRDU) in 

t(11;14)+ myeloma cells revealed lower proliferative index than other myeloma 

samples [37,38]. Finally, in primary MM samples, expression of cyclin D1 or D3 

was insufficient to promote RB1 phosphorylation, and levels of cyclin D1 were 

unrelated to MM cell proliferation [29]. Levels of CDK4/6 in cells expressing 

Cyclin D may be too low to fully inactivate RB1 [29, 39]. Our own analysis 

revealed phosphorylation of RB1 was rare in primary patient samples. Together, 

these data suggest the contribution of RB1 protein to MM is not via the 

“canonical RB1 inactivation” pathway. 

 

RB1 haploinsufficiency may contribute to MM via non-traditional  

mechanisms 

Our analysis of RB1 protein in MM cell lines, and RB1 transcripts in primary 

patient samples, revealed levels of RB1 were related to RB1 genetic copy 

number. In other words, we observed RB1 levels were lower in cells with single 

RB1 deletion compared to cells that retained two alleles, consistent with prior 

reports [25-26] and verified with Q- RT-PCR analysis [27]. Protein analysis via 
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Western Blot analysis has largely been limited by insufficient sample quantity. 

We were unsuccessful in our efforts to examine a panel of primary patient 

samples, however it is a future goal of the lab to extend our FACS assay on 

primary samples.  

 

Because we, and others [25-27] found RB1 levels correlated with genomic RB1 

copy number, we seriously considered the possibility RB1 haploinsufficiency 

alone might contribute to myeloma. The Drosophila homologue of the 

RB1/Rb1gene family, Rbf, has a haploinsufficient phenotype in a genetic model 

of eye tumors [40]. Many tumor suppressors including, for example, the CIP/KIP 

family member p27kip1 display haploinsufficient phenotypes in mice, whereby 

heterozygous mice expressing wild type protein at reduced dose display cancer 

prone phenotypes [41]. 

 

However, much data supports the conclusion that RB1 haploinsufficiency alone 

does not appear to contribute to malignancy in humans and mice. No myeloma 

related phenotype has been reported in long-term follow up of surviving 

retinoblastoma patients with germline inactivating RB1 mutations [42]. Loss of 

one copy of RB1 as a sole abnormality is not prognostic for reduced patient 

survival in myeloma [43].  Rb1+/- mice develop tumors only after loss of the 

remaining Rb1 allele [17] and when Eµ-Myc mice (known to develop B cell 

neoplasms), are mated to Rb1+/+ or Rb1+/- mice, no survival differences are 

observed [44].  
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Our analysis of 8-9 week old Rb1+/+ versus Rb1+/- mice (backcrossed to 

generation 10 C57BL/6) revealed no differences in basal hematopoeisis or 

plasma cells development upon antigen stimulation, consistent with another 

report [45]. However, in Rb1 null retina cells, the Rb1 family member, p107 

compensates for Rb1 [46,47]. In hematopoeisis, p107 sometimes, [45] but not 

always, [48] compensates for loss of Rb1. To avoid the issue of p107 

compensation completely, generation of mice with conditional deletion of Rb1 in 

plasma cells in the context of p107-/- is necessary. We are currently mating 

Rb1flox/flox [49] mice to mice expressing Cre recombinase under the control of the 

Cγ1 heavy chain isotype whose transcription is induced in germinal centers upon 

stimulation with T cell dependent antigens [50] to generate mice with Rb1 

deletions in germinal center B cells. These mice will be mated to p107-/- mice to 

generate Cγ1CreRb1+/+p107-/- and Cγ1CreRb1Flox/+p107-/- mice. If 

haploinsufficiency of Rb1 is sufficient to contribute to myelomagenesis, then we 

predict to see tumor or MGUS phenotypes in the Cγ1CreRb1Flox/+p107-/- mice but 

not in the Cγ1CreRb1+/+p107-/- mice.   

 

Myeloma cells follow an observation made in solid tumors: RB1+ tumors tend to 

be slow-growing, chemotherapy resistant, and have little spontaneous apoptosis, 

whereas RB1- tumors proliferate fast, are chemotherapy sensitive, and have high 

rates of spontaneous apoptosis [51].  Heterozygous loss of RB1 is detected in 

MGUS and MM, suggesting it is an “early” event in PC dyscrasias. Retention of 
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expressed, half dose RB1 protein could be selected for in MGUS or MM cells due 

to its ability to inhibit apoptosis. Although paradoxical, that RB1 can prevent 

apoptosis, (a pro-tumor event opposite its well-described tumor suppressor 

function), this actually makes sense since during much of myeloma, cell cycle 

occurs at a low rate and these cells are able to evade apoptosis. Myeloma cells 

heterozygous for RB1 may express sufficient protein to sequester enough E2F to 

prevent complete dysregulation of cell cycle, and also inhibit 

activation/transcription of the E2F mediated apoptotic pathway including P73 (a 

P53 family member). Analysis of P73 expression could address this possibility, 

and would be predicted to be low. RB1 mediated inhibition of apoptosis could 

occur via an E2F independent mechanism via its association with Abl or Jnk 

kinases, known to inhibit apoptosis [52]. Immunoprecipitation experiments could 

experimentally address this possibility. Alternatively, RB1 can regulate 

senescence and differentiation [53]. Haploinsufficiecy of RB1 in myeloma cells 

may result in a reduced ability to drive these cells to senescence. Together, it 

remains a testable hypothesis, that via alternative mechanisms than in other 

tumor types, haploinsufficiency of RB1 contributes to MGUS and MM.  

 

Although RB1 is the subject of over 1400 research articles, there is still much to 

learn. The “binary switch” model whereby hyper-phosphorylated RB1 is inactive 

and unable to prevent cell cycle, and hypo-phosphorylated RB1 is active is too 

simple [54]. It is likely differential phosphorylation of the 16 serine/threonine sites 

in RB1 affects it ability to regulate its other functions including differentiation, 
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prevention of apoptosis, and senescence. For example, Serine 567 does not get 

phosphorylated during regular cell cycle; however when phosphorylated, RB1 

protein becomes destabilized and cell death occurs [55]. Cell type specific 

phospho peptide mapping may elucidate which sites are phosphorylated in early 

B cells, MGUS and MM cells and provide insight to which phosphorylated 

residues regulate different the RB1 effector functions discussed above. 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 92 

 
 
 
3.6 Acknowledgements 
 
The data from this chapter would not have been possible without a lot of help. 

First, the Washington University Genome Sequencing Center is responsible for 

helping us obtain the sequence analysis. Yumi Kasi was instrumental in this 

effort. Anjum Hassan and the Clinical Pathology lab generated the IHC data, 

which has also been a lot of work, but provided insights we would not have 

otherwise had. Punit Vachharajani and Yuron (Mack) Su were both outstanding 

STARS students I was fortunate to work with. They both put in a lot of effort to 

get the phospho-flow analysis up, running, and to the point that it may actually be 

feasible to look at primary patient samples with this labor-intense technique. 

Rachel Delston in Bill Harbour’s lab has been a wonderful “RB1 friend” and she 

has really given me a lot of advice and tools to enable studies of RB1.    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 93 

 
 
 
3.7 References 
1. Sherr CJ and McCormick F The RB and P53 pathways in cancer. Cancer Cell. 
2002; 2:103-112. 
 
2. Knudson AG. Mutation and cancer: Statistical study of retinoblastoma. PNAS. 
1971; 68: 820–23. 
 
3. Flemington EK, Speck SH, and Kaelin WJ. E2F-1-mediated transactivation is 
inhibited by complex formation with the retinoblastoma susceptibility gene 
product. PNAS. 1993; 90: 6914-18. 
 
4. Helin K, Wu C, Fattaey AR, et al. Heterodimerization of the transcription 
factors E2F-1 and DP-1 leads to cooperative trans-activation. MCB. 1993; 7: 
1850-61. 
 
5. Weintraub SJ, Chow KNB, Luo RX et al. Mechanisn of active transcriptional 
repression by the retinoblastoma protein. Nature. 1995; 375: 812-15.   
 
6. Sellers  WR, Rodgers JW and Kaelin WG. A potent transrepression domain in 
the retinoblastoma protein induces a cell cycle arrest when bound to E2F sites. 
PNAS.1995; 92: 11544-48. 
 
7. Bremner  R, Cohen BL, Sopta M et al. Direct Transcriptional repression by 
pRB and its reversal by specific cyclins. MCB. 1995; 15: 3256-65.  
 
8. Adnane J, Shao Z, and Robbins PD. The retinoblastoma susceptibility gene 
product represses transcription when directly bound to the promoter. JBC. 1995; 
270: 8837-43. 
 
9. Johnson DG. Schwartz JK, Cress WD. et al. Expression of transcription factor 
E2F1 induces quiescent cells to enter S phase. Nature. 1993; 365: 349-52.  
 
10. Horowitz JM, Park SH, Bogenmann E, et al. Frequent inactivation of the 
retinoblastoma anti-oncogene is restricted to a subset of human tumor cells. 
PNAS. 1990; 87: 2775-79.). 
 
11. Link DC, Kunter G, Kasai Y, et al. Distinct patterns of mutations occurring in 
de novo AML versus AML arising in the setting of severe congenital neutropenia. 
Blood. 2007;110:1648-1655. 
 
12. Chng WJ, Kumar, S, Van Wier S et al. Molecular dissection of hyperdiploid 
multiple myeloma by gene expression profiling. Cancer Research. 2007; 67: 
2982-89. 



 94 

 
13. Bolstad, BM, Irizarry RA, Astrand, M, et al. A Comparison of Normalization 
Methods for High Density Oligonucleotide Array Data Based on Bias and 
Variance. Bioinformatics. 2003 19(2):185-193. 
 
