
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Theses and Dissertations (ETDs)

January 2009

Structural RNA Homology Search and Alignment Using Structural RNA Homology Search and Alignment Using

Covariance Models Covariance Models

Eric Nawrocki
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/etd

Recommended Citation Recommended Citation
Nawrocki, Eric, "Structural RNA Homology Search and Alignment Using Covariance Models" (2009). All
Theses and Dissertations (ETDs). 256.
https://openscholarship.wustl.edu/etd/256

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has
been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/256?utm_source=openscholarship.wustl.edu%2Fetd%2F256&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

Division of Biology and Biomedical Sciences

(Computational Biology)

Dissertation Examination Committee:
Sean Eddy, Chair

Michael Brent
Jeremy Buhler

Justin Fay
Jeff Gordon
Rob Mitra

Gary Stormo

STRUCTURAL RNA HOMOLOGY SEARCH AND ALIGNMENT

USING COVARIANCE MODELS

by

Eric Paul Nawrocki

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

December 2009

Saint Louis, Missouri

copyright by

Eric Paul Nawrocki

2009

ABSTRACT OF THE DISSERTATION

Structural RNA

Homology Search and Alignment

Using Covariance Models

by

Eric Paul Nawrocki

Doctor of Philosophy in Biology and Biomedical Sciences

(Computational Biology)

Washington University in St. Louis, 2009

Sean R. Eddy, Chairman

Functional RNA elements do not encode proteins, but rather function directly as RNAs.

Many different types of RNAs play important roles in a wide range of cellular processes,

including protein synthesis, gene regulation, protein transport, splicing, and more. Because

important sequence and structural features tend to be evolutionarily conserved, one way to

learn about functional RNAs is through comparative sequence analysis - by collecting and

aligning examples of homologous RNAs and comparing them.

Covariance models (CMs) are powerful computational tools for homology search and

alignment that score both the conserved sequence and secondary structure of an RNA

family. However, due to the high computational complexity of their search and alignment

algorithms, searches against large databases and alignment of large RNAs like small subunit

ribosomal RNA (SSU rRNA) are prohibitively slow. Large-scale alignment of SSU rRNA is

of particular utility for environmental survey studies of microbial diversity which often use

the rRNA as a phylogenetic marker of microorganisms.

In this work, we improve CM methods by making them faster and more sensitive to

remote homology. To accelerate searches, we introduce a query-dependent banding (QDB)

technique that makes scoring sequences more efficient by restricting the possible lengths of

structural elements based on their probability given the model. We combine QDB with a

ii

complementary filtering method that quickly prunes away database subsequences deemed

unlikely to receive high CM scores based on sequence conservation alone. To increase

search sensitivity, we apply two model parameterization strategies from protein homology

search tools to CMs. As judged by our benchmark, these combined approaches yield about

a 250-fold speedup and significant increase in search sensitivity compared with previous

implementations. To accelerate alignment, we apply a method that uses a fast sequence-

based alignment of a target sequence to determine constraints for the more expensive CM

sequence- and structure-based alignment. This technique reduces the time required to

align one SSU rRNA sequence from about 15 minutes to 1 second with a negligible effect

on alignment accuracy. Collectively, these improvements make CMs more powerful and

practical tools for RNA homology search and alignment.

iii

Acknowledgements

I gratefully acknowledge financial support from the Howard Hughes Medical Institute (HHMI)

and a National Institutes of Health National Human Genome Research Initiative (NIH

NHGRI) Institutional Training Grant in Genomic Science, T32-HG000045. Sean Eddy’s

lab in Washington University at St. Louis, where this work took place from 2004 to 2006,

was supported by NIH NHGRI grant RO1-HG01363, HHMI, and Alvin Goldfarb. Since

then, my research in the Eddy lab at Janelia Farm Research Campus in Ashburn, Virginia

has been financially supported by HHMI.

This dissertation is based on and benefits from important research from many other

scientists. Zasha Weinberg and Larry Ruzzo’s excellent work on RNA homology search,

Michael Brown and David Haussler’s clever methods for accelerating structural RNA align-

ment, and the wealth of freely available information at Robin Gutell’s Comparative RNA

Website (crw) have been particularly crucial.

In addition, I have been extremely fortunate to work in the lab of Sean Eddy. Sean’s

tireless work ethic and depth of knowledge in the biological and computational sciences are

staggering. The past and present members of his lab bring dedication, skill and enthusiasm

to their work that is unmatched. It has been an honor to learn from and work with each of

them.

Finally, I want to thank my wife, Michael Hopkins, for her unwavering support and

confidence, and for adding so much fun to the last six years of my life - none of this would

have been possible without her.

iv

This work is dedicated to my parents, Kathy and Ed Nawrocki.

Thank you for all the love, support, and opportunities that you have provided for me.

v

Contents

Acknowledgements iv

Part 1: RNA homology search 1

1 Introduction to RNA homology search 2

1.1 Functional RNA elements . 3

1.2 Comparative sequence analysis . 9

1.3 Computational methods for sequence homology search 15

1.4 Exploiting conserved structure in RNA homology searches 34

1.5 Stochastic context-free grammars for RNA sequence and structure modeling 41

1.6 Covariance models: profile stochastic context-free grammars 46

1.7 Addressing the limitations of covariance models 57

1.8 Outline of Part 1 of this work . 63

2 QDB for faster RNA similarity searches 65

2.1 Abstract . 65

2.2 Introduction . 66

2.3 Results . 69

2.4 Discussion . 91

2.5 Materials and Methods . 95

3 Infernal 1.0: inference of RNA alignments 96

vi

3.1 Abstract . 96

3.2 Introduction . 96

3.3 Usage . 97

3.4 Performance . 98

4 A filter pipeline for accelerating covariance model searches 102

4.1 Previous work on accelerating CM searches using filters 103

4.2 Optimized implementations of the CYK and Inside algorithms 104

4.3 Infernal’s two-stage filter acceleration pipeline 106

4.4 Evaluation . 118

4.5 Implementation . 127

4.6 Conclusion and future directions . 130

5 Computational identification of functional RNA homologs in metage-

nomic data 132

5.1 Exploiting conserved structure in RNA similarity searches 134

5.2 Infernal: software for RNA homology search and alignment 138

5.3 Rfam: high-throughput RNA homology search and annotation 141

5.4 Limitations of CMs . 145

5.5 Conclusion . 148

6 Conclusion to RNA homology search 149

Part 2: RNA alignment 151

7 Introduction to small subunit ribosomal RNA alignment 152

7.1 SSU and the tree of life . 153

7.2 Rapid culture-independent SSU sequence determination 154

7.3 Environmental sequencing surveys . 155

7.4 Comparative SSU analysis for environmental surveys 161

vii

7.5 SSU alignment methods . 169

7.6 Dedicated SSU databases and alignment tools 175

7.7 Developing a new SSU alignment tool . 181

8 HMM banding for faster structural RNA alignment 184

8.1 Faster alignment using banded dynamic programming 184

8.2 HMM banded alignment in Infernal . 186

8.3 Comparison of HMM and query-dependent banding 194

8.4 Benchmarking . 195

8.5 Constructing an HMM that is maximally similar to a CM 201

9 SSU-align: a tool for structural alignment of SSU rRNA sequences 206

9.1 Aligning SSU sequences with SSU-align . 207

9.2 Automated probabilistic alignment masking 208

9.3 Implementation . 214

9.4 SSU-align’s SSU rRNA sequence and structure models 217

Bibliography 236

Vita 265

viii

List of Figures

1.1 RNA secondary structure elements. 8

1.2 Predicted secondary structure of SSU rRNA from E. coli (a bacterium) and

M. vannielii (an archaeon). 10

1.3 Predicted secondary structure of RNase P RNA from E. coli (a bacterium)

and M. vannielii (an archaeon). 11

1.4 Toy example of a multiple sequence alignment. 12

1.5 Dynamic programming matrix filled during a Needleman-Wunsch-Sellers align-

ment of two sequences. 19

1.6 A banded pairwise alignment dynamic programming matrix. 21

1.7 A toy hidden Markov model. 27

1.8 A simple profile HMM. 29

1.9 Additional information gained from modeling structure 39

1.10 Information in a sequence-only versus a sequence and structure profile. . . . 42

1.11 A parse tree for a dual-stem loop grammar and the corresponding RNA

secondary structure . 45

1.12 Input alignment, CM guide tree, CM state graph and parse trees. 48

1.13 Examples of CM local begin and end transitions. 53

1.14 Histogram of number of sequences in rfam 7.0 seed alignments 56

1.15 A pattern defining the E-loop RNA structural motif used by the rnamotif

program. 62

ix

2.1 An example RNA family and corresponding CM 71

2.2 Effect of transition priors on band calculation 78

2.3 Effect of varying the β parameter on sensitivity, specificity, and speedup . . 88

2.4 CPU time required by CM searches with and without QDB 89

2.5 ROC curves for the benchmark (QDB chapter) 90

3.1 ROC curves for the benchmark (infernal 1.0 chapter) 99

4.1 Average QDB CYK and HMM Forward scores versus Inside scores for various

RNA families. 111

4.2 CM score histograms of random, known, and sampled sequences for three

RNA families. 115

4.3 MER versus time for the benchmark. 123

4.4 ROC curves for the benchmark (filter pipeline chapter). 126

4.5 CM Inside scores versus HMM Forward scores during FST calibration. . . . 129

5.1 Secondary structure of three cobalamin riboswitches. 140

6.1 Rfam benchmark ROC curves for infernal v0.55 and v1.01 149

7.1 Flow-chart of the key steps of environmental sequencing surveys. 157

7.2 Number of SSU rRNA sequences deposited in genbank per year since 1996. 159

7.3 Schematic of SSU sequence analysis for environmental surveys. 163

7.4 Toy example of phylogenetic inference from an alignment. 165

7.5 David Lane’s SSU alignment mask overlaid on the SSU secondary structure

of Escherichia coli. 167

7.6 Phil Hugenholtz’s SSU alignment mask overlaid on the SSU secondary struc-

ture of Escherichia coli. 168

7.7 Schematic of nearest-neighbor and profile based alignment strategies. 171

8.1 Empirical run times of different alignment algorithms. 199

x

8.2 CM Plan 9 HMM and hmmer2 Plan 7 HMM architectures. 202

9.1 Schematic of the ssu-align alignment pipeline 209

9.2 Example of alignment ambiguity in a hairpin loop. 211

9.3 Similarity of an ssu-align automatically constructed mask and David Lane’s

SSU alignment mask. 215

9.4 Secondary structure diagram displaying frequency of deletions of each con-

sensus position in a masked bacterial alignment of the SSU seed sequences . 216

9.5 The procedure for converting SSU alignments and individual structures from

crw to seed alignments for ssu-align. 220

9.6 Example of conflicting base-pairs between two aligned individual SSU struc-

ture predictions from crw. 221

9.7 Secondary structure diagram displaying primary sequence information con-

tent per consensus position of the archaeal SSU seed alignment 224

9.8 Secondary structure diagram displaying extra information from conserved

structure per consensus position of the archaeal SSU seed alignment 225

9.9 Secondary structure diagram displaying frequency of deletions per consensus

position of the archaeal SSU seed alignment 226

9.10 Secondary structure diagram displaying frequency of insertions after each

consensus position in the archaeal SSU seed alignment 227

9.11 Secondary structure diagram displaying primary sequence information con-

tent per consensus position of the bacterial SSU seed alignment 228

9.12 Secondary structure diagram displaying extra information from conserved

structure per consensus position of the bacterial SSU seed alignment 229

9.13 Secondary structure diagram displaying frequency of deletions per consensus

position of the bacterial SSU seed alignment 230

9.14 Secondary structure diagram displaying frequency of insertions after each

consensus position in the bacterial SSU seed alignment 231

xi

9.15 Secondary structure diagram displaying primary sequence information con-

tent per consensus position of the eukaryotic SSU seed alignment 232

9.16 Secondary structure diagram displaying extra information from conserved

structure per consensus position of the eukaryotic SSU seed alignment . . . 233

9.17 Secondary structure diagram displaying frequency of deletions per consensus

position of the eukaryotic SSU seed alignment 234

9.18 Secondary structure diagram displaying frequency of insertions after each

consensus position in the eukaryotic SSU seed alignment 235

xii

List of Tables

1.1 Examples of the power of amino acid versus nucleic acid sequence comparison 36

1.2 Accessions for examples in Table 1.1 . 37

1.3 Growth of the rfam database. 54

2.1 Dirichlet priors for transitions (table 1 of 2) 80

2.2 Dirichlet priors for transitions (table 2 of 2) 81

2.3 Summary statistics for the dataset used for emission prior estimation 83

2.4 Parameters of the 9 component Dirichlet mixture emission prior for base pairs 83

2.5 Parameters of the 8 component Dirichlet mixture emission prior for singlets 84

2.6 Rfam benchmark families with timing and MER statistics 86

2.7 Rfam benchmark MER summary statistics 91

3.1 Calibration, search, and alignment running times for seven known structural

RNAs of various sizes. 100

4.1 Running time of non-banded CYK and Inside algorithms in infernal 1.0

for four CMs. 103

4.2 Running time of different non-banded CYK and Inside implementations in

infernal v0.81 and v1.0 for four CMs. 105

4.3 Benchmark MER and timing statistics for different search strategies. 121

4.4 Comparison of filter sensitivity and benchmark acceleration for queries with

different FST predicted filter survival fractions. 124

xiii

4.5 Comparison of filter sensitivity and benchmark acceleration for different final

algorithm reporting E-value thresholds. 125

5.1 Riboswitch search results. 144

7.1 Sampling of SSU rRNA environmental surveys. 158

7.2 Summary of SSU rRNA sequence databases and alignment strategies. . . . 176

8.1 Transfer of HMM sequence bands to CM i and j bands. 190

8.2 Banded CYK performance on the modified Kolbe09 benchmark. 198

8.3 Average alignment accuracy on the Emit and Random datasets for QDB

CYK and HMM banded CYK . 200

8.4 Timings for steps of HMM banded alignment on the modified Kolbe09 bench-

mark. 201

9.1 Effect of different masking strategies on CM alignment accuracy and coverage

on the Kolbe09 SSU alignment benchmark 213

9.2 Statistics on the conversion of crw data to seed alignments for ssu-align. 222

9.3 Statistics of the three seed alignments used by SSU-align. 223

xiv

Part 1:

RNA homology search

1

Chapter 1

Introduction to RNA homology

search

The first complete genome sequence of a cellular organism, the bacterium Haemophilus

influenza, was reported in 1995 [77]. Since then, roughly one thousand other genomes have

been sequenced [159]. While the determination of these sequences has provided scientists

with a vast amount of new data, it is only by understanding how cells use the information

encoded within their genomes that the benefits of sequencing will ultimately be realized.

A key step towards understanding the information in genomes is identifying and deter-

mining the roles of functional sequence elements within them, such as genes and regulatory

sequences involved in controlling gene expression. Computer programs that can identify pat-

terns of similarity indicative of shared evolutionary ancestry, or homology, between members

of families of sequence elements have proved useful toward this goal. In my thesis work, I

have developed homology search software for a particular kind of sequence element - func-

tional RNA elements. In this introduction, I will first explain why functional RNAs are

important, and then why homology search is useful. Finally, I will discuss the development

of homology search tools and the advantages and disadvantages of various methods for RNA

homology search.

2

1.1 Functional RNA elements

Unlike messenger RNAs, functional RNA elements are not translated to proteins but rather

carry out their biological function directly as RNA. They include RNA genes as well as

structural elements within untranslated regions of messenger RNAs. These RNAs play

important roles in protein synthesis, gene regulation, protein transport, intron splicing and

other fundamental cellular processes. For convenience, I will refer to functional RNAs as

simply RNAs throughout this work.

RNAs play many essential roles

The first functional RNAs to be discovered were transfer RNAs (tRNA) and ribosomal

RNAs (rRNA). Their roles in protein synthesis were teased apart concurrently with the

discovery of messenger RNA in the early 1960s. At that time, based partly on the presence of

RNAs in ribosomes (rRNA), the popular “one gene - one ribosome - one protein” hypothesis

stated that for each gene there was a unique ribosome responsible for synthesizing that gene’s

protein product. This hypothesis was disproved as it became clear that the ribosome was a

general protein making machine capable of synthesizing any gene’s protein product [17, 42].

The specific information of a gene is not in rRNA, but rather is carried from the DNA to

the ribosome via a different type of RNA: messenger RNA (mRNA) which is a template of

the gene. Yet a third type of RNA, tRNA, serves as an “adaptor” [42], matching the triplet

codons in the mRNA to their corresponding amino acids at the active site of the ribosome

as the protein is synthesized.

In the late 1960s, biochemical studies began to reveal several types of non-messenger

RNAs of sizes markedly different from tRNAs and rRNAs [185], but the function of these

non-messenger RNAs was unclear. For about 20 years, knowledge of RNAs was primarily

limited to the three types involved in protein synthesis. Since the early 1980s, however,

many other types of RNAs have been discovered, leading to a new understanding of the

importance of RNAs [41, 55, 240, 242, 248].

3

RNA and protein complexes

Many RNAs collaborate with proteins in ribonucleoprotein complexes (RNPs) to carry out

various ancient and essential functions in the cell. One such RNA was discovered to be a vital

component of the inappropriately named signal recognition protein (SRP). SRP is involved

in transporting specific proteins to the cellular membrane in all three domains of life. The

discovery of an RNA component prompted its renaming to the signal recognition particle

[153]. Other examples of RNPs include the eukaryotic major and minor spliceosomes,

which include multiple RNAs and are responsible for mRNA processing [28]. RNase P is

a universally conserved ribonuclease RNP that cleaves the leader sequence off of precursor

tRNA molecules, converting them to active tRNAs [84]. Telomerase is an RNP that uses

the telomerase RNA as the template for the addition of specific DNA repeats to the 3’ end

of eukaryotic chromosomes [14]. Small nucleolar RNAs (snoRNAs) organize with protein

components in RNPs that guide chemical modifications necessary for the maturation of

rRNAs and other RNA genes [68].

Catalytic RNAs

Not all RNAs require proteins to carry out their biological function. In 1968, the idea of

protein-independent RNA led Carl Woese to propose that an RNA world may have predated

the current DNA and protein-based world [274]. Central to the RNA world hypothesis (as it

later came to be known [92]), was the capacity of RNA to both store information like DNA,

and catalyze chemical reactions like proteins. The former role was well established, but the

latter was not demonstrated until 1982 when Tom Cech determined that the catalysis of a

self-splicing intron in the ciliate Tetrahymena was performed solely by RNA [143]. A year

later, Sidney Altman revealed the ribonuclease activity of bacterial RNase P as the second

known example of RNA-based catalysis [104]. Cech and Altman received the 1989 Nobel

prize in chemistry for their work on catalytic RNAs, which are called ribozymes. In 2000,

analysis of the atomic structure of the large ribosomal subunit from Haloarcula marismortui

[9] revealed that the ribosome is also a ribozyme with an all-RNA active site [195], lending

4

further support to the RNA world hypothesis.

Regulatory RNAs

RNAs are also extensively involved in the regulation of gene expression, by either modulating

mRNA transcription, stability or translation (reviewed in [69, 243]). Many regulatory

RNAs are trans-acting elements encoded at different genomic loci than their target mRNAs

and function through imperfect base-pairing to their targets. Some of these allow the

cell to respond appropriately to its environment. For example, the bacteria Pseudomonas

aeruginosa’s PrrF1 and PrrF2 RNAs are expressed when iron levels are low and promote

the degradation of transcripts encoding iron-containing enzymes [269].

In bacteria, some trans-encoded base-pairing regulatory RNAs carry out their functions

within RNPs. A well-characterized example is Escherichia coli ’s Hfq protein which interacts

with more than a dozen regulatory RNAs and facilitates binding to their targets that leads to

mRNA destabilization, translational repression or activation. [95]. The Hfq-binding RNAs

regulate their targets by different mechanisms. For example, the MicF RNA base-pairs near

the ribosome binding site of the OmpF mRNA, blocking translation [45]. Alternatively, the

RprA and DsrA RNAs promote translation of the rpoS mRNA by preventing the formation

of a inhibitory secondary structure that normally occurs in the rpoS mRNA [174].

The 21-25 nucleotide (nt) microRNAs (miRNAs) are an example of trans-acting base-

pairing RNAs in eukaryotes, which mainly act to downregulate gene expression (reviewed in

[10, 30]). The primary transcript of a miRNA (pri-miRNA) is transcribed and processed into

a short stem-loop structure called a pre-miRNA and finally into a functional miRNA by the

RNA-induced silencing complex (RISC). A miRNA is integrated into the RISC complex and

controls the expression of target mRNAs by base-pairing. Most known miRNAs, including

lin-4 and let-7, the first two miRNAs to be discovered [149], repress translation of their

target mRNAs, many of which function in developmental pathways. Alternatively, the

interaction of some miRNAs with their targets leads to target degradation. Notably, the

first miRNAS were discovered recently, in the early 1990s.

5

Another class of regulatory RNAs are the 21-25 nt small-interfering RNAs (siRNAs)

(reviewed in [179]). siRNAs are usually derived from exogenous RNAs, and are believed to

be part of a defense system against foreign RNA. When foreign RNA enters the cell it is

randomly cleaved into double stranded fragments by the RNA endonuclease Dicer. These

fragments are recognized by the protein complex RISC (RNA-induced-silencing-complex)

which separates the two strands and enables base-pairing of one strand to target RNA

(other copies of the same original foreign RNA in the cell), which is subsequently cleaved.

However, not all siRNAs target exogenous RNAs. Some act to silence the expression of

the endogenous RNAs from which they are derived, by either promoting degradation or

modifying chromosome structure [67, 160].

A separate class of regulatory RNAs bind directly to proteins instead of base-pairing tar-

get mRNAs. For example, 6S RNA in bacteria binds to σ70-RNA polymerase and represses

its transcriptional activity during stationary phase when nutrient levels become low [261].

Another example is the mammalian 7SK RNA which prevents transcription by binding to

the HEXIM1/MAQ1 protein and inactivating transcription elongation factor P-TEFb [182].

Finally, some mRNAs are regulated by cis-encoded RNA structures within their own

5’ or 3’ untranslated regions (UTRs). For example, the iron response element structure

(IRES), a short, roughly 30 nucleotide stem-loop structure occurs in 5’ and 3’ UTRs of

eukaryotic mRNAs encoding genes related to iron metabolism and binds to iron response

proteins to regulate their expression [113]. The first of many known IRES was identified

in the 5’ UTR of the mRNA of ferritin, an iron storage protein; when bound it results in

translational repression.

Another example of cis-regulatory RNA are riboswitches - structured RNA elements

which bind to small metabolites causing a structural change in the UTR that has a regula-

tory effect on the expression of the mRNA. Riboswitches often control genes that encode

proteins involved in the transport or biosynthesis of the metabolite sensed by the riboswitch

(reviewed in [112, 176]). For example, the lysine riboswitch, found upstream of several genes

involved in lysine metabolism (such as lysC in E. coli), binds the amino acid lysine and

6

causes termination of mRNA transcription [223, 246]. Riboswitches are widespread in bac-

teria, in which more than a dozen separate candidate classes have been identified [112]. One

riboswitch, which binds thiamine pyrophospate (TPP), has also been discovered in the 3’

UTRs of plant and fungi genes [245]. Riboswitches, like miRNAs, were only recently discov-

ered. The first known riboswitch, the coenzyme-B12 cobalamin riboswitch, was described

in 2002 [187]. Due to the presence of some riboswitches across wide phylogenetic ranges,

notably the TPP and coenzyme-B12 cobalamin riboswitches, it has been posited that ri-

boswitches could have ancient origins, and may have provided important gene regulatory

mechanisms to organisms of the RNA world [16].

This is an incomplete survey of the types and roles of RNA. There are others that

have not been described, such as hammerhead RNAs, piwi-interacting RNAs (piRNA), and

more. Given the recent discovery of new types, the list of known RNAs as well as our

understanding of their importance is likely to continue to grow.

Conserved RNA structure

Many RNAs conserve a particular three dimensional structure that is energetically favorable,

integral to their function, and often conserved across evolutionary timescales. For example,

the specific structures of tRNAs and rRNAs provide the precise structural environment

necessary for protein synthesis [9]. The particular structure of an unbound riboswitch

element in an mRNA is essential for binding the target ligand, which causes a structural

change regulating the mRNA’s expression [176]. In bacterial RNase P RNA, coaxial stacking

of helical regions results in a flat structure that enables binding and cleavage of precursor

tRNA substrates [71].

An RNA’s structure is determined by intramolecular interactions between different

residues in the polynucleotide chain, as well as by intermolecular interactions with other

nearby RNAs or proteins. Many of these interactions are hydrogen bonds formed by the

base-pairing of two RNA residues. In 1959, Doty and colleagues suggested that about half

the residues in RNA molecules form base-pairs [49], an estimate that is roughly accurate for

7

A
A

U
G

G C
G

G C
C
A
A

G

C
U

G

G
A U

C

G

C

UA

AA
C

A U

UC C

G

C

CU
U

GGC

5'
3'

A
A

U
G

G C
G

G C
C
A
A

G

C
U

G

G
A U

C

G

C

UA

AA
C

A U

UC C

G

C

CU
U

GGC

5'
3'

unstructured single strand

multi-branched loop

bulge loop

stem interior loop

hairpin loop
base pair

Figure 1.1: RNA secondary structure elements.

most RNAs [178]. The most common and thermodynamically stable pairs are the canonical

Watson-Crick A-U and C-G base-pairs. The next most common are the wobble G-U pairs,

which are typically slightly less stable than Watson-Crick pairs. Base-pairs commonly oc-

cur in groups, or stems, that form helices because they allow thermodynamically favorable

stacking of the pi (π) bonds of the bases’ aromatic rings. The set of base-pairs in an RNA

defines its secondary structure. The secondary structure of a toy example RNA is shown

in Figure 1.1.

The level of structural conservation varies between different RNAs as well as between

different structural elements of an individual RNA family. In general, the levels of con-

servation of an RNA’s structural elements correlate with their functional importance. The

RNAs involved in protein synthesis, the tRNAs and rRNAs, conserve nearly their entire

structure very strongly due to the precise structural requirements of a functioning ribosome.

Figure 1.2 shows the global similarity between the predicted SSU rRNA secondary structure

for the archaeon Methanococcus vannielii and the bacterium Escherichia coli. In constrast,

RNase P RNA conserves structure in a more local fashion, as shown by comparing the pre-

dicted secondary structures from the same two organisms (Figure 1.3). In RNase P, only

the structural core of the molecule that is necessary and responsible for catalytic activity is

highly conserved [34]. Eukaryotic telomerase RNA also conserves only some of its structural

features. The telomerase RNAs of ciliates, yeast, and vertebrates are about 200, 400, and

8

1200 nt respectively. All three are highly structured, with three or more stems each, but

only the two stems that interact with the telomerase protein TERT are clearly homologous

[33]. Finally, some RNAs, such as the regulatory siRNAs and miRNAs, are unstructured.

These molecules function as single-stranded RNAs by base-pairing to their targets without

the need for structural elements. These RNAs can be viewed as utilizing RNA’s information

storing capacity more so than its ability to adopt complex structures for binding to proteins

or catalysis.

Biochemists have used x-ray crystallography to determine the atomic structure of several

RNAs, including ribosomal RNAs [9, 286]. Nuclear magnetic resonance (NMR) has been

used to solve the structure of short RNA motifs, but the technique currently cannot be used

for large RNAs (the limit is about 100 nucleotides) [114, 255]. Both of these approaches

are expensive and time-consuming. An attractive alternative method for inferring RNA

structure is based solely on sequence analysis, by comparing examples of evolutionarily

related RNAs from different organisms. This technique is described in more detail below.

1.2 Comparative sequence analysis

A powerful method for learning about any functional sequence element, including RNAs,

is comparative sequence analysis - by collecting examples of the element and comparing

them. The cornerstone of comparative sequence analysis is the fact that the genomes of

all modern organisms are evolutionarily related, having ultimately descended from the last

common ancestor of all life on the planet. As a result, many genes within organisms’

genomes can usefully be organized into gene families, composed of evolutionarily related

genes, or homologs.

Families of homologous genes present in modern genomes can be related by a phylo-

genetic tree rooted at the oldest ancestral sequence of the family with nodes in the tree

representing gene duplication and speciation events. Along each branch the sequences have

evolved independently, accumulating sequence mutations, but, importantly, the function

of the molecule has acted as an evolutionary constraint. Sequences with mutations that

9

Sm
al

l s
ub

un
it

rib
os

om
al

 R
N

A
Es

ch
er

ic
hi

a
C

ol
i

Sm
al

l s
ub

un
it

rib
os

om
al

 R
N

A
M

et
ha

no
co

cc
us

 V
an

ni
el

ii

so
ur

ce
: C

om
pa

ra
tiv

e
R

N
A

 W
eb

si
te

, C
an

no
ne

 e
t a

l.
20

02
 B

M
C

 B
io

in
fo

rm
at

ic
s 2

:3

F
ig

ur
e

1.
2:

P
re

di
ct

ed
se

co
nd

ar
y

st
ru

ct
ur

e
of

SS
U

rR
N

A
fr

om
E
.

co
li

(a
ba

ct
er

iu
m

,
le

ft
)

an
d

M
.
va

nn
ie

lii
(a

n
ar

ch
ae

on
,

ri
gh

t)
.

D
ia

gr
am

s
ar

e
fr

om
of

th
e

c
o
m
pa

r
a
t
iv

e
r
n
a

w
e
b
si

t
e

[3
2]

.

10

C

G

G A A G C U G A C C A G
A
C
A
G
U
CGCCGCUUCGUCGUC

G
UCCUCU

U
CG G G G G A G A C G

G
G C G G A G G G G

A
G
G
A
A
A
G

U
C
C
G
G
G
CUCC

A
U

AG
G

G
A

GG
UGC

C
A

G
G
U

AA
C
G

C
C
U
G
G

GGGGGA
A A C C C A

C G
AC

C A G
U
G
C
AA

C
A

G
A
G
A
G

C
A A A C

C
G
C
CG

A U
G
G
C
C
C
G
C
G

C A
A

G
C
G
G
G AU
C
A
G
G
U A

AG
G G UG

A
A
A
G
GG U G C G G U

A
A

GAG
CGCACC

G
C
G

C
G
G

C
U
G

G
UAA

C
A

GU
C

C
G

U
GG

CACG
G
U A
AA

C
U

C
C A C C C G G A G C A A G G C C

A
A A U A

G
G G G U U C

A U A
A

GG U A C G GC
C

C
GUACUGAACCC

GGGUA
GGCU

G
C
U
UG A

CUA
G
A
U
G
A
A
U
G
A
C
U
G
U
C C A C G A C

A
G

AACCCGGCUU
A

U
C

GGUCAGUUUCACCU

5'

G C C A G U G A G C
GAUUGCUGGC

3'
P1

P2

P3

P4

P5

P6

P7

P8

P9 P10

P1
1

P12

P13

P14

P15 P16 P17

P18

source: The Ribonuclease P database. Brown, 1999 NAR 27:3414

RNase P RNA
Methanococcus vannielii

RNase P RNA
Escherichia coli K-12 W3110

A
G
G
A
A
G
C

UC
U
G
C
C
CACU

CAA
U
U

AC
GUAG

A
U
U

U
C

CU
G
A G A

AG
G

A
A U A

A
A
C
A
A
A
G

U
A U A G A A A C G AC

A
C GG U U C C A A A A A

A
UA U G A

C
U
A

U G
A U
A U

U
U

U
AA

A
AU

UG
A

GGAUUUUUGGAA
AA

UCG
A
U
G

A
A

A
CGACUUUGUUU

U
GCG

UG A G U G C A A G C A U
U

AUGC
G
C
U
A
A
G
C
U
G
A
A
U

g g g u a a g g g g g c u g
g
u
g
A
CU

AU
CCAA

C
U G GG

G
U
C
A
C
C G A A A U U A C

A
G

AAGGCAGgcua
u

agcccccauaccc

Figure 1.3: Predicted secondary structure of RNase P RNA from E. coli (a bacterium, left)
and M. vannielii (an archaeon,right). Diagrams are from Jim Brown’s ribonuclease p
database [22].

11

human AAGACUUCGGAUCUGGC-GACAC-CC

rat AAG-CUUCGCAUACGGC-GCCAC-CG

orc AGGUCUUCGCA-CGGGCAGCCACUUC

* * ***** * *** * ***

Figure 1.4: Toy example of a multiple sequence alignment. The “*”s in the final line
indicates columns with identical residues in all three aligned sequences.

negatively affect function are less likely to survive to the next generation, and the larger the

functional deficit, the less likely survival is. Thus, conservation levels of particular residues

or other features in homologous sequences are often related to their functional importance.

An example of a functional insight based on recognition of sequence conservation is helix

18 of SSU rRNA that occurs between sequence positions 500 and 545 of the commonly

used reference E.coli SSU rRNA (genbank accession J01695) [280]. The highly conserved

length and sequence of this helix compelled biologists to test its functional significance via

mutagenesis studies, eventually suggesting its crucial role in the binding of tRNA to the

ribosomal A site during translation [212, 277].

A necessary first step towards identifying conservation is alignment of homologous se-

quences. The goal of alignment is to juxtapose sequences so that homologous residues

(residues that descended from a common ancestral residue) in each sequence occur in the

same column of the alignment. Gaps are introduced to represent insertions or deletions

(collectively referred to as indels) of residues in some of the sequences. Figure 1.4 shows a

toy alignment of three RNA sequences.

One common multiple alignment technique is progressive alignment. Progressive align-

ment begins by aligning the most similar sequences first, in a pairwise fashion, and then

combining the alignments together until a single alignment of all sequences is determined

[73, 249]. Alternatively, optimal multiple sequence alignment considers the alignment of

all the sequences simultaneously and returns the one with the maximum score [106]. The

necessary algorithms for computing optimal multiple alignments, however, are too compu-

tationally expensive to be practical for most problems [53].

12

A multiple alignment of homologous sequences is a useful starting point for many ap-

plications of comparative sequence analysis, including estimation of the evolutionary tree

that explains the descent of those sequences since their common ancestor [72]. Phylogenetic

trees inferred from SSU rRNA alignments are commonly used by biologists to identify which

organisms live in various environments [200]. Over the past 20 years, SSU environmental

surveys have greatly expanded the recognized biodiversity on the planet [216]. In fact, the

discovery that archaea are a distinct, third domain of life resulted from a phylogenetic in-

ference based on SSU rRNA sequences [276]. (SSU alignment and phylogenetic inference is

discussed in more detail in Part 2 of this work.)

Inferring RNA structure

An alignment also serves as a starting point for comparative analysis to infer the conserved

structure of an RNA family. Structural inference exploits the fact that residues that form

base-pairs in RNA structure tend to covary (change in concert) throughout evolution. For

example, if the C in a C:G base-pair mutates to a U, the G will commonly eventually mutate

to an A, thus maintaining a Watson-Crick base-pair at these positions. These compensatory

changes create striking patterns in multiple sequence alignments that are sometimes even

recognizable by eye. There are other sets of base-pairs, besides Watson-Cricks, that adopt

similar three dimensional structures, and mutations between members of these sets can be

observed as well. These less common base-pairs are often more dependent on other local

structural features of the RNA [150].

By grouping together consistent base-pairs suggested by these covariation patterns, con-

served secondary structures can be predicted. The secondary structure of many RNA

families have been correctly inferred in this manner beginning with tRNA from just four

sequences [115]. Others include 5S rRNA [82], group I introns [181], RNase P RNA [125],

and even the two largest structural RNAs, SSU rRNA [278] and LSU rRNA [196]. Struc-

ture prediction using comparative analysis has proven to be very reliable. For example,

97% of the base-pairs in the predicted SSU and LSU rRNA structures were verified when

13

the crystal structures of those RNAs were determined [107].

Importantly, because sequence differences are necessary for observing covariation, this

structural inference approach is dependent on the sequence diversity in the alignment. The

more diverse the sequences, while still adopting the same structure, the more obvious the

conserved structure becomes. However, the method also relies on a correct alignment with

only homologous residues aligned with each other, and alignment accuracy typically drops

with sequence similarity. Ideally, because each informs the other, the alignment and struc-

ture would be inferred simultaneously. The development of techniques that can do this

accurately and efficiently is an important and active area of research [51, 117, 177, 230].

Much like conserved sequence elements, conserved structural elements suggest functional

importance and can inform experimentation. For example, when the subsequences of many

known examples of hammerhead self-cleaving RNA were predicted to form a common struc-

ture, it was hypothesized that the common structure was responsible for catalysis. Deletion

analysis of the sequences revealed that the catalytic structure could indeed be reduced to

this common structural element [79, 80].

Finally, structural models inferred from comparative analysis can also help interpret

experimental results. For example, in an experiment designed to determine the active site

of RNase P, tRNA was cross-linked to three separate RNase P RNAs from three different

bacteria. Each experiment created cross-links in several nucleotides of the RNase P, but

only a subset of them were common between all three species’ RNase Ps. The authors

hypothesized this subset of nucleotides was involved in the active site, which was later

confirmed [29].

Homology-based annotation of functional sequence elements

Comparative analysis can also be used as the basis for detecting homologous sequences

in genomes or databases. Genome sequencing projects often include annotation pipelines

that use comparative analysis via homology search programs to identify genes belonging

to characterized families. Knowledge of the genes in an organism’s genome is informative

14

about the types of metabolism and other cellular processes that take place in the organism.

Homology search programs compare known examples of a family, or queries, to target

sequences. In general, targets with high levels of similarity to queries are likely homologous

and can be classified as family members themselves. Because the power of comparative

analysis increases as the diversity of the sequences being compared increases, finding new

homologs is generally useful for other comparative analysis applications. For example,

the new homologs may contain compensatory mutations relative to known examples that

suggest base-pairs in the conserved structure of the family.

Because the homology search task itself is aided when new homologs are found, these

programs are often used iteratively to progressively find more distant homologs in multiple

rounds of searches. Any new sequences found in each round of an iterative search offer

new knowledge of the family which can be exploited in the following round. Iterations can

profitably continue until no new sequences are found.

Homology search is the hub of comparative sequence analysis applications, as well as

an application itself. This central importance has made it a popular research topic since

the dawn of sequencing over 40 years ago. In the next section, I will discuss some of the

fundamental strategies and important innovations in homology search methods.

1.3 Computational methods for sequence homology search

Homology search methods compute a score based on a comparison of a query to target

sequences in a database. The utility of a method lies in its ability to assign better scores to

homologous targets than non-homologous ones. There are two general classes of methods:

those that use a single sequence as a query (pairwise methods), and those in which the

query is based on multiple sequences. Each of these is discussed in detail below. Because

the majority of the first biological sequences to be determined were protein sequences, early

homology search methods concentrated on proteins instead of DNA or RNA. However,

virtually all of these methods are generally applicable to any alphabet, so they are useful

for DNA and RNA as well.

15

Some general terms regarding homology search performance that will be used in this

section are worth introducing here. Roughly speaking, a method’s sensitivity is a measure

of how many real homologs are assigned high scores, and its specificity is a measure of how

many non-homologs are assigned low scores. To enable a more precise definition, consider

a database in which all the homologs for a given query are known and called trues and all

other sequences are falses. After searching the database with a query, all target sequences

that score above a reporting score threshold are called hits and are considered positives.

Any true hit is a true positive (TP) and any false hit is a false positive (FP). Any true

which is not a hit is a false negative (FN) and any false which is not a hit is a true negative

(TN). A method’s sensitivity measures how many trues are hits and is often defined as the

ratio of true positives to trues (TP
TP+FN). A method’s specificity measures how many hits

are trues, and is often defined as ratio of true negatives to falses (TN
TN+FP).

Pairwise sequence alignment based methods

A common way to compare two sequences is to align them. As discussed above in the

context of comparative sequence analysis, an alignment of two sequences is a mapping of

the homologous residues of one sequence to another, with the introduction of gaps in either

sequence as necessary. An example three sequence alignment is shown in Figure 1.4.

The first sequence alignments were performed by hand. In 1961, Kendrew and Wat-

son compared whale myoglobin to human hemoglobin by manually aligning the amino acid

residues based on their expert knowledge of the structure and function of globins [262]. Man-

ual alignment is subjective and time-consuming and as the number of available sequences

and potential alignments between them increased, an objective, automated method was

desired [48].

In 1970, Needleman and Wunsch described an algorithm for computing the optimal

scoring alignment of two sequences A and B [193]. A very slightly modified version of

their algorithm, that was developed by Sellers in 1974 [232], is well known in computational

biology as the Needleman-Wunsch algorithm. Here, I will refer to it as Needleman-Wunsch-

16

Sellers (NWS). The NWS algorithm proceeds by constructing a matrix S of size |A| × |B|

for the sequences of length |A| and |B|, and filling in each of the cells with a score. Cell

Si,j includes the alignment score for subsequences A1..Ai aligned to B1..Bj . The score is

defined as the maximum of three alternatives of scores of previously calculated adjacent

cells plus either a gap penalty or a score for aligning residues Ai and Bj . More formally

Si,j is computed as:

if i = 0 or j = 0 Si,j = (i+ j) ∗ g

else

Si,j = max


Si−1,j−1 +MAi,Bj (rule 1)

Si,j−1 + g (rule 2)

Si−1,j + g (rule 3)

M is a substitution matrix which defines the score for aligning any two residues to

each other and g is the gap penalty incurred for introducing a gap in either sequence. The

simplest scoring metric that Needleman and Wunsch suggested was assigning a 1 for a match

(Ma,b = 1 if a = b), a 0 for a mismatch (Ma,b = 0 if a 6= b) between amino acid residues,

and a score of −1 for a gap in either sequence (g = −1). The complexity of this algorithm

in both time and memory is O(|A||B|) ∼ O(N2).

NWS is a dynamic programming (DP) algorithm that is guaranteed to find the optimal

(maximum) scoring alignment of the two sequences given the scoring system. By following

the simple recursion above, the score in any cell Si,j is the optimal score for the subsequences

A1..Ai to B1..Bj . Thus, after filling in the full matrix, S|A|,|B| will contain the score of the

optimal alignment of the full sequences. Retrieval of the alignment requires a traceback

through the matrix based on which of the three rules for calculating Si,j were used in each

cell. At cell i, j: if rule 1 was used then residue i is aligned to j; if rule 2 was used then

residue j in sequence 2 is aligned to a gap in sequence 1; if rule 3 was used then residue i

in sequence 1 is aligned to a gap in sequence 2. An example of aligning two sequences with

17

NWS is shown in Figure 1.5.

Note that the score for either aligning two residues in a column or matching a residue

in one sequence to a gap in the other does not depend on the score in any other cell or any

other residues. NWS assumes that each column is independent, which is mathematically

convenient and makes the calculation of the alignment relatively efficient. This assumption

can be relaxed to allow dependencies between columns like those introduced by base-pairs

in conserved RNA structure at a cost to computational efficiency as discussed later in this

chapter.

Affine gap penalties

As described here, NWS uses a linear gap penalty. The score for a gap of size l is simply

ω(l) = lg. A more biologically realistic scheme reflecting the empirical observation that gaps

tend to be greater than length 1 is the affine gap scheme, which defines a separate cost for

opening (c) and extending a gap (d). An affine gap score is calculated as ω(l) = c+(l−1)d.

An O(N2) version of NWS with linear gap penalties was introduced by Gotoh [94].

The Smith-Waterman algorithm performs local alignment

NWS is called a global alignment algorithm because it finds the highest scoring alignment of

the full sequences it is aligning. Sometimes a local alignment between subsequences is more

biologically relevant. For example, many protein sequences have domains that are critical

to function and consequently evolutionarily conserved while surrounding sequence is less

important and less conserved. A local alignment is also more meaningful for two homologous

RNA sequences embedded within much longer chromosomes. The Smith-Waterman (SW)

algorithm is very similar to NWS but returns the highest scoring alignment of any two

subsequences within two sequences [236]. Notably, only a subtle modification to NWS’s

recursion is necessary to create the SW algorithm: allowing a new alignment with an initial

score of 0 to begin at any cell in the scoring matrix (i.e. adding a fourth possible rule

for determining Si,j as setting it equal to 0). After filling in the matrix, the optimal local

18

 A A G A C U U C G G A U C U G G C G A C A C C C

A
G
G
U
C
U
U
C
G
C
A
C
G
G
G
C
A
G
C
C
A
C
U
U
C

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

-20

-21

-22

-23

-24

-25

-1

1

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

-20

-21

-22

-23

-2

0

1

0

-1

-2

-3

-4

-5

-6

-7

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

-20

-21

-3

-1

1

2

1

0

-1

-2

-3

-4

-5

-6

-7

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

-4

-2

0

1

2

1

0

-1

-2

-3

-4

-4

-5

-6

-7

-8

-9

-9

-10

-11

-12

-13

-14

-15

-16

-17

-5

-3

-1

0

1

3

2

1

0

-1

-2

-3

-3

-4

-5

-6

-7

-8

-9

-9

-10

-11

-12

-13

-14

-15

-6

-4

-2

-1

1

2

4

3

2

1

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-9

-10

-11

-11

-12

-13

-7

-5

-3

-2

0

1

3

5

4

3

2

1

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-10

-10

-11

-8

-6

-4

-3

-1

1

2

4

6

5

4

3

2

1

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-9

-9

-7

-5

-3

-2

0

1

3

5

7

6

5

4

3

2

1

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-8

-6

-4

-3

-1

0

2

4

6

7

6

5

5

4

3

2

1

0

-1

-2

-3

-4

-5

-6

-7

-11

-9

-7

-5

-4

-2

-1

1

3

5

6

8

7

6

5

4

3

3

2

1

0

-1

-2

-3

-4

-5

-12

-10

-8

-6

-4

-3

-1

0

2

4

5

7

8

7

6

5

4

3

3

2

1

0

-1

-1

-2

-3

-13

-11

-9

-7

-5

-3

-2

-1

1

3

5

6

8

8

7

6

6

5

4

4

3

2

1

0

-1

-1

-14

-12

-10

-8

-6

-4

-2

-1

0

2

4

5

7

8

8

7

6

6

5

4

4

3

2

2

1

0

-15

-13

-11

-9

-7

-5

-3

-2

-1

1

3

4

6

8

9

9

8

7

7

6

5

4

3

2

2

1

-16

-14

-12

-10

-8

-6

-4

-3

-2

0

2

3

5

7

9

10

9

8

8

7

6

5

4

3

2

2

-17

-15

-13

-11

-9

-7

-5

-4

-2

-1

1

2

4

6

8

9

11

10

9

9

8

7

6

5

4

3

-18

-16

-14

-12

-10

-8

-6

-5

-3

-1

0

1

3

5

7

9

10

11

11

10

9

8

7

6

5

4

-19

-17

-15

-13

-11

-9

-7

-6

-4

-2

-1

1

2

4

6

8

9

11

11

11

10

10

9

8

7

6

-20

-18

-16

-14

-12

-10

-8

-7

-5

-3

-1

0

2

3

5

7

9

10

11

12

12

11

11

10

9

8

-21

-19

-17

-15

-13

-11

-9

-8

-6

-4

-2

0

1

2

4

6

8

10

10

11

12

13

12

11

10

9

-22

-20

-18

-16

-14

-12

-10

-9

-7

-5

-3

-1

1

1

3

5

7

9

10

11

12

12

14

13

12

11

-23

-21

-19

-17

-15

-13

-11

-10

-8

-6

-4

-2

0

1

2

4

6

8

9

11

12

12

13

14

13

13

-24

-22

-20

-18

-16

-14

-12

-11

-9

-7

-5

-3

-1

0

1

3

5

7

8

10

12

12

13

13

14

14

final alignment:
AAGACUUCGGAUCUGGC-GACAC-CC
AGGUCUUCGCA-CGGGCAGCCACUUC
* * ***** * * *** * *** *

Figure 1.5: Dynamic programming matrix filled during a Needleman-Wunsch-
Sellers alignment of two sequences. Black and gray cells are part of an optimal align-
ment path. Black cells were reached using rule 1 of the algorithm and gray cells were reached
using rules 2 or 3 of the algorithm and correspond to a gap in one of the aligned sequences
(see text for rules). The black upper left cell is an exception, it was not reached using rule
1 but instead as part of the initialization condition. Negative scores are in a smaller font.
In the final alignment, *’s indicate identities. The final alignment score of 14 derives from
17 identities, each contributing +1 to the alignment score, and 3 gaps, each contributing
−1 to the score. See text for details on the algorithm.

19

alignment score is the maximum score in the matrix, and the alignment is retrieved by

starting at that maximum scoring cell and tracing back as in NWS, but stopping when the

Si,j = 0 rule was used, which indicates the starting cell of the alignment.

Banded dynamic programming

As databases grew, the speed of the homology search algorithms became important. The

current NCBI non-redundant protein database contains about 8 million protein sequences

totaling about 3 billion residues. To search a query sequence of length 300 against the full

database would require on the order of 1012 matrix calculations. Running on a computer

that can perform roughly 100 million matrix cells per second (which is reasonable for a

desktop computer at the time of writing) would require 104 seconds, or about three hours.

This means to search all of the proteins in a prokaryotic genome (roughly 4000) against

the full database would take about a year and half. Faster, heuristic alignment algorithms

were developed that performed the same core DP recursion as NWS and SW, but only for

a limited set of cells in the matrix - those that were predicted, using a very fast method, to

be involved in the highest scoring alignment. The first such widely used programs were the

fasta package [208] and the blast package [2]. (Different implementations of blast exist

for DNA and RNA (blastn) and for proteins (blastp). They both use the same basic

strategy discussed here, and I will use blast to refer to both.)

fasta and blast are fast because they exploit the fact that high scoring sequence align-

ments usually include at least one identical or nearly identical stretch of residues between

the two sequences. Both programs first find these short high-scoring matches, then com-

bine consistent matches together into an initial alignment and use banded DP to fill in any

regions not involved in the exact matches. 1 Banded DP performs the SW DP recursion

only for a limited number of cells within bands of the DP matrix. In this case the band

involves only the regions of the matrix surrounding the high scoring matches. The effect of

using bands in a DP matrix is demonstrated in Figure 1.6.
1The original blast [2] does not include gaps and has no need for banding, but gapped blast [3] does

use banding.

20

 A A G A C U U C G G A U C U G G C G A C A C C C

A
G
G
U
C
U
U
C
G
C
A
C
G
G
G
C
A
G
C
C
A
C
U
U
C

1

1

2

2

7

8 7

8

8

10

11

11

0

3

4

5

6

7

9

10

11

12

13

14

13

13

14

Figure 1.6: A banded pairwise alignment dynamic programming matrix. The
bands shown here were derived from a simple blast-like banding procedure. First, all
stretches of at least three consecutive identities were found (black and gray cells). Then
the largest consistent set of these stretches that could exist in a single path was defined
(black cells). The Needleman-Wunsch-Sellers (NWS) algorithm was executed using banded
DP - only alignments that include all of the black cells were considered. Cells within the
bands are outlined with solid lines. Those outside the bands are outlined with dotted lines.
NWS scores are shown in the cells in the optimal alignment from Figure 1.5. Note that the
optimal alignment is within the bands.

21

An important difference between the two methods is that while fasta requires identical

matches in the first step, blast finds any ungapped match that scores above a pre-specified

score threshold, which may include some substitutions. fasta and blast are roughly 20 and

100 times faster, respectively, on typical protein queries than full SW DP implementations.

Searches that took a few hours could now be performed in a few minutes.

fasta, blast, and all banded DP algorithms are heuristics that sacrifice the guarantee

that the optimal alignment will be found for increased speed. If the optimal alignment is

missed, then the performance of the program may be negatively affected. This becomes

more likely as the evolutionary distance, and number of substitutions and indels, between

sequences increases. Some alignment benchmarks designed to test for remote homology

detection reflect this and have shown that the heuristic blast and fasta programs are less

sensitive than full SW implementations [18].

Substitution matrices introduce probabilistic scoring

An important feature of the NWS and SW algorithms, as well as any accelerated heuristic

versions of them, is that they can be used with any scoring system, i.e. any way of defining

a score for substitutions and gaps. The initial scoring schemes presented with the NWS

algorithm were very simple and included identical scores for many different substitutions

[193]. A large amount of subsequent work has focused on improving these scoring systems

so they produce more biologically meaningful alignments.

In reality, different amino acid substitutions occur with very different frequencies, and

an alignment scoring system should reflect this. This is largely because some amino acids

are more biochemically similar than others, so a mutation to a similar amino acid will have

a smaller impact on the structure and function of a protein than a mutation to a drastically

different one. Another factor is that, due to the triplet nature of the genetic code, different

numbers of DNA mutations are required to mutate one amino acid to another.

To address these issues, Margaret Dayhoff and colleagues introduced the first mutational

matrix (what is referred to today as a substitution matrix) with scores derived from empirical

22

substitutions observed in real protein sequences in 1978 [43]. Dayhoff estimated the first

matrices by counting substitutions in trusted pairwise alignments of very similar sequences

in the Atlas of Protein Sequence and Structure database, which at the time contained about

1000 sequences. The observed changes were normalized to determine the frequency of each

possible substitution when the expected total number of substitutions was 1%. This 1%

matrix (called pam1 for percent accepted mutation at 1%) was exponentiated to create

new matrices for longer evolutionary timescales based on the idea that repeated mutations

would follow the same patterns captured in pam1, and multiple mutations can occur at the

same site. Not surprisingly, pam matrices proved superior to the simple scoring systems

mentioned above and became widely used used in the community. The examples in the

original fasta [208] and blast [2] papers used pam matrices.

By 1992 sequence databases had grown considerably and the problem of substitution

matrix estimation was revisited by Steve and Jorja Henikoff. They derived new matrices

from the blocks database of ungapped alignments, which differed from the atlas database

that Dayhoff used in several important ways: it was larger, contained multiple sequence

alignments with more divergent sequences, and only contained sequences from conserved

protein cores instead of full length sequences [110, 111]. The Henikoffs’ matrices are called

the blosum matrices, and are used by current versions of blast and fasta.

The blosum matrices have a probabilistic interpretation [1, 54]. The scores are loga-

rithms of a ratio of probabilities, or log-odds scores:

s(a, b) = log(
pab

qaqb
) (1.1)

The value pab is the probability of observed residue a aligned to residue b in alignments

of homologous sequences (derived from observations in blocks), and qa and qb are the

background probabilities of observing residue a and b, calculated as qa =
∑

b′ pab′ (i.e. the

frequency of each residue in the database).

A log-odds score is the most efficient possible test for distinguishing between two al-

ternative hypotheses [126, 194]. In this case, the two hypotheses being tested are that the

23

residues are homologous or not. The assumption, mentioned above, that alignment columns

are independent means that the summed score for all columns of an ungapped alignment is

the log-odds score for the entire aligned sequences being homologous or not.

Estimating statistical significance of alignment scores

A log-odds score is not the only useful statistic for homology searches. For database hits

reported from a given search, the E-value of a hit with score x is the expected number

of hits with a score >= x that would be found if the same search were repeated with the

same query on a random database devoid of real homologs. E-values can be empirically

estimated via simulation: by generating a random database of sequences and searching it.

The logic here is that any hit from a real search with a higher score than any from the

random database search is unlikely to have arisen by chance, and so is likely to indicate

homology. However, simulations like these are expensive and an analytical technique for

determining statistical significance without simulation was desired.

In 1990, such a technique was described by Sam Karlin and Stephen Altschul, who

realized that ungapped blast scores of random sequences followed a Gumbel (extreme value

type 1) distribution [129]. A key result was that the expected number of random matches

between a query sequence of length M and a target of length N with score exceeding x is:

E = KMNeλx

Karlin and Altschul determined an analytical solution and could derive the relevant

parameters (K and λ) for a given ungapped blast scoring system (i.e. blosum matrix),

but that did not apply when gaps were allowed, as in current versions of blast. In this case,

to obtain the appropriate K and λ parameters for a given scoring system it is necessary

to empirically fit a Gumbel to the distribution of high scores obtained by searching a large

number of random sequences. For blast, this is not a serious problem because most searches

typically employ one of a small number of scoring systems (combination of substitution

matrix and gap penalties). Thus, the appropriate K and λ parameters can be precalculated

24

once for each scoring system and used for all subsequent searches using that system. The

ability of blast to calculate accurate E-values, along with its speed, are two of the major

reasons it is so widely used.

Profiles: more powerful searches using queries based on multiple sequences

The pairwise scoring systems discussed thus far are all position-independent, i.e. substi-

tutions and gaps receive the same score regardless of where they occur in the protein or

nucleic acid. These methods implicitly assume that changes are equally likely at all posi-

tions. It is difficult to override this assumption given only one sequence, but when multiple

homologs of a sequence family are known it becomes clear that some positions, such as

those involved in the active site of a protein, are very highly conserved and rarely tolerate

mutations or indels, while others, such as those in less important linker regions of proteins,

are more tolerant to mutations and indels. These conservation levels can be reflected in

a position-specific scoring system for more powerful homology searches for the particular

sequence family at hand.

The introduction of profiles by Gribskov et al. [97] for protein families was an early

use of position-specific scoring systems. Gribskov profiles are constructed for a particular

sequence family from a multiple alignment of homologs and include position-specific scores

for both indels and substitutions. The substitution scores are calculated using both observed

substitutions in the alignment as well as pam matrix values.

Given a position-specific scoring system, a target sequence can be aligned to the profile

using a slightly modified version of the NWS or SW algorithms and a different scoring

system. Instead of using a single substitution matrix of size 20× 20 (for proteins), a matrix

of size 20×N is used, with one column for each of the N positions of the query sequence.

Similarly, there are now 2×N gap scores - two for each position (for affine gap scoring, or just

one for linear gap scoring). Thus alignment to a profile takes roughly the same amount of

time as a single pairwise alignment using full dynamic programming. Interestingly, although

heuristic acceleration approaches like those in blast and fasta were introduced about ten

25

years ago for pairwise methods, similar heuristics have only been applied to profiles within

the past year in the hmmer 3 package [62].

A major advantage of profiles is that they reduce the problem of “all versus all” pairwise

comparisons to “all versus many”, where “many” refers to a collection of profiles, because

one profile can be used to describe a family of many sequences. As of this writing, the pfam

database contains about 10, 000 protein domain family profiles which cover about 75% of

the 5∗106 sequences in the non-redundant UniProtKB database [76]. Searching all of these

profiles against all the sequences requires roughly 5 ∗ 1010 comparisons, while an all versus

all pairwise approach would require 2.5 ∗ 1013, about 500 times as many.

Another advantage of profiles is that they have proven more powerful for remote homol-

ogy detection than pairwise methods. A single profile built from N family members can

often detect remote homologies that none of the N pairwise searches detect. The higher

performance of profiles versus pairwise methods was reported initially by Gribskov et al.

[97], but has been repeatedly shown in empirical benchmarks since then [18, 158, 203].

A potential disadvantage of profiles relative to pairwise methods is the requirement of

calculating many more scoring parameters. For pairwise methods, the scores from substitu-

tion matrices are well-defined from a large amount of training data [110, 111]. But how can

the position-specific scores of a profile be appropriately set? A well-principled mathemati-

cal framework using probabilistic modeling techniques was introduced with profile hidden

Markov models, as described below.

Probabilistic profiles

Probabilistic modeling further improves upon the homology search methodologies men-

tioned above. Probabilistic models offer a well-founded theoretical basis for estimating

parameters and for calculating other useful quantities of interest for sequence analysis ap-

plications. (The methods described in Chapters 2, 4, and 8 are all examples of the latter

quality.)

One of the simplest types of probabilistic models used for sequence analysis are hidden

26

1B E2

= 0.80

tb,1 t1,1 t2,end

observed symbol sequence, x

E1

a

1

u

2

c

hidden state sequence (trace)

P(x,trace | HMM)

b

= 0.90t1,1 t2,2

= 0.10t1,2

= 0.05t2,1

= 1.0tb,1 = 0.15t2,e

e1(a) = 0.4
e1(c) = 0.1
e1(g) = 0.1
e1(u) = 0.4

e2(a) = 0.1
e2(c) = 0.4
e2(g) = 0.4
e2(u) = 0.1

2 2 1 2

g a g c
e1(a) e1(u) e2(c) e2(g) e2(a) e1(g) e2(c)t1,2t2,2t2,2 t2,1t1,2

1.0 * 0.4 * 0.9 * 0.4 * 0.1 * 0.4 * 0.8 * 0.4 * 0.8 * 0.1 * 0.05 * 0.1 * 0.1 * 0.4 * 0.15 = 4.42 * 10-9

HMM

Figure 1.7: A toy hidden Markov model. States are labeled, B, 1, 2, and E. Transi-
tions connecting states are denoted by arrows and labeled with transition probabilities t.
Emission probabilities, e, are shown above the two emitting states 1 and 2. The “hidden
state sequence (trace)” is an example path through the model and the “observed symbol
sequence” x is a corresponding set of emissions from that path. The particular trace shown
is one possible path through the model that could have generated x. The probability of
this particular trace and observed sequence x is calculated as 4.42 ∗ 10−9, the product of
emission and transition probabilities that generated it. This figure is based on a similar one
in [60].

Markov models (HMMs) [215]. HMMs are organized as sets of states that generate, or emit,

residues and then transition to other states. The frequencies of emissions and transitions

from a state are defined as probabilities that sum to 1. A very simple four state HMM is

shown in Figure 1.7. The B and E states are the requisite begin and end states necessary for

beginning and ending sequences. State 1 emits AU rich sequence as defined by its emission

probability e1 shown above the state and state 2 emits GC rich sequence as defined by e2.

Sequences are generated from an HMM by choosing a residue to emit and a next state to

transition to based on the emission and transition probabilities of the current state. An

example state sequence through the model, or trace, and the observed symbol sequence that

is emitted is shown in Figure 1.7.

For many applications, the utility of HMMs, and probabilistic models in general, is not

their ability to generate sequences but rather their ability to score target sequences given

the model (the query), or to align a target to a model. For scoring, the desired quantity

27

is the probability that an HMM generated a given sequence. For alignment, one wants the

most likely, or optimal, trace of the sequence to the model and its probability. In these

cases, it is assumed that the model generated the sequence and that the state sequence

responsible is hidden (hence hidden Markov models). The Forward and Viterbi dynamic

programming algorithms compute these quantities [53]. Specifically, Forward computes

P (x| HMM), and Viterbi computes P (x, π̂|HMM), where π̂ represents the optimal trace of

x to the model. These algorithms are generally applicable for any type of HMM and scale

in time and memory with the product of M , the number of states in the HMM, and L, the

length of the target sequence.

HMMs have been successfully applied in many different sequence analysis applications,

including gene-finding [19, 27], pairwise alignment [26], multiple alignment [119], and struc-

ture prediction [132]. Additionally, a special type of HMMs, called profile HMMs, have been

particularly useful for the problem of homology search.

Profile HMMs merge the ideas of probabilistic modeling with Gribskov’s profiles. They

were introduced for protein homology search by Anders Krogh, David Haussler and cowork-

ers [142]. Given an alignment of sequence family members, a profile HMM can be built that

models that family. An example profile HMM for a small protein family is shown in Fig-

ure 1.8. Position-specificity is achieved by organizing the states of a profile HMM into nodes,

with each node modeling a separate consensus position of the input alignment. (Consensus

positions are commonly defined as any input alignment column in which fewer than half of

the sequences are gaps.) Each node contains three states: a match state, an insert states,

and a delete state. Match states model an emitted residue, one of the 20 possible amino

acids in the corresponding consensus positions. Insert states emit residues in between con-

sensus positions. Delete states allow consensus positions to be skipped in target sequences;

these states are special in that they do not emit residues. Insert states can self-transition

to themselves in a profile HMM (Figure 1.8). The distinction between the transition for

entering an insert states from a match state, and re-entering it via this self-transition equate

to an affine gap scoring system.

28

I1

D1

M1

I0

B E

I2

D2

M2

I3

D3

M3

c
c
c
c
c

1
a
g
d
v
k

2
f
w
y
f
y

3

x x xx

c x fy

Figure 1.8: A simple profile HMM. The profile HMM (right) was built from the five-
sequence alignment (left). The model contains three nodes representing the three consensus
columns of the alignment, each containing a match (M), insert (I), and delete (D) state
as described in the text. The emission probability distributions are depicted above each
emitting match or insert state. B and E states begin and end traces/alignments. Possible
transitions are depicted as arrows connecting states. This figure is reprinted with permission
from [60].

29

Profile HMM parameterization

Similarly to Gribskov’s profiles, profile HMMs use an alignment of homologous sequences of

a protein family to define position-specific scoring parameters. I will refer to this alignment

as the seed alignment. In profile HMMs, these parameters are the model’s emission and

transition probabilities. They are calculated as mean posterior probability estimates based

on the observations in the input seed alignment and a prior probability as follows:

px =
cx + αx∑
y(cy + αy)

(1.2)

Where x corresponds to a particular transition or emitted symbol for a particular state

and
∑

y is summing over all possible transitions or emissions from that particular state [53].

This equation is used to calculate the transition and emission probabilities for all states

in the model. The cx values are observed counts of the emissions and transitions in the

implicit traces of the aligned sequences in the seed alignment. For example, the sequence

CAF in the alignment from Figure 1.8 implies a path through the three match states of the

model M1, M2, and M3, emitting C, A, and F respectively from each. The C emission adds 1

to the c value for emitting C from state M1.

