Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-01-13

2001-01-01

PARBIT: A Tool to Transform Bitfiles to Implement Partial
Reconfiguration of Field Programmable Gate Arrays (FPGAS)

Edson L. Horta and John W. Lockwood

Field Programmable Gate Arrays (FPGAs) can be partially reconfigured to implement
Dynamically loadable Hardware Plugin (DHP) modules. A tool called PARBIT has been
developed that transforms FPGA configuration bitfiles to enable DHP modules. With this tool it
is possible to define a partial reconfigurable area inside the FPGA and download it into a
specified region of the FPGA device. One or more DHPs, with different sizes can be
implemented using PARBIT.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Horta, Edson L. and Lockwood, John W., "PARBIT: A Tool to Transform Bitfiles to Implement Partial
Reconfiguration of Field Programmable Gate Arrays (FPGAs)" Report Number: WUCS-01-13 (2001). All
Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/255

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.


https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/255?utm_source=openscholarship.wustl.edu%2Fcse_research%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

PARBIT: A Tool to Transform Bitfiles to
Implement Partial Reconfiguation of Field
Programmable Gate Arrays (FPGAs)

Edson L. Horta and John W. Lockwood

WUCS-01-13

July 2001

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130






PARBIT: A Tool to Transform Bitfiles to Implement Partial
Reconfiguration of Field Programmable Gate Arrays (FPGAs)

Edson L. Horta, John W. Lockwood

WUCS-01-13

July 06, 2001

Department of Computer Science
Applied Research Lab
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130

Abstract
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1 Introduction

Field Programmable Gate Arrays (FPGAs) enable hardware circuits to be reconfigured an unlimited number
of times. The implementation of a system that uses reconfigurability can be done in two ways: Compile-
Time and Run-Time Reconfiguration [1]. For Compile-Time Reconfiguration (CTR) the FPGA does not
change configuration during the application lifetime. Each application has specific functions that are loaded
when the FPGA is started. Some examples of CTR systems are SPLASH [2] and PAM [3]. For Run-Time
Reconfiguration (RTR), the FPGA changes configuration while it is operating. RTR can be total (all the
device is reprogrammed) or partial (only part of the device is reprogrammed). Existing platforms have
focused on reconfiguration of entire FPGA devices [4] [5] [6]. Some recent work has considered partial
reconfiguration [7] [8].

Partial reconfiguration is a difficult task, especially in systems that require both partial reprogramming
and run-time reconfiguration. In order to partially reconfigure a FPGA, it is necessary to isolate an specific
area inside the FPGA and download the configuration bits related to that area. A tool called PARBIT
(PARtial Bltfile Transformer) has been developed to easily transform and restructure bitfiles to implement
dynamically loadable hardware modules.

To restructure the configuration bitfile, the tool utilizes the original bitfile, a target bitfile (when needed)
and parameters given by the user. These parameters include the block coordinates of the logic implemented
on a source FPGA, the coordinates of the area for a partially programmed target FPGA, and the programming
options.

This report reviews current FPGA technologies that support partial reconfiguration and presents a tool
which transforms bitfiles to implement partial reconfiguration of an FPGA. Section 2 describes the archi-
tecture and configuration issues of the Xilinx FPGAs used in the Field Programmable Port Extender (FPX)
[9], a module card of the Washington University Gigabit Switch (WUGS) [10]. Section 3 explains how
the tool works and how to run PARBIT in its two operation modes: slice mode and block mode. The final
section describes three examples of implementation of Dynamic Hardware Plugins (DHPs) [11] which are
RTR modules on the FPX that implement user-defined functionality.

2 VIRTEX FPGA

The Xilinx VIRTEX [12] family of FPGA combines the features of partial reconfiguration with high density.
A single Virtex device can hold more than 3 million system gates and permits a partial reconfiguration of
frames, which are a fraction of the logic found on a column of the FPGA. The following sections describe in
more detail the architecture of VIRTEX and how to address its configuration memory, to partially reconfigure
the device.

2.1 Architecture

The VIRTEX architecture can be seen in Figure 1.
Each device has the following elements:

+ CLBs (Configurable Logic Blocks);

IOBs (Input Output Blocks);

-

Block RAMs;

Clock resources;
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Figure 1: Virtex Architecture

e Programmable routing;
o Configuration circuitry.

To configure each resource on the Virtex, a series of bits, divided into fields of commands and data, are
loaded into the device. The configuration file is called bitstream and it can be loaded into the device through
three different ways: Master/Slave Serial, SelectMAP [13], and Boundary Scan [14]. The SelectMAP is an
8-bit parallel interface and the others are one-bit serial interface. One can write the configuration memory
through one of these three interfaces, but only SelectMAP and Boundary Scan allows reading this memory.