14. Tusher, VG, Tibshirani, R & Chu, G. Significance analysis of microarrays 
applied to the ionizing radiation response .PNAS USA 2001; 98: 5116–5121 
 
15. Li C, and Wong, WH. Model-based analysis of oligonucleotide arrays: 
Expression index computation and outlier detection. PNAS USA. 2001; 98: 31-
36. 
 
16.  Xiang Z, Kreisel F, Cain J, Colson A, Tomasson MH. Neoplasia driven by 
mutant c-KIT is mediated by intracellular, not plasma membrane, receptor 
signaling. Mol Cell Biol. 2007;27:267-282. 
 
17. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. 
Effects of an Rb mutation in the mouse. Nature. 1992;359:295-300. 
 
18. Cain JA, Xiang Z, O'Neal J, et al. Myeloproliferative disease induced by TEL-
PDGFRβ displays dynamic range sensitivity to Stat5 gene dosage. Blood. 
2007;109:3906-3914. 
 
19. Zandecki M, Facon T, Preudhomme C, et al. The retinoblastoma gene (RB-1) 
status in multiple myeloma: a report on 35 cases. Leukemia and Lymphoma. 
1995; 18: 497-503. 
 
20. Valverde JR, Alonso J, Palacios I, Pestana A. RB1 gene mutation up-date, a 
meta-analysis based on 932 reported mutations available in a searchable 
database. BMC Genet. 2005;6:53.  
 
21. Nichols KE, Houseknecht MD, Godmilow L, et al. Sensitive multistep clinical 
molecular screening of 180 unrelated individuals with retinoblastoma detects 36 
novel mutations in the RB1 gene. Hum Mutat. 2005;25:566-574. 
 
22. Chim CS, Fung TK and Liang, R. Disruption of INK4/CDK/RB cell cycle 
pathway by gene hypermethylation in multiple myeloma and MGUS. Leukemia. 
2003; 17: 2533-35. 
 
23. Juge-Morineau N, Mellerin MP, Francois S, et al. High incidence of deletions 
but infrequent inactivation of the retinoblastoma gene in human myeloma cells. 
Br J Haematol. 1995;91:664-667. 



 95 

24. Corradini P, Inghirami G, Astolfi, M et al. Inactivation of Tumor suppressor 
genes, p53 and RB1 in Plasma Cell Dyscrasias. Leukemia; 8: 758-67.  
 
25.  Carrasco DR, Tonon G, Huang Y, et al. High-resolution genomic profiles 
define distinct clinico-pathogenetic subgroups of multiple myeloma patients. 
Cancer Cell. 2006; 9: 313-325. 
 
26. Shaughnessy J, Jacoboson J, Sawyer J, et al. Continuous absence of 
metaphase defined cytogenetic abnormalitiies, especially of chromosome 13 and 
hypodiploidy, ensures long-term survival in multiple myeloma treated with Total 
Therapy I: Interpretation in the context of global gene expression. Blood. 2003; 
101: 3849-56. 
 
27.  Agnelli L, Bicciato, S, Fabris S, et al. Integrative genomic analysis reveals 
distinct transcriptional and genetic features associated with chromosome 13 
deletion in multiple myeloma. Haematologica. 2007; 92: 56-65. 
 
28. Shinall SM, Gonzalez-Fernandez M, Noelle RJ, Waldschmidt TJ. 
Identification of murine germinal center B cell subsets defined by the expression 
of surface isotypes and differentiation antigens. J Immunol. 2000;164:5729-5738. 
 
29. Ely S, Di Liberto M, Niesvizky R, et al. Mutually exclusive cyclin-dependent 
kinase 4/cyclin D1 and cyclin-dependent kinase 6/cyclin D2 pairing inactivates 
retinoblastoma protein and promotes cell cycle dysregulation in multiple 
myeloma. Cancer Res. 2005; 65:11345-11353. 
 
 
30. Martin P, Garcia-Cosio M, Santon A et al. Aberrant gene promoter 
methylation in plasma cell dyscrasias. Experimental and Molecular Pathology. 
84; 2008: 256-61. 
 
31. Dib A, Barlogie B, Shaughnessy J et al. Methylation and expression of the 
p16INK4A tumor suppressor gene in multiple myeloma. Blood. 109; 2007: 1337-
38. 
 
32. Gonzalez-paz, chng WJ, McClure RF et al. Tumor suppressor p16 
methylation in multiple myeloma:biological and clinical implications. Blood. 2006; 
109: 1228-32. 
 
33. Chim CS, Liang R, Fung TK et al.  Infrequent epigenetic dysregulation of 
CIP/KIP family of cyclin-dependent kinase inhibitors in multiple myeloma. 
Leukemia. 2005; 19: 2352–55. 



 96 

34. Bergsagel PL, and Juehl WM. Critical roles for immunoglobulin translocations 
and cyclin D regulation in multiple myeloma. Immunological Reviews. 2003; 194: 
96-104. 
 
35. Fonseca R., Barlogie B., Bataille R. et al Genetics and Cytogenetics of 
Multiple Myeloma: A Workshop Report. Cancer Research. 2004;  64: 1546-1558. 
 
36. Soverini S, Cavo M, Cellini L et al. Cyclin D overexpression is a favorable 
prognostic variable for newly diagnosed multiple myeloma patients treated with 
high dose chemotherapy and single or double autologous transplantation. Blood. 
2003; 102: 1588-94. 
 
37.Fonseca R, Blood EA, Oken MM et al. Mytloma and the t(11;14)(q13;q32); 
evidence for a biologically defined unique subset of patients. Blood. 2002; 99: 
3735-41. 
 
38. Wilson CS, Butch AW, Lai R. et al. Cyclin D1 and E2F-1 immunoreactivity in 
bone marrow biopsy specimens of multiple myeloma: relationship to proliferative 
activity, cytogenetic abnormalities and DNA ploidy. British Journal of 
Hematology. 2001; 112: 776-82. 
 
39. Lessage DL, Troussard X, and Sola B. The enigmatic role of cyclin D1 in 
multiple myeloma. International Journal of Cancer. 2005; 115: 171-76.  
 
40. Ferres-Marco D, Gutierrez-Garcia I, Vallejo DM, Bolivar J, Gutierrez-Avino 
FJ, Dominguez M. Epigenetic silencers and Notch collaborate to promote 
malignant tumours by Rb silencing. Nature. 2006;439:430-436. 
 
41. Santarosa M, and Ashworth, A. Haploinsufficiency for tumor suppressor 
genes: when you don’t need to go all the way. Biochimica et Biophysica Acta. 
2004; 105-22. 278; 19358-66. 
 
42. Mohney BG, Robertson DM, Schomberg PJ, Hodge DO. Second nonocular 
tumors in survivors of heritable retinoblastoma and prior radiation therapy. Am J 
Ophthalmol. 1998;126:269-277. 
 
43. Gutierrez NC, Castellanos MV, Martin ML, et al. Prognostic and biological 
implications of genetic abnormalities in multiple myeloma undergoing autologous 
stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, 
whereas RB deletion as a unique abnormality is not associated with adverse 
prognosis. Leukemia. 2007; 21:143-150. 
 
44. Schmitt CA, McCurrach ME, de Stanchina E, Wallace-Brodeur RR, Lowe 
SW. INK4a/ARF mutations accelerate lymphomagenesis and promote 
chemoresistance by disabling p53. Genes Dev. 1999;13:2670-2677. 



 97 

45. Walkley CR, Shea JM, Sims NA et al. Rb Regulates Interactions between 
Hematopoeitic Stem Cells and their Bone Marrow Microenvironment. Cell. 2007; 
129: 1081-95. 
 
46. MacPherson D, Sage J, Kim T, et al. Cell type specific effects of Rb deletion 
in the murine retina. Genes and Development. 2004; 18: 1681-1694.   
 
47. Donovan SL, Schweers B, Martins R, et al. Compensation by tumor 
suppressor genes during retinal development in mice and humans. BMC Biology. 
2006; 4: 14. 
 
48. Viatour, P, Somervaille TC, Venkatasubrahmanyan S et al. Hematopoeitic 
stem cell quiescence is maintained by compound contributions of the 
retinoblastoma gene family. Cell Stem Cell. 2008; 3: 416-428. 
 
49. Sage, J., A. L. Miller, P. A. Pérez-Mancera, J. M. Wysocki, and T. Jacks. 
2003. Acute mutation of retinoblastoma gene function is sufficient for cell cycle 
re-entry. Nature 424:223-228. 
 
50. Casola S, Cattoretti G, Uytterspro N, et al. Tracking germinal center B cells 
expressing germ-line immunoglobulin -1 transcripts by conditional gene targeting. 
PNAS. 2006; 103: 7396-7401.  
 
51. Shackney, SE and Shankey TV. Cell cycle models for molecular biology and 
molecular oncology: exploring new dimensions. Cytometry. 1999; 35: 97-116. 
 
52. Chau BN, and Wang JY. Coordinated regulation of life and death by RB. 
Nature Reviews Cancer. 2003; 3: 130-38.  
 
53. Sharpless, NE and Depinho RA. Telomeres, stem cells, senescence and 
cancer. Journal of Clinical Investigation. 2004;113: 160-68.   
 
54.  Delston RB, and Harbour JW. Rb at the interface between cell cycle and 
apoptotic decisions. Current Molecular Medicine. 2006; 6: 713-18. 
 