Uninformative and informative priors

In equation 1.2, the α terms denote the prior ; these augment the observed counts in the

seed alignment and prevent emission or transitions not observed in the seed from having

0.0 probability [53]. If all αy values are all equal, the prior is unbiased and called flat or

uninformative. The use of an informative prior, in which α values differ, allows the injection

of prior, biologically meaningful information into the model. Take again for example the

alignment in Figure 1.8. If an uninformative prior of α = 1 is used (corresponding to a

Laplace “plus-one” prior [53]), the emission distribution for match state M1 will be defined

as:

30

if x = C p(ex) = 3+1
23 = 0.1739

else p(ex) = 0+1
23 = 0.0435

In this case, our model will assign the highest probability to a C emission from this state,

and about a quarter of that probability to each of the other 19 possible emissions. This is

similar to the initial scoring scheme used with the NWS algorithm, of +1 for a match and

0 for a mismatch. The equal score for all non-C residues implies they are all equally likely

to appear at the position in the alignment. Because it is observed that the first position

preferentially includes cysteine (C), one may want to assign probabilities to the other amino

acids based on their biochemical similarity with cysteine. This could be achieved using

different α values for each residue. Such a scheme may be appropriate for cysteine rich

columns, but a single set of α values would not generalize very well to different contexts.

In the 1990s, Kimmen Sjölander, David Haussler and colleagues pioneered the use of

mixture Dirichlet priors as informative priors in profile HMM parameterization [23, 131,

234]. A Dirichlet mixture is estimated from a large set of multiple alignment columns with

the goal of capturing the typical amino acid frequencies present in those columns. The

mixture is composed of components, each with its own own α vector. Each component can

be thought of as modeling a separate environment with different amino acid preferences, as

encoded in their α values. For example, small amino acids would have high corresponding

α values in a component for buried residues in the core of a protein.2

Using Dirichlet mixture priors has been shown to significantly improve the sensitivity

of profile HMMs, especially for models built from few (less than 20) sequences where the

relative weight of the α values in equation 1.2 is high (because
∑

y cy is low) [131, 234]. In

1996, Sjölander et al. [234] estimated a nine component mixture from the blocks database

[110] that is currently employed by the two widely used profile HMM packages sam [133, 142]

and hmmer [62].
2In fact, the Dirichlet mixture estimation is unsupervised and there is no bias towards deriving compo-

nents that are particular for a certain class of amino acids. However, in many cases a biological explanation
of the resulting components is possible. The technical details of Dirichlet mixture training are outside the
scope of this work. For details see [23, 234].

31

Entropy weighting

In 1998, Kevin Karplus introduced entropy weighting for profile HMM parameterization

[133]. This technique defines a weighting factor w, where w < 1, by which the c values are

multiplied in the parameterization equation given in equation 1.2:

px =
(w ∗ cx) + αx∑
y((w ∗ cy) + αy)

(1.3)

This has the effect of reducing the contribution of the observed emissions and transi-

tions from the input alignment, and increasing the contribution of the prior to the final

parameters. The w value that is used varies from model to model. It is defined as the value

that gives a pre-specified, target average match state entropy. The entropy r of a match

state is defined as r = −
∑

x e(x) log2 e(x).

The key idea of entropy weighting is that only a certain amount of sequence conserva-

tion need be modeled by a profile HMM for it to be able to effectively discriminate between

true homologs and unrelated sequences in database searches. Models built from alignments

with very highly similar sequences may exceed this conservation limit and be overly specific

towards finding sequences like those in the seed alignment, at the expense of missing more

remote homologs. Entropy weighting counteracts this scenario by reducing the contribution

of observations from the seed (the c values) as appropriate. Entropy weighting is a heuristic

that is not well-founded in probability theory. However, the technique substantially im-

proves a profile HMM’s ability to find remote homologs [127, 133] and is used by both sam

and hmmer.

Log-odds scoring

Before a profile HMM is used for homology search, the transition and emission probabilities

are converted into log-odds scores using a null model of random sequence. A simple null

model that is commonly used is a single state HMM with an emission probability distribution

equal to the background distribution of a large database (similar to the q values for blosum

32

scores) and a single possible transition, a self-transition with probability 1.0. Log-odds

scores sx for each possible HMM emission and transition are defined by simply dividing

the relevant model probability px by the null model probability rx (either the background

probability of a residue for emissions, or 1.0 for transitions) and taking the base 2 logarithm:

sx = log2
px

rx
.

In practice, the profile HMM versions of the Viterbi and Forward DP algorithms typically

use sx values instead of px to calculate log-odds scores instead of probabilities as described

above. Viterbi calculates the log-odds score that the sequence was generated from the HMM

using the most probable path through the model versus from the null model. Forward

calculates the log-odds score that the sequence was generated from the HMM (summed

over all possible paths) versus from the null model.

Estimating statistical significance of profile HMM database hits

Several profile HMM packages, including sam and versions 1 and 2 of hmmer, estimate

statistical significance of database hits in a manner similar to gapped blast - via simu-

lation. Empirically, high-scoring profile HMM hits to random sequences follow a Gumbel

distribution with parameters λ and K. These are fit via simulation for each scoring system

[62, 134]. While this is not a problem for blast because only a handful of scoring sys-

tems are typically used, it has more serious implications with profile HMMs because each

model defines its own scoring system and requires its own expensive simulation to define

the Gumbel parameters. In 2008, Sean Eddy determined that by redesigning the hmmer

profile HMM architecture to make a truly local probabilistic model, values of λ and K could

be analytically derived for any given model that resulted in highly accurate empirical E-

value estimation, thus obviating the need for an expensive simulation. Eddy stated that the

conjectures used to analytically derive the profile HMM Gumbel parameters were expected

to apply to any appropriately defined local probability model, including local probability

models of SW and more complex sequence and structure profile models described below.

33

1.4 Exploiting conserved structure in RNA homology

searches3

Protein homology search by amino acid primary sequence comparison is powerful. At the

amino acid level, blastp has no trouble detecting significant similarity down to about

25-30% amino acid sequence identity. Many protein coding regions conserve this level of

similarity even across the deepest divergences in the tree of life amongst archaea, bacteria,

and eukaryotes.

In contrast, RNA homology search by nucleotide primary sequence comparison is much

less able to detect distant RNA homologies. blastn typically requires about 60-65% se-

quence identity to detect a statistically significant similarity for RNAs of typical length.

Although some RNAs are very highly conserved over evolution (notably large and small

subunit ribosomal RNAs, which are readily detected by sequence comparison in all species;

the so-called human “ultraconserved” regions included regions of rRNA [11]), this is not

the rule. Many functional RNA homologies are undetectable at the primary sequence level

in cross-phylum comparisons (such as nematode/human or fly/human), because weakly or

moderately conserved nucleic acid sequences can diverge to the 65% identity level in just a

few tens of millions of years.

A striking example of this difference comes when searching for homologs of the compo-

nents of some ribonucleoprotein (RNP) complexes. It is not uncommon to detect homologs

of the protein components but not the RNA components of complexes such as SRP, RNase

P, small nucleolar RNPs, and telomerase. The interpretation upon finding only the protein

component is usually (and almost certainly correctly) that the RNP complex is present

in the organism, but the RNA component(s) are too difficult to detect. For example, the

probable presence of small nucleolar RNAs in archaea could be inferred from the presence

of homologs of snoRNP protein components like fibrillarin well before snoRNA homologs

were discovered [5, 199]. A similar situation can occur when identifying homologous cis-
3Part of this section is identical to the “Exploiting conserved structure in RNA similarity searches” section

from Chapter 5 which I co-authored with Sean Eddy and submitted to be published as a book chapter.

34

regulatory RNA elements (such as riboswitches) for clearly homologous coding genes.

Table 1.1 shows some specific anecdotal examples. These data are fairly typical of

searching databases with protein versus RNA queries. They demonstrate two key points

about the relative difficulty in detecting homologs of functional RNAs. First, notice that for

the protein coding genes, the statistical significance of the similarity (the E-value) is always

much better (lower and more significant) when comparing their amino acid sequences rather

than when comparing their DNA sequences, highlighting the additional statistical power in-

herent in searches at the amino acid level. This is the reason for the recommended practice

of always comparing protein sequences at the amino acid level [207]. Second, notice that

RNA components are usually much shorter than the coding sequence of the protein compo-

nents, further compromising statistical signal and the ability of primary sequence analysis

(blastn) to resolve homologous relationships from background. (To enable reproduction

of these results, the accessions for the sequence data used in these searches is provided in

Table 1.2.)

Primary sequence-based methods for detecting functional RNAs can be bolstered by ex-

ploiting the statistical signal present in the conserved secondary structure of many RNAs.

Both RNAs and proteins tend to conserve a characteristic structure that is integral to their

function, but structure-based homology search methods are used much more commonly

for RNA than they are for proteins. What makes RNA secondary structure constraints of

particular utility for computational sequence analysis is their simplicity and relative con-

tribution of statistical signal. As mentioned earlier, RNA base-pairs induce strong pairwise

correlations within RNA sequences that can be detected as covariations in multiple sequence

alignment columns using comparative sequence analysis. The consensus structures of many

RNAs have been accurately inferred in this way [107, 115, 181, 202].

How much extra information does RNA secondary structure conservation contribute in

addition to primary sequence conservation? This question can be addressed using prob-

abilistic profile log-odds scores that estimate a profile’s ability to distinguish between a

homologous and a non-homologous RNA. Figure 1.9 shows the average score of profiles for

35

a
m

in
o

a
ci

d
se

q
u
en

ce
co

d
in

g
se

q
u
en

ce
R

N
A

o
rg

a
n
is

m
1

o
rg

a
n
is

m
2

p
ro

te
in

B
L
A

S
T

P
B

L
A

S
T

N
R

N
A

B
L
A

S
T

N
In

fe
rn

a
l

q
u
er

y
ta

rg
et

n
a
m

e
le

n
%

id
E

-v
a
lu

e
le

n
%

id
E

-v
a
lu

e
n
a
m

e
le

n
%

id
E

-v
a
lu

e
%

id
E

-v
a
lu

e

M
et

h
a
n
o
ca

ld
o
co

cc
u
s

P
y
ro

co
cc

u
s

R
p
p
2
9

9
5

5
0
%

2
.3

e-
1
9

2
8
8

6
2
%

4
.2

e-
0
9

R
N

a
se

P
2
5
8

7
2
%

9
.2

e-
0
6

5
1
%

6
.7

e-
0
9

ja
n
n
a
sc

h
ii

h
o
ri

k
o
sh

ii
R

N
A

B
a
ci

ll
u
s

B
a
ci

ll
u
s

ly
sC

4
0
9

6
7
%

1
.0

e-
1
3
5

1
2
3
0

6
6
%

5
.4

e-
9
4

L
y
si

n
e

1
8
7

6
3
%

2
.0

e-
0
5

5
9
%

2
.9

e-
1
8

ce
re

u
s

su
b
ti
lu

s
ri

b
o
sw

it
ch

S
u
lf
o
lo

b
u
s

T
h
er

m
o
co

cc
u
s

rp
l3

0
p

1
5
8

4
2
%

4
.9

e-
2
9

4
7
7

6
1
%

0
.3

8
5
S

rR
N

A
1
1
5

7
3
%

4
.3

e-
0
5

6
2
%

7
.6

e-
1
0

so
lf
a
ta

ri
cu

s
k
o
d
a
k
a
re

n
si

s
B

a
ci

ll
u
s

C
lo

st
ri

d
iu

m
g
lm

S
6
0
0

4
6
%

3
.2

e-
1
3
8

1
8
0
3

5
7
%

2
.5

e-
6
6

g
lm

S
1
6
8

6
3
%

3
.5

e-
0
4

5
6
%

1
.6

e-
1
4

su
b
ti
lu

s
a
ce

to
b
u
ty

li
cu

m
ri

b
o
sw

it
ch

B
a
ci

ll
u
s

5
4
%

9
.8

e-
1
2
4

6
3
%

2
.3

e-
8
5

6
6
%

2
.7

e-
0
3

6
2
%

2
.2

e-
1
3

E
sc

h
er

ic
h
ia

su
b
ti
lu

s
ff
h

4
5
3

1
3
6
2

S
R

P
R

N
A

1
0
0

co
li

C
a
n
d
id

a
tu

s
P
.

4
4
%

2
.5

e-
1
0
2

5
7
%

8
.6

e-
3
6

6
8
%

0
.7

8
4
7
%

6
.7

e-
0
6

a
m

o
eb

o
p
h
il
a

K
le

b
si

el
la

5
7
%

2
.6

e-
1
9
2

6
5
%

7
.0

e-
1
1
3

7
8
%

5
.7

e-
1
8

7
7
%

2
.5

e-
3
3

p
n
eu

m
o
n
ia

e
Y
er

si
n
ia

5
2
%

1
.5

e-
1
7
3

6
0
%

6
.4

e-
8
3

7
4
%

3
.2

e-
0
9

6
7
%

9
.3

e-
2
1

E
sc

h
er

ic
h
ia

en
te

ro
co

li
ti
co

b
tu

B
6
1
4

1
8
4
5

C
o
b
a
la

m
in

1
9
1

co
li

V
ib

ri
o

3
8
%

8
.1

e-
1
0
7

5
7
%

6
.4

e-
3
4

ri
b
o
sw

it
ch

7
2
%

0
.0

4
3

5
7
%

4
.5

e-
0
5

ch
o
le

ra
e

A
ci

n
et

o
b
a
ct

er
2
6
%

5
.0

e-
4
6

6
1
%

2
.4

e-
0
6

6
5
%

2
.6

4
9
%

3
.7

e-
0
5

b
a
u
m

a
n
n
ii

T
ab

le
1.

1:
E
x
am

p
le

s
of

id
en

ti
fy

in
g

co
d
in

g
re

gi
on

h
om

ol
og

ie
s

b
y

am
in

o
ac

id
se

q
u
en

ce
ve

rs
u
s

n
u
cl

ei
c

ac
id

se
q
u
en

ce
co

m
p
ar

is
on

(b
la

st
p

v
s.

b
la

st
n
),

co
m

p
ar

ed
to

id
en

ti
fy

in
g

R
N

A
h
om

ol
og

ie
s

b
y

p
ri

m
ar

y
se

q
u
en

ce
ve

rs
u
s

st
ru

c-
tu

re
/s

eq
u
en

ce
co

m
p
ar

is
on

(b
la

st
n

v
s.

in
fe

rn
al

).
Fo

r
ea

ch
qu

er
y/

ta
rg

et
pa

ir
,
th

e
qu

er
y

se
qu

en
ce

w
as

se
ar

ch
ed

ag
ai

ns
t

th
e

ta
rg

et
ge

no
m

e
(f

or
co

di
ng

se
qu

en
ce

an
d

R
N

A
se

ar
ch

es
)

or
pr

ed
ic

te
d

pr
ot

eo
m

e
(f

or
am

in
o

ac
id

se
qu

en
ce

se
ar

ch
es

)
us

in
g

th
e

in
di

-
ca

te
d

se
ar

ch
pr

og
ra

m
s.

“L
en

”
in

di
ca

te
s

un
al

ig
ne

d
le

ng
th

of
th

e
qu

er
y.

“%
id

”
in

di
ca

te
s

pe
rc

en
t

id
en

ti
ty

of
lo

ca
la

lig
nm

en
ts

of
hi

ts
re

tu
rn

ed
by

ea
ch

m
et

ho
d.

(b
l
a
st

n
R

N
A

al
ig

nm
en

ts
ar

e
al

w
ay

s
hi

gh
er

pe
rc

en
ta

ge
id

th
an

in
f
e
r
n
a
l

al
ig

nm
en

ts
,b

ut
ar

e
al

so
us

u-
al

ly
si

gn
ifi

ca
nt

ly
sh

or
te

r.
)

Q
ue

ry
R

N
A

s
w

er
e

se
le

ct
ed

fr
om

ca
nd

id
at

es
fo

un
d

by
in

f
e
r
n
a
l

in
ea

ch
lis

te
d

qu
er

y’
s

ge
no

m
e

se
qu

en
ce

us
in

g
th

e
th

e
r
fa

m
9.

1
C

M
fo

r
th

e
ap

pr
op

ri
at

e
fa

m
ily

(l
is

te
d

be
lo

w
).

E
ac

h
qu

er
y

R
N

A
w

as
us

ed
to

bu
ild

a
C

M
us

in
g

th
e
in

f
e
r
n
a
l

im
po

se
d

r
fa

m
st

ru
ct

ur
e,

an
d

ea
ch

C
M

w
as

ca
lib

ra
te

d
an

d
us

ed
to

se
ar

ch
th

e
ta

rg
et

ge
no

m
es

.
r
fa

m
fa

m
ily

ID
s
fo

r
ea

ch
fa

m
ily

lis
te

d
in

“R
N

A
na

m
e”

,
in

ro
w

or
de

r,
ar

e:
R

F
00

37
3,

R
F
00

16
8,

R
F
00

00
1,

R
F
00

23
4,

R
F
00

16
9,

R
F
00

17
4.

Fo
r

ri
bo

sw
it

ch
es

,
th

e
pr

ot
ei

n
co

m
po

ne
nt

s
ar

e
al

w
ay

s
im

m
ed

ia
te

ly
do

w
ns

tr
ea

m
of

th
e

R
N

A
co

m
po

ne
nt

s.
V

er
si

on
s

us
ed

:
W
U
-
B
L
A
S
T
N
-
2
.
0
M
P
,
W
U
-
B
L
A
S
T
P
-
2
.
0
M
P

an
d
c
m
s
e
a
r
c
h

fr
om

in
f
e
r
n
a
l

ve
rs

io
n

1.
0.

Fo
r
b
l
a
st

n
,t

he
-
w
=
5

op
ti

on
w

as
al

w
ay

s
us

ed
,a

nd
th

e
-
k
a
p

op
ti

on
w

as
us

ed
on

ly
if

it
re

su
lt

ed
in

a
m

or
e

si
gn

ifi
ca

nt
(l

ow
er

)
E

-v
al

ue
fo

r
th

e
ta

rg
et

se
qu

en
ce

.

36

ge
no

m
e

pr
ot

ei
n

pr
ot

ei
n

R
N

A
R

N
A

or
ga

ni
sm

na
m

e
ac

ce
ss

io
n

na
m

e
ac

ce
ss

io
n

na
m

e
ge

no
m

ic
co

or
di

na
te

s
M

et
ha

no
ca

ld
oc

oc
cu

s
ja

nn
as

ch
ii

N
C

00
09

09
.1

R
pp

29
N

P
24

74
39

.1
R

N
as

e
P

R
N

A
64

35
04

-6
43

76
1

P
yr

oc
oc

cu
s

ho
ri

ko
sh

ii
N

C
00

09
61

.1
R

pp
29

N
P

14
36

07
.1

R
N

as
e

P
R

N
A

16
82

08
-1

68
41

4
B

ac
ill

us
ce

re
us

N
C

00
39

09
.8

ly
sC

N
P

09
78

19
9.

1
L
ys

in
e

ri
bo

sw
it

ch
18

18
63

8-
18

18
45

2
B

ac
ill

us
su

bt
ili

s
N

C
00

09
64

.2
ly

sC
N

P
39

07
25

.1
L
ys

in
e

ri
bo

sw
it

ch
29

10
11

6-
29

09
94

6
Su

lfo
lo

bu
s

so
lfa

ta
ri

us
N

C
00

27
54

.1
rp

l3
0p

N
P

34
22

08
.1

5S
rR

N
A

78
06

4-
77

94
6

T
he

rm
oc

oc
cu

s
ko

da
ka

re
ns

is
N

C
00

66
24

.1
rp

l3
0p

Y
P

18
39

33
.1

5S
rR

N
A

17
69

48
2-

17
69

59
9

B
ac

ill
us

su
bt

ili
s

N
C

00
09

64
.2

gl
m

S
N

P
38

80
59

.1
gl

m
S

ri
bo

sw
it

ch
20

00
06

-2
00

17
3

C
lo

st
ri

du
m

ac
et

ob
ut

yl
ic

um
A

E
00

14
37

.1
gl

m
S

A
A

K
78

14
2.

1
gl

m
S

ri
bo

sw
it

ch
17

99
15

-1
80

07
4

E
sc

he
ri

ch
ia

co
li

N
C

00
09

13
.2

ffh
N

P
41

71
01

.1
SR

P
R

N
A

47
56

79
-4

75
77

8
B

ac
ill

us
su

bt
ili

s
N

C
00

09
64

.2
ffh

N
P

38
94

80
.1

SR
P

R
N

A
26

53
1-

26
63

3
C

an
di

da
tu

s
P.

am
oe

bo
ph

ila
N

C
00

58
61

.1
ffh

Y
P

00
76

53
.1

SR
P

R
N

A
87

19
75

-8
72

07
4

E
sc

he
ri

ch
ia

co
li

N
C

00
09

13
.2

bt
uB

N
P

41
84

01
.1

C
ob

al
am

in
ri

bo
sw

it
ch

41
61

40
7-

41
61

59
7

K
le

bs
ie

lla
pn

eu
m

on
ia

e
C

P
00

06
47

.1
bt

uB
A

B
R

78
63

4.
1

C
ob

al
am

in
ri

bo
sw

it
ch

46
60

06
1-

46
60

24
8

Y
er

si
ni

a
en

te
ro

co
lit

ic
a

N
C

08
80

0.
1

bt
uB

Y
P

00
10

04
53

1.
1

C
ob

al
am

in
ri

bo
sw

it
ch

15
71

01
-1

57
30

1
V

ib
ri

o
ch

ol
er

ae
N

C
00

94
57

.1
bt

uB
Y

P
00

12
18

24
2.

1
C

ob
al

am
in

ri
bo

sw
it

ch
24

98
53

5-
24

98
36

9
A

ci
ne

to
ba

ct
er

ba
um

an
ni

i
N

C
01

15
86

.1
bt

uB
Y

P
00

23
20

68
7.

1
C

ob
al

am
in

ri
bo

sw
it

ch
34

85
34

2-
34

85
53

7

T
ab

le
1.

2:
G

en
B

an
k

ge
n
om

e
an

d
p
ro

te
in

ac
ce

ss
io

n
s

an
d

R
N

A
ge

n
om

ic
co

or
d
in

at
es

fo
r

ex
am

p
le

s
fr

om
T
ab

le
1.

1.

37

about 100 RNA sequence families, comparing models of sequence conservation alone (pro-

file HMMs) to models of sequence plus RNA secondary structure conservation (covariance

models, CMs). CMs are discussed in more detail below; for the present point, it is suffi-

cient to know that they are profile probabilistic models that derive their parameters from a

seed alignment just like profile HMMs do, but that they additionally model the conserved

secondary structure of an RNA family.

Because profile HMM and CM log-odds scores are derived using base 2 logarithms, the

unit of score is a bit, which is a measure of information content [166, 233]. A toy example

seed alignment and the corresponding information for a sequence profile and a sequence

and structure profile is depicted in Figure 1.10. Consider a match state that models a seed

alignment column with a perfectly conserved RNA residue (for example, column 5 in Fig-

ure 1.10), with an emission probability of 1.0 for that residue.4 The probability of 1.0 for

that residue compared with a null model probability of 0.25 corresponding to the null model

of uniform expected background means that the state is contributing log2
1.0
0.25 = 2 bits of

information - two yes/no questions must be asked to narrow four possibilities down to one,

thus two “bits” (binary units) of information. A match state modeling a column where

each residue occurs with equal probability (same as expected background, column 9 in Fig-

ure 1.10) has zero bits of information. Imagine a single match state modeling two positions

that contain a covarying Watson-Crick base-pair in which each of the four possible base-pairs

occur with equal probability 1
4 (columns 3 and 8 in Figure 1.10). In a sequence only model

the two positions contribute zero bits of information, but in a structure/sequence model

this pair contributes two bits of information from the pairwise correlation (the expected

background in these columns is 0.0625 for each of the 16 possible base-pairs, but only 4 are

observed with probability 0.25 each). In contrast, two columns that form a Watson-Crick

base-pair that is perfectly conserved (a GC with probability 1.0 for example, columns 1 and

11 in Figure 1.10) always contribute four bits of information, regardless of whether they

are modeled together as a pair (log2
1.0

0.0625 = 4), or independently (log2
1.0
0.25 + log2

1.0
0.25 = 4).

4For this explanation, the contribution of the prior in emission parameter estimation will be ignored (the
α in equation 1.2). This equates to maximum likelihood parameter estimation.

38

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 50 100 200 500

0

20

40

60

80

Sequence profile (HMM) average score (bits)

Ex
tra

 b
its

 fr
om

 s
tru

ct
ur

e
(C

M
-H

M
M

 a
ve

ra
ge

 s
co

re
)

5S
rRNA

6S

7SK

Cobalamin

FMN

IRES
(Apthovirus)

Intron
group II

RNaseP
(archaeal)

RNaseP
(bacterial type A)

RNaseP
(bacterial type B)

RNase MRP

RRE

SRP
(bacterial)

SRP
(euk and arch) SSU rRNA

(5’ domain)

TPP

Tbox

U2

tRNA

tmRNA

microRNA
(MIR_807)

snoRNA
(SNORA73)

SECIS

Histone 3’ UTR
stem loop

Figure 1.9: Additional information (in bits) gained by structure/sequence profiles
versus sequence-only profiles for various RNA families. Structure/sequence profiles
are most advantageous for families with less primary sequence information (towards left)
and more secondary structure information (towards top), so rfam families that gain the
most from including secondary structure terms in a homology search are those toward the
upper left quadrant. Data shown for the 95 rfam release 9.1 [89] families with 50 or more
sequences in the “seed” alignment. For each family, the seed alignment was used to build two
profile models, one with structure (sequence/structure profile CM model) and one without
(sequence profile HMM model). From each model, 10,000 sequences were generated and
scored, and the average score per sampled sequence was calculated. Several of the outlying
points are labeled by the name of RNA family as given by rfam. Note that the x-axis is
drawn on a log scale. Models were built and sequences were generated and scored using
infernal version 1.0 programs cmbuild, cmemit and cmalign.

39

Thus, the best case for extracting useful sequence information from RNA secondary struc-

ture are covarying base-pairs that are individually not conserved in primary sequence at

all. The more highly conserved the aligned RNA sequences are, the more primary sequence

information content and less covariation will be seen.

Importantly, for local sequence alignment searches using probabilistic models, there is

a direct, intuitive connection between the score in bits and the statistical significance (E-

value) of a detected match [59]. Roughly speaking, every 3 or so bits of score improves the

E-value by a factor of ten-fold (for high scores, the E-value is an exponential function of

the bit score x; E is proportional to 2−x). So, as a rule of thumb, extracting ten more bits

of information for a homology search means shifting E-values by three orders of magnitude.

This increase in resolution doesn’t matter much if a sequence is already readily detected by

primary sequence comparison (improving an already significant E-value of 10−30 to 10−33,

for example), but it becomes important when lifting a marginally insignificant E-value to

significance (0.1 to 10−4, for example).

Figure 1.9 shows the extra bits of information contributed by including RNA secondary

structure in “typical” RNA search models. These models are all position-specific profiles

built from alignments in the rfam RNA families database, described below. There is sub-

stantial variation from family to family, but the extra information contributed by secondary

structure is usually on the order of 10-20 bits or more, depending on the length and con-

servation of the alignment, which would be expected to improve E-values of homologs by

about 3-6 orders of magnitude. This improvement can be seen in the results of the anec-

dotal searches of Table 1.1 comparing the E-values obtained by primary sequence blastn

searches to infernal, a sequence and secondary structure RNA homology search, as dis-

cussed in more detail below. The conclusion here is that while primary sequence is still

the dominant source of information (at least for these particular “typical” searches; it is,

of course, possible to imagine searching for RNAs with zero sequence information and only

secondary structure information), adding secondary structure contributes enough informa-

tion content that we can expect a structure and sequence method to resolve some homologs

40

that were not quite resolvable by sequence analysis alone.

I now turn to the question of how to efficiently computationally model conserved RNA

secondary structure. Several different techniques have developed, but my discussion will

mainly focus on the covariance model approach mentioned above, on which the remainder

of work in this dissertation is based. CMs are profiles belonging to a class of probabilistic

models called stochastic context-free grammars (SCFGs). I will first describe why SCFGs are

well-suited for modeling RNA structure, and then detail the construction, parameterization

and application of CMs for RNA homology search.

1.5 Stochastic context-free grammars for RNA sequence and

structure modeling

Stochastic context-free grammars (SCFGs) are extensions of HMMs that can model both the

sequence and structure of RNAs. SCFGs are most easily understood in the context of formal

grammar theory developed in computational linguistics to help understand the structure

of natural languages. Noam Chomsky’s hierarchy of formal grammars [35, 36] provides

a general theory for modeling strings of symbols that is applicable to biological sequence

analysis [53]. Formal grammars are generative models capable of generating sequences, but

in many cases their utility lies in the ability to parse sequences of symbols to determine

if they could have been generated from the grammar. A grammar is defined by a set of

terminal and nonterminal symbols and a set off production rules P defining how symbols

can be generated. For example, the following set of production rules defines a grammar

that can generate any sequence of as and bs and ns:

S → aS | bS | nS | ε

In this grammar, the a, b, n and ε (a special case, the null string) are terminal symbols,

and S is the lone nonterminal symbol. In this notation, for brevity, each possible production

from S is separated by a |. The string banana can be derived from this grammar using the

41

sequence
profile:14 bits

sequence + structure
profile: 17 bits

1 5 11109876432

< >

-
-
-

< >

-

-

struct

< >

U A

U
U
G

G C

C

U

yeast

G C

U A

U
U
G

G C

C

A

orc

C G

C G

U
U
G
C

human

G C

C G
C

C G

U
U
G
C

frog

G C

G C
G

AC G

U
U
G

G C

fly
C

A U

C G

U
U
G
G

G C

worm
C

U A

U A

U
U
G
U

G C

fish
C

U A

U

U A

U
G
C

G C

mouse
C

A U

consensus
secondary
structure

individual secondary structures
(implied by consensus)

 4
 3

 2
 2
 2
 2
 2

struct <<<---->->>
yeast GUGUUCGCUAC
human GCCUUCGGCGC
fly GCAUUCGUAGC
fish GUUUUCGAUAC
orc GUCUUCGGAAC
frog GCGUUCGCGGC
worm GCUUUCGAGGC
mouse GUAUUCGUCAC

 21 2222 12

Figure 1.10: Information in a sequence-only versus a sequence and structure
profile. The eight sequence seed alignment for a fabricated RNA family used to build both
of the profiles is on the left. The struct line denotes the consensus secondary structure of
the family, which is ignored by the sequence profile but used in the sequence and structure
profile to define dependencies between base-paired columns indicated by matching nested
< and > characters and connected by lines at top of figure. The < and > characters are
matched like nested parentheses in a mathematical formula. The eight individual secondary
structures, defined by imposing the consensus structure on each sequence are shown on the
right.

42

following rules:

S ⇒ bS ⇒ aS ⇒ nS ⇒ aS ⇒ nS ⇒ aS ⇒ ε

HMMs are stochastic regular grammars

Chomsky’s hierarchy divides formal grammars based on the complexity of the types of

languages they can recognize as well as the computational complexity required to parse

sequences of symbols using the grammars. Regular grammars are the lowest level of the

hierarchy. The example above is an regular grammar. Regular grammar production rules

are heavily restricted to only the forms: S → aS or S → a, where S and a represent possible

nonterminal and terminal symbols respectively.

HMMs are examples of stochastic regular grammars, which extend a probabilistic com-

ponent to grammars and their associated production rules. In a stochastic grammar, “yes”

or “no” binary pattern-matching for sequences is replaced with the probability that the

sequence was generated from the grammar. This is achieved by associating each production

rule with a probability with the constraint that all rules from each possible nonterminal

sum to 1. Roughly speaking, HMM states correspond to nonterminals, emitted residues

correspond to terminals, and state transitions correspond to production rules.

For example, the simple HMM depicted in Figure 1.7 can be defined by the following

set of production rules:

B → ε1

1 → a1 | c1 | g1 | u1 | a2 | c2 | g2 | u2

2 → a2 | c2 | g2 | u2 | a1 | c1 | g1 | u1 | E

E → ε

A profile HMM architecture defines a characteristic way of organizing regular grammar

production rules that is useful for setting position-specific probabilities of a sequence family.

For example, the rules in the profile HMM architecture in Figure 1.8 can be summarized

43

as:

B → εI0 | εM1 | εD1

My → xMy+1 | xDy+1 | xIy

Iy → xMy+1 | xIy

Dy → εMy+1 | εDy+1

Mn → xE | xIn

In → xE | xIn

Dn → εE

Here, n is the number of nodes, y is any number from 1 to n − 1, and x represents

any possible amino acid. This is an abbreviated list of the complete set of rules but it

demonstrates the modular, repetitive nature of the node-based architecture of profile HMMs.

Context-free grammars

Context-free grammars (CFGs) are one level of complexity above regular grammars in the

Chomsky hierarchy [35, 36]. The form of CFG production rules is slightly less restricted

than that of regular grammars. The restrictions on the left hand side of CFG and regular

grammar production rules are equivalent - both must contain a single nonterminal. However,

the right hand side of CFG production rules can contain any combination of terminals and

nonterminals, allowing CFGs to generate two symbols with a single production rule. This is

appropriate when the two symbols are dependent on each other, such as between covarying

base-paired residues in RNA sequences. Regular grammars, which must generate a single

terminal at a time, cannot model these dependencies in RNA sequences. This is the key

reason that CFGs have been applied to RNA sequence analysis problems.

An example of a simple CFG that generates a simple dual stem-loop RNA sequence and

structure is given below5:
5This grammar is nearly identical to one in [53]

44

S

c a g g a a a c u g g g u g c a a a c c

S

W1

W2

W3

S

W1

W2

W3

G C
G C
U
G
C

A
A
A

C G
A U
G
G
A

C
A
A

5' 3'
(a) (b)

Figure 1.11: (a) A parse tree for CAGGAAACUGGGUGCAAACC and the dual stem-loop grammar.
(b) The RNA secondary structure for the same sequence, which corresponds closely to the
parse tree representation. This figure is reprinted with permission from [53].

S → SS,

S → aW1u | cW1g | gW1c | uW1a,

W1 → aW2u | cW2g | gW2c | uW2a,

W2 → aW3u | cW3g | gW3c | uW3a,

W3 → gaaa | gcaa.

Figure 1.11 shows a parse of an RNA sequence using this CFG. A CFG parse is com-

monly called a parse tree which, in the case of RNA sequences, has a tight correspondence

with the secondary predicted structure of the sequence. In biological sequence analysis, a

parse tree implies a unique alignment of symbols to nonterminals of a CFG, so sometimes

the terms are used interchangeably in sequence analysis even though the converse is not

always true: an alignment does not necessarily imply a unique parse tree [50, 91].

Stochastic context-free grammars (SCFGs) are the probabilistic analogs of CFGs, mir-

roring the relationship of HMMs to regular grammars. SCFGs have states that correspond

to CFG nonterminals, with emissions and transitions and associated probabilities that corre-

spond to production rules. SCFGs provide a general toolkit for RNA sequence and structure

analysis. They have been applied to RNA gene-finding [209, 220], structural inference of

45

RNAs [139, 140], and simultaneous structural inference and alignment of RNAs [15, 51, 117].

For this work, the relevant applications are sequence- and structure-based RNA homology

search (for part 1 of this work) and alignment (for part 2 of this work) using profile SCFGs.

1.6 Covariance models: profile stochastic context-free gram-

mars

The concept of profiles was extended to SCFGs soon after it was for HMMs. Profile SCFGs

were introduced independently in 1994 by Yasu Sakakibara and David Haussler’s group

[224, 226] and by Sean Eddy and Richard Durbin [65]. Similarly to profile HMMs for protein

sequence analysis, the primary application of profile SCFGs has been RNA sequence- and

structure-based homology search

My work has focused on Eddy and Durbin’s covariance model (CM) formulation of

profile SCFGs as implemented in the infernal software package [191]. This discussion

pertains to version 0.55 of infernal, the current version at the onset of this work in 2004

[57]. In this section, I will discuss how CMs are built and parameterized, list some of their

important limitations, and describe some existing methods for addressing those limitations.

For more details on CMs see [53, 57, 65, 141, 189, 190, 192].

CM construction

A CM is built from a multiple sequence alignment of an RNA family that is annotated

with a consensus, well-nested secondary structure. CMs are composed of a series of nodes

organized as a guide tree that corresponds closely with the consensus structure of the input

alignment. There are eight node types, each corresponding to a different type of structural

element:

46

node type corresponding structural element

MATP base-pair

MATL single stranded residue

MATR single stranded residue

ROOT beginning of complete structure

BIF bifurcation

BEGL beginning of substructure

BEGR beginning of substructure

END end of substructure

infernal defines a set of rules for guide tree construction that ensure that there is

exactly one guide tree for each possible consensus structure [192]. A toy alignment and its

resulting guide tree is shown in Figure 1.12. As with profile HMMs, only consensus columns

(those columns in which fewer than half the residues have gaps) are modeled by nodes. Note

that each consensus column corresponds to either a MATP, MATL, or MATR node. These nodes

are responsible for the match emissions of the consensus positions of the model. MATL and

MATR nodes model single stranded consensus positions and are very similar to profile HMM

nodes. MATP nodes emit two base-paired residues at once. The other node types (ROOT,

BIF, BEGL, BEGR and END) are necessary only to model the possible branching patterns of

RNA structures. Each model contains a single ROOT node at the top, the root of the guide

tree. The number of BIF nodes varies with the complexity of the consensus structure, one

is necessary for each multi-branched loop (Figure 1.1), which are also called bifurcations.

There is exactly one BEGL and one BEGR node for each BIF node, that start, or root, each

of the two subtrees created by the bifurcation. In the special case when the consensus

structure contains zero base-pairs, the resulting guide tree will contain only MATL nodes and

a single ROOT and END node. Such a model would correspond nearly exactly to a profile

HMM (Figure 1.8).

The guide tree represents the fixed length consensus sequence and secondary structure

of the family being modeled. To allow for insertions and deletions at any position relative

47

S 0

ML 3

ML 6

B 9

S 10

MP 11

MP 17

MR 23

MP 26

ML 32

ML 35

ML 38

ML 41

E 44

S 45

ML 47

MP 50

MP 56

ML 62

MP 65

ML 71

ML 74

ML 77

E 80

A
A

G
A

C
U
U
C
G

C
U
A
G

U
G
G
C
G
A
C
A

C
C

C

D 48

S 0

ML 3

ML 6

B 9

S 10

MP 11

MP 17

MR 23

MP 26

ML 32

ML 35

ML 38

ML 41

E 44

S 45

MP 50

MP 56

ML 62

MP 65

ML 71

ML 74

ML 77

E 81

U

A
A

A

C
A

C
U
U
C
G

G
U
A
G

C
A
C
C
A
A
A

G
U

G

IL 1

IR 2

human: mouse: orc:

D 42

IL 69

IL 79

S 0

ML 3

ML 6

B 9

S 10

MP 11

MP 17

MR 23

MP 26

ML 32

ML 35

ML 38

E 44

S 45

ML 47

MP 50

MP 56

ML 62

MP 65

ML 71

ML 74

ML 77

E 80

A
G

G
U

C
U
U
C

C
A
C
G

G
G
G
C
A
G
C
C
A
C

C
U

U

 16

17

18

ROOT
MATL2
MATL3
BIF

4 14
5 13

12
6 11
7
8
9

10

BEGL
MATP
MATP
MATR
MATP
MATL
MATL
MATL
MATL
END

BEGR
MATL15
MATP16 27
MATP17 26
MATL18
MATP19 25
MATL21
MATL22
MATL23
END

MATP

MATP

MATL

MP ML MR D

IL IR

MP ML MR D

IL IR

ML D

IL

62 63

50 51 52 53

54 55

56 57 58 59

60 61

64

0
1
2
3

4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23

3
2

4 14
5 13

12
6 11

7 10
8 9

15
16 27
17 26

18
19 25

21 23
22

guide tree:

A
A

G C
A U

A
C G

U G
U C

U
G C
G C

C
G C

A A
C

input multiple alignment:

A
U
A

:
A
A
G

:
G
C
G

<
A
A
U

<
C
C
C

<
U
U
U

:
U
U
U

:
C
C
C

:
G
G
-

:
G
G
G

>
A
A
C

:
U
U
A

>
C
G
C

>
U
-
G

:
G
C
G

<
G
A
G

<
C
C
C

:
G
C
A

<
A
A
C

:
C
A
C

:
A
A
A

:
C
G
U

>
C
U
U

>
C
G
C

>
human
mouse

orc

[structure]

g
.
.
.

c
.
.
.

.
a
.
.

.
a
.
.

1 5 10 15 20 25 28

example structure
(human):

states for 3 guide tree nodes:A C

B

D parse trees of aligned input sequences:

Figure 1.12: Input alignment, CM guide tree, state graph and parse trees. A
toy multiple alignment of three RNA sequences, with 28 total columns, 24 of which will
be modeled as consensus positions. In the consensus secondary structure ([structure])
< and > symbols mark base-pairs, :s mark consensus single stranded positions, and .s
mark non-consensus insert columns in which more than half the sequences contain gaps.
Columns with white text on gray background correspond to the three nodes in (C). (B): The
structure of one sequence from (A), the same structure with positions numbered according
to alignment columns, and the guide tree of nodes corresponding to that structure, with
alignment column indices assigned to nodes (for example MATP node 5 will model the base-
pair between columns 4 and 14). Nodes shown on gray background are expanded to states
in (C). (C): The state topology of three selected nodes of the CM. The consensus pair and
singlet states (two MPs and one ML) are white, and the insertion/deletion states are gray.
State transitions are indicated by arrows. (D): Parse trees of the three aligned sequences
from (A) given the CM. The full sequences can be read by starting at the top left of each
parse tree and following counterclockwise along the yield of the tree. States corresponding to
the consensus path through the model are white, and insertions/deletions to the consensus
are gray. The states and associated residues from the three nodes in (C) are shown on gray
background. This figure is similar to one I published with Sean Eddy in [189] and originally
derives from [192] which includes a figure of the full CM state graph for this example family.

48

to this fixed model, insert and delete states must exist for each node. An analogous, but

implicit, step occurs in profile HMM construction when a node for each consensus column

of the input alignment is populated with separate match, insert, and delete states.

There are nine CM state types, many of which occur in more than one node type and

each of which corresponds to a particular production rule:

node types containing each state type

state type description production rule MATP MATL MATR ROOT BIF BEGL BEGR END

MP match pair S → aSb x

ML match left S → aS x x

MR match right S → Sb x x

D delete S → S x x x

B bifurcation S → SS x

S start S → S x x x

E end S → ε x

IL insert left S → aS x x x x

IR insert right S → Sb x x x

The CM grammar formulation implemented in infernal defines the connectivity of

states via transitions [192]. Each state may only transition to each insert state in its own

node and to all non-insert states in the following node, with two exceptions. B states model

bifurcations by taking requisite transitions to two states, and E states do not transition to

any other state. Part C of Figure 1.12 shows the states and corresponding transitions for

three nodes of the complete CM. (For a more complete example, see [192]). This definition

of connectivity ensures that at least one non-insert state in each node is visited by any CM

parse tree (except when the model is locally configured, as discussed below).

A parse tree and its corresponding sequence is generated from a CM just like in the

CFG examples earlier in the chapter, with the main difference that each production rule

(emission and transition) has an associated probability. Sequences are generated from the

outside-in as opposed to from left to right as in regular grammars like HMMs, by starting at

the S state of the ROOT node (referred to as a ROOT S state by convention) and transitioning

from state to state in the model following each state’s production rules.

49

CM parameterization

A CM is parameterized using the implicit parse trees of each aligned sequence in the input

alignment; that is, the parse tree that would generate the sequence as it appears in the

alignment. These are determined using the mapping of the guide tree nodes to consensus

positions. For example, in Figure 1.12, the CG consensus base-pair between alignment

columns 6 and 11 is modeled by guide tree node 8, a MATP node. All three of the input

sequences have a CG base-pair at these positions, which means their implicit parse trees

include the use of the S → cSg production rule of node 8’s MP state to emit a C and a G to

consensus positions 6 and 11 respectively.

The emission and transition probabilities of a CM are then set in the same manner as

in profile HMMs (Equation 1.2), as mean posterior probability estimates based on observed

counts cx from the implicit parse trees in the input alignment and a prior defined by α

pseudocounts:

px =
cx + αx∑
y(cy + αy)

(1.4)

Where x corresponds to a particular transition or emission for a particular state and∑
y is summing over all possible transitions or emissions from that particular state. This

equation is used to calculate the transition and emission probabilities for all states in the

model. In infernal 0.55, all α values are set as 1.0, corresponding to an uninformative

plus-one prior (as discussed for profile HMMs).

Log-odds scores (sx) for each emission and transition x are derived from the corre-

sponding CM probability and a null model probability in the same way they are for profile

HMMs: sx = log2
px

rx
. The null model corresponds to a single state HMM with equiprobable

emission probabilities for each A, C, G, and U (ra = rc = rg = ru = 0.25) and self transition

probability of 1.0.

50

Scoring and aligning sequences using CMs

Given a parameterized CM, target sequences are scored using CM versions of the Cocke-

Younger-Kasami (CYK) [120, 135, 285] and Inside algorithms [53]. CYK and Inside are

the SCFG analogs of the HMM Viterbi and Forward algorithms, respectively. Given target

sequence x, CM M , and null model R, CYK calculates:

Sc = log2

P (x, π̂|M)
P (x|R)

,

the log-odds score that x was generated by the model using the most likely parse tree

π̂ that could have generated it. Inside calculates:

Si = log2

P (x|M)
P (x|R)

=
∑

π
P (x, π|M)
P (x|R)

,

the log-odds score that the target sequence was generated by the model (by summing

over all possible parse trees π that could have generated it) versus the null model.

When performing homology searches, actual RNA homologs are usually embedded

within much longer target sequences, such as chromosomes if a complete genome sequence

is being searched. As a result, the implementations of the CM CYK and Inside algorithms

used for homology search report high-scoring target subsequences, and can be classified as

local with respect to the target.

CMs can also be used to generate multiple alignments of homologous RNAs. In in-

fernal this is done using an implementation of CYK that is global with respect to the

target to determine the most likely parse trees of full target sequences to a CM. Collections

of parse trees for multiple sequences imply a multiple alignment, by placing the residues

from different sequences that are associated with the same CM state in the same alignment

column. For example, in Figure 1.12, the parse trees in part D correspond to the alignment

in part A.

51

Local and global CMs

In addition to CM DP algorithms, the CM itself can be configured in both global and local

modes [192]. The description up to this point has focused on global mode, for which all

parse trees start at the lone ROOT S state and visit at least one non-insert state in each node.

This is enforced by the CM formalism’s definition of transitions as explained above. In local

mode, two additional types of transitions are allowed: local begin transitions are allowed

from the ROOT S state to any internal node (i.e. non-END and non-ROOT node) of the model,

and local end transitions from any internal node to a special EL state. The EL state is similar

to an insert state and includes a self-transition. Once a parse (sub)tree has entered the EL

state it cannot transition back to another state of the model. These additional transitions

allow a locally configured model to tolerate large insertions and deletions of sequences and

substructures that are not part of the consensus model, but may exist in RNAs that are

remotely homologous to the seed alignment sequences. Figure 1.13 provides an example of

the use of local begin and end transitions.

Rfam: high-throughput homology search and annotation using CMs

The rfam database is a curated collection of structural RNA families maintained at the

Wellcome Trust Sanger Institute in Cambridge, UK that uses CMs for high-throughput

annotation of putative RNA homologs in the large rfamseq sequence database (currently

about 120 Gb) [89]. Each family is represented by three pieces of data: a consensus structure

annotated seed alignment, a CM built from the seed using infernal’s cmbuild program,

and a full alignment of putative homologs. The database has grown rapidly since its incep-

tion in 2002 (Table 1.6). During the course of my thesis work the number of RNA families

in the database has risen from less than 200 (release 5.0) to more than 1300 (release 9.1).

For each release of the database, blast is used as a filter for each family by search-

ing rfamseq for high-scoring subsequences using each seed sequence as a separate blast

query. Hits with E-values less than a threshold (E = 100 by default) are saved and are

reevaluated using the CM search algorithms implemented in infernal’s cmsearch program.

52

ROOT 0
MATL 1
MATL 2
BIF 3

BEGL 4
MATP 5
MATP 6
MATR 7
MATP 8
MATL 9
MATL 10
MATL 11
MATL 12
END 13

BEGR 14
MATL 15
MATP 16
MATP 17
MATL 18
MATP 19
MATL 20
MATL 21
MATL 22
END 24

G A A G C T C G T T C T G A A T G T T C G A T T

Begin locality
ROOT 0
MATL 1
MATL 2
BIF 3

BEGL 4
MATP 5
MATP 6
MATR 7
MATP 8
MATL 9
MATL 10
MATL 11
MATL 12
END 13

BEGR 14
MATL 15
MATP 16
MATP 17
MATL 18
MATP 19
MATL 20
MATL 21
MATL 22
END 23

A A G A T C T C A G A T T T A G C G A T G G G A A G G T C T C A C C T

EL

End locality

Figure 1.13: Examples of CM local begin and end transitions. An example of begin
locality (left) and end locality (right) are shown using a guide tree representation of the CM
from Figure 1.12. For begin locality (left), a local begin transition is used from ROOT node
0 to an internal node, in this case a BEGL node, bypassing nodes 1, 2, and 3 and the states
within them. The parse tree continues only until END node 13 is reached, emitting (aligning
to) the subsequence CGTTCTGAATGT in the target sequence. The remainder of the sequence
is considered non-homologous to the model. For end locality (right), a local end transition
from a state in MATL node 21 to the special EL state bypasses nodes 22, 23, and 24. The
EL state implicitly emits (aligns to) the intervening target subsequence GGGAAGGTCTCA that
is not aligned by the rest of the parse tree. This figure is reprinted with permission from
[138].

Any sequence that receives a CM score above a manually curated family-specific bit score

threshold (determined as the score just above the highest-scoring clearly false positive hit)

are saved as putative homologs. The set of putative homologs is then aligned to the CM

using infernal’s cmalign program to create the family’s full alignment.

Each family’s CM, seed alignment and full alignment are made freely available with

each release. The alignments are useful for several purposes including phylogenetic infer-

ence and examining the phylogenetic range spanned by an RNA family. The CMs can be

downloaded and used with the freely available infernal to search for and annotate RNAs

in other datasets, such as genomes, and to create structurally annotated multiple sequence

alignments. As of this writing, according to Google Scholar, the three rfam publications

[89, 99, 100] have collectively been cited 1337 times. rfam is an important resource. Its

usage of infernal serves as important motivation for the continued development and im-

provement of the software.

53

of infernal rfam infernal
year release families version head team
2002 0.1 4 0.3 SGJ SRE
2002 0.2 12 0.3 SGJ SRE
2002 0.3 21 0.3 SGJ SRE
2002 1.0 25 0.4 SGJ SRE
2002 2.0 30 0.55 SGJ SRE
2003 3.0 36 0.55 SGJ SRE
2003 4.0 114 0.55 SGJ SRE
2003 4.1 165 0.55 SGJ SRE
2003 5.0 176 0.55 SGJ SRE
2004 6.0 350 0.55 SGJ SRE
2004 6.1 379 0.55 SGJ SRE
2005 7.0 503 0.55 SGJ SRE
2007 8.0 574 0.7 PPG EPN, DLK, SRE
2007 8.1 607 0.81 PPG EPN, DLK, SRE
2008 9.0 603 0.81 PPG EPN, DLK, SRE
2008 9.1 1372 0.81 PPG EPN, DLK, SRE

Table 1.3: Growth of the Rfam database. All three letter abbreviations are initials:
SGJ: Sam Griffiths-Jones; SRE: Sean R. Eddy; PPG: Paul P. Gardner; EPN: Eric P.
Nawrocki; DLK: Diana L. Kolbe. “rfam head” is the rfam project leader at the time
of release. “infernal team” is the software development team that contributed to the
infernal version used for each rfam release.

The use of blast filters in the rfam pipeline is undesirable but necessary. It is undesir-

able because blast scores only sequence similarity. Some remote homologs with relatively

divergent sequence but conserved structure that would receive high CM scores may not pass

the filter score threshold. This is especially unfortunate because the discovery of remote

homologs disproportionately expands knowledge of the family. The blast filter is necessary

though because CM searches of large databases are prohibitively slow. Even for the rfam

curators, who have a access to a large compute cluster, it is only practical to use CMs to

search the small fraction of rfamseq that survives the filters. The slow speed and other

limitations of CM methods are discussed in detail in the next section.

54

Limitations of CMs

The most serious limitation of CMs, and all types of SCFGs, is their high computational

complexity. The CM CYK and Inside search algorithms scale O(LN2 logN) for a target

database of length L and query model length (number of consensus columns) of N . Here

are some example running times of using the CYK algorithm implemented in infernal

0.55 to search for RNAs of various sizes (on a single Intel Xeon 3.0 GHz processor):

search time

family length (hours/Mb)

mir-10 74 0.68

U5 120 2.37

5.8S rRNA 154 4.26

Lysine riboswitch 175 7.13

SRP RNA 304 14.22

RNase P RNA 370 44.68

To search a typically sized bacterial genome (about 10 Mb, both strands of a 5 Mb

genome) with a Lysine riboswitch model would take roughly 3 days. The same search with

a RNase P model would take roughly two and a half weeks. Using the same two models

to search the roughly 3 Gb chimpanzee genome would take roughly two years and fifteen

years, respectively. These times are clearly impractical.

Another limitation of CMs is that their simple parameterization scheme requires deep

multiple alignments (> 20 sequences) to build sensitive and specific models. infernal

version 0.55 uses an uninformative plus-one prior for parameterization of emission and

transition probabilities. Uninformative priors disproportionately affect models built from

small numbers of sequences because the fewer sequences present in the seed alignment, the

higher the weight of the prior (the α values in equation 1.4). More than half of the 503

families in rfam 7.0 contain less than 5 sequences in the training alignment (Figure 1.14).

As discussed earlier, the replacement of plus-one priors with informative mixture Dirichlet

priors for profile HMM parameterization lead to a significant increase in their sensitivity

55

0 20 40 60 80 100

0

20

40

60

80

100

Number of sequences in family’s seed alignment

Number of
Rfam 7.0
families

Note: 17 seed alignments are not shown, with sizes:
109, 115, 116, 143, 170, 172, 207, 235, 236
387, 425, 454, 601, 822, 851, 1113, 1403.

Figure 1.14: Histogram of number of sequences in Rfam 7.0 seed alignments. The
histogram shows data for 486 of the 503 rfam 7.0 seed alignments. The other 17 have more
than 100 sequences in the seed, as listed in top right of plot.

for protein homology search [234]. The small size of the rfam seed alignments suggest that

using mixture Dirichlet priors could have a profound impact for rfam.

An inherent limitation of CMs (and all SCFGs) is that they can only model well-nested

base-pairing interactions. This is because of how sequences are generated from the outside-

in by SCFGs (Figure 1.11). In an SCFG parse tree structure, like the one in Figure 1.11,

there will never be overlapping lines connecting states to residues, nor will any residue be

connected to more than one state. However, many RNA structures include sets of base-pairs

that correspond to these scenarios. Formally, in a well-nested set of base-pairs there are no

two base-pairs between positions i : j and k : l such that i < k < j < l. A pseudoknot is

introduced when the addition of one or more new base-pairs to a well-nested set violates this

criteria. Base triples, which occur when one position is base-paired to more than one other

position, also violate the well-nested criteria and so cannot be modeled by SCFGs. Many

structural RNAs have pseudoknots and base triples, such as RNase P RNA, small and large

subunit ribosomal RNA and telomerase RNA. Fortunately, in many RNAs, including these

four, the large majority of base-pairs can be defined in a well-nested set. The secondary

structure diagrams of RNase P RNA in Figure 1.3 depict some pseudoknots, including the

interaction labeled “P4”. Notably, some RNA sequence- and structure-based homology

search methods can model pseudoknots, such as rnatops [121] and erpin [90].

56

CMs only model a single consensus structure. This is a limitation because homologous

RNAs vary in structure as well as sequence. While some structural features are crucial

to an RNA’s function and are highly conserved, others can tolerate small or even large

changes. CMs can only handle this in a crude fashion via local alignment as explained above,

by allowing large insertions of unstructured residues and deletions of consensus structural

elements with a small score penalty. Additionally, some RNAs, such as riboswitch elements,

are known to adopt at least two stable structures, both of which have functional importance.

A CM must choose one of these two structures to model. (For these cases, the structure

that contributes the most additional information relative to a sequence-only profile should

be chosen.)

Some of these limitations are more easily addressed than others. Adding the ability

to model pseudoknots and base triples or relaxing the requirement that a CM model a

single consensus structure would likely require either significant changes to the CM gram-

mar formulation and construction procedure, or augmentation of CM methods with other

types of models. Alternatively, the speed and parameterization issues can, and have been,

approached within the existing CM framework.

1.7 Addressing the limitations of covariance models

RSEARCH: CMs from single sequence queries

The rsearch program uses a CM built from a single RNA sequence and structure query

to search for homologs [138]. Instead of using position-specific scores derived from a seed

alignment, rsearch uses position-independent scores from the ribosum RNA substitu-

tion matrices in the same way blast uses the blosum matrices. This approach partially

addresses the limitation of CM methods to determine appropriate parameters when very

few homologs of the query family are known. The ribosum matrices include a 16 × 16

substitution matrix defining possible base-pair substitutions used to score base-pairs and a

4× 4 matrix for scoring single-stranded positions. The scores were derived similarly to the

57

blosum scores, but using structurally annotated RNA alignments (large and small subunit

ribosomal RNA alignments) instead of protein alignments. The single sequence CM tran-

sition scores in rsearch, which include gap penalties, are set as arbitrary penalties that

were chosen based on good empirical performance [138]. While rsearch uses a different

scoring system than standard CMs, it still uses the same CYK scoring algorithm. However,

partly because rsearch does not use probabilistic transition scores, the Inside algorithm

cannot be used to sum over all possible alignment scores for a given target sequence.

rsearch is able to detect similarities between RNA sequences that primary sequence

based methods like blast cannot. One such example out of several detailed in [138] is

the detection, with a statistically significant E-value less than 10−5, of SRP RNA in the

genome of the plant Arabadopsis thaliana using a mammalian (Homo sapiens) SRP RNA as

a query. For this search, neither blast nor ssearch (a Smith-Waterman implementation)

[205] find any significant hits with an E-value less than 10.

tRNAscan-SE: using CMs to annotate tRNAs in genomes

tRNAs are particularly well suited for modeling with CMs because they are short (about 70

nt) and evolve rapidly at the sequence level while strongly conserving a canonical cloverleaf

structure. A sequence and structure tRNA profile derives about as much information from

structure as it does from sequence (about 25 bits from each, Figure 1.9), making it an outlier

relative to other RNA families. A related reason that CMs should work well for tRNAs is

that thousands of examples are known, so deep seed alignments can be used to construct

CMs that have well-defined parameters resulting from mean posterior estimation using a

large number of observations (equation 1.4). Further, because there is very little structural

variation amongst tRNAs (with the exception of mitochondrial tRNAs), modeling them

using a single consensus structure is almost always appropriate.

Several tRNA specific homology search programs have been developed, but the most

widely used program, tRNAscan-SE, uses CMs [162]. To circumvent the high computational

complexity of CM search algorithms, the program uses optimized versions of two fast tRNA-

58

specific alignment methods to prefilter a target database ([74, 204]. Any candidate tRNAs

that survive either filter is reevaluated using two different CMs. The first, a canonical

tRNA model, was built from a structural alignment of 1415 tRNAs, including 38 that

contain introns (so the CM is aware that some tRNAs will contain introns). The second

CM models selenocysteine tRNAs, which have a slightly different structure than canonical

tRNAs. Combining CMs with the fast prefilters in this way improved the sensitivity of

tRNA detection from 95.1% to 99.5% and reduced the false positive rate from 0.37 per Mb

to less than 0.00007 per Mb relative to using one of the filtering methods alone [74]. The

tRNAscan-SE program is commonly included in genome annotation pipelines to annotate

tRNAs in genomes.

Accelerating CMs in the general case

tRNAscan-SE demonstrates the power of CM methods and removes the speed barrier using

heuristic prefilters. The filters are tRNA-specific though and are useless for the hundreds

of other rfam families. rfam uses blast as a filter for the general case. Several other

methods have been developed for general CM acceleration, which can be divided into two

classes: those that use sequence-based scoring schemes, and those that use sequence- and

structure-based filters. I will list some of these techniques below.

As mentioned above, profile HMMs outperform blast in protein homology search, so

they may be more effective than blast at filtering for CMs. As a graduate student with

Larry Ruzzo at the University of Washington, Zasha Weinberg introduced several types of

profile HMM based filters for CM searches [263–266]. Weinberg/Ruzzo rigorous filter profile

HMMs are parameterized so as to guarantee that any sequence that will score above a score

threshold to a CM will survive the filter [264]. The acceleration achieved by rigorous filters

varies from family to family, and they are not practical (do not save time) for a small fraction

of CMs. Weinberg/Ruzzo maximum-likelihood ML heuristic HMM filters provide a more

consistent acceleration across families while sacrificing the guarantee that all high-scoring

CM hits will survive [265]. Their strategy sets the filter score threshold to allow a predicted

59

0.01 fraction of the database to survive. A ML-heuristic HMM is carefully constructed to

be as similar as possible to a CM. Zhang et al. [288] introduced a sequence-based filtering

method for sequence- and structure models closely resembling infernal CMs that requires

a target subsequence contain one or more of a pre-generated list of model-specific high-

scoring keywords to survive the filter. This approach is similar to how blast and fasta

require high-scoring keyword matches prior to using banded DP to determine final scores.

Sequence- and structure-based methods have also been developed for CM filtering. Wein-

berg and Ruzzo have supplemented their HMM filtering strategies with one that uses sub-

CMs, small models constructed to model only a substructure (parse subtree) of a full CM

[263]. Zhang et al. [287] developed a filtering method for single sequence CM-like searches

that quickly identifies (k,w) − stacks, disjoint subsequences that could form high-scoring

base-paired helices. Only subsequences containing one or more of these regions survive

the filter. Finally, Sun and Buhler have described a method based on secondary structure

profiles (SSPs) that score both sequence and structural similarity to substructures modeled

by a CM [247]. A set of SSPs, each of which typically models a substructure with low

probabilities of insertions and deletions, are collectively used to filter.

Other uses of CMs and profile SCFGs

infernal is not the only implementation of CMs. The RaveNnA freely available pack-

age of Weinberg and Ruzzo includes infernal, but also implements the filtering methods

described above [266]. cmfinder, a freely available package developed by Yao and Ruzzo,

is a structural motif finder that looks for common RNA structural elements in multiple se-

quences, such as genomes. cmfinder includes source code from Sean Eddy’s cove software

package [61, 65], the predecessor of infernal, as well as some important parameters from

infernal [189]. Zhang et al.’s filters and CM-like models are implemented in the fastr

program [287, 288]. The rnatops program implements a structure graph model that uses

both profile HMMs and simplified CMs for homology search in a manner that allows pseu-

doknots to be modeled [121]. Finally, rnacad includes an alternative implementation of

60

profile SCFGs to CMs [24]. This program was developed by Michael Brown in the lab of

David Haussler, in which Yasu Sakakibara and colleagues independently introduced profile

SCFGs for RNA sequence analysis [224, 226] the same year as Eddy and Durbin [65]. Al-

though rnacad is the latest implementation from the Haussler group, it seems to be no

longer actively developed as far as I can tell. rnacad was used by the Ribosomal Database

Project [39] for alignment of SSU rRNA until 2008, when it was replaced with infernal

[40] (this is discussed in detail in Part 2 of this work).

Alternatives to profile SCFGs

Of course, not all methods for scoring sequence and structure during RNA homology search

are based on profile SCFGs. A separate, broad class implements what I will call pattern-

matching approaches. Some of the more popular pattern-matching tools are patscan [52],

rnamotif [167], erpin [90], patsearch [101], rnabob [64], locomotif [217] and rna-

pattern [136]. These programs specify a query pattern of an RNA family or motif (a

common structural element present in many families) that defines constraints on sequence

and structural characteristics of the family derived from known examples. Constraints

include limits on possible stem lengths, positions and sizes of loops, and in many cases

acceptable single-stranded and base-paired residues. Figure 1.15 depicts a pattern used to

define an E-loop RNA structural motif by the rnamotif program [167]. Homology search is

performed by scanning target databases for matching subsequences that satisfy the pattern

constraints.

A useful pattern must be sensitive enough to match to all known homologs as well as yet

undiscovered ones, and also specific enough to not match a large number of spurious, non-

homologous sequences. Patterns are often manually created, or automatically constructed

and manually refined, to delicately balance this sensitivity/specificity trade-off.

A general drawback the pattern-matching approach as described above is the binary

output of the results: a target sequence either matches the pattern or it does not. In

this way all positive matches are considered equal, which makes the statistical significance

61

Figure 1.15: A pattern defining the E-loop RNA structural motif used by the
RNAMOTIF program. Constraints on the possible sizes and residues of various parts
of the motif are annotated. Matching sequences must satisfy all constraints. For example,
a matching sequence must include the sequence AGUA matched to the left (5’) side of the
internal loop within the dotted box, and include a stretch of between 3 and 20 residues that
matches to the top loop region (marked “3-20”). This figure is reprinted with permission
from [167].