To program each resource on the FPGA, the device is divided into columns. Each column corresponds
to a vertical slice of the chip. There are five types of columns:

o Center: controls the global clock pins. There is one Center column per device;

o CLB: controls all the CLBs in that column, plus the two IOBs above and bellow them. The number
of CLBs columns depends on the chip gate density;

e IOB: controls the configurations of all the IOBs on the right and left sides of the chip. There are two
IOB columns per device;

s Block SelectRAM Interconnect: controls the connections inside each block RAM. The number of
columns depends on the chip density;

e Block SelectRAM Content: controls the contents of each block RAM. The number of columns de-
pends on the chip density.

Figure 2 shows the configuration columns for the XCV50 FPGA.

2.2 Addressing

The configuration memory is divided in two block types: RAM and CLB. The first one contains only
the block SelectRAM content columns. The CLB type contains the Center, CLB, IOB and Block RAM
interconnect columns. Each one of these blocks are divided in major and minor addresses. The major
address (MJA) is related to the configuration column position in the memory and the minor address (MNA)
is related to the frame (see next section) position inside a column .
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Figure 2: Virtex Configuration Columns - XCV50

Column Block Virtex Virtex-E Virtex-EM
Type Type
First MIA | CLB 0 0 0
RAM 0 1 1
MIA Order | CLB 1: Center 1: Center 1: Center
2: CLB 2: CLB/BRAM Interconnect 2: CLB
3: IOB 3. I0B 3: 1IOB
4: BRAM Interconnect 4: BRAM Interconnect
RAM BRAM Content BRAM Content BRAM Content

Table 1: Major Address Schemes

For the minor address and block types, the numbering schemes are the same, for all the Virtex devices.
The major address numbering scheme is different for each family and it is shown on Table 1.
The Virtex and Virtex-EM families have the same numbering scheme for the CLB space:

1. Begins with zero (for the Center column);

2. Begins with 2 on the left side (first column after Center column), continues only with even numbers,
until the last CLB on the far left of the device;

3. Continues with the left IOB column;
4. Continues with the left BRAM Interconnect column;

5. Begins with 1 on the right side (first column after Center column), continues only with odd numbers,
until the last CLB on the far right of the device;

6. Continues with the right IOB column;

7. Ends with the right BRAM Interconnect column;
The left RAM address space is O for Virtex and 1 for Virtex-EM. The right RAM address space is 1 for
Virtex and 2 for Virtex-EM.

Figure 3 shows the numbering scheme for the XCV30 FPGA.
The Virtex-E family has a different scheme, because there are some Block RAMS interspersed betweem

the CI.B columns:

1. Begins with zero (for the Center column);
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Figure 3: XCV50 Addressing Scheme

2. Begins with 2 on the left side (first Column after Center column), continues only with even numbers,
until the Jast CLB on the far left of the device, including the left BRAM Interconnect columns between

the CLEB columns;
3. Begins with the left IOB colummn;

4. Begins with 1 on the right side(first column after Center column), continues only with odd numbers,
until the last CLB on the far right of the device, including the right BRAM Interconnect columns

between the CLB columns;
5. Ends with the right IOB column;

The Virtex XCV1000E numbering scheme is shown in Figure 4.

2AMe RAMI RAMZ Center RAM3 RAMH AMS
toet | mice c1 o | mer e o f BICZ €25 o | oo on ma ) oo C3¢ BICA t cs5 o6 mes | 10
- - - - - L) P R - - - - -
.| 8 | E | E Bl - B - g,
NN i é il: il s HE é IR
Bl g 5| E LR IE A AREIE 1HEID IR
MEHEIE IR R -E ese | £ N . 2|4 % ess | 2| 32! 2| aun é HEIEIrT % Btz
g|3|2|S Si3|=]S § § g 3§ s8] 8 S| = Zic 6l 5133 5|15|3)2
gl5lz|8 alf|&i= AR EIE 5|:a AR 912133 EIEE
3 X % o o ] ﬁ o (53 K 'g u o g &) o _! E o (=) :% o o o % 3 E
5% 14 HE A i il 2
i1 g3 £ % ilé ilz A
=] = =] = = =
s : , s . . . :
4 - - - o ok e i~ - - -
MIACLBDlock) —= 104 | 102 100 78 % ™ 22 | s a8 R g o | st BB W ®» o |
MIA RAM Block) —= G N 2 1 3 H

Figure 4: XCV1000E Addressing Scheme



2.3 Configuration

Each one of the configuration columns are divided in smallest slices, called frames. A frame is the smallest
part of the configuration memory that can be written or read, and it is one-bit wide. The number of frames
in each configuration column is fixed (see Table 2).