55. Ma D, Zhou, P, Harbour JW. Distinct mechanisms for regulating the tumor 
suppressor and antiapoptotic functions of RB. The Journal of Biological 
Chemistry. 2003 
 
 
 
 
 



 98 

3.8 Figures and Tables 
 
 
 
 
 

Table 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 99 

 
 
 
 
 
 

Table 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 100 

 
 

Table 3 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 101 

 
Table 4 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 102 

 
Figure 1 

 

 
 
Figure 1. RB1 protein levels relate to genomic copy number in MM cell lines 

 
A. Western blot analysis of MM cell lines OPM2, RPMI 8226 (8226), KMS11, LP-

1, H929, UTMC2 and U266, using an antibody that detects RB1 independent of 

phosphorylation status (top, IF-8 antibody). HCT is colon cancer line used for a 

positive control.  Top band is RB1. Non-specific bands are marked by an 

asterisk. Duplicate blots were probed with a phospho specific RB1 (Serine 

807/811: P807/811) antibody (bottom). Actin was used as a loading control. B. 

Representitative FACS analysis of three MM cell lines analyzed for RB1 protein 

(Phospho RB Serine 807/811). U266 cells have no RB1 protein, LP1 cells have 

one copy and OPM2 has two.  
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Figure 2 

 
 
Figure 2. Hematopoeitic cell subsets in Rb1 WT and HET mice are similar 

A. Representative FACS analysis of spleen and bone marrow isolated from Rb1 

WT or HET mice using B cell (B220), T cell (CD4/CD8), and myeloid 

(MAC1/GR1) markers. Representative plots shown. Compiled FACS analysis of 

spleen (B.) and bone marrow (C). Black bars represent WT mice, and gray bars 

represent HET mice.  Error bars are standard deviation. n=4, WT; n=6, HET  

D. Spleen weights of WT or HET Rb1 mice seven days post treatment with PBS 

as a control or sheep red blood cells to induce germinal centers 
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Figure 3 
 
 

 
 
 
Figure 3. RB1 is expressed in myeloma, but rarely phosphorylated 

Shown is a representative patient sample (UPN 35945) that was stained with 

CD138 (left), total RB1 independent of phosphorylation status (4H1; middle) or 

phoshorylated RB1 (phospho Serine 807/811).  
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Table 5 

 
 
 
Table 5. Summary of RB1 IHC Analysis in primary patient myeloma samples                                        d   
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Chapter 4 

 
 

Characterization of Neurobeachin (NBEA,  
 

BCL8B) in myeloma and hematopoeisis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published in part as:  
O’Neal, et al.  Neurobeachin (NBEA) is a target of recurrent interstitial deletions 
at 13q13 in patients with MGUS and multiple myeloma. Exp. Hem. 2009; 37:234-
44. 
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4.1 Abstract 
A role potential role for NBEA in myeloma was revealed by its identification at 

sites of interstitial deletions in DNA isolated from primary patient MGUS and MM 

samples (Chapter 2). We found NBEA was decreased in patient samples with 

monosomy 13 vs. those that retained both copies, but in some MM cell lines and 

patient samples, NBEA expression was high. RNAi mediated knockdown of 

NBEA in OPM2 cells that express high endogenous NBEA grew poorly 

compared to controls, suggesting these cells required NBEA for growth. Our 

expression analysis of Nbea in the hematopoietic system revealed it was 

expressed in spleen in thymus. Colony assays performed on Nbea-/- and Nbea+/+ 

fetal liver cells revealed no differences between genotypes, suggesting 

hematopoietic progenitor cells in Nbea-/- mice are functional. To determine if 

Nbea was required for adult hematopoeisis, we performed fetal liver transplants 

using Nbea+/+ and Nbea-/- donor cells and found Nbea was dispensable for 

engraftment and basal adult hematopoietic development.  
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4.2 Introduction 

4.2A Neurobeachin (NBEA, BCL8B) is a BEACH domain containing protein 

implicated in vesicle trafficking 

We identified interstitial deletions affecting NBEA, and found it to be the sole 

gene affected in a minimally deleted region at 13q13 in DNA isolated from 

patients with PC dyscrasias (Chapter 2). NBEA is large; it’s genomic sequence 

spans 0.73Mb and produces a 9.5Kb transcript encoding a 327KDa protein. 

NBEA has homologs in mice (Nbea), C elegans (Sel-2), which is shared with 

LRBA [1], and drosophilia  (rugose, DAKAP550). NBEA protein is comprised of a 

BEACH, Pleckstrin Homology (PH), WD40 and a Protein Kinase A (PKA) binding 

domains (Figure 1). 

 

The BEACH domain was first discovered in the protein encoded by the 

Lysosomal Trafficking Regulator gene (LYST, CHS1). Homozygous deletions 

within the CHS coding sequences resulting in expression of truncated proteins 

missing the BEACH domain are found in patients with Chediak-Higashi 

Syndrome (CHS) [2-4]. This is a rare, autosomal recessive disorder 

characterized by variable albinism, bleeding tendency, progressive neurologic 

abnormalities and severe immunodeficiency with lack of natural killer cell activity. 

The cellular hallmark of CHS is enlarged lysosomal and lysosomal related 

organelles in almost all granulated cells [5-7], suggesting the BEACH domain 

regulates vesicle size, structure or function [5,7].  
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Other mammalian BEACH encoding proteins are implicated in aspects of vesicle 

function [5]. LPS-Responsive Vesicle Trafficking, Beach and Anchor containing 

(LRBA, BGL, CDC4L), which like NBEA, encodes a Protein kinase A (PKA) 

binding domain (discussed in section 4.2), is implicated in vesicle release in 

polarized cells [8]. Neutral Spingomyelinase Activation Associated Factor 

(NSMAF, FAN) encoding the protein FAN is implicated in TNF signaling and 

activation of neutral sphingomyelinase. Nsmaf deficient mice have slightly 

enlarged lysosomes [9]. The protein encoded by the WD Repeat and FVYE 

Domain-containing 3 (WDFY3, ALFY) gene binds Phosphoinositol 3 phosphate 

that regulates endocytic and autophagic trafficking [5]. Finally, NBEA is 

implicated in induced vesicular release at the neuromuscular junction [10, 11].  

 

Crystal structure analysis of the BEACH domain and the 130 amino acids N-

terminal to it revealed it is situated C-terminal to a structurally conserved PH 

domain [12]. These two domains physically interact, suggesting they function as 

a single unit [12]. Although PH domains can bind either to fatty acids or proteins, 

the interaction of the PH domain with the BEACH domain physically blocks the 

alpha helix known to mediate fatty acid binding, suggesting the PH domain of 

NBEA mediates protein-protein interactions [12]. 

 

4.2B NBEA is a Protein Kinase A (PKA) Anchoring Protein (AKAP) 

The NBEA gene encodes a transcript generating a protein that includes a PKA 

binding site. The term PKA comprises its enzyme complex composed of four 
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regulatory subunits (RIα,  RIβ ,RIIα and RIIβ) and two catalytic subunits (Cα and 

Cβ) with serine/threonine kinase activity that is activated in response to increases 

in cAMP.  Murine Nbea binds to PKA regulatory subunits RIIα (Kd: 10nM) and 

RIIβ  (Kd: 30nM) [10] and since murine and human PKA regions are highly 

conserved, human NBEA is predicted to bind PKA. Neurobeachin is therefore 

characterized as an AKAP that localizes PKA to correct cellular locations such 

that upon cAMP increases, PKA signaling only occurs at correct locations, 

facilitating appropriate phosphorylation of downstream targets.  

 

4.2C NBEA expression is highest in brain 

NBEA transcripts and protein are detected at very high levels in both mouse and 

human brain [10-13; our own data). Lower, but relatively robust transcripts are 

found in the uterus, adrenal gland, ovary, testes, lung, and kidney with even 

lower expression in heart, spleen, stomach, and small intestine  [11,13]. Mice 

that lack Nbea die immediately after birth due to a block in synaptic transmission 

at the neuromuscular junction, supporting a functional role in the nervous system 

[11]. 

 

A potential role for NBEA in myeloma was revealed by its identification at sites of 

interstitial deletions in DNA isolated from primary patient MGUS and MM 

samples (Chapter 2). A prior study showed increased NBEA expression with 

advancing disease stage in primary plasma cell dyscrasias [14], and in another 

study was one of a small set of genes whose expression was increased in patient 
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samples harboring single chromosome 13 deletions [15]. We found NBEA was 

decreased in patient samples with monosomy 13 vs. those that retained both 

copies, but in some MM cell lines and patient samples, NBEA expression was 

high. RNAi mediated knockdown of NBEA in OPM2 cells (that express high 

endogenous NBEA) grew poorly compared to controls, suggesting these cells 

require NBEA for growth. Our characterization of Nbea expression in the 

hematopoietic system revealed it was expressed in spleen in thymus. Colony 

assays performed on Nbea-/- and Nbea+/+ fetal liver cells revealed no differences 

between genotypes, suggesting hematopoietic progenitor cells in Nbea-/- mice 

are functional. To determine if Nbea was required for adult hematopoeisis, we 

performed fetal liver transplants using Nbea+/+ and Nbea-/- donor cells that 

revealed Nbea was dispensable for engraftment and basal adult hematopoietic 

development.  
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4.3 Methods 

4.3A Microarray Expression Analysis 

Two independent microarray datasets were analyzed. First, a Mayo Clinic 

dataset [16] included 162 samples (101 MM, 24 SMM, 22 MGUS, and 15 normal 

PC’s; GEO GSE6477; chromosome 13 status was determined by FISH). Second, 

we used a multiple myeloma research consortium (http://www.themmrc.org; 

MMRC) dataset that included 100 MM samples (Chromosome 13 status was 

determined by aCGH).  