62

of a match difficult to estimate. Several recent pattern-matching tools have addressed this

drawback by incorporating scores, which are sometimes position-specific, for single stranded

residues as well as base-pairs. A notable example is the erpin program [90] which introduced

the secondary structure profiles that were extended and applied as filters for CM searches

by Sun and Buhler [247].

An important advantage of many pattern-matching tools is their fast speed relative to

profile SCFGs. In general, the number of calculations required to determine if a sequence

matches the constraints of a pattern is far less than those required to determine the optimal

alignment of a sequence to a CM using CYK. An additional advantage is that some pattern-

matching based programs, including rnamotif and erpin can model pseudoknotted base-

pairing interactions which SCFGs cannot.

A recent, independent, benchmark tested the performance of various homology search

tools on RNA homology search. Primary sequence-based methods such as blast and hm-

mer were tested as well as sequence- and structure-based methods including CMs and a

single pattern-matching tool - erpin. Three of the top performing methods in terms of

sensitivity and specificity were CM-based (infernal6, rsearch and RaveNnA), each of

which outperformed erpin, but these methods were also the slowest.

1.8 Outline of Part 1 of this work

The remainder of Part 1 of this dissertation describes my work on alleviating two serious

limitations of CM homology search methods: their slow speed and simplistic parameteriza-

tion. Chapter 2 details the application of informative Dirichlet priors and entropy weighting

for improved CM parameterization, as well as a banded DP technique for accelerating CM

searches.7 Chapter 3 describes infernal version 1.0, which implements the improved CM

methods I have worked on.8 In chapter 4, I discuss the combination of the banded DP
6Version 0.7 of infernal was used in this benchmark, which includes the Dirichlet mixture priors and

entropy weighting strategies discussed in Chapter 2.
7Chapter 2 is co-authored by myself and Sean Eddy and independently published as [189].
8Chapter 3 is independently published as [190] and is co-authored by myself, Diana Kolbe and Sean Eddy.

63

technique from 2 and profile HMMs as a two-stage filter pipeline for accelerating infer-

nal searches. Chapter 5 details how and why infernal should be used for RNA homology

search, with an emphasis on environmental metagenomics datasets.9 Finally, Chapter 6

concludes part 1 of this work, with a brief discussion of its impact on CM homology search

performance. Part 2 of this work, which includes its own introduction, describes improving

CM methods for large-scale SSU rRNA alignment.

9Chapter 5 was co-authored with Sean Eddy and submitted as a chapter for a book on metagenomics.

64

Chapter 2

Query-Dependent Banding (QDB)

for Faster RNA Similarity

Searches1

2.1 Abstract

When searching sequence databases for RNAs, it is desirable to score both primary sequence

and RNA secondary structure similarity. Covariance models (CMs) are probabilistic models

well suited for RNA similarity search applications. However, the computational complexity

of CM dynamic programming alignment algorithms has limited their practical application.

Here we describe an acceleration method called query-dependent banding (QDB), which uses

the probabilistic query CM to precalculate regions of the dynamic programming lattice that

have negligible probability, independently of the target database. We have implemented

QDB in the freely available infernal software package. QDB reduces the average-case

time complexity of CM alignment from LN2.4 to LN1.3 for a query RNA of N residues and

a target database of L residues, resulting in a four-fold speedup for typical RNA queries.
1This chapter was published independently as Nawrocki EP, Eddy SR. Query-dependent Banding (QDB)

for faster RNA similarity searches. PLoS Comput Biol. 3(3):e56. It is reprinted here without modification
except where necessary to adhere to dissertation formatting guidelines.

65

Combined with other improvements to infernal, including informative mixture Dirichlet

priors on model parameters, benchmarks also show increased sensitivity and specificity

resulting from improved parameterization.

2.2 Introduction

Many functional RNAs conserve a base-paired secondary structure. Conserved RNA sec-

ondary structure induces long-distance pairwise correlations in homologous RNA sequences.

When performing database searches to identify homologous structural RNAs, it is desirable

for RNA similarity search programs to score a combination of secondary structure and

primary sequence conservation.

A variety of approaches for RNA similarity searching have been described. There are

specialized programs for identifying one particular RNA family or motif, such as programs

that identify tRNAs [147, 162], snoRNAs [163, 231], microRNAs [144, 157], SRP RNAs

[218], and rho-independent transcription terminators [70]. There are also pattern-matching

algorithms that rely on expertly designed query patterns [167]. However, the most generally

useful approaches are those that take any RNA (or any multiple RNA alignment) as a query,

and use an appropriate scoring system to search a sequence database and rank high-scoring

similarities [90, 287], just as programs like blast do for linear sequence comparison [3].

In a general search program, one wants to score a combination of RNA sequence and

structural conservation in a principled rather than ad hoc manner. A satisfactory solution

to this problem is known, using probabilistic models called stochastic context-free gram-

mars (SCFGs). SCFGs readily capture both primary sequence and (non-pseudoknotted)

RNA secondary structure conservation [53, 225]. Just as hidden Markov models (HMMs)

are useful for many different linear sequence modeling applications, including genefinding,

multiple alignment, motif finding, and similarity search [53], SCFGs are a generally useful

paradigm for probabilistic RNA sequence/structure analysis, with applications including

secondary structure prediction and genefinding. A particular SCFG architecture called co-

variance models (CMs) was developed specifically for the RNA similarity search problem

66

[65]. CMs are profile SCFGs, analogous to the use of profile HMMs in sequence analysis

[57, 65]. The Rfam database of RNA families [100] is based on CM software (infernal)

in much the same way that the Pfam database of protein families is based on profile HMM

software (hmmer) [75, 237].

The most serious problem with using CMs has been their computational complexity.

Applying standard SCFG dynamic programming alignment algorithms to the particular

case of CMs results in algorithms that require O(N3) memory and O(LN3) time for a query

of length N residues (or consensus alignment columns) and a target database sequence of

length L. The memory complexity problem has essentially been solved, by extending divide-

and-conquer dynamic programming methods (the Hirshberg or Myers/Miller algorithm) to

the case of CMs [57], but the time complexity problem still stands.

Weinberg and Ruzzo have described several filtering methods for accelerating CM

searches [263–265]. The original idea (“rigorous filters”) was to score a target sequence first

by a linear sequence comparison method, using a profile HMM specially constructed from

the query CM such that the profile score was provably an upper bound on the CM score; the

subset of hits above threshold would then be passed for rescoring with the more expensive

CM alignment algorithm [264]. Subsequently a “maximum likelihood heuristic” filter profile

was developed that gives up the guarantee of recovering the same hits as the unfiltered

search, but offers greater speedups [265]. For most current Rfam models, Weinberg/Ruzzo

filters give about a hundred-fold speed up relative to a full CM based search at little or

no cost to sensitivity and specificity. However, because these filters depend on primary

sequence conservation alone, they can be relatively ineffective for RNA families that exhibit

poor sequence conservation – unfortunately, precisely the RNAs that benefit the most from

SCFG-based search methods. Indeed, in this respect, we are concerned that the overall

performance of rigorous filters on the current Rfam database may be somewhat misleading.

Rfam currently uses a crude blast-based filtering method to accelerate the CM searches

used in curating the database. This step introduces a bias towards high primary sequence

similarity in current Rfam alignments. As Rfam improves and incorporates more diverse

67

structural homologs, the effectiveness of sequence-based filters will decrease. To address

this worry, Weinberg and Ruzzo have also described additional heuristics (“sub-CMs” and

the “store-pair” technique) that should capture more secondary structure information in

the filtering process [263]. Bafna and coworkers have described further improvements to

sequence filtering methods [288]. Currently, the infernal codebase includes Weinberg’s

C++ implementation of rigorous filters, but not, as yet, the ML heuristic, sub-CM, or

store-pair methods. All these methods are important, but it also remains important to us

to identify yet more methods for accelerating CMs.

Here, we describe a method for accelerating CM searches using a banded dynamic pro-

gramming (DP) strategy. In banded DP, one uses some fast method to identify a band

through the DP matrix where the optimal alignment is likely to lie, and then calculates

computationally expensive DP recursions only within that band. In most cases, including

our approach, banded DP is a heuristic that sacrifices guaranteed alignment optimality.

Banding is a standard approach in many areas of sequence analysis. Gapped blast uses

banded DP to convert ungapped high-scoring pairs (HSPs) to full gapped alignments [3].

lagan and multi-lagan use banded dynamic programming (referred to as limited-area

dynamic programming) to stitch together alignments between anchored sequences when

aligning long genomic sequences [25]. Banding has also been applied to profile SCFGs by

Michael Brown in his rnacad program by using information from a profile HMM alignment

to define bands for the expensive SCFG alignment [24]. The key to developing a banded

DP strategy is in deciding how the bands are identified. Usually, including all the examples

just mentioned, banded DP involves performing some sort of rapid approximate sequence

alignment between the query and the target.

In contrast, the method we describe here, called query-dependent banding (QDB), takes

advantage of specific properties of CMs in order to predefine bands that are independent of

any target sequence. QDB depends on the consensus secondary structure of the query, so

it is complementary to acceleration methods like the Weinberg/Ruzzo filters that rely on

sequence but not structure.

68

2.3 Results

Briefly, the key idea is the following. Each base pair and each single-stranded residue in the

query RNA is represented in a CM by a state. States are arranged in a tree-like structure

that mirrors the secondary structure of the RNA, along with additional states to model

insertions and deletions. The standard CM dynamic programming alignment algorithm

works by calculating the probability that a substructure of the query rooted at state v

aligns to a subsequence i..j in the the target sequence. The calculation is recursive, starting

at the leaves of the CM (ends of hairpin loops) and subsequences of length 0, and working

upwards in larger substructures of the CM, and outwards in longer and longer subsequences.

To guarantee optimality, at each v, the DP algorithm must score all possible i..j sub-

sequences in the target sequence. However, most of these subsequences are obviously too

long or short, when one considers the size of the query substructure under state v. For

example, when state v models the closing base pair of a consensus four-base loop, only i..j

subsequences of length six are likely to occur in any optimal alignment to state v; that is,

(j − 5, j) being the base pair, and (j − 4..j − 1) being the four bases of the hairpin loop.

Likewise, the optimal subsequence aligned to the next consensus base pair in that stem is

almost certainly of length eight.

Because insertions and deletions may occur in the target sequence, no subsequence

length is known with certainty, but because the CM is a probabilistic model, a probability

distribution for subsequence lengths under each state (including the probability of insertions

and deletions) can be analytically derived from the query CM. These distributions can be

used to determine a band of subsequence lengths that captures all but a negligible amount

of the probability mass. A CM dynamic programming algorithm can then look not at all

subsequences i, j for each state v, but only those i within a band of minimum and maximum

distance relative to each j.

To formalize this idea, we start with a description of CMs, followed by the QDB algo-

rithms for calculating the subsequence length distributions, using these length distributions

to determine bands, and using the bands in a banded CM dynamic programming alignment

69

algorithm. Calculation of the bands is sensitive to transition parameter estimation, so we

describe infernal’s new implementation of informative Dirichlet priors for CM parameter

estimation. Finally, we present results from a benchmark that suggest the sensitivity and

specificity of a QDB-accelerated search is negligibly different from a non-banded search.

Covariance models

CMs are a convention for mapping an RNA secondary structure into a tree-like, directed

graph of SCFG states and state transitions (or equivalently, SCFG nonterminals and pro-

duction rules). The CM is organized by a binary tree of nodes representing base pairs and

single-stranded residues in the query’s structure. Each node contains a number of states,

where one state represents the consensus alignment to the query, and the others represent

insertions and deletions relative to the query. Figure 2.1 shows an example of converting

a consensus structure to the guide tree of nodes, and part of the expansion of those guide

tree nodes into the CM’s state graph. Here we will only concentrate on the aspects of CMs

necessary to understand QDB, and a subset of our usual notation. For full details on CM

construction, see [57, 192].

A guide tree consists of eight types of nodes. MATP nodes represent consensus base

pairs. MATL and MATR nodes represent consensus single-stranded residues (emitted to

the left or right with respect to a stem). BIF nodes represent bifurcations in the secondary

structure of the family, to deal with multiple stem-loops. A ROOT node represents the

start of the model. BEGL and BEGR nodes represent the beginnings of a branch on the

left and right side of a bifurcation. END nodes end each branch.

The CM is composed of seven different types of states, each with a corresponding form

of production rule, with notation defined as follows:

70

3
2

4 14

5 13
12

6 11
7 10

8 9

15

16 27

17 26
18

19 25

21 23
22

guide tree:

A
A

G C

A U
A

C G
U G

U C

U

G C

G C
C

G C

A A
C

input multiple alignment:

A
U
A

:
A
A
G

:
G
C
G

<
A
A
U

<
C
C
C

<
U
U
U

:
U
U
U

:
C
C
C

:
G
G
-

:
G
G
G

>
A
A
C

:
U
U
A

>
C
G
C

>
U
-
G

:
G
C
G

<
G
A
G

<
C
C
C

:
G
C
A

<
A
A
C

:
C
A
C

:
A
A
A

:
C
G
U

>
C
U
U

>
C
G
C

>
human
mouse

orc

[structure]

g
.
.
.

c
.
.
.

.
a
.
.

.
a
.
.

1 5 10 15 20 25 28

example structure
(human):

states for 3 guide tree nodes:A C

B

 16

17

18

ROOT

MATL2

MATL3

BIF

4 14

5 13

12

6 11

7

8

9

10

BEGL

MATP

MATP

MATR

MATP

MATL

MATL

MATL

MATL

END

BEGR

MATL15

MATP16 27

MATP17 26

MATL18

MATP19 25

MATL21

MATL22

MATL23

END

MATP

MATP

MATL

MP ML MR D

IL IR

MP ML MR D

IL IR

ML D

IL

62 63

50 51 52 53

54 55

56 57 58 59

60 61

64

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Figure 2.1: An example RNA family and corresponding CM. (A): A toy multiple
alignment of three RNA sequences, with 28 total columns, 24 of which will be modeled as
consensus positions. The [structure] line annotates the consensus secondary structure: <
and > symbols mark base pairs, :’s mark consensus single stranded positions, and .’s mark
“insert” columns that will not be considered part of the consensus model because more than
half the sequences in these columns contain gaps. (B): The structure of one sequence from
(A), the same structure with positions numbered according to alignment columns, and the
guide tree of nodes corresponding to that structure, with alignment column indices assigned
to nodes (for example, node 5, a MATP “match-pair” node, will model the consensus base
pair between columns 4 and 14). (C): The state topology of three selected nodes of the
CM, for two MATP nodes and one consensus “leftwise” single residue bulge node (MATL,
“match-left”). The consensus pair and singlet states (two MPs and one ML) are white, and
the insertion/deletion states are gray. State transitions are indicated by arrows.

71

State type Description Production ∆L
v ∆R

v Emission Transition

P (pair emitting) P → aY b 1 1 ev(a, b) tv(Y)

L (left emitting) L→ aY 1 0 ev(a) tv(Y)

R (right emitting) R→ Y a 0 1 ev(a) tv(Y)

B (bifurcation) B → SS 0 0 1 1

D (delete) D → Y 0 0 1 tv(Y)

S (start) S → Y 0 0 1 tv(Y)

E (end) E → ε 0 0 1 1

That is, for instance, if state v is a pair state, it produces (aligns to and scores) two

correlated residues a and b and moves to some new state Y . The probability that it produces

a residue pair a, b is given by an emission probability ev(a, b). The probability that it moves

to a particular state Y is given by a transition probability tv(Y). The set of possible states

Y that v may transit to is limited to the states in the next (lower) node in the guide tree

(and insert states in the current node); the set of possible children states Y is called Cv, for

“children of v”. The indicators ∆L
v and ∆R

v are used to simplify notation in CM dynamic

programming algorithms. They are the residues emitted to the left and right of state v,

respectively. Bifurcation rules are special, in that they always transition to two particular

start (S) states, at the root of subtrees in the guide tree, with probability 1.0.

These state types essentially define a “normal form” for SCFG models of RNA, akin

to SCFGs in Chomsky normal form where all productions are in one of two forms, Y → a

or Y → Y Y . We describe CM algorithms (including QDB) in terms of this normal form.

CMs define a specific way that nodes in the guide tree are expanded into states, and how

those states are connected within each node and to states in the next node in the guide

tree. For example, a MATP node that deals with a consensus base pair contains six states

called MATP MP (a P state for matching the base pair), MATP ML and MATP MR (a

L and R state for matching only the leftmost or rightmost base and deleting the right or

left one, respectively), MATP D (a D state for deleting the base pair), and MATP IL and

MATP IR (L and R states with self-transitions, for inserting one or more residues to the

72

left and/or right before going to the next node).

Thus a CM is a generative probabilistic model of homologous RNAs. A sequence is

emitted starting at the root, moving downwards from state to state according to state tran-

sition probabilities, emitting residues and residue pairs according to emission probabilities,

and bifurcating into substructures at bifurcation states. An important property of a CM is

the states can be numbered from 0..M − 1 (from root to leaves) such that for any state v,

the states y that it can transit to must have indices y ≥ v. There are no cycles in a CM,

other than self-transitions on insert states. This is the property that enables the recursive

calculations that both CM DP alignment algorithms and QDB rely on.

Without any change in the above description, CMs apply to either global or local align-

ment, and to either pairwise alignment to single RNA queries or profile alignment to a

consensus query structure of a multiple RNA sequence alignment. CMs for single RNA

queries are derived identically to profiles of a consensus structure, differing only in the pa-

rameterization method [138]. Local structural alignment to substructures and truncated

structures (as opposed to requiring a global alignment to the whole RNA structural model)

is achieved by adding state transitions from the ROOT that permit entering the model at

any internal consensus state with some probability, and state transitions from any internal

consensus state to an END with some probability [138, 192].

QDB algorithm

Observe that for any state v, we could enumerate all possible paths down the model from

v to the END(s). Each path has a certain probability (the product of the transition prob-

abilities used by the path), and it will emit a certain number n of residues (2 per P state,

1 per L or R state in the path). The sum of these path probabilities for each n defines

a probability distribution γv(n), the probability that the CM subgraph rooted at v will

generate a subsequence of length n. Given a finite limit Z on maximum subsequence length

(defined later), we can calculate γv(n) by an efficient recursive algorithm, working from the

leaves of the CM towards the root, and from smallest subsequences to largest:

73

for v = M − 1 down to 0:

v = end state (E): γv(0) = 1

γv(d) = 0 for d = 1 to Z

v = bifurcation (B): γv(d) =
∑d

n=0
γy(n) ∗ γz(d− n) for d = 0 to Z

else (v = S, P, L, R): γv(d) = 0 for d = 0 to (∆L
v + ∆R

v − 1)

γv(d) =
∑

y∈Cv
γy(d− (∆L

v + ∆R
v)) ∗ tv(y) for d = (∆L

v + ∆R
v) to Z

For example, if we are calculating γv(d) where v is is a pair state, we know that v must

emit a pair of residues then transit to a new state y (one of its possible transitions Cv), and

then a subgraph rooted at y will have to account for the rest of the subsequence of length

d− 2. Therefore, γv(d) must be the sum, over all possible states y in Cv, of the transition

probability tv(y) times the probability that the subtree rooted at y generates a subsequence

of length d − 2 – which is γy(d − 2), guaranteed to have already been calculated by the

recursion. For the B state (bifurcation) calculation, indices y and z indicate the left and

right S (start) state that bifurcation state v must connect to.

A band dmin(v)..dmax(v) of subsequence lengths that will be allowed for each state v is

then defined as follows. A parameter β defines the threshold for the negligible probability

mass that we are willing to allow outside the band. (The default value of β is set to 10−7,

as described later.) We define dmin(v) and dmax(v) such that the cumulative left and right

tails of γv(n) contain less than a probability β
2 :

dmin(v)−1∑
d=0

γv(d) <
β

2
,

Z∑
d=dmax(v)+1

γv(d) <
β

2
.

Larger values of β produce tighter bands and faster alignments, but at a cost of increased

risk of missing the optimal alignment. β is the only free parameter that must be specified

74

to QDB.

Because CMs have emitting self-loops (i.e. insert states), there is no finite limit on

subsequence lengths. However, we must impose a finite limit Z to obtain a finite calculation.

Z can be chosen to be sufficiently large that it does not affect dmax(v) for any state v. On

a digital computer with floating point precision ε (the largest value for which 1 + ε = 1), it

suffices to guarantee that, for all v:

∑∞
d=Z+1 γv(d)∑Z

d′=dmax(v)+1
γv(d′)

≤ ε

Empirically, we observe that the tails of the γv(d) densities decrease approximately geomet-

rically. We can estimate the mass remaining in the unseen tail by fitting a geometric tail

to the observed density γv(d). Our implementation starts with a reasonable guess at Z and

verifies that the above condition is true for each v, assuming these geometrically decreasing

tails; if it is not, Z is increased and bands are recalculated until it is.

A QDB calculation only needs to be performed once per query CM to set the bands.

Overall, a QDB calculation requires Θ(MZ) in time and space; or equivalently, because

both M and Z scale roughly linearly with the length L in residues of the query RNA,

Θ(L2). The time and space requirement is negligible compared to the requirements of a

typical CM search.

Banded CYK database search algorithm for CMs

A standard algorithm for obtaining the maximum likelihood alignment (parse tree) of an

SCFG to a target sequence is the Cocke-Younger-Kasami (CYK) dynamic programming

algorithm [120, 135, 285]. Formally, CYK applies to SCFGs reduced to Chomsky normal

form, and it aligns to the complete sequence. The CM database search algorithm is a CYK

variant, specialized for the “normal form” of our seven types of RNA production rules, and

for scanning long genomic sequences for high-scoring subsequences (hits) [53].

The CM search algorithm recursively calculates αv(j, d), the log probability of the most

75

likely CM parse subtree rooted at state v that generates (aligns to) the length d subsequence

xj−d+1..xj that ends at position j of target sequence x [53, 65]. This calculation initializes at

the smallest subgraphs (E states) and shortest subsequences (d = 0) and iterates upwards

and outwards to progressively larger subtrees and longer subsequences up to a preset window

size W . The outermost loop iterates over the end position j on the target sequence, enabling

an efficient scan across a long target like a chromosome sequence. Banding is achieved simply

by limiting all loops over possible subsequence lengths d to the bounds dmin(v)..dmax(v)

derived in the band calculation algorithm, rather than all possible lengths 0..W . The banded

version of the algorithm is as follows:

Initialization (impose bands): for j = 0 to L, v = M − 1 down to 0:

for d = 0 to min((dmin(v)− 1), j) αv(j, d) = −∞;

for d = (dmax(v) + 1) down to j αv(j, d) = −∞.

Initialization at d = 0: for j = 0 to L, v = M − 1 down to 0:

v = end state (E): αv(j, 0) = 0;

v = bifurcation (B): αv(j, 0) = αy(j, 0) + αz(j, 0);

v = delete or start (D, S): αv(j, 0) = maxy∈Cv [αy(j, 0) + log tv(y)];

else (v = P, L, R): αv(j, 0) = −∞.

Recursion: for j = 1 to L, d = max(1, dmin(v)) to min(dmax(v), j), v = M − 1 down to 0

v = end state (E): αv(j, d) = −∞;

v = bifurcation (B): kmin = max(dmin(z), (d− dmax(y))),

kmax = min(dmax(z), (d− dmin(y))),

αv(j, d) = maxkmin≤k≤kmax[αy(j − k, d− k) + αz(j, k)];

v = delete or start (D, S): αv(j, d) = maxy∈Cv [αy(j, d) + log tv(y)];

else (v = P, L, R) : αv(j, d) = maxy∈Cv [αy(j −∆R
v , d− (∆L

v + ∆R
v)) + log tv(y)]

+ log ev(xi, xj).

For example, if we are calculating αv(j, d) and v is a pair state (P), v will generate

the basepair xj−d+1, xj and transit to a new state y (one of its possible transitions Cv)

which then will have to account for the smaller subsequence xj−d+2..xj−1. The log odds

score for a particular choice of next state y is the sum of three terms: an emission term

log ev(xj−d+1, xj), a transition term log tv(y), and an already calculated solution for the

76

smaller optimal parse tree rooted at y, αy(j − 1, d − 2). The value assigned to αv(j, d) is

the maximum over all possible choices of child states y that v can transit to.

The W parameter defines the maximum size of a potential hit to a model. Previous

infernal implementations required an ad hoc guess at a reasonable W . The band calcu-

lation algorithm delivers a probabilistically derived W for database search in dmax(0), the

upper bound on the length of the entire sequence (the sequence generated from the root

state of the CM).

QDB does not reduce the asymptotic computational complexity of the CM search algo-

rithm. Both the banded algorithm and the original algorithm are O(MW +BW 2) memory

and O(L(MW + BW 2)) time, for a model of M states containing B bifurcation states,

window size W of residues, and target database length L. M , B, and W all scale with

the query RNA length N , so roughly speaking, worst-case asymptotic time complexity is

O(LN3).

Informative Dirichlet priors

The subsequence length distributions calculated by QDB depend on the CM’s transition

probabilities. Transition probability parameter estimation is therefore crucial for obtaining

predicted subsequence length bands that reflect real subsequence lengths in homologous

RNA targets. Transition parameters in infernal are mean posterior estimates, combining

(ad hoc weighted) observed counts from an input RNA alignment with a Dirichlet prior

[192]. Previous to this work, infernal used an uninformative uniform Dirichlet transition

prior, equivalent to the use of Laplace “plus-1” pseudo-counts. However, we found that

transition parameters derived under a uniform prior inaccurately predict target subsequence

lengths, as shown in an example in Figure 2.2. The problem is exacerbated when there are

few sequences in the query alignment, when the choice of prior has more impact on mean

posterior estimation. To alleviate this problem, we estimated informative single component

Dirichlet prior densities for CM transition parameters, as follows.

The training data for transition priors consisted of the 381 seed alignments in the Rfam

77

0.25

0.20

0.15

0.10

0.05

0.00

100200 40 60 80

tRNA

5S

plus-1

informative

informative

plus-1

0.12

0.08

0.04

0.00

1500 50 100

plus-1

informative

RNaseP
0.04

0.03

0.02

0.01

0.00

4001000 200 300

query sequence length (nucleotides)

γ
0(d)

(probability)

γ
0(d)

(probability)

γ
0(d)

(probability)

0.30 5

4

3

1

2

0

5

4

3

1

2

0

5

4

3

1

2

0

number
of query

sequences

number
of query

sequences

number
of query

sequences

Figure 2.2: Effect of transition priors on band calculation. Predicted and actual
target lengths are shown for three CMs built from alignments of five tRNA, 5S rRNA, and
RNaseP sequences, which are about 75, 120, and 380 residues long, respectively. Solid verti-
cal lines are histogram bars of the actual lengths of the query sequences in each alignment,
corresponding with the right vertical axis labels. Dashed and dotted curves show QDB
calculations for γ0(d) for the root state of each model, for uninformative versus informa-
tive Dirichlet priors, respectively. Dashed and dotted vertical lines show the band bounds
(dmin(0) (left) and dmax(0) (right)) derived from the γ0(d) distributions using β = 10−7.
The uninformative plus-one prior results in consistent underprediction of target sequence
lengths, with a broad distribution. The new informative priors produce tighter distributions
that are centered on the actual subsequence lengths. We observe the same result for all
other states (data not shown).

78

database, version 6.1 [100]. For each alignment, we built CM structures by infernal’s

default procedure, and collected weighted counts of observed transitions in the implied parse

trees of the training sequences. Considering all possible combinations of pairs of adjacent

node types, there are 73 possible distinct types of transition probability distributions in

CMs. To reduce this parameter space, we tied these 73 distributions into 36 groups by

assuming that certain distributions were effectively equivalent. 36 Dirichlet densities were

then estimated from these pooled counts by maximum likelihood as described in [234],

with the exception that we optimize by conjugate gradient descent [213] rather than by

expectation-maximization (EM). The results, including the Dirichlet parameters, are given

in Tables 2.1 and 2.2. Using these priors for transition probability parameter estimation

results in an improvement in the utility of QDB calculations, often yielding tighter, yet

accurate subsequence length distributions, as illustrated by anecdotal example in Figure 2.2.

We also estimated informative mixture Dirichlet density priors for emission probabili-

ties. Emission probabilities have no effect on QDB, but informative emission priors should

improve sensitivity and specificity of CM searches, as they do for profile hidden Markov

models [23, 234]. We collected filtered counts of aligned single-stranded residues and base-

pairs from annotated ribosomal RNA alignments from four alignments in the 2002 version

of the European Ribosomal RNA Database [283, 284]: large subunit rRNA (LSU), bac-

terial/archaeal/plastid small subunit rRNA (SSU-bap), eukaryotic SSU rRNA (SSU-euk),

and mitochondrial SSU rRNA (SSU-mito). These alignments were filtered, removing se-

quences in which either less than 40% of the base paired positions are present or more than

5% of the nucleotides are ambiguous, and removing selected sequences based on single-

linkage-clustering such that no two sequences in a filtered alignment were greater than 80%

identical (in order to remove closely related sequences). Summary statistics for the filtered

alignments and collected counts in the training dataset are given in Table 2.3. These data

were used to estimate a nine-component Dirichlet mixture prior for base pairs, and an eight-

component Dirichlet mixture prior for single stranded residues. The base pair prior is given

in Table 2.4, and the singlet residue prior is given in Table 2.5.

79

d
is

t
ti

e
d

d
is

t
g
rp

n
o
d
e

n
e
x
t

D
ir

ic
h
le

t
α

p
a
ra

m
e
te

rs

#
to

c
o
u
n
ts

c
o
u
n
ts

st
a
te

n
o
d
e

|α
|

t
α

t
|α
|

t
α

t
|α
|

t
α

t
|α
|

t
α

t
|α
|

t
α

t
|α
|

t
α

t
|α
|

1
6

1
1

M
A
T

P
M

P
B

IF
0
.5

5
0
9

IL
0
.1

2
2
9

IR
0
.0

0
0
1

B
0
.8

7
7
0

2
7
0
2
3

7
1
1
9

M
A
T

P
M

P
M

A
T

P
7
.2

9
8
6

IL
0
.0

0
2
3

IR
0
.0

0
2
4

M
P

0
.9

8
1
6

M
L

0
.0

0
5
6

M
R

0
.0

0
4
6

D
0
.0

0
3
5

3
1
6
0
0

1
8
3
0

M
A
T

P
M

P
M

A
T

L
1
.5

9
1
4

IL
0
.0

1
7
9

IR
0
.0

1
5
5

M
L

0
.9

2
0
0

D
0
.0

4
6
6

4
1
4
5

1
9
5

M
A
T

P
M

P
M

A
T

R
1
.9

0
3
8

IL
0
.0

1
7
3

IR
0
.0

0
7
3

M
R

0
.8

9
0
3

D
0
.0

8
5
2

5
1

2
1
1

M
A
T

P
M

P
E
N

D
0
.5

5
0
9

IL
0
.1

2
2
9

IR
0
.0

0
0
1

E
0
.8

7
7
0

6
*

1
2

M
A
T

P
M

L
B

IF
3
.0

0
0
0

IL
0
.3

3
3
3

IR
0
.3

3
3
3

B
0
.3

3
3
3

7
5
7
7

5
7
7

M
A
T

P
M

L
M

A
T

P
0
.6

9
4
1

IL
0
.0

1
3
1

IR
0
.0

1
0
3

M
P

0
.4

0
3
2

M
L

0
.4

9
8
3

M
R

0
.0

1
1
5

D
0
.0

6
3
6

8
1
3
3

1
3
3

M
A
T

P
M

L
M

A
T

L
0
.9

3
1
6

IL
0
.0

7
3
9

IR
0
.0

6
5
1

M
L

0
.7

0
3
8

D
0
.1

5
7
1

9
1
5

1
5

M
A
T

P
M

L
M

A
T

R
0
.3

2
7
2

IL
0
.1

8
8
4

IR
0
.0

4
3
2

M
R

0
.4

0
8
2

D
0
.3

6
0
2

1
0
*

6
1

2
M

A
T

P
M

L
E
N

D
3
.0

0
0
0

IL
0
.3

3
3
3

IR
0
.3

3
3
3

E
0
.3

3
3
3

1
1
*

1
2

M
A
T

P
M

R
B

IF
3
.0

0
0
0

IL
0
.3

3
3
3

IR
0
.3

3
3
3

B
0
.3

3
3
3

1
2

5
3
1

5
3
1

M
A
T

P
M

R
M

A
T

P
0
.7

9
8
7

IL
0
.0

0
7
9

IR
0
.0

1
9
0

M
P

0
.3

2
4
1

M
L

0
.0

1
9
3

M
R

0
.5

6
3
1

D
0
.0

6
6
6

1
3

1
5
1

1
5
1

M
A
T

P
M

R
M

A
T

L
0
.6

9
3
3

IL
0
.0

3
5
7

IR
0
.0

6
9
9

M
L

0
.3

0
6
6

D
0
.5

8
7
9

1
4

1
5

1
5

M
A
T

P
M

R
M

A
T

R
0
.3

5
7
4

IL
0
.0

5
8
2

IR
0
.0

0
0
2

M
R

0
.7

6
2
9

D
0
.1

7
8
7

1
5
*

1
1

1
2

M
A
T

P
M

R
E
N

D
3
.0

0
0
0

IL
0
.3

3
3
3

IR
0
.3

3
3
3

E
0
.3

3
3
3

1
6
*

0
2

M
A
T

P
D

B
IF

3
.0

0
0
0

IL
0
.3

3
3
3

IR
0
.3

3
3
3

B
0
.3

3
3
3

1
7

5
7
5

5
7
5

M
A
T

P
D

M
A
T

P
0
.5

4
5
0

IL
0
.0

0
1
9

IR
0
.0

0
4
7

M
P

0
.0

8
5
7

M
L

0
.0

5
3
4

M
R

0
.0

5
2
8

D
0
.8

0
1
5

1
8

1
4
9

1
4
9

M
A
T

P
D

M
A
T

L
0
.5

8
3
1

IL
0
.0

4
2
1

IR
0
.0

5
2
6

M
L

0
.2

0
8
0

D
0
.6

9
7
3

1
9

1
4

1
4

M
A
T

P
D

M
A
T

R
0
.1

1
6
4

IL
0
.0

0
0
1

IR
0
.0

0
0
1

M
R

0
.2

4
3
9

D
0
.7

5
5
9

2
0
*

1
6

2
2

M
A
T

P
D

E
N

D
3
.0

0
0
0

IL
0
.3

3
3
3

IR
0
.3

3
3
3

E
0
.3

3
3
3

2
1

2
4

M
A
T

P
IL

B
IF

1
.4

3
9
7

IL
0
.6

5
5
3

IR
0
.0

4
4
5

B
0
.3

0
0
2

2
2

1
2
1

1
2
6

M
A
T

P
IL

M
A
T

P
0
.9

4
0
2

IL
0
.1

6
7
3

IR
0
.1

3
9
4

M
P

0
.5

9
0
4

M
L

0
.0

4
4
3

M
R

0
.0

2
5
9

D
0
.0

3
2
7

2
3

1
1
4

1
1
9

M
A
T

P
IL

M
A
T

L
0
.8

0
4
6

IL
0
.3

1
0
8

IR
0
.1

9
3
6

M
L

0
.4

6
1
0

D
0
.0

3
4
6

2
4

1
4

1
5

M
A
T

P
IL

M
A
T

R
1
.0

9
2
6

IL
0
.1

4
1
9

IR
0
.0

5
0
1

M
R

0
.6

5
3
8

D
0
.1

5
4
1

2
5

2
1

2
4

M
A
T

P
IL

E
N

D
1
.4

3
9
7

IL
0
.6

5
5
3

IR
0
.0

4
4
5

E
0
.3

0
0
2

2
6

1
3
1

M
A
T

P
IR

B
IF

0
.9

3
6
1

IR
0
.2

8
2
7

B
0
.7

1
7
3

2
7

1
4
5

2
2
7

M
A
T

P
IR

M
A
T

P
1
.5

4
9
4

IR
0
.1

8
8
4

M
P

0
.7

0
9
0

M
L

0
.0

1
6
5

M
R

0
.0

5
8
8

D
0
.0

2
7
3

2
8

1
2
9

7
0
1

M
A
T

P
IR

M
A
T

L
1
.6

3
3
2

IR
0
.3

6
8
1

M
L

0
.5

7
5
2

D
0
.0

5
6
6

2
9

8
1
6
0

M
A
T

P
IR

M
A
T

R
1
.2

4
2
8

IR
0
.2

6
3
3

M
R

0
.6

8
0
9

D
0
.0

5
5
8

3
0

2
6

0
3
1

M
A
T

P
IR

E
N

D
0
.9

3
6
1

IR
0
.2

8
2
7

E
0
.7

1
7
3

3
1

1
0
8

1
1
3
0

M
A
T

L
M

L
B

IF
1
.2

2
9
8

IL
0
.0

0
7
8

B
0
.9

9
2
2

3
2

4
2
0

1
3
1
9

M
A
T

L
M

L
M

A
T

P
2
.4

1
6
2

IL
0
.0

1
3
2

M
P

0
.9

5
2
0

M
L

0
.0

1
5
0

M
R

0
.0

1
2
9

D
0
.0

0
7
0

3
3

1
9
0
1
3

1
9
3
7
1

M
A
T

L
M

L
M

A
T

L
1
.8

6
3
2

IL
0
.0

0
8
2

M
L

0
.9

7
1
1

D
0
.0

2
0
7

3
4

8
5
9

6
6
9
2

M
A
T

L
M

L
M

A
T

R
7
2
.1

2
8
3

IL
0
.0

0
5
8

M
R

0
.9

7
5
5

D
0
.0

1
8
7

3
5

3
1

8
0
1

1
1
3
0

M
A
T

L
M

L
E
N

D
1
.2

2
9
8

IL
0
.0

0
7
8

E
0
.9

9
2
2

3
6

2
8

1
7
2

M
A
T

L
D

B
IF

6
.8

0
0
8

IL
0
.0

0
2
9

B
0
.9

9
7
1

3
7

1
0
3

1
0
3

M
A
T

L
D

M
A
T

P
0
.7

2
8
8

IL
0
.0

3
2
1

M
P

0
.5

7
3
0

M
L

0
.0

5
3
6

M
R

0
.1

6
5
4

D
0
.1

7
5
8

3
8

3
1
5
2

3
1
5
2

M
A
T

L
D

M
A
T

L
0
.4

1
0
1

IL
0
.0

1
3
8

M
L

0
.3

1
0
5

D
0
.6

7
5
6

3
9

1
5
4

1
5
4

M
A
T

L
D

M
A
T

R
0
.6

7
3
6

IL
0
.0

2
0
3

M
R

0
.6

0
1
4

D
0
.3

7
8
2

4
0

3
6

1
4
4

1
7
2

M
A
T

L
D

E
N

D
6
.8

0
0
8

IL
0
.0

0
2
9

E
0
.9

9
7
1

4
1

2
6

1
3

3
1

M
A
T

L
IL

B
IF

0
.9

3
6
1

IL
0
.2

8
2
7

B
0
.7

1
7
3

4
2

2
7

3
5

2
2
7

M
A
T

L
IL

M
A
T

P
1
.5

4
9
4

IL
0
.1

8
8
4

M
P

0
.7

0
9
0

M
L

0
.0

5
8
8

M
R

0
.0

1
6
5

D
0
.0

2
7
3

4
3

2
8

5
4
9

7
0
1

M
A
T

L
IL

M
A
T

L
1
.6

3
3
2

IL
0
.3

6
8
1

M
L

0
.5

7
5
2

D
0
.0

5
6
6

4
4

2
9

4
5

1
6
0

M
A
T

L
IL

M
A
T

R
1
.2

4
2
8

IL
0
.2

6
3
3

M
R

0
.6

8
0
9

D
0
.0

5
5
8

4
5

2
6

0
3
1

M
A
T

L
IL

E
N

D
0
.9

3
6
1

IL
0
.2

8
2
7

E
0
.7

1
7
3

T
ab

le
2.

1:
D

ir
ic

h
le

t
p
ri

or
s

fo
r

tr
an

si
ti

on
s

(t
ab

le
1

of
2)

.
“d

is
t

#
”=

in
de

x
fo

r
th

e
45

of
th

e
73

di
ffe

re
nt

ty
pe

s
of

tr
an

si
ti

on
di

st
ri

bu
ti

on
s

in
C

M
s.

T
he

re
m

ai
ni

ng
28

ap
pe

ar
in

T
ab

le
2.

2.
A

st
er

is
ks

m
ar

k
si

x
di

st
ri

bu
ti

on
s

w
hi

ch
ha

d
ve

ry
fe

w
ob

se
rv

ed
co

un
ts

ev
en

af
te

r
ty

in
g

in
to

gr
ou

ps
,
an

d
fo

r
w

hi
ch

w
e

as
si

gn
ed

a
un

ifo
rm

pl
us

-o
ne

L
ap

la
ce

pr
io

r.
“t

ie
d

to
”=

if
an

in
de

x
is

sh
ow

n
in

th
is

co
lu

m
n,

th
is

di
st

ri
bu

ti
on

w
as

es
ti

m
at

ed
in

a
gr

ou
p

(p
oo

lin
g

ob
se

rv
ed

co
un

ts
)

w
it

h
th

e
in

di
ca

te
d

di
st

ri
bu

ti
on

.
“d

is
t

co
un

ts
”=

to
ta

l
co

un
ts

ob
se

rv
ed

fo
r

th
is

di
st

ri
bu

ti
on

in
th

e
tr

ai
ni

ng
da

ta
,
be

fo
re

po
ol

in
g

in
to

gr
ou

ps
.

“g
rp

co
un

ts
”=

to
ta

l
co

un
ts

fo
r

a
gr

ou
p

of
on

e
or

m
or

e
po

ol
ed

di
st

ri
bu

ti
on

s;
th

is
is

th
e

si
ze

of
th

e
tr

ai
ni

ng
da

ta
se

ts
fo

r
36

di
ffe

re
nt

si
ng

le
-c

om
po

ne
nt

D
ir

ic
hl

et
pr

io
rs

.
“n

od
e

st
at

e”
=

un
iq

ue
C

M
st

at
e

ty
pe

th
e

tr
an

si
ti

on
is

fr
om

.
“n

ex
t

no
de

”=
th

e
no

de
ty

pe
th

at
th

e
tr

an
si

ti
on

s
ar

e
go

in
g

to
.

T
he

co
de

s
fo

r
no

de
ty

pe
s

an
d

st
at

e
ty

pe
s

in
a

C
M

ar
e

m
or

e
fu

lly
ex

pl
ai

ne
d

in
[5

7]
.

80

d
is

t
ti

e
d

d
is

t
g
rp

n
o
d
e

n
e
x
t

D
ir

ic
h
le

t
α

p
a
ra

m
e
te

rs

#
to

c
o
u
n
ts

c
o
u
n
ts

st
a
te

n
o
d
e

|α
|

t
α

t
|α
|

t
α

t
|α
|

t
α

t
|α
|

t
α

t
|α
|

t
α

t
|α
|

t
α

t
|α
|

4
6

3
1

2
0
6

1
1
3
0

M
A
T

R
M

R
B

IF
1
.2

2
9
8

IR
0
.0

0
7
8

B
0
.9

9
2
2

4
7

3
2

8
4
8

1
3
1
9

M
A
T

R
M

R
M

A
T

P
2
.4

1
6
2

IR
0
.0

1
3
2

M
P

0
.9

5
2
0

M
L

0
.0

1
5
0

M
R

0
.0

1
2
9

D
0
.0

0
7
0

4
8

3
4

5
8
3
3

6
6
9
2

M
A
T

R
M

R
M

A
T

R
2
.1

2
8
3

IR
0
.0

0
5
8

M
R

0
.9

7
5
5

D
0
.0

1
8
7

4
9

3
9

3
9

M
A
T

R
D

B
IF

0
.4

6
6
4

IR
0
.0

4
6
3

B
0
.9

5
3
7

5
0

1
7
6

1
7
6

M
A
T

R
D

M
A
T

P
0
.8

6
8
9

IR
0
.0

2
4
5

M
P

0
.6

1
2
6

M
L

0
.1

2
6
9

M
R

0
.0

4
7
1

D
0
.1

8
9
0

5
1

7
7
1

7
7
1

M
A
T

R
D

M
A
T

R
0
.4

8
6
9

IR
0
.0

1
1
9

M
R

0
.3

3
7
3

D
0
.6

5
0
7

5
2

2
6

1
5

3
1

M
A
T

R
IR

B
IF

0
.9

3
6
1

IR
0
.2

8
2
7

B
0
.7

1
7
3

5
3

2
7

3
9

2
2
7

M
A
T

R
IR

M
A
T

P
1
.5

4
9
4

IR
0
.1

8
8
4

M
P

0
.7

0
9
0

M
L

0
.0

1
6
5

M
R

0
.0

5
8
8

D
0
.0

2
7
3

5
4

2
9

1
0
7

1
6
0

M
A
T

R
IR

M
A
T

R
1
.2

4
2
8

IR
0
.2

6
3
3

M
R

0
.6

8
0
9

D
0
.0

5
5
8

5
5

3
3
8

3
3
8

B
E
G

L
S

M
A
T

P
5
.0

4
2
2

M
P

0
.9

5
7
9

M
L

0
.0

1
2
1

M
R

0
.0

1
8
3

D
0
.0

1
1
7

5
6

3
1

1
5

1
1
3
0

B
E
G

R
S

B
IF

1
.2

2
9
8

IL
0
.0

0
7
8

B
0
.9

9
2
2

5
7

3
2

5
1

1
3
1
9

B
E
G

R
S

M
A
T

P
2
.4

1
6
2

IL
0
.0

1
3
2

M
P

0
.9

5
2
0

M
L

0
.0

1
5
0

M
R

0
.0

1
2
9

D
0
.0

0
7
0

5
8

3
3

3
5
8

1
9
3
7
1

B
E
G

R
S

M
A
T

L
1
.8

6
3
2

IL
0
.0

0
8
2

M
L

0
.9

7
1
1

D
0
.0

2
0
7

5
9

2
6

2
3
1

B
E
G

R
IL

B
IF

0
.9

3
6
1

IL
0
.2

8
2
7

B
0
.7

1
7
3

6
0

2
7

3
2
2
7

B
E
G

R
IL

M
A
T

P
1
.5

4
9
4

IL
0
.1

8
8
4

M
P

0
.7

0
9
0

M
L

0
.0

5
8
8

M
R

0
.0

1
6
5

D
0
.0

2
7
3

6
1

2
8

1
9

7
0
1

B
E
G

R
IL

M
A
T

L
1
.6

3
3
2

IL
0
.3

6
8
1

M
L

0
.5

7
5
2

D
0
.0

5
6
6

6
2

1
3

1
1

R
O

O
T

S
B

IF
0
.5

5
0
9

IL
0
.1

2
2
9

IR
0
.0

0
0
1

B
0
.8

7
7
0

6
3

2
9
6

7
1
1
9

R
O

O
T

S
M

A
T

P
7
.2

9
8
6

IL
0
.0

0
2
3

IR
0
.0

0
2
4

M
P

0
.9

8
1
6

M
L

0
.0

0
5
6

M
R

0
.0

0
4
6

D
0
.0

0
3
5

6
4

3
2
3
0

1
8
3
0

R
O

O
T

S
M

A
T

L
1
.5

9
1
4

IL
0
.0

1
7
9

IR
0
.0

1
5
5

M
L

0
.9

2
0
0

D
0
.0

4
6
6

6
5

4
5
0

1
9
5

R
O

O
T

S
M

A
T

R
1
.9

0
3
8

IL
0
.0

1
7
3

IR
0
.0

0
7
3

M
R

0
.8

9
0
3

D
0
.0

8
5
2

6
6

2
1

0
4

R
O

O
T

IL
B

IF
1
.4

3
9
7

IL
0
.6

5
5
3

IR
0
.0

4
4
5

B
0
.3

0
0
2

6
7

2
2

5
1
2
6

R
O

O
T

IL
M

A
T

P
0
.9

4
0
2

IL
0
.1

6
7
3

IR
0
.1

3
9
4

M
P

0
.5

9
0
4

M
L

0
.0

4
4
3

M
R

0
.0

2
5
9

D
0
.0

3
2
7

6
8

2
3

5
1
1
9

R
O

O
T

IL
M

A
T

L
0
.8

0
4
6

IL
0
.3

1
0
8

IR
0
.1

9
3
6

M
L

0
.4

6
1
0

D
0
.0

3
4
6

6
9

2
4

1
1
5

R
O

O
T

IL
M

A
T

R
1
.0

9
2
6

IL
0
.1

4
1
9

IR
0
.0

5
0
1

M
R

0
.6

5
3
8

D
0
.1

5
4
1

7
0

2
6

0
3
1

R
O

O
T

IR
B

IF
0
.9

3
6
1

IR
0
.2

8
2
7

B
0
.7

1
7
3

7
1

2
7

5
2
2
7

R
O

O
T

IR
M

A
T

P
1
.5

4
9
4

IR
0
.1

8
8
4

M
P

0
.7

0
9
0

M
L

0
.0

1
6
5

M
R

0
.0

5
8
8

D
0
.0

2
7
3

7
2

2
8

4
7
0
1

R
O

O
T

IR
M

A
T

L
1
.6

3
3
2

IR
0
.3

6
8
1

M
L

0
.5

7
5
2

D
0
.0

5
6
6

7
3

2
9

0
1
6
0

R
O

O
T

IR
M

A
T

R
1
.2

4
2
8

IR
0
.2

6
3
3

M
R

0
.6

8
0
9

D
0
.0

5
5
8

T
ab

le
2.

2:
D

ir
ic

h
le

t
p
ri

or
s

fo
r

tr
an

si
ti

on
s

(t
ab

le
2

of
2)

.
“d

is
t

#
”=

in
de

x
fo

r
th

e
28

of
th

e
73

di
ffe

re
nt

ty
pe

s
of

tr
an

si
ti

on
di

st
ri

bu
ti

on
s

in
C

M
s.

T
he

fir
st

45
ap

pe
ar

in
T
ab

le
2.

1.
“t

ie
d

to
”=

if
an

in
de

x
is

sh
ow

n
in

th
is

co
lu

m
n,

th
is

di
st

ri
bu

ti
on

w
as

es
ti

m
at

ed
in

a
gr

ou
p

(p
oo

lin
g

ob
se

rv
ed

co
un

ts
)

w
it

h
th

e
in

di
ca

te
d

di
st

ri
bu

ti
on

.
“d

is
t

co
un

ts
”=

to
ta

l
co

un
ts

ob
se

rv
ed

fo
r

th
is

di
st

ri
bu

ti
on

in
th

e
tr

ai
ni

ng
da

ta
,

be
fo

re
po

ol
in

g
in

to
gr

ou
ps

.
“g

rp
co

un
ts

”=
to

ta
l

co
un

ts
fo

r
a

gr
ou

p
of

on
e

or
m

or
e

po
ol

ed
di

st
ri

bu
ti

on
s;

th
is

is
th

e
si

ze
of

th
e

tr
ai

ni
ng

da
ta

se
ts

fo
r

36
di

ffe
re

nt
si

ng
le

-c
om

po
ne

nt
D

ir
ic

hl
et

pr
io

rs
.

“n
od

e
st

at
e”

=
un

iq
ue

C
M

st
at

e
ty

pe
th

e
tr

an
si

ti
on

is
fr

om
.

“n
ex

t
no

de
”=

th
e

no
de

ty
pe

th
at

th
e

tr
an

si
ti

on
s

ar
e

go
in

g
to

.
T

he
co

de
s

fo
r

no
de

ty
pe

s
an

d
st

at
e

ty
pe

s
in

a
C

M
ar

e
m

or
e

fu
lly

ex
pl

ai
ne

d
in

[5
7]

.

81

The reason to use two different datasets to estimate transition versus emission priors

is the following. Rfam provides many different structural RNA alignments, but of uneven

quality and varying depth (number of sequences). The European rRNA database provides a

small number of different RNA alignments, but of high quality and great depth. A transition

prior training set should be maximally diverse, so as not to bias any transition types toward

any particular RNA structure, so we used the 381 different Rfam alignments for transitions.

Emission prior estimation, in contrast, improves with alignment depth and accuracy, but

does not require broad structural diversity per se, so we used rRNA data for emissions.

Inspection of the Dirichlet α parameters shows sensible trends. In the transition priors,

transitions between main (consensus) states are now favored (higher α values) relative to

insertions and deletions. In the base pair emission mixture prior, all components favor

Watson-Crick and G-U pairs, with different components preferring different proportions

of pairs in a particular covarying aligned column (for instance, component 1 likes all four

Watson-Crick pairs, component 2 describes covarying conservation of CG,UA,UG pairs,

and component 3 specifically likes conserved CG pairs), and the mean α parameters prefer

GC/CG pairs over AU/UA pairs. In the singlet emission mixture prior, some components

are capturing strongly conserved residues (component 1 favors conserved U’s, for example)

while other components favor more variation (components 4 and 5, for example), and the

marginal α parameters show a strong A bias, reflecting the known bias for adenine in

single-stranded positions of structural RNAs (especially ribosomal RNAs).

There is redundancy between some components (notably 5 and 8 in the base pair mixture

and 2, 3 and 8 in the singlet mixture). This is typical for statistical mixture estimation,

which (unlike, say, principal components analysis) does not guarantee independence between

components. The decision to use nine pair and eight singlet components was empirical, as

these priors performed better than priors with fewer components on the benchmark we

describe below (data not shown).

Note that all singlet positions are modeled with one singlet mixture prior distribution,

and all base pairs are modeled with one base pair mixture prior. These priors do not

82

filtered # aln # consensus # consensus base pair SS
alignment # seqs seqs columns base pairs SS columns counts counts
LSU 1551 139 7270 601 1532 65229 180558
SSU bap 12773 254 2653 421 680 97834 153565
SSU euk 7151 207 4558 407 959 72521 174260
SSU mito 1039 107 3791 216 524 19803 56510

Table 2.3: Summary statistics for the dataset used for emission prior estimation.
“SS” = single-stranded.

component i 1 2 3 4 5 6 7 8 9
qi 0.0305 0.0703 0.1185 0.1810 0.1888 0.1576 0.0417 0.0959 0.1156
|α| 14.3744 2.9920 26.2757 0.5342 4.2716 13.3232 33.8619 22.2258 33.1991

ab mean α
αab
|α|

αab
|α|

αab
|α|

αab
|α|

αab
|α|

αab
|α|

αab
|α|

αab
|α|

αab
|α|

AA 0.0063 0.0398 0.0390 0.0011 0.0017 0.0005 0.0062 0.0064 0.0058 0.0002
AC 0.0092 0.0421 0.0176 0.0009 0.0152 0.0018 0.0125 0.0115 0.0051 0.0046
AG 0.0052 0.0381 0.0226 0.0046 0.0034 0.0008 0.0032 0.0040 0.0053 0.0001
AU 0.1663 0.1092 0.0864 0.0194 0.2138 0.1464 0.2563 0.7360 0.1295 0.0404

CA 0.0086 0.0412 0.0510 0.0054 0.0027 0.0044 0.0018 0.0030 0.0138 0.0002
CC 0.0038 0.0327 0.0115 0.0030 0.0001 0.0003 0.0036 0.0039 0.0035 0.0041
CG 0.2412 0.1007 0.1392 0.8310 0.1359 0.3211 0.0889 0.0340 0.2870 0.0147
CU 0.0066 0.0418 0.0172 0.0027 0.0104 0.0019 0.0045 0.0076 0.0052 0.0003

GA 0.0061 0.0362 0.0266 0.0002 0.0074 0.0002 0.0058 0.0045 0.0042 0.0021
GC 0.2547 0.1299 0.0544 0.0206 0.1786 0.1613 0.4079 0.0945 0.1155 0.8858
GG 0.0063 0.0327 0.0142 0.0045 0.0091 0.0005 0.0072 0.0023 0.0044 0.0030
GU 0.0567 0.0811 0.0412 0.0049 0.1355 0.0451 0.0668 0.0303 0.0356 0.0218

UA 0.1571 0.1063 0.3085 0.0672 0.1856 0.2293 0.0902 0.0363 0.3108 0.0151
UC 0.0063 0.0477 0.0263 0.0006 0.0048 0.0002 0.0056 0.0042 0.0060 0.0038
UG 0.0543 0.0746 0.1054 0.0317 0.0807 0.0814 0.0299 0.0120 0.0551 0.0032
UU 0.0114 0.0459 0.0389 0.0022 0.0151 0.0048 0.0098 0.0095 0.0133 0.0008

Table 2.4: Parameters of the 9 component Dirichlet mixture emission prior for
base pairs. qi = mixture coefficient for component i. Normalized α values > 0.10 are in
bold faced type (0.10 was arbitrarily chosen to highlight higher values).

distinguish between singlet residues in different types of loops, for example, nor between a

stem-closing base pair versus other base pairs. In the future it may prove advantageous to

adopt more complex priors to capture effects of structural context on base pair and singlet

residue preference.

In another step to increase sensitivity and specificity of the program, we adopted the

“entropy weighting” technique described for profile HMMs [133] for estimating the total

effective sequence number for an input query alignment. This is an ad hoc method for

reducing the information content per position of a model, which helps a model that has

83

component i 1 2 3 4 5 6 7 8
qi 0.0851 0.0159 0.1020 0.4160 0.0745 0.0554 0.1184 0.1327
|α| 15.4467 154.4640 180.2862 5.4562 0.2199 16.4089 13.4592 19.9059

a mean α αa
|α|

αa
|α|

αa
|α|

αa
|α|

αa
|α|

αa
|α|

αa
|α|

αa
|α|

A 0.3951 0.0373 0.9961 0.9787 0.3109 0.3383 0.0375 0.0864 0.8247
C 0.1635 0.0490 0.0015 0.0052 0.2067 0.1782 0.8916 0.0303 0.0493
G 0.2041 0.0220 0.0023 0.0072 0.1751 0.2905 0.0182 0.8313 0.0569
U 0.2372 0.8917 0.0000 0.0090 0.3073 0.1930 0.0527 0.0519 0.0691

Table 2.5: Parameters of the 8 component Dirichlet mixture emission prior for
singlets. qi = mixture coefficient for component i. Normalized α values > 0.10 are in bold
faced type (0.10 was arbitrarily chosen to highlight higher values).

been trained on closely related sequences to recognize distantly related homologues [1]. In

entropy weighting, one reduces the total effective sequence number (which would normally

be the actual number of sequences in the input alignment), thereby increasing the influence

of the Dirichlet priors, flattening the transition and emission distributions, and reducing the

overall information content. We approximate a model’s entropy as the mean entropy per

consensus residue, as follows. Let C be the set of all MATP MP states emitting consensus

base pairs (a,b), and let D be the set of all MATL ML and MATR MR states emitting

consensus singlets (a); the entropy is then calculated as:

∑
v∈C −

∑
a,b ev(a, b) log ev(a, b)−

∑
v∈D

∑
a ev(a) log ev(a)

2|C|+ |D|

For each input multiple alignment, the effective sequence number is set (by bracketing

and binary search) so as to obtain a specified target entropy. The target entropy for infer-

nal is a free parameter, which we optimized on the benchmark described below to identify

our default value of 1.46 bits.

Benchmarking

To assess the effect of QDB, informative priors, and entropy weighting on the speed, sen-

sitivity, and specificity of RNA similarity searches, we designed a benchmark based on the

Rfam database [100]. The benchmark was designed so that we would test many RNA

query/target pairs, with each query consisting of a given RNA sequence alignment, and

84

each target consisting of a distantly related RNA homolog buried in a context of a random

genome-like background sequence.

We started with seed alignments from Rfam version 7.0. In each alignment, sequences

shorter than 70% the median length were removed. We clustered the sequences in each

family by single-linkage-clustering by % identity (as calculated from the given Rfam align-

ment), then split the clusters such that the training set and test sequences satisfied three

conditions: 1) no training/test sequence pair is more than 60% identical; 2) no test sequence

pair is greater than 70% identical; 3) at least 5 sequences are in the training set. Fifty-one

families satisfy these criteria (listed in Table 2.6), giving us 51 different query alignments

(containing 5 to 1080 sequences each) and 450 total test sequences (from 1 to 66 per query).

We embedded the test sequences in a one megabase “pseudo-genome” consisting of twenty

50 kilobase “chromosomes”, generated as independent, identically distributed (iid) random

sequences with uniform base frequencies. The 450 test sequences were embedded into this

sequence by replacement, by randomly choosing a chromosome, orientation, and start po-

sition, and disallowing overlaps between test sequences. The total length of the 450 test

sequences is 101,855 nt, leaving 898,145 nt of random background sequence.

The benchmark proceeds by first building a CM for each query alignment, then searching

the pseudo-genome with each CM in local alignment mode. All hits above a threshold of

8.0 in raw bit score for each of the 51 queries were sorted by score into 51 ranked family

specific lists, as well as one ranked master list of all 51 sets of scores. Each hit is classified

into one of three categories, “positive”, “ignore”, or “negative”. A “positive” is a hit

that significantly overlaps with a true test sequence from the same family as the query.

An “ignore” is a hit that significantly overlaps with a test sequence from a different family,

where “significantly overlap” means that the length of overlap between two sequences (either

two hits, or one hit and one test sequence embedded in the pseudo-genome) is more than

50% the length of the shorter sequence. (Although it would be desirable to measure the

false positive rate on nonhomologous structural RNAs, we cannot be sure that any given

pair of Rfam families is truly nonhomologous. Like most sequence family databases, Rfam

85

Rfam 7.0 family # # avg len non-banded QDB (β = 10−7) QDB (β = 10−7)
ID name query test query W time time spd up MER FP FN thr

RF00177 SSU rRNA 5 145 21 593 690 96.97 7.61 12.74 0 0 0 9.90
RF00024 Telomerase-vert 20 11 436 505 52.99 4.44 11.94 0 0 0 11.30
RF00011 RNaseP bact b 30 1 366 441 33.44 3.72 8.98 0 0 0 11.31
RF00018 CsrB 8 1 351 403 28.76 2.27 12.68 0 0 0 12.98
RF00040 rne5 6 1 338 368 19.69 2.60 7.57 0 0 0 11.79
RF00023 tmRNA 19 40 334 463 24.58 2.47 9.95 11 0 11 11.20
RF00010 RNaseP bact a 233 1 332 514 33.82 3.29 10.27 0 0 0 12.61
RF00009 RNaseP nuc 26 21 320 530 27.89 7.11 3.93 19 0 19 11.67
RF00017 SRP euk arch 28 21 303 328 14.78 2.70 5.48 6 0 6 10.40
RF00028 Intron gpI 5 24 300 381 17.55 3.59 4.88 19 2 17 10.70
RF00373 RNaseP arch 20 13 290 337 15.06 3.12 4.82 0 0 0 12.23
RF00030 RNase MRP 18 3 284 394 19.75 3.12 6.34 3 0 3 12.46
RF00101 SraC RyeA 6 1 250 278 9.50 1.54 6.19 0 0 0 11.88
RF00230 T-box 10 35 244 298 8.23 1.80 4.58 1 0 1 12.34
RF00448 IRES EBNA 7 1 213 238 7.25 1.26 5.76 1 0 1 11.99
RF00012 U3 6 5 212 240 7.17 1.61 4.46 2 0 2 13.02
RF00174 Cobalamin 87 66 203 326 9.49 2.85 3.32 0 0 0 11.28
RF00004 U2 76 1 184 215 5.95 1.12 5.29 0 0 0 10.01
RF00234 glmS 8 3 181 303 7.98 1.83 4.36 0 0 0 11.22
RF00168 Lysine 33 17 180 223 5.71 1.45 3.94 0 0 0 15.98
RF00380 ykoK 35 3 168 192 4.33 1.23 3.52 0 0 0 13.10
RF00003 U1 46 6 159 184 4.14 0.89 4.63 0 0 0 11.24
RF00025 Telomerase-cil 10 2 157 188 3.89 1.00 3.88 2 0 2 13.97
RF00002 5 8S rRNA 62 1 151 183 3.44 0.97 3.55 0 0 0 11.28
RF00379 ydaO-yuaA 31 4 147 227 4.38 1.63 2.69 0 0 0 12.25
RF00067 U15 9 3 146 178 2.71 0.98 2.76 0 0 0 11.11
RF00029 Intron gpII 7 11 141 276 4.75 1.32 3.59 1 0 1 11.08
RF00015 U4 25 1 141 187 3.66 1.04 3.53 1 0 1 13.46
RF00096 U8 5 1 135 177 2.98 0.93 3.20 0 0 0 11.56
RF00080 yybP-ykoY 20 33 129 173 3.05 1.13 2.69 1 0 1 10.78
RF00114 S15 10 1 117 138 1.78 0.60 2.99 0 0 0 13.12
RF00020 U5 29 3 115 139 2.06 0.74 2.80 0 0 0 13.64
RF00059 THI 228 8 109 222 3.34 1.46 2.29 0 0 0 13.66
RF00504 gcvT 109 5 102 199 2.37 1.40 1.70 0 0 0 13.40
RF00167 Purine 33 4 99 119 1.49 0.57 2.62 0 0 0 13.02
RF00169 SRP bact 46 15 96 120 1.47 0.65 2.26 0 0 0 11.58
RF00055 snoZ37 5 1 94 117 1.14 0.53 2.16 1 0 1 13.96
RF00019 Y 15 1 94 128 1.42 0.73 1.94 1 0 1 14.25
RF00033 MicF 8 1 93 114 1.28 0.51 2.50 0 0 0 13.18
RF00213 snoR38 7 3 88 147 1.36 0.70 1.94 0 0 0 16.07
RF00054 U25 5 1 87 107 0.96 0.46 2.09 1 0 1 16.66
RF00206 U54 12 1 81 115 0.94 0.53 1.76 1 0 1 15.80
RF00104 mir-10 9 2 73 94 0.85 0.52 1.64 2 0 2 16.13
RF00005 tRNA 1080 19 73 127 1.35 0.48 2.81 5 1 4 12.62
RF00170 msr 5 3 70 112 0.86 0.45 1.92 3 0 3 13.49
RF00163 Hammerhead 1 65 1 68 233 1.60 0.90 1.77 0 0 0 15.82
RF00031 SECIS 11 24 64 87 0.69 0.42 1.63 13 2 11 14.58
RF00165 Corona pk3 10 1 63 80 0.55 0.31 1.78 1 0 1 14.72
RF00066 U7 28 2 62 85 0.59 0.34 1.73 0 0 0 14.23
RF00008 Hammerhead 3 82 1 55 101 0.71 0.44 1.61 0 0 0 14.71
RF00037 IRE 36 1 28 45 0.17 0.12 1.39 1 0 1 17.64

MER statistics summed across all families 96 5 91 N/A
Summary MER statistics (using one threshold for all families) 114 3 111 16.38

average timing statistics 10.02 1.64 4.21
total timing statistics 510.86 83.48 6.12

Table 2.6: Rfam benchmark families with timing and MER statistics. “W” =
window length, maximum size of a hit per family, calculated as dmax(0). Running times
for standard (non-banded) and QDB (β = 10−7) searches are given for each family, in CPU-
hours per Mb. The MER threshold (“thr” column) is the bit score for a given family at
which the sum of false positives (“FP”) and false negatives (“FN”) is minimized. “MER” =
minimum error rate, FP+FN at threshold. In the row labeled “Summary MER statistics”,
these are derived from a single score threshold in a ranked list of all hits across all families.
All statistics are for infernal version 0.72 in local alignment mode.