{ Column Type | # of Frames | # per Device |
Center 3 1
CLB 48 # of CLB columns-
10B 54 2
Block SelectRAM Interconnect 27 # of Block SelectRAM columns
Block SelectRAM Content 04 # of Block SelectR AM columns

Table 2: Number of Configuration Frames

The number of bits in a frame is proportional to the device density. The frame is divided according to the
column type. For the CLB columns, for example, it is divided in 18-bit quantities: the first group controls
the Top 2 IOBs, the next ones control each CLB row and the last group controls the Bottom 2 IOBs.

For example, for the XCV S0 (16 rows and 12 words/frame), there will be 184-16x18+18= 324 valid bits
and 60 zeroes at the end. Figure 5 shows the configuration columns for the XCV50 FPGA.
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Figure 5: Virtex Configuration Frames - CLB COLUMN 12 (XCV50)

To read or write the frames into the configuration memory, the frames are grouped in 32-bit words. For
each device, the number of 32-bit words in a frame is a constant value. If the number of valid bits is less than

10



the frame length, it is filled with zeroes on the right side. There is also a pad frame that must be considered,
when reading or writing the configuration memory. This pad frame is a complete frame with all the words
equal to zero.

When writing, the pad frame must be the last one to be written, as shown in Table 3.

Data Frame ¢ (15 words) | Pad Word

Data Frame n (15 words) | Pad Word
Pad Frame 16 words

Table 3: Writing Frames - XCV50

There are eleven configuration registers in Virtex devices, used to program the configuration memory,
read the data from this memory and control the chip operation. Each register is accessed through the register
field in a 32-bit commmand word. All the data and command words have 32 bits. The command word is
followed by one or more data words, according to the Word Count field (last eleven bits). If there is more
then 2,047 words following the command word, the word count must be zero and, before the data words, a
special command word has to be used, allowing 1,048,575 words to be read or written from configuration
memory.

The following sections describes each register normally used in the original bitstream generated by
Kilinx tools.

2.3.1 Command Register (CMD)

The Command Register (CMD) is used to control the operation of the configuration state machine, the
Frame Address Register (FAR) and some global signals. The format of the command word for the CMD is
shown bellow (32-bit word in hexadecimal format):

3100|0181 0|0| 1| WriteCMD
0| 0j0|0[0|0|0]X | CommandX

Table 4: CMD Register

The commands and their functions are shown in Table 5.

11



Cmd X

Description

WCFG | 1

Write Configuration Data. Used prior to writing configuration data to the FDRI. It
takes the internal configuration state machine through a sequence of states that control
the shifting of the FDR and the writing of the configuration memory.

LFRM | 3

Last Frame. This command is loaded prior to writing the last (pad) data frame if
the GHIGH B signal was asserted. This command is not necessary if the GHIGH.B
signal was not asserted. This allows overlap of the last frame write with the release
of the GHIGH_B signal.

START | 5

Begin Startup Sequence. Starts the startup sequence. This command is also used
to start a shutdown sequence prior to partial reconfiguration. The Startup Sequence
begins with the next successful CRC check.

RCRC |7

Reset CRC. Used to reset CRC register.

AGHIGH | 8

Assert GHIGH B Signal. Used prior to reconfiguration to prevent contention while
writing new configuration data. All CLB outputs and signals are forced to a one.

SWITCH | 9

Switch CCLK Frequency. Used to change (increase) the frequency of the Master
CCLK.

Table 5: Commands for CMD Register

2.3.2 Configuration Option Register (COR)

The Configuration Option Register (COR) is used to control the configuration options for the device. The

format of the command word for the COR is shown bellow (32-bit word in hexadecimal format):

370101 (2]0]|0| 1| Write COR
XX | X|X}X|X|]X| X | Option Word

Table 6: COR Register

The options used by PARBIT are shown in Table 7.

Option Word | Description

00803F2D | No pipeline stage for DONEIN; DONE pin is open drain; readback capture is one-
shot; CCLK=4.3 MIz; Startup sequence clock = CCLK; no waiting for DLL lock
signal; startup sequence; DONE active in fourth cycle of startup sequence; GTS inac-
tive in fifth cycle of startup sequence; GWE active in sixth cycle of startup sequence;
GSR inactive in sixth cycle of startup sequence. These are the default options.