 

Expression values were derived against a PM/MM difference background using 

Robust Multichip Average (RMA) [17]. Present/Absent probes were called using 

Affymetrix Microarray Suite version 5. Only probes detected in at least one 

sample were used in subsequent comparisons. In pooled Chromosome 13 

Deletion versus no Deletion comparisons, Significance Analysis of Microarrays 

(SAM), [18] was used to detect differentially expressed genes based on a q-value 

of less than 5%. SAM was run with 100 permutations for correction of False 

Discovery Rate. These genes were clustered and visualized in DChip [19] 

(http://www.dchip.org). aCGH data was first smoothed with region=2, outlier scale 

=4, smoothing SD=2 and trimming proportion of 0.025. CBS was then run with 

default parameters (alpha=0.01, window.size= NULL, with 10000 permutations). 
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4.3B Q-RT-PCR 

RNA was isolated from whole tissues harvested from 4 week-old C57BL/6 mice 

using Trizol Reagent (Roche Molecular Biochemicals, Indianapolis, IN) per 

manufacturer’s instructions.  First strand cDNA was generated using SuperScript 

First Strand Synthesis Kit (Invitrogen, Carlsbad, CA) per manufacturer’s 

directions. Prior to lysis in trizol reagent, red blood cells were removed from bone 

marrow by brief incubation in hypotonic lysis buffer (150 mM NH4Cl, 10 mM 

KHCO3, 0.1 mM EDTA, pH 7.4). Standard curves were made using cDNA 

generated from brain RNA (input range: 25ng to 0.3ng). Standard curve graphs 

were generated by plotting the cycle threshold (Ct) versus the log of DNA input 

concentration and reactions analysed using the standard curve method 

(www.appliedbiosystems.com). Assays were performed with Taqman Universal 

PCR Master Mix with the total volume of each reaction 25µl.  Primer 

concentration: 900nM; probe concentration: 2.5mM, 12.5ng template. 

Experimental reactions were run in triplicate and presented as the average of two 

separate experiments. Error bars are standard deviation of duplicate runs. 

Reactions were run on 7300 Real Time PCR System, and analyzed using 7300 

System Software (Applied Biosystems, Foster City, CA). Primers: Nbea Exon6F: 

A5’GG TTT CCA GCA CTG TGT GAA GT3’ Nbea Exon7R: 5’TGT GGA CGA 

TGC TGA TCA TGT3’ Nbea Probe 5’6-FAMTGA TTT CCA GCC TCG CAA 

GTG36TAM3’ GapdhF 5’TGC ACC ACC AAC TGC TTA G3’ GapdhR 5’GGA 

TGC AGG GAT GAT GTT3’ Gapdh Probe5’6FAMCAG AAG ACT GTG GAT 

GGC CCC TC36TAM3’. 



 114 

4.3C Western Blot Analysis 

Tissues for generation of cell lysates were harvested from 5-6 week old C57BL/6 

mice. Lysates were isolated from mouse whole tissues by cutting tissues with 

scissors in tissue lysis buffer (0.32M sucrose, 1mM EDTA, 10mM Tris pH 7.6, 

with inhibitors as described [20] and cells homogenized for 20 seconds. Samples 

were placed on ice for ten minutes, and spun to pellet unlysed cellular debris. 

Lysates were run on gels with three layers: 4% stack, 5%resolving and 9% 

resolving gels. The NBEA polyclonal antibody was generously provided by 

Manfred Kilimann (Department of Cell and Molecular Biology, Uppsala 

University, Sweden). 

 

4.3D Lentiviral infection and knockdown of NBEA 

Lentiviral vectors encoding siRNA targets to NBEA and controls were purchased 

from Sigma (St. Louis, MO). Si1: CGGGATGAAATTCGCAGTGTT  Exon 2; Si2: 

CCGACTCTTTGCAGTGAATA Exon 51; Si3: GGACTACAATGTTTCGTCGTATT 

Exon 24. Lentivirus was generated using calcium phosphate mediated 

transfection of 293T cells using the purchased expression vectors and packaging 

sequences. Viral supernatents were used to infect OPM2 or LP1 cells for 

1.5hours and 2500rpm. One day after infection, cells were plated in (0.5µg/ml) 

puromycin and after 1 week (when all mock infected cells treated with puromycin 

were dead), 100,000 cells were plated in triplicate and counted using trypan blue 

exclusion daily (samples were blinded to person counting).  
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4.3F Fetal liver transplants and colony assays 

Nbea+/+ (WT), Nbea+/- (HET) and Nbea-/- (KO) or fetal livers were obtained from 

day 13.5-15.5 d.p.c. fetuses. These were generated by timed matings of Nbea 

heterozygous mice (breeder pairs were allowed to breed for three nights, and 

then male was removed). Fetuses were placed in PBS, and fetal livers isolated 

by dissection. Fetal livers were placed in 1ml Fetal Liver Transplant Media 

(FLTM; RPMI containing 1% pen/strep, 20% fetal bovine serum, 10 ng/mL IL6, 

100 ng/mL SCF, 50 ng/mL FLT3, and 10 ng/mL Tpo), passed through a 27.5 

gauge needle attached to a 1 ml syringe to break up cell clumps and red blood 

cells lysed using hypotonic lysis buffer (150 mM NH4Cl, 10 mM KHCO3, 0.1 mM 

EDTA, pH 7.4).  Cells were incubated for 48 hours at 37oC at 5% CO2 in FLTM 

and 1.5-2 X 10^6 cells were injected by lateral tail-vein into lethally irradiated 

(1100 or 1200 rads) Ly5.1 mice (to facilitate evaluation donor chimerism).  On the 

day of transplant, 5X10^5 (M3630) or 2X10^4 (M3434) were plated in triplicate 

into methocellulose (Stem Cell Technologies, Vancouver, Canada) and counted 

on day seven.  

 
4.3E Flow Cytometric analysis 

Spleen, bone marrow and blood were harvested from recipient mice 8-10.5 

weeks post transplant. Single cell suspensions of spleen cells were made by 

passing cut-up spleens through 100µm cell strainer (BD Falcon, Bedford, MA) 

and spun at 1500 rpm. RBC’s were lysed as above.  Single cell suspensions 

were stained with B220, CD43, DX1, TER119, MAC1, GR1, CD23, IgM, CD4, 

and CD8 (ebiosciences, San Diego, CA) for 30 minutes on ice. Data were 
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collected using Cytomics FC 500 (Beckman Coulter, Fullerton, CA). Figures were 

prepared using FloJo software (Tree Star, San Carlos, CA). 
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4.4 Results 
 
4.4A NBEA expression in MM samples with monosomy 13 
 
We identified interstitial deletions affecting NBEA, and found it to be the sole 

gene affected in a minimally deleted region at 13q13 in DNA isolated from 

patients with PC dyscrasias (Chapter 2). NBEA has no known role in myeloma, 

although transcripts assessed by expression microarrays were associated with 

disease progression in myeloma [14]. We sought to validate NBEA as a deletion 

target by characterizing its expression in MM cells. We anticipated that patient 

samples harboring monosomy 13 would have lower NBEA expression than 

patient samples without chromosome 13 deletions.  We analyzed two large 

microarray data sets (methods; total n=262) for expression changes based on 

chromosome 13 status.  In both datasets, NBEA transcript levels were 

significantly decreased in patient samples with monosomy 13 versus those 

without, revealing NBEA expression levels were related to genomic copy number 

(Table 1).  

 
 
We developed a quantitative real-time reverse transcriptase PCR (Q-RT-PCR) 

assay to quantitate NBEA transcript expression, and first assayed a panel of MM 

cell lines.  Some myeloma cell lines expressed low levels of NBEA transcript, as 

anticipated, but surprisingly, several expressed NBEA at high levels (Figure 2). 

We found UTMC2 cells expressed NBEA at levels three times higher than in a 

human brain sample, where NBEA is normally most highly expressed [10-13, our 

own data]. OPM2 cells had levels 30% of brain while U266 had levels 18% of 
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brain. RPMI-8226 and LP1 had low/undetectable NBEA transcripts (Figure 2). 

We next examined NBEA protein levels in these cell lines by Western Blotting of 

whole cell lysates. Consistent with the Q-RT-PCR data, we found NBEA protein 

expression varied significantly between cell lines (Figure 2). The UTMC2, OPM2, 

and H929 cell lines had the highest NBEA protein levels, while RPMI 8226, U266 

and LP1 had low to undetectable NBEA protein.  

Finally, we measured NBEA transcripts and protein levels in a set of CD138-

enriched primary MM bone marrow samples (n=14) using Q-RT-PCR and 

Western blotting. We found NBEA transcript expression varied significantly 

across samples and, consistent with our MM cell line data, some MM patient 

samples, even with monosomy 13, harbored high NBEA transcript levels (Figure 

2). Because of the large number of CD138 cells needed for Western analysis we 

were forced to analyze a separate set of MM patient samples by Western blot 

(only sample 14216 had both RNA and protein data; expression was low by both 

analyses). Consistent with the RNA data, Western blotting using an NBEA-

specific antibody demonstrated that NBEA protein was strikingly dysregulated in 

patient MM cells (Figure 2).  

4.4B Decreased NBEA expression caused a reduction in OPM2 cell growth  

Our initial NBEA expression data revealed it was robustly expressed in a subset 

of MM cell lines including OPM2, UTMC2, and H929. We hypothesized high 

levels of NBEA would be required for MM cell growth.  To address this 

hypothesis, we used SiRNA-mediated knockdown of NBEA in OPM2 cells. 
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OPM2 cells were infected with a lentivirus expressing a double- stranded small 

interfering RNA (siRNA) directed to NBEA, or vector alone. Efficient knockdown 

of NBEA protein with three separate NBEA silencing target sequences (siRNA1, 

siRNA2, and siRNA3) was demonstrated (range: 11-72% of vector; Figure 3). 