86

is clustered computationally, and more sensitive methods will reveal previously unsuspected

relationships that should not be benchmarked as “false positives”.) A “negative” is a hit

that is not a positive or an ignore. For any two negatives that significantly overlap, only

the one with the better score is counted.

The minimum error rate (MER) (“equivalence score”) [206] was used as a measure

of benchmark performance. The MER score is defined as the minimum sum of the false

positives (negative hits above the threshold) and false negatives (true test sequences which

have no positive hit above the threshold), at all possible choices of score threshold. The

MER score is a combined measure of sensitivity and specificity, where a lower MER score is

better. We calculate two kinds of MER scores. For a family-specific MER score, we choose

a different optimal threshold in each of the 51 ranked lists, and for a summary MER score,

we choose a single optimal threshold in the master list of all hits. The summary MER

score is the more relevant measure of our current performance, because it demands a single

query-independent bit score threshold for significance. A family-specific MER score reflects

the performance that could be achieved if infernal provided P-values (currently it reports

only raw bit scores).

For comparison, blastn was also benchmarked on these data using a family-pairwise-

search (FPS) procedure [103]. For each query alignment, each training sequence is used as

a query sequence to search the pseudo-genome, all hits with an E-value of less than 1.0 were

sorted by increasing E-value, and the lowest E-value positive hit to a given test sequence is

counted.

Using this benchmark, we addressed several questions about QDB’s performance.

What is the best setting of the single QDB free parameter, β, which specifies how much

probability mass to sacrifice? Figure 2.3 shows the average speedup per family and summary

MER score as a function of varying β. There is no clear choice. The choice of β is a tradeoff

of accuracy for speed. We chose a default of β = 10−7 as a reasonable value that obtains a

modest speedup with minimal loss of accuracy.

How well does QDB accelerate CM searches? Figure 2.4 shows the time required for

87

2 4 6 8 10 12 14

105

120

140

160

180

200

220
average speed-up
summary MER

summary
minimum

error
rate (MER)

average
speed-up

-log
10
β

summary MER = 105 for non-banded (β= 0)

5

2

10

15

20

25

o

o

o

o

o
o o

o o o o o o o o
o

*
*

*

*

*
*

* * * * * * * * * *

Figure 2.3: Effect of varying the β parameter on sensitivity, specificity, and
speedup.

searching the 1 Mb benchmark target sequence with each of the 51 models, as a function

of the average query RNA length. QDB reduces the average-case running time complexity

of the CM search algorithm from LN2.36 to LN1.32. Observed accelerations relative to the

standard algorithm range from 1.4-fold (for the IRE, iron response element) to 12.7-fold

(for CsrB RNA), with an average speed-up per family of 4.2-fold. In total search time for

the benchmark (sum of all 51 searches), the acceleration is six-fold, because large queries

have disproportionate effect on the total time.

How much does QDB impact sensitivity and specificity? Optimal alignments are not

guaranteed to lie within QDB’s high-probability bands. This is expected to compromise

sensitivity. The hope is that QDB’s bands are sufficiently wide and accurate that the loss

is negligible. Figure 2.5 shows ROC plots (sensitivity versus false positive rate) on the

benchmark for the new version of infernal (version 0.72) in standard versus QDB mode.

These plots are nearly superposed, showing that the loss in accuracy is small at the default

QDB setting of β = 10−7.

88

average query sequence length (nucleotides, N)

CPU
time
(sec)

20 100 1000

100

1000

10000

1E5

1E6

QDB, β=10-7

(y=5.89N1.32)

non-banded
(y=0.10N2.36)

Figure 2.4: CPU time required by CM searches with and without QDB. The time
required for searching the 1 Mb target pseudogenome with each of the 51 benchmark models
is shown as a point, plotted on a log-log graph as a function of the average length of the
RNA sequences in the query alignment; open circles are without QDB, and filled circles are
with QDB (with the default β = 10−7). Lines represent fits to a power law (aN b), showing
that for a fixed L = 1 Mb target database size, the standard CYK algorithm empirically
scales as N2.36 and the QDB algorithm scales as N1.32. The apparent intersection of the
linear fitted lines is deceptive. At small query lengths, run time is dominated by factors
other than the CM alignment computation, such as i/o. QDB searches are always faster
than non-banded searches even for synthetic tiny queries of less than 10 nt (data not shown).

89

1 10 100 1000 10000

0.0

0.2

0.4

0.6

0.8

1.0

BLAST-FPS
Infernal v0.55
non-banded

Infernal v0.72
non-banded

Infernal v0.72
with QDB, β=10-7

False positives per MB

Sensitivity
(fraction of
450 total

true positives)

Figure 2.5: ROC curves for the benchmark. Plots are shown for the new infernal
0.72 with and without QDB, for the old infernal 0.55, and for family-pairwise-searches
(FPS) with blastn.

90

How much do our changes in parameterization (the addition of informative Dirichlet

priors and entropy weighting) improve sensitivity and specificity? Figure 2.5 shows that

the new infernal 0.72 is a large improvement over the previous infernal version 0.55,

independent of QDB. (On average, in this benchmark, infernal 0.55 is no better than

a family-pairwise-search with blastn.) Table 2.7 breaks this result down in more detail,

showing summary and family-specific MER scores for a variety of combinations of prior,

entropy weighting, and QDB. These results show that both informative priors and entropy

weighting individually contributed large improvements in sensitivity and specificity.

summary family-specific
program prior entropy (bits) β MER MER
blastn - - - 216 188

infernal 0.55 plus-1 - - 232 180
infernal 0.72 plus-1 - - 215 187
infernal 0.72 plus-1 1.46 - 208 191
infernal 0.72 informative - - 177 158
infernal 0.72 informative 1.46 - 105 90
infernal 0.72 informative 1.46 10−7 114 96

Table 2.7: Rfam benchmark MER summary statistics. “prior”: “plus-1” if uninfor-
mative Laplace plus-1 priors were used; “informative” if new Dirichlet priors were used. “en-
tropy”: target model entropy in bits for entropy weighting; “-” if entropy weighting was not
used. “β”: tail probability loss for banded calculation used; “-” if search was non-banded.
“summary MER”: MER across 51 benchmark families; “family-specific MER”: MER for
each family, summed over all 51 families. Program versions: Row 1: WU-BLASTN-2.0MP
–kap -W=7. For infernal version 0.55, window length values (W) were preset as calculated
in version 0.72 with plus-1 priors.

2.4 Discussion

CM searches take a long time, and this is the most limiting factor in using the infer-

nal software to identify RNA similarities. Prior to this work, infernal 0.55 required 508

CPU-hours to search 51 models against just 1 megabase of sequence in our benchmarks

(Table 2.6). Using QDB with β banding cutoffs that do not appreciably compromise sensi-

tivity and specificity, infernal 0.72 offers a six-fold speedup, performing the benchmark in

85 hours. Our eventual goal is to enable routine genome annotation of structural RNAs: to

91

be able to search thousands of RNA models against complete genome sequences. A search

of all 503 Rfam 7.0 models against the 3 GB human genome with infernal 0.72 in QDB

mode would take on the order of 300 CPU-years (down from 1800 with infernal 0.55).

We need to be able to do it in at most a few days, so we still need to increase CM search

speed by five orders of magnitude. Thus, the QDB algorithm is a partial but certainly

not complete solution to the problem. However, QDB combines synergistically with other

acceleration techniques. Parallelization, on large clusters (though prohibitively expensive

for all but a few centers) could give us further acceleration of three orders of magnitude.

Software improvement (code optimization) will also contribute, but probably only about

two-fold. Hardware improvements will contribute about two-fold per year or so so long as

Moore’s law continues. Finally, QDB is complementary to the filtering methods recently

described by Weinberg and Ruzzo [263–265]. We view QDB as part of a growing suite of

approaches that we can combine to accelerate infernal.

Is it really worth burning all this CPU time in the first place? Do CM searches identify

structural RNA homologies that other methods miss? Obviously we think so, but one would

like to see convincing results. For large, diverse RNA families like tRNA, where a CM

can be trained on over a thousand well-aligned sequences with a well-conserved consensus

secondary structure, CM approaches have been quite powerful. The state of the art in large

scale tRNA gene identification remains the CM-based program trnascan-se [162], and

CMs were also used, for example, to discover the divergent tRNA for pyrrolysine, the “22nd

amino acid” [238]. But Figure 2.5 shows that on average, over 51 more or less “typical”

RNA families of various sizes and alignment quality, infernal 0.55 was actually no better

than doing a family-pairwise-search with blastn. Until recently, we have spent relatively

little effort on how infernal parameterizes its models, and relatively more on reducing

its computational requirements [57], so previous versions of infernal have performed best

where naive parameterization works best: on very large, high-quality alignments of hundreds

of sequences, which are atypical of many interesting homology search problems.

In this work, partly because the level of acceleration achieved by QDB is sensitive

92

to transition parameterization, we have brought infernal parameterization close to the

state of the art in profile HMMs, by introducing mixture Dirichlet priors [234] and entropy

weighting [133]. This resulted in a large improvement in the sensitivity and specificity

of searches, as judged by our benchmark (Figure 2.5). The difference between infernal

and family-pairwise blastn now appears pronounced for average-case behavior, not just

best-case behavior. However, while we trust our benchmarking to tell us we have greatly

improved infernal relative to previous versions of itself, our benchmarking does not allow

us to draw firm conclusions about our performance relative to other software. For that,

we prefer to see independent benchmarks. Benchmarks by tool developers are notoriously

biased, and however honest we may try to be, some biases are essentially unavoidable.

For one thing, establishing an internal benchmark for ongoing code development creates

an insidious form of training on the test set, because we accept code changes that im-

prove benchmark performance. In particular, we set the entropy weighting target of 1.46

bits and the numbers of mixture prior components by optimizing against our benchmark.

Further, our benchmark does not use a realistic model for the background sequence of

the “pseudo-genome”, because we construct the background as a homogeneous IID (inde-

pendent, identically distributed) sequence, and this poorly reflects the heterogeneous and

repetitive nature of genomic sequence. This benchmark should be sufficient for an internal

comparison of versions 0.55 and 0.72 of infernal, because we have not altered how infer-

nal deals with heterogeneous compositional bias. But we cannot safely draw conclusions

from our simple benchmark about the relative performance of infernal and blast on real

searches, for example, because blast may (and in fact does) treat sequence heterogeneity

better than infernal does. In this regard, currently we are aware of only one independent

benchmark BRaliBase III [85]. BRaliBase III consists of many different query alignments

of 5 or 20 RNA sequences, drawn from three different RNA families (U5, 5S rRNA, and

tRNA). These authors’ results broadly confirm our internal observations: while infernal

0.55 showed mediocre performance compared to blastn and several other tools, a recent

version of infernal stood out as a superior method for RNA similarity search.

93

Nonetheless, though infernal 0.72 shows large improvements in speed, sensitivity,

and specificity over previous versions, there are numerous areas where we need to improve

further.

A significant gap in our current implementation is that infernal reports only raw

bit scores, and does not yet report expectation values (E-values). CM local alignment

scores empirically follow a Gumbel (extreme value) distribution [138], just as local sequence

alignment scores do [130], so there are no technical hurdles in implementing E-values. This

will be an immediate focus for the next version of infernal. E-value calculations not only

have the effect of reporting statistical significance (more meaningful to a user than a raw bit

score), but they also normalize each family’s score distribution into a more consistent overall

rank order, because different query models exhibit different null distributions (particularly

in the location parameter of the Gumbel distribution). We therefore expect E-values to

contribute a large increase in performance whenever a single family-independent threshold

is set. Table 2.7 roughly illustrates the expected gain, by showing the large difference

between summary MER scores and family-specific MER scores.

Parameterization of both CMs and profile HMMs remains problematic, because these

methods continue to assume that training sequences are statistically independent, when in

fact they are related (often strongly so) by phylogeny. Methods like sequence weighting and

entropy weighting do help, but they are ad hoc hacks: unsatisfying and unlikely to be opti-

mal. Even mixture Dirichlet priors, though they appear to be mathematically sophisticated,

fundamentally assume that observed counts are drawn as independent multinomial samples,

and therefore the use of Dirichlet priors is fundamentally flawed. Probabilistic phylogenetic

inference methodology needs to be integrated with profile search methods. This is an area

of active research [116, 118, 219] in which important challenges remain, particularly in the

treatment of insertions and deletions.

Finally, QDB is not the only algorithmic acceleration method we can envision. Michael

Brown described a complementary banding method to accelerate his SCFG-based rnacad

ribosomal RNA alignment software [24], in which he uses profile HMM based sequence

94

alignment to the target to determine bands where the more rigorous SCFG-based alignment

should fall (because some regions of the alignment are well-determined based solely on

sequence alignment). The gapped blast algorithm (seed word hits, ungapped hit extension,

and banded dynamic programming) can conceivably be extended from two-dimensional

sequence alignment to three-dimensional CM dynamic programming lattices. Developing

such algorithms – and incorporating them into a widely useful, freely available codebase –

are priorities for us.

2.5 Materials and Methods

The version and options used for blast in our benchmark are WU-BLASTN-2.0MP --kap

-W=7. For infernal, versions 0.55 and 0.72 were used as indicated. The complete in-

fernal software package, including documentation and the Rfam-based benchmark de-

scribed here, may be downloaded from http://infernal.janelia.org. It is developed on

GNU/Linux operating systems but should be portable to any POSIX-compliant operating

system, including Mac OS/X. It is freely licensed under the GNU General Public License.

The ANSI C code we used for estimating maximum likelihood mixture Dirichlet priors

depends on a copyrighted and nonredistributable implementation of the conjugate gradient

descent algorithm from Numerical Recipes in C [213]. Our code, less the Numerical Recipes

routine, is freely available upon request.

95

Chapter 3

Infernal 1.0: inference of RNA
alignments 1

3.1 Abstract

Summary: infernal builds consensus RNA secondary structure profiles called covari-

ance models (CMs), and uses them to search nucleic acid sequence databases for homolo-

gous RNAs, or to create new sequence- and structure-based multiple sequence alignments.

Availability: Source code, documentation, and benchmark downloadable from

http://infernal.janelia.org. infernal is freely licensed under the GNU GPLv3 and should

be portable to any POSIX-compliant operating system, including Linux and Mac OS/X.

Contact: {nawrockie,kolbed,eddys}@janelia.hhmi.org

3.2 Introduction

When searching for homologous structural RNAs in sequence databases, it is desirable to

score both primary sequence and secondary structure conservation. The most generally

useful tools that integrate sequence and structure take as input any RNA (or RNA multi-

ple alignment), and automatically construct an appropriate statistical scoring system that

allows quantitative ranking of putative homologs in a sequence database [90, 121, 287].

Stochastic context-free grammars (SCFGs) provide a natural statistical framework for com-
1This chapter was published independently as Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of

RNA alignments. Bioinformatics 2009 25(10):1335-1337. The published material is unmodified but Table 3.1
has been appended.

96

bining sequence and (non-pseudoknotted) secondary structure conservation information in

a single consistent scoring system [24, 53, 65, 225].

Here, we announce the 1.0 release of infernal, an implementation of a general SCFG-

based approach for RNA database searches and multiple alignment. infernal builds con-

sensus RNA profiles called covariance models (CMs), a special case of SCFGs designed

for modeling RNA consensus sequence and structure. It uses CMs to search nucleic acid

sequence databases for homologous RNAs, or to create new sequence- and structure-based

multiple sequence alignments. One use of infernal is to annotate RNAs in genomes in

conjunction with the Rfam database [89], which contains hundreds of RNA families. Rfam

follows a seed profile strategy, in which a well-annotated “seed” alignment of each family is

curated, and a CM built from that seed alignment is used to identify and align additional

members of the family. infernal has been in use since 2002, but 1.0 is the first version that

we consider to be a reasonably complete production tool. It now includes E-value estimates

for the statistical significance of database hits, and heuristic acceleration algorithms for both

database searches and multiple alignment that allow infernal to be deployed in a variety

of real RNA analysis tasks with manageable (albeit high) computational requirements.

3.3 Usage

A CM is built from a Stockholm format multiple sequence alignment (or single RNA se-

quence) with consensus secondary structure annotation marking which positions of the

alignment are single stranded and which are base paired [192]. CMs assign position spe-

cific scores for the four possible residues at single stranded positions, the sixteen possible

base pairs at paired positions, and for insertions and deletions. These scores are log-odds

scores derived from the observed counts of residues, base pairs, insertions and deletions

in the input alignment, combined with prior information derived from structural riboso-

mal RNA alignments. CM parameterization has been described in more detail elsewhere

[57, 65, 138, 189, 192].

infernal is composed of several programs that are used in combination by following

97

four basic steps:

1. Build a CM from a structural alignment with cmbuild.

2. Calibrate a CM for homology search with cmcalibrate.

3. Search databases for putative homologs with cmsearch.

4. Align putative homologs to a CM with cmalign.

The calibration step is optional and computationally expensive (4 hours on a 3.0 GHz

Intel Xeon for a CM of a typical RNA family of length 100 nt), but is required to obtain

E-values that estimate the statistical significance of hits in a database search. cmcalibrate

will also determine appropriate HMM filter thresholds for accelerating searches without an

appreciable loss of sensitivity. Each model only needs to be calibrated once.

3.4 Performance

A published benchmark (independent of our lab) [85] and our own internal benchmark used

during development [189] both find that infernal and other CM based methods are the

most sensitive and specific tools for structural RNA homology search among those tested.

Figure 3.1 shows updated results of our internal benchmark comparing infernal 1.0 to the

previous version (0.72) that was benchmarked in Freyhult et al. [85], and also to family-

pairwise-search with BLASTN [3, 103]. infernal’s sensitivity and specificity have greatly

improved, due mainly to three relevant improvements in the implementation [192]: a biased

composition correction to the raw log-odds scores, the use of Inside log likelihood scores (the

summed score of all possible alignments of the target sequence) in place of CYK scores (the

single maximum likelihood alignment score), and the introduction of approximate E-value

estimates for the scores.

The benchmark dataset used in Figure 3.1 includes query alignments and test sequences

from 51 Rfam (release 7) families (details in [189]). No query sequence is more than 60%

identical to a test sequence. The 450 total test sequences were embedded at random po-

sitions in a 10 Mb “pseudogenome”. Previously we generated the pseudogenome sequence

98

false positives per Mb searched per query

S
en

si
tiv

ity
 (f

ra
ct

io
n

of
 tr

ue
 p

os
iti

ve
s)

Infernal v0.72
789.2 hours

Infernal v1.0 default (with filters)
50.8 hours

BLAST-FPS
0.12 hours

Infernal v1.0 (no filters)
1478.4 hours

0.001 0.005 0.010 0.050 0.100 0.500 1.000
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.1: ROC curves for the benchmark. Plots are shown for the new infernal
1.0 with and without filters, for the old infernal 0.72, and for family-pairwise-searches
(FPS) with blastn. CPU times are total times for all 51 family searches measured for
single execution threads on 3.0 GHz Intel Xeon processors. The infernal 1.0 times do not
include time required for model calibration.

from a uniform residue frequency distribution [189]. Because base composition biases in

the target sequence database cause the most serious problems in separating significant

CM hits from noise, we improved the realism of the benchmark by generating the pseu-

dogenome sequence from a 15-state fully connected hidden Markov model (HMM) trained

by Baum-Welch expectation maximization [53] on genome sequence data from a wide va-

riety of species. Each of the 51 query alignments was used to build a CM and search the

pseudogenome, a single list of all hits for all families were collected and ranked, and true

and false hits were defined (as described in Nawrocki and Eddy [189]), producing the ROC

curves in Figure 3.1.

infernal searches require a large amount of compute time (our 10 Mb benchmark

search takes about 30 hours per model on average (Figure 3.1), also see Table 3.1). To

alleviate this, infernal 1.0 implements two rounds of filtering. When appropriate, the

HMM filtering technique described by Weinberg and Ruzzo [265] is applied first with filter

thresholds configured by cmcalibrate (occasionally a model with little primary sequence

99

calibration search (min/Mb) alignment

family length (hours) no filters w/filters (sec/seq)

tRNA 71 3.2h 23.5m 4.4m 0.01s

5S rRNA 119 4.4h 29.3m 1.1m 0.03s

Lysine riboswitch 183 8.9h 100.5m 1.3m 0.06s

SRP RNA 304 13.5h 166.0m 3.0m 0.18s

RNaseP 365 16.8h 205.6m 0.9m 0.19s

SSU rRNA 1466 84.5h 1265.5m 17.6m 1.10s

LSU rRNA 2909 169.7h 3907.6m 740.4m 3.34s

Table 3.1: Calibration, search, and alignment running times for seven known
structural RNAs of various sizes. CPU times are measured on 3.0 GHz Intel Xeon
processors with 8 GB RAM, running Red Hat AS4 Linux operating systems. All times were
single execution threads except for SSU and LSU calibrations and searches which were run
in parallel using MPI (OpenMPI) on 12 CPUs (times reported are actual times multiplied
by 12). “Length” is the number of consensus positions (positions that contain gaps in fewer
than 50% of the aligned sequences) in the input alignment. Randomly generated sequence of
length 20 Mb (for filtered) and 2 Mb (for non-filtered) was used for the searches. Alignment
files, CM files and instructions for reproduction are in the supplementary material.

conservation cannot be usefully accelerated by a primary sequence-based filter as explained

in [192]). The query-dependent banded (QDB) CYK maximum likelihood search algorithm

is used as a second filter with relatively tight bands (β= 10−7, the β parameter is the

subtree length probability mass excluded by imposing the bands as explained in [189]).

Any sequence fragments that survive the filters are searched a final time with the Inside

algorithm (again using QDB, but with looser bands (β= 10−15)). In our benchmark, the

default filters accelerate similarity search by about 30-fold overall, while sacrificing a small

amount of sensitivity (Figure 3.1). This makes version 1.0 substantially faster than 0.72.

BLAST is still orders of magnitude faster, but significantly less sensitive than infernal.

Further acceleration remains a major goal of infernal development.

100

The computational cost of CM alignment with cmalign has been a limitation of previous

versions of infernal. Version 1.0 now uses a constrained dynamic programming approach

first developed by Brown [24] that uses sequence-specific bands derived from a first-pass

HMM alignment. This technique offers a dramatic speedup relative to unconstrained align-

ment, especially for large RNAs such as small and large subunit (SSU and LSU) ribosomal

RNAs, which can now be aligned in roughly 1 and 3 seconds per sequence, respectively 3.1,

as opposed to 12 minutes and 3 hours in previous versions. This acceleration has facilitated

the adoption of infernal by RDP, one of the main ribosomal RNA databases [40].

infernal is now a faster and more sensitive tool for RNA sequence analysis. Version

1.0’s heuristic acceleration techniques make some important applications possible on a sin-

gle desktop computer in less than an hour, such as searching a prokaryotic genome for a

particular RNA family, or aligning a few thousand SSU rRNA sequences. Nonetheless, in-

fernal remains computationally expensive, and many problems of interest require the use

of a cluster. The most expensive programs (cmcalibrate, cmsearch, and cmalign) are imple-

mented in coarse-grained parallel MPI versions which divide the workload into independent

units, each of which is run on a separate processor.

101

Chapter 4

A filter acceleration pipeline for
covariance model searches 1

Covariance models (CMs) are profile stochastic context-free grammars (SCFGs), probabilis-

tic models of the conserved sequence and well-nested secondary structure of an RNA family,

that are useful for searching sequences databases for homologous RNAs. CM versions of

the standard CYK and Inside SCFG algorithms exist for determining the optimal align-

ment (parse tree, π̂) of a target sequence x to a CM M (P (x, π̂|M)) and calculating the

probability that x was generated from a CM (P (x|M)), respectively. However, these algo-

rithms are computationally expensive and the time required to run them empirically scales

with LN2.4 for a query of length N residues (or consensus alignment columns) and a target

database of length L, severely limiting the practical application of CM database searches

[189]. The time required to use CYK and Inside to search both strands of a sequence of

length 1 million residues (1 Mb) with CMs modeling four RNA families of various sizes is

shown in Table 4.1.

Two complementary approaches have been taken to mitigate this high computational

cost. The first is to accelerate the CM CYK similarity search dynamic programming algo-

rithm. As described in Chapter 2, Sean Eddy and I introduced a banded variant of CYK

that reduces the average case time complexity from LN2.4 to LN1.3 at a small cost to sen-

sitivity [189]. The second approach is to reduce the search space (decrease L) by using a
1Sean Eddy and I plan to submit a version of this chapter for independent publication in the near future.

This version was written solely by EPN.

102

search time (min/Mb)

family length CYK Inside

5S rRNA 119 25.9 104.0

Lysine riboswitch 183 133.2 433.5

SRP RNA 304 276.4 936.2

RNase P RNA 365 733.4 1936.7

Table 4.1: Running time of non-banded CYK and Inside algorithms in Infernal
1.0 for four CMs. CMs are from rfam 9.1 [89] - RF00001 (5S), RF00168 (Lysine),
RF00017 (SRP), and RF00011 (RNase P). Times were measured on a single Intel Xeon 3.0
Ghz processor.

filter, typically a fast sequence-based scoring algorithm, to prune away low-scoring regions

of the database that are deemed unlikely to contain high scoring hits to the CM. The CYK

algorithm is then only used to search the surviving fraction of the database.

4.1 Previous work on accelerating CM searches using filters

Several filtering techniques have been developed for CMs. rfam uses a blast-based filter

on the rfamseq target database prior to searching with CMs [89]. All sequences from the

CM training alignment are used as queries, any target subsequence scored with an E-value

less than a query-independent threshold to any query survives the filter and is searched with

the CM. Weinberg and Ruzzo have introduced several types of filters, including two types

of HMM filters: rigorous filter HMMs [264] and maximum likelihood (ML)-heuristic HMM

filters [265] as well as sub-CM filters, which model some but not all of the CM consensus

structure [263]. The rigorous filter models are parameterized to provably allow all target

subsequences that score better than a preset CM score threshold to survive. ML-heuristic

HMM filtering employs HMMs that are as similar as possible to the CM and aims to prune

away 99% of the target database by setting the filter survival threshold such that a predicted

1% of the database will score better than it. Weinberg and Ruzzo’s filtering techniques are

implemented in the RaveNnA software package, which includes infernal. Zhang and

103

Bafna introduced their own structure-based filtering method for CMs [287], as well as a

key-word based method [288] for which only database subsequences that contain at least

one of a pre-generated list of keywords survive the filter. Finally, Sun and Buhler have

described a method that uses secondary-structure profiles (SSPs) to quickly filter for CM

searches [247].

Zhang et al. [288] and Weinberg and Ruzzo [263] both experimented with combining

different filters together to gain additional speed over using any of them independently.

This can either be done by running each filter separately and using the CYK algorithm

on any sequence that survives any of the filters, or by running the filters in succession

in a pipeline in which each filter is only used on the (sub)sequences that have survived

all previous filters in the pipeline. While, in principle, there is no limit to the number

of different filters that can be used, in most work on CM filtering one or two rounds of

filtering are used. Combining different filters in a pipeline is especially useful when the

filters differ significantly in speed and sensitivity. If the fast, less sensitive filter is used

first with a low (permissive) survival threshold, and the slower, more sensitive filter is run

second using a higher (stricter) threshold, the search may proceed faster than using either

filter independently while achieving similar sensitivity.

4.2 Optimized implementations of the CYK and Inside algo-
rithms

The discussion above lists banded dynamic programming (DP) and filtering as two ap-

proaches towards accelerating CM searches. A third approach is to optimize the CYK and

Inside DP implementations, which I attempted during development of infernal version

1.0. I was able to speed up CYK about three-fold and Inside about two-fold (shown for

four families in Table 4.2), a result that is consistent across all families (data not shown).

These speedups are measured using gcc compiled versions of the cmsearch program from

infernal 0.81 and infernal 1.0.

An important factor enabling this optimization was the availability of optimized HMM

104

CYK time (min/Mb) Inside time (min/Mb)

family length v0.81 v1.0 Ref v1.0 Fast v0.81 v1.0 Ref v1.0 Fast

5S rRNA 119 124.2 46.1 26.9 202.9 125.5 104.0

Lysine riboswitch 183 424.7 196.9 133.2 715.7 498.9 433.5

SRP RNA 304 966.3 421.2 276.4 1620.0 1077.8 936.2

RNaseP 365 1793.1 920.5 733.4 2944.1 2134.6 1936.7

Table 4.2: Running time of different non-banded CYK and Inside implementa-
tions in Infernal v0.81 and v1.0 for four CMs. CMs are from rfam 9.1 [89] - RF00001
(5S), RF00168 (Lysine), RF00017 (SRP), and RF00011 (RNase P). Times were measured
on a single Intel Xeon 3.0 Ghz processor.

Viterbi and Forward algorithm implementations from Sean Eddy’s hmmer software package

[62] written by Jeremy Buhler and Christopher Swope of Washington University in St.

Louis. I was able to adapt many of the techniques from those implementations to CYK

and Inside. The speedup between the “0.81” and “1.0 Ref” columns of Table 4.2 roughly

measures the effect of these techniques: CYK runs two to three times faster and Inside runs

about 50% faster.

Additionally, it proved possible to save time during the DP recursions by carefully

rewriting the code to minimize the number of calculations needed to determine the score in

each cell of the matrix. Because the number of calculations per cell is dependent on many

factors, such as state type and number of possible transitions out of the state, this largely

amounted to writing a separate block of code specific to each possible situation that only

performs the minimal calculations for that situation. The speedup between the “1.0 Ref”

and “1.0 Fast” columns of Table 4.2 roughly measures the effect of this careful rewrite:

which accelerates CYK by roughly 25% and Inside by roughly 15%.

A side effect of optimization is longer, more complex and less easily understood code.

infernal version 1.0 (and 1.01) contain both optimized and reference (simpler to read

and interpret) versions of CYK and Inside in the cm dpsearch.c file as FastCYKScan(),

105

RefCYKScan(), FastIInsideScan() and RefIInsideScan(). Each of these can be run in

either non-banded or banded mode using query-dependent bands (chapter 2). The end of

the cm dpsearch.c file includes a benchmark driver that can be compiled independently,

enabling running time comparisons of the various implementations.

4.3 Infernal’s two-stage filter acceleration pipeline

In the remainder of this chapter I will discuss the two-stage filter pipeline implemented in

infernal as of version 1.0. In this section I will give a brief overview of the pipeline. Then

I will discuss the critical issue of determining appropriate filter thresholds to use at each

stage of the pipeline. Finally, I will present benchmark results that were used to choose the

default values for various important parameters of the pipeline in infernal version 1.01.

The results show that, using the default set of parameters, the filter pipeline accelerates

CM search roughly 200-fold compared to non-banded Inside in infernal 1.0 at a small cost

to accuracy, and roughly 40-fold compared to the default QDB CYK strategy of infernal

0.72 (described in Chapter 2).

Choice of final scoring algorithm: CYK or Inside?

The choice of the final algorithm - the scoring algorithm used on the fraction of the database

that survives all filters - is critical to search sensitivity. For practicality, all previous versions

of infernal have used the CYK algorithm to score sequences instead of the roughly two- to

three-fold slower Inside algorithm (Table 4.1). However, Inside is potentially more powerful

for homology search because it calculates its score by summing over all possible alignments

of a target to the CM, instead of just using the single most likely alignment, as CYK does

[53]. One indication that Inside may outperform CYK is that the Forward algorithm (the

HMM analog of Inside) generally outperforms Viterbi (the HMM analog of CYK) for protein

homology search using profile HMMs [59, 127].

Later in this chapter, I present results on the the sensitivity and specificity of Inside and

CYK on a homology search benchmark and test the effect that filtering has on the running

time of using either as the final algorithm. I find that best performing final algorithm is

106

QDB Inside, using a small β value of 10−15. Additionally, I find that the two-stage filtering

pipeline described below prunes away enough of the database that the difference in running

time between using Inside and CYK as the final algorithm on the remaining fraction is

negligible. For these reasons, the default final algorithm in infernal is QDB Inside with

β = 10−15.

Stage 1: HMM filtering

Based on the impressive, roughly 100-fold acceleration and high sensitivity achieved by the

ML-heuristic HMM filtering strategy of Weinberg and Ruzzo [265], I decided to essentially

reimplement ML-heuristic HMMs in infernal. These HMMs, which are slightly different

from ML-heuristic HMMs, are called CM Plan 9 (CP9) HMMs in the infernal codebase

and are explained in more detail in Chapter 8. A CP9 version of the HMM Forward al-

gorithm [53, 127] is used as the first filtering algorithm in infernal’s two-stage filtering

pipeline. In [265], Weinberg and Ruzzo use a single, query-independent, thresholding scheme

of setting the filter threshold such that a predicted 1% of the database will survive. I inves-

tigated an alternative query-dependent approach to determining thresholds, as described in

detail below. Sometimes this approach predicts that using an HMM will potentially result

in significant sensitivity loss, in which case the HMM filtering step is skipped.

Stage 2: QDB CYK filtering

infernal uses QDB CYK as the filtering algorithm in the second-stage of its pipeline. The

QDB CYK filter is only run on database subsequences surviving the first-stage HMM filter.

In chapter 2, the QDB version of the CYK algorithm was introduced and benchmarked

to determine its performance for RNA similarity search as a standalone algorithm, i.e. as

the final algorithm without using filters. But using QDB CYK as a filter for some other

final algorithm (i.e. non-banded CYK or Inside) may make more sense. For example, when

using QDB CYK as a filter it may be possible to use tighter bands for added acceleration

while maintaining sensitivity relative to a standalone non-filtered implementation that uses

QDB CYK as the final algorithm. This is investigated and discussed using the benchmark

107

at the end of the chapter.

HMMs and QDB CYK are complementary filtering strategies

While QDB CYK scores both sequence and structure, HMM filters score only sequence.

Ignoring structure makes the HMM faster than QDB CYK (O(LN) for the HMM versus

empirical scaling of LN1.3 for QDB with β = 10−7, see Chapter 2), but potentially less

sensitive, especially for models in which structure significantly contributes to scoring. This

qualitative difference in the scoring algorithm and its impact on filtering speed suggests

that the two methods might complement each other well, specifically as a two-stage filter

pipeline, with a faster HMM filter first and a slower QDB CYK filter second.

Filter thresholds control speed versus sensitivity

An important tradeoff exists between the acceleration gained and the sensitivity lost from

using a filter. Acceleration is dependent on the speed of the filtering technique and the

fraction of the database that survives the filter. The sensitivity loss depends on the ability

of the filter to recognize (and not prune away) sequences that will score above the reporting

score threshold of the final algorithm.

The previously developed filtering strategies discussed above prioritize speed versus

sensitivity differently. For example, Weinberg and Ruzzo’s ML-heuristic HMM filtering

is designed for speed by pruning away a target fraction of the database, whereas their

rigorous filter HMMs set filter survival thresholds so that 100% of the target subsequences

that score better than a preset final algorithm threshold will survive, regardless of the

threshold’s impact on speed.

In infernal, the main concern is sensitivity - but making practical implementations

requires acceleration. The goal is to achieve the maximum possible acceleration that sacri-

fices an acceptable level of sensitivity relative to the final algorithm. Here, I judge speedup

and sensitivity loss using a benchmark (described below) and subjectively define acceptable

based on the results.

The speed and sensitivity tradeoff is determined by a filter’s survival score threshold T .

108

Assuming higher filter scores are better, as T increases the number of surviving subsequences

decreases, thus increasing the acceleration and potential sensitivity loss from using the filter.

The choice of T is therefore critical to a filter’s performance.

When speed is the main priority, it is straightforward to define a T that will eliminate

the appropriate fraction of the database necessary to achieve the desired speedup. Given

knowledge of the algorithm running times, this can be done either using E-value statistics

of the filter and final algorithms, or by performing simulations to predict the appropriate

threshold.

If the primary goal of a filter is to maintain sensitivity, as it is here, setting appropriate

thresholds can be more complicated because it depends on differences between how the filter

and final algorithm score target sequences. It is further complicated if those differences are

dependent on the query sequence family. For example, imagine a filter that consistently

scores family A homologs with an E-value no more than 10-fold higher (less significant) than

the final algorithm E-value, but commonly scores family B homologs with E-values 1000-

fold higher than the final algorithm E-values. Achieving the same sensitivity for families A

and B will require significantly different filter thresholds. An effective thresholding strategy

must be able to predict the magnitude of filter/final score discrepancies for a given family.

Query-independent versus query-dependent thresholding

Filtering strategies can be usefully divided into two groups: those that require a query-

dependent thresholding strategy to achieve consistently high sensitivity across different

queries and and those that do not, and can achieve it using a single, query-independent

thresholding strategy. A useful way for determining which group a given strategy belongs

to is to examine the correlation between the filter and final algorithm scores for true se-

quences from many different query families. A consistent correlation across many queries

implies a query-independent strategy may be sufficient, while large differences in the fi-

nal/filter score correlation between different queries suggests a query-dependent strategy

would be more effective.

One might expect that query-dependent strategies should be necessary when the filter

109

algorithm is qualitatively different than the final algorithm, as is the case when using an

HMM to filter for a CM. The HMM is scoring only the conserved sequence of the family,

while the CM is scoring both the conserved sequence and structure. This should affect

different query families differently and so require different thresholds to achieve similar

sensitivity. A family with very low sequence conservation, for example, would probably

require a much looser (more permissive) HMM filter threshold to achieve high sensitivity

than would a family with very high sequence conservation.

Alternatively, query-independent strategies should be sufficient when the filter algorithm

is highly similar to the final algorithm, as is the case with using QDB CYK to filter for

either CYK or Inside. Though, of course, the algorithms are not identical, they both score

conserved sequence and structure using the same CM. Other filter strategies for which a

query-independent strategy is probably sufficient include using the HMM Viterbi algorithm

to filter for the HMM Forward algorithm [62] and the filter used by blast which finds high-

scoring matches between query and target to define bands for the final algorithm, banded

Smith-Waterman [3].

Figure 4.1 plots the average QDB CYK and HMM Forward scores versus Inside scores

for about 100 different RNA families. The QDB CYK average scores show consistently

high correlation with the Inside scores (most points are clustered around the identity line).

There is significantly less correlation between the HMM scores and the Inside scores. This

result supports the intuition outlined above.

Simple query-independent thresholding

Above, I defined filter strategies in the query-independent thresholding group as those for

which a single thresholding strategy is sufficient for all queries. The best strategy will

remove all query-dependence from the scoring system, and so an E-value threshold is often

a good choice of threshold. Bit scores are usually less appropriate because for many scoring

systems, including those used by HMMs and CMs, the magnitude of a significant bit score

varies across different families. E-values, however, provide a measurement of the statistical

significance that is meant to be consistent across different families.

110

0 50 100 150 200

0

50

100

150

200

average Inside bit score

average
CYK/HMM
bit score

CYK
HMM Forward

Figure 4.1: Average QDB CYK and HMM Forward scores versus Inside scores
for various RNA families. QDB CYK scores correlate well with Inside scores. The
difference between HMM Forward scores and Inside scores varies between different families.
Data shown for the 95 rfam release 9.1 [89] families with 50 or more sequences in the
“seed” alignment. For each family, the seed alignment was used to build a CM using
default cmbuild parameters. From each model, 1,000 sequences were generated and scored
using the non-banded Inside, QDB CYK (β = 10−10) and HMM Forward algorithms, and
the average score per sampled sequence was calculated. Models were built and sequences
were generated and scored using infernal version 1.0 programs cmbuild, cmemit and
cmsearch. The diagonal line is the identity line (x = y).

111

infernal’s filter pipeline uses an E-value of 100 times the final threshold E value for

its QDB CYK filters. Later in this chapter, I show that this simple strategy performs

acceptably well on a benchmark.

Filter sensitivity targeting (FST) for query-dependent thresholds

Query-dependent thresholding is more complex than query-independent thresholding be-

cause to achieve high sensitivity the filter threshold used for each query must somehow

reflect the differences between the filter and final scores for that specific query. I propose a

simple technique, called filter sensitivity targeting (FST), for determining a filter threshold

that will achieve any target level of sensitivity. FST is similar to Weinberg/Ruzzo’s rigor-

ous filtering strategy in that it defines query-dependent thresholds and prioritizes sensitivity

over speed, but differs in that it does not provably sacrifice zero sensitivity. A possible ad-

vantage of FST over a rigorous approach is that it may result in faster searches (by pruning

away more of the database with the filter) while sacrificing an acceptably small amount of

sensitivity.

It is first useful to define some terms. Here, we will assume higher scores are better,

such as is the case with bit scores. Let F be the sensitivity of a filter, defined as the

fraction of database hits that survive the filter (score above a filter survival score threshold

T) that a non-filtered search with only the final algorithm would report as hits (score above

a reporting score threshold C). The FST technique estimates the appropriate T to use to

achieve F sensitivity for a search using threshold C, for a wide range of possible C values.

Importantly, different values of C require different T values to achieve the same F . For

example, if we assume filter scores increase with final algorithm scores, the T required to

achieve F = 0.99 for a bit score C corresponding to an E-value of 10−5 will be higher

(enabling a stricter filter) than if C were a lower bit score, corresponding to an E-value of 1.

This is because in the latter case if the filter prunes away hits that would have final E-values

between 1 and 10−5 it will decrease the sensitivity, whereas it will not in the former case.

FST requires as input a set of N test sequences that receive high scores with the final

algorithm. For now, imagine this set of sequence is provided, I will come back to the issue

112

of how to obtain it in the next section. To determine FST thresholds, the filter and final

algorithms are used to score each sequence. From this set of scores we can approximate a

T for a given C that achieves predicted sensitivity F by creating a list of the N ′ sequences

with final scores above C, sorting them by filter score, and setting T as the kth ranked filter

score, where k = ceiling(F ∗N ′).

If the test sequences are a representative sample of target sequences that would score

above C, then in the limit of very large N and infinite database searching, using this proce-

dure to set T will achieve sensitivity F . In other words, the larger and more representative

of high-scoring final algorithm hits the set of test sequences is, the more accurate and useful

this approach is.

Source of test sequences

I now return to the important issue of how to obtain the test sequences. One approach is to

use known examples of homologs. Weinberg and Ruzzo essentially suggested a special case

of the FST strategy to define thresholds for ML-heuristic HMM filters by using the rfam

seed sequences as the N sequences and requiring an F of 1.0. (They ultimately decided

on using a query-independent thresholding strategy that would eliminate a predicted 99%

of the target database.) The seed sequences are the sequences in the rfam structural

alignment used to build the CM. Alternatively, the rfam full sequences could be used,

which are all the sequences that score above an expertly curated score threshold (chosen as

the score of the highest scoring obvious false positive) in a blast filtered CM search of the

rfamseq database. Because rfamseq is the source of all seed sequences, the full sequences

set is almost certainly a superset of the seed set.

For structural RNAs, there are two drawbacks to using known homologs as the N test

sequences. First, the number of known homologs is usually small. The median number of

full sequences per RNA family in rfam release 9.1 (the largest public database of RNAs)

is 50, with 100 or more sequences in 30% of the families, and 1000 or more sequences in

only 6%. This is problematic because the accuracy of FST depends on N being large. For

example, if F is set as 0.99 for a search with final threshold C, then at least N ′ = 100

113

sequences that score above C are required to derive a T using our procedure, and even then

it would be defined based on a very small sample. To get a good estimate of T probably

requires N ′ = 1000 or 10, 000.

Secondly, known homologs are unlikely to be a representative sample of the sequences

the CM would classify as homologous with statistically significant scores. Alignments of the

seed sequences are used to build and parameterize the models themselves, and as a result

those sequences are a biased sample of very high scoring sequences. The full sequences have

been detected using rfam’s blast filtering strategy and, presumably, are also a biased,

high scoring sample (although it is impossible to be certain without doing a prohibitively

expensive non-filtered CM search for comparison). CM parameterization has recently been

significantly improved for remote homology detection, with the adaptation of informative

mixture Dirichlet priors and entropy weighting from profile HMM implementations (Chap-

ter 2). In order for a FST calibrated filter to maintain that increased sensitivity, the test

sequences must include lower scoring, but still statistically significant, remotely homologous

sequences.

An alternative strategy is to take advantage of the generative capacity of CMs as prob-

abilistic models and sample the test sequences directly from the model. This approach

nicely addresses the requirements of our strategy. N can be large because sampling is fast

and infinitely repeatable, and sampling draws sequences from the CM’s own probability

distribution, which is exactly the distribution of homologs the CM is modeling. Figure 4.2

illustrates the difference in the CM score distributions of random sequences (solid lines),

known (rfam full sequences, dotted lines), and sampled sequences (dashed lines) for three

RNA families: tRNA, 5S rRNA, and SRP RNA. In all three cases, the known sequences

are biased towards high scores relative to the sampled sequences.

Scoring and sampling sequences

The CM CYK and Inside algorithms assign a bit score B, a log-odds score, to a target

database subsequence x based on the CM model M . CYK computes:

114

nu
m

be
r o

f s
eq

ue
nc

es
bit score

0 20 40 60 80

0

10000

20000

30000

40000

50000

60000 tRNA
average length = 74

random

sampled
known

nu
m

be
r o

f s
eq

ue
nc

es

bit score

5S rRNA
average length = 116

random

sampled
known

−20 0 20 40 60 80 100 120

0

2000

4000

6000

8000

10000

12000
nu

m
be

r o
f s

eq
ue

nc
es

bit score
0 50 100 150 200

0

50

100

150

200

250 SRP RNA
average length = 294

random

sampled known

Figure 4.2: CM score histograms of random, known, and sampled sequences
for three RNA families. CMs were built from rfam 9.1 seed alignments using default
parameters in infernal 1.01 for three families: tRNA (RF00005), 5S rRNA (RF00001),
and SRP RNA (RF00017). “random” sequences were generated independently for each
family using a single state HMM with equiprobable emission probabilities (0.25) for the
four possible RNA bases to be a specific length L, the average length of each family. The
“sampled” sequences were sampled from locally configured CMs using the cmemit program
of infernal v1.01. The “known” sequences are the “seed” and “full” sequences from rfam.
All the sequences were scored using the non-banded Inside algorithm, and the scores were
collated into a histogram of bit scores. The number of “random” and “sampled” sequences
was set per family to be equal to the number of “known” sequences for that family: 261247
for tRNA, 57766 for 5S, and 1187 for SRP.

115

B = log2

P (x, π̄|M)
P (x|R)

Where P (x, π̄|M) is the probability of the most likely parse tree (alignment) π̄ of the

target subsequence according to the CM.

Inside computes:

B = log2

P (x|M)
P (x|R)

Where P (x|M), the probability of x given the CM, which is calculated by summing the

probability of all possible paths π through the model that generate x, that is:

P (x|M) =
∑
π

P (x, π|M)

For both CYK and Inside, P (x|R) is the probability of the target sequence given a null

hypothesis model R of the statistics of random background sequence. The null model is a

simple one-state hidden Markov model (HMM) that says that random sequences are i.i.d.

sequences with a specific residue composition, which by default is equiprobable across the

four RNA nucleotides. The null model score is calculated as simply: P (x|R) = 0.25L for

a sequence of length L. Because the null model score depends only on the length of the

target sequence, and not the sequence itself, B increases monotonically with P (x, π|M) for

a constant L. This means that as the probability that a sequence and particular parse

tree was generated from the CM increases, so does its score. This suggests that sampling

from the distribution defined by: P (seq, π|CM) should yield high scoring sequences. This

is confirmed for three families in Figure 4.2 for which the scores of the vast majority of

sampled sequences are significantly better than random.

Sampling a sequence from a CM is a recursive procedure that begins at the root state

and samples a parse tree of states (π) and sequence residues, until all branches of the tree

terminate at end states. During the procedure, the choice of next state is determined by

the current state’s transition probability distribution. When singlet or base-pair emitting

116

states are visited a single residue or base-pair residue, respectively, is sampled from the

state’s emission probability distribution. The emitted sequence associated with a parse tree

is generated from outside to inside (as opposed to from left to right from an HMM, see

Chapter 1) and can be read by starting at the top left of the parse tree and following the

yield of the tree counterclockwise, as depicted in Figures 1.11 and 1.12.

A CM can be locally or globally configured [138, 192] (Chapter 1). In global configu-

ration, the only way to enter and exit the model is through the root state and end states,

respectively. In local configuration, begins and ends are possible from any internal node of

the model. Further, when a local end takes place, a special insert state is visited that can

emit additional sequence. Local ends allow CMs to tolerate insertions or deletions of entire

substructures, increasing sensitivity for remote homology detection in some cases.

Practical limits on filter thresholds

Sometimes it is reasonable to define a maximally useful filter survival threshold Tmax, and

to use min(T, Tmax) for all T derived from the FST procedure. Specifically, this is useful

if Tmax is chosen so that using min(T, Tmax) slows down the search only by a negligible

amount, because this means that using Tmax will possibly increase the sensitivity of the

filter (because Tmax < T) at a negligible cost in running time.

For example, if the FST procedure defines T as 50 bits but using a T = Tmax of 30 bits

will only increase the running time of an hour long search by 1 second, then it makes sense

to use T of 30 bits. It will only extend the search a negligible amount of time while allowing

the final algorithm (or next filter round algorithm) to additionally score all the hits between

30 and 50 bits, some of which may be above final (or next filter round) threshold.

infernal uses a query-independent method for limiting filter thresholds by setting a

single, minimally useful target survival fraction Smin. This approach is used instead of

enforcing Tmax with a single query-independent bit score threshold because, as mentioned

earlier, bit score ranges for true homologs vary significantly between between different fam-

ilies. Survival fractions are based on E-values and are consequently more consistent across

families.

117

More specifically, Smin is related to Tmax as follows. The running time t of a filtered

search is: t = tf +tm∗S, where tf and tm are the time required to run the filter and the final

algorithm, respectively, on the full target database and S is fraction of the database that

survives the filter. The survival fraction S is a function of T : as T increases, S decreases,

and vice versa. Because t is directly affected by S, one way to enforce a Tmax is to use a

single query-independent Smin, and converting it to a Tmax for each query. This requires a

way of converting between S and T , which is straightforward because E-values are available:

S = EH
L , where E is the E-value for T using the filter scoring algorithm, L is the database

size, and H is the average length of a surviving fraction of the database due to a filter hit

above T .

The appropriate choice of Smin is likely to be highly dependent on the ratio of running

times of the filter and final scoring algorithms. I investigate reasonable Smin values to use

for HMM filtered searches based on empirical performance in a benchmark below.

4.4 Evaluation

I used the rfam-based benchmark described in Chapter 3 to measure the speed, sensitivity

and specificity of CM-based searches using different filtering methods. (What follows is

a nearly identical description of the benchmark that appears in Chapter 3.) Briefly, the

benchmark was constructed as follows. The sequences of the seed alignments of 503 rfam

(release 7) families were single linkage clustered by pairwise sequence identity, and separated

into two clusters such that no sequence in one cluster is more than 60% identical to any

sequence in the other. The larger of the two clusters was assigned as the query (preserving

their original rfam alignment and structure annotation), and the sequences in the smaller

cluster were assigned as true positives in a test set. We required a minimum of five sequences

in the query alignment. 51 rfam families met these criteria, yielding 450 test sequences

which were embedded at random positions in a 10 Mb “pseudogenome” generated by a

15-state fully connected hidden Markov model (HMM) trained by Baum-Welch expectation

maximization [53] on genome sequence data from a wide variety of species. Each of the 51

118

query alignments was used to build a CM and search the pseudogenome in local mode, a

single list of all hits for all families were collected and ranked, and true and false hits were

defined (as described in Nawrocki and Eddy [189]).

The minimum error rate (MER) (“equivalence score”) [206] was used as a measure of

benchmark performance. The MER score is defined as the minimum sum of the false posi-

tives (negative hits above the threshold) and false negatives (true test sequences which have

no positive hit above the threshold), at all possible choices of score threshold in the ranked

list of all hits from the 51 searches. The MER score is a combined measure of sensitivity and

specificity, where a lower MER score is better. We calculate two kinds of MER scores. For a

family-specific MER score, we choose a different optimal threshold in each of the 51 ranked

lists, and for a summary MER score, we choose a single optimal threshold in the master list

of all hits. The summary MER score reflects the performance level for a large scale analysis

of many families because it demands a single query-independent E-value reporting thresh-

old for significance. The family-specific MER score indicates the performance that could

be achieved with manual inspection and curation of the hits in each family to determine

family specific score E-value thresholds. The design of the default filtering pipeline used by

infernal version 1.01 was based on these benchmark results, as discussed below.

Determining the best-performing final algorithm

I determined the most sensitive CM search strategy irrespective of speed to be used as

the final algorithm in the filtering pipeline, and to serve as a best-case performance against

which to judge the filtered searches. I tested the CM Inside and CYK algorithms, both with

and without query-dependent bands (QDBs). For the banded runs I used a β = 10−15 tail

loss probability for QDB calculation that previous work has indicated sacrifices essentially

zero sensitivity [189]. As shown in Table 4.3, using the banded Inside algorithm resulted

in the lowest summary and family specific MER of the four methods tested (rows 1-4 in

Table 4.3). Interestingly, banded Inside outperforms non-banded Inside (row 1 in Table 4.3);

this is because enforcement of the bands eliminates about a dozen high scoring false positive

hits that drive up the MERs. Based on this result, I defined banded Inside with β = 10−15

119

as the final algorithm in the default filter pipeline.

Performance of QDB CYK filtering

I tested the performance of QDB CYK using various β values as the only filter in a single

filter pipeline using the simple, query-independent filter thresholding technique of setting

the QDB CYK E-value threshold as 100 times the final algorithm E-value threshold (rows 6-

9 in Table 4.3). QDB CYK filtering with β = 10−10 results in about a four-fold speedup with

a negligible loss in sensitivity relative to a non-filtered run (row 3). Further, this strategy

yields significantly better performance than running non-filtered CYK with identical β =

10−10 (row 5), while only requiring about 10% longer to run. This clearly suggests it is

more useful to use QDB CYK as a filter for Inside than as the final scoring algorithm as we

did previously [189].

Performance of HMM filtering

Next, I addressed FST parameterization. What is the best value to use for the F parameter,

which specifies the fraction of sequences allowed below the filter score threshold? The black

solid points in Figure 4.3 shows the benchmark running time of FST calibrated HMM

filtered searches versus MER for different values of F . The choice of F is a tradeoff of

accuracy for speed. We chose a default of F = 0.993 as a reasonable value that obtains a

speedup of about 25-fold with a minimal loss of accuracy (Figure 4.3 and Table 4.3, row 3

compared to 13).

How much does FST calibrated HMM filtering impact sensitivity and specificity? Ta-

bles 4.3, 4.4 and 4.5 demonstrate FST’s impact on benchmark performance. Table 4.4 shows

that the actual sensitivity (actual F) achieved by the filter on our benchmark is 0.924. The

summary and family MER for an HMM filtered search using F = 0.993 and Smin = 0.02

are 144 and 134 (Table 4.3 row 10) up from 130 and 109 for a non-filtered search (row 3).

How does using FST to determine filter thresholds compare to using a query-independent

target survival fraction S as a thresholding method? Figure 4.3 plots benchmark summary

MER versus running time for different filtering strategies: FST with various F values and

120

fi
lt

er
in

g
w

it
h

H
M

M
fi
lt

er
in

g
w

it
h

C
M

p
o
st

-fi
lt
er

in
g

su
m

m
a
ry

fa
m

il
y

ti
m

e
a
lg

o
ri

th
m

F
S
T

F
S

m
in

ta
rg

et
S

a
lg

o
ri

th
m

Q
D

B
β

a
lg

o
ri

th
m

Q
D

B
β

M
E

R
M

E
R

(m
in

/
M

b
/
q
u
er

y
)

1
-

-
-

-
-

-
In

si
d
e

-
1
5
0

1
1
5

2
8
0
.6

0
2

-
-

-
-

-
-

C
Y

K
-

1
5
6

1
3
3

1
0
2
.1

6
3

-
-

-
-

-
-

In
si

d
e

1
0
−

1
5

1
3
0

1
0
9

8
9
.1

3
4

-
-

-
-

-
-

C
Y

K
1
0
−

1
5

1
5
3

1
3
0

3
0
.6

0
5

-
-

-
-

-
-

C
Y

K
1
0
−

1
0

1
5
4

1
3
2

2
1
.9

7

6
-

-
-

-
C

Y
K

1
0
−

1
3

In
si

d
e

1
0
−

1
5

1
3
1

1
1
4

3
0
.0

8
7

-
-

-
-

C
Y

K
1
0
−

1
0

In
si

d
e

1
0
−

1
5

1
3
0

1
1
4

2
4
.2

4
8

-
-

-
-

C
Y

K
1
0
−

7
In

si
d
e

1
0
−

1
5

1
3
4

1
1
8

1
7
.4

2
9

-
-

-
-

C
Y

K
1
0
−

4
In

si
d
e

1
0
−

1
5

1
4
2

1
2
7

1
0
.1

8

1
0

F
o
rw

a
rd

-
-

0
.0

2
-

-
In

si
d
e

1
0
−

1
5

1
6
0

1
4
9

0
.9

5
1
1

F
o
rw

a
rd

-
-

0
.1

0
-

-
In

si
d
e

1
0
−

1
5

1
5
6

1
4
2

3
.1

6
1
2

F
o
rw

a
rd

-
-

0
.2

5
-

-
In

si
d
e

1
0
−

1
5

1
4
9

1
3
1

7
.4

6

1
3

F
o
rw

a
rd

0
.9

9
3

-
-

-
-

In
si

d
e

1
0
−

1
5

1
4
5

1
3
5

3
.7

3
1
4

F
o
rw

a
rd

0
.9

9
3

0
.0

1
-

-
-

In
si

d
e

1
0
−

1
5

1
4
4

1
3
4

3
.8

4
1
5

F
o
rw

a
rd

0
.9

9
3

0
.0

2
-

-
-

In
si

d
e

1
0
−

1
5

1
4
3

1
3
3

3
.9

9
1
6

F
o
rw

a
rd

0
.9

9
3

0
.1

0
-

-
-

In
si

d
e

1
0
−

1
5

1
4
3

1
3
2

5
.6

4

1
7

F
o
rw

a
rd

-
-

0
.0

2
C

Y
K

1
0
−

1
0

In
si

d
e

1
0
−

1
5

1
6
1

1
5
4

0
.6

8
in

f
e
r
n
a
l

1
.0

1
d
ef

a
u
lt

1
8

F
o
rw

a
rd

0
.9

9
3

0
.0

2
-

C
Y

K
1
0
−

1
0

In
si

d
e

1
0
−

1
5

1
4
3

1
3
4

1
.2

6

1
9

-
-

-
-

-
-

H
M

M
F
o
rw

a
rd

-
2
1
4

2
0
4

0
.3

9

T
ab

le
4.

3:
B

en
ch

m
ar

k
M

E
R

an
d

ti
m

in
g

st
at

is
ti

cs
fo

r
d
iff

er
en

t
se

ar
ch

st
ra

te
gi

es
.

E
ac

h
se

ar
ch

st
ra

te
gy

is
de

fin
ed

by
th

e
al

go
ri

th
m

s
an

d
pa

ra
m

et
er

s
us

ed
by

ze
ro

,
on

e
or

tw
o

fil
te

ri
ng

st
ag

es
an

d
a

fin
al

po
st

-fi
lt

er
in

g
st

ag
e.

U
nd

er
“fi

lt
er

in
g

w
it

h
H

M
M

”:
“a

lg
or

it
hm

”
lis

ts
if

an
H

M
M

fil
te

r
is

ap
pl

ie
d

fir
st

(“
Fo

rw
ar

d”
),

or
no

t
at

al
l

(“
-”

);
“F

ST
F

”
lis

ts
th

e
ta

rg
et

se
ns

it
iv

it
y
F

us
ed

fo
r

F
ST

th
re

sh
ol

d
ca

lib
ra

ti
on

,
or

“-
”

if
F
ST

w
as

no
t

us
ed

;
“S

m
in

”
is

th
e

m
in

im
um

pr
ed

ic
te

d
su

rv
iv

al
fr

ac
ti

on
s

us
ed

to
se

t
fil

te
r

th
re

sh
ol

ds
(p

ot
en

ti
al

ly
ov

er
ri

di
ng

th
e

F
ST

ca
lib

ra
te

d
th

re
sh

ol
ds

);
“t

ar
ge

t
S

”
sh

ow
s

th
e

si
ng

le
,
ta

rg
et

pr
ed

ic
te

d
su

rv
iv

al
fr

ac
ti

on
us

ed
fo

r
al

l
m

od
el

s
in

no
n-

F
ST

H
M

M
fil

te
ri

ng
st

ra
te

gi
es

.
U

nd
er

“fi
lt

er
in

g
w

it
h

C
M

”:
“a

lg
or

it
hm

”
lis

ts
if

a
C

M
“C

Y
K

”
fil

te
r

is
ap

pl
ie

d
(o

nl
y

on
th

e
su

rv
iv

in
g

su
bs

eq
ue

nc
es

fr
om

th
e

H
M

M
fil

te
r

if
on

e
w

as
us

ed
)

or
no

t
at

al
l
(“

-”
),

an
d

“Q
D

B
β
”

lis
ts

th
e

ta
il

lo
ss

pr
ob

ab
ili

ty
us

ed
to

ca
lc

ul
at

e
ba

nd
s

fo
r

th
e

al
go

ri
th

m
.

U
nd

er
“p

os
t-

fil
te

ri
ng

”:
“a

lg
or

it
hm

”
lis

ts
th

e
fin

al
al

go
ri

th
m

us
ed

fo
r

sc
or

in
g

su
bs

eq
ue

nc
es

th
at

su
rv

iv
e

th
e
<

=
2

fil
te

ri
ng

st
ag

es
;

“Q
D

B
β
”

lis
ts

th
e

ta
il

lo
ss

pr
ob

ab
ili

ty
fo

r
th

e
ba

nd
ca

lc
ul

at
io

n
fo

r
th

e
fin

al
al

go
ri

th
m

.
T

he
se

ns
it

iv
it
y

an
d

sp
ec

ifi
ci

ty
of

ea
ch

st
ra

te
gy

is
su

m
m

ar
iz

ed
by

“s
um

m
ar

y
M

E
R

”
an

d
“f

am
ily

M
E

R
”

as
ex

pl
ai

ne
d

in
th

e
te

xt
.

L
ow

er
M

E
R

s
ar

e
be

tt
er

.
“m

in
/M

b/
qu

er
y”

lis
t

m
in

ut
es

pe
r

M
b

(1
,0

00
,0

00
re

si
du

es
)

of
se

ar
ch

sp
ac

e
pe

r
qu

er
y

m
od

el
us

ed
to

se
ar

ch
.

T
he

be
nc

hm
ar

k
co

nt
ai

ns
51

qu
er

y
m

od
el

s
an

d
20

M
b

of
se

ar
ch

sp
ac

e
(b

ot
h

st
ra

nd
s

of
th

e
10

M
b

ps
eu

do
ge

no
m

e)
as

ex
pl

ai
ne

d
in

th
e

te
xt

.

121

target S thresholding for various S values. Target S thresholding is faster than FST for

achieving MER values down to about 160, but FST is faster if lower MERs are desired.

Tables 4.3, 4.4, and 4.5 also compare FST with target survival fraction target S methods.