00903F2D | Default, except:CCLK=User Clock.

(0090FF2D Default, except: CCLK=User Clock; No Shutdown; DONE=Keep State.

00AO3F2D | Default, except: CCLK=ITAG Clock.

O00AOFF2D | Default, except: CCLK=ITAG Clock; No Shutdown; DONE=Keep State.

Table 7: Options for COR Register

2.3.3 Control Register (CTL)

The Control Register (CTL) defines some device properties, after its configuration: security (read/write
permissions), configuration interface and I/O pins. The format of the command word for the CTL is shown
in Table 8, along with the option word used to keep the configuration interface after device programming.

12
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010/A|0}0 Write CTL
0{0]0]|0]|4]|0] Option Word

Table 8: CTL Register

2.34 Cyclic Redundancy Check Register (CRC)

The Cyclic Redundancy Check Register (CRC) is used to check the data written to any configuration register.
It is calculated according to an specific algorithm [15], each time a configuration register is written. When
the write CRC command is executed, the value of this command is checked against the internal value. If this
is an incorrect value, the device is put in an ERROR condition, blocking its functioning. The format of the
command word for the CRC is shown bellow (32-bit word in hexadecimal format):

3

0

0|{0|0|0|0]| 1| WriteCRC

0

0

0101 X1 X|X X | CRCValue

Table 9: CRC Register

2.3.5 Frame Address Register (FAR)

The Frame Address Register (FAR) is used to indicate the block type (bits 26,25), major address (MJA) (bits
24 to 17) and minor address {(MNA) (bits 16 to 9). The format of the command word for the FAR is shown
bellow in Table 10, with type=CLB; MJA=4 and MNA=0.

3

0

01200} 0|1 | Write FAR

0

0

01800 |0|0 | FAR Value

Table 10: FAR Register

2.3.6 Frame Data Input Register (FDRI)

The Frame Data Input Register (FDRI) is used to indicate how many words will be written to the configu-
ration memory. The number of words will depend on the device frame lenght and the column that is being
programmed. The format of the command word for the FDRI is shown in Table 11. If the number of words
is more than 2047, it will be necessary to use the special command word, after the write command, with a

word count equals to zero.

13]/0]o0[0[4[X[X][X] WriteFDRI(X <2048) |
3{0/0({0|4|0]|0]|O0 | Write FDRI (WordCount = 0)
S|o0]o[X|X[X]X][X (X > 2048)

Table 11: FDRI Register

2.3.7 Frame Length Register (FLR)

The Frame Length Register (FLR) shows how many 32-bit words are necessary to form a frame (without
the pad word). The format of the command word for the FLR is shown in Table 12.

13
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0

1

Write FLR

XXX X

X

X

FLR Value

2.3.8 Mask Register (MASK)

The Mask Register (MASK) is used to enable writing to the CTL Register. A “1” in bit N of this register
allows that bit position to be written. The format of the command word for the MASK is shown in Table 13.

Table 12: FLR Register

3

0

0

0|C|O

0

1

Write MASK

X

X

X

XXX

X

X

MASK Value

2.4 Original Bitstream Format

The format shown in Figure 6 is an example of a configuration bitstream file. This file is used by PARBIT to
read the partial reconfigurable area defined by the user. This is also the format utilized in the target bitstream

Table 13: MASK Register

file, when the tool operates in block mode (see next section).
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FFFFFFFF | Dummy Word |:sm} 2535 words
ARD95566 | Sync Word i
3000800L | Write Command Reg 30002001 | Write FAR Rep
¢00G0007 Reset CRC 020C0000 Type = RAM; MIA=G;MNA=0
30018001 | Write FLR Reg 39004000 Write FDRI Reg
00000026 | FER=33 (XCV1000E) 500009C0 | 2535-39=2496 words (XCV 1000E)
38012001 | Write Configuration Reg: Default + R
00R03FZD | SSCEK=ITAGCLK m} 2496 words
3000C001 | Writs MASK Reg H
Q0000LCE | MASK = 1C6 30000001 | Wrie CRC Reg
304008001 ; Writc Command Reg 0D00E89D | CRC =689
00000009 | SWITCE 30008001 | Wrile Cornmand Reg
30002091 | Write FAR Reg 0o000e03 LFRM
00000000 | Type=CLB; MIA=MNA=0) 30004027 | FDRI=39
30008001 | Write Command Reg
00000001 | WCFG:Write Configuration Data I:_Eiz} 39 words = 0
30004000 | Write FDRT Reg H
S002E88L | 190593 words (XCVI00E) 300GB00L | Wrile Command Reg