After infection and selection in puromycin, 100,000 cells from each construct 

were plated in triplicate and live cells were counted by trypan blue exclusion for 

five days. Compared to empty vector control (Figure 3), and a vector expressing 

a non-targeting siRNA (not shown), OPM2 cells infected with lentivirus 

expressing siRNA targeted to NBEA revealed a dramatic decrease in growth rate 

that was most pronounced with siRNA2, which caused the most efficient 

reduction in NBEA protein (Figure 3).  

 

To confirm this result was specific to cells expressing high levels of NBEA, the 

experiment was repeated in LP1 cells that express low levels of NBEA protein 

(Figure 2). We found that although the cells infected with NBEA siRNA displayed 

reduced growth compared to vector control (67% or 63% of control cells for Si1 

and Si2, respectively on day 5 of culture), these cells grew much better than the 

OPM2 cells (51% or 20% for Si1 and Si2, respectively on day 5 of culture, Figure 

3). The slightly reduced growth indicates either a low level of siRNA toxicicity in 

LP1 cells, or that reduction of even the low levels of NBEA was enough to 

generate a slight growth disadvantage. Infection of LP1 cell lines with siRNAs 

targeting RB1 (not shown) did not result in a growth disadvantage, suggesting 

the reduced growth is not the result of siRNA toxicity.  Although the mechanism 
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of altered growth in OPM2 cells is not currently fully understood, these data 

suggest expression of NBEA is required for normal growth of OPM2 cells and 

that expression of NBEA may play a role in tumor maintenance, or that NBEA 

provides a required survival signal.  

 
 
4.4C Nbea is expressed in spleen and thymus 

Because NBEA is dysregulated in plasma cell dyscrasias, we sought to 

determine its expression levels in hematopoietic tissues. Qualitative analysis has 

been performed on a tissue panel including spleen [11,13], but other 

hematopoietic cell types including bone marrow and thymus have not been 

examined. To quantitatively assess Nbea transcript levels, we performed  

Quantitative Real-Time PCR (Q-RT-PCR) on cDNA isolated from a panel of 

murine tissues including heart, lung, kidney, liver, and the hematopoietic tissues 

bone marrow, spleen and thymus (Figure 4). Consistent with prior reports 

[11,13], Nbea transcript levels were higher in lung, kidney and heart tissues than 

liver, validating our Q-RT-PCR system. We found spleen and thymus had higher 

Nbea transcript levels (Nbea:Gapdh ratio: 0.1 and 0.055, respectively) compared 

to liver (Nbea:Gapdh ratio: 0.03) and Nbea was almost undetectable in bone 

marrow (Nbea:Gapdh ratio: 0.0009).  

 

To determine if Nbea protein levels in murine tissues were related to transcript 

levels, Western Blot analysis was performed on whole tissue lysates isolated 

from kidney, liver, thymus and spleen. We found Nbea protein in kidney, thymus, 
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and spleen but very low protein in liver, consistent with the Q-RT-PCR analysis 

(Figure 4). No Nbea protein was detected in Nbea-/- fetal brain tissue but robust 

detection of Nbea was found in adult and fetal brain lysates isolated from control 

mice, as expected.  

 

4.4D Nbea is not required for myeloid or pre-B cell colony formation 

Because we identified NBEA as a target in the B cell cancer myeloma and also 

showed it was expressed in hematopoietic tissues, we hypothesized its 

expression would be required for hematopoietic development. Since Nbea-/- mice 

die at birth [11], we performed timed breedings to isolate day 14.5-15.5 d.p.c. 

fetal liver cells since that is time of maximal hematopoietic stem cell activity in 

developing embryos [21,22]. Nbea+/+, Nbea+/- and Nbea-/- fetal liver cells were 

plated in directly into methocellulose cultures containing either myeloid or pre-B 

cell cytokines (Figure 5, methods). We found Nbea-/- and Nbea+/- fetal liver cells 

were as proficient as Nbea+/+ fetal liver cells in their ability to form colonies of 

both myeloid and pre B cell type, suggesting hematopoietic progenitor cells in 

Nbea-/- mice are functional. 

 

4.4E Nbea is dispensable for engraftment and basal adult hematopoeitic 

development  

To determine the requirement of Nbea to in vivo baseline hematopoietic 

engraftment and development, we performed fetal liver transplantation assays. 

Fetal liver cells isolated from Nbea+/+ or Nbea-/- cells (Ly5.2/CD45.2) were 
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injected into lethally irradiated (Ly5.1/CD45.1) recipients and mice were analyzed 

8.5-10.5 weeks post transplant. PCR performed on DNA isolated from fetal liver 

cells and embryonic tissue, and Western blot analysis performed on fetal brain 

tissue confirmed appropriate genotypes (Figure 5). The Ly5.2/Ly5.1 (common 

leukocyte antigens) were used to quantitate donor chimerism. We found on 

average (92%, 86%, 90%) percent donor (Ly5.2) cells in blood, spleen and bone 

marrow, respectively, demonstrating successful engraftment (Figure 6, data not 

shown).  

 

Peripheral white blood counts were similar in recipient mice injected with either 

Nbea+/+ or Nbea-/- donor cells (WT mean: 8.25k/µl, range 5.38-10.58; KO mean: 

5.9k/µl, range 3.86-7.24, n=4 both groups), as were spleen weights (WT mean: 

0.029g, range 0.027-0.03; KO mean: 0.033g, range 0.028-0.043, n=4 both 

groups). To examine whether there were differences in cell type distribution, 

FACS analysis was performed in bone marrow and spleen. In bone marrow, we 

found similar numbers of myeloid (GR1/Mac1), T cells (CD4, CD8), B cells 

(B220), NK cells (DX5) and erythroid (Ter119) cells in both WT and KO chimeras 

(Figure 6).    In spleen, we also found similar numbers of all cellular subtypes 

listed above, although in one outlier mouse, we saw increased Ter119 in an 

Nbea-/- reconstituted chimera (not shown).    

 

We examined further the B cell compartment since NBEA expression is 

dysregulated in PC dyscrasias. To this end, spleen cells were stained with IgM, 
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CD23 and CD43. IgM marks splenic B cells, which can be further divided into 

Follicilar (IgM+CD23+), Marginal Zone and Immature B cells (IgM+CD23-CD43-), 

and B-1 cells (IgM+CD23-CD43+). We found similar numbers of these B cell 

subsets in recipient mice of both genotypes, suggesting Nbea was dispensable 

for basal B cell development (Figure 6).  Together, although NBEA is 

dysregulated in MM, and expressed in hematopoietic tissues, Nbea was 

dispensable for engraftment and basal adult hematopoietic development 

including formation of mature B, T, NK, and myeloid cells when assayed in 

steady-state conditions. Future experiments are required to assess the functional 

capabilities of these cells in stress conditions.  
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4.5 Discussion 
 
The reduced expression of NBEA in samples harboring monosomy 13 

suggests NBEA is a novel tumor suppressor gene.  

A functional role for NBEA in MM was suggested by the dysregulation of its 

expression in MM patient samples. DNA microarray data from a large number of 

patient samples (n=262) demonstrated that compared to patients with normal 

chromosome 13, there was a decrease in NBEA expression in patient samples 

harboring single copy loss of NBEA. These data suggest that NBEA may be a 

novel tumor suppressor gene in MM.   

 

To our surprise, our Q-RT-PCR and Western blot analysis performed on a 

separate cohort of MM samples revealed that some patients, even with 

monosomy 13, harbored very high NBEA expression, suggesting instead a pro-

tumor role for NBEA in MM (Figure 3). However, inactivating mutations in the 

p53 tumor suppressor gene are often associated with high p53 expression [23], 

so these data may still be consistent with a role for NBEA as a tumor suppressor. 

Sequencing of NBEA genes in MM patient samples will be required to prove that 

NBEA mutations occur in myeloma that potentially result in expression of 

functionally null NBEA protein.  

 

Mice heterozygous for tumor suppressor genes are often tumor prone. For 

example, Rb1 heterozygous mice develop pituitary tumors that have undergone 
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mutation at the remaining allele [24]. We are currently aging a cohort of Nbea+/- 

and Nbea+/+ mice (n=15 for each genotype) to determine if the Nbea+/- mice 

succumb to tumors. The oldest mice are 587 days old and appear healthy, 

arguing against a tumor- suppressor function for Nbea. Mating Nbea 

heterozygous mice to tumor prone strains can be used to determine if decreased 

Nbea reduces time to disease onset or increases disease severity compared to 

wild type controls. Eµ-XBP-1 mice develop MGUS and progress to MM with lytic 

bone lesions [25]. If Nbea functions as a tumor suppressor, Eµ-XBP1 mice mated 

to Nbea+/- mice are predicted to succumb to disease with decreased latency or 

increased severity.  

 

Since Nbea null mice die at birth [11], generation of mice with conditional deletion 

of Nbea in plasma cells is required to determine the effects of plasma cell 

specific deletions of Nbea.  This can be accomplished by generating NbeaFlox/Flox 

mice, and then breeding them to the Cγ1-CRE mice, which express CRE in post 

germinal center plasma cells upon antigen stimulation [26]. Analysis of Cγ1-CRE 

NbeaFlox/Flox and Cγ1-CRE Nbea+/+ plasma cells will determine whether deletion of 

Nbea specifically in plasma cells alters that compartment.  

 

Robust detection of NBEA in MM suggests an oncogenic function 

On the other hand, the high-level NBEA expression detected in a subset of MM 

primary samples and cell lines supports the hypothesis that NBEA, when 
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expressed, plays a pro-tumor role in PC dyscrasias. A prior study showed 

increased NBEA expression with advanced disease stage in primary plasma cell 

dyscrasias [14].  Furthermore, NBEA was one of a small set of genes whose 

expression was increased in monosomy 13 patient samples in another study 

[15].  Nbea was upregulated almost seven fold in mature versus less mature B 

cell tumors in two separate mouse models [27]. In our microarray study, although 

most patient samples with deletion 13 revealed decreased NBEA levels, there 

were identifiable outliers with robust expression of NBEA (Figure 2, not shown). 