Is FST robust to a wide range of final E-value thresholds (C)? With FST, the filter

threshold increases as the final threshold increases (becomes more strict), increasing the

filter’s efficiency while theoretically maintaining the same level of sensitivity, F . Table 4.5

shows the effect of varying the final E-value threshold on the sensitivity and speed of FST

calibrated HMM filters on the benchmark dataset. As E decreases, the sensitivity remains

relatively constant while the speedup increases, until E = 10−3(1e− 3) is reached, at which

point sensitivity begins to decrease, suggesting FST is less reliable for stricter thresholds.

Fortunately, enforcing Smin = 0.02 corrects this problem. This is because many FST

calibrated thresholds for final thresholds E < 10−3 correspond to S < 0.02, so enforcing

Smin lowers the filter threshold and increases sensitivity.

Performance of the HMM and QDB CYK filter pipeline

Is it useful to combine a FST calibrated HMM filter and a QDB CYK filter? As mentioned

above, FST calibrated HMM filters with F = 0.993 and Smin = 0.02 result in about a

25-fold speedup and QDB CYK filters with β = 10−10 result in about a four-fold speedup.

Combining these two filtering strategies by running the HMM first, searching the surviving

fraction with QDB CYK, and using Inside only on the fraction that survives both, results

in about a three-fold speedup relative to only using HMM filters with an acceptably small

loss of accuracy (Figure 4.4 and rows 15 and 18 of Table 4.3). This strategy is about 70

times faster than the top performing strategy, non-filtered Inside search with β = 10−15 at

a small cost to sensitivity. And it is more than 200 times faster than non-banded Inside,

while achieving a lower summary MER. These results were the motivation for making this

two-stage filtering pipeline the default filtering strategy in infernal version 1.01.

122

●

●

●

●

●

●

●

●
● ● ●

●140

160

180

200

220

240

+

+

0.95

0.991

0.99
0.988

0.986

0.984

0.98

0.975

0.993 0.995 0.996 0.998
1.0

no
filter

0.07
0.10

0.01

4E-3

1E-4

1E-3

0.03 0.05 0.15 0.25
0.5

0.9

HMM only

HMM filter using FST calibrated thresholds with F=xx

y HMM filter using predicted survival thresholds with S=y
●

m
in

im
um

 e
rro

r r
at

e
(M

ER
)

●

0.5
time (minutes per Mb per query)

1 2 5 10 20 50 100

Figure 4.3: MER versus time for the benchmark. Solid black points show bench-
mark performance for HMM filtered searches using query-dependent FST calibrated filter
thresholds with target sensitivity F = x, with x labeled per point. Open-circle points show
benchmark performance for HMM filtered searches using a single, query-independent, target
survival threshold of S = y, with y labeled per point. There are two additional “+” points:
“HMM only”: HMM Forward algorithm as the final scoring algorithm (with no filters); “no
filter” Inside with QDB (β = 10−15) as the final algorithm. For the FST searches Smin = 0.
All searches performed with infernal 1.01. Note that the x-axis is in log-scale.

123

P
re

d
ic

te
d

su
rv

iv
a
l
fr

a
ct

io
n

(S
)

n
o
n
-

F
S
T

H
M

M
fi
lt
er

in
g

F
S
T

H
M

M
fi
lt
er

in
g

N
o
n
-F

S
T

H
M

M
fi
lt
er

in
g

ra
n
g
e

fo
r

F
S
T

H
M

M
fi
lt

er
#

#
fi
lt
er

ed
(F

=
0
.9

9
3
,
n
o

S
m

in
)

(F
=

0
.9

9
3
,
S

m
in

=
0
.0

2
)

si
n
g
le

th
re

sh
o
ld

(S
=

0
.0

2
)

(F
=

0
.9

9
3
,
n
o

S
m

in
)

q
u
er

y
te

st
#

fo
u
n
d

a
ct

u
a
l
F

sp
ee

d
u
p

a
ct

u
a
l
F

sp
ee

d
u
p

a
ct

u
a
l
F

sp
ee

d
u
p

(n
o

fi
lt

er
)

S
=

1
.0

2
5
2

4
3

1
.0

0
0

1
.0

1
.0

0
0

1
.0

0
.5

8
1

7
0
.9

1
.0

>
S

>
=

0
.1

1
1

9
8

7
6

0
.9

8
7

1
0
.6

0
.9

8
7

1
0
.6

0
.9

7
4

7
9
.3

0
.1

>
S

>
=

1
e
−

2
1
7

1
6
5

1
3
5

0
.9

1
9

5
2
.8

0
.9

1
9

5
1
.0

0
.9

1
1

8
8
.6

1
e
−

2
>

S
>

=
1
e
−

3
8

5
4

4
8

0
.8

5
4

1
5
0
.8

0
.8

5
4

7
2
.1

0
.8

5
4

8
0
.9

1
e
−

3
>

S
>

=
1
e
−

4
7

5
3

3
1

0
.8

0
7

1
8
5
.0

0
.8

7
1

1
0
3
.0

0
.8

7
1

1
2
1
.2

1
e
−

4
>

S
>

=
1
e
−

5
4

6
4

1
.0

0
0

9
0
.4

1
.0

0
0

5
7
.8

1
.0

0
0

6
7
.6

1
e
−

5
>

S
>

0
2

2
2

4
0
.7

5
0

2
6
5
.5

0
.7

5
0

1
2
1
.6

0
.7

5
0

1
4
3
.6

a
ll

5
1

4
5
0

3
4
1

0
.9

2
4

2
3
.9

0
.9

3
0

2
2
.3

0
.8

7
1

9
3
.4

T
ab

le
4.

4:
C

om
p
ar

is
on

of
fi
lt

er
se

n
si

ti
v
it
y

an
d

b
en

ch
m

ar
k

ac
ce

le
ra

ti
on

fo
r

q
u
er

ie
s

w
it

h
d
iff

er
en

t
F
S
T

p
re

d
ic

te
d

fi
lt

er
su

rv
iv

al
fr

ac
ti

on
s.

T
he

51
qu

er
y

be
nc

hm
ar

k
fa

m
ili

es
w

er
e

ca
te

go
ri

ze
d

ba
se

d
on

th
e

pr
ed

ic
te

d
su

rv
iv

al
fr

ac
ti

on
S

of
a

F
ST

fil
te

re
d

H
M

M
be

nc
hm

ar
k

se
ar

ch
w

it
h

fin
al

re
po

rt
in

g
th

re
sh

ol
d
E

=
1.

F
ST

w
as

pe
rf

or
m

ed
w

it
h
F

=
0.

99
3

an
d

no
S

m
in

va
lu

e.
C

ol
um

n
1

lis
ts

th
e

su
rv

iv
al

fr
ac

ti
on

ca
te

go
ry

;
th

e
fir

st
ro

w
“n

o
fil

te
r
S

=
1.

0”
co

rr
es

po
nd

s
to

qu
er

ie
s

fo
r

w
hi

ch
F
ST

in
di

ca
te

s
S
>

=
1.

0
so

th
e

H
M

M
fil

te
r

is
tu

rn
ed

off
.

T
he

ne
xt

th
re

e
co

lu
m

ns
lis

t
th

e
nu

m
be

r
of

qu
er

y
fa

m
ili

es
(“

#
qu

er
y”

),
to

ta
l
nu

m
be

r
of

te
st

se
qu

en
ce

s
(“

#
te

st
”)

,
an

d
nu

m
be

r
of

th
e

te
st

se
qu

en
ce

s
th

at
th

e
fin

al
al

go
ri

th
m

sc
or

es
w

it
h
E
<

=
1

(“
no

n-
fil

te
re

d
#

fo
un

d”
).

T
he

re
m

ai
ni

ng
si

x
co

lu
m

ns
co

m
pa

re
th

re
e

fil
te

ri
ng

st
ra

te
gi

es
:

F
ST

H
M

M
fil

te
ri

ng
us

in
g
F

=
0.

99
3

an
d

no
S

m
in

va
lu

e
(t

hi
s

is
ro

w
13

in
T
ab

le
4.

3)
,
F
ST

H
M

M
fil

te
ri

ng
w

it
h
F

=
0.

99
3

an
d
S

m
in

=
0.

02
(r

ow
15

in
T
ab

le
4.

3)
,
an

d
no

n-
F
ST

fil
te

ri
ng

se
tt

in
g

th
re

sh
ol

ds
th

at
gi

ve
a

pr
ed

ic
te

d
S

=
0.

02
(r

ow
10

in
T
ab

le
4.

3)
.

Fo
r

ea
ch

st
ra

te
gy

:
“a

ct
ua

lF
”

lis
ts

th
e

fil
te

r
se

ns
it

iv
it
y

pe
r

ca
te

go
ry

,
th

e
fr

ac
ti

on
of

th
e

te
st

se
qu

en
ce

s
th

e
fin

al
al

go
ri

th
m

sc
or

es
E
<

=
1

th
at

al
so

pa
ss

th
e

fil
te

r
sc

or
e

th
re

sh
ol

d
an

d
su

rv
iv

e
th

e
fil

te
r;

“s
pe

ed
up

”
lis

ts
th

e
pe

r-
ca

te
go

ry
ac

ce
le

ra
ti

on
of

a
fil

te
re

d
se

ar
ch

ve
rs

us
a

no
n-

fil
te

re
d

se
ar

ch
in

th
e

be
nc

hm
ar

k.
O

nl
y

H
M

M
fil

te
rs

w
er

e
us

ed
(n

o
C

Y
K

fil
te

rs
).

T
he

fin
al

al
go

ri
th

m
us

ed
w

as
In

si
de

w
it

h
Q

D
B

s
ca

lc
ul

at
ed

w
it

h
β

=
10
−

1
5
.

124

fi
n
a
l
a
lg

o
ri

th
m

E
-v

a
lu

e
co

rr
es

p
o
n
d
in

g
n
o
n
-

F
S
T

H
M

M
fi
lt
er

in
g

F
S
T

H
M

M
fi
lt
er

in
g

N
o
n
-F

S
T

H
M

M
fi
lt
er

in
g

re
p
o
rt

in
g

th
re

sh
o
ld

d
a
ta

b
a
se

si
ze

fo
r

fi
lt

er
ed

(F
=

0
.9

9
3
,
n
o

S
m

in
)

(F
=

0
.9

9
3
,
S

m
in

=
0
.0

2
)

si
n
g
le

th
re

sh
o
ld

(S
=

0
.0

2
)

(d
a
ta

b
a
se

si
ze

=
2
0

M
b
)

E
=

1
th

re
sh

o
ld

#
fo

u
n
d

a
ct

u
a
l
F

sp
ee

d
u
p

a
ct

u
a
l
F

sp
ee

d
u
p

a
ct

u
a
l
F

sp
ee

d
u
p

E
=

1
e
−

5
2

T
b

2
5
0

0
.8

8
0

1
0
8
.5

0
.9

8
4

6
6
.3

0
.9

8
0

8
9
.0

E
=

1
e
−

4
2
0
0

G
b

2
6
8

0
.8

9
2

9
1
.9

0
.9

7
4

6
0
.8

0
.9

6
6

8
9
.0

E
=

1
e
−

3
2
0

G
b

2
8
5

0
.9

0
2

7
3
.1

0
.9

6
5

5
3
.6

0
.9

4
0

8
9
.0

E
=

1
e
−

2
2

G
b

2
9
8

0
.9

2
0

3
8
.2

0
.9

6
0

3
2
.5

0
.9

2
0

8
9
.0

E
=

1
e
−

1
2
0
0

M
b

3
2
4

0
.9

2
6

2
9
.2

0
.9

5
4

2
6
.1

0
.9

0
4

8
9
.0

E
=

1
2
0

M
b

3
4
1

0
.9

2
4

2
3
.9

0
.9

3
0

2
2
.3

0
.8

7
1

8
9
.0

E
=

1
0

2
M

b
3
5
5

0
.9

1
3

1
5
.4

0
.9

1
6

1
4
.8

0
.8

5
1

8
9
.0

E
=

1
0
0

2
0
0

K
b

3
6
8

0
.9

1
0

4
.9

0
.9

1
3

4
.8

0
.8

3
4

8
9
.0

E
=

1
0
0
0

2
0

K
b

3
9
1

0
.9

1
0

2
.9

0
.9

1
0

2
.9

0
.8

0
0

8
9
.0

T
ab

le
4.

5:
C

om
p
ar

is
on

of
fi
lt

er
se

n
si

ti
v
it
y

an
d

b
en

ch
m

ar
k

ac
ce

le
ra

ti
on

fo
r

d
iff

er
en

t
fi
n
al

al
go

ri
th

m
re

p
or

ti
n
g

E
-

va
lu

e
th

re
sh

ol
d
s.

C
ol

um
n

1
lis

ts
E

,t
he

fin
al

al
go

ri
th

m
re

po
rt

in
g

E
-v

al
ue

th
re

sh
ol

d
in

th
e

be
nc

hm
ar

k
(2

0
M

b,
tw

o
st

ra
nd

s
of

a
10

M
b

ps
eu

do
ge

no
m

e)
.

C
ol

um
n

2
lis

ts
th

e
da

ta
ba

se
si

ze
in

w
hi

ch
a

sc
or

e
w

it
h

E
-v

al
ue

E
fr

om
co

lu
m

n
1

co
rr

es
po

nd
s

to
E

=
1.

C
ol

um
n

3
lis

ts
th

e
nu

m
be

r
of

th
e

45
0

te
st

se
qu

en
ce

s
th

e
fin

al
al

go
ri

th
m

sc
or

es
w

it
h

an
E

-v
al

ue
<
E

fr
om

co
lu

m
n

1.
T

he
re

m
ai

ni
ng

si
x

co
lu

m
ns

co
m

pa
re

th
e

sa
m

e
th

re
e

fil
te

ri
ng

st
ra

te
gi

es
as

in
T
ab

le
4.

4
by

fil
te

r
se

ns
it

iv
it
y

(“
ac

tu
al
F

”)
an

d
ac

ce
le

ra
ti

on
of

a
fil

te
re

d
se

ar
ch

ve
rs

us
a

no
n-

fil
te

re
d

se
ar

ch
(“

sp
ee

du
p”

).
F
ilt

er
se

ns
it

iv
it
y

is
th

e
fr

ac
ti

on
of

te
st

se
qu

en
ce

s
th

e
fin

al
al

go
ri

th
m

sc
or

es
w

it
h

an
E

-v
al

ue
<
E

fr
om

co
lu

m
n

1
th

at
al

so
pa

ss
th

e
fil

te
r

sc
or

e
th

re
sh

ol
d

an
d

su
rv

iv
e

th
e

fil
te

r.
O

nl
y

H
M

M
fil

te
rs

w
er

e
us

ed
(n

o
C

Y
K

fil
te

rs
).

T
he

fin
al

al
go

ri
th

m
us

ed
w

as
In

si
de

w
it

h
Q

D
B

s
ca

lc
ul

at
ed

w
it

h
β

=
10
−

1
5
.

125

Infernal v1.01 (no filters)
1478.4 hours

Infernal v1.01 default (filters)
19.0 hours

HMM only
7.4 hours

BLAST-FPS
0.12 hours

0.001 0.005 0.01 0.05 0.10 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

false positives per MB searched per query

RaveNnA 0.2f default (with filters)
43.0 hours

Se
ns

iti
vi

ty
 (f

ra
ct

io
n

of
 tr

ue
 p

os
iti

ve
s)

Figure 4.4: ROC curves for the benchmark. Plots are shown for RaveNnA 0.2f
searches, family-pairwise-searches (FPS) with blastn, and for infernal 1.01 non-filtered
CM searches, default filtered searches, and HMM only searches.

126

4.5 Implementation

infernal’s cmcalibrate program estimates HMM filter thresholds for achieving a pre-

specified sensitivity F (0.993, by default) using the FST procedure, as described below.

A set of these thresholds are then saved to the CM text file, and read by the cmsearch

program. When a search is executed, the appropriate HMM filter threshold T is chosen

based on the final score threshold being enforced by the search.

More specifically, the cmcalibrate program performs the following steps to estimate

HMM filter thresholds for a pre-specified F :

1. Sample N sequences from the CM. By default N = 10, 000, but it can be set by the

user.

2. Score the N sequences using the CP9 HMM Forward algorithm, the CM CYK algo-

rithm and the CM Inside algorithm.

3. For each CYK score Ci for i = 1 to imax = floor(0.90∗N), determine the N ′ sequences

with CYK scores >= C ′ and the corresponding N ′ Forward scores. Set Ti as the kth

ranked best Forward score, where k = ceiling(F ∗N ′). Save (Ti, Ci) in a new list.

4. Repeat step 3 using Inside scores instead of CYK scores.

This procedure creates two lists of (T,C) pairs of size imax, one for CYK and one for

Inside. Each list is then pruned to only include a representative subset of pairs to avoid

the necessity of storing all imax pairs for use in cmsearch. The representative subset is

defined such that no two C values C1, C2 (C1 < C2) with corresponding E-values E1 and

E2 (E1 > E2) follow E2 − E1 < (0.1 ∗ E1). This subset usually includes at most a few

hundred points for the default N of 10, 000.

Figure 4.5 shows data for this procedure for three anecdotal RNA families using default

values N = 10, 000 and F = 0.993. Each small point represents a sequence, with x-

coordinate equal to HMM score and y-coordinate equal to Inside score. The larger points

are the representative subset of the (T,C) pairs. For each large (T,C) point, the fraction

127

of small points with y > C that have x < T is 1 − F = 0.007, these represent the 0.7%

of sequences that a non-filtered search with final threshold C would report that a filtered

search using filter threshold T will miss.

For an execution of cmsearch with final algorithm CYK or Inside with reporting thresh-

old C ′, T from the CYK/Inside (T,C) pair in the CM file with the maximum C < C ′ is

selected and T is set as the HMM Forward filter threshold bit score. If T corresponds to

a predicted survival fraction less than Smin (0.02 by default) then it is replaced with the

T ′ that corresponds to Smin as described above in “Practical limits on filter thresholds”.

Additionally, if T corresponds to a predicted survival fraction S greater than a maximum

value (by default 0.5), the HMM filter is turned off, and not used for the search.

In step 2 of the cmcalibrate procedure, the CYK and Inside scores are determined

using an HMM banded version of the CYK and Inside search algorithms. Using HMM

banding, which is described in Chapter 8, results in a significant speedup while very rarely

affecting the score calculated by the algorithm by any appreciable amount (i.e. when there

is a score difference, it is very often less than one bit, data not shown). Steps 3 and 4 and the

definition of the representative subset are implemented in the get hmm filter cutoffs()

function in the cmcalibrate.c file of infernal version 1.0 and 1.01.

This procedure could potentially be improved in several ways. First, F need not be pre-

specified. Instead, the lists of scores could simply be kept in a file and the FST procedure

described in the text could be used to determine a T for any given pair of C and F . Also,

the manner in which the (T,C) pairs are saved could be simplified, for example, by saving

all pairs at one bit C increments across the observed range of C values. Investigating these

modifications is left to future work.

By default, the QDB CYK filter thresholds are set in a query-independent manner by

cmsearch as the bit score corresponding to 100 times the E-value of the final algorithm

reporting threshold. This is true except when the predicted number of DP calculations

required to run the final round algorithm on the fraction of the database surviving all filters

is less than 3% the total number of DP calculations required for the entire search (filter

128

−1
0

0
10

20
30

40
50

0204060 −1
010305070

1.
0

1E
-2

1E
-4

1E
-6

1E
-8

1E
-1

0
1E

-1
2

1E
3

11E
-3

1E
-6

1E
-9

1E
-1

2

1E
-1

5

1E
6

1E
9

tR
N

A

H
M

M
 b

it
sc

or
e

CM bit score

CM E-value (for Z=20 Mb)

pr
ed

ic
te

d
su

rv
iv

al
 fr

ac
tio

n
(S

)

0
20

40
60

02040608010
0

−1
0

10
30

50
70

−1
01030507090

11E
-3

1E
3

1E
6

1E
9

1E
-6

1E
-9

1E
-1

2

1E
-1

5

1E
-1

8

1E
-2

1

1.
0

1E
-3

1E
-6

1E
-9

1E
-1

2
1E

-1
5

1E
-1

8

5S
 rR

N
A

H
M

M
 b

it
sc

or
e

CM bit score

CM E-value (for Z=20 Mb)

pr
ed

ic
te

d
su

rv
iv

al
 fr

ac
tio

n
(S

)

0
20

40
60

80
10

0
12

0

06012
0

18
0 20408010
0

14
0

16
0

1.
0

1E
-4

1E
-8

1E
-1

2
1E

-1
6

1E
-2

0
1E

-2
4

1E
-2

8

1E
-4

1E
-1

2

1E
-2

0

1E
-2

8

1E
-3

6

1E
-4

4

1 1E
4

SR
P

RN
A

H
M

M
 b

it
sc

or
e

CM bit score

CM E-value (for Z=20 Mb)
pr

ed
ic

te
d

su
rv

iv
al

 fr
ac

tio
n

(S
)

F
ig

ur
e

4.
5:

C
M

In
si

d
e

sc
or

es
ve

rs
u
s

H
M

M
F
or

w
ar

d
sc

or
es

d
u
ri

n
g

F
S
T

ca
li
b
ra

ti
on

.
C

om
pl

et
e

da
ta

fo
r

th
e

F
ST

c
m
c
a
l
i
b
r
a
t
e

ca
lib

ra
ti

on
w

it
h
N

=
10
,0

00
an

d
F

=
0.

99
3

of
th

re
e

r
fa

m
9.

1
fa

m
ili

es
:

5S
rR

N
A

,
tR

N
A

,
an

d
R

N
as

e
P

(R
F
00

00
1,

R
F
00

00
5,

R
F
00

01
1)

.
E

ac
h

se
qu

en
ce

is
re

pr
es

en
te

d
as

a
sm

al
lb

la
ck

po
in

t
w

it
h

x-
co

or
di

na
te

eq
ua

lt
o

it
s

H
M

M
Fo

rw
ar

d
sc

or
e,

an
d

y-
co

or
di

na
te

eq
ua

lt
o

it
s
C

M
In

si
de

sc
or

e.
L
ar

ge
r,

op
en

ci
rc

le
po

in
ts

in
di

ca
te

th
e

re
pr

es
en

ta
ti

ve
se

t
of

sa
ve

d
fil

te
r
su

rv
iv

al
th

re
sh

ol
d

T
an

d
C

M
re

po
rt

in
g

sc
or

e
th

re
sh

ol
d
C

pa
ir

s
sa

ve
d

to
th

e
C

M
fil

e
an

d
us

ed
to

de
te

rm
in

e
th

re
sh

ol
ds

du
ri

ng
se

ar
ch

in
g.

T
he

di
ag

on
al

lin
e

is
Fo

rw
ar

d=
In

si
de

sc
or

e,
an

d
th

e
ve

rt
ic

al
lin

es
sh

ow
th

e
Fo

rw
ar

d
sc

or
es

th
at

w
ou

ld
yi

el
d

a
pr

ed
ic

te
d

su
rv

iv
al

fr
ac

ti
on

of
0.

02
(t

he
de

fa
ul

t
S

m
in

va
lu

e)
.

T
he

C
M

s
us

ed
fo

r
sa

m
pl

in
g

an
d

sc
or

in
g,

an
d

H
M

M
s

us
ed

fo
r

sc
or

in
g

w
er

e
lo

ca
lly

co
nfi

gu
re

d
as

de
sc

ri
be

d
in

C
ha

pt
er

1.

129

plus final calculations). In this case, the QDB CYK filter threshold is relaxed (made less

strict) so that the final algorithm will perform exactly a predicted 3% of the required DP

calculations. The reasoning explained above in “Practical limits on filter thresholds” applies

here: making the QDB CYK filter threshold less strict in this case will only potentially

increase sensitivity, while slowing down searches a small amount because the number of

predicted calculations is increasing by at most 3%. The determination of filter thresholds

is also explained, using example searches, in the infernal user’s guide [192].

4.6 Conclusion and future directions

As measured by our benchmark, the two-stage filter pipeline used by infernal brings the

average search time down 70-fold from about 90 to about 1.25 minutes per Mb when using

the optimally performing QDB Inside with β = 10−15 as the final algorithm (Table 4.3).

The filters do sacrifice sensitivity as measured by the increase in the summary and family

MERs by 13 and 25 respectively, but, temporarily at least, this is acceptable given the gain

in speed. If the benchmark results hold for the general case, to run the 1371 rfam release

9.1 families against the entire human genome would require about 20 CPU years (compared

to 1500 CPU years for a non-filtered search), which means further acceleration remains an

important goal of infernal development.

There are several ways to make infernal faster. One is to accelerate the current filters

the HMM and QDB CYK algorithms. A new version (3.0) of the hmmer software package

is in beta testing [62], which includes significantly faster HMM search algorithm imple-

mentations than those in infernal 1.01. We plan to incorporate those implementations

within infernal for filtering. But the HMM filters are not the rate limiting step in CM

searches - the time required to run the HMM filter on our benchmark is about one third

the total time of the search (Table 4.3 rows 18 and 19). So the maximum we can gain

from a faster implementation of the HMM filters, assuming consistent filter sensitivity, is

about 33%. Alternatively, we could use different filters that are faster, more sensitive, or

both. The structure-based filters introduced by Weinberg and Ruzzo [263] and Sun and

130

Buhler [247] are especially promising, because they offer greater speed than QDB CYK,

infernal’s current structure-based filter. The FST approach could be used to set appro-

priate thresholds for other filtering strategies. Finally, we could attempt to write faster

implementations of Inside, the best performing final algorithm. Ongoing work on hmmer 3

has suggested that optimizing the dynamic programming search algorithm implementations

using single-instruction multiple data (SIMD) paralellism can yield significant speedups.

131

Chapter 5

Computational identification of
functional RNA homologs in
metagenomic data1

An important step in analyzing a metagenomic sequence dataset is identifying functional

sequence elements. This is a prerequisite for determining important properties of the envi-

ronment the sequence data were sampled from, such as the metabolic processes and organ-

ismal diversity present there. At least initially, functional sequence element identification

is addressed computationally. One class of elements, functional noncoding RNA elements,

are especially difficult to identify because they tend to be short, lack open reading frames,

and sometimes evolve rapidly at the sequence level even while conserving structure integral

to their function [55, 108, 128, 165, 248, 270].

Functional RNA elements include both RNA genes (genes transcribed into functional

untranslated RNA) and cis-regulatory mRNA structures. RNA elements play many roles.

Ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs) are well known and universally

present in all cellular life. Bacteria, archaea, and viruses, the organisms predominantly

targeted by current metagenomics studies, also use numerous small RNA (sRNA) genes for

translational and posttranslational regulation [96], as well as many cis-regulatory RNAs such
1This chapter was submitted to be eventually published as a book chapter in “Metagenomics: a new

science at the interface of genomics, microbiology, and ecology” by American Society for Microbiology
(ASM) press, edited by Claire Fraser-Liggett, Jacques Ravel and Jo Handelsman. The submitted version
is reprinted here with the following modifications: two tables and one figure are omitted, they have been
relocated to Chapter 1 as Tables 1.1 and 1.2 and Figure 1.9.

132

as riboswitches (structural RNAs that respond to binding small molecule metabolites and

control expression of nearby genes [252, 272]). Archaea have numerous small nucleolar RNAs

(snoRNAs) homologous to eukaryal snoRNAs that direct site-specific RNA methylation and

pseudouridylation [7]. Many eukaryotes make extensive use of RNA regulatory mechanisms

via pathways related to RNA interference (RNAi) and microRNAs (miRNAs) [4, 10], and

these will become relevant to metagenomic studies as they begin to target eukaryotes. These

are only a small list of the most abundant classes of functional RNA elements. There are

many other examples: catalytic introns, eukaryotic spliceosomal RNAs, RNA components of

ribonucleoprotein complexes including telomerase, ribonuclease P, and the signal recognition

particle, and more.

It is striking that several of the large classes of RNAs just mentioned were either dis-

covered recently (miRNAs, riboswitches) or have had their numbers greatly expanded by

recent analyses (sRNAs, snoRNAs). This highlights the relative difficulty in discovering

and analyzing functional RNA sequences, compared to more well-developed methodologies

for discovering and analyzing protein coding sequences. It hints that other RNAs likely

remain undiscovered [56].

In this chapter, we will discuss methods for computationally identifying homologs of

known RNA elements, such as riboswitches and sRNA riboregulators. Another problem

of great interest is to discover entirely new functional RNA elements by computational se-

quence analysis [165, 211, 257, 270], but as recent reviews have discussed, de novo RNA

discovery (“genefinding”) methods [6, 98, 180] currently have high false positive rates that

are difficult to estimate statistically; these methods are unsuited to high-throughput analy-

sis, and instead need to be used as screens that can be followed by experimental confirmation

[44]. In contrast, RNA homology search programs are sufficiently reliable, and backed by

sufficiently well-curated databases of known RNA sequence families, that automated large-

scale computational metagenomic analyses are feasible.

133

5.1 Exploiting conserved structure in RNA similarity searches

Protein homology search by amino acid primary sequence comparison is powerful. At the

amino acid level, blastp has no trouble detecting significant similarity down to about

25-30% amino acid sequence identity. Many protein coding regions conserve this level of

similarity even across the deepest divergences in the tree of life amongst archaea, bacteria,

and eukaryotes.

In contrast, RNA homology search by nucleotide primary sequence comparison is much

less able to detect distant RNA homologies. blastn typically requires about 60-65% se-

quence identity to detect a statistically significant similarity for RNAs of typical length.

Although some RNAs are very highly conserved over evolution (notably large and small

subunit ribosomal RNAs, which are readily detected by sequence comparison in all species;

the so-called human “ultraconserved” regions included regions of rRNA [11]), this is not

the rule. Many functional RNA homologies are undetectable at the primary sequence level

in cross-phylum comparisons (such as nematode/human or fly/human), because weakly or

moderately conserved nucleic acid sequences can diverge to the 65% identity level in just a

few tens of millions of years.

A striking example of this difference comes when searching for homologs of the compo-

nents of some ribonucleoprotein (RNP) complexes. It is not uncommon to detect homologs

of the protein components but not the RNA components of complexes such as the signal

recognition particle, ribonuclease P, small nucleolar RNPs, and telomerase. The interpre-

tation upon finding only the protein component is usually (and almost certainly correctly)

that the RNP complex is present in the organism, but the RNA component(s) are too dif-

ficult to detect. For example, the probable presence of small nucleolar RNAs in archaea

could be inferred from the presence of homologs of snoRNP protein components like fibril-

larin well before snoRNA homologs were discovered [5, 199]. A similar situation can occur

when identifying homologous cis-regulatory RNA elements (such as riboswitches) for clearly

homologous coding genes.

134

Table 1.12 shows some specific anecdotal examples. These data are fairly typical of

searching databases with protein versus RNA queries. They demonstrate two key points

about the relative difficulty in detecting homologs of functional RNAs. First, notice that for

the protein coding genes, the statistical significance of the similarity (the E-value) is always

much better (lower and more significant) when comparing their amino acid sequences rather

than when comparing their DNA sequences, highlighting the additional statistical power in-

herent in searches at the amino acid level. This is the reason for the recommended practice

of always comparing protein sequences at the amino acid level [207]. Second, notice that

RNA components are usually much shorter than the coding sequence of the protein compo-

nents, further compromising statistical signal and the ability of primary sequence analysis

(blastn) to resolve homologous relationships from background. (To enable reproduction

of these results, the accessions for the sequence data used in these searches is provided in

Table 1.23.)

What can be done about the weakness of primary sequence based methods for detecting

functional RNAs? Some other source of statistical signal needs to be found for functional

RNAs. Such a signal exists: many (though not all) functional RNAs conserve a distinctive

RNA secondary structure.

Of course, proteins conserve structure more than sequence too. Remote homologies invis-

ible to primary sequence analysis often become apparent when a protein’s three-dimensional

structure is solved. What makes RNA secondary structure constraints of particular utility

for computational sequence analysis is their simplicity and relative contribution of statisti-

cal signal. RNA base-pairs induce strong pairwise correlations in RNA sequences. These

correlations may be sufficiently obvious that they are apparent even to the naked eye (anal-

ogous to the obviousness of ORFs for coding gene analysis). RNA consensus secondary

structures have been accurately inferred by manual “comparative sequence analysis” alone

[107, 181, 202].

How much extra information does RNA secondary structure conservation contribute in
2This table appears in Chapter 1.
3This table appears in Chapter 1.

135

addition to primary sequence conservation? We can ask this question rigorously in the con-

text of homology search applications, across a range of different types of RNAs. Figure 1.94

shows the average score of search models for about 100 RNA sequence families, comparing

models of sequence conservation alone (“profile hidden Markov models”, profile HMMs)

to models of sequence plus RNA secondary structure conservation (“covariance models”,

CMs). These consensus models are discussed in more detail below; for the present point,

their salient feature is that they are built from an input multiple alignment of homologous

sequences, and they represent that alignment using a probabilistic position-specific scoring

system.

The unit of score is a “bit” (essentially the same as BLAST “bit scores”), which is

a measure of information content [166, 233]. Some intuition can be given for what a bit

means, without much mathematics. A single perfectly conserved RNA residue (probability

1.0) contrasted to a uniform expected background (probability 0.25) is log2
1.0
0.25 = 2 bits of

information – you need to ask two yes/no questions to narrow four possibilities down to one,

thus two “bits” (binary units) of information. A position where each residue occurs with

equal probability (same as expected background) has zero bits of information. Imagine two

positions that contain a covarying Watson-Crick base-pair in which each of the four possible

base-pairs occurs with equal frequency 1
4 . In a sequence only model the two positions

contribute zero bits of information, but in a structure/sequence model this pair contributes

two bits of information from the pairwise correlation (the expected background in these

columns is 0.0625 for each of the 16 possible base-pairs, but only 4 are observed with

probability 0.25 each). In contrast, two columns that form a Watson-Crick base-pair that is

perfectly conserved (a GC with probability 1.0 for example) always contribute four bits of

information, regardless of whether they are modeled together as a pair (log2
1.0

0.0625 = 4), or

independently (log2
1.0
0.25 + log2

1.0
0.25 = 4). Thus, the best case for extracting useful sequence

information from RNA secondary structure are covarying base-pairs that are individually

not conserved in primary sequence at all. The more highly conserved the aligned RNA
4This figure appears in Chapter 1.

136

sequences are, the more primary sequence information content and less covariation will be

seen.

Importantly, for local sequence alignment searches using probabilistic models, there is

a direct, intuitive connection between the score in bits and the statistical significance (E-

value) of a detected match [59]. Roughly speaking, every 3 or so bits of score improves the

E-value by a factor of ten-fold (for high scores, the E-value is an exponential function of

the bit score x; E is proportional to 2−x). So, as a rule of thumb, extracting ten more bits

of information for a homology search means shifting E-values by three orders of magnitude.

This increase in resolution doesn’t matter much if a sequence is already readily detected by

primary sequence comparison (improving an already significant E-value of 10−30 to 10−33,

for example), but it becomes important when lifting a marginally insignificant E-value to

significance (0.1 to 10−4, for example).

Figure 1.9 shows the extra bits of information contributed by including RNA secondary

structure in “typical” RNA search models. These models are all position-specific profiles

built from alignments in the rfam RNA families database, described below. There is sub-

stantial variation from family to family, but the extra information contributed by secondary

structure is usually on the order of 10-20 bits or more, depending on the length and con-

servation of the alignment, which would be expected to improve E-values of homologs by

about 3-6 orders of magnitude. This improvement can be seen in the results of the anec-

dotal searches of Table 1.1 comparing the E-values obtained by primary sequence blastn

searches to infernal, a sequence+secondary structure RNA homology search, as we will

discuss in more detail below. The conclusion here is that while primary sequence is still

the dominant source of information (at least for these particular “typical” searches; it is,

of course, possible to imagine searching for RNAs with zero sequence information and only

secondary structure information), adding secondary structure contributes enough informa-

tion content that we can expect a structure+sequence method to resolve some homologs

that were not quite resolvable by sequence analysis alone.

137

5.2 Infernal: software for RNA homology search and align-
ment

Computational methods that combine RNA secondary structure and sequence conservation

information in a single consistent statistical model have been developed, based on probabilis-

tic models called “stochastic context-free grammars” (SCFGs) [53, 57, 65, 226]. Dynamic

programming algorithms exist for optimal alignment of SCFGs to target sequences, anal-

ogous to algorithms for sequence alignment except that SCFG algorithms are aligning by

base-paired secondary structure in addition to sequence [53, 120, 135, 285]. A particular

formulation of SCFGs, called covariance models (CMs), was developed specifically for au-

tomatic construction of statistical models from input RNA secondary structures or input

multiple alignments annotated with consensus RNA structure. This technology is imple-

mented in a freely available software package called infernal (http://infernal.janelia.org).

A variety of other computational tools for RNA homology search exist besides infernal

(reviewed in [58, 128, 165, 270]). Some of the most popular tools are erpin [90], fastr [287],

rsmatch [161], rnamotif [167], rnatops [121], and patscan [52]. infernal is one of the

most generally applicable tools, is the basis for a widely used RNA family database (rfam;

described below), and currently appears to be the best overall in performance according to

published benchmarks [85]. Here we will restrict our discussion to infernal.

To demonstrate how scoring structure increases statistical power for RNA homology

search, we used infernal to build CMs and perform searches for the single sequence/structure

queries in Table 1.1 (the structures were obtained from the rfam database, described be-

low). As expected, modeling structure makes the target RNA more distinguishable from

background, as evidenced by the decrease in E-values between blastn and CM searches of

between three and thirteen orders of magnitude.

Figure 5.1 provides more detail for the cobalamin (B12) riboswitch example from Ta-

ble 1.1. It shows the Escherichia coli query sequence and secondary structure, and the

pattern of conservation in two different homologs found by a CM built from the E. coli

query. Notice that although many of the residue substitutions between query and target

138

are in the predicted loop regions, those that occur in a position that is base-paired are often

accompanied by a compensatory change in the paired position to maintain a Watson-Crick

or GU/UG pair. The extra information from the E. coli structure allows infernal to find

the homologous riboswitch in the Acinetobacter baumannii genome as the top scoring hit

with a significant E-value of 3.7× 10−5, despite it sharing only 49% sequence identity with

the E.coli riboswitch. The analogous search with blastn does not identify the riboswitch

homology with a significant E-value (E=2.6).

CMs can be built from single RNAs, but they are most powerful when built from a

multiple sequence alignment with consensus secondary structure annotation. CMs imple-

ment a position-specific (“profile”) scoring system, where each consensus single-stranded

position or base pair is represented by its own set of four or sixteen scores, and inser-

tion/deletion scores are likewise specific to each point where an insertion or deletion can

occur. Given enough aligned sequences, a position-specific profile model can learn which

residues or base-pairs are highly conserved, what substitutions are tolerated by evolution,

and where an RNA does and does not frequently tolerate insertion and deletion of sequence

residues or structural domains. Given only a single RNA sequence (as in the examples in

Table 1.1 and Figure 5.1), the CM scoring system reverts to a position-independent param-

eterization representing the averaged constraints on typical RNAs, essentially analogous to

the use of score matrices in pairwise sequence alignment methods like blast.

CMs are probabilistic models, meaning that all the scoring parameters are probabilities

rather than arbitrary scores and penalties. This helps in managing the complexity of setting

a large number of parameters in an objective, automatic, and mathematically justified way;

a consensus tRNA CM has about 1500 parameters and a consensus LSU rRNA CM has

about 50,000 parameters that need to be determined. Using probabilities as parameters

also helps in interpreting the significance of potential matches in a database search, and

in calculating confidence values (posterior probabilities) associated with each residue in a

proposed alignment. The use of probabilistic models for RNA structure/sequence analysis

follows in the wake of similar techniques in primary sequence analysis, where score profiles

139

A
U

A

G
U

U

CU

U

C
C

C

UC A

A

G
C

GC
G

UA

UG

C
G

G
C

G
C

A
U

A
U

U
A

U U
A

G
G C

target 2
Acinetobacter baumannii
Cobalamin riboswitch
NC_011586
3485336-3485543

C CUA

G A

G

A U

U

G C
G C
A U

A
GA

A G
A

A

C

U

U

C
G

U
A

GC
GG U GG

AAG

A

U

C
G AC

C

A
U

C

U

5’
3’

C UG

uuu

u c
g

c g a aac

g

UU U
G

A

A
U

UU

G
GU

UU AAG

A

A

A

C

UG

G
G

G

U

A U
A

G G
A

C

UA A

G A
A C GA

U

A A
A

U
C

C A
C

C

A A
C
GU

C
G

G
A

A

A

C

UAA
U A

U

GC
U

U

C
A

G

G
A

A G AUAA

AC

U
G

UU

G

U
C

G

C
G

C

UCG
A

G

A
A

A
U

G
C

G
C

C
G

UAA

UG

C
G

G
C

G
C

G
C

G
C

A
U

U
U

A

A G
G C

target 1
Yersinia enterocolitica
Cobalamin riboswitch
NC_008800
157074-157301

A
C
G
C

G A C CUA
G
CCG A

GGC

G C
A U

A

UU

G C
G C
A U

A
GA

A

A

A

A

AU

U

GC

C

G

A

C
A

G C
GG U GC U G

AAG

AC

U C UGU

G

U

C
G

A

C

AC

5’ 3’

U

U

67% seq identity with E.coli
BLASTN E-value: 3.2e-09

CM E-value: 9.3e-21

49% seq identity with E.coli
BLASTN E-value: 2.6

CM E-value: 3.7e-05

GU C

U

A

C

Gg
a

a

U

U

U

g
a
a
a

c

u
a
g
a

C

A

U

U

UUA A

AU

U

U
G

A

CG AA

C
A

A
U G

A
G GC

A

G

UC
a

A A

C
G

A
U

A

A

A

A

A UUU

c

c

c

A
GAUUC U

A
U

U

G

G
C

UU

GU

U
CU

G U G

C
G

C

UCG
A

G

A
A

A
U

G
C

G
C

C U
G A

UAA
G

UGC
C
G

G
C

G
C

G
C

A
U

A
U

U
A

G
C

A
U

U U

C CA

A G
G C

query
Escherichia coli
Cobalamin riboswitch
NC_000913
4161407-4161597

A C
G

G
C

G A C CUA
G
CCG A

G
C

G
C

C
G

G C
A U

UA

UU

G C
G C
A U

A
GA

A G

A
C
G

A

A A
C

A

C
C

C

A
U

U

G
U

C
G

C

GG U G
U

A

GC
A

GC AC
GG U GGC U G

AAG

C
A
U
C

U

C
U G AC UAC GU G

G

U

C
G

A

C

C
AU

C
U

CA

G5’ 3’

Figure 5.1: Secondary structure of three cobalamin riboswitches. Using the E. coli
sequence as a query against their respective genomes, blastn detects the Y. enterocolitica
cobalamin riboswitch with a significant E-value, but not the A. baumannii riboswitch.
infernal searches with a CM constructed from the E. coli sequence and structure (from
the rfam seed alignment for family RF00174 [89]) find both riboswitches with increased
significance values. These example searches are listed in Table 1.1. Structures of the targets
and percent identity figures were derived from the highest scoring CM alignment of each
target to the query (E. coli). Sequence substitutions and insertions in the targets with
respect to the query are shown in gray. Inserted residues with respect to the query are
shown in lowercase. Base-Pairs in the rfam annotated structure are connected by solid
lines, except those that are not Watson-Crick, GU, or UG, which are connected by dotted
lines. All riboswitches are immediately upstream (5’; within 100 residues) of btuB vitamin
B12 transporter protein coding genes in their respective genomes.

140

(also called position-specific scoring matrices, PSSMs) have been made more powerful and

consistent using probabilistic models called profile hidden Markov models (profile HMMs)

[53, 142].

A CM can be used for a variety of alignment and search tasks. For example, very

large numbers of RNA sequences can be aligned to a single RNA structure consensus with

reasonable accuracy and efficiency: the ribosomal database project (RDP) now uses

infernal to produce alignments of hundreds of thousands of small subunit (SSU) ribosomal

RNAs [40]. For sequence annotation, including metagenomic analysis, the main use of CMs

is for homology search.

Because infernal requires that the user provide a consensus RNA secondary structure

for the query RNA, and because CMs are most powerful when models are built from multiple

sequence alignments, a fair amount of work might be invested in carefully assembling a high-

quality multiple sequence alignment annotated with a consensus structure. This investment

may be feasible if one is only interested in sequence analysis of a particular RNA family,

such as ribosomal RNA. However, if the goal is comprehensive high-throughput annotation

of many different functional RNAs, for instance as part of analyzing a new metagenomic se-

quence dataset, it would be useful to have access to a large number of structure-annotated

RNA alignments and pre-built CMs. Much as protein domain databases like pfam and

smart have collected on the order of 10,000 protein domain sequence alignments for system-

atic profile HMM analysis [76, 151], there is a database called rfam that has systematically

collected RNA alignments and CMs [89].

5.3 Rfam: high-throughput RNA homology search and an-
notation

The rfam database [89] is a curated and annotated collection of RNA sequence families, in-

tended for the purpose of systematic, automated, high-throughput annotation of functional

RNA elements in genomic and metagenomic sequence data. The current (9.1) version of

rfam contains 1372 families (http://rfam.sanger.ac.uk). Each rfam family consists of three

141

main components: a representative “seed” alignment, a covariance model (CM) built from

the “seed” alignment, and a comprehensive “full” alignment.

The “seed” alignment is intended to be a small, stable, and curated alignment of rep-

resentative members of the sequence family, annotated with a consensus RNA secondary

structure. For example, the glycine riboswitch (RF000504;

http://rfam.sanger.ac.uk/family/RF00504) is represented by an alignment of 53 RNAs.

The “full” alignment is intended to be comprehensive. It consists of an infernal-

generated structural alignment of all homologous RNAs detected by infernal in a search,

using the CM built from the “seed” alignment, of a composite DNA sequence database,

RFAMSEQ, which now includes both genomic and metagenomic sequence data [89].

The alignments are useful for a variety of purposes, such as phylogenetic tree inference,

examining the phylogenetic range over which a given RNA family occurs, or as a source of

training data for other RNA structure analysis methods. For metagenomic analyses, the

main application of infernal and rfam is homology search, and the main resource is the

set of pre-built rfam CMs.

The infernal package (http://infernal.janelia.org) and rfam CM files

(http://rfam.sanger.ac.uk) can be freely downloaded and used to identify homologs of known

functional RNAs in a metagenomics dataset. As an example of such an analysis, we per-

formed CM searches of a previously published metagenomics dataset [251]. (A similar analy-

sis of riboswitch occurrence in this metagenomic dataset using different search methodology

has been published [136]; we compare the results below.) The dataset includes about 200,000

whole genome shotgun sequencing reads totaling about 230 Mb derived from samples of

agricultural soil (∼ 140 Mb, accession AAFX01000000) and three “whale fall” carcasses

(∼ 90 Mb, accessions AAFZ00000000, AAFY01000000, AAGA00000000). To simplify the

analysis for our illustrative purposes here, we searched only for riboswitches, using the 15

rfam 9.1 CMs of type ’cis reg; riboswitch’ [89]. For comparison, we repeated the search

with blast, using each individual sequence in the rfam seed alignment as a blast query

and combining the results to identify any significant matches [103]. Additionally, we per-

142

formed searches with infernal v1.0 run in a profile HMM mode, which ignores secondary

structure and scores only primary sequence conservation. Comparison of the blast, profile

HMM and CM search results illustrates the relative contribution of the two main differences

between blast and CMs: the use of probabilistic profiles instead of pairwise comparisons

(by comparing blast and HMM results), and scoring both sequence and RNA structure

(by comparing CM and HMM results).

Table 5.1 includes the number of putative riboswitches (hits) with E-values less than

10−5 found for each family using each method. Also displayed are the number of hits

detected by one method but not another for all six possible pairwise combinations of the

three methods. Using the strict 10−5 E-value cutoff, infernal CM searches found 135

total putative riboswitches in the soil and whale falls dataset; HMM searches found 102

(a subset of the 135); and blast found 50. Profile HMM searches detected 61 hits that

blast did not, and CM searches detected 33 hits that profile HMMs did not, indicating

that using profiles and additional scoring of structure both contribute significantly to an

increased sensitivity of CMs over blast.

We can compare these results to the recently published results of a similar analysis of

riboswitch occurrence in the same metagenomic dataset using different search methodology

[136]. Kazanov et al. [136] used the pattern based search program rna-pattern to identify

candidates of 11 riboswitch families (8 of which we used in our analysis) in the same soil

and whale falls data we analyzed. For the 8 families in common, their pattern based

search detected 103 candidate riboswitches, compared to 125 identified by CM searches at

a stringent threshold. rna-pattern detected 14 candidates that CMs did not, and CMs

detected 36 candidates that rna-pattern did not. The largest differences were for the

cobalamin family, for which CMs found 18 candidates undetected by rna-pattern, and

the glycine family, for which rna-pattern found 10 candidates undetected by CMs using

a CM E-value threshold of 10−5. Six of these 10 are found by the glycine riboswitch CM,

but with E-values just below the strict threshold, ranging between 10−3 and 10−5. For the

remaining four, we cannot distinguish whether these are missed by the CM, or whether they

143

#
d
iff

er
en

t
se

q
s

fo
u
n
d

#
se

q
s

fo
u
n
d

B
L
A

S
T

B
L
A

S
T

H
M

M
H

M
M

C
M

C
M

fa
m

il
y

r
fa

m
ID

av
g

%
id

B
L
A

S
T

H
M

M
C

M
-H

M
M

-C
M

-B
L
A

S
T

-C
M

-B
L
A

S
T

-H
M

M

F
M

N
R

F
0
0
0
5
0

7
2

8
9

9
1

1

T
P

P
R

F
0
0
0
5
9

5
6

8
2
3

3
5

1
5

2
7

1
2

S
A

M
R

F
0
0
1
6
2

6
9

4
8

1
4

3
7

1
0

6

P
u
ri

n
e

R
F
0
0
1
6
7

5
6

L
y
si

n
e

R
F
0
0
1
6
8

5
1

1
1

1
1

C
o
b
a
la

m
in

R
F
0
0
1
7
4

5
4

2
0

4
3

4
7

2
2

2
5

2
9

4

g
lm

S
R

F
0
0
2
3
4

6
0

2
2

2
2

G
ly

ci
n
e

R
F
0
0
5
0
4

5
4

7
8

1
7

3
1

4
1
1

9

S
A

M
a
lp

h
a

R
F
0
0
5
2
1

7
1

1
7

7
6

6

P
re

Q
1

R
F
0
0
5
2
2

6
7

S
A

M
-I

V
R

F
0
0
6
3
4

7
3

p
re

Q
1
-I

I
R

F
0
1
0
5
4

6
8

M
O

C
O

R
N

A
m

o
ti

f
R

F
0
1
0
5
5

5
9

1
1

1

M
g

se
n
so

r
R

F
0
1
0
5
6

7
8

S
A

H
R

F
0
1
0
5
7

6
3

2
1

2
1

1

to
ta

l
-

-
5
0

1
0
2

1
3
5

9
3

6
1

0
8
8

3
3

T
ab

le
5.

1:
R

ib
os

w
it

ch
se

ar
ch

re
su

lt
s.

“#
se

qs
fo

un
d”

:
th

e
nu

m
be

r
of

hi
ts

re
ce

iv
in

g
E

-v
al

ue
s

be
tt

er
th

an
(l

es
s

th
an

)
10
−

5
fo

r
ea

ch
se

ar
ch

m
et

ho
d

in
th

e
23

0
M

b
so

il
an

d
w

ha
le

fa
lls

da
ta

se
t

[2
51

]f
or

ea
ch

r
fa

m
9.

1
ri

bo
sw

it
ch

fa
m

ily
.

“#
di

ffe
re

nt
se

qs
fo

un
d”

:
nu

m
be

r
of

hi
ts

de
te

ct
ed

by
on

e
m

et
ho

d
an

d
no

t
de

te
ct

ed
by

an
ot

he
r

fo
r

ea
ch

pa
ir

w
is

e
co

m
bi

na
ti

on
of

m
et

ho
ds

,
fo

r
ex

am
pl

e:
“B

L
A

ST
-H

M
M

”
fo

r
R

F
00

16
2

is
3

be
ca

us
e

3
hi

ts
de

te
ct

ed
by

B
L
A

ST
w

er
e

un
de

te
ct

ed
by

th
e

H
M

M
se

ar
ch

.
A

bl
an

k
sp

ac
e

in
a

ce
ll

in
di

ca
te

s
0.

144

are false positive predictions by rna-pattern and Kazanov et al. [136]; one disadvantage

of pattern search programs is that they do not generally report any objective measure of

the statistical significance of a match.

Can we trust that the statistically significant matches to the CM are really homologs,

and that the increased numbers really reflect increased detection sensitivity? That is, based

solely on the results of the demonstration experiment here, where we are simply counting

the number of hits detected below some E-value threshold and asserting that these are all

probable homologs, it is possible that infernal is instead merely assigning incorrectly low

E-values to nonhomologous sequences. One way to test the accuracy of any program’s E-

values is to search randomized nonhomologous sequence; one expects the top-scoring random

match to have an E-value on the order of 1 (by definition of expectation value: the number

of hits you expect to see in this database search with a score this high just by chance).

(This sort of test is a useful control experiment to run whenever thinking of adopting any

new search method.) In one recent experiment of ours [190], involving a benchmark of 51

CMs being searched against a 10 megabase synthetically generated target sequence, the

highest nonhomologous hit had an E-value of 0.009, about what you’d expect from doing

51 independent searches (1/51 = 0.019) if E-values were accurate. An E-value threshold of

10−5 is if anything on the conservative side. Most importantly, an independent benchmark

of a variety of RNA similarity search methods has been published [85], which generally

found that CM based methods are the most sensitive and specific methods available.

5.4 Limitations of CMs

Now the fine print. Users applying infernal and rfam for metagenomics analysis should

be aware of five important limitations of CM similarity search:

1. The principal drawback of CM methods is that they are slow. In the

riboswitch example above, the fifteen CM searches took about 71 CPU hours (18 minutes on

250 processors), about 100 times longer than blast searches (45 minutes on one processor).

Repeating this search using all 1372 rfam 9.1 models would take roughly 3 CPU years

145

(about 4 days on a 250 CPU cluster). Significant compute power (such as a moderate sized

cluster) is required to do large scale analyses with CMs. infernal is parallelized for use

on clusters using the Message Passing Interface (MPI) [102].

Though still slow compared to blast, infernal is much faster than it was just a few

years ago. The current version (v1.0) [190] is about 100 times faster than version 0.55 [56].

The speedup is due to heuristics, including filtering [265, Nawrocki and Eddy, in preparation]

and banded dynamic programming [189], which sacrifice a small amount of sensitivity for

the increased speed. This sensitivity sacrifice, though small, disproportionately impacts

remote homology detection [189, 190]. It may be worthwhile to switch off the heuristic

speedups for smaller scale analyses if the requisite compute power is at hand. Conversely,

if compute power is limiting, the heuristic speedup parameters can be tuned for greater

acceleration at a greater cost in sensitivity [192]. Further acceleration remains a major goal

of infernal development.

Another computationally expensive step of CM similarity search is “calibrating” models

in order to obtain E-values for search results, and to determine the appropriate filtering

scheme for maximum speed without significant sensitivity loss. infernal’s cmcalibrate

program must run several large computational simulations, and this takes several CPU

hours for a typical sized CM. The CMs from the rfam database come pre-calibrated, so

rfam users do not have to pay this cost, but any custom built models need to be calibrated.

2. A CM models only a single user-provided RNA consensus structure.

Many RNA structures are inferred, rather than being determined by crystallographic or

NMR methods, so secondary structure annotation may well be at least partially incorrect –

especially in large collections like rfam, where curation of a set of over 1300 consensus struc-

tures is challenging. Additionally, a single consensus structure is unable to properly capture

the evolutionary variation observed amongst individual homologous secondary structures,

except in a crude way (as structural deletions and insertions relative to the consensus). And

finally, an assumption that an RNA adopts only a single secondary structure is only an ap-

proximation, as RNAs (like proteins) are sure to exist in an ensemble of different structures

146

(perhaps bound and unbound to a protein or substrate). Riboswitches, for example, are a

dramatic example of the function of an RNA depending on it adopting at least two distinct

structural conformations.

3. Using a CM for non-structured RNAs is pointless. Many RNAs may not

require a conserved structure for their function. For example, antisense regulatory RNAs

that control gene expression simply by base-pairing to target mRNAs are acting as primary

sequences, and they do not necessarily conserve any intramolecular secondary structure.

Though CMs can model RNAs with no consensus base-pairs [192], it is more practical and

appropriate to use profile HMMs rather than CMs, avoiding the CMs’ computational costs.

4. CMs ignore some aspects of RNA structure. By their nature, CMs are only

able to model a canonical secondary structure consisting of exclusively nested base-pairing

relationships, meaning a set of base-pairs for which no two pairs “overlap“ in sequence po-

sition (no two pairs between positions i : j and k : l exist such that i < k < j < l). This

means CMs do not model RNA pseudoknots, base triples, nor most other contacts found

in RNA tertiary structure. The goal of a CM is not to model RNA structure completely,

but rather to harness as much additional structural information as possible for more ac-

curate RNA search and alignment, while still allowing for reasonably efficient algorithms.

Capturing yet more higher-order RNA structural information is possible, but it violates

the constraints of SCFG-type probabilistic models and comes at a disproportionate cost

in computational efficiency [222]. Other methods exist for RNA homology search that can

model RNA pseudoknots, including erpin [90] and rnatops [121].

5. Truncated sequences present special issues. Metagenomic shotgun sequencing

surveys produce sequence fragments from essentially random positions on a host genome.

When a shotgun read overlaps a structural RNA element, residues involved in conserved

base-pairs may be missing. An RNA structural alignment algorithm needs to anticipate

and allow this sort of sequence truncation to be useful for shotgun sequence analysis. Until

recently, the local alignment algorithms used for CMs and related SCFG-based RNA align-

ment methods looked for structural deletions (deletions that remove a stem or structural

147

domain, respecting evolutionary base pairing constraints), but did not look for sequence

truncations. infernal now includes a new local alignment method, developed by Diana

Kolbe, which more effectively deals with missing sequence data in shotgun reads [141]. As

we write this, this feature is not yet incorporated in cmsearch for homology searches (it

soon will be), but the new algorithm can be used for sequence alignment with infernal’s

prototype trcyk program.

5.5 Conclusion

Compensatory base-pair changes in RNA sequence alignments are strikingly apparent even

to the eye. The deeper the alignment (the more sequences known to conserve roughly the

same structure), the more the RNA structure becomes obvious by sequence analysis alone.

Robin Gutell and co-workers were able to predict the secondary structure of ribosomal RNA

to greater than 98% accuracy per base-pair by essentially manual comparative analysis of

careful rRNA alignments [107], and Francois Michel and Eric Westhof predicted the struc-

ture of group I intron catalytic introns in much the same way [181]. The automation of

comparative RNA structure/sequence analysis is essentially the basis of algorithms that

combine RNA secondary structure and sequence analysis to enable identification of more

remote RNA homologs than primary sequence methods alone can achieve. These methods

can be used to search metagenomics datasets for known families of RNAs using a com-

bination of the infernal software (http://infernal.janelia.org) and CMs from the rfam

database [89].

148

Chapter 6

Conclusion to RNA homology

search

0.001 0.005 0.01 0.05 0.10 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

false positives per MB searched per query

se
ns

iti
vi

ty
 (f

ra
ct

io
n

of
 tr

ue
 p

os
iti

ve
s)

Before this work
Infernal v0.55
5847.4 hours

After this work
Infernal v1.01

19.0 hours

Figure 6.1: Rfam benchmark ROC curves for Infernal v0.55 and v1.01. The
benchmark is explained in Chapter 3.

Figure 6.1 demonstrates the effect of my thesis work on the sensitivity, specificity and

149

speed of CM homology search using infernal.

The improved sensitivity and specificity is due to:

• Informative mixture Dirichlet priors for CM emissions (Chapter 2).

• Informative Dirichlet priors for CM transitions (Chapter 2).

• Entropy weighting parameterization strategy (Chapter 2).

• Log likelihood scoring of a target sequence given a model using the Inside algorithm

(Chapter 5).

The roughly 300-fold acceleration is due to:

• Query-dependent banding (QDB) for the CYK and Inside algorithm (Chapters 2 and

5).

• Optimized implementations of the CYK and Inside algorithms. (Chapter 5).

• HMM filtering using a reimplementation of Weinberg/Ruzzo ML-heuristic HMMs

[265] and the filter sensitivity targeting (FST) thresholding strategy. (Chapter 5).

• Combined HMM and QDB CYK filtering. (Chapter 5).

150

Part 2:

RNA alignment

151

Chapter 7

Introduction to small subunit

ribosomal RNA alignment

Small subunit ribosomal RNA (SSU rRNA, or just SSU 1) is a non-protein coding, structural

RNA that is found in all cellular organisms. SSU forms the structural core of the small

subunit of the ribosome. It interacts with the large subunit ribosomal RNA (LSU rRNA),

ribosomal proteins, and transfer RNAs to decode messenger RNAs into amino acids and

provide peptidyl transferase activity to form peptide bonds between adjacent amino acids

during translation. Due to this central role in the vital process of translation, SSU’s sequence

and structure have been highly constrained by evolution. The constraint has been so strong

that SSU gene sequences from organisms across the entire tree of life are highly similar and

clearly homologous [32].

The high level of sequence similarity in SSU is exploited by environmental sequencing

surveys that seek to characterize microbial diversity in various environments [122]. For more

than twenty years, these studies have been performed for many environments and have led

to repeated discoveries of new types of life [123, 155, 200]. In a typical environmental

sequencing survey, SSU sequences are derived from a bulk nucleic acid sample from an
1Bacterial and archaeal SSU rRNA are also called 16S rRNA and eukaryotic SSU rRNA is called 18S

rRNA, based on their sedimentation speed during centrifugation. Here, I will refer to all types of SSU rRNA
as simply SSU.

152

environment and aligned with SSU sequences from known organisms with known (or at

least trusted) positions on the tree of life. The alignment is then used as the basis for

estimating a phylogenetic tree, which helps reveal the biodiversity of the environment by

comparison of the placement of the environmental sequences with the known ones on the

tree.

The scale of environmental survey studies is growing rapidly. A single study can generate

thousands or tens of thousands of SSU sequences and currently there are about one million

SSU sequences in genbank [12]. As these studies continue to grow in scale, computational

tools that can rapidly and accurately align large numbers of SSU sequences will become

more and more useful.

A focus of my thesis work has been to create a practical tool for generating large SSU

alignments (up to millions of sequences). In this chapter, I introduce the history of SSU-

based phylogenetic analyses, describe the current state-of-the-art tools for generating large

alignments, and discuss the design and motivation of the alignment tool I have developed.

7.1 SSU and the tree of life

In 1977, Carl Woese working with George Fox at the University of Illinois at Urbana-

Champaign was interested in studying the evolution of translation, which to him was “the

central problem in the evolution of the cell” [273]. To do this he realized he needed a

universal phylogenetic tree of life as a conceptual framework. He decided to use SSU

because it existed in all cellular life, had evolved slowly enough to be comparable across all

life, and was large enough to give a useful amount of data.

To infer the SSU tree, Woese employed the oligonucleotide cataloging technique for

RNA sequencing [228] using the SSU of 13 organisms: ten prokaryotes and three eukary-

otes [276]. In short, Woese digested the purified SSU with T1 RNase and separated the

resulting fragments with two-dimensional electrophoretic separation to create a separate

oligonucleotide fingerprint for each organism’s SSU. After determining the sequence of the

oligonucleotides, he measured the sequence similarity between all possible pairs of the 13

153

sequences. The results clearly suggested that the 13 organisms were representatives of three

separate phylogenetic clades. At that time it was universally accepted that all of life was di-

vided into two primary phylogenetic groups, the prokaryotes and the eukaryotes, not three.

More specifically, while the three eukaryotes clustered together and most of the prokaryotes

clustered together (the blue-green bacteria, chloroplasts, gram-positive and gram-negative

bacteria), the methanogenic “bacteria” formed a separate cluster that was as distinct from

the other bacteria as it was from the eukaryotes. Woese and Fox proposed this as a new

kingdom of life, the archaebacteria, which have since been renamed the archaea. The third

domain uprooted convention and was very controversial. Woese spent years defending the

three domain model [86]. Today, the existence of three separate domains is unchallenged.

In the next few years, Woese and his colleagues applied their oligonucleotide cataloging

approach for specific clades including the mycoplasmas [279] and the purple bacteria [281].

They found that the approach had its limitations. While it was powerful enough to define

bacterial phyla (one level lower in classification than kingdom), it had difficulty resolving

the relationships between the subdivisions within phyla [275]. By the mid-1980s, Sanger

DNA sequencing [227, 229] had matured enough to allow the determination of complete

SSU sequences [105]. The burgeoning field of SSU-based phylogenetic analyses quickly

switched from oligonucleotide cataloging to using full SSU sequences because they were

more informative and statistically powerful.

7.2 Rapid culture-independent SSU sequence determination

By 1985, about 50 full or nearly full length SSU sequences had been determined [201]. The

ability to determine an SSU sequence from an organism depended on being able to grow that

organism in culture in a laboratory so that enough SSU could be isolated for sequencing.