H 30000005 START

[:} 150593 words 30008001 | Write CTL Rep

’ GO000040 | Persist=Yes
30002001 | Write FAR Reg 30000001 | Write CRC Reg
02020000 Type = RAM; MIA=1;MNA=Q Q0001967 | CRC=1967
30004000 | Write FDRI Reg 00000000 | Clock Shutdown Sequence
500009E7 2535 wards (XCVIGKIE) 0D000000

: 0ogooon0

I_:}ms words 20000004

30002001 | Write FAR Reg

020A0000 | Type=RAM; MIA=SIMNA=0
30004000 Write FDRI Reg

5G0009E7 2535 werds (XCVIODOE)

Figure 6: Original Bitstream

3 PARBIT

In order to generate the partial bitstream file, PARBIT reads the configuration frames from the original
bitstream and copies to the partial bitstream only the configuration bits related to the area defined by the user.
It then generates new values to the configuration address registers, according to the partial reconfigurable
area.

If the block mode is used, the tool also reads the target bitstream file to copy the configuration bits that
are inside a column specified by the user, but outside the partial reconfigurable area. This happens due to
the fact that one frame occupies all the rows of a column and, in block mode, the partial reconfigurable
area is smaller than a whole column. Another task performed by PARBIT is the reallocation of the partial
reconfigurable area: the tool calculates new frame addresses according to the new coordinates chosen by the
user.

The next sections describe how PARBIT implements these tasks and how the user operates the tool.

3.1 Organization

This section describes the main modules of PARBIT, used to read the original bitstream, read the target
bitstream (when needed), get the user parameters and write the partial bitstream file. There are two main
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operation modes defined by the user parameters:

e Slice: in this mode the user specifies a slice containing one or more full CL.B columns. The tool
generates the partial bitstream with these columns, in the same position they were in the original
bitstream file.

¢ Block: in this mode it is possible to define an area inside the CLB columns of the chip, without the top
and bottom IOB frame control bits. Then, the user defines where to put this block, in a bitstream of the
same type as the original one (target bitstream). The tool generates the partial bitstream file containing
the area selected by the user (from the original bitstream) and this file will be used to reconfigure the
target device.

Besides the main operation modes, there are other options available to the user:

» Shutdown: it is possible to choose if the chip will be turned off prior the reconfiguration or not, with
the latter being the most usual;

¢ Configuration port: the user can choose if the configuration port used to load the bitstream file will be
the JTAG or the SelectMAP;

e Side: it is possible to generate a partial bitstream to program only the left part or the right part of the
chip (slice mode only).

16



The PARBIT flow chart is shown in Figure 7.

User Parameters

Parameters N
Error Message
OK?

Y

‘Write Header

Copy Slice

Block Y
Mode ?

Copy Block

N

\

Write Trailer

A
Write CRCs

@
Figure 7: PARBIT Flow Chart

The next sections describe each one of these processes.
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3.1.1 User Parameters

In this process, the tool parses all the options chosen by the user and verifies that there are no inconsistencies.
It then reads the original bitstream and checks if the user options are compatible with the device. If there
are errors, PARBIT issues a message and stops running.

3.1.2 Write Header

This process copies the header from the original bitstream and modifies some parts, in order to create the
header for the partial bitstream. Before the dummy word (FFFFFFFF), it writes the value (11111111H), that
will indicate how many bytes there are in the configuration bitstream. This value will be updated when the
tool writes the trailer. It also programs the configuration registers, according to the user parameters.

3.1.3 Frame calculation

This process calculates the MJA for each CLB column of the partial bitstream. This MJA address will be
used to write the FAR configuration register in the partial bitstream file. It is used also to generate the
address of the first word of the first frame for that CLB column (fm_st_wd). This index is used to copy the
frames from the original bitstream to the partial one. If it is a VIRTEX-E, there will be also an adjustment
in these values, due to the existence of the BlockRAMs between the CLB columns.