Additionally, Q-RT-PCR and Western Blot analysis on a subset of patient 

samples expressed high levels of NBEA, and a number of those patient samples 

had poor prognosis, suggesting a potential association. Large-scale analysis of 

NBEA (via Q-RT-PCR or Western blotting) is needed in uniform patient groups 

(i.e. with similar treatment regimens) to address the hypothesis that elevated 

expression of NBEA relates to poor patient outcome.  

 

Examining functional properties of genes related to NBEA can shed insight to the 

hypothesis that NBEA functions as an oncogene. NBEA shares 62% sequence 

identity at the amino acid level to LRBA, a homolog encoding both a BEACH and 

PKA domain, and is implicated in cancer cell growth [28]. Knock-down of LRBA 

in cancer cell lines decreased the growth of cells in culture, and was found to be 

upregulated by E2F and downregulated by P53. These authors proposed that 

LRBA functions as an oncogene by facilitating EGFR [28].  Knockdown of NBEA 

in OPM2 cells led to reduced growth (Figure 3). We have undertaken the task of 
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subcloning the entire NBEA cDNA for use in overexpression studies. We initially 

planned on using a retroviral mediated high level expression and bone marrow 

transplantation system to express NBEA in mouse hematopoietic cells, but have 

been unable to accomplish this, since the large size of NBEA has prevented 

generation of high-titer retrovirus. We are currently generating a DNA construct 

to direct expression of NBEA to B cells using the Eµ regulatory sequences in a 

transgenic mouse model.   

 

The requirement of NBEA for OPM2 growth suggests a survival function.  

Our data that OPM2 cells grew poorly when NBEA levels were decreased, 

suggests NBEA provides a survival signal. The interpretation of this data is 

confounded by the fact that until sequenced, we do not know if wild type or 

mutated NBEA protein is expressed in OPM2 cells (and in samples isolated from 

patient with PC dyscrasias). However, the conclusion remains the same: cells 

that express NBEA required its expression for growth. It is an unanswered 

question as to what cellular function NBEA is providing to these cells (discussed 

further in Chapter 5). 

 

Nbea is dispensable for adult hematopoietic engraftment and development 

in fetal liver transplant system 

We showed Nbea was expressed in spleen and thymus tissues in steady state 

conditions. IHC staining for Nbea in spleen sections will determine the spleen 

localization of Nbea. Also, experiments are underway to sort spleen cell subsets 
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based on cell surface expression of cell type specific markers (GR-1, B220, CD4, 

CD8, DX5) followed by Q-RT-PCR. Because Nbea is dysregulated in myeloma, 

we hypothesize Nbea is expressed in plasma cells. To determine if Nbea is 

expressed in plasma cells, mice will be challenged with sheep red blood cells 

and plasma cells will be sorted using cell surface markers PNA/B220 one week 

post injection when formation of spleen GCs are maximal [29]. Q-RT-PCR will be 

used to quantitively assess Nbea expression in these cells.  

 

We showed Nbea was dispensable for engraftment and basal adult 

hematopoietic development including formation of mature B, T, NK, and myeloid 

cells when assayed in steady-state conditions (Figure 5,6). This was somewhat 

surprising based on the finding Nbea was expressed in spleen (Figure 4). 

However, we did not examine plasma cell development or function in our fetal 

liver transplantation assay. Therefore, it remains a possibility Nbea has a function 

in plasma cells (perhaps by promoting plasma cell differentiation or production of 

class switched antibodies).  

 

To test the hypothesis Nbea-/- plasma cells have defects in germinal center 

formation, Nbea KO and Nbea WT chimera reconstituted mice will be challenged 

with SRBC, and flow cytometry for detection of germinal center plasma cells 

(PNA+/B220+) will be performed [29]. If NBEA functions in vesicle traffic or PKA 

mediated regulation of AID in class switch recombination (CSR) or secretion, 

Nbea null plasma cells may have deficiencies in antibody formation and/or 
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secretion. To assess this, we will use our fetal liver transplantation system to 

generate mice with null or wild type Nbea hematopoietic systems. In vivo 

analysis of basal CSR will be assessed by performing ELISA assays on serum 

and levels of IgM, IgG1, IgG2a, IgG2B, IgG3 and IgA will be determined [30]. If 

Nbea null chimeras are deficient in CSR, it predicts detection of IgM (which does 

not undergo CSR), but not the other isotypes. If there are secretion defects, 

detection of all antibody isotypes is predicted to be low/undetectable.  

 

To assess CSR in an antigen stimulated system, mice will be injected with SRBC 

and serum will be subject to ELISA for IgM and IgG1 over a three-week time 

course. In vitro assessment of class switch recombination will be performed by 

isolating splenocytes from engrafted mice (Nbea+/+ and Nbea-/-) by stimulating 

purified B cell splenocytes with LPS, LPS and Il-4, pr LPS and TGFβ and then 

quantitating antibody isotypes in culture supernatents by ELISA as described 

above [27, 30, 31].  
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Figure 1 

 
 
 
 
 

 
 
 
 
 
 
Figure 1. NBEA protein and exon structure 
A. NBEA protein domains. Numbers correspond to amino acids. B. 
NBEA exon structure. Some exons are numbered (top) and sizes of 
the four largest introns are shown on bottom.  
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Table 1 
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Figure 2 

 
 
Figure 2. NBEA is variably expressed in myeloma 

A. Quantitative Q-RT-PCR analysis of NBEA on a panel of MM cell lines. NBEA 

levels were normalized to GAPDH and plotted as a percentage of human brain 

where NBEA expression is known to be high.  B. Western Blot analysis of NBEA 

on a panel of human MM cell lines. Murine brain (mBrain) was used as positive 

control and HSP90b is shown as loading control.  C. Quantitative RT-PCR 

analysis of NBEA on a panel CD138 purified primary patient samples including 

nine of the 20 patient samples included in aCGH analysis plus an additional five. 

White bars indicate patient samples with normal chromosome 13 status. Gray 

bars indicate patient samples with full or partial chromosome 13 deletions 
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(determined by cytogenetics, FISH or aCGH analysis). NBEA levels were 

normalized to GAPDH and plotted as a percentage of human brain as in A. D. 

Western Blot analysis on CD138 purified lysates from five primary patient 

samples. Due to limited sample quantity, these patients are different from the 

twenty included in aCGH analysis. HSP90b was used as loading control. KMS11 

is MM cell line shown since repeat analysis showed NBEA protein levels were 

low.   
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Figure 3 
 

 
Figure 3. NBEA is required for growth of OPM2 cells 
 
A. Western Blot analysis of OPM2 cells infected with lentivirus expressing 

nothing, or one of three siRNAs that target NBEA.  Uninfected OPM2 cells are 

shown as a control. HSP 90 was used as loading control and for controls in 

densitometry results, shown below blot. B. Growth curves of OPM2 or LP1 cells 

infected with vector alone or siRNA targeting NBEA. Cells were selected in 

puromycin for one week and then 100,000 cells from each group were plated in 

triplicate and live cells counted using trypan cell exclusion. Error bars are 

standard deviation of a representative triplicate experiment.  
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Figure 4  
 

 
 
Figure 4. Nbea is expressed in thymus and spleen 

A. Q-RT-PCR analysis of Nbea was performed on a panel of murine tissues. 

Data are plotted as the ratio of Nbea/Gapdh signal. Reactions were performed in 

triplicate and experiment was performed in duplicate. Error bars are standard 
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deviation of two separate experiments.  B. Western blot analysis of Nbea in 

panel of whole tissue lysates. 
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Figure 5 
 
 

 
 
Figure 5. Nbea is not required for myeloid or Pre-B cell colony formation 

A. Western Blot analysis of lysates isolated from fetal brains. Brains from each 

fetus are numbered. N; negative control lysates from a separate fetal liver brain 

known to be null for Nbea. B. Cells were plated into M3630 that supports pre B 

cells. WT, HET or KO fetal liver cells were plated in methocellulose in triplicate. 

WT (n=1), HET (n=2), KO (n=3). Data from same genotypes were pooled. Error 

bars are standard deviation of averages of each well scored. C. WT, HET or KO 

fetal liver cells were plated in methocellulose containing myeloid (M3434) 

cytokines. Absolute colony numbers of G, M, MG or E colonies are plotted. WT 

(n=1), HET (n=2), KO (n=3). Cells were plated in triplicate. Data from same 
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genotypes were pooled. Error bars are standard deviation of averages of each 

well scored. D. Percentage of total colonies counted in C. 
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Figure 6 
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Figure 6. Nbea is dispensable for broad reconstitution of major 

hematopoietic lineages following transplantation 

A. FACS analysis of spleen (left) and bone marrow (right) of recipient mice 

transplanted with either Nbea+/+ or Nbea-/- fetal liver donor cells. B and C. 

Summary of Spleen FACS analysis shown in A. of wild type (black bars) and 

knockout (white bars) recipient mice. Data are presented as mean of four mice 
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per group. Error bars are standard deviation. MZ/I: Presented as percentage of 

IgM+ cells that were CD23-CD43-. Follicular: Presented as percentage of IgM+ 

cells that were CD23+. B-1 cells: Presented as percentage of IgM+ cells that 

were CD23-, CD43+. MZ: marginal zone; I: immature; FL: Follicular, NK: natural 

killer.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 146 

 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 5 
 

Summary and Future Directions 
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5.1 Summary  

Numeric or structural chromosomal abnormalities are detected in nearly all 

patients with plasma cell dyscrasias, including primary amyloidosis, monoclonal 

gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) 

[1]. Chromosome 13 deletions, most frequently monosomy 13, are detected in 

10-20% of MM cases by routine cytogenetics or metaphase fluorescent in situ 

hybridization (FISH) and are a significant predictor of shortened survival [2-4]. 