This limited SSU-based phylogenetic analyses to culturable organisms; a serious limitation

because it was known that many (though no one knew how many) organisms could not be

grown in a laboratory. In fact, at that point virtually all detailed microbiology knowledge

in general, concerning metabolism, cell structure and physiology, had been gained from

154

the study of culturable organisms. In 1985, researchers working in Norm Pace’s lab at

Indiana University pioneered a method for determining partial SSU sequences from bulk

cellular RNA, advancing SSU sequencing to the world of unculturable microorganisms.

This breakthrough would eventually lead to repeated dramatic discoveries of new microbial

biodiversity that continue today [123].

Pace’s method involved targeting so-called universal primer sites, 15-20 nt long regions

of SSU that were conserved perfectly or nearly perfectly among the 50 existing sequences,

with complementary oligonucleotides, and copying the intervening SSU region using reverse

transcriptase [201]. Other groups soon began refining Pace’s technique, including David

Ward, Roland Weller [267] and Stephen Giovannoni [93]. Ward and Weller applied culture-

independent SSU sequencing to look for novel microbes in a Yellowstone hot spring com-

munity, which had been relatively well-studied before culture-independent methods were

developed [20]. The new methods revealed novel biodiversity. In one study they detected

eight new microbes, doubling the number of known microbes in the hot spring community

[260], and in another they discovered two new cyanobacteria and one new green nonsulfur

bacteria [268]. Giovannoni’s work was an early successful integration of Pace’s method with

Kary Mullis’ contemporary improvements to the polymerase chain reaction (PCR) tech-

nique [184]. Giovannoni applied his PCR-based methods to the bacterioplankton of the

Sargasso Sea, where he found two new types of bacteria, including SAR11 which he later

found to be the dominant organism in surface waters of the ocean and among the most

abundant organisms on Earth [183].

7.3 Environmental sequencing surveys

Giovannoni, Weller and Ward’s studies in the late 1980s and early 1990s were some of the

first environmental sequencing surveys that aimed to sample SSU sequences from organisms

directly from their natural environment. Probably largely due to the exciting findings of the

early studies, these types of surveys quickly became very popular. The basic methodology

that Pace et al. began developing in the mid-1980s is summarized in Figure 7.1.

155

In the late 1990s and early 2000s, enabled by rapidly developing sequencing technologies,

a new and more general brand of environmental surveys called metagenomics developed

that did not specifically target SSU [109]. In metagenomics studies, an environmental

sample of bulk DNA is sheared into fragments which are inserted into vectors for cloning

and sequencing - typically using a shotgun-sequencing approach [251, 254, 256]. Some

of these resulting sequence reads will be SSU, which are usually analyzed in much the

same manner as in PCR-based studies to help reveal the organismal diversity in the sample

(Figure 7.1, the dotted arrows). Additionally, because the genes of the sample environment’s

organisms are (more or less) randomly sampled, metagenomics provides a global view of

the functional potential of an environment’s microbes that an SSU-specific study cannot.

Despite this advantage, and the growing popularity of metagenomics, SSU-specific studies

are still widely performed, mainly due to the large number of available sequences and tools

for SSU comparative analysis in public databases (discussed in more detail below). SSU

is likely to continue to be an important phylogenetic marker in PCR- and metagenomics-

based environmental surveys [250]. Because both of these types of surveys include the SSU

comparative sequence analysis step most relevant to this work, I will group them together

and refer to them as environmental surveys.

Environmental surveys have targeted hundreds of different environments and produced

hundreds of thousands of SSU sequences. They differ markedly in the types of SSU sequences

they target and the number of sequences they generate. Table 7.1 lists a few examples.

While many focus on prokaryotes, targeting either archaea, bacteria, or both, a minority

target eukaryotes as well. Of course, due to their general nature, metagenomics studies can

generate sequences from all three domains. While environmental surveys vary widely in

their scale, there has been a general upward trend in the number of sequences generated

from these studies. This is reflected by the growth of the number of SSU sequences deposited

in genbank [12] per year since 1996 (Figure 7.2).

Environmental surveys have continuously and profoundly expanded our understanding

of microbial biodiversity on the planet. It is now clear that the vast majority of microorgan-

156

environmental
sample

community
rRNA/rDNA

rRNA/rDNA
clones

rRNA/rDNA
sequences

phylogenetic
trees

genomic
library

genomic
sequence

extraction

universal primer PCR

(shotgun)
sequencingsequencing

comparative
analysis

bulk
RNA/DNA

cloning*

cloning*

the cloning step is bypassed by next-generation
cyclic-array sequencing technologies

*

Figure 7.1: Flow chart of the key steps of environmental sequencing surveys. The dashed
lines indicate steps in metagenomics analyses. Note that next-generation sequencing tech-
nologies bypass the cloning step.

157

environment(s) domain(s) # seqs ref

cecal microbiota bacteria 5,088 [154]
of mice

human stomach bacteria 1,833 [13]

hypersaline mat bacteria 1,586 [155]

Sargasso sea all 3 1,164 [256]

hydrothermal vents eukarya 374 [66]

endolithic environment bacteria 342 [259]
(pore space of rocks)

soil & burrow archaea, 204 [87]
casts of earthworms bacteria

tidal flat sediment archaea 90 [137]

salt marsh eukarya 79 [241]

Table 7.1: Sampling of SSU rRNA environmental surveys. Studies were picked with
a bias to demonstrate the diverse range of environments, number of sequences, and domains
targeted.

158

SSU sequences deposited in GenBank

 Number
 of newly
 deposited
 sequences

50,000

100,000

150,000

200,000

250,000

300,000

Year of publication

bacteria

eukarya
archaea

<=1996 1998 2000 2002 2004 20061997 1999 2001 2003 2005 2007 2008 *2009

286,178

8,501
3,688

* first six months

0

350,000

400,000

450,000

500,000

550,000

600,000
six months
extrapolated
to one year

Figure 7.2: Number of SSU rRNA sequences deposited in genbank per
year since 1996. Numbers were obtained from NCBI’s Entrez Nucleotide website
(http://www.ncbi.nlm.nih.gov/sites/entrez) with the following queries: archaea: “(SSU OR
16S OR small subunit) NOT(18S) AND (rRNA OR rDNA OR ribosomal RNA) AND (ar-
chae*) NOT (bacteri* OR eubacteri* OR eukary* OR eucary*);” bacteria: “(SSU OR 16S
OR small subunit) NOT(18S) AND (rRNA OR rDNA OR ribosomal RNA) AND (bac-
teri* OR eubacteri*) NOT (archae* OR eukary* OR eucary*)”; eukarya: “(SSU OR 18S
OR small subunit) NOT(16S) AND (rRNA OR rDNA OR ribosomal RNA) AND (eukary*
OR eucary*) NOT (bacteri* OR eubacteri* OR archae*)”. The queries were limited by
publication date to the years shown.

159

isms are unculturable, (some estimates reach as high as 99% [239]). The pace of discovery

has been rapid, and does not hint at slowing. Take, for example, the growth in the number

of recognized bacterial phyla over the past twenty years. There were 12 in 1987 [275], 25 by

1997 [200], and 52 by 2003 [216]. In 2006, Ley et al. [155] defined 15 new candidate phyla

in a single study of the Guerrero Negro hypersaline microbial mat, raising the number to

67 [155]. Not only does novel diversity continue to be discovered, but the rate of discovery

is increasing.

Characterizing microbial communities

Finding novel life forms is exciting, but it is certainly not the only, or even the primary,

motivation for environmental surveys. They help researchers better understand microbial

communities living in various environments by identifying the organisms that comprise them

and the metabolic processes present there (primarily in the case of metagenomics studies).

While understanding life in environments such as the burrow casts of earthworms [87]

or the pore space of rocks [258] (Table 7.1) are mainly of interest to environmental microbi-

ologists, other environments have been the focus of broader interest. In particular, medical

microbiologists have been identifying the microorganisms living on and in the human body

for over a decade [282], which have collectively been coined the human microbiota. SSU-

based surveys have been conducted for the skin [88], vagina [124], mouth [188], and gut

[13, 210].

The number of microbial species in the gut alone has been estimated at nearly 40,000

[83] and the number of cells making up a human’s microbiota may outnumber their own by

a factor of 10 [253]. Gastrointestinal diseases such as Crohn’s disease, pouchitis and obesity

have been associated with large-scale imbalances in the community structure of the gut mi-

crobiota [156]. The U.S. National Institutes of Health (NIH) Roadmap for medical research

has recently begun the Human Microbiome Project (HMP), a five-year interdisciplinary

initiative to characterize the microbiota and analyze its impact on health and disease [253].

The HMP, with a total budget of $115 million, will focus on the organisms living in and on

160

the skin, nose, lungs, mouth, vagina, and gut.

7.4 Comparative SSU analysis for environmental surveys

For all environmental surveys, regardless of how sequences are obtained and how many are

obtained, the final crucial step of “comparative analysis” (Figure 7.1) reveals the biodiversity

in the sample. This is the step most relevant to the computational biologist, and will be

the main focus of the remainder of this chapter and the next two.

Woese’s association coefficient

In his seminal 1977 paper, Woese’s comparative analysis step involved oligonucleotide cata-

loging [81, 276]. The SSU molecules are digested with T1 RNase (which cleaves at G residues)

producing short oligonucleotides of lengths up to about 20 residues. The oligonucleotides

produced from a single SSU sequence define its catalog. The catalogs are then compared

to each other to group the sequences phylogenetically using a metric called the association

coefficient, SAB defined as:

SAB =
2NAB

(NA +NB)

NA and NB are the total sum of bases in distinct oligonucleotides (hexamers or larger)

in the catalog for organism A and B, respectively. NAB is the overlap: the number present

both in A and B. This statistic, perhaps surprisingly, was powerful enough to convince

Woese that his 13 SSU sequences composed three distinct domains of life. The cataloging

approach is even powerful enough to define many bacterial phyla [279], but has difficulty

resolving branching patterns within them [275].

Alignments and trees

As full-length sequencing of SSU became feasible in the late 1970s and early 1980s [21],

Woese and his contemporaries first complemented and eventually replaced the oligonu-

161

cleotide cataloging approach with more powerful phylogenetic inference techniques based

on multiple sequence alignments. Though the specific methods and implementations have

changed since then, present day SSU surveys still follow this basic paradigm, summarized

in Figure 7.3.

A typical comparative analysis for an SSU survey currently consists of two key steps:

the computation of an alignment of the newly generated sequences, and the computation

of a phylogenetic tree based on that alignment. The alignment step typically and critically

takes advantage of a pre-existing, manually curated (and so presumably highly accurate)

reference alignment when aligning the new sequences. This provides valuable information to

the alignment program about the expected sequence conservation and how it varies across

the molecule, as discussed in detail below. Some alignment programs are able to take the

conserved SSU secondary structure, as annotated in the reference alignment, into account

as well. The input to the phylogenetic inference step is often a combined alignment of the

new sequences and some or all of the reference sequences. The location of the new sequences

on the tree in relation to the reference sequences (about which taxonomic information is

known) reveals their identity, or at least which reference sequences they are most closely

related to.

Figure 7.3 depicts alignment and phylogenetic inference as two independent steps, and

indeed virtually all environmental surveys (including all listed in Table 7.1) treat them

as such, using a separate program for each. In theory though, an alignment program

would benefit from knowledge of the phylogeny of the sequences it is aligning, which sug-

gests simultaneously inferring an alignment and a tree is more appropriate than doing each

independently. The unification of alignment and phylogenetic inference techniques is an

important goal in sequence analysis and is an active area of research [78, 116, 244], but

important challenges remain. In particular, those methods are generally too computation-

ally expensive to practically handle the scale of many SSU surveys (thousands of sequences

of more than a thousand residues). In this work, I will treat alignment and phylogenetic

inference as independent steps.

162

new sequences aligned

new SSU sequences

alignment
program

tree building
program

phylogenetic

program

existing, known reference
SSU alignment and tree

inference

SSU structure model

Figure 7.3: Schematic of SSU sequence analysis for environmental surveys. Two
main computations are required, the alignment and the phylogenetic inference. The align-
ment step typically makes use of existing knowledge of SSU conservation and phylogenetic
relationships in the form of a reference alignment. Some programs can utilize structural
annotation in the reference alignment corresponding to the conserved secondary structure
model of SSU. New sequences are added to the reference alignment by the alignment pro-
gram and a tree building program calculates a tree estimating the evolutionary relationships
of the aligned sequences. The placement of the reference sequences, for which taxonomic
information is already known, provides a scaffold for classifying the organisms that the new
sequences belong to.

163

Phylogenetic inference methods

Among the two steps, the main focus of this work is the alignment step. However, the

alignment mainly serves as an intermediate in the comparative analysis. Its primary purpose

is to be used to infer a tree that helps reveal the organismal diversity in the sample. This

justifies a brief discussion of phylogenetic inference methods.

Methods to infer phylogenies can largely be divided into three groups [53]. Maximum

parsimony methods seek to find a tree that implies the fewest evolutionary events (residue

mutations, insertions and deletions) that explain the alignment. Distance-matrix based

methods, such as the UPGMA and neighbor-joining algorithms, calculate a matrix of pair-

wise distances between all pairs of sequences in the alignment. Similar sequences are placed

nearby on the tree, with the branch length separating them proportional to their pairwise

distance. Finally, probabilistic methods calculate probabilities for possible trees based on

an explicit model of evolution that includes probabilities for each possible mutation event

(and sometimes insertions and deletions [221]). These methods are similar to maximum

parsimony but allow varying mutation rates across positions of the alignment as well as in

different parts of the tree.

A detailed discussion of these methods [72] is outside the scope of this work. What is

most relevant to this work is that currently all of these methods implicitly assume that the

input alignment is evolutionarily correct. In an evolutionarily correct alignment, all of the

residues in a particular column are homologous, i.e. they have all descended from the same

ancestral residue in the common ancestral sequence of all the sequences in the alignment.

Take the toy example in Figure 7.4. An alignment of three sequences has been used to

infer the tree relating them. The tree could have been constructed using any of the three

methods. (All three would very likely give this same tree. The tree is the maximum parsi-

mony tree.) Assume the inferred tree is correct. A speciation event at the root conferred the

ancestral sequence UUACUG to two descendants. In one of the descendants, the A mutated to

a C. In the other descendant the C mutated to a G, and another speciation event occurred,

after which the rightmost U mutated to a C. The alignment reflects these changes and so is

164

seq1 UUCCUG
seq2 UUAGUG
seq3 UUAGCG

Toy alignment:

phylogenetic
inference

time

UUCCUG UUAGUG UUAGCG

UUACUG

A C
C G

U C

past

present

Figure 7.4: Toy example of phylogenetic inference from an alignment.

evolutionarily correct: within each column, all of the residues can be traced back to the same

ancestral residue. However, if the alignment is incorrect and contains errors, the inference

step is confounded, regardless of the method used. Maximum parsimony and maximum

likelihood methods would attempt to build a tree explaining evolutionary events implicit

in the alignment that did not occur. Distance-matrix methods would calculate inaccurate

distances between any pair of sequences for which the pairwise alignment contained errors.

SSU alignments are, of course, much more complex than this toy example. Not only

do they often include thousands of columns and sequences, but the sequences are different

lengths, forcing the alignment to include gaps to signify insertions and deletions of residues.

Alignment without gaps is trivial because there is no choice of alignment - the unaligned

sequences are the aligned sequences. When gaps are allowed the alignment program must

choose between many alternative alignments. (For two sequences of length N , the num-

ber of possible alignments that allow gaps in one of the two sequences is approximately

22N
√

πN
[53].) It is the job of the alignment program to determine the single best alignment

based on a scoring system. Although it is intractable to enumerate and score all possible

alignments, dynamic programming (DP) algorithms exist that can efficiently determine the

optimal scoring alignment given a scoring system (without exhaustive enumeration). An

example is the Needleman-Wunsch-Sellers algorithm introduced in Chapter 1 in the con-

text of pairwise homology search. DP alignment algorithms are useful for creating multiple

sequence alignments as well as for homology search, as discussed below.

165

Alignment masking

Some regions of SSU, such as the universal primer sites, are identical or nearly identical be-

tween the vast majority of SSU sequences and so are trivial to align correctly. But other, less

well conserved regions can be more difficult to accurately align. Because alignment errors

confound phylogenetic inference, it is a common practice to mask alignments by removing

columns that are deemed to be ambiguously aligned prior to performing phylogenetic infer-

ence. Masking requires a method for judging the alignment ambiguity of different columns.

The two most commonly used masks for SSU alignments were manually constructed by

experts with extensive knowledge of the sequence and structural diversity of SSU across the

tree of life.

David Lane’s mask of SSU

In the late 1980s and early 1990s, David Lane, working with Norm Pace, defined an align-

ment mask for bacterial SSU alignments [145] based on his experience manually aligning

about 300 SSU sequences (the complete set available at the time). Lane’s mask became

known as the Lane mask and has been commonly used for SSU analyses ever since, even as

the number of available sequences and recognized biodiversity of the bacteria has greatly

expanded. It is so well used that the term “Lane masking” is often used in place of “mask-

ing” in the field. The Lane mask is shown on the secondary structure of Escherichia coli in

Figure 7.5.

Phil Hugenholtz’s mask of SSU

In the late 1990s, Phil Hugenholtz defined 46 SSU alignment positions included by the Lane

mask that he felt should be excluded, or removed, from alignments of sequences from all

three domains. The Hugenholtz mask is included in the arb software package (described

below). It is shown on the secondary structure of Escherichia coli in Figure 7.6.

166

5’

3’

10

50

100

150

200

250

300

350

400

450

500
550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350
1400

1450

1500

I

II

III

m2m5

m7

m2

mm
4

m5

m2

m6
2

m6
2

m3

G[]

columns included within mask (1283 of 1542 (0.832))

columns excluded from mask (259 of 1542 (0.168))

Figure 7.5: David Lane’s SSU alignment mask overlaid on the SSU secondary
structure of Escherichia coli . Black columns are included by the mask for phylogenetic
analyses. Red columns are excluded by the mask for phylogenetic analyses. This figure
was derived from the overlay of the Lane mask on the greengenes database’s Core Set
alignment of the E. coli sequence (genbank accession J01695) . It was generated using
the ssu-align package described in Chapter 9. The secondary structure diagram layout is
based on the crw database [32].

167

"esl-ssudraw -q --mask-col 1240-1s.1542c.mask EC.stk EC.ps lmph_on_ecoli.ps" page 1/1

5’

3’

10

50

100

150

200

250

300

350

400

450

500
550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350
1400

1450

1500

I

II

III

m2m5

m7

m2

mm
4

m5

m2

m6
2

m6
2

m3

G[]

columns included within mask (1240 of 1542 (0.804))

columns excluded from mask (302 of 1542 (0.196))

Figure 7.6: Phil Hugenholtz’s SSU alignment mask overlaid on the SSU secondary
structure of Escherichia coli . Black columns are included by the mask for phylogenetic
analyses. Red columns are excluded by the mask for phylogenetic analyses. This figure was
derived from the overlay of the “LMPH” mask on the greengenes database’s Core Set
alignment of the E. coli sequence (genbank accession J01695) . It was generated using
the ssu-align package described in Chapter 9. The secondary structure diagram layout is
based on the crw database [32].

168

Other uses of SSU alignments

Though most SSU analyses are performed in conjunction with environmental surveys, some

are specifically aimed at resolving phylogenies. These include the first SSU analyses by

Woese [276, 279, 281] as well more recent ones by molecular systematicists, including an

examination of bumble-bee phylogeny [31], anaplasma phylogeny [152] and protostome phy-

logeny [175], to name just a few. These studies are often based on SSU alignments as well

as other alignments, such as LSU rRNA and highly conserved protein sequences.

Additionally, SSU alignments have other uses besides serving as input to phylogenetic

inference programs. For example, they have been instrumental in developing and refining

the existing canonical models of SSU structure [32, 278, 280], which can lead to important

functional insights. Also, SSU alignments aid primer design for SSU surveys by facilitating

identification of conserved sequence regions specific to a given phylogenetic clade [8]. Finally,

SSU alignments provide useful datasets for training RNA sequence analysis programs; the

ribosum RNA scoring matrices used by the rsearch program described in Chapter 1 were

derived from SSU and LSU rRNA alignments.

7.5 SSU alignment methods

Due to the prevalence and scale of SSU-based environmental surveys, several databases

dedicated to SSU sequence analysis have been developed. Nearly all of these databases use

their own alignment tool for aligning the SSU sequences they contain. These tools differ

mainly by alignment strategy. This section briefly discusses these different strategies, and

the next section provides more detail about the the most widely used databases and their

respective alignment tools.

The gold standard: manual alignment

Despite all of the advances in computational methods for sequence alignment in the past

30 years, the most reliable alignments are still manually created by expert curators. While

169

a computer program is often very good at getting an alignment almost right, if accuracy is

of paramount importance then it is still necessary for an expert to check over the output

alignment. One of the reasons human experts outperform computers is that a human can

easily take into account extra information unavailable to most computer programs. A good

example is the conserved secondary structure of SSU, which most alignment programs are

ignorant of. Higher-order structural contacts (tertiary interactions) are another example

- no existing alignment programs take these into account. Further, a human has access

to databases of existing alignments with sequences covering the entire tree of life and,

more importantly, the capacity to intelligently mine that data as needed. The curator can

extract similar sequences as needed when computing the alignment, essentially performing

simultaneous phylogenetic inference and alignment, which current automated methods have

difficulty with.

The problem with manual alignment is that it is time consuming. When only a few dozen

SSU sequences existed in the 1980s, they could all be aligned manually in a reasonable

amount of time. This was still true in the early 1990s when several hundred sequences

were available [145]. Today, with several hundred thousand sequences being generated per

year (Figure 7.2), it is clearly impractical. For this reason, nearly all SSU surveys use an

automated alignment computer program to create alignments.

There are several different computer programs that are used. The main similarity be-

tween them all is that they take advantage of a manually created reference, or seed, align-

ment when aligning new target sequences. The main difference between the programs is the

specific manner in which the seed alignment is used. There are two classes of programs.

Profile-based programs align new sequences to a statistical model (a profile) that represents

the diversity in the entire seed alignment. Nearest-neighbor programs use a small, carefully

selected subset of the seed sequences when aligning new sequences (Figure 7.7).

170

3. Add to new
 alignment

trusted seed alignment:

nearest neighbor strategy

2. Align to
 template(s)

new target sequences:

1. Find template(s)
 (nearest neighbor(s)

?

?

?

?

profile

alignment

new target sequences:

profile strategy

trusted seed alignment:

construction
procedure

Figure 7.7: Schematic of nearest-neighbor and profile based alignment strategies.

Nearest-neighbor strategy

Given a new target sequence to align, the nearest-neighbor strategy proceeds through two

steps. First, one or more template sequences, or nearest-neighbors, are selected from the

seed alignment. These are the seed sequences most similar to the target by some criterion

(for example: most matching 7-mers (oligonucleotides of length 7)). The second step is the

calculation of the alignment of the target sequence to the template(s). The non-template

seed sequences are ignored in the alignment step.

Importantly, if only one template sequence is chosen then the alignment is a simple

pairwise alignment to that template. In this case, the program has no information regarding

the varying levels of expected conservation, or the likelihood of insertions or deletions,

at different positions of the alignment. (Profile-based alignment programs, however, as

described next, do have access to this information.) This is information that an expert

curator would almost certainly take into account when computing the alignment.

Of course if the template is 100% identical to the target, the alignment is trivial and the

method used is irrelevant. However, as the identity between template and target decreases

the reliability of a pairwise alignment strategy decreases.

The existing SSU nearest-neighbor tools differ in the number of template sequences

they use and in the specific scoring system used to calculate an alignment as discussed in

171

more detail below. All of these tools use only primary sequence information to calculate an

alignment, i.e. they do not explicitly score how well the proposed alignment agrees with

a model of SSU secondary structure. However, there is nothing inherent to the nearest-

neighbor strategy that prevents it from modeling structure.

Profile strategy

An alternative to nearest-neighbor based approaches is to align a sequence to a statistical

model called a profile that is built from a multiple sequence alignment of a representative

set of sequences (the seed alignment). Profiles are routinely used for homology search as

discussed in Chapter 1, for which they are generally considered among the most powerful

tools available. Homology search with profiles requires scoring sequences by aligning them

to the profile. Because of this, it is trivially simple to modify profile homology search

programs to create multiple alignments, and the widely used hmmer, sam and infernal

packages are able to create alignments as well as perform searches.

Profile-based alignment is used by some large and popular non-SSU sequence databases

including pfam [76], rfam [89], and smart [151]. These databases use the “seed-full”

strategy for building and maintaining multiple alignments using profiles. A small set of

typically 50 or so representative sequences are chosen and aligned with manual curation to

create a seed alignment. A profile is built from the seed alignment and used to align all

other examples of the sequence family (potentially found in a database search using the

profile) to create a full alignment. If the seed sequences are indeed representative of the

sequence diversity in the family, the model is typically able to accurately align the target

sequences. A single SSU database, the rdp database, uses profile based alignment to a

seed, as discussed below.

Though presented as two distinct classes, profile and nearest-neighbor based methods

can also be viewed as two extremes on a continuum. As the number of template sequences

used by a nearest-neighbor based approach increases, the method becomes increasingly

similar to a profile strategy. By using more than one template, the program has position-

172

specific information. For example, an A in the target sequence should align with a higher

score to a position that is 100% A in the template sequences, than to a position that is 25%

A, C, G, and U in the template sequences.

Important considerations regarding alignment strategies

1. Error propagation. Errors in the seed alignment are likely to propagate during the

alignment of target sequences. In the nearest-neighbor approach, an error in the alignment

of template sequence x is likely to propagate on to the alignment of any new sequence y

that uses x as a template.

2. Running time for nearest-neighbor template selection scales with the size

of the seed alignment. Finding the appropriate template sequence requires some type

of comparison between the new sequence and each candidate template sequences, so as the

number of candidate templates increases, so does the number of computations required to

pick the templates. For a profile, no such step is required, once the profile is built, each

sequence is independently aligned directly to it.

3. Aligning novel sequences. With the nearest-neighbor strategy, as the similarity

between the target and template sequence(s) decrease, the probability of alignment errors

in the target sequence alignment increase. Similarly for profiles, as the target sequence

becomes increasingly different from all of the seed sequences, it becomes more difficult for

the profile to accurately align the sequence. However, a profile is more general than any

nearest-neighbor approach because it encapsulates the diversity of the entire seed align-

ment, and so may be better able to accurately align novel sequences. Reliable alignment of

novel sequences is crucial because they are the interesting sequences in SSU surveys (the

more divergent, the more interesting) and are continually being discovered. During man-

ual alignment, an expert curator would expend disproportionate effort when aligning novel

sequences, taking structure into account where necessary.

These considerations have implications on the desired number of sequences in the seed

alignment, especially for the nearest-neighbor based methods. Considerations #1 and #2

173

suggest that the number should be low, to make the construction of a manually curated

seed alignment with minimal errors feasible and to limit the time required to define the

templates. However, consideration #3 argues that the seed alignment should contain a

large number of sequences (or at least a sufficiently dense representative set) to minimize

the probability that any target sequence is significantly different from all the seed sequences.

In practice, the size of seed alignments used by nearest-neighbor based and profile based

SSU alignment tools differ dramatically (Table 7.2). The nearest-neighbor based approaches

for SSU alignment all use seeds with thousands of sequences, while the only existing SSU

profile based database (rdp, described below) uses two profiles built from seeds of about

500 and 80 sequences respectively. The profile-based pfam and rfam databases include

some alignments of hundreds of thousands of sequences created with profiles that were built

from seeds of a few hundred sequences or less.

If the alignment accuracy of the two strategies is comparable, this presents a clear and

important advantage of profile-based methods. Manually constructing a highly refined,

accurate seed of a hundred or so sequences is easier than constructing one with thousands

of sequences.

Structural SSU alignment using profile SCFGs

Unlike for nearest-neighbor based methods, there are existing profile-based SSU alignment

tools that can explicitly take into account conserved secondary structure during alignment.

Stochastic context-free grammars (SCFGs) are probabilistic models well-suited to modeling

the well-nested structure and sequence conservation of RNAs. The infernal package

implements profile SCFGs called covariance models (CMs, introduced in Chapter 1) that

model the consensus structure and sequence of a particular RNA family [190]. The rnacad

package is another implementation of profile SCFGs by Michael Brown and David Haussler

[24].

Profile SCFGs are probabilistic models that can directly calculate confidence estimates

of the alignment ambiguity given the model for each aligned residue in output alignments.

174

These confidence estimates could be used to automatically determine alignment-specific

masks for removing ambiguously aligned regions prior to phylogenetic inference.

However, SCFG-based alignment is much more computationally expensive than primary

sequence-based alignment. This is especially true for infernal. In 2001, prior to develop-

ment of version 0.55 of infernal, alignment of a single SSU sequence required more than

22 Gb of RAM, making it infeasible on modern computers. Sean Eddy solved the memory

problem with version 0.55 by extending the Myers-Miller linear memory dynamic program-

ming trick [186] to CMs, reducing the required RAM to 67 Mb. However, version 0.55 still

requires about 15 minutes to align a single SSU sequence. rnacad uses constraints from

a first pass sequence-only based alignment to accelerate alignment, and requires about 30

seconds to align a single SSU sequence [24]. In Chapter 8, I describe the application of

an acceleration technique like Brown’s to infernal, which reduces SSU alignment time to

about 1 second per sequence (timings are for a single Intel Xeon 3.0 Ghz processor).

7.6 Dedicated SSU databases and alignment tools

The most widely used and cited SSU databases and the alignment programs they use are

listed in Table 7.2. I will briefly describe each database and the alignment technique it uses

below. Then I will discuss my motivation for developing a new alignment program based

on CMs.

Many of these databases provide useful tools other than alignment programs that are

helpful to researchers doing SSU analysis, including alignment-independent classification of

sequences, design of primers, and quality checking of aligned sequences. These are listed

but not explained in the descriptions below.

Arb

arb is a freely available software package consisting of a set of interacting tools for main-

taining and analyzing a database of sequence data [164]. It is a general tool that can be

used for any nucleic acid or protein family, but it is most well-used and known for SSU anal-

175

database arb crw greengenes silva rdp

latest ref [164] [32] [47] [214] [40]

year of incept ~1994 2000 2005 2007 1991

date of 1st pub Feb 2004 Jan 2002 July 2006 Oct 2007 Apr 1991

total # citations 1512 568 283 83 4738

avg # cites/year 288.0 76.6 97.0 49.8 262.0

seed seqs N/A ?∗ 4,938 51,601 508 (bac); 79 (arc)

total seqs N/A 38,723 397,006 868,390 920,643

alignment tool fast ?∗ nast sina infernal [190]
aligner [46] (prev. rnacad) [24]

alignment tool free not free free via free
availability to avail- via web web server to

download able server (<= 300 seqs) download

alignment strategy NN NN NN NN profile

templates 1 ?∗ 1 up to 40 N/A

manual curation? possible sometimes no no no

archaea N/A + + + +

bacteria N/A + + + +

eukarya N/A + +

Table 7.2: Summary of SSU rRNA sequence databases and alignment strate-
gies. The five most popular, actively maintained SSU databases are listed. More details
on databases and alignment strategies are in the text. Sequence counts pertain solely to
SSU sequences. Alignment strategy: “NN” stands for nearest-neighbor based alignment.
“Manual curation” refers to the master alignments, not the seeds, which were all manu-
ally curated. Citation counts are from Google Scholar (http://scholar.google.com) searches
performed June 30, 2009. greengenes citation count is sum of both [47] (database publi-
cation) and [46] (alignment tool publication). Average citations per year were calculated by
dividing total number by number of full months since the first publication for the database.
rdp citations are sums from 13 separate publications [37–40, 146, 168–173, 197, 198] The
arb column has “N/A” in many rows because it is a software package for creating a per-
sonal database as opposed to a centralized database. (*) For crw, details on the size of the
seed alignments, number of NN templates, and alignment tool are unclear from [32].

176

ysis. arb includes phylogenetic inference tools, an alignment tool, and visualization tools

for manually checking and refining the alignment based on a consensus secondary structure

model of SSU [32] as well as an existing database of aligned sequences including taxonomic

information, to which new sequences can be added by the user.

The arb fast aligner is used to add new sequences imported by the program to a

pre-existing seed alignment using a nearest-neighbor based approach. For each new target

sequence to be aligned, the single template sequence from the seed that is most similar to

the target is chosen. A pairwise alignment is computed and used as the basis for merging the

target into the seed alignment. The specifics of the alignment algorithm and the template

selection algorithm seem to be unpublished.

Greengenes

The greengenes website and database is maintained by a team of researchers at the

Lawrence Berkeley National Laboratory headed by Gary L. Andersen [47]. Each periodic

update of the database includes an alignment of all currently available full length, or nearly

full length (> 1250 residues) bacterial and archaeal sequences from genbank [12]. In ad-

dition to being in aligned form, the greengenes data provide four important advantages

over their genbank versions: screening for artefactual chimeric sequences, standardization

of description fields for author’s annotations, assignment of taxonomy from several indepen-

dent expert curators, and easy integration with arb. With each update, an arb compatible

database file is generated, allowing arb users to keep their local databases up to date.

With each database update, the nast alignment program (Nearest Alignment Space

Termination) [46] is used to align any new genbank SSU sequences deposited since the

previous update. Like arb’s fast aligner, nast uses a nearest-neighbor based approach

to perform pairwise alignment of target sequences to a single template sequence. The

specific template for each target is selected from the seed alignment, called the Core Set,

as the sequence with the most matching 7-mers with the target. The Core Set contains

roughly 5,000 sequences, about 4,800 of which are bacterial and 200 are archaeal. nast

177

always returns aligned target sequences in the pre-specified width of the seed alignment:

7,682 columns. If an alignment of a target implies an insertion of a gap outside of the 7,682

format, a local misalignment is introduced to prevent from adding the gap column. This

is to allow consistent annotation of position-dependent features such as primer positions,

column masks and secondary structure features by maintaining exactly 7,682 columns. nast

is freely available for use through a web server, but not for download.

Comparative RNA Website

A group at the University of Texas at Austin headed by Robin Gutell has maintained

the comparative rna website (crw) since 2000. crw contains sequences, alignments,

structures, and conservation information for 5S, 5.8S, SSU, and LSU ribosomal RNAs as well

as self-splicing group I and group II introns and tRNAs. Gutell worked together with Carl

Woese, Harry Noller and others to create one of the first SSU secondary structure models

in 1980 based on chemical modification, nuclease susceptibility, and comparative analysis to

identify covarying positions that were plausible base-pairing interactions [278]. Since then

he has continued to work on SSU comparative analysis and has updated and validated the

structural models as new sequences and crystal structures have become available [107]. Due

largely to Gutell’s expertise, crw stands out as the database with the most trustworthy SSU

structural information. It includes several hundred expertly predicted secondary structures

of different SSU sequences spanning all three domains of life. The crw SSU structural

models have been used by the rdp database as a consensus structure for building profile

SCFGs as described below.

The sequences in the crw alignments represent all major branches on the tree of life

[32], but are not synchronized to include all sequences from a major sequence database like

greengenes, silva, and rdp. Though the algorithmic details are unclear, the description

of their alignment procedure suggests that a nearest-neighbor based approach is used for

most sequences, but that regions of the alignment which occur in variable sequence regions

of the SSU comparative model are manually checked and/or revised prior to acceptance into

178

the database. Extra care is taken when aligning novel sequences. Expert manual structure

prediction of individual sequences is performed in conjunction with the alignment, with each

exercise informing the other [32]. The crw alignment program is not publicly available for

download or use through a website.

Silva

The silva database from the Microbial Genomics Group at the Max Planck Institute for

Marine Microbiology in Bremen, Germany, maintains quality-checked alignments of SSU

and LSU rRNA, associated taxonomic information and other annotations compatible with

arb. silva uses the sina alignment program to compute two types of alignments: a Parc

alignment of all SSU or LSU sequences from the EMBL database (of the same release

number) greater than 300 residues, and a Ref alignment with a subset of the Parc sequences.

To be included in Ref, a sequence must be assigned a quality score above a minimum

threshold and be greater than a minimum length of 1200 (for Bacterial and Eukaryotic

SSU), 900 (for Archaeal SSU). The quality scores are assigned based on the alignment as

described below.

Given a target sequence to align, sina first chooses up to 40 template sequences that

are most similar to the target using a suffix tree data structure. The template sequences

are chosen from a seed alignment of 51,601 aligned SSU sequences from all three domains

that contains 46,000 alignment columns (this alignment width maintains consistency with

the ssu jan04.arb database released by the arb project in 2004). Because the “quality of

the final datasets critically depends on the quality of the seed alignments”, the seed was

extensively cross checked by multiple expert curators, and “any sequences that could not be

unambiguously aligned were removed from the seed” [214]. Once the templates are chosen,

they are transferred to a partial-order graph [148] and a variant of the Needleman-Wunsch

[193] alignment algorithm is used to align them with affine gap penalties. Having the

templates organized in a partial graph allows the alignment to switch between the possible

template sequences for different regions of the alignment, depending on which template

179

includes the highest scoring match to a particular region of the target. It is unclear how

the algorithm guarantees a width of exactly 46,000 columns. (If the alignment between

templates and the target is shorter (fewer than 46,000 columns) then it is trivial to expand

the alignment by adding gaps, but if the alignment width exceeds 46,000 columns the

solution is less obvious.)

Following alignment, a quality score is calculated for each target based on a variability

statistic and a base-pair score. The variability statistic measures the similarity of the target

to its most similar template sequence. The assumption here is that sequences that were

highly identical to a template will be correctly aligned. The base-pair score reflects the

agreement of the implicit base-pairs in the aligned target sequence with Gutell’s secondary

structure model from CRW [32]. (Note that the structure model was not used to calculate

the alignment, just to assess its quality.) The variability and base-pair scores are normalized

and combined into a quality score of 0 to 100. Sequences with quality scores below 50 are

removed from the Ref datasets.

The sina aligner is available for use through a web server, but not available for download.

As of this writing, the maximum number of sequences that can be aligned at once using

the web server is 300.

Ribosomal Database Project

The Ribosomal Database Project (RDP) was the first large SSU database. It was started

in 1991 by Gary Olsen, Niels Larsen and Carl Woese [197] at the University of Illinois.

In December 1997, the database moved to its current location at the Center for Microbial

Ecology at Michigan State University, where it is headed by Jim Cole. Woese and Olsen

were affiliated with the database (co-authors on publications) until 1999 [171] and 2001

[173], respectively.

rdp currently contains the most aligned SSU sequences of any database (Table 7.2).

It is updated monthly from the International Nucleotide Sequence Database Collabora-

tion (INSDC, which includes genbank, ddbj and embl). In addition to alignments, rdp

180

includes tools for chimera checking, alignment-independent or alignment-dependent classi-

fication of sequences, tree building, and even an assignment generator that creates lesson

plans related to SSU sequence analysis for professors [40].

rdp’s alignment strategy is unique amongst SSU databases in several ways. First, rdp

uses an independently developed general alignment tool that was not developed specifically

for the database. From 2000 until 2008, rdp used the rnacad software, a profile SCFG-

based RNA modeling software package applicable to any RNA family, developed by Michael

Brown and David Haussler at the University of California, Santa Cruz [24]. In the middle

of 2008, rdp switched to using infernal [190], another profile SCFG implementation

developed by Sean Eddy, myself and Diana Kolbe. infernal adoption was facilitated

by the alignment acceleration techniques described in Chapter 8 of this work. Secondly,

rdp is the only database that uses a profile-based alignment method instead of a nearest-

neighbor based approach. Finally, by using profile SCFGs to compute alignments, it is

the only database that incorporates scoring of both sequence conservation and structure

conservation.

When it used rnacad, rdp only maintained bacterial alignments. The bacterial seed

alignment used to build the profile for rnacad alignment consisted of just 34 sequences

and the consensus structure was based on the secondary structure model of Gutell as of

2000 [107], which is an updated version of the 1980 structure published by Woese, Gutell,

Noller and others [278]. Currently, rdp includes two profiles, a separate archaeal and

bacterial model, built and used with infernal. The archaeal model was built from a seed

of about 80 sequences, and the bacterial model was built from a seed of about 500 sequences.

The consensus secondary structure used for the model is still based on that of Gutell and

colleagues [32].

7.7 Developing a new SSU alignment tool

In 2005, I decided to create a new program for large-scale SSU alignment as part of my

thesis project. This decision was based on an analysis of existing SSU databases and their

181

alignment tools combined with the recognition of the explosive growth rate in the scale

and popularity of SSU surveys (Figure 7.2). (Note that in 2005 rdp was not yet using

infernal.) The proposed program had the following design goals:

1. Scalable and fast - to potentially create alignments of millions of sequences.

2. Accurate - by scoring both the conserved sequence and structure of SSU.

3. Profile-based - so as not to require the large manually curated seed alignments of

thousands of sequences that nearest neighbor based methods typically use.

4. Cover all three domains - using separate seed alignments and corresponding profiles

for archaeal, bacterial and eukaryotic SSU sequences that could potentially be refined

or split into more specific alignments (that covered a tighter phylogenetic range) by

users.

5. Able to generate alignment-specific masks - to prune ambiguously aligned re-

gions of the alignment.

6. Freely available, extensible and documented - to help promote wide use in the

community.

I decided to use CMs as the basis for the program because the current version of in-

fernal, 0.55, already met nearly all of these goals. It is profile-based, scales well, is freely

available, and uses structure to compute its alignments. To extend it to achieve all of my

goals would involve constructing the seed alignments to achieve goal 4 and addressing the

key problem of the slow speed of CM alignment algorithms.

I have accelerated CM alignment using a banded dynamic programming technique (de-

scribed in Chapter 8). The adoption of infernal by rdp in 2008 served as an important

indication that fast CM-based alignment of SSU was indeed useful to the community. How-

ever, infernal as used by rdp does not meet design goals 4 or 5, nor does it contain specific

documentation to help users create SSU alignments. I decided to complete these goals and

182

create a new program called ssu-align that requires and uses infernal for alignment but

also contains SSU seed alignments and profiles for all three domains, a User’s Guide de-

voted to SSU analyses, and the ability to probabilistically mask alignments. The ssu-align

program is described in Chapter 9.

183

Chapter 8

HMM banding for faster structural

RNA alignment

The standard CM CYK dynamic programming (DP) algorithm calculates the optimal align-

ment of a target sequence to a CM [53]. Unfortunately, the algorithm is computationally

expensive. The time required to run CYK scales with N3 log(N) and the required memory

scales with O(N3) for a model of N consensus sequence positions. Aligning a single SSU

sequence requires about 15 minutes (as a single thread on a 3.0 GHz Intel Xeon) and over

20 Gb of RAM. The memory complexity problem was solved in 2002 through implemen-

tation of a divide-and-conquer version of CYK (similar to the Hirshberg or Myers/Miller

algorithm), which reduced the memory required for SSU alignment to about 60 Mb [57].

But the time complexity problem still remains, prohibiting the practical use of CMs for

large-scale SSU alignment.

8.1 Faster alignment using banded dynamic programming

A common way to accelerate DP algorithms is by constraining the DP matrix using bands

derived from a faster, heuristic alignment of the target sequence (Chapter 1 and Figure 1.6).

During the DP recursion, cells outside the pre-calculated bands are ignored to save time.

184

Banded DP approaches include blast [3], fasta [208] and lagan [25] among others. Chap-

ter 2 of this work describes a banded DP approach for accelerating the CM CYK search

algorithm called query-dependent banding (QDB). The bands are calculated using only the

probabilities of the query model and are applied to constrain the CYK DP recursion. QDB

provides a modest average speedup of about four-fold, but the acceleration increases with

family size and is about 30-fold for SSU. However, there is an alternative banding strategy

that can lead to even greater acceleration.

In 2000, Michael Brown, a recent graduate from David Haussler’s group at UC Santa

Cruz, published a banded DP method for accelerating profile SCFG alignment using bands

derived from a first-pass profile HMM alignment of the target sequence [24]. Brown’s

technique uses the Forward and Backward HMM algorithms to determine the posterior

probability that each HMM state emits (aligns to) each residue of the target sequence given

the parameters of the HMM [53]. Given these posterior probabilities, a band is determined

for each HMM state defining the range of target sequence positions that align to the state

with probability above some minimum threshold. The bands are then transferred from

each HMM state to its analogous state in the profile SCFG and enforced during subsequent

SCFG alignment. Brown implemented his banding technique in the program rnacad and

demonstrated its utility for SSU alignment [24]. Since that initial publication in 2000,

no further development of the program has taken place. rnacad was used to align SSU

sequences by the rdp database from 2000 until 2008.

I have reimplemented Brown’s HMM banding technique in infernal as described below.

The resulting acceleration versus standard CYK is nearly 2000-fold for SSU with a negligible

affect on alignment accuracy (Table 8.2). In 2008, rdp switched to using infernal for SSU

alignment, partly because it is about 25-fold faster than rnacad [40]. The description of

HMM banding in this chapter corresponds to the implementation in infernal versions 1.0

and 1.01 (the most current as of this writing).

185

8.2 HMM banded alignment in Infernal

HMM banded alignment of a target sequence with infernal consists of four steps:

1. Calculate the posterior probability that each target residue aligns to each HMM state

using the Forward and Backward algorithms.

2. Determine the band of possible residues that could align to each HMM state that

excludes a given amount of probability mass.

3. Transfer the HMM bands onto the CM CYK dynamic programming matrix.

4. Align the target sequence to the CM using a banded CYK algorithm that skips com-

putations outside the bands.

The result is the optimal alignment of the target that is consistent with the bands. The

goal of HMM banded alignment is to derive bands that constrain, and thus accelerate, the

CM alignment as much as possible while still containing the globally optimal alignment

that the non-banded CYK algorithm would find. The approach therefore depends on an

appropriately constructed HMM for the posterior probability calculation and resulting band

determination. infernal uses a specific type of profile HMMs called CM Plan 9 (CP9)

HMMs that are closely related to Weinberg and Ruzzo [265]’s maximum-likelihood (ML)

heuristic HMMs. I will delay discussion of the construction and parameterization of CP9

HMMs until after a more detailed explanation of the four steps of HMM banded alignment.

For now, the relevant details are that CP9s are composed of a series of N nodes, one for

each consensus position modeled by the CM, with one match, insert, and delete state per

node, and that a mapping exists between corresponding HMM states and CM states based

on the consensus positions they correspond to. In this discussion, kM , kI and kD are used

to refer to the HMM match, insert and delete state, respectively, of HMM node k, and k∗

is used generically to refer to any state in node k.

186

Step 1. Calculate the posterior probability that each target residue aligns

to each HMM state using the Forward and Backward algorithms.

infernal includes implementations of the standard Forward and Backward HMM algo-

rithms [53] adapted for the CP9 profile HMM architecture (Figure 8.2). Forward and

Backward are DP algorithms that recursively calculate Fk∗(s) and Bk∗(s), respectively, for

all states k∗ of the model and all L residues x1..xs..xL of target sequence x. Fk∗(s) is the

summed probability of all alignments of the target subsequence x1..xs to the model up to

and including the alignment of xs to state k∗ of the model. Bk∗(s) is the summed proba-

bility of all alignments of the target subsequence xs..xL that include the alignment of xs to

state k of the model [53].

The values in fully calculated Forward and Backward DP matrices are then used to

derive the posterior probability P (πs = k∗) that each target residue s aligns to each state of

the model (∗ = M , I, or D) [53]. This step requires knowing P (x), the summed probability

of all full alignments of x to the model, which can be calculated as the sum of Forward scores

for position L over all possible end states of the model (in this case, P (x) = FNM (L) +

FND(L) + FNI (L)). The meaning of these posterior probabilities is similar for emitting

states (matches and inserts), but is different for delete states:

equation meaning

P (πs = kM) = FkM +BkM − P (x) the probability that residue xs was

emitted from (aligns to) state kM

P (πs = kI) = FkI +BkI − P (x) the probability that residue xs was

emitted from (aligns to) state kI

P (πs = kD) = FkD +BkD − P (x) the probability that residue xs was

the last emitted residue (aligned residue)

when state kD was entered

187

Step 2. Determine the band of possible residues that could align to each

HMM state that excludes a given amount of probability mass.

The posterior probabilities are then used to define bands of sequence positions,

smin(k∗)..smax(k∗), that have a non-negligible probability of aligning to each state k∗.

Here, we define a parameter τ (set by default as 10−7) as the threshold for the negligible

probability mass that is allowed outside each band. The values of smin(k∗) and smax(k∗) are

determined such that the cumulative probability in the left and right tails of the posterior

probability distribution is less than τ
2 :

smin(k∗)−1∑
s=1

P (πs = k∗) <
τ

2
,

L∑
s=smax(k∗)+1

P (πs = k∗) <
τ

2
.

This step is very similar to the determination of the query-dependent d bands

(dmin(v)..dmax(v)) for the QDB algorithm described in chapter 2. However, with QDB,

the summed probability mass of all possible d values for each CM state is guaranteed to be

1.0. There is no such guarantee here. The sums are constrained as follows:

0.0 <=
L∑

s=1

P (πs = k∗) = P (k∗) <= 1.0

Importantly, this means that P (k∗) can be less than τ (or even τ/2), in which case

smax(k∗) < smin(k∗), and there are 0 sequence positions within the band. This is a special

case in which the the probability of using state k∗ in the alignment (for any residue) is

below τ and thus negligible by our definition. This case may allow all DP recursions for the

CM state that maps to k∗ to be ignored during calculation of the banded CM alignment in

step 4.

Alternatively, a normalization step can be added before the bands are determined:

188

P (πs
n = k∗) =

P (πs = k∗)
P (k∗)

(8.1)

This guarantees that (
∑L

s=1 P (πs
n = k∗)) = 1.0. If these πs

n values are used in place

of the πs values during the calculation of smin(k∗) and smax(k∗), all states are guaranteed

to include a band of at least 1 residue. Bands defined in this way will be looser in general

(include more sequence positions) than those defined by the non-normalized method. Looser

bands lead to slower alignments, but potentially increase the chance that the optimal CM

alignment will be found in step 5. Both versions are implemented in infernal, with the non-

normalized version being the default because it yields greater speedups while nearly always

resulting in the identical alignment as the normalized version as shown in the benchmark

results later in this chapter.1

Step 3. Transfer the HMM bands onto the CM CYK dynamic program-

ming matrix.

The HMM sequence bands smin..smax are then transferred onto the three-dimensional CYK

matrix α to facilitate banded CYK alignment in step 4. During CYK alignment, the value in

αv(j, d) is the log probability of the parse subtree rooted at CM state v generating (aligning

to) the target subsequence xi..xj , where i = j − d + 1. Unlike an HMM matrix DP cell,

which corresponds to just one sequence position, an α DP cell corresponds to two sequence

positions: i and j. HMM bands are transferred onto the CYK matrix by defining i and j

bands for each CM state v. An HMM sequence band for k∗ corresponds to either a band on

i or a band on j for the CM state v that k∗ maps to. A CM state v and HMM state k∗ map

to each other if they either: emit to, insert after, or delete the same consensus position.

(CM and HMM state mapping is described in more detail later.) Transferring an HMM

sequence band to a CM i or j band simply means copying its values, for example:

imin(v) = smin(k∗) imax(v) = smax(k∗)

1The normalized version is enabled using the command-line option --sums to the program cmalign.

189

node state i j node state i j
type type band band type type band band
MATP MP kM kM BEGL S - -
MATP ML kM kD BEGR S - -
MATP MR kD kM BEGR IL kI -
MATP D kD kD ROOT S - -
MATP IL kI - ROOT IL kI -
MATP IR - kI ROOT IR - kI

MATL ML kM - END E - -
MATL D kD - BIF B - -
MATL IL kI -
MATR MR - kM

MATR D - kI

MATR IR - kD

Table 8.1: Transfer of HMM sequence bands to CM i and j bands. The HMM
state type whose sequence band is copied to define each CM state type’s i and j band is
shown. For example, a MATP ML’s i band is copied from the HMM match state (kM) that
maps to it, and its j band is copied from the HMM delete state (kD) that maps to it. A
“-” indicates that the CM state type’s i or j band is not set by directly copying an HMM’s
s band, but rather based on other CM state’s bands as mentioned in the text.

Whether the sequence band is copied to be either the i or j band of the CM state v it

maps to depends on the type of CM state v is, as shown in Table 8.1.

Transferring each HMM state’s sequence band to its mapping CM state’s i or j band

defines many but not all of the CM state’s bands (Table 8.1). Some CM states which do not

map to any HMM state (as discussed later) will have undetermined i and j bands. These

bands are determined based on other CM state’s bands that were copied from HMM bands.

For example, a CM BEGL S state v does not explicitly map to any HMM state. Its bands

are set as the minimal width bands that will encompass all possible parse subtrees in the

set of states Cv that it can transition to:

imin(v) = miny∈Cv imin(y), imax(v) = maxy∈Cv imax(y),

jmin(v) = miny∈Cv jmin(y), jmax(v) = maxy∈Cv jmax(y).

Additionally, CM states that map to only one HMM state will have either undetermined

i or j bands. These bands are determined based on nearby states as well. For example, if

190

a MATL node is immediately followed by a MATP node, the MATL ML state’s j band is set as

the j band from the MATP MP state in the next node.2

The final step is to convert the i bands to j-dependent d bands using the formula:

d = j − i + 1, so they can be easily enforced on the CYK matrix. For example, if state v

has its bands defined as:

imin(v) = 2, imax(v) = 3,

jmin(v) = 4, jmax(v) = 5.

The i bands are replaced by two new v and j-dependent d bands, hdmin(v, j)..hdmax(v, j),

one for each j in v’s j band:

hdmin(v, 4) = 3, hdmax(v, 4) = 4,

hdmin(v, 5) = 3, hdmax(v, 5) = 4.

Step 4. Align the target sequence to the CM using a banded CM CYK

algorithm that skips computations outside the bands.

Given j bands and j-dependent d bands for the CM, a banded version of the standard CM

CYK alignment algorithm can be executed that only performs the DP recursion for matrix

cells within the bands, ignoring those outside the bands. This algorithm gives the optimal

alignment that is consistent with the bands. The HMM banded CYK algorithm is given

below using notation introduced in Chapter 2:
2I was unable to develop an elegant algorithm for setting these undetermined bands that makes them as

tight as possible without decreasing accuracy. In my implementation, each state type is handled in a special
way. See the code for details (hmmand.c:cp9 HMM2ijBands()).

191

Initialization (impose bands): for v = M − 1 down to 0, j = 0 to L:

for d = 0 to hdmin(v, j)− 1 αv(j, d) = −∞;

for d = (hdmax(v, j) + 1) to L αv(j, d) = −∞.

Initialization at d = 0: for v = M − 1 down to 0, j = 0 to L:

if hdmin(v, j) <= 0 <= hdmax(v, j):

v = end state (E): αv(j, 0) = 0;

v = bifurcation (B): αv(j, 0) = αy(j, 0) + αz(j, 0);

v = delete or start (D,S): αv(j, 0) = maxy∈Cv [αy(j, 0) + log tv(y)];

else (v = P,L,R): αv(j, 0) = −∞.

Recursion: for v = M − 1 down to 0, j = jmin(v) to jmax(v),

d = max(1,hdmin(v, j)) to hdmax(v, j):

v = E: αv(j, d) = −∞;

v = B: kmin = max(hdmin(z, j), (d− hdmax(y, j − k)), (j − jmax(y))),

kmax = min(hdmax(z, j), (d− hdmin(y, j − k)), (j − jmin(y))),

αv(j, d) = maxkmin≤k≤kmax[αy(j − k, d− k) + αz(j, k)];

v = D,S: αv(j, d) = maxy∈Cv [αy(j, d) + log tv(y)];

else (v = P,L,R): αv(j, d) = maxy∈Cv [αy(j −∆R
v , d− (∆L

v + ∆R
v)) + log tv(y)]

+ log ev(xi, xj).

When the algorithm completes, the value in α0(1, L) contains the bit score for the opti-

mal alignment of the full sequence x1..xL that is consistent with the bands. As with other

DP alignment algorithms, such as Smith-Waterman [236] or the Viterbi HMM algorithm

[53], the actual alignment itself can be obtained by tracing back through the DP matrix,

following the path of transitions that led to the optimal score.

192

Implementation of HMM banded CYK

Some details of the implemented version of the HMM banded CYK algorithm in infernal

differ from the simple version given above.3 The most important difference pertains to

the memory efficiency of the algorithm. As it is described above, the HMM banded CYK

algorithm requires access to a full three-dimensional α DP matrix of size M × L × L cells

for a CM of M states and target sequence of length L. For large RNAs, the size of this

matrix can be prohibitively large, requiring close to 23 Gb of RAM for SSU, as noted in [57].

The initialization step sets all cells outside the bands to −∞. Most of these cells are never

accessed again and are completely irrelevant to the alignment calculation. Empirically, for

most alignments, the vast majority (often more than 99%) of the total DP cells lie outside

the bands and so initialization can require a large fraction of the total running time. For

improved memory and time efficiency, the implemented version only allocates matrix cells

within the bands. This complicates an exact description of the implemented version relative

to the simpler one above, but does not change its logic, which is why the simpler version is

include here.

The implemented version must keep track of the indexing of a DP cell within the now

much smaller α matrix, which depends on the size of the j band for the corresponding state,

and the d band for the corresponding state and j index. Additionally, when updating a cell

for state v in α based on the value in a cell for state y (the final two lines of the simple

algorithm above), it is not sufficient to ensure that the cell for state v is within the bands

(which the simple algorithm above does ensure), but it must also be known that the state

y cell is within the bands (which the simple algorithm above does not ensure), because if

not the state y cell does not exist in the matrix4

3See the fast cyk align hb() function in the file cm dpalign.c.
4The need to check that the state y cell is valid could be obviated by carefully allocating the matrix such

that it only includes cells within the bands and any cell that may possibly be accessed during the banded
DP recursion. I have not implemented such a version of the algorithm.

193

8.3 Comparison of HMM and query-dependent banding

The HMM banding and query-dependent banding (QDB, Chapter 2) strategies both enforce

constraints on the α CYK matrix. They differ in how the bands are derived, the dimen-

sion(s) of the matrix the bands constrain, and their relative utility for the two applications

of CYK - database search and sequence alignment.

QDBs are determined independent of the target sequence and constrain the d dimension

of α - the subsequence lengths that can align to each subtree of the model. For example,

QDBs limit the length of a consensus hairpin loop (Figure 1.1). In constrast, HMM bands

are derived from an HMM alignment and so are sequence-dependent. They constrain not

only the length of a given hairpin loop (the d dimension), but also its location in the target

sequence (the j dimension). This means (given equal band widths) that HMM banding

excludes more of the matrix than QDB and may lead to faster alignments. The width of the

HMM bands depend on the sequence conservation between the target and the query model.

Bands for targets with higher sequence conservation will have more well-resolved HMM

alignments (with tighter posterior probability distributions) and consequently tighter bands.

In contrast, QDBs are sequence-independent and do not vary with sequence conservation.

For this reason HMM banding is more well suited to the alignment of homologous sequences,

and QDB is more well suited to searching databases, in which the vast majority of the target

sequence is nonhomologous to the model. The efficacy of QDB and HMM banding using

two alignment benchmarks is discussed in the next section.

The HMM banded CYK alignment algorithm is very similar to the QDB CYK database

search algorithm from the “QDB algorithm” section of chapter 2. The most obvious differ-

ence, mentioned above is the enforcement of bands on the j dimension of the matrix as well

as the d dimension. Another difference is that in the HMM banded version the d dimension

bands are dependent on not only the state v, but also on j. A more subtle difference is

the way in which the calculation proceeds. In the HMM banded version the nesting order

of the recursion iterates first over v, in the outermost loop, than over j, and finally over

d in the innermost loop. In the QDB search version the ordering of the v and j loop are

194

inverted because the target sequence in searches are often long, e.g. chromosomes, and so

iterating over j first is more efficient [53].

QDB CYK can be described as a special case of HMM banded CYK alignment, for which

the bands are set as follows. First, the j bands are unrestrictive: jmin(v) = 1 and jmax(v) =

L for all v. Second, the j-dependent d bands are equal to the j-independent d bands from

the QDB band calculation algorithm: hdmin(v, j) = dmin(v) and hdmax(v, j) = dmax(v)

for all j.

8.4 Benchmarking

To evaluate the performance of infernal’s HMM banded alignment strategy I compared

its running time and accuracy to non-banded CYK alignment, QDB CYK alignment and

HMM alignment with the Viterbi algorithm. I used three test datasets for this comparison.

The first dataset has previously been used to test structural RNA alignment accuracy

by Kolbe and Eddy [141]. It includes sequence data from two RNA families: bacterial

RNase P RNA and bacterial SSU rRNA. Each family is represented by a manually curated

structural alignment that is presumed correct. Kolbe and Eddy [141] created training and

testing subsets of the curated alignments such that no training/testing sequence pair is

more than 60% identical for RNase P or 82% identical for SSU. RNase P has 28 training

and 15 test sequences and SSU has 101 training and 51 test sequences. I will refer to this

dataset as Kolbe09.

To test HMM and CM alignment using the Kolbe09 dataset, a profile is built from

the training alignment and used to align the test sequences. Accuracy of the predicted test

alignment is measured relative to the manually curated alignment as the fraction of correctly

aligned residues in the predicted alignment. Residues from columns of the manually curated

alignment that were defined as consensus during CM or HMM construction must occur in

the same column in the predicted alignment to be considered correct. Residues from non-

consensus columns that lie between two bordering consensus columns must occur between

the same two bordering consensus columns in the predicted alignment to be considered

195

correct. In [141], the authors were interested in testing alignment accuracy on partial RNA

sequences so their test involved fragments of the test sequences. Here, I am interested in

general alignment accuracy, so the full length sequences were used.

I constructed a second, more comprehensive dataset that includes 100 sequences emitted

from each of the 1372 rfam version 9.1 CMs, a SSU rRNA and a LSU rRNA CM (built from

alignments from crw [32]) using infernal’s cmemit program. Each sequence was realigned

to the model it was emitted from using various alignment strategies and running times and

accuracy were measured. The accuracy metric calculation is the same as for Kolbe09 but,

in the absence of a trusted manually curated alignment, the optimal alignment determined

using non-banded CYK is considered the “correct” one. I will refer to this as the Emit

dataset.

Finally, a third dataset was constructed with another 1374 sets of 100 sequences, but

this time the sequences were generated randomly (using a single-state HMM with emission

probability 0.25 for each A, C, G, and U). One set was sampled for each rfam 9.1, SSU or

LSU model. The length distribution of each model’s sequence set is the same as the length

distribution for the corresponding set in the Emit dataset. Each set was realigned to its

corresponding model and evaluated in the same manner as in the Emit set. I will refer to

this as the Random dataset.

The three test datasets complement each other. In the Kolbe09 dataset, the availability

of a (presumed) correct alignment enables the test of what benefit, if any, modeling structure

has on accuracy, by comparing CM and HMM results. Further, I can measure the extent

to which that benefit is retained using the various banded strategies. For the Emit and

Random datasets, no trusted, correct alignments are available, but the larger set of families

cover a much broader range of family sizes and structures, so these dataset measure the

general utility of the different banded strategies. The Random set offers a unique challenge

to HMM banding because no homology exists between query and targets.

196

Results

The results on the modified Kolbe09 benchmark are included in Table 8.2. In general,

HMM banded CYK performs very well compared with non-banded CYK, and matches or

outperforms QDB accuracy in all cases but one, while achieving more than 10-fold greater

acceleration. Using τ = 10−7 and without normalizing posteriors, HMM banded CYK is

able to find the globally optimal alignment for both RNase P and SSU roughly 100-fold and

2000-fold faster, respectively, than non-banded CYK. The values in the row pertaining to

this strategy, which is used by default in infernal’s cmalign program, are in bold-faced

type.

Table 8.3 shows the accuracy of non-normalized HMM banded CYK with τ = 10−7 and

QDB using β = 10−7 on the Emit and Random datasets. The accuracy of the two methods

is high. They perform very similarly on the Emit dataset. QDB does better on the Random

dataset.

Figure 8.1 shows the empirical running time of various alignment strategies on the

Emit and Random benchmark datasets. These data show that HMM banded alignment is

significantly faster than QDB across the wide range of different models from rfam. This is

true for both datasets, although the speed gap is smaller for the Random set. This indicates

that for random sequences the HMM bands are wider than they are for the “homologous”

emitted sequences, which is expected because HMM alignments of random sequence should

be less well-defined (have lower posterior probabilities) than those of sequences emitted

from the model. The HMM banded strategy is the only strategy for which the timings

for the Emit and Random datasets are noticeably different. This reflects the fact that the

non-banded CYK, QDB and HMM Viterbi algorithms are all sequence-independent, while

HMM bands are computed based on the target sequence.

Entropy weighting and alignment accuracy

As noted in [141], the entropy weighting model parameterization strategy described in

Chapters 1 and 2 does not significantly improve performance on the Kolbe09 alignment

197

pr
ob

R
N

as
e

P
SS

U
rR

N
A

al
ig

nm
en

t
m

as
s

no
rm

a-
ac

cu
ra

cy
ti

m
e

ac
cu

ra
cy

ti
m

e
al

go
ri

th
m

ex
cl

ud
ed

liz
ed

?
vs

op
t

vs
re

f
(s

ec
/s

eq
)

sp
ee

du
p

vs
op

t
vs

re
f

(s
ec

/s
eq

)
sp

ee
du

p
no

n-
ba

nd
ed

C
Y

K
-

-
1.