The following formulas are used to calculate those values:

Left Side

CLB_Col £ Chip.Cols/2

MJA = Chip_Cols ~ CLB_Col 2+ 2

Frstowd = FL + (8 + (MJA —1) % 48)

RAM _Bound = (Chip_Rams/2 — 1) * RAM _Space

MJA adj = 2 ceiling((RAM _Bound — CLB.Col + 1}/ RAM _Space)
fmstowd_adj = FL* (27 + MJA_ady)

Right Side

CLB _Col > Chip.Cols/2

MJA =2« CLB_Col — Chip_Cols — 1

fm_stowd=FLx*(84+ (MJA— 1) x48)

RAM _Bound = Chip_-Cols — (Chip_Rams/2 — 1) * RAM _Space + 1
MJA adj = 2 % ceiling((CLB_Col — RAM _Bound + 1)/ RAM _Space)
fm_st_wd.adj = FL* (27« MJA_adj)

MJA final = MJA + MJA_adj
fm_stawd_final = fm_st_wd + fr_stwd_adj

18



where:

Variabie Definition

MIA TFrame Major Address

fin_st_wd Frame start word

MIA final Frame Major Address (VIRTEX-E)

fm_st_wd_final | Frame start word (VIRTEX-E)

CLB_Col Column number of the desired CLB

Chip_Cols Number of CLB columns on the Virtex device

Chip_Rams Number of block SelectRAM columns on the Virtex device

RAM Space Spacing of block SelectRAM columns (in terms of CLB columns)
FL Number of 32-bit words in the frame

More details can be found at [15]

3.1.4 Copy Slices(Shice Mode)

This process copies the CLB column frames from the original bitstream into the partial bitstream. Each CLB
column chosen by the user has 48 frames. Before each block of configuration frames, the tool calculates the
MIJA and writes the FAR register with this value. After each block (except the last), the tool writes the Pad
Frame. The flow-chart of this process can be seen in Figure 8.
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Inifialize Column #
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1

Calculates MJA

Writes WCFG and FAR
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Column ?
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FDRI=FLR*49

FDRI=FL.R*48

3
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Copy FLR*48 words

Copy FLR*48 words

Y

1

Writes Pad Frame

Writes CRC=0

)

Updates

Column #

Figure 8: Copy Slice Flow Chart
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3.1.5 Copy Block (Block Mode)

This process runs only if the user parameters define the block mode. It will run after the Copy Slice process
and it has to open a second bitstream file, called “target”. The target bitstream file must have an empty area
where the reconfigurable block will be placed. The “Copy Block™ process opens the target bitstream and
compares what parts of it are outside the block defined by the user. After this, it copies the bits that control
these parts to the partial bitstream file. The flow for this process is shown in Figure 9.
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Opens Target Bitstream File
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Figure 9: Copy Block Flow Chart

22




Find Reset CRC Command

Find CRC Write Command [

y
Calculates CRC

3
Write CRC Value

Figure 10: Write CRC Flow Chart

3.1.6 Write Trailer

After all the CLB column configuration frames are written in the partial bitstrearn, this process writes the last
frame, programs all the remaining configuration registers, updates the configuration file size in the bitstream
beginning and writes some information regarding the project that generated the bitstream.

3.1.7 Write CRC

This process parses the partial bitstream from the moment it resets the CRC value until the last CRC write
command, calculating and updating each one of these values (see Figure 10).

To calculate the CRC value, the tool has to consider only the data written to some of the configuration
registers. These data are mixed with the register address and transformed through a series of shifting and
XOR logical operations. More details about this algorithm can be seen on [15].

3.2 Partial Bitstream Format

The partial bitstream generated by PARBIT has basically two formats: with and without shutdown. The
options related to the configuration port and the slice/block modes produces similar bitstreams, differing
only in the option words written in the configuration registers.
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3.2.1 With Shutdown

A partial bitstream file, containing the configuration bits to reconfigure one CLB column, and generated
with the option “Shutdown”, is shown in Figure 11.

FFEFFFFF | Dummy Word 30000001 | Write CRC Reg
ARGIE56E | Sync Wond 00006890 | CRC=689D
30012001 | COR =Defuult ¥ DONE=Keep; 30008001 | Write Command Reg
0OAOFF2D | Shutdown: SSCLK=ITAGCLK 00000003 | LFRM

30008001 | Write Command Reg 30004027 § FDRT =39 words
30000005 | START

30008001 | Write Comniand Reg 1 |39 words =0
00000007 | Reset CRC H

Q0000000 : Clock Shurdown Sequence
00000000 300120061 | £OR = Default +
00A03F2D | $SCLK=FTAGCLK

30008001 | Write Command Reg
30000G05 | START
30000091 | Write CRC Reg
00001567 : CRC=1967
Q0400000 Clock Shutdown Sequence

00000000
00000000
30008001 ; Write Command Reg
60900008 | AGHIGH

30008001 | Write Command Reg
0000000 | WCFG:Write Configuration Data

30002001 | Write FAR Reg 00000000
00C20000 | Type:= CLB; MFA=97; MNA=Q 00000000
00000000

30004750 | FDRI= 1872 wards (XCV000E}

l::l:l» 1872 words

Figure 11: Partial Bitstream Example - With Shutdown

3.2.2 Without Shutdown

A partial bitstream file, containing the configuration bits to reconfigure one CLB column, and generated
with the option “No Shutdown”, is shown in Figure 12.