Previous efforts to map somatically acquired chromosome 13 localized DNA 

copy number losses have been hampered by their relatively low-resolution 

approaches [5-14]. The goal of this thesis was to identify chromosome 13 genes 

affected by copy number loss in primary patient samples isolated from patients 

with plasma cell dyscrasias. Our analysis (using unprecedented high-resolution 

techniques and appropriate controls), identified two distinct minimally deleted 

regions on chromosome 13, each defined by deletions affecting one gene: NBEA 

at 13q13 and RB1 at 13q14.2.  

 

5.2 Hypothesis 1: Rb1 haploinsufficiency contributes to myelomagenesis  

Our aCGH, cytogenetic, and FISH analysis of chromosome 13 in primary patient 

samples revealed that one copy of RB1 is a target of deletions in MM, yet in most 

patient samples (7/8 in our set) the other copy is retained in MGUS and MM 

(Chapter 2). No exonic RB1 mutations were detected in our sequence analysis 

performed on DNA isolated from CD138 purified plasma cells from 41 MM or 
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MGUS primary patient samples, suggesting RB1 alleles in MGUS and myeloma 

are wild-type (Chapter 3). We, and others [4,12,13] showed transcripts 

expressed from retained RB1 alleles are expressed at reduced levels in patient 

samples harboring monosomy 13 versus samples with two RB1 alleles (Chapter 

3). This suggests in myeloma and MGUS cells, retained RB1 alleles express 

transcripts that produce wild type RB1 protein. To address the hypothesis RB1 

protein would be inactivated by hyper-phosphorylation, we performed 

immunohistochemistry (IHC) analysis on paraffin-embedded bone marrow 

biopsies isolated from 25 patients with MGUS (1), SMM (1) MM (22) or PCL (1). 

We found hyper-phosphorylation of RB1 protein was a rare event in all samples 

tested. Together, these data suggest unmutated, hypo-phosphorylated RB1 

protein is expressed at reduced levels in MGUS and MM patient samples 

harboring monosomy 13.  Since deletions affecting RB1 are detected early in 

myelomagenesis, when rapid cell cycle does not occur, this suggests the 

contribution of reduced RB1 protein dose in myeloma is not via conventional 

uncontrolled proliferation found in other tumor types [15].   We hypothesize 

haploinsuffiency of RB1 contributes to myelomagenesis.  

 

Analysis of 8-9 week old Rb1+/+ versus Rb1+/- mice (backcrossed to generation 

10 C57BL/6) revealed no significant differences in steady state hematopoeisis or 

plasma cell induction after stimulation with sheep red blood cells (SRBCs; 

Chapter 3).  However, in Rb1 null retina cells, the Rb1 family member, p107 

compensates for Rb1 [16]. In hematopoeisis, p107 sometimes, [17] but not 
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always, [18] compensates for loss of Rb1. To avoid the issue of p107 

compensation completely, Rb1+/- mice are currently being bred to p107-/- mice to 

generate Rb1+/+p107-/- and Rb1+/-p107-/- mice. To determine whether 

haploinsufficiency of Rb1 is sufficient to alter the plasma cell compartment, 

serum will be analyzed every three months for detection of monoclonal protein by 

performing serum electrophoresis and immunofixation analysis. Total levels of 

serum protein will be assessed using serum protein electrophoresis (SPEP) 

analysis. We will assess for detection of increased plasma cell percentages in 

bone marrow using flow cytometry (B220/CD138 and PNA/B220). To stimulate 

formation of germinal centers and plasma cell maturation, these mice will be 

challenged with antigen (sheep red blood cells [19] or nitrophenyl-conjugated 

chicken gammaglobulin (NP-CGG;) [20] and the plasma cell compartment will be 

assessed as just described.  

 

Preliminary data suggests Rb1+/-p107-/- are born at reduced frequencies than 

expected from Mendelian ratios (Table 1). Specifically, when Rb1+/+p107-/- were 

mated to Rb1+/-p107+/- mice, zero Rb1+/-p107-/- mice were born. The expected 

frequency is 25% (of 27 pups total, expected 6 Rb1+/-p107-/- mice). When Rb1+/-

p107+/- mice were mated to Rb1+/-p107+/-, the expected frequency of Rb1+/-p107-/- 

pups is 12.5%, but only 2 mice (of 83 pups total, 2.4%) were born.  Also, Rb1+/- 

mice succumb to pituitary tumors at 8 months [21]. We are therefore generating 

mice with conditional deletion of Rb1 in plasma cells by mating Rb1flox/flox [22] 

mice (provided by Tyler Jacks) to mice that express Cre recombinase only when 
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transcription of Cγ1 (IgG1) heavy chain occurs in germinal centers upon 

stimulation with T cell dependent antigens [23] (provided by Klaus Rajewsky). 

These mice will have Rb1 deletions in most germinal center B cells. We will mate 

these mice to p107-/- mice to generate Cγ1CreRb1+/+p107-/- and 

Cγ1CreRb1Flox/+p107-/- mice. These mice will be assessed as above, for 

alterations in the plasma cell compartments. If haploinsufficiency of Rb1  

contributes to myelomagenesis, then we predict plasma cell development will be 

affected in the Cγ1CreRb1Flox/+p107-/- mice but not in the Cγ1CreRb1+/+p107-/- 

mice.   

 

If true, we may anticipate that patients with hereditary retinoblastoma that harbor 

germline loss of one copy of RB1 allele have an increased propensity for 

development of MGUS. Currently, there are no reports of increased incidence of 

MM in retinoblastoma patients. Since MGUS is asymptomatic, however, it 

remains a formal possibility that retinoblastoma patients have increased 

propensity for development of MGUS that has yet to be described.  To address 

this hypothesis, serum samples of surviving retinoblastoma patients will be 

subject to serum SPEP and immunofixation analysis to examine for elevated and 

monoclonal serum antibodies, respectively. If true, this supports the hypothesis 

RB1 haploinsufficiency contributes to alteration of PC’s in humans. If not, it 

suggests in humans, development of MGUS may require additional mutations.  
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5.3 Hypothesis 2: NBEA is targeted by mutations in MM 

Array CGH analysis revealed NBEA was a deletion target in MGUS and MM 

patient samples (Chapter 2). Our large-scale microarray expression analysis 

using published databases to examine NBEA transcripts in 262 patient samples 

revealed NBEA levels were decreased in primary patient samples harboring 

monosomy chromosome 13 versus patient samples that retained both alleles, 

(Chapter 4) suggesting NBEA could function as a tumor suppressor. However, 

further analysis using Q-RT-PCR and Western blotting, revealed a subset of 

primary patient samples harbored high levels of NBEA. Mutations in the p53 

tumor suppressor gene lead to elevated P53 levels, and expression of 

functionally inactive protein [24]. To determine if the NBEA gene is a target of 

mutations in myeloma, complete sequencing of NBEA on DNA isolated from 

purified CD138 patient plasma cells will be performed at the Washington 

University Genome Sequencing Center.   

 

5.4 Hypothesis 3: Expression of NBEA contributes to myelomagenesis 

A subset of MM patient samples harbored robust expression of NBEA and  

SiRNA-mediated knockdown of NBEA in OPM2 cells led to growth reduction 

(Chapter 4), suggesting expressed NBEA provides a survival signal. We have 

undertaken the task of subcloning the entire NBEA cDNA for use in 

overexpression studies. We initially planned on using a retroviral-mediated high- 

level expression and bone marrow transplantation system to express NBEA in 
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murine hematopoietic cells, but the large size of NBEA is too big for efficient 

packaging into retrovirus.  

 

A DNA construct is currently being generated that is predicted to direct 

expression of NBEA to B cells using the Eµ regulatory sequences in a transgenic 

mouse model.  To determine whether expression of NBEA alters plasma cell 

development, serum will be analyzed every three months for detection of 

monoclonal protein by performing serum electrophoresis and immunofixation 

analysis. Total levels of serum protein will be assessed using serum protein 

electrophoresis (SPEP) analysis. We will assess for detection of increased 

plasma cell numbers in bone marrow using flow cytometry (B220/CD138 and 

PNA/B220). To stimulate formation of germinal centers and assess for altered 

plasma cell function, these mice will be challenged with antigen (sheep red blood 

cells [19] or or nitrophenyl-conjugated chicken gammaglobulin (NP-CGG;) [20] 

and the plasma cell compartment will be assessed as just described. 

 

The original NBEA cDNA that we amplified from a primary patient sample 

revealed an unexpected insertion of intron 1 (296 base pairs). We are currently 

PCR amplifying NBEA 5’ regions from first strand cDNA generated from RNA 

isolated from a normal human brain sample (kindly provided by William Schmidt, 

WUSM). PCR products will be subcloned and DNA sequenced to determine if 

transcription of intron 1 is tumor-associated. 
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Our aCGH analysis revealed two of the patient samples in our study harbored 

interstitial deletions affecting part of the NBEA locus (Chapter 2). In sample 

95295, copy number decrease affected exons 3-19 and in sample 64511, exons 

1-9 were affected. First strand cDNA will be generated from RNA templates from 

each of these patient samples and amplified products will be analyzed by 

sequence analysis. If shortened transcripts are detected, they will be subcloned 

into an expression vector and expression of altered protein will be determined. 