00
0

0.
84

3
8.

71
0

1.
0

1.
00

0
0.

98
1

13
21

.5
35

1.
0

Q
D

B
C

Y
K

10
−

1
1

-
1.

00
0

0.
84

3
1.

17
0

2.
2

1.
00

0
0.

98
1

66
.5

86
19

.9
Q

D
B

C
Y

K
10
−

7
-

0.
97

4
0.

83
3

0.
92

6
2.

8
1.

00
0

0.
98

1
45

.4
02

29
.1

Q
D

B
C

Y
K

10
−

3
-

0.
92

9
0.

81
0

0.
53

3
4.

8
0.

99
0

0.
97

2
21

.4
86

61
.5

H
M

M
ba

nd
ed

C
Y

K
10
−

1
1

ye
s

1.
00

0
0.

84
3

0.
04

3
59

.9
1.

00
0

0.
98

1
0.

97
0

13
62

.1
H

M
M

ba
nd

ed
C

Y
K

10
−

7
ye

s
1.

00
0

0.
84

3
0.

02
7

94
.7

1.
00

0
0.

98
1

0.
91

6
14

42
.3

H
M

M
ba

nd
ed

C
Y

K
10
−

3
ye

s
0.

98
3

0.
84

1
0.

01
8

14
3.

6
1.

00
0

0.
98

1
0.

88
3

14
96

.7

H
M

M
ba

nd
ed

C
Y

K
10
−

1
1

no
1.

00
0

0.
84

3
0.

03
4

74
.7

1.
00

0
0.

98
1

0.
76

1
17

37
.5

H
M

M
b
an

d
ed

C
Y

K
10
−

7
n
o

1.
00

0
0.

84
3

0.
02

1
12

1.
0

1.
00

0
0.

98
1

0.
71

9
18

39
.0

H
M

M
ba

nd
ed

C
Y

K
10
−

3
no

0.
96

8
0.

83
6

0.
01

4
18

4.
0

0.
99

9
0.

98
1

0.
69

5
19

00
.7

H
M

M
V

it
er

bi
-

-
0.

82
0

0.
78

7
0.

00
2

13
06

.5
0.

97
2

0.
96

6
0.

08
0

16
64

1.
6

T
ab

le
8.

2:
B

an
d
ed

C
Y

K
p
er

fo
rm

an
ce

on
th

e
m

o
d
ifi

ed
K

ol
b
e0

9
b
en

ch
m

ar
k
.

“p
ro

b
m

as
s

ex
cl

ud
ed

”
is

th
e

pr
ob

ab
ili

ty
al

lo
w

ed
ou

ts
id

e
ea

ch
ba

nd
:

th
e
β

pa
ra

m
et

er
in

Q
D

B
or
τ

pa
ra

m
et

er
in

H
M

M
ba

nd
in

g.
“n

or
m

al
iz

ed
?”

on
ly

pe
rt

ai
ns

to
H

M
M

ba
nd

in
g,

if
“y

es
”

H
M

M
po

st
er

io
r
pr

ob
ab

ili
ti

es
w

er
e

no
rm

al
iz

ed
as

di
sc

us
se

d
in

th
e

te
xt

.
“v

s
op

t”
gi

ve
s
al

ig
nm

en
t
ac

cu
ra

cy
co

m
pa

re
d

w
it

h
th

e
op

ti
m

al
al

ig
nm

en
t

fo
un

d
by

no
n-

ba
nd

ed
C

Y
K

.“
vs

re
f”

gi
ve

s
al

ig
nm

en
t

ac
cu

ra
cy

co
m

pa
re

d
w

it
h

th
e

re
fe

re
nc

e
al

ig
nm

en
t.

T
he

ro
w

w
it

h
bo

ld
-f
ac

ed
va

lu
es

pe
rt

ai
ns

to
th

e
de

fa
ul

t
pa

ra
m

et
er

s
us

ed
by

in
f
e
r
n
a
l

1.
0’

s
c
m
a
l
i
g
n

pr
og

ra
m

.
A

lig
nm

en
t

ac
cu

ra
cy

is
ca

lc
ul

at
ed

as
de

sc
ri

be
d

in
th

e
te

xt
an

d
[1

41
].

198

20 50 100 200 500 1000 2000

0.00001

0.001

0.1

10

1000

 length of query RNA family (# of consensus positions)

CPU
time

(sec/seq)

●
● ●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●●

●
●

●

●●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

● ●
● ●

●
●

●
●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

● ●●●
●

●●
●

●
●
●

●
●

●

●
●

●●

●●
●

●●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●
●●

● ●

●

●

●

●

●

● ●
●

●

●●●
●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

● ●

●●
●
●

●
●

●
●

●

● ●
●●●●

●

●

●

●

●●●

●

●

●●
●

●

●●●●●●
● ●●

●

●● ●

●

●

●

●

●●

●
●

●

●
●

●
●

●●●
● ●

●
●

●

● ●
●●

●
●

●●

●

●

●●

●

●
●●

●
●● ●

●

● ●

●

●

●
●

●

●

●

● ●
●

● ●

●
●

●
●●

●

●

●●●●
●

●
●●

● ●●●
●

●

●
●

●

●

●
●

●
●
●

●
●

● ●

●

●

●

●

●

●
●

●

●●●
●●●●●●

●●●●●
●●●●●●●●●● ●●●●●● ●●

●

●●●● ●
●●●

●

●
●

●

●●

●

●

●
●

●
●●

●

●
●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
● ●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●
●

●
●

●
●●●

●

●●
●

●●

●●●●●
●●

●

●

●

●

●

●

●
●

●

●

●●

●

●●●

●

●●●

●

●

●●
●
●

●

●
●●●

●●
●●

●

●

●

●
●

●

●●

●●
●

● ●

●
●●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●
● ●●●

●
●

● ●
● ●

●●
●●

●●●
● ●●●

●
●

●
●●

●

●
●

●
●

●
●

● ● ●

●

●

●

●
●

●
●●

●
●●

●
●

●
●●●
●● ●●

●

●●

●●
●

●●
●

●

●

●
●● ●● ●●

●

●

●●
●

● ●

●
●

●

●

●

● ●
●

●
●●

●●●●
●

●●

●

● ●●●● ●●●●●
●

●●●●●
●

●●
●●

●
●

●

●

●
●

●●
●●
● ●

●
●●●● ●●● ●●●●

●

●●●● ●● ● ●
●

●
●

●

●
●

●

●
●

●●

●

●
●

●
●
●● ●
●

●

●●●
●

●
●●

●
●

●
●

●

● ●

●

●

●
●

●
●
●

●

●
●●● ●●● ●

●

●

●
●

●
●●

●
●●● ●

●
● ●●

●●

●

●

●

●
●

●

●
● ●

●

●

●●
●●●

●●
●

●

●

●

●

●
●

●●
●

●
●

●
●

●●

●

●
●

●

● ●

●●●
●●●●●

●●●

●

●
●

●

●

● ●●
●●

●

●

●

●

●

●

●
● ●

●●●
●●

●
●

●● ●●●
●●●
● ●

● ●
●

●

●
●● ●

●
●

●

●
●

●
●
●
●

●

●

●

●
● ●

●

●
●●

●
●

●

●

●●

●

●●
●
●

●
●

●● ●
●

●

●

●

●●
● ● ●

●
●● ●●

●●

●
●●
●

● ●●
●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●●
●

●
●●●

●

●
●

●

●

●

●

●●●●

●

●●
●●●

●●●
●
●●● ●●

●

●
●● ●●●

●

● ●

●●●●●●●●
●

●● ●
● ●●●
●
●

●
●●●●

●●
●●

●
● ●●●●●

●
●

●
●●●●
●
●
●
●

●● ●●●● ●
●●●●●
●●
●●
●

●●
●
●●
●
●●
●●

●●●●●
●●

●
●
●

●
●
●●
●

●

●
●●
●
●●●

●

●●●
●
●● ●

●●
●●

●

●●●●●

●

●●
●

● ●
●

●●●
●
●
●
●●
●
●
●
●●●
●●
●● ●

●
●

●●

●
●

●
●

●

● ●

●

● ●

●

●●
●●

●●
● ●

●
●● ●●

●●● ●

●●●●

● ●●

●
●●●

● ●

●●●
● ●●●●

●
●

●

●

●●●
●● ●
●●●●●●

●●

●
●●●
●●
●
●

●●●

●●●●●●●
●
●●●

●●
●●

●●

●
●

●●●
●●●

●●●●●●●●●●●●●●●

● ●
●

●●

●

●
●

●

●
●●

●
●●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●
●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●

●
●

●
●

●

●●●●●

●

●
●

●
●

●

●

●

●
●

●

●
●

●● ●
●

●
●

●
●

●
●

●
●

●

●

●

●
●●

●●

●●

●

●

●

●

●

●

●
●●

●
●●

●

●
●●

●

●

●
●

●

●●

●●
●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

● ●

●

●

●●●
●

●

●

●

●

●

●
●

●●
●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●
●

●

●●
●●●

●
●

●

●

● ●
●●●●

●

●

●

●

●●●

●

●
●●

●

●

●●●●●●● ●●
●

●●
●

●

●

●

●

●●

●●

●

●
●

●
●

●●
●

●
●

●
●●

● ●
●

●
●●

●
●

●

●

●●

●
●●●

●
●●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●●
●

●
●●●●

●
●

●
●

● ●●●
●

●

● ●

●

●

●●
●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●
●●●●●●● ●●●●●● ●●

●

●●●● ●●●●
●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●● ● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●

●●●

●●

●

●
●●●

●

●
●●●

●

●●
●

●●

●●●●●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●●●

●

●

●
● ●●

●

●
●●●

●●
●●

●

●

●

●●●

●●

●●
●

● ●

●
●●

●
●

●●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●●

●

●●
●

● ●●●
●

●
●

●
●

● ●
● ●

●
●●●

●●●
●

●●
●

●

●

●●
●

●

●
●

●

●
●●

●
●

●

●
●

●

● ●

●
●●

●●●
●

●

●

●●
●

●● ●●
●

●●

●●
●

●
●●

●

●

●
●

●
●

●
●●●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●●

●●●●●

●●

●

● ●●●● ●●●●
●

●

●●
●●●

●
●

● ●●
●●

●

●

●●

●●●● ●
●●

●
●

●●
●●

●
●●

●
● ●

●
●●● ●●

● ●●

●
●

●●●

●

●● ●
●

●

●● ●●●●
●●

●

●

●●
●

●
●●

●

●

●
●

●

●
●

●

●
●

●●
●●

●

●
●●

●

●

●●
●

●

●

●
●

● ●●

●
●●●

●
●●

●●

●●

●

●

●

●●

●

●
●

●

●

●
●●

●●●

●
●● ●

●

●

●

●

●

●●

●
●

●
● ●●●

●

●
●

●

● ●

●●
●●●●●●

●●
●

●

●●

●

●●
●●●●

●

●

●

●

●

●

● ●

●
●●●●●

●
●●●
●●●●●●●

●

●
●

●

●

●
●●

●●●

●

●●
●

●●●
●

●

●
●

●
●

●

●●●
●●

●

●
●●

●
●

●
●●

●●

●
●

●
●

●

●

●

●●●
●

●
●●● ●●

●●

●
●● ●

●
●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●●
●

●
●

●

●

●

●

●●●●

●

●●●●●
●●●

●●●● ●●●●●● ●●●

●

●

●

●●●●●●●●
●●● ●● ●●●●●

●
●●●●

●●●●
●

● ●●●●●
●●●●●●●●●●●●● ●●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●
●

●●
●

●●●
●●●●●●

●●●●●
●

●●●●
●●●

●●●●●●●●●●●●●
●●●● ●

●●●
●

●

●
●

●

●

● ●

●

● ●

●

●●●●
●●

● ●●●●
●● ●●●

●

●●●●

●
●●

●
●●●●

●

●●● ● ●
●●●●

●●

●

●●●
●

●
●●●●●

●●●●

●●●●●●●●
●●●

●●●●●●●●●
●●●●●

●●●

●
●

●●●
●●

●●●●●●●●●●●●●●●●

● ●●

●●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

0.0001

0.01

1

100

10000

3000

non-banded CYK

QDB CYK

HMM ViterbiHMM banded CYK

Emit dataset
1372 Rfam 9.1 families + SSU & LSU

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●
●

● ●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●
● ●

●

●
●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

● ●
●

●

●●

●

●

●

● ●●

●
●

●●

●

●
●

●

●

●
●

●● ●
●●

●

●
●●● ●

●
● ●

●●
●●

●

●●

●● ●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

● ●● ●

●●●
●

●

●

●

●

●

●
●

●●
●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●● ●
● ●

●●
●
●

●●

●

●

●

● ●
●●●●

●

●

●

●

●●●

●

●

●●
●

●

●●●●●●●
●
●

●

●
● ●

●

●

●

●

●●

●
●

●

● ●

●

●

●●
●

● ●
●●

●

● ●
●

●
●●

●●

●

●

●●

●
●

●●

●
●●

●

●

●
●

●●

●

●

●

●

●

● ●
●● ●

●

●
●

●●
●

●

●●●●

●
●

●●● ●●●
●

●

● ●

●

●

●●
●

●●

● ●

● ●

●

●
●

●

●

●

●

●

●●●
●●●●●●●●●●●●

●●●●●●●●● ●●●●●
● ●●

●

●●●● ●●●●
●

●●

●

●
●

●
●

●

● ●
●●

●

●
●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

● ●●●
●

● ●
●

●

●

●
● ●

●
●

●●●
●●●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●●

●

●●
●

●

●

●●
●
●

●

●
●●●

●●
●●

●

●

●

●●
●

●●

●●
●

●
●

●
●●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
● ●

●●
● ●
●

●

●
●● ● ● ●

●
●●●

●
●

● ●
●●

● ●

●

●●
●

●

●
●

●

●

●●

● ●
●

●

●

●

●

●

●

●
●

●●●
●

●

●

●●

●

●
●

●
●

●

●●

●
● ●

●
●●

●

●

●●
●

●● ●●
●

●
●● ●

●

●
● ●

●●

●

● ●
●

●
●●●

●●●●

●
●

●

● ●●●● ●
●
●●

●

●

●●
●●●

●
●

● ●
●

●
●

●

●

●●
●●●●
● ●●

●
●●● ●●

●
●

●

●● ●

●
●●● ●●

● ●●
● ●

●
●●

●

●● ●●

●

●●

●
●
●

●

●●

●

●
●●

●
●

●●
●

●

●

●●
●

●

●

●
●

●●
●●

●

●
●●●

●

●●
●

●

●

● ●● ●●

●
●●●

●

●●

●

●

●●

●

●

●

●●

●

● ●
●

●

●
●●

●●●

●

●● ●
●

●

●

●

●

●●

●
●

●
● ●●●

●

●

●

●

●

●

●●

●●●●
●
●

●●
●

●

●●

●

●●
●
●●●

●

●

●

●

●

●
●

●

●
●●

●●●
●

●
●●

●●●●●●●

●

● ●
●

●
●●● ●●●

●
●●

●●

●
●

●
●

●

● ●

●

●

●●●
●

●

●

● ●
●

● ●●
●●

●●

●

●
●●

●

●

●
●●

●

●
●●

●

●
●●

●●

●

●
●

●
●

●●●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●

●
●

●

● ●●
● ●

●

●

●

●

●

●

●

●
●●

●

●
●

●●●

●
●

●

●

●

●

●
●●
●

●

●●●●●
●●

●

●●●
●

●●
●

●●● ●●●

●

●
●

●●●●●●●●
●●● ●● ●●●●●

●
●●●● ●

●●● ●● ●●●●●
●
●

●●●●●●●
●●●● ●●●
● ●●●●●●

●●
●●
●

●●
●●●●●●●●
●●●●●●

●
●

●
●

●
●●●●

●

●

●
●
●

●
●●

●

●
●

●
●
●
● ●●●

●●
●

●
●●●●

●

●●

●

●
●

●

●●●●●
●

●●
●●

●
●●●●

●●● ●
●

●

●●

●

●
● ●

●

● ●

●

●
●

●

●●●●
●●

● ●●●●
●●
●●● ●

●
●
●
●

●
●
●

●
●
●●

● ●

●
●●

● ●●●●● ●
●

●

●●●

●
●

●●
●
●
●

●●●
●

●
●
●●●●●●

●
●●

●●●●●●●●●
●●●●●●●●

●
●

●●●

●●

●●●●
●
●●●●●●●
●●●
●

●
●

●

●●

●

●

●

●

●●
●

●
●
●

●

●

●

● ●
●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

● ●
●

●
●

●

●

●
●●

●
●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●

●
●

●
●

●

●●●●●

●

●
●

●
●

●

●

●

●
●

●

● ●

●● ●
●

●
●

●
●

●
●

●
●

●

●

●

●
●●

●●

●●

●

●

●

●

●

●

●
●●

●
●●

●

●
●●

●

●

●
●

●

●●
●●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

● ●

●

●

●●●
●

●

●

●

●

●

●
●

●●
●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●
●

●

●●
●●●

●
●

●

●

● ●
●●●●

●

●

●

●

●●●

●

●
●●

●

●

●●●●●●●
●●

●

●●
●

●

●

●

●

●●

●●

●

●
●

●
●

●●
●

●
●

●
●●

● ●
●

●
●●

●
●

●

●

●●

●
●●●

●
●●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●●●●

●
●

●
●

● ●●●
●

●

● ●

●

●

●●
●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●
●●●●●●● ●●●●●● ●●

●

●●●● ●
●●●

●

●●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●● ● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●

●●●

●
●

●

●
●●●

●

●
●●●

●

●●
●

●●

●●●●●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●●●

●

●

●
● ●●

●

●
●●●

●●
●●

●

●

●

●●●

●●

●●
●

● ●

●
●●

●
●

●●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●●

●

●●
●

● ●●●
●

●
●

●
●

● ●
● ●

●
●●●

●●●
●

●●
●

●

●

●●
●

●

●
●

●

●
●●

●
● ●

●
●

●

● ●

●
●●

●●●
●

●

●

●●
●

●● ●●
●

●●

●●
●

●
●●

●

●

●
●

●
●

●
●●●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●●

●●●●●

●●

●

● ●●●● ●●●●●

●

●●
●●●

●
●

● ●●
●●

●

●

●●

●●●● ●
●●

●
●

●●
●●

●
●●

●
● ●

●
●●● ●●

● ●●

●
●

●●●

●

●● ●
●

●

●● ●●●●
●●

●

●

●●
●

●
●●

●
●

●
●

●

●
●

●

●
●

●●
●●

●

●
●●

●

●

●●
●

●

●

●
●

● ●●

●
●●●

●
●●

●●

●●

●

●

●

●●

●

●
●

●

●

●
●●

●●●

●
●● ●

●

●

●

●

●

●●
●

●
●

● ●●●

●

●
●

●

● ●

●●
●●●●●●

●●
●

●

●●

●

●●
●●●●

●

●

●
●

●

●

● ●

●
●●●●●

●
●●●
●●●●●●●

●

●
●

●

●

●
●●

●●●

●

●●
●

●●●
●

●

●
●

●
●

●

●●●
●●

●

●
●●

●
●

●
●●

●●

●
●

●
●

●

●

●

●●●
●

●
●●● ●●

●●
●

●● ●
●

●●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●●
●

●
●

●

●

●

●

●●●●

●

●●●●●
●●●

●●●● ●●●●●● ●●●

●

●

●

●●●●●●●●
●

●● ●● ●●●●●
●

●●●●
●●●●
●

● ●●●●●
●●●●●●●●●●●●● ●●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●● ●●
●

●●●
●●●●●●

●●●●●
●

●●●●
●●●

●●●●●●●●●●●●●●
●●● ●

●●●
●

●

●
●

●

●

●
●

●

● ●

●

●●●●
●●

● ●●●●
●● ●●● ●

●●●●

●
●●

●
●●●

●
●

●●● ● ●
●●●●

●●

●

●●●
●

●
●●●●●

●●●
●

●●●●●●●●
●

●●

●●●●●●●●●
●●●●●●●●

●
●

●●●
●●

●●●●●●●●●●●●●●●●

●
●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

20 50 100 200 500 1000 2000

0.00001

0.001

0.1

10

1000

 length of query RNA family (# of consensus positions)

CPU
time

(sec/seq)

0.0001

0.01

1

100

10000

3000

non-banded CYK

QDB CYK

HMM Viterbi
HMM banded CYK

Random dataset
1372 Rfam 9.1 families + SSU & LSU

Figure 8.1: Empirical run times of different alignment algorithms. The average
time required to align a target sequences with each of the 1372 9.1 CMs, an SSU rRNA
and a LSU rRNA CM, is shown as a point, plotted on a log-log graph as a function of the
consensus model length. Open black circles are non-banded CYK. Open gray circles are
QDB CYK with β = 10−7. Filled black circles are non-normalized HMM banded CYK with
τ = 10−7. Filled gray circles are CP9 HMM Viterbi. For the Emit dataset, targets were
sampled from the model. For the Random set they were randomly generated as described
in the text. infernal version 1.01 was used for all alignments. The SSU and LSU rRNA
models were built from alignments from the crw database [32].

199

QDB CYK HMM banded CYK
β = 10−7 τ = 10−7

non-normalized
Average accuracy on the Emit dataset 0.99913 0.99913

Average accuracy on the Random dataset 0.99401 0.99079

Table 8.3: Average alignment accuracy on the Emit and Random datasets for
QDB CYK and HMM banded CYK.

benchmark relative to standard parameterization using Dirichlet priors. For SSU, accuracy

actually decreases slightly when entropy weighted models are used. For this reason, the

Kolbe09 results in Table 8.2 are for alignments using models built without entropy weighting.

For comparison, when using entropy-weighted models the alignment accuracy is 0.976 and

0.848 for SSU and RNase P, respectively, using parameters corresponding to the bold-faced

row in Table 8.2 (in which the corresponding accuracies are 0.981 and 0.843). In contrast,

the Emit and Random benchmarks were performed using entropy weighted models. This

was done partly because rfam computes its “full” alignments this way and also so that the

generated sequences in the Emit set would be relatively difficult to align (entropy weighting

makes the model less specific).

Timing analysis of individual steps of HMM banded alignment

To determine the amount of CPU time required for each step of alignment, I created a

modified version of the cmalign program which reports the timings for each step. I used

this program to investigate HMM banded SSU alignment with the Kolbe09 dataset with

τ = 10−7 using both the non-normalized and normalized posterior strategies. The observed

timings are listed in Table 8.4. For both strategies, the definition of the bands requires

more than half the total time. Interestingly, most of the time difference between the non-

normalized and normalized posterior strategies is due to the band calculation step. This

is because in this step the normalization strategy must compute the P (k∗) values from

equation 8.1, while these values are not needed and not computed by the non-normalized

200

strategy.

τ = 10−7 τ = 10−7

non-normalized normalized

step(s) description sec/seq % of total sec/seq % of total

1 HMM Forward/Backward 0.494 68.6% 0.492 53.7%

2&3 band calculation 0.142 19.7% 0.313 34.2%

4 HMM banded CYK 0.085 11.7% 0.110 12.1%

Table 8.4: Timings for steps of HMM banded alignment on the modified Kolbe09

benchmark. Timings are shown for HMM banded alignment with τ = 10−7 using non-

normalized posteriors and normalized posteriors.

8.5 Constructing an HMM that is maximally similar to a

CM

I now return to the problem of constructing and parameterizing the HMM used for banding.

It is important that this HMM is constructed and parameterized to be as similar to the

CM as possible because the less difference between the two models, the less likely it is that

bands derived from an HMM alignment of a target will obscure the globally optimal CM

alignment. Of course, an HMM is incapable of modeling the consensus structure of a CM,

but this is the only necessary difference between the two models.

Weinberg and Ruzzo introduced a method for constructing and parameterizing a profile

HMM, called a maximum-likelihood (ML) heuristic HMM, that is maximally similar to a

CM [265, 266]. The method is implemented in the RaveNnA package. I have implemented

a very similar type of HMMs called CM Plan 9 (CP9) HMMs in infernal. The difference

between ML-heuristic HMMs and CP9s is the number of states in the model; whereas ML-

heuristic HMMs include two states for each state of a corresponding CM, CP9s usually

include only one, except in the case of HMM states that correspond to CM states in MATP

201

M1 M2 M3 M4

I1 I2 I3

D2 D3

Corresponding HMMER2 Plan 7 HMM architecture

M1 M2

I1 I2

D2 D2

M3

I3

D3

M4B E

D4D1

I0 I4

CM Plan 9 (CP9) HMM architecture

B E

Figure 8.2: CM Plan 9 HMM and HMMER2 Plan 7 HMM architectures. Each
model contains four nodes. Match, insert, and delete states are named as “Mx”, “Ix” and
“Dx” respectively with “x” indicating the node index. For sake of comparison, the Plan 7
HMM is depicted in global configuration for alignment, instead of a local configuration for
search, as it is in the hmmer2 User’s Guide [63].

nodes, as noted below.

CP9 HMMs were specifically designed to be similar to the Plan 7 (P7) HMMs of the

hmmer package [62] (which is also freely available from the Eddy lab), so that I could

easily port current and future optimized implementations of HMM alignment and search

algorithms from hmmer to infernal. Figure 8.2 shows the CP9 architecture compared

with the hmmer 2 plan 7 architecture. Note that CP9s contain two additional transitions

per node: from a delete state to the insert state of the same node, and from the insert

state to the delete state of the next node.5 Also, CP9s have extra states: an insert state

before the first node and after the last node (I0 and I4) and delete states in the first and

last node (D1 and D4). All of these CP9 additions are necessary to model an analogous

state or transition in a CM. For example, the I0 state corresponds to a CM’s ROOT IL state

which models inserts before the first consensus position. Also, the CM architecture includes

transitions between insertions and deletions (Figure 1.12).

Mapping CP9 HMM states and CM states

Given a CM for a sequence family with N consensus positions, the CP9 HMM architecture

dictates the placement of states and transitions in a corresponding N -node CP9 HMM. In

order to parameterize the HMM to be maximally similar to the CM, its states must first
5This is the reason for the 7 and 9 in the names, P7s have 7 transitions out of each node, CP9s have 9.

202

be mapped to their corresponding CM states. This mapping is also necessary to transfer

HMM bands onto the CM CYK DP matrix in step 3. The mapping is mainly achieved

using three simple rules:

1. Match states that emit to the same consensus position map to each other.

2. Insert states that insert after (3’ of) the same consensus position map to each other.

3. Delete states that delete (cause a gap in) the same consensus position map to each

other.

These three rules map nearly all HMM states to exactly 1 CM state, and nearly all CM

states to exactly 1 HMM state, with a few exceptions. Some HMM match states will map

to more than CM state. For example, any consensus position modeled by a MATP node will

have two match states that emit to that position (MATP MP and either MATP ML or MATP MR),

so HMM states modeling these positions will map to two CM states. Additionally some

CM states will map to more than one HMM state. For example, MATP MP match states

emit two base-paired residues to two separate consensus positions, and thus map to the two

HMM match states that also emit to those positions. Finally, some CM states do not map

to any HMM states. These include BEGL S, BEGR S, END E and BIF B states which are only

necessary in the CM for modeling structure and so do not correspond to any HMM state.

Following the enforcement of the three rules, two additional steps are taken to complete

the mapping. First, the still unmapped CM ROOT S state, from which all alignments begin,

is mapped to the analogous HMM B state. The final step involves the subset of HMM

insert states that map to two CM insert states. These cases only occur because of a design

flaw that causes an ambiguity in the CM grammar allowing a pair of distinct CM insert

states to emit after the same consensus position. One pair of these insert states exists for

each END node in a CM. For each pair, one of the two insert states is always immediately

prior to an END E state in the CM state graph. (The CM from Figure 1.12 contains two

pairs of these states, one in guide tree nodes 12 and 13 and one in nodes 22 and 23.

For more detail, see [192] which shows the state graph for these nodes.) Because grammar

203

ambiguities are generally undesirable, and especially so when using CYK-like DP algorithms

that find maximum likelihood solutions [50, 91], this CM ambiguity has been removed in

practice within infernal by detaching all insert states immediately prior to END E states.

Detachment simply involves setting all transition probabilities into the state to 0.0 so it is

never used in a parse tree (alignment). The other state in each pair is not modified. The

detached inserts are not necessary to model by an HMM, so they are not mapped to any

HMM state. This leaves any HMM state that was mapped to two CM inserts now mapped

to only one (the unmodified, non-detached one of the pair).

CM Plan 9 HMM parameterization

Using a mapping of CM states to CP9 HMM states, infernal uses Weinberg’s ML-heuristic

HMM parameterization procedure [266] to set the CP9 emissions and transitions. Emissions

are relatively straightforward to set. For HMM match and insert states that map to a

single CM state, emission probabilities are set by simply copying that CM state’s emission

probabilities. The remaining emitting HMM states all model a base-paired position in the

CM consensus structure and map to a MATP MP and either a MATP ML or MATP MR state. For

each such HMM state kM mapping to CM states v1 and v2, the emission probability ekM (x)

for each RNA base x ∈ {A,C,G,U} is set as:

ekM (x) =
ψ(v1)

ψ(v1) + ψ(v2)
∗ ev1(x) +

ψ(v2)
ψ(v1) + ψ(v2)

∗ ev2(x)

Where ψ(v1) and ψ(v2) are the expected number of times v1 and v2 are entered in a

CM parse tree. In the above equation, the MATP MP probabilities (ev1(x)) are calculated

by marginalizing the 16 possible base-pair emissions for the appropriate consensus position

modeled by v1 (i.e. the position corresponding to either the left or right half of the consensus

base-pair).

The calculation of the HMM transition probabilities is less straightforward because

some HMM transitions do not have an analogous transition in the CM, and vice versa. For

204

example, an HMM transition between the match states modeling consensus positions 14 and

15 of the example in Figure 1.12 does not correspond to any single CM transition. infernal

implements Weinberg’s method for defining HMM transitions for these cases [266].

205

Chapter 9

SSU-align: a tool for structural

alignment of SSU rRNA sequences

ssu-align is a freely available, open source software program for creating large-scale align-

ments of small subunit ribosomal RNA (SSU) using covariance models (CMs). The archaeal,

bacterial, and eukaryotic (nuclear) SSU CMs in ssu-align are built from structural seed

alignments derived from Robin Gutell’s Comparative RNA Website (crw) [32]. The fol-

lowing features distinguish ssu-align from other SSU alignment programs (reviewed in

chapter 7):

• Structural alignments are calculated at roughly one second per sequence.

CM alignment takes into account conserved sequence and well-nested structure. In

the past, the slow speed of CM alignment has prevented their application to SSU

alignment, but the sequence-based banding approach described in chapter 8 yields

roughly a 1000-fold speedup, making large-scale SSU CM alignment feasible.

• Masks for pruning ambiguously aligned columns are automatically gener-

ated.

CMs are probabilistic models that allow calculation of the posterior probability that

each sequence residue belongs in each column of the output alignment given the model.

206

Regions of low posterior probabilities are indicative of high alignment ambiguity and

should be pruned away (masked out) prior to phylogenetic inference. ssu-align can

automatically detect and remove these columns for any alignment it generates.

• Accurate alignments can be computed using seed alignments of less than

one hundred sequences.

CMs built from small seed alignments can achieve comparable accuracy to nearest-

neighbor based alignment methods that use seed (reference) alignments of thousands

or tens of thousands of sequences. This reduces the level of manual curation neces-

sary for creating useful seeds, making it easier to extend SSU-align by adding new

seeds and corresponding CMs that cover specific phylogenetic ranges. For example,

a Firmicute-specific seed and model could be constructed to create large alignments

for phylogenetic analysis of the Firmicute bacterial phyla.

9.1 Aligning SSU sequences with SSU-align

ssu-align takes target sequences and a CM file with N >= 1 SSU models as input and

proceeds through two stages to generate structurally annotated alignments (Figure 9.1).

The CM file may contain one or more SSU models. The default CM file supplied with ssu-

align version 0.1 contains three SSU CMs: an archaeal model, a bacterial model, and a

eukaryotic model each built from structural alignments derived from crw [32], as described

later in this chapter.

In the first stage, each target sequence is scored with each of the models based only on

sequence conservation. This is done with a profile HMM derived from each CM, which is

significantly faster than using the CM. The model whose profile HMM gives the highest

score to each sequence is defined as the best-matching model for that sequence. If this

highest score is not above a predefined threshold, the sequence is discarded and not evaluated

further. The boundaries of the best-matching HMM alignment are used to truncate each

target sequence if the alignment does not span the entire target length. In stage 2, each

207

surviving, and possibly truncated, sequence is aligned to its best-matching model, this time

using the CM which scores both sequence and conserved structure. Up to N alignments

are created, one for each model that was the best-match to at least one target sequence.

ssu-align can generate masks for the alignments it creates based on the posterior

probabilities for each residue in the alignment. These masks can then be used to remove

ambiguously aligned columns of the alignment prior to using phylogenetic inference tools. A

User’s Guide is supplied with ssu-align that explains how to use the program for creating

and masking alignments.

9.2 Automated probabilistic alignment masking

The goal of masking is to identify and remove columns containing residues that are am-

biguously aligned and therefore likely to contain errors prior to using the alignment for

phylogenetic inference. Two commonly used SSU masks were determined manually by

David Lane and Phil Hugenholtz (Figures 7.5 and 7.6) based on expert knowledge and

extensive experience with SSU alignments (Chapter 7). Alignment posterior probabilities

from probabilistic models offer an alternative, objective way of evaluating alignment ambi-

guity (high posterior probability means low ambiguity and vice versa) and creating masks

for any alignment.

The HMM banded alignment technique described in Chapter 8 exploits posterior prob-

abilities calculated from the Forward and Backward algorithms in HMM alignments. Inside

and Outside, the SCFG analogs of the Forward and Backward, can be used to calculate

posterior probabilities for CM alignment [53]. These algorithms were not implemented in

infernal prior to this work because they are about two-fold slower than the (already slow)

CYK algorithm and because the Myers-Miller linear memory trick that made CM SSU

alignment practical (requiring 60 Mb instead of 20 Gb of RAM) had only been applied to

CYK [57]. HMM banding drastically reduces the memory requirement for CM alignment,

because only DP cells within the bands need be allocated, making it possible to run Inside

and Outside on SSU.

208

input target sequences:

archaea HMM bacteria HMM eukarya HMM

predicted
SSU start

predicted
SSU end

low HMM score

low HMM score

highest HMM score

don’t
align

don’t
align

archaea CM bacteria CM eukarya CM

Stage 1:
Align sequence to each model’s
HMM to find best-matching model
and define start/end SSU positions.

Stage 2:
Structurally align (sub)sequence to
the best-matching model’s CM.

output archaeal alignment

output bacterial alignment

output eukaryotic alignment

Figure 9.1: Schematic of the SSU-align alignment pipeline. Unaligned target se-
quences are input to the program. In stage 1, each sequence is independently aligned
using only primary sequence scoring to each of N HMMs, one built from each model in
the input CM file. The model whose HMM alignment has the maximum bit score is the
“best-matching” model for that sequence, in this example “eukarya” is the best-matching
model. In stage 2, the unaligned (sub)sequence from the best-matching model’s HMM
alignment (potentially with some sequence trimmed off the ends) is aligned to the best-
matching model’s CM which scores both sequence and conserved secondary structure. The
CM aligned target sequence is added to that model’s output alignment. After all target
sequences are processed, the program has output up to N new structural alignments, one
for each model that was the best-matching model for at least 1 target sequence.

209

Alignment ambiguity and length heterogeneity

Alignment ambiguity often arises in regions of alignments with low sequence conservation

where insertions and deletions are common, corresponding to regions of the molecule that

exhibit high length heterogeneity across different species. In such cases, it is often difficult

to determine the correct alignment because alternative alignments seem plausible. Take

for example the CM alignment of the GUAU subsequence of the Desulfovibrio desulfuricans

SSU sequence to a loop region depicted in Figure 9.2. The reference (consensus) sequence

for the loop (AUUCAAC) differs from GUAU in both sequence and length. Consequently, the

CM alignment for this loop is not well defined, and two alternative alignments are given

posterior probabilities above 0.35. In contrast, the surrounding helix region, for which

higher sequence similarity exists between the two sequences, is aligned confidently with

high posterior probabilities.

Inserted columns should always be excluded during masking

Importantly, any CM alignment mask should automatically exclude every insert column

of the alignment. This is because profile probabilistic models like CMs do not actually

align inserted residues (residues aligning to insert states) between different sequences, but

rather simply insert them between the appropriate consensus columns in the alignment.

This means that sequence residues appearing in the same insert alignment columns are not

aligned with respect to each other and consequently should be removed prior to phylogenetic

analysis which assumes aligned residues are homologous.

Benchmarking probabilistic masking

I decided on a simple method for defining masks that requires that a given fraction x of the

residues in an aligned consensus (non-insert) column have a posterior probability above a

minimum threshold y to be included (not pruned away) by the mask. I tested this approach

with different x and y values on the SSU alignment test from the Kolbe09 benchmark [141]

described in Chapter 8. Briefly, the test consists of building a CM from an aligned subset

210

00904::Desulfovibrio desulfuricans-1 GAUGUCGGGGA--GUAU---UCUUCGGUGUC

#=GR 00904::Desulfovibrio desulfuricans-1 POSTX. 99999999999--5665---89999999999

#=GR 00904::Desulfovibrio desulfuricans-1 POST.X 99999999996--8009---79999999999

00904::Desulfovibrio desulfuricans-2 GAUGUCGGGGA---GUAU--UCUUCGGUGUC

#=GR 00904::Desulfovibrio desulfuricans-2 POSTX. 99999999999---3333--89999999999

#=GR 00904::Desulfovibrio desulfuricans-2 POST.X 99999999996---6665--79999999999

#=GC SS cons <<<<<<<<<<<<.......>>>>>>>>>>>>

#=GC RF GGUGUuGGgggcAuUcaACgcccUCaGUGCC

GGUGUuGGg
g
c

A u U c
a

A
Cgc

ccUCaGUGCC

G
A
A

A G
C
G
U
G
GG

G
A G

C
A
A
A

C
A
G
G

A
U
U

A G A
U
A
C

C
C
U
G

G
U
A

G
U

C
C
A
C
G
C C G U

A
A
A
C

G
AU

G a a u A C U A

Gc
A
GC

U
A

AC
GCGUUAA

GUauuC

g

Reference (#=GC RF)

GAUGUCGGGG
A
-

- GU A
U

-
--U

CUUCGGUGU

G
A
A

A G
C
G
U
G
GG

G
A G

C
A
A
A

C
A
G
G

A
U
U

A G A
U
A
C

C
C
U
G

G
U
A

G
U

C
C
A
C
G
C U G U

A
A
A
C

G
AU

G G A U G C U A
CGU

A
GU

U
A

AC
GCGUUAA

GCA

U C C

UCC

00904::Desulfovibrio
desulfuricans-1

GAUGUCGGGG
A
-

- - G U
A

U
--U

CUUCGGUGUC

C

G
A
A

A G
C
G
U
G
GG

G
A G

C
A
A
A

C
A
G
G

A
U
U

A G A
U
A
C

C
C
U
G

G
U
A

G
U

C
C
A
C
G
C U G U

A
A
A
C

AU
G G A U G C U A

GU
A
GU

U
A

AC
G

GUUAA
GCAUCC

00904::Desulfovibrio
desulfuricans-2

probability
of about 0.60

probability
of about 0.35

Figure 9.2: Example of alignment ambiguity in a hairpin loop. Top: An alignment
fragment of two different alignments of the Desulfovibrio desulfuricans (sequence accession
M34113) sequence from the ssu-align bacterial seed alignment for the region between con-
sensus columns 861 and 881. Each alignment is annotated with its posterior probability
in the #=GR POSTX. and #=GR POST.X rows. For example, the third A in the first aligned
sequence has a posterior probability of 0.60 of being aligned in its current position. The
probability this A aligns in the next position over, as it does in the second alignment, is
0.36. There is a probability of 1.0− 0.60− 0.36 = 0.04 that the A does not align at either of
these two positions (not shown). The #=GC SS cons and #=GC RF rows correspond to the
consensus secondary structure and sequence respectively. The alignments were created us-
ing cmalign to align this sequence to the bacterial CM with the --sample option. Bottom:
The secondary structures corresponding to the two possible alignments of the D. desulfu-
ricans and the reference alignment. Residues in the actual alignment are black. Residues
surrounding the alignment fragment are gray.

211

of 101 training sequences from a gold standard crw alignment and aligning a separate

subset of 51 test sequences, where the training and testing sets have been defined such that

no train/test pair is more than 82% identical. Accuracy is measured by the similarity of

the CM alignment of test sequences to the original crw alignment (for more details, see

Chapter 8 or [141]). The purposefully low sequence similarity between the training and test

set sequences are meant to increase the difficulty of the benchmark.

The effect of masking using several different combinations of x and y values on the

alignment accuracy and coverage of CM alignment on the Kolbe09 benchmark is summarized

in Table 9.1. Coverage is defined as the fraction of residues in the test alignment that are

included by the mask. Accuracy is the fraction of residues included by the mask which are

correctly aligned (as defined in Chapter 8 and [141]). The results indicate a trade-off between

coverage and accuracy: coverage decreases but accuracy increases as x and y increase,

because the mask becomes more stringent, requiring a larger fraction of more confidently

aligned residues in included columns. There is no clear best-performing combination of x

and y. ssu-align uses 0.95 for both x and y as the default, a strategy which attains 99.74%

accuracy and 85.37% coverage on the benchmark.

A separate validation of the automated masking strategy, apart from benchmarking is

via comparison to the manually created masks of David Lane and Phil Hugenholtz discussed

in Chapter 7. To enable the comparison, I used the ssu-align bacterial CM to realign each

of the bacterial seed sequences and masked the resulting alignment based on posterior

probabilities using x and y values of 0.95. The resulting mask overlaid on the ssu-align

bacterial consensus secondary structure model is shown next to David Lane’s mask on the E.

coli SSU structure in Figure 9.3. In general, the same regions are excluded by both masks.

The ssu-align mask excludes significantly fewer positions than does the Lane mask. This

is to be expected and does not suggest the ssu-align is in any way “better” than the Lane

mask. The ssu-align mask was derived from an alignment consisting only of the seed

sequences the model was parameterized from, which the model should be able to align with

high confidence. The key point here is that the ssu-align mask is different from the Lane

212

x
(f

ra
ct

io
n

of
se

qu
en

ce
s

w
it

h
pp

ab
ov

e
y)

0.
80

0
0.

90
0

0.
92

5
0.

95
0

0.
97

5
0.

99
0

y
co

v
ac

c
co

v
ac

c
co

v
ac

c
co

v
ac

c
co

v
ac

c
co

v
ac

c

0.
80

0
0.

95
76

0.
98

97
0.

93
67

0.
99

28
0.

92
97

0.
99

35
0.

92
53

0.
99

39
0.

90
88

0.
99

49
0.

90
14

0.
99

52

0.
90

0
0.

91
86

0.
99

46
0.

90
95

0.
99

50
0.

90
08

0.
99

55
0.

89
40

0.
99

59
0.

87
74

0.
99

65
0.

86
34

0.
99

71

0.
92

5
0.

91
11

0.
99

50
0.

88
69

0.
99

61
0.

87
97

0.
99

63
0.

87
24

0.
99

68
0.

85
33

0.
99

73
0.

84
41

0.
99

75

0.
95

0
0.

89
87

0.
99

58
0.

86
91

0.
99

69
0.

85
99

0.
99

72
0.

85
37

0.
99

74
0.

83
96

0.
99

77
0.

82
14

0.
99

78

0.
97

5
0.

86
26

0.
99

72
0.

84
04

0.
99

77
0.

83
54

0.
99

79
0.

82
34

0.
99

81
0.

79
54

0.
99

82
0.

77
40

0.
99

85

0.
99

0
0.

77
20

0.
99

81
0.

74
24

0.
99

85
0.

72
09

0.
99

86
0.

69
04

0.
99

88
0.

64
20

0.
99

90
0.

59
69

0.
99

90

T
ab

le
9.

1:
E
ff
ec

t
of

d
iff

er
en

t
m

as
k
in

g
st

ra
te

gi
es

on
C

M
al

ig
n
m

en
t

ac
cu

ra
cy

an
d

co
ve

ra
ge

on
th

e
K

ol
b
e0

9
S
S
U

al
ig

n
m

en
t
b
en

ch
m

ar
k
.

A
lig

nm
en

ts
w

er
e

pe
rf

or
m

ed
us

in
g

in
f
e
r
n
a
l

1.
01

’s
c
m
a
l
i
g
n

pr
og

ra
m

w
it

h
th

e
-
-
c
y
k

fla
g,

w
hi

ch
pe

rf
or

m
s

H
M

M
ba

nd
ed

C
Y

K
al

ig
nm

en
t

w
it

h
τ

=
10
−

7
.

M
as

ks
w

er
e

de
fin

ed
as

fo
llo

w
s:

an
y

co
ns

en
su

s
al

ig
nm

en
t

co
lu

m
n

in
w

hi
ch

m
or

e
th

an
x

fr
ac

ti
on

of
th

e
al

ig
ne

d
re

si
du

es
ha

ve
a

po
st

er
io

r
pr

ob
ab

ili
ty

of
at

le
as

t
y

is
in

cl
ud

ed
by

th
e

m
as

k.
A

ll
ot

he
r

co
lu

m
ns

ar
e

ex
cl

ud
ed

(n
ot

co
un

te
d)

.
“c

ov
”

(c
ov

er
ag

e)
is

th
e

fr
ac

ti
on

of
re

si
du

es
in

th
e

te
st

al
ig

nm
en

t
th

at
ar

e
in

cl
ud

ed
by

th
e

m
as

k.
“a

cc
”

(a
cc

ur
ac

y)
is

th
e

fr
ac

ti
on

of
re

si
du

es
in

cl
ud

ed
by

th
e

m
as

k
w

hi
ch

ar
e

co
rr

ec
tl

y
al

ig
ne

d.
T

he
va

lu
es

co
or

es
po

nd
in

g
to

th
e

ss
u
-a

l
ig

n
de

fa
ul

t
ba

nd
in

g
st

ra
te

gy
x

=
0.

95
an

d
y

=
0.

95
ar

e
in

bo
ld

-f
ac

ed
ty

pe
.

T
he

K
ol

be
09

be
nc

hm
ar

k
an

d
it

s
de

fin
it

io
n

of
al

ig
nm

en
t

co
rr

ec
tn

es
s

ar
e

de
sc

ri
be

d
in

m
or

e
de

ta
il

in
C

ha
pt

er
8

an
d

in
[1

41
].

M
as

ks
w

er
e

co
m

pu
te

d
w

it
h

th
e
s
s
u
-
m
a
s
k

pr
og

ra
m

.

213

mask because it is specific to the alignment it was created for. The ability to automatically

construct alignment specific masks is an important feature of ssu-align that distinguishes

it from other alignment tools.

The automatically masked bacterial alignment nicely demonstrates the tight relationship

between length heterogeneity and alignment ambiguity as measured by posterior probabil-

ities. The positions excluded from the mask are tightly correlated with positions of the

alignment that include at least some gaps (deletions) in consensus positions corresponding

to length heterogeneity between different sequences. The effect can be seen clearly in Fig-

ure 9.4 which displays the frequency of deletions of each consensus column on a secondary

structure diagram of SSU. Positions excluded from the automated mask appear as open

circles. Note that the circles occur in clusters that are almost always adjacent to a region

with at least a few deletions.

9.3 Implementation

The ssu-align package includes the infernal software package [192] (written in C), Sean

Eddy’s easel sequence analysis library (also written in C), a perl script called ssu-align

and two additional C executable programs, ssu-mask and ssu-draw. The ssu-align

script orchestrates the use of the infernal’s cmsearch and cmalign programs and easel’s

esl-sfetch program. The input CM file must have been created prior to running ssu-align,

by infernal’s cmbuild program. An SSU CM file is provided with the program, but users

can also build their own. Stage 1 HMM scoring is performed by cmsearch. Sequence trun-

cation, when necessary, is performed by esl-sfetch. Stage 2 CM alignment of targets to

their best-matching models is performed by cmalign. Alignment masking and structure

diagram creation can be performed post-alignment following completion of the ssu-align

script by the ssu-mask and ssu-draw programs.

214

m
o
d
e
l

#
r
e
s

#
b
p
s

-
-
-
-
-
-
-
-

-
-
-
-

-
-
-
-

b
a
c
t
e
r
i
a

1
5
8
2

4
8
0

d
e
s
c
r
i
p
t
i
o
n

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

m
a
s
k

f
i
l
e
:

b
a
c
t
e
r
i
a
-
0
p
1
-
s
e
e
d
-
r
e
a
l
n
.
m
a
s
k

a
l
i
f
i
l
e
:

.
.
/
b
a
c
t
e
r
i
a
-
0
p
1
.
s
t
k

s
t
r
u
c
t
u
r
e

d
i
a
g
r
a
m

d
e
r
i
v
e
d

f
r
o
m

C
R
W

d
a
t
a
b
a
s
e
:

h
t
t
p
:
/
/
w
w
w
.
r
n
a
.
c
c
b
b
.
u
t
e
x
a
s
.
e
d
u
/

p
a
g
e

1

5’

3’

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

L
E
G
E
N
D

c
o
u
n
t

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-

c
o
l
u
m
n
s

i
n
c
l
u
d
e
d

b
y

m
a
s
k

1
4
7
1

c
o
l
u
m
n
s

e
x
c
l
u
d
e
d

b
y

m
a
s
k

1
1
1

5’

3’

10

50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

10
50

11
00

11
50

12
00

12
50

13
00

13
50

14
00

14
50

15
00

III

II
I

m2
m5

m
7

m2

m
m4 m5

m
2 m6 2m6 2

m3

G
[

]

co
lu

m
ns

 in
cl

ud
ed

 w
ith

in
 m

as
k

(1
28

3
of

 1
54

2
(0

.8
32

))

co
lu

m
ns

 e
xc

lu
de

d
fro

m
 m

as
k

(2
59

 o
f 1

54
2

(0
.1

68
))

F
ig

ur
e

9.
3:

S
im

il
ar

it
y

of
an

S
S
U

-a
li
gn

au
to

m
at

ic
al

ly
co

n
st

ru
ct

ed
m

as
k

(l
ef

t)
an

d
D

av
id

L
an

e’
s

S
S
U

al
ig

n
m

en
t
m

as
k

(r
ig

h
t)

.
E
sc

h
e
r
ic

h
ia

co
li

.
B

la
ck

co
lu

m
ns

ar
e

in
cl

ud
ed

by
th

e
m

as
k

fo
r

ph
yl

og
en

et
ic

an
al

ys
es

.
B

lu
e

(l
ef

t)
or

re
d

(r
ig

ht
)

co
lu

m
ns

ar
e

ex
cl

ud
ed

by
th

e
m

as
k

fo
r

ph
yl

og
en

et
ic

an
al

ys
es

.
T

he
ss

u
-a

l
ig

n
m

as
k

w
as

de
ri

ve
d

au
to

m
at

ic
al

ly
ba

se
d

on
a

re
al

ig
nm

en
t

of
th

e
ba

ct
er

ia
ls

ee
d

se
qu

en
ce

s
as

ex
pl

ai
ne

d
in

th
e

te
xt

.
T

he
ri

gh
t

di
ag

ra
m

w
as

de
ri

ve
d

fr
om

th
e

ov
er

la
y

of
th

e
“L

M
P

H
”

m
as

k
on

th
e

g
r
e
e
n
g
e
n
e
s

da
ta

ba
se

’s
C

or
e

Se
t

al
ig

nm
en

t
of

th
e

E
.
co

li
se

qu
en

ce
(G

e
n
B

a
n
k

ac
ce

ss
io

n
J0

16
95

).
B

ot
h

di
ag

ra
m

s
w

er
e

ge
ne

ra
te

d
us

in
g

th
e
s
s
u
-
a
l
i
g
n

pr
og

ra
m

in
cl

ud
ed

in
th

e
ss

u
-a

l
ig

n
pa

ck
ag

e
.

215

model #res #bps
-------- ---- ----
bacteria 1582 480

 #seqs

 93

description

frequency of deletions at each position

alifile: ../bacteria-0p1.stk; mask file: bacteria-0p1-seed-realn.mask;
structure diagram derived from CRW database: http://www.rna.ccbb.utexas.edu/ page 1

5’

3’

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

LEGEND
 in
 all mask

----------------------------- ---- ----

zero deletions 1375 1348

included by mask
(all colors) - 1471

excluded by mask
(all colors) - 111

fraction of seqs with deletes:

[0.000-0.167) 95 75

[0.167-0.333) 34 15

[0.333-0.500) 15 2

[0.500-0.667) 36 12

[0.667-0.833) 27 19

[0.833-1.000] 0 0

Figure 9.4: Secondary structure diagram displaying frequency of deletions of each
consensus position in a masked bacterial alignment of the SSU seed sequences.
Statistics correspond to a CM alignment of the bacterial seed sequences using the ssu-
align bacterial CM. Consensus positions excluded from the mask (denoted as circles) are
those for which more than 5% of the residues have a posterior probability below 0.95, as
explained in the text. This diagram was generated using the ssu-draw program included
in the ssu-align package.

216

9.4 SSU-align’s SSU rRNA sequence and structure models

CMs model both the conserved sequence and secondary structure of an RNA family. Con-

structing CMs requires as input a multiple sequence alignment with well-nested consensus

secondary structure annotation. An important question in the design of the ssu-align

program was where to obtain these alignments from. I decided to use the comparative

rna website (crw) [32] as the source because it has the largest amount of high quality

structural data of any of the SSU databases (see Chapter 7).

The structure models used by crw are based on nearly thirty years of comparative anal-

ysis. The first secondary structures of SSU were created in the early 1980s, by Carl Woese,

Harry Noller, Robin Gutell and others using comparative sequence analysis to identify co-

varying positions indicative of structural relationships such as base-pairs [196, 278, 280].

Since then, Gutell and his colleagues have continued to refine those models. Their com-

parative approach was validated in 2000, when the crystal structure of the small subunit

of Thermus thermophilus was solved [271] and 97% of the predicted base-pairs in the then

current bacterial secondary structure model were confirmed [107].

Over the past twenty years, Gutell and coworkers have constructed SSU alignments of

thousands of sequences using a combination of automated techniques and manual curation.

As part of this process, they have singled out novel (phylogenetically distinct) SSU sequences

and manually predicted their secondary structures. The alignment and structural data is

publicly available in the crw database [32].

SSU secondary structure data from the Comparative RNA Website

crw includes separate SSU alignments for archaea, bacteria, chloroplasts, eukarya (nuclear),

and mitochondria. I concentrated only on the archaeal, bacterial, and eukaryotic alignments

for the initial version of ssu-align. Unfortunately, the crw alignments are not structurally

annotated, so they cannot be used directly to build CMs. However, crw curators have

predicted structures for a subset of the sequences in each alignment. To create structure

annotated alignments I mapped the structural data onto the alignments through a series of

217

steps as described below. Statistics on the crw alignments and structural data as of May

13, 2009 are given below:

of aligned

sequences # of

family primary seed structures

archaea 788 132 25

bacteria 35998 1266 231

eukarya 1937 N/A 259

The primary alignments are the largest, most complete alignments in crw. The seed

alignments are smaller and “highly refined”. Because CM alignment accuracy is highly

dependent on the quality of the seed alignment used to build the model, I decided to

concentrate on the seed alignments for archaea and bacteria and the primary alignment for

the eukarya (because no eukaryotic seed exists).

In an effort to ensure high accuracy, I decided not to use the full crw alignments as my

seed alignments but rather to use subsets of the alignments containing only the sequences

for which individual structure predictions exist. There were two main reasons for this.

First, the sequences that were chosen for individual structure prediction were those that

represented the major phylogenetic groups and “reveal the major forms of sequence and

structure conservation and variation” [32]. This suggests they would constitute a good seed

alignment from which to build a profile. (A good seed alignment should be representative of

the family and generally does not benefit from redundancy [53].) Secondly, after predicting

an individual structure, the crw curators use the structure to revise the larger alignments,

which suggests that these particular sequences are the most reliably aligned because they

received the most expert attention.

Defining consensus structures from individual structures

Obtaining the consensus structure annotated alignments needed to build CMs required

combining the individual structural data and the alignments. One simple approach would

218

be to define a single individual structure x as the consensus structure and impose it on

the entire alignment. However, this is not ideal because it means the consensus will not

include structural features that are absent from x but present in other individual structures,

and will include structural features that may be unique to x, or at least uncommon in

other individual structures. A better approach is to combine or average the individual

structures in a reasonable way to determine the consensus structure, and then impose it

on the alignment. The procedure I used for deriving consensus structure annotated seed

alignments from the crw data is shown in Figure 9.5.

The first step was to extract the aligned sequences that matched to the individual

structures from the master alignments. An individual structure sequence i and an aligned

sequence a qualified as match if: a and i both had the same sequence accession, and the

unaligned sequence of a was either identical to i or an exact subsequence of i. Not all of the

individual structures i had a matching aligned sequence a per these criteria. The number

of matches per alignment is shown below:

of

of aligned # of matches

family sequences structures (overlap)

archaea 132 25 23

bacteria 1266 231 95

eukarya 1937 259 148

This defines three sets of aligned sequences in which each sequence has its own predicted

structure. CMs can only model well-nested base-pairing interactions, so all pseudoknotted

base-pairs were removed from the individual structures. A well-nested structure is a set of

base-pairs for which no two pairs between positions i:j and k:l exist such that i < k < j < l.

I used the program Knotted2Nested.py by Smit et al. [235] to remove pseudoknots

using the -m OSP option which maximizes the number of base-pairs in the resulting nested

structure.

From this set, any sequences with more than 5 ambiguous bases were removed because

219

Remove some sequences.
Remove sequences with > 5 ambiguous
residues or with length differing > 20%
from median length.

Match aligned sequences
with individual structures.

.

..

CRW alignment CRW
individual
structures

Iterative refinement
of seed alignment
using Infernal

.

..

CM
Are there any conflicts?
Any sequences with > 15 conflicting
basepairs between individual CRW
structure and consensus structure?

Define consensus structure from
individual structures.
A consensus basepair exists in > x fraction of
individual structures of seed seqs for minimum
x that gives 0 conflicting consensus basepairs.

unaligned seed
sequences

Align seed sequences with cmalign.

. . .

Build CM with cmbuild.

 (more)

Yes.

Remove conflicting sequences
and begin new iteration
with refined seed as new seed.

No.

The refined seed from this
iteration is the final seed
alignment.

refined seed alignment

consensus

seed alignment

consensus

Figure 9.5: The procedure for converting SSU alignments and individual struc-
tures from crw to seed alignments for SSU-align. crw individual structures only
exist for a small subset of the sequences from the crw alignments (the black sequences
among the majority of gray ones). Each conversion step is explained in more detail in
the text. Figure 9.6 demonstrates an example of conflicting base-pairs. Table 9.2 includes
alignment statistics and number of sequences surviving each step for each of the three seed
alignments derived from crw.

220

ambiguous bases in a seed alignment inject noise into the parameters of a CM (see equation

1.4). Additionally, sequences less than 80%, or more than 120% the median length of the

alignment were removed.

At this stage, base-pairing conflicts between the aligned individual structures were iden-

tified. A conflict exists between two base-pairs in different structures, one between align-

ment columns i and j and the other between columns j and k, if i = k and j 6= l, or j = l

and i 6= k. An example of two conflicting base-pairs is shown in Figure 9.6. Conflicting

base-pairs are problematic because a consensus base-pair between columns i and j in a CM

seed alignment is assumed to exist (or be deleted) between the residues in i and j in all

sequences of the alignment. Columns involved in conflicting base-pairs violate this assump-

tion by specifying that residues from the same column are involved in different base-pairs

in different sequences.

.........i....j.......
00560::Xylella fastidiosa GCAGGGGACCUUAGGGCCUUGU
#=GS 00560::Xylella fastidiosa SS <<<<<<..<<....>>>>>>>>
00018::Thermomicrobium roseum GGCGCA--G-GCGAC-UGUGCU
#=GS 00018::Thermomicrobium roseum SS <<<<<<..<.....>.>>>>>>

........k.....l.......

Figure 9.6: Example of conflicting base-pairs between two aligned individual SSU
structure predictions from CRW. The individual base-pair between aligned columns i
and j in Xylella fastidiosa (sequence accession M34115) conflicts with the Thermomicrobium
roseum (accession AE003861) base-pair between columns k and l as defined in the text
(because j = l and i 6= k).

Next, I removed conflicts using an iterative alignment refinement procedure that elim-

inates sequences with more than 15 conflicts after each iteration. The alignments at each

stage are determined using a CM. The initial consensus structure used to build the CM for

the first iteration was defined as the set of consensus base pairs between alignment positions

i and j that exist as paired in more than x fraction of the individual structures. The value

for x was determined as the minimum value for which there were no conflicting base-pairs

in the consensus set.

This provided me with an initial alignment that I then iteratively refined using infer-

221

cons # avg # avg #
struct cons indiv. conflict initial sequence removal

model stage seqs x bps bps bps total ambig short long

archaea crw matches 23 0.170 472 456.74 1.30 0 0 0 0
archaea post-initial removal 23 0.170 472 456.74 1.30
archaea 1st refinement 23 0.130 474 456.74 0.52

bacteria crw matches 95 0.210 480 460.91 1.06 2 2 0 0
bacteria post-initial removal 93 0.200 480 460.82 1.05
bacteria 1st refinement 93 0.210 480 460.82 1.28

eukarya crw matches 148 0.420 422 466.25 12.94 42 11 33 7
eukarya post-initial removal 106 0.440 442 487.50 16.04
eukarya 1st refinment 106 0.410 448 487.50 8.71
eukarya 2nd refinement 89 0.440 448 487.73 5.49

Table 9.2: Statistics on the conversion of CRW data to seed alignments for SSU-
align For each of the three models, statistics for the alignments at each stage of the crw
conversion process are shown. “crw matches” alignments are subsets of the crw alignments
for matching sequences and individual structures. “post-initial removal” alignments have
had sequences more than 120% the median length (“long” column), less than 80% the
median length (“short” column), or with more than 5 ambiguous bases (“ambig” column)
removed. The remaining rows are for alignments following each round of the iterative
refinement process using infernal. More details on the crw conversion are in the text.

nal. Each iteration consists of a build step, an alignment step, and a sequence removal

step. First, a CM is built from the current alignment (in iteration 1 this is a subset of

the crw alignment). Then all of the seed sequences are aligned to the CM to generate a

new alignment. The individual structures are mapped onto the new alignment and a new

consensus structure is derived as described above. Any sequence with more than 15 base-

pair conflicts between its individual structure and the new consensus structure are removed

from the seed. This procedure continues until 0 sequences are removed in the final step.

The alignment generated during the final iteration became the seed alignment I used for

ssu-align.

Table 9.2 lists the number of sequences removed at each stage of the procedure and

statistics on base-pair conflicts. The three final seed alignments used to create the ssu-

align models are summarized in Table 9.3.

The remainder of this chapter includes 12 secondary structure diagrams displaying var-

ious statistics per consensus column of the three seed alignments, with figure numbers as

222

average average
model number of consensus alignment number of sequence pairwise
name sequences length length base-pairs length identity
archaea 23 1508 1563 471 1485 81%
bacteria 93 1582 1689 480 1527 80%
eukarya 89 1881 2652 448 1800 79%

Table 9.3: Statistics of the three seed alignments used by SSU-align. These are the
three alignments resulting from the crw conversion depicted in Figure 9.5 and described in
the text.

indicated below:

statistic archaea bacteria eukarya

information content Figure 9.7 Figure 9.11 Figure 9.15

extra information from structure Figure 9.8 Figure 9.12 Figure 9.16

frequency of deletions Figure 9.9 Figure 9.13 Figure 9.17

frequency of insertions Figure 9.10 Figure 9.14 Figure 9.18

223

model #res #bps
------- ---- ----
archaea 1508 471

 #seqs

 23

description

information content per position

alifile: ../archaea-0p1.stk
structure diagram derived from CRW database: http://www.rna.ccbb.utexas.edu/ page 1

5’

3’

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

LEGEND count
------------------------------ -----

100% gaps 0

information content (bits):

[0.000-0.400) 83

[0.400-0.800) 191

[0.800-1.200) 233

[1.200-1.600) 193

[1.600-1.990) 156

[1.990-2.000] 652

Figure 9.7: Secondary structure diagram displaying primary sequence informa-
tion content per consensus position of the archaeal SSU seed alignment. Statis-
tics correspond to the ssu-align seed alignment derived from the crw database [32] as
described in the text. This diagram was generated using the ssu-draw program included
in the ssu-align package.

224

model #res #bps
------- ---- ----
archaea 1508 471

 #seqs

 23

description

extra information from structure per
basepaired position

alifile: ../archaea-0p1.stk
structure diagram derived from CRW database: http://www.rna.ccbb.utexas.edu/ page 1

5’

3’

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

LEGEND count
------------------------------ -----

single-stranded 565

100% gaps 0

extra information from
structure (bits):

[0.000-0.160) 487

[0.160-0.330) 80

[0.330-0.500) 156

[0.500-0.660) 118

[0.660-0.830) 82

[0.830-1.000] 20

Figure 9.8: Secondary structure diagram displaying extra information from con-
served structure per consensus position of the archaeal SSU seed alignment.
Statistics correspond to the ssu-align seed alignment derived from the crw database [32]
as described in the text. This diagram was generated using the ssu-draw program included
in the ssu-align package.