FFFFFFEFF | Dummy Word 30004027 | FDRI= 39 words

AARYIS566 | Sync Word .

30008001 | Write Command Reg I::]} 39 words =0
Q0000007 Reset CRC !

30008001 § Write Command Reg 30012001 | COR = Defmlt+
DCO0OO0E | WCFG:Write Configuration Data 00A03F2D | S5CLK=ITAGCLK
3000200 | Wrile FAR Reg 30008001 Write Command Reg
00C20000 | Type=CLB; MJIA=97; MNA=0 ¢0000005s START

30004750 FDRI = 1872 words (XCV1000E) 30000091 | Write CRC Reg

: 00001967 | CRC= 1967
:ZI:]} 1872 words 00000000 | Clock Startup Sequence
: 00000000
30000001 | Write CRC Reg 00000000
0000689D | CRC = 689D 00000000

30008081 : Wike Command Reg
00000003 | LERM

Figure 12: Partial Bitstream Example - Without Shutdown
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3.3 Design Flow
The design flow with PARBIT depends on the configuration mode chosen by the user.

3.3.1 Slice Mode

In the “Slice Mode™, the user has to define only the start and end columns of the design to be reconfigured
in the chip. The location of this design is always the same. See Figure 13.

Top 10Bs

CiLBs

£201 1P

Botlom [OBs

RaM

Figure 13: Slice Mode - Original Bitstream Device

The partial bitstream can be loaded into the device using the configuration port chosen by the user.

In this mode, all the I/O pins controlled by the CL.B columns of the partial bitstream change according
to the new design. It is important to keep these pins in the same location, when generating a new partial
design.

3.3.2 Block Mode

In the “Block Mode”, the user has to define the following variables:
» Start/end columns: width of the partial reconfigurable area;
¢ Start/end rows: height of the partial reconfigurable area;
e Target row/column: the new location of the partial reconfigurable area, in the target project;

These values can be seen on Figure 14.
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Figure 14: Block Mode - Original Bitstream Device

The tool needs the original bitstream and the target bitstream to generate the partial bitstream. After
loading the new design into the target device, it will be like the one shown on Figure 15.

Targer (Row,Col)

TopICBs [

ARIRR AL

TR

Lelt 10Bs
sgO1 I

AN

Battom 10Bs

a

RAM
RAM
RAM

Figure 15: Block Mode - Target Device

The I/O pins from the target device did not change after the partial bitstream is loaded. The user has to
define some boundary connection points to communicate with the new module.
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Operation

PARBIT is a command-line based tool. Before ranning it, the user has to choose some parameters. These
parameters have to be passed to the tool through an options file.

The command line is shown bellow, with all the options explained in detail:

parbit option original partial [target]

where:

Original Bitstream file generated by Xilinx tools. This file contains the reconfigurable area that is
extracted by PARBIT and transformed in a partial bitstream file. In the Slice Mode the reconfigurable
area is placed in the same location it was set in the original design. In the Block Mode this area is the
same, but it is placed in a different location.

Partial Bitstream file generated by PARBIT, with the reconfigurable area defined by the user and its
designated location. This location is the same one as in the original file (Slice Mode) or a new one
(Block Mode), defined by user parameters and the target file.

Target Bitstream file generated by Xilinx tools. It is necessary only in Block Mode. This file con-
tains the fixed configuration for the FPGA, plus an empty area reserved to receive the reconfigurable
area generated by PARBIT. The location of this empty area has to be passed to the tool (TargetRow,
TargetColumn) and must have the same size as the partial reconfigurable area, defined in the option
file.

Option Text file containing user options. Each line of this file has the following format:
OPTION:VALUE

The options available are the following:

FPGA FPGA type. The available values are: XCVXCV50E, XCVI00E, XCV200E, XCV300E,
XCV400E, XCV405E, XCV600E, XCV812E, XCV1000E, XCV1600E, XCV2000E,XCV2600E,
XCV3200E.

StartColumn Start Column of partial reconfigurable area. This value ranges from 1 to the maximum
available CLB columns in the chosen FPGA. It is used in both modes: Slice and Block.