Altered NBEA could behave as a ‘dominant negative’ leading to an effective 

NBEA null state, or alternatively, confer a gain of function. If truncated proteins 

are detected, we will generate mice expressing these tumor-associated forms of 

NBEA in B cells under the Eµ regulatory sequences. They will be analyzed for 

MGUS or myeloma development as described above.  If however, truncated 

NBEA is not expressed in these samples, it remains a future interest to 

determine why elevated levels of NBEA transcripts are detected in these patient 

samples from the other NBEA allele.  

 

5.5 Hypothesis 4: High expression of NBEA cooperates with Rb1 

haploinsufficiency in myeloma development  

A central finding of our aCGH analysis was that all patient samples with 

interstitial deletions affecting RB1 also harbored interstitial deletions affecting 

NBEA, and that a subset of patient samples even with monosomy 13, harbored 

elevated NBEA expression (Chapter 2), suggesting alteration of these two genes 
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cooperate in myelomagenesis. To determine if NBEA expression cooperates with 

Rb1 haploinsufficiency in plasma cells, we will mate our Cγ1CreRb1Flox/Floxp107-/- 

mice to EµNBEA mice that express NBEA in the B cell compartment to generate 

EµNBEACγ1CreRb1Flox/+p107-/- and EµNBEACγ1CreRb1+/+p107-/- mice. These 

mice will be assessed for abnormalities in plasma cells as described above. 

 

5.6 Determine spleen cell subtype that expresses Nbea  

We showed Nbea was dispensable for engraftment and development of adult 

steady state hematopoeisis using a fetal liver transplant system (Chapter 4). 

This was somewhat surprising since we found Nbea was expressed in spleen 

and thymus (Chapter 4). A report modeling lymphoid tumors with 

plasmablast/post germinal phenotypes revealed Nbea was upregulated over six 

fold when compared to a related model with a more immature/pre germinal 

center phenotype, suggesting Nbea could be developmentally regulated [25]. 

Combined with its relatively low level in spleen, its dysregulation in plasma cell 

dyscrasias, and expression in another secretory cell type (neurons), we posit 

Nbea could be expressed in normal plasma cells. To determine if Nbea is 

expressed in antigen stimulated plasma cells, mice will be challenged with sheep 

red blood cells and plasma cells will be sorted using cell surface markers 

PNA/B220 one week post injection when formation of spleen GCs are maximal 

[19]. Q-RT-PCR will be used to quantitively assess Nbea expression in these 

cells.  
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To determine the spleen localization of Nbea we will perform IHC staining for 

Nbea in murine spleen sections. We are currently testing a rabbit polyclonal 

Nbea antibody we have had made (Dan Crimmins, Cortex) for this purpose. 

Additionally, experiments are underway to sort spleen cell subsets based on cell 

surface expression of cell type specific markers (GR-1, B220, CD4, CD8, DX5) 

followed by Q-RT-PCR to determine in what spleen cell type Nbea transcripts are 

expressed in basal conditions.  

 

5.7 Hypothesis 5: Nbea is required for plasma cell functions  
 

If NBEA functions in vesicle traffic or PKA mediated regulation of AID in class 

switch recombination (CSR) or secretion, Nbea null plasma cells may have 

deficiencies in antibody formation and/or secretion. To assess this, we will use 

our fetal liver transplantation system to generate mice with null or wild type Nbea 

hematopoietic systems (Chapter 4). In vivo analysis of basal CSR will be 

assessed by performing ELISA assays on serum and levels of IgM, IgG1, IgG2a, 

IgG2B, IgG3 and IgA will be determined [26]. If Nbea null chimeras are deficient 

in CSR, it predicts detection of IgM (which does not undergo CSR), but not the 

other isotypes. If there are secretion defects, detection of all antibody isotypes is 

predicted to be low/undetectable.  

 

To assess CSR in an antigen stimulated system, mice will be injected with SRBC 

and serum will be subject to ELISA for IgM and IgG1. In vitro assessment of 

class switch recombination will be performed by isolating splenocytes (CD43 



 156 

depletion) from engrafted mice (Nbea+/+ and Nbea-/-) by stimulating purified B cell 

splenocytes with LPS, LPS and Il-4, pr LPS and TGFβ and then quantitating 

antibody isotypes in culture supernatents by ELISA as described above [26-28].  

 

5.8 Hypothesis for cellular function of NBEA in PC Diseases 

Our data implicate a role for NBEA in plasma cell dyscrasias, but its role in 

normal plasma cell and/pr malignant plasma cell development remains unclear.  

Below are three hypotheses for cellular functions NBEA could play a role in 

altering that may (or may not) contribute to diseased plasma cells.  

 

5.8A NBEA may facilitate PKA-mediated alteration of class switch 

recombination (CSR) 

NBEA domains provide clues to potential mechanistic roles for NBEA in plasma 

cell dyscrasias. NBEA transcript encodes a PKA binding domain, and murine 

Nbea binds to two PKA regulatory subunits (RIIα (Kd: 10nM) and RIIβ  (Kd: 

30nM); [28]. Since the core region responsible for PKA binding is absolutely 

conserved between mouse and human, human NBEA likely also binds these 

subunits. Recent data has illustrated phosphorylation of Serine 38 of the 

activation induced cytidine deaminase (AID) protein is mediated by the catalytic 

subunit of PKA (PKAcα) [27]. AID is the enzyme responsible for generating 

double stranded breaks required for class switch recombination (CSR) and 

somatic hypermutation (SHM) processes in antibody maturation.  PKA enzymes 

are regulated by localization via binding to anchoring proteins (AKAPs) that 
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ensure PKA only phosphorylates appropriate targets at specific cellular locations. 

The AKAP that targets PKA to sites of CSR has not been identified. 

 

In the context of PC dyscrasias, expressed NBEA may inappropriately target 

PKA to sites of CSR, leading to increased AID phosphorylation and activation, 

resulting in extra formation of double strand breaks that would otherwise not 

occur. This is consistent with the model that it is during recombination events in 

antibody production where aneuploidy in MM occurs. NBEA could affect PKA 

localization via a number of mechanisms, depending on whether it is wild type or 

mutated in myeloma. NBEA in rat neurons is localized near the nucleus and 

within the golgi network [28], however in MGUS and MM cells, NBEA may be 

mislocalized to the nucleus, resulting in extra pools of PKA localized to sites of 

AID activation. Alternatively, if NBEA normally binds PKA in the cytoplasm/golgi, 

where pools of PKA are found, mutations in NBEA may result in decreased 

binding, resulting in increased amounts of PKA localizing to sites of CSR. 

Localization studies are required to determine where NBEA and PKA are 

localized in normal, MGUS and MM plasma cells. 

 

AID is required for mature plasma cell cancers in a model of Myc/BCL6 over-

expression in mice [25], and Nbea expression was increased in tumor cells 

isolated from this model with plasma cell characteristics compared to tumors of 

an earlier B stage [25].  Generating mice with plasma cell specific deletions of 

Nbea (Cγ1Cre NbeaFlox/Flox) could be used to determine if it is required in this 
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model. If Nbea promotes formation of monoclonal antibody or aneuploidy due to 

double stranded breaks via regulation of PKA mediated CSR, it predicts 

monoclonal antibody production and disease phenotypes in this mouse model 

would revert to a functionally less mature stage, just like they do when the 

MYC/BCL6 mice are mated to Aid (Aicda) null mice [25].  

 

5.8B NBEA alters vesicle formation, function, or trafficking 

Because other proteins with BEACH/WD40 domains are implicated in vesicle 

formation or trafficking [28-30], and because subcellular localization studies of 

Nbea that revealed it localizes in perinuclear clusters near the trans side of golgi 

complexes and small tubulovesicular structures [28], perhaps NBEA (mutated or 

normal) in MM alters normal vesicle function, formation, or trafficking. Plasma 

cells (normal and diseased) generate, produce, and secrete large amounts of 

antibody via the secretory pathway. Nbea may enhance vesicle formation leading 

to enhanced secretion of immunoglobulin molecules. Alternatively, altered Nbea 

may result in inappropriate vesicle trafficking such that signaling molecules are 

misdirected in the cell i.e. such that proper lysosomal degradation of vesicles 

and/or cargo does not occur, resulting in increased signaling. Electron 

microscopy of vesicle structure and Nbea localization in MGUS and MM plasma 

cells can be used to address the hypothesis that Nbea alters vesicle traffic.  
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5.8C NBEA may provide a survival signal mediated by NFκB  

NBEA may provide a survival signal in a general context by altering the 

NFκB pathway via its PKA domain. This is consistent with chromosome 13 

deletions being detected early in MM stages including MGUS, and that during 

much of MM, plasma cells cycle slow, but avoid apoptosis. As stated above, 

human NBEA likely binds to PKA regulatory subunits. The catalytic subunits of 

PKA can phosphorylate the p65 member of the canonical NFκB family [32]. 

NFκB activating mutations affecting the non-canonical pathway are detected in 

MM samples [33], leading to constitutive activation. Perhaps NBEA activates, via 

PKA, the canonical NFκB pathway, in a mutually exclusive fashion to cells with 

non-canonical NFκB mutations.  Although there is evidence for two separate 

“pools” of PKA catalytic subunits, [31] (one pool bound to IκB subunits and the 

other to PKA regulatory subunits), binding of PKA to NBEA (or not, if it is 

mutated) may alters this pool, such that more PKA catalytic subunits are free to 

phosphorylate downstream targets.  Dysregulation of NBEA may be necessary 

but not sufficient to transform a normal PC to MGUS or MM via its ability to 

confer survival signals.  

 

Although much needs to be done, we have provided a useful framework for 

pursuing the role of RB1 and NBEA may play in normal and altered plasma cell 

development and have developed important reagents that will facilitate future 

experiments. 
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