225

model #res #bps
------- ---- ----
archaea 1508 471

 #seqs

 23

description

frequency of deletions at each position

alifile: ../archaea-0p1.stk
structure diagram derived from CRW database: http://www.rna.ccbb.utexas.edu/ page 1

5’

3’

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

LEGEND count
------------------------------ -----

zero deletions 1438

fraction of seqs with deletes:

[0.000-0.167) 18

[0.167-0.333) 17

[0.333-0.500) 4

[0.500-0.667) 15

[0.667-0.833) 16

[0.833-1.000] 0

Figure 9.9: Secondary structure diagram displaying frequency of deletions per
consensus position of the archaeal SSU seed alignment. Statistics correspond to
the ssu-align seed alignment derived from the crw database [32] as described in the
text. This diagram was generated using the ssu-draw program included in the ssu-align
package.

226

model #res #bps
------- ---- ----
archaea 1508 471

 #seqs

 23

description

frequency of insertions after each
position

alifile: ../archaea-0p1.stk
structure diagram derived from CRW database: http://www.rna.ccbb.utexas.edu/ page 1

5’

3’

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

LEGEND count
------------------------------ -----

zero insertions 1484

fraction of seqs w/insertions:

[0.000-0.167) 17

[0.167-0.333) 7

[0.333-0.500) 0

[0.500-0.667) 0

[0.667-0.833) 0

[0.833-1.000] 0

Figure 9.10: Secondary structure diagram displaying frequency of insertions after
each consensus position in the archaeal SSU seed alignment. Statistics correspond
to the ssu-align seed alignment derived from the crw database [32] as described in the
text. This diagram was generated using the ssu-draw program included in the ssu-align
package.

227

model #res #bps
-------- ---- ----
bacteria 1582 480

 #seqs

 93

description

information content per position

alifile: ../bacteria-0p1.stk
structure diagram derived from CRW database: http://www.rna.ccbb.utexas.edu/ page 1

5’

3’

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

LEGEND count
----------------------------- -----

100% gaps 0

information content (bits):

[0.000-0.400) 146

[0.400-0.800) 190

[0.800-1.200) 213

[1.200-1.600) 197

[1.600-1.990) 292

[1.990-2.000] 544

Figure 9.11: Secondary structure diagram displaying primary sequence infor-
mation content per consensus position of the bacterial SSU seed alignment.
Statistics correspond to the ssu-align seed alignment derived from the crw database [32]
as described in the text. This diagram was generated using the ssu-draw program included
in the ssu-align package.

228

model #res #bps
-------- ---- ----
bacteria 1582 480

 #seqs

 93

description

extra information from structure per
basepaired position

alifile: ../bacteria-0p1.stk
structure diagram derived from CRW database: http://www.rna.ccbb.utexas.edu/ page 1

5’

3’

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

LEGEND count
----------------------------- -----

single-stranded 622

100% gaps 0

extra information from
structure (bits):

[0.000-0.160) 458

[0.160-0.330) 118

[0.330-0.500) 166

[0.500-0.660) 118

[0.660-0.830) 92

[0.830-1.000] 8

Figure 9.12: Secondary structure diagram displaying extra information from con-
served structure per consensus position of the bacterial SSU seed alignment.
Statistics correspond to the ssu-align seed alignment derived from the crw database [32]
as described in the text. This diagram was generated using the ssu-draw program included
in the ssu-align package.

229

model #res #bps
-------- ---- ----
bacteria 1582 480

 #seqs

 93

description

frequency of deletions at each position

alifile: ../bacteria-0p1.stk
structure diagram derived from CRW database: http://www.rna.ccbb.utexas.edu/ page 1

5’

3’

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

LEGEND count
----------------------------- -----

zero deletions 1375

fraction of seqs with deletes:

[0.000-0.167) 95

[0.167-0.333) 34

[0.333-0.500) 15

[0.500-0.667) 36

[0.667-0.833) 27

[0.833-1.000] 0

Figure 9.13: Secondary structure diagram displaying frequency of deletions per
consensus position of the bacterial SSU seed alignment. Statistics correspond to the
ssu-align seed alignment derived from the crw database [32] as described in the text. This
diagram was generated using the ssu-draw program included in the ssu-align package.

230

model #res #bps
-------- ---- ----
bacteria 1582 480

 #seqs

 93

description

frequency of insertions after each
position

alifile: ../bacteria-0p1.stk
structure diagram derived from CRW database: http://www.rna.ccbb.utexas.edu/ page 1

5’

3’

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

LEGEND count
----------------------------- -----

zero insertions 1527

fraction of seqs w/insertions:

[0.000-0.167) 51

[0.167-0.333) 4

[0.333-0.500) 0

[0.500-0.667) 0

[0.667-0.833) 0

[0.833-1.000] 0

Figure 9.14: Secondary structure diagram displaying frequency of insertions after
each consensus position in the bacterial SSU seed alignment. Statistics correspond
to the ssu-align seed alignment derived from the crw database [32] as described in the
text. This diagram was generated using the ssu-draw program included in the ssu-align
package.

231

model #res #bps
------- ---- ----
eukarya 1881 448

 #seqs

 89

description

information content per position

alifile: ../eukarya-0p1.stk
structure diagram derived from CRW database: http://www.rna.ccbb.utexas.edu/ page 1

5’

3’

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

LEGEND count
------------------------------- -----

100% gaps 0

information content (bits):

[0.000-0.400) 167

[0.400-0.800) 177

[0.800-1.200) 232

[1.200-1.600) 228

[1.600-1.990) 500

[1.990-2.000] 577

Figure 9.15: Secondary structure diagram displaying primary sequence infor-
mation content per consensus position of the eukaryotic SSU seed alignment.
Statistics correspond to the ssu-align seed alignment derived from the crw database [32]
as described in the text. This diagram was generated using the ssu-draw program included
in the ssu-align package.

232

model #res #bps
------- ---- ----
eukarya 1881 448

 #seqs

 89

description

extra information from structure per
basepaired position

alifile: ../eukarya-0p1.stk
structure diagram derived from CRW database: http://www.rna.ccbb.utexas.edu/ page 1

5’

3’

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

LEGEND count
------------------------------- -----

single-stranded 985

100% gaps 0

extra information from
structure (bits):

[0.000-0.160) 612

[0.160-0.330) 90

[0.330-0.500) 116

[0.500-0.660) 56

[0.660-0.830) 20

[0.830-1.000] 2

Figure 9.16: Secondary structure diagram displaying extra information from con-
served structure per consensus position of the eukaryotic SSU seed alignment.
Statistics correspond to the ssu-align seed alignment derived from the crw database [32]
as described in the text. This diagram was generated using the ssu-draw program included
in the ssu-align package.

233

model #res #bps
------- ---- ----
eukarya 1881 448

 #seqs

 89

description

frequency of deletions at each position

alifile: ../eukarya-0p1.stk
structure diagram derived from CRW database: http://www.rna.ccbb.utexas.edu/ page 1

5’

3’

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

LEGEND count
------------------------------- -----

zero deletions 1337

fraction of seqs with deletes:

[0.000-0.167) 322

[0.167-0.333) 91

[0.333-0.500) 54

[0.500-0.667) 38

[0.667-0.833) 39

[0.833-1.000] 0

Figure 9.17: Secondary structure diagram displaying frequency of deletions per
consensus position of the eukaryotic SSU seed alignment. Statistics correspond
to the ssu-align seed alignment derived from the crw database [32] as described in the
text. This diagram was generated using the ssu-draw program included in the ssu-align
package.

234

model #res #bps
------- ---- ----
eukarya 1881 448

 #seqs

 89

description

frequency of insertions after each
position

alifile: ../eukarya-0p1.stk
structure diagram derived from CRW database: http://www.rna.ccbb.utexas.edu/ page 1

5’

3’

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

LEGEND count
------------------------------- -----

zero insertions 1755

fraction of seqs w/insertions:

[0.000-0.167) 116

[0.167-0.333) 10

[0.333-0.500) 0

[0.500-0.667) 0

[0.667-0.833) 0

[0.833-1.000] 0

Figure 9.18: Secondary structure diagram displaying frequency of insertions after
each consensus position in the eukaryotic SSU seed alignment. Statistics corre-
spond to the ssu-align seed alignment derived from the crw database [32] as described
in the text. This diagram was generated using the ssu-draw program included in the
ssu-align package.

235

Bibliography

[1] S. F. Altschul. Amino acid substitution matrices from an information theoretic per-

spective. J. Mol. Biol., 219:555–565, 1991.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local

alignment search tool. J. Mol. Biol., 215:403–410, 1990.

[3] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J.

Lipman. Gapped BLAST and PSI-BLAST: A new generation of protein database

search programs. Nucl. Acids Res., 25:3389–3402, 1997.

[4] V. Ambros. The functions of animal microRNAs. Nature, 431:350–355, 2004.

[5] K. A. Amiri. Fibrillarin-like proteins occur in the domain archaea. J. Bacteriol., 176:

2124–2127, 1994.

[6] T. Babak, B. J. Blencowe, and T. R. Hughes. Considerations in the identification of

functional RNA structural elements in genomic alignments. BMC Bioinformatics, 8:

33, 2007.

[7] J. P. Bachellerie, J. Cavaille, and A. Hüttenhofer. The expanding snoRNA world.

Biochimie, 84:775–790, 2002.

[8] G. C. Baker, J. J. Smith, and D. A. Cowan. Review and re-analysis of domain-specific

16S primers. J Microbiol Methods., 55:541–555, 2003.

236

[9] N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz. The complete atomic

structure of the large ribosomal subunit at 2.4 å resolution. Science, 289:905–920,

2000.

[10] D. P. Bartel. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116:

281–297, 2004.

[11] G. Bejerano, M. Pheasant, I. Makunin, S. Stephen, W. J. Kent, J. S. Mattick, and

D. Haussler. Ultraconserved elements in the human genome. Science, 304:1321–1325,

2004.

[12] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler. Gen-

Bank. Nucleic Acids Res., 34:D16–D20, 2006.

[13] E. M. Bik, P. B. Eckburg, S. R. Gill, K. E. Nelson, E. A. Purdom, F. Francois,

G. Perez-Perez, M. J. Blaser, and D. A. Relman. Molecular analysis of the bacterial

microbiota in the human stomach. Proc Natl Acad Sci U S A., 103:732–737, 2006.

[14] E. H. Blackburn. Telomerase. In R. F. Gesteland, T. R. Cech, and J. F. Atkins, editors,

The RNA World, Second Edition, pages 609–635. Cold Spring Harbor Laboratory

Press, New York, 1999.

[15] R. K. Bradley, L. Pachter, and I. Holmes. Specific alignment of structured RNA:

stochastic grammars and sequence annealing. Bioinformatics., 24:2677–2683, 2008.

[16] R. R. Breaker. Riboswitches and the RNA world. In R. F. Gesteland, T. R. Cech,

and J. F. Atkins, editors, The RNA World, Third Edition, pages 89–107. Cold Spring

Harbor Laboratory Press, New York, 2006.

[17] S. Brenner, F. Jacob, and M. Meselson. An unstable intermediate carrying information

from genes to ribosomes for protein synthesis. Nature, 190:576–581, 1961.

[18] S. E. Brenner, C. Chothia, and T. J. P. Hubbard. Assessing sequence comparison

237

methods with reliable structurally identified distant evolutionary relationships. Proc.

Natl. Acad. Sci. USA, 95:6073–6078, 1998.

[19] M. R. Brent. Genome annotation past, present, and future: how to define an ORF

at each locus. Genome Res., 15:1777–1786, 2005.

[20] T. D. Brock. Life at high temperatures. evolutionary, ecological, and biochemical

significance of organisms living in hot springs is discussed. Science., 158:1012–1019,

1967.

[21] J. Brosius, M. L. Palmer, P. J. Kennedy, and H. F. Noller. Complete nucleotide

sequence of a 16S ribosomal RNA gene from escherichia coli. Proc Natl Acad Sci U S

A., 75:4801–4805, 1978.

[22] J. W. Brown. The ribonuclease P database. Nucl. Acids Res., 27:314, 1999.

[23] M. Brown, R. Hughey, A. Krogh, I. S. Mian, K. Sjolander, and D. Haussler. Using

dirichlet mixture priors to derive hidden Markov models for protein families. In

L. Hunter, D. Searls, and J. Shavlik, editors, Proceedings of the First International

Conference on Intelligent Systems for Molecular Biology, pages 47–55, Menlo Park,

CA, 1993. AAAI.

[24] M. P. Brown. Small subunit ribosomal RNA modeling using stochastic context-free

grammars. Proc. Int. Conf. Intell. Syst. Mol. Biol., 8:57–66, 2000.

[25] M. Brudno, C. B. Do, G. M. Cooper, M. F. Kim, E. D. Davydov, NISC Comparative

Sequencing Program, E. Green, A. Sidow, and S. Batzoglou. LAGAN and multi-

LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome

Res., 13:721–731, 2003.

[26] P. Bucher and K. Hofmann. A sequence similarity search algorithm based on a prob-

abilistic interpretation of an alignment scoring system. Proc. Int. Conf. Intell. Syst.

Mol. Biol., 4:44–51, 1996.

238

[27] C. B. Burge and S. Karlin. Finding the genes in genomic DNA. Curr. Opin. Struct.

Biol., 8:346–354, 1998.

[28] C. B. Burge, T. Tuschl, and P. A. Sharp. Splicing of precursors to mRNAs by the

spliceosomes. In R. F. Gesteland, T. R. Cech, and J. F. Atkins, editors, The RNA

World, Second Edition, pages 525–560. Cold Spring Harbor Laboratory Press, Cold

Spring Harbor, New York, 1999.

[29] A. B. Burgin and N. R. Pace. Mapping the active site of ribonuclease P RNA using

a substrate containing a photoaffinity agent. EMBO J., 9:4111–4118, 1990.

[30] N. Bushati and S. Cohen. microRNA functions. Annu Rev Cell Dev Biol., 23:175–205,

2007.

[31] S. A. Cameron, H. M. Hines, and P. H. Williams. A comprehensive phylogeny of the

bumble bees (Bombus). Biological Journal of the Linnean Society, 91:161–188, 2007.

[32] J. J. Cannone, S. Subramanian, M. N. Schnare, J. R. Collett, L. M. D’Souza, Y. Du,

B. Feng, N. Lin, L. V. Madabusi, K. M. Müller, N. Pande, Z. Shang, N. Yu, and R. R.

Gutell. The Comparative RNA Web (CRW) Site: an online database of comparative

sequence and structure information for ribosomal, intron, and other RNAs. BMC

Bioinformatics, 3:2, 2002.

[33] J. L. Chen and C. W. Greider. An emerging consensus for telomerase RNA structure.

Proc Natl Acad Sci U S A., 101:14683–14684, 2004.

[34] J. L. Chen and N. R. Pace. Identification of the universally conserved core of ribonu-

clease P RNA. RNA., 3:557–560, 1997.

[35] Noam Chomsky. Three models for the description of language. IRE Transact. Infor-

mation Theory, 2:113–124, 1956.

[36] Noam Chomsky. On certain formal properties of grammars. Information and Control,

2:137–167, 1959.

239

[37] J. R. Cole, B. Chai, T. L. Marsh, R. J. Farris, Q. Wang, S. A. Kulam, S. Chandra,

D. M. McGarrell, T. M. Schmidt, G. M. Garrity, and J. M. Tiedje. The ribosomal

database project (RDP-II): Previewing a new autoaligner that allows regular updates

and the new prokaryotic taxonomy. Nucl. Acids Res., 31:442–443, 2003.

[38] J. R. Cole, B. Chai, R. J. Farris, Q. Wang, S. A. Kulam, D. M. McGarrell, G. M.

Garrity, and J. M. Tiedje. The ribosomal database project (RDP-II): sequences and

tools for high-throughput rRNA analysis. Nucleic Acids Res., 33:D294–D296, 2005.

[39] J. R. Cole, B. Chai, R. J. Farris, Q. Wang, A. S. Kulam-Syed-Mohideen, D. M. Mc-

Garrell, A. M. Bandela, E. Cardenas, G. M. Garrity, and J. M. Tiedje. The ribosomal

database project (RDP-II): introducing myRDP space and quality controlled public

data. Nucleic Acids Res., 35:D169–D172, 2007.

[40] J. R. Cole, Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris, A. S. Kulam-

Syed-Mohideen, D. M. McGarrell, T. Marsh, G. M. Garrity, and J. M. Tiedje. The

Ribosomal Database Project: Improved alignments and new tools for rRNA analysis.

Nucl. Acids Res., 37:D141–D145, 2009.

[41] F. F. Costa. Non-coding RNAs: lost in translation? Gene., 386:1–10, 2007.

[42] F. H. C. Crick. On protein synthesis. Symp. Soc. Exp. Biol., 12:138–163, 1958.

[43] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change

in proteins. In M. O. Dayhoff, editor, Atlas of Protein Sequence and Structure, pages

345–352. National Biomedical Research Foundation, Washington DC, 1978.

[44] C. del Val, E. Rivas, O. Torres-Quesada, N. Toro, and J. I. Jiménez-Zurdo. Iden-

tification of differentially expressed small non-coding RNAs in the legume endosym-

biont Sinorhizobium meliloti by comparative genomics. Mol. Microbiol., 66:1080–1091,

2007.

[45] N. Delihas and S. Forst. MicF: an antisense RNA gene involved in response of Es-

cherichia Coli to global stress factors. J Mol Biol., 313:1–12, 2001.

240

[46] T. Z. DeSantis, P. Hugenholtz, K. Keller, E. L. Brodie, N. Larsen, Y. M. Piceno,

R. Phan, and G. L. Andersen. NAST: A multiple sequence alignment server for

comparative analysis of 16S rRNA genes. Nucleic Acid Res., 34:W394–399, 2006.

[47] T. Z. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T. Huber,

D. Dalevi, P. Hu, and G. L. Andersen. Greengenes, a chimera-checked 16S rRNA gene

database and workbench compatible with ARB. Appl Environ Microbiol., 72:5069–

5072, 2006.

[48] R. F. Doolittle. Some reflections on the early days of sequence searching. J Mol Med.,

75:239–241, 1997.

[49] P. Doty, H. Boedtker, J. R. Fresco, R. Haselkorn, and M. Litt. Secondary structure

in ribonucleic acids. Proc Natl Acad Sci U S A., 45:482–499, 1959.

[50] R. D. Dowell and S. R. Eddy. Evaluation of several lightweight stochastic context-free

grammars for RNA secondary structure prediction. BMC Bioinformatics, 5:71, 2004.

[51] R. D. Dowell and S. R. Eddy. Efficient pairwise RNA structure prediction and align-

ment using sequence alignment constraints. BMC Bioinformatics, 7:400, 2006.

[52] M. Dsouza, N. Larsen, and R. Overbeek. Searching for patterns in genomic data.

Trends Genet., 13:497–498, 1997.

[53] R. Durbin, S. R. Eddy, A. Krogh, and G. J. Mitchison. Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,

Cambridge UK, 1998. ISBN 0521629713.

[54] S. R. Eddy. Where did the BLOSUM62 alignment score matrix come from? Nat.

Biotechnol., 22:1035–1036, 2004.

[55] S. R. Eddy. Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet.,

2:919–929, 2001.

241

[56] S. R. Eddy. Computational genomics of noncoding RNA genes. Cell, 109:137–140,

2002.

[57] S. R. Eddy. A memory-efficient dynamic programming algorithm for optimal align-

ment of a sequence to an RNA secondary structure. BMC Bioinformatics, 3:18, 2002.

[58] S. R. Eddy. Computational analysis of RNAs. Cold Spring Harbor Symp. Quant.

Biol., 71:117–128, 2006.

[59] S. R. Eddy. A probabilistic model of local sequence alignment that simplifies statistical

significance estimation. PLoS Comput. Biol., 4:e1000069, 2008.

[60] S. R. Eddy. Profile hidden Markov models. Bioinformatics, 14:755–763, 1998.

[61] S. R. Eddy. Cove - fast pattern searching for RNA secondary structures.

[ftp://selab.janelia.org/pub/software/cove/], 1996.

[62] S. R. Eddy. HMMER - biosequence analysis using profile hidden Markov models.

[http://hmmer.janelia.org/], 2008.

[63] S. R. Eddy. The HMMER2 user’s guide. [http://hmmer.janelia.org/], 2003.

[64] S. R. Eddy. Rnabob - fast pattern searching for RNA secondary structures.

[ftp://selab.janelia.org/pub/software/rnabob/], 2005.

[65] S. R. Eddy and R. Durbin. RNA sequence analysis using covariance models. Nucl.

Acids Res., 22:2079–2088, 1994.

[66] V. P. Edgcomb, D. T. Kysela, A. Teske, A. de Vera Gomez, and M. L. Sogin. Benthic

eukaryotic diversity in the guaymas basin hydrothermal vent environment. Proc Natl

Acad Sci U S A., 99:7658–7662, 2002.

[67] S. C. Elgin and S. I. Grewal. Heterochromatin: Silence is golden. Curr Biol., 13:

R895–R898, 2003.

[68] G. L. Eliceiri. Small nucleolar RNAs. Cell Mol. Life Sci., 56:22–31, 1999.

242

[69] V. A. Erdmann, M. Z. Barciszewska, M. Symanski, A. Hochberg, N. de Groot, and

J. Barciszewski. The non-coding RNAs as riboregulators. Nucl. Acids Res., 29:189–

193, 2001.

[70] M. D. Ermolaeva, H. G. Khalak, O. White, H. O. Smith, and S. L. Salzberg. Prediction

of transcription terminators in bacterial genomes. J Mol Biol., 301:27–33, 2000.

[71] D. Evans, S. M. Marquez, and N. R. Pace. RNase P: Interface of the RNA and protein

worlds. Trends Biochem Sci., 31:333–341, 2006.

[72] J. Felsenstein. Inferring Phylogenies. Sianuer Associates, Sunderland, Massachussetts,

2nd edition, 2003. ISBN 0878931775.

[73] D. F. Feng and R. F. Doolittle. Progressive sequence alignment as a prerequisite to

correct phylogenetic trees. J Mol Evol., 25:351–360, 1987.

[74] Gwennaele A. Fichant and Christian Burks. Identifying potential tRNA genes in

genomic DNA sequences. J. Mol. Biol., 220:659–671, 1991.

[75] R. D. Finn, J. Mistry, B. Schuster-Bockler, S. Griffiths-Jones, V. Hollich, T. Lass-

mann, S. Moxon, M. Marshall, A. Khanna, R. Durbin, S. R. Eddy, E. L. Sonnham-

mer, and A. Bateman. Pfam: Clans, web tools and services. Nucl. Acids Res., 34:

D247–D251, 2006.

[76] R. D. Finn, J. Tate, J. Mistry, P. C. Coggill, S. J. Sammut, H.-R. Hotz, G. Ceric,

K. Forslund, S. R. Eddy, E. L. L. Sonnhammer, and A. Bateman. The Pfam protein

families database. Nucl. Acids Res., 36:D281–D288, 2008.

[77] R. D. Fleischmann, M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R.

Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, J. M. Merrick, K. McKenney,

G. Sutton, W. FitzHugh, C. Fields, J. D. Gocayne, J. Scott, R. Shirley, L. I. Liu,

A. Glodek, J. M. Kelley, J. F. Weidman, C. A. Phillips, T. Spriggs, E. Hedblom, M. D.

Cotton, T. R. Utterback, M. C. Hanna, D. T. Nguyen, D. M. Saudek, R. C. Brandon,

243

L. D. Fine, J. L. Fritchman, J. L. Fuhrmann, N. S. M. Geoghagen, C. L. Gnehm,

L. A. McDonald, K. V. Small, C. M. Fraser, H. O. Smith, and J. C. Venter. Whole-

genome random sequencing and assembly of Haemophilus influenzae Rd. Science,

269:496–512, 1995.

[78] R. Fleissner, D. Metzler, and A. von Haeseler. Simultaneous statistical multiple align-

ment and phylogeny reconstruction. Syst Biol., 54:548–561, 2005.

[79] A. C. Forster and R. H. Symons. Self-cleavage of plus and minus RNAs of a virusoid

and a structural model for the active sites. Cell., 49:211–220, 1987.

[80] A. C. Forster and R. H. Symons. Self-cleavage of virusoid RNA is performed by the

proposed 55-nucleotide active site. Cell., 50:9–16, 1987.

[81] G. E. Fox, K. R. Pechman, and C. R. Woese. Comparative cataloging of 16S ribosomal

ribonucleic acid: Molecular approach to procaryotic systematics. Int J Syst Bacteriol,

27:44–57, 1977.

[82] George E. Fox and Carl R. Woese. 5S RNA secondary structure. Nature, 256:505–507,

1975.

[83] D. N. Frank and N. R. Pace. Gastrointestinal microbiology enters the metagenomics

era. Curr Opin Gastroenterol., 24:4–10, 2008.

[84] D. N. Frank and N. R. Pace. Ribonuclease P: Unity and diversity in a tRNA processing

ribozyme. Annu Rev Biochem., 67:153–180, 1998.

[85] E. K. Freyhult, J. P. Bollback, and P. P. Gardner. Exploring genomic dark matter:

A critical assessment of the performance of homology search methods on noncoding

RNA. Genome Res., 17:117–125, 2007.

[86] T. Friend. The Third Domain: The Untold Story of Archaea and the Future of Biotech-

nology. Joseph Henry Press, Washington, DC, 2007.

244

[87] M. A. Furlong, D. R. Singleton, D. C. Coleman, and W. B. Whitman. Molecular and

culture-based analyses of prokaryotic communities from an agricultural soil and the

burrows and casts of the earthworm Lumbricus rubellus. Appl Environ Microbiol., 68:

1265–1279, 2002.

[88] Z. Gao, C. H. Tseng, Z. Pei, and M. J. Blaser. Molecular analysis of human forearm

superficial skin bacterial biota. Proc Natl Acad Sci U S A., 104:2927–2932, 2007.

[89] P. P. Gardner, J. Daub, J. G. Tate, E. P. Nawrocki, D. L. Kolbe, S. Lindgreen,

A. C. Wilkinson, R. D. Finn, S. Griffiths-Jones, S. R. Eddy, and A. Bateman. Rfam:

Updates to the RNA families database. Nucl. Acids Res., 37:D136–D140, 2009.

[90] D. Gautheret and A. Lambert. Direct RNA motif definition and identification from

multiple sequence alignments using secondary structure profiles. J. Mol. Biol., 313:

1003–1011, 2001.

[91] R. Giegerich. Explaining and controlling ambiguity in dynamic programming. In

R. Giancarlo and D. Sankoff, editors, Proceedings of the 11th Annual Symposium on

Combinatorial Pattern Matching, number 1848, pages 46–59, Montréal, Canada, 2000.

Springer-Verlag, Berlin.

[92] W. Gilbert. The RNA world. Nature, 319:618, 1986.

[93] S. J. Giovannoni, T. B. Britschgi, C. L. Moyer, and K. G. Field. Genetic diversity in

sargasso sea bacterioplankton. Nature., 345:60–63, 1990.

[94] O. Gotoh. An improved algorithm for matching biological sequences. J. Mol. Biol.,

162:705–708, 1982.

[95] S. Gottesman. The small RNA regulators of Escherichia coli : Roles and mechanisms.

Annu. Rev. Microbiol., 5:303–328, 2004.

[96] S. Gottesman. Micros for microbes: Non-coding regulatory RNAs in bacteria. Trends

Genet., 7:399–404, 2005.

245

[97] Michael Gribskov, Andrew D. McLachlan, and David Eisenberg. Profile analysis:

Detection of distantly related proteins. Proc. Natl. Acad. Sci. USA, 84:4355–4358,

1987.

[98] S. Griffiths-Jones. Annotating noncoding RNA genes. Annu. Rev. Genomics Hum.

Genet., 8:279–298, 2007.

[99] S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S. R. Eddy. Rfam: an

RNA family database. Nucl. Acids Res., 31:439–441, 2003.

[100] S. Griffiths-Jones, S. Moxon, M. Marshall, A. Khanna, S. R. Eddy, and A. Bateman.

Rfam: Annotating non-coding RNAs in complete genomes. Nucl. Acids Res., 33:

D121–D141, 2005.

[101] G. Grillo, F. Licciulli, S. Liuni, E. Sbis, and G. Pesole. PatSearch: a program for

the detection of patterns and structural motifs in nucleotide sequences. Nucleic Acids

Res., 31:3608–3612, 2003.

[102] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable imple-

mentation of the MPI message passing interface standard. Parallel Computing, 22:

789–828, 1996.

[103] W. N. Grundy. Homology detection via family pairwise search. J. Comput. Biol., 5:

479–491, 1998.

[104] C. Guerrier-Takada, K. Gardiner, T. Marsh, N. Pace, and S. Altman. The RNA

moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 35:849–857,

1983.

[105] R. Gupta, J. M. Lanter, and C. R. Woese. Sequence of the 16S ribosomal RNA from

halobacterium volcanii, an archaebacterium. Science., 221:656–659, 1983.

[106] S. K. Gupta, J. Kececioglu, and A. A. Schaffer. Improving the practical space and time

246

efficiency of the shortest-paths approach to sum-of-pairs multiple sequence alignment.

J. Cell. Biol., 2:459–472, 1995.

[107] R. R. Gutell, J. C. Lee, and J. J. Cannone. The accuracy of ribosomal RNA compar-

ative structure models. Curr. Opin. Struct. Biol., 12:301–310, 2002.

[108] C. Hammann and E. Westhof. Searching genomes for ribozymes and riboswitches.

Genome Biol., 8:210, 2007.

[109] J. Handelsman, M. R. Rondon, S. F. Brady, J. Clardy, and R. M. Goodman. Molecular

biological access to the chemistry of unknown soil microbes: a new frontier for natural

products. Chem Biol., 5:R245–R249, 1998.

[110] Steven Henikoff and Jorja G. Henikoff. Automated assembly of protein blocks for

database searching. Nucl. Acids Res., 19:6565–6572, 1991.

[111] Steven Henikoff and Jorja G. Henikoff. Amino acid substitution matrices from protein

blocks. Proc. Natl. Acad. Sci. USA, 89:10915–10919, 1992.

[112] T. M. Henkin. Riboswitch RNAs: using RNA to sense cellular metabolism. Genes

Dev., 22:3383–3390, 2008.

[113] M. W. Hentze and L. C. Khn. Molecular control of vertebrate iron metabolism:

mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress.

Proc Natl Acad Sci U S A., 93:8175–8182, 1996.

[114] H. A. Heus and A. Pardi. Structural features that give rise to the unusual stability

of RNA hairpins containing GNRA loops. Science, 253:191–194, 1991.

[115] R. W. Holley, J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S. H. Merrill,

J. R. Penswick, and A. Zamir. Structure of a ribonucleic acid. Science, 14:1462–1465,

1965.

[116] I. Holmes. A probabilistic model for the evolution of RNA structure. BMC Bioinfor-

matics., 5:166, 2004.

247

[117] I. Holmes. Accelerated probabilistic inference of RNA structure evolution. BMC

Bioinformatics, 6:73, 2005.

[118] I. Holmes. Using evolutionary expectation maximization to estimate indel rates.

Bioinformatics., 21:2294–2300, 2005.

[119] I. Holmes and W. J. Bruno. Evolutionary HMMs: a bayesian approach to multiple

alignment. Bioinformatics., 17:803–820, 2001.

[120] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading, Massachusetts, 1979.

[121] Z. Huang, Y. Wu, J. Robertson, L. Feng, R. Malmberg, and L. Cai. Fast and accurate

search for non-coding RNA pseudoknot structures in genomes. Bioinformatics, 24:

2281–2287, 2008.

[122] P. Hugenholtz. Exploring prokaryotic diversity in the genomic era. Genome Biol., 3:

1–8, 2002.

[123] P. Hugenholtz, B. M. Goebel, and N. R. Pace. Impact of culture-independent studies

on the emerging phylogenetic view of bacterial diversity. J Bacteriol., 180:4765–4774,

1998.

[124] R. W. Hyman, M. Fukushima, L. Diamond, J. Kumm, L. C. Giudice, and R. W.

Davis. Microbes on the human vaginal epithelium. Proc Natl Acad Sci U S A., 102:

7952–7957, 2005.

[125] B. D. James, G. J. Olsen, J. S. Liu, and N. R. Pace. The secondary structure of

ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme. Cell., 52:

19–26, 1988.

[126] E. T. Jaynes. Probability Theory: The Logic of Science. Available from

http://bayes.wustl.edu., 1998.

248

[127] S. Johnson. Remote Protein Homology Detection Using Hidden Markov Models. PhD

thesis, Washington University School of Medicine, 2006.

[128] F. Jossinet, T. E. Ludwig, and E. Westhof. RNA structure: Bioinformatic analysis.

Curr. Opin. Microbiol., 10:279–285, 2007.

[129] S. Karlin and S. F. Altschul. Methods for assessing the statistical significance of

molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci.

USA, 87:2264–2268, 1990.

[130] S. Karlin and S. F. Altschul. Applications and statistics for multiple high-scoring

segments in molecular sequences. Proc. Natl. Acad. Sci. USA, 90:5873–5877, 1993.

[131] K. Karplus. Evaluating regularizers for estimating distributions of amino acids. In

C. Rawlings, D. Clark, R. Altman, L. Hunter, T. Lengauer, and S. Wodak, editors,

Proceedings of the Third International Conference on Intelligent Systems in Molecular

Biology, pages 188–196, Menlo Park, CA, 1995. AAAI Press.

[132] K. Karplus, K. Sjolander, C. Barrett, M. Cline, D. Haussler, R. Hughey, L. Holm,

and C. Sander. Predicting protein structure using hidden Markov models. Proteins,

1 (Suppl.):134–139, 1997.

[133] K. Karplus, C. Barrett, and R. Hughey. Hidden Markov models for detecting remote

protein homologies. Bioinformatics, 14:846–856, 1998.

[134] K. Karplus, R. Karchin, G. Shackelford, and R. Hughey. Calibrating E-values for

hidden Markov models using reverse-sequence null models. Bioinformatics, 21:4107–

4115, 2005.

[135] T. Kasami. An efficient recognition and syntax algorithm for context-free algorithms.

Technical Report AFCRL-65-758, Air Force Cambridge Research Lab, Bedford, Mass.,

1965.

249

[136] M. D. Kazanov, A. G. Vitreschak, and M. S. Gelfand. Abundance and functional

diversity of riboswitches in microbial communities. BMC Genomics, 8:347, 2007.

[137] B. S. Kim, H. M. Oh, H. Kang, and J. Chun. Archaeal diversity in tidal flat sediment

as revealed by 16S rDNA analysis. J Microbiol., 43:144–151, 2005.

[138] R. J. Klein and S. R. Eddy. RSEARCH: finding homologs of single structured RNA

sequences. BMC Bioinformatics, 4:44, 2003.

[139] B. Knudsen and J. Hein. Pfold: RNA secondary structure prediction using stochastic

context-free grammars. Nucl. Acids Res., 31:3423–3428, 2003.

[140] B. Knudsen and J. Hein. RNA secondary structure prediction using stochastic context-

free grammars and evolutionary history. Bioinformatics, 15:446–454, 1999.

[141] D. L. Kolbe and S. R. Eddy. Local RNA structure alignment with incomplete se-

quence. Bioinformatics, 25:1236–1243, 2009.

[142] A. Krogh, M. Brown, I. S. Mian, K. Sjölander, and D. Haussler. Hidden Markov

models in computational biology: Applications to protein modeling. J. Mol. Biol.,

235:1501–1531, 1994.

[143] K. Kruger, P. J. Grabowski, A. J. Zaug, J. Sands, D. E. Gottschling, and T. R.

Cech. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA

intervening sequence of Tetrahymena. Cell, 31:147–157, 1982.

[144] E. C. Lai, P. Tomancak, R. W. Williams, and G. M. Rubin. Computational identifi-

cation of Drosophila microRNA genes. Genome Biol., 4:R42, 2003.

[145] D. J. Lane. 16S/23S rRNA sequencing. In E. Stackebrandt and M. Goodfellow,

editors, Nucleic acid techniques in bacterial systematics, pages 115–175. John Wiley

and Sons, New York, 1991.

[146] Niels Larsen and Christian Zwieb. The signal recognition particle database (SRPDB).

Nucl. Acids Res., 21:3019–3020, 1993.

250

[147] D. Laslett and B. Canback. ARAGORN, a program to detect tRNA genes and tmRNA

genes in nucleotide sequences. Nucl. Acids Res., 32:11–16, 2004.

[148] C. Lee, C. Grasso, and M. F. Sharlow. Multiple sequence alignment using partial

order graphs. Bioinformatics., 18:452–464, 2002.

[149] R. Lee, R. Feinbaum, and V. Ambros. A short history of a short RNA. Cell, S116:

S89–S92, 2004.

[150] A. Lescoute, N. B. Leontis, C. Massire, and E. Westhof. Recurrent structural RNA

motifs, isostericity matrices and sequence alignments. Nucleic Acids Res., 33:2395–

2409, 2005.

[151] I. Letunic, T. Doerks, and P. Bork. SMART 6: Recent updates and new developments.

Nucl. Acids Res., 37:D229–D232, 2009.

[152] A. E. Lew, K. R. Gale, C. M. Minchin, V. Shkap, and D. T. de Wall. Phyloge-

netic analysis of the erythrocytic anaplasma species based on 16S rDNA and GroEL

(HSP60) sequences of a. marginale, a. centrale, and a. ovis and the specific detection

of a. centrale vaccine strain. Vet Microbiol., 92:145–160, 2003.

[153] R. Lewin. Surprising discovery with a small RNA. Science, 218:777–778, 1982.

[154] R. E. Ley, F. Backhed, P. Turnbaugh, C. A. Lozupone, R. D. Knight, and J. I. Gordon.

Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A., 102:11070–11075,

2005.

[155] R. E. Ley, J. K. Harris, J. Wilcox, J. R. Spear, S. R. Miller, B. M. Bebout, J. A.

Maresca, D. A. Bryant, M. L. Sogin, and N. R. Pace. Unexpected diversity and

complexity of the guerrero negro hypersaline microbial mat. Appl Environ Microbiol.,

72:3685–3695, 2006.

[156] R. E. Ley, P. J. Turnbaugh, S. Klein, and J. I. Gordon. Microbial ecology: Human

gut microbes associated with obesity. Nature., 444:1022–1023, 2006.

251

[157] L. P. Lim, M. E. Glasner, S. Yekta, C. B. Burge, and D. P. Bartel. Vertebrate

microRNA genes. Science., 299:1540, 2003.

[158] E. Lindahl and A. Elofsson. Identification of related proteins on family, superfamily

and fold level. J Mol Biol., 295:613–625, 2000.

[159] K. Liolios, K. Mavromatis, N. Tavernarakis, and N. C. Kyrpides. The genomes on line

database (GOLD) in 2007: Status of genomic and metagenomic projects and their

associated metadata. Nucleic Acids Res., 36:D475–D479, 2008.

[160] Z. Lippman and R. Martienssen. The role of RNA interference in heterochromatic

silencing. Nature., 431:364–370, 2004.

[161] J. Liu, J. T. Wang, J. Hu, and B. Tian. A method for aligning RNA secondary

structures and its application to RNA motif detection. BMC Bioinformatics, 6:89,

2005.

[162] T. M. Lowe and S. R. Eddy. tRNAscan-SE: A program for improved detection of

transfer RNA genes in genomic sequence. Nucl. Acids Res., 25:955–964, 1997.

[163] T. M. Lowe and S. R. Eddy. A computational screen for methylation guide snoRNAs

in yeast. Science, 283:1168–1171, 1999.

[164] W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier, , A. Buchner, T. Lai,

S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A. W. Ginhart, O. Gross,

S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Non-

hoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke,

T. Ludwig, A. Bode, and K. H. Schleifer. ARB: a software environment for sequence

data. Nucleic Acids Res., 32:1363–1371, 2004.

[165] A. Machado-Lima, H. A. del Portillo, and A. M. Durham. Computational methods

in noncoding RNA research. J. Math. Biol., 56:15–49, 2008.

252

[166] D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cam-

bridge University Press, Cambridge, UK, 2003. ISBN 0521642981.

[167] T. J. Macke, D. J. Ecker, R. R. Gutell, D. Gautheret, D. A. Case, and R. Sampath.

RNAMotif, an RNA secondary structure definition and search algorithm. NAR, 29:

4724–4735, 2001.

[168] B. L. Maidak, N. Larsen, M. J. McCaughey, R. Overbeek, G. J. Olsen, K. Fogel,

J. Blandy, and C. R. Woese. The ribosomal database project. Nucleic Acids Res., 22:

3485–3487, 1994.

[169] B. L. Maidak, G. J. Olsen, N. Larsen, R. Overbeek, M. J. McCaughey, and C. R.

Woese. The ribosomal database project (RDP). Nucleic Acids Res., 24:82–85, 1996.

[170] B. L. Maidak, G. J. Olsen, N. Larsen, R. Overbeek, M. J. McCaughey, and C. R.

Woese. The RDP (ribosomal database project). Nucleic Acids Res., 25:109–111,

1997.

[171] B. L. Maidak, J. R. Cole, Jr C. T. Parker, G. M. Garrity, N. Larsen, B. Li, T. G.

Lilburn, M. J. McCaughey, G. J. Olsen, R. Overbeek, S. Pramanik, T. M. Schmidt,

J. M. Tiedje, and C. R. Woese. A new version of the RDP (Ribosomal Database

Project). Nucl. Acids Res., 27:171–173, 1999.

[172] B. L. Maidak, J. R. Cole, T. G. Lilburn, , P. R. Saxman, J. M. Stredwick, G. M.

Garrity, B. Li, G. J. Olsen, S. Pramanik, T. M. Schmidt, and J. M. Tiedje. The RDP

(ribosomal database project) continues. Nucleic Acids Res., 28:173–174, 2000.

[173] B. L. Maidak, J. R. Cole, T. G. Lilburn, , P. R. Saxman, R. J. Farris, G. M. Garrity,

G. J. Olsen, T. M. Schmidt, and J. M. Tiedje. The RDP-II (ribosomal database

project). Nucleic Acids Res., 29:173–174, 2001.

[174] N. Majdalani, C. Cunning, D. Sledjeski, T. Elliott, and S. Gottesman. DsrA RNA

regulates translation of RpoS message by an anti-antisense mechanism, independent

253

of its action as an antisilencer of transcription. Proc Natl Acad Sci U S A., 95:

12462–12467, 1998.

[175] J. Mallatt and C. J. Winchell. Testing the new animal phylogeny: First use of com-

bined large-subunit and small-subunit rRNA gene sequences to classify the proto-

stomes. Mol Biol Evol., 19:289–301, 2002.

[176] M. Mandal and R. R. Breaker. Gene regulation by riboswitches. Nat Rev Mol Cell

Biol., 5:451–463, 2004.

[177] D. H. Mathews and D. H. Turner. Dynalign: an algorithm for finding the secondary

structure common to two RNA sequences. J. Mol. Biol., 317:191–203, 2002.

[178] D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner. Expanded sequence depen-

dence of thermodynamic parameters improves prediction of RNA secondary structure.

J Mol Biol., 288:911–940, 1999.

[179] G. Meister and T. Tuschl. Mechanisms of gene silencing by double-stranded RNA.

Nature., 431:343–349, 2004.

[180] I. M. Meyer. A practical guide to the art of RNA gene prediction. Brief. Bioinform.,

8:396–414, 2007.

[181] F. Michel and E. Westhof. Modelling of the three-dimensional architecture of group I

catalytic introns based on comparative sequence analysis. J. Mol. Biol., 216:585–610,

1990.

[182] A. A. Michels, V. T. Nguyen, A. Fraldi, V. Labas, M. Edwards, F. Bonnet, L. Lania,

and O. Bensaude. MAQ1 and 7SK RNA interact with CDK9/cyclin t complexes in a

transcription-dependent manner. Mol Cell Biol., 23:4859–4869, 2003.

[183] R. M. Morris, M. S. Rapp, S. A. Connon, K. L. Vergin, W. A. Siebold, C. A. Carl-

son, and S. J. Giovannoni. SAR11 clade dominates ocean surface bacterioplankton

communities. Nature., 420:806–810, 2002.

254

[184] K. B. Mullis and F. A. Faloona. Specific synthesis of DNA in vitro via a polymerase-

catalyzed chain reaction. Methods Enzymol., 155:335–350, 1987.

[185] M. Muramatsu, J. L. Hodnett, and H. Busch. Base composition of fractions of nuclear

and nucleolar ribonucleic acid obtained by sedimentation and chromatography. J Biol

Chem, 241:1544–1550, 1966.

[186] Eugene W. Myers and Webb Miller. Optimal alignments in linear space. Comput.

Applic. Biosci., 4(1):11–17, 1988.

[187] A. Nahvi, N. Sudarsan, M. S. Ebert, X. Zou, K. L. Brown, and R. R. Breaker. Genetic

control by a metabolite binding mRNA. Chem Biol., 9:1043, 2002.

[188] I. Nasidze, D. Quinque, J. Li, M. Li, K. Tang, and M. Stoneking. Comparative

analysis of human saliva microbiome diversity by barcoded pyrosequencing and cloning

approaches. Anal Biochem., 391:64–68, 2009.

[189] E. P. Nawrocki and S. R. Eddy. Query-dependent banding (QDB) for faster RNA

similarity searches. PLoS Comput. Biol., 3:e56, 2007.

[190] E. P. Nawrocki, D. L. Kolbe, and S. R. Eddy. Infernal 1.0: Inference of RNA align-

ments. Bioinformatics, 25:1335–1337, 2009.

[191] E. P. Nawrocki, D. L. Kolbe, and S. R. Eddy. Infernal - inference of RNA secondary

structure alignments. [http://infernal.janelia.org/], 2009.

[192] E. P. Nawrocki, D. L. Kolbe, and S. R. Eddy. The Infernal user’s guide.

[http://infernal.janelia.org/], 2009.

[193] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for

similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48:443–453,

1970.

[194] J. Neyman and E. S. Pearson. On the problem of the most efficient tests of statistical

hypotheses. Phil. Trans. Royal Soc. London A, 231:289–337, 1933.

255

[195] P. Nissen, J. Hansen, N. Ban, P. B. Moore, and T. A. Steitz. The structural basis of

ribosome activity in peptide bond synthesis. Science., 289:920–930, 2000.

[196] Harry F. Noller and Carl R. Woese. Secondary structure of 16S ribosomal RNA.

Science, 212:403–411, 1981.

[197] G. J. Olsen, N. Larsen, and C. R. Woese. The ribosomal RNA database project.

Nucleic Acids Res., 19:2017–2021, 1991.

[198] G. J. Olsen, R. Overbeek, N. Larsen, T. L. Marsh, M. J. McCaughey, M. A. Maciuke-

nas, W. M. Kuan, T. J. Macke, Y. Xing, and C. R. Woese. The ribosomal database

project. Nucleic Acids Res., 20:2199–2200, 1992.

[199] A. D. Omer, T. M. Lowe, A. G. Russell, H. Ebhardt, S. R. Eddy, and P. P. Dennis.

Homologs of small nucleolar RNAs in Archaea. Science, 288:517–522, 2000.

[200] N. R. Pace. A molecular view of microbial diversity and the biosphere. Science., 276:

734–740, 1997.

[201] N. R. Pace, D. A. Stahl, D. J. Lane, and G. J. Olsen. Analyzing natural microbial

populations by rRNA sequences. ASM News, 51:4–12, 1985.

[202] N. R. Pace, B. C. Thomas, and C. R. Woese. Probing RNA structure, function and

history by comparative analysis. In R. F. Gesteland and J. F. Atkins, editors, The

RNA World, pages 113–142. Cold Spring Harbor Laboratory Press, New York, 1993.

[203] J. Park, K. Karplus, C. Barrett, R. Hughey, D. Haussler, T. Hubbard, and C. Chothia.

Sequence comparisons using multiple sequences detect three times as many remote

homologues as pairwise methods. J. Mol. Biol., 284:1201–1210, 1998.

[204] Angelo Pavesi, Franco Conterlo, Angelo Bolchi, Giorgio Dieci, and Simone Ottonello.

Identification of new eukaryotic tRNA genes in genomic DNA databases by a multistep

weight matrix analysis of transcriptional control regions. Nucl. Acids Res., 22:1247–

1256, 1994.

256

[205] W. R. Pearson. Searching protein sequence libraries: Comparison of the sensitivity

and selectivity of the smith-waterman and FASTA algorithms. Genomics., 11:635–

650, 1991.

[206] W. R. Pearson. Comparison of methods for searching protein sequence databases.

Protein Sci., 4:1145–1160, 1995.

[207] W. R. Pearson. Effective protein sequence comparison. Meth. Enzymol., 266:227–258,

1996.

[208] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison.

Proc. Natl. Acad. Sci. USA, 85:2444–2448, 1988.

[209] J. S. Pedersen, G. Bejerano, A. Siepel, K. Rosenbloom, K. Lindblad-Toh, E. S. Lander,

J. Kent, W. Miller, and D. Haussler. Identification and classification of conserved RNA

secondary structures in the human genome. PLoS Comput. Biol., 2:e33, 2006.

[210] Z. Pei, E. J. Bini, L. Yang, M. Zhou, F. Francois, and M. J. Blaser. Bacterial biota

in the human distal esophagus. Proc Natl Acad Sci U S A., 101:4250–4255, 2004.

[211] C. Pichon and B. Felden. Small RNA gene identification and mRNA target predictions

in bacteria. Bioinformatics, 24:2807–2813, 2008.

[212] T. Powers and H. F. Noller. A functional pseudoknot in 16S ribosomal RNA. EMBO

J., 10:2203–2214, 1991.

[213] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.

Numerical Recipes in C: The Art of Scientific Computing. Cambridge University

Press, 1993. ISBN 0521431085.

[214] E. Pruesse, C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig, J. Peplies, and F. Ö.

Glockner. SILVA: a comprehensive online resource for quality checked and aligned

ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res., 35:7188–

7196, 2007.

257

[215] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications

in speech recognition. Proc. IEEE, 77:257–286, 1989.

[216] M. S. Rappe and S. J. Giovannoni. The uncultured microbial majority. Annu Rev

Microbiol., 57:369–394, 2003.

[217] J. Reeder, J. Reeder, and R. Giegerich. Locomotif: From graphical motif description

to RNA motif search. Bioinformatics., 23:i392–i400, 2007.

[218] M. Regalia, M. A. Rosenblad, and T. Samuelsson. Prediction of signal recognition

particle RNA genes. Nucl. Acids Res., 30:3368–3377, 2002.

[219] E. Rivas. Evolutionary models for insertions and deletions in a probabilistic modeling

framework. BMC Bioinformatics., 6:63, 2005.

[220] E. Rivas and S. R. Eddy. Noncoding RNA gene detection using comparative sequence

analysis. BMC Bioinformatics, 2:8, 2001.

[221] E. Rivas and S. R. Eddy. Probabilistic phylogenetic inference with insertions and

deletions. PLoS Comput. Biol., 4:e1000172, 2008.

[222] E. Rivas and S. R. Eddy. A dynamic programming algorithm for RNA structure

prediction including pseudoknots. J. Mol. Biol., 285:2053–2068, 1999.

[223] D. A. Rodionov, A. G. Vitreschak, A. A. Mironov, and M. S. Gelfand. Regulation

of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch?

Nucleic Acids Res., 31:6748–6757, 2003.

[224] Y. Sakakibara, M. Brown, R. Hughey, I. S. Mian, K. Sjölander, R. C. Underwood, and

D. Haussler. The application of stochastic context-free grammars to folding, aligning

and modeling homologous RNA sequences. unpublished manuscript, 1994.

[225] Y. Sakakibara, M. Brown, R. Hughey, I. S. Mian, K. Sjölander, R. C. Underwood,

and D. Haussler. Stochastic context-free grammars for tRNA modeling. Nucl. Acids

Res., 22:5112–5120, 1994.

258

[226] Y. Sakakibara, M. Brown, R. C. Underwood, I. S. Mian, and D. Haussler. Stochastic

context-free grammars for modeling RNA. In Lawrence Hunter, editor, Proceedings

of the Twenty-Seventh Annual Hawaii International Conference on System Sciences:

Biotechnology Computing, volume V, pages 284–293, Los Alamitos, CA, 1994. IEEE

Computer Society Press.

[227] F. Sanger and A. R. Coulson. A rapid method for determining sequences in DNA by

primed synthesis with DNA polymerase. J Mol Biol., 94:441–448, 1975.

[228] F. Sanger, G. G. Brownlee, and B. G. Barrell. A two-dimensional fractionation pro-

cedure for radioactive nucleotides. J Mol Biol., 13:373–398, 1965.

[229] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating

inhibitors. Proc Natl Acad Sci U S A., 74:5463–5467, 1977.

[230] D. Sankoff. Simultaneous solution of the RNA folding, alignment, and protosequence

problems. SIAM J. Appl. Math., 45:810–825, 1985.

[231] P. Schattner, S. Barberan-Soler, and T. M. Lowe. A computational screen for mam-

malian pseudouridylation guide H/ACA RNAs. RNA, 12:15–25, 2006.

[232] P. Sellers. On the theory and computation of evolutionary distances. SIAM J. Appl.

Math., 26:787–793, 1974.

[233] C. E. Shannon. A mathematical theory of communication. Bell System Technical

Journal, 27:379–423,623–656, 1948.

[234] K. Sjölander, K. Karplus, M. Brown, R. Hughey, A. Krogh, I. S. Mian, and D. Haus-

sler. Dirichlet mixtures: A method for improving detection of weak but significant

protein sequence homology. Comput. Applic. Biosci., 12:327–345, 1996.

[235] S. Smit, K. Rother, J. Heringa, and R. Knight. From knotted to nested RNA struc-

tures: a variety of computational methods for pseudoknot removal. RNA, 14:410–416,

2008.

259

[236] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.

J. Mol. Biol., 147:195–197, 1981.

[237] E. L. L. Sonnhammer, S. R. Eddy, E. Birney, A. Bateman, and R. Durbin. Pfam:

Multiple sequence alignments and HMM-profiles of protein domains. Nucl. Acids Res.,

26:320–322, 1998.

[238] G. Srinivasan, C. M. James, and J. A. Krzycki. Pyrrolysine encoded by UAG in

archaea: Charging of a UAG-decoding specialized tRNA. Science, 296:1459–1462,

2002.

[239] J. T. Staley and A. Konopka. Measurement of in situ activities of nonphotosynthetic

microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol., 39:321–346,

1985.

[240] G. Stefani and F. J. Slack. Small non-coding RNAs in animal development. Nat Rev

Mol Cell Biol., 9:219–230, 2008.

[241] T. Stoeck and S. Epstein. Novel eukaryotic lineages inferred from small-subunit rRNA

analyses of oxygen-depleted marine environments. Appl Environ Microbiol., 69:2657–

2663, 2003.

[242] G. Storz. An expanding universe of noncoding RNAs. Science, 296:1260–1263, 2002.

[243] G. Storz, S. Altuvia, and K. M. Wassarman. An abundance of RNA regulators. Annu.

Rev. Biochem., 74:199–217, 2005.

[244] M. A. Suchard and B. D. Redelings. BAli-phy: Simultaneous bayesian inference of

alignment and phylogeny. Bioinformatics., 22:2047–2048, 2006.

[245] N. Sudarsan, J. E. Barrick, and R. R. Breaker. Metabolite-binding RNA domains are

present in the genes of eukaryotes. RNA, 9:644–647, 2003.

260

[246] N. Sudarsan, J. K. Wickiser, S. Nakamura, M. S. Ebert, and R. R. Breaker. An

mRNA structure in bacteria that controls gene expression by binding lysine. Genes

Dev., 17:2688–2697, 2003.

[247] Y. Sun and J. Buhler. Designing secondary structure profiles for fast ncRNA identi-

fication. In Proc. Computational Systems Bioinformatics, volume 7, pages 145–156,

2008.

[248] M. Szymanski, M. Z. Barciszewska, M. Zywicki, and J. Barciszewski. Noncoding RNA

transcripts. J. Appl. Genet., 44:1–19, 2003.

[249] J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: Improving the

sensitivity of progressive multiple sequence alignment through sequence weighting,

position-specific gap penalties, and weight matrix choice. Nucl. Acids Res., 22:4673–

4680, 1994.

[250] S. G. Tringe and P. Hugenholtz. A renaissance for the pioneering 16S rRNA gene.

Curr Opin Microbiol., 11:442–446, 2008.

[251] S. G. Tringe, C. von Mering, A. Kobayashi, A. A. Salamov, K. Chen, H. W. Chang,

M. Podar, J. M. Short, E. J. Mathur, J. C. Detter, P. Bork, P. Hugenholtz, and E. M.

Rubin. Comparative metagenomics of microbial communities. Science, 308:554–557,

2005.

[252] B. J. Tucker and R. R. Breaker. Riboswitches as versatile gene control elements. Curr.

Opin. Struct. Biol., 15:342–348, 2005.

[253] P. J. Turnbaugh, R. E. Ley, M. Hamady, C. M. Fraser-Liggett, R. Knight, and J. I.

Gordon. The human microbiome project. Nature., 449:804–810, 2007.

[254] G. W. Tyson, J. Chapman, P. Hugenholtz, E. E. Allen, R. J. Ram, P. M. Richardson,

V. V. Solovyev, E. M. Rubin, D. S. Rokhsar, and J. F. Banfield. Community structure

and metabolism through reconstruction of microbial genomes from the environment.

Nature., 428:37–43, 2004.

261

[255] G. Varani and I. Tinoco Jr. RNA structure and NMR spectroscopy. Q Rev Biophys.,

24:479–532, 1991.

[256] J. C. Venter, K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen,

D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap,

M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-

Tillson, C. Pfannkoch, Y. H. Rogers, and H. O. Smith. Environmental genome shotgun

sequencing of the Sargasso Sea. Science, 304:66–74, 2004.

[257] J. Vogel and C. M. Sharma. How to find small non-coding RNAs in bacteria. Biol.

Chem., 386:1219–1238, 2005.

[258] J. J. Walker and N. R. Pace. Phylogenetic composition of rocky mountain endolithic

microbial ecosystems. Appl Environ Microbiol., 73:3497–3504, 2007.

[259] J. J. Walker, J. R. Spear, and N. R. Pace. Geobiology of a microbial endolithic

community in the yellowstone geothermal environment. Nature., 434:1011–1014, 2005.

[260] D. M. Ward, R. Weller, and M. M. Bateson. 16S rRNA sequences reveal numerous

uncultured microorganisms in a natural community. Nature., 345:63–65, 1990.

[261] K. M. Wassarman and G. Storz. 6S RNA regulates E. coli RNA polymerase activity.

Cell, 101:613–623, 2000.

[262] H. C. Watson and J. C. Kendrew. The amino-acid sequence of sperm whale myo-

globin. comparison between the amino-acid sequences of sperm whale myoglobin and

of human hemoglobin. Nature., 190:670–672, 1961.

[263] Z. Weinberg and W. L. Ruzzo. Exploiting conserved structure for faster annotation

of non-coding RNAs without loss of accuracy. Bioinformatics, 20 Suppl. 1:I334–I341,

2004.

[264] Z. Weinberg and W. L. Ruzzo. Faster genome annotation of non-coding RNA families

without loss of accuracy. RECOMB ’04, pages 243–251, 2004.

262

[265] Z. Weinberg and W. L. Ruzzo. Sequence-based heuristics for faster annotation of

non-coding RNA families. Bioinformatics, 22:35–39, 2006.

[266] Zasha Weinberg. Accurate annotation of non-coding RNAs in practical time. PhD

thesis, University of Washington, 2005.

[267] R. Weller and D. M. Ward. Selective recovery of 16S rRNA sequences from natural

microbial communities in the form of cDNA. Appl Environ Microbiol., 55:1818–1822,

1989.

[268] R. Weller, M. M. Bateson, B. K. Heimbuch, E. D. Kopczynski, and D. M. Ward. Un-

cultivated cyanobacteria, chloroflexus-like inhabitants, and spirochete-like inhabitants

of a hot spring microbial mat. Appl Environ Microbiol., 58:3964–3969, 1992.

[269] P. J. Wilderman, N. A. Sowa, D. J. FitzGerald, P. C. FitzGerald, S. Gottesman, U. A.

Ochsner, and M. L. Vasil. Identification of tandem duplicate regulatory small RNAs

in pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci U S A.,

101:9792–9797, 2004.

[270] S. Will, K. Reiche, I. L. Hofacker, P. F. Stadler, and R. Backofen. Inferring noncoding

RNA families and classes by means of genome-scale structure-based clustering. PLoS

Comput. Biol., 3:e65, 2007.

[271] B. T. Wimberly, D. E. Brodersen, , R. J. Morgan-Warren, A. P. Carter, C. Vonrhein,

T. Hartsch, and V. Ramakrishnan. Structure of the 30s ribosomal subunit. Nature.,

407:327–339, 2000.

[272] W. C. Winkler. Riboswitches and the role of noncoding RNAs in bacterial metabolic

control. Curr. Opin. Chem. Biol., 9:594–602, 2005.

[273] C. R. Woese. The archaeal concept and the world it lives in: A retrospective. Photo-

synth Res., 80:361–372, 2004.

263

[274] C. R. Woese. The Genetic Code: The Molecular Basis for Genetic Expression. Harpers

Collins Publishers Inc., New York, 1968.

[275] C. R. Woese. Bacterial evolution. Microbial Rev., 51:221–71, 1987.

[276] C. R. Woese and G. E. Fox. Phylogenetic structure of the prokaryotic domain: the

primary kingdoms. Proc Natl Acad Sci U S A., 74:5088–5090, 1977.

[277] C. R. Woese and R. R. Gutell. Evidence for several higher order structural elements

in ribosomal RNA. Proc Natl Acad Sci U S A., 86:3119–3122, 1989.

[278] C. R. Woese, L. J. Magrum, R. Gupta, R. B. Siegel, D. A. Stahl, J. Kop, N. Crawford,

J. Brosius, R. Gutell, J. J. Hogan, and H. F. Noller. Secondary structure model for

bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic

Acids Res., 10:2275–93, 1980.

[279] C. R. Woese, J. Maniloff, and L. B. Zablan. Phylogenetic analysis of the mycoplasmas.

Proc Natl Acad Sci U S A., 77:494–498, 1980.

[280] C. R. Woese, R. Gutell, R. Gupta, and H. F. Noller. Detailed analysis of the higher-

order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev., 47:621–669,

1983.

[281] C. R. Woese, E. Stackebrandt, W. G. Weisburg, B. J. Paster, M. T. Madigan, V. J.

Fowler, C. M. Hahn, P. Blanz, R. Gupta, K. H. Nealson, and G. E. Fox. The phylogeny

of purple bacteria: the alpha subdivision. Syst Appl Microbiol., 5:315–326, 1984.

[282] P. C. Woo, S. K. Lau, J. L. Teng, H. Tse, and K. Y. Yuen. Then and now: use of 16S

rDNA gene sequencing for bacterial identification and discovery of novel bacteria in

clinical microbiology laboratories. Clin Microbiol Infect., 14:908–934, 2008.

[283] J. Wuyts, P. De Rijk, Y. Van de Peer, T. Winkelmans, and R. De Wachter. The

European large subunit ribosomal RNA database. Nucl. Acids Res., 29:175–177,

2001.

264

[284] J. Wuyts, Y. Van de Peer, T. Winkelmans, and R. De Wachter. The European

database on small subunit ribosomal RNA. Nucl. Acids Res., 30:183–185, 2002.

[285] D. H. Younger. Recognition and parsing of context-free languages in time n3. Infor-

mation and Control, 10:189–208, 1967.

[286] M. M. Yusupov, G. Z. Yusupova, A. Baucom, K. Lieberman, T. N. Earnest, J. H.

Cate, and H. F. Noller. Crystal structure of the ribosome at 5.5 a resolution. Science.,

292:883–896, 2001.

[287] S. Zhang, B. Haas, E. Eskin, and V. Bafna. Searching genomes for noncoding RNA

using FastR. IEEE/ACM Trans. Comput. Biol. Bioinform., 2:366–379, 2005.

[288] S. Zhang, I. Borovok, Y. Aharonowitz, R. Sharan, and V. Bafna. A sequence-based fil-

tering method for ncRNA identification and its application to searching for riboswitch

elements. Bioinformatics, 22:e557–e565, 2006.

265

Vita

Eric Paul Nawrocki

Date of Birth July 19, 1980

Place of Birth Columbia, MD USA

Degrees B.S. Computer Science, May 2003

B.S. Biology, May 2003

Ph.D. Computational Biology, December 2009

Publications Nawrocki EP, Kolbe DL, Eddy SR (2009). Infernal 1.0:

inference of RNA alignments. Bioinformatics

25(10):1335-1337.

Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL,

Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S,

Eddy SR, Bateman A (2009). Rfam: updates to the

RNA families database. Nucleic Acids Res.

37:D136-D140.

Nawrocki EP, Eddy SR (2007) Query-dependent banding

(QDB) for faster RNA similarity searches.

PLoS Comput Biol 3(3):e56.

August 2009

266

	Structural RNA Homology Search and Alignment Using Covariance Models
	Recommended Citation

	tmp.1328376534.pdf.llU5E