EndColumn End Column of partial reconfigurable area. This value ranges from 1 to the maximum
available CLB columns in the chosen FPGA. It is used in both modes: Slice and Block.

StartRow Start Row of partial reconfigurable area. This value is used only in Block mode.It defines,
in conjunction with EndRow, the height of the partial reconfigurable area. In Slice Mode this height
is equal to the chip height. This value ranges from 1 to the maximum rows in the chosen FPGA.

EndRow End Row of partial reconfigurable area. This value is used only in Block Mode. It defines,
in conjunction with StartRow, the height of the partial reconfigurable area. In Slice Mode this height
is equal to the chip height. This value ranges from 1 to the maximum rows in the chosen FPGA.

TargetRow Row of the new position of partial reconfigurable area. This option defines, with Tar-
getColumn, the upper left corner of the new location of partial reconfigurable area inside the FPGA.
It ranges from 1 to the maximum rows available in the FPGA, provided that it does not override the
FPGA area. This option is valid only in Block Mode.
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¢ TargetColumn CLB Column of the new position of partial reconfigurable area. This option defines,
with TargetRow, the upper left corer of the new location of partial reconfigurable area inside the
FPGA. It ranges from 1 to the maximum CLB columns available in the FPGA, provided that it does
not override the FPGA area. This option is valid only in Block Mode.

* Port Programming port used to reconfigure the FPGA. The values are: JTAG (JTAG serial port) or
SelectMAP (parallel). The default value is SelectMAP.

e Shutdown Start up sequence. Defines how the FPGA works, during reconfiguration. The values are:
Yes (performs a shutdown before resuming new configuration) or No (the device continues working,
during reconfiguration). The default value is No.

s Side Defines one reconfigurable area equal to half FPGA. The values are: Right (the right side of
FPGA) and Left (the left side of FPGA). The tool generates the corresponding values for StartColumn
and EndColumn automatically. This option is valid only in Slice Mode.

» Verbose Defines what kind of information appears on the screen, during PARBIT running. The value
range is from 0 (none) to 4 {maximum).

4 Using PARBIT (Block Mode) to implement the DHPs in the FPX Board

One of the applications for PARBIT is the generation of the DHP [11] partial bitstream that is loaded in the
FPX [16] board. Three examples of implementations are shown:

¢ Single-size DHP on XCV1000E;
o Double-size DHP on XCV1000E;
¢ Single-size DHP on XCV2000E;

The design methodology for build DHP modules on the FPX is to use standard tools to compile, place,
and route logic into a fixed region of an XCV1000E or XCV2000E FPGA. After generating the source
bitstream, PARBIT is run to transform the source file into a partial bitstream file.

4.1 Single-Size DHP (XCV1000E)
4.1.1 Original Bitstream File

The first step is the generation of the original bitstream file. This file contains the partial reconfigurable area,
that will be loaded into the device. It is called 1S-DHP-org.bit. This file must have always the same location
for the partial reconfigurable area. The user must confine the block between these coordinates:

» start column=8, end column=17,;
e start row=7, end row=58.

The original bitstreamn has the format shown in Figure 16.
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Figure 16: XCV1000E -

4.1.2 Target Bitstream File

The target design has to provide some specific empty areas to Ioad the block design generated in the previous

as shown in Figure 17.

L)

step. Each one of these areas is defined by two coordinates (Row, Col)
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Figure 17: XCVI1000E - Single-Size DHP - Target Bitstream

The target file is called 1S-DHP-target.bit.
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4.1.3 Options Files

The options file (1S-DHP-T1.opt) for the Target 1 location must have the following lines:
FPGA:XCV1000E

StartColumn:8

EndColumn:17

StartRow:7

EndRow:58

TargetRow:7
TargetColumn:8

The options files related to the other possible locations of hardware plugins only have to change the
value in the last line:

e Target 2 (1S-DHP-T2.opt):
TargetColumn: 20

o Target 3 (1S-DHP-T3.o0pt):
TargetColumn: 68

» Target 4 (1S-DHP-T4.opt):
TargetColumn: 80

414 Running PARBIT

With the files above, the next step is to run PARBIT:
parbit 1S-DHP-T1.opt 1S-DHP-org.bit 1S-DHP-T1-partial.bit 1S-DHP-target.bit
parbit 1S-DHP-T2.opt 1S-DHP-org.bit 1S-DHP-T2-partial.bit 1S-DHP-target.bit
parbit 1S-DHP-T3.opt 1S-DHP-org.bit 1S-DHP-T3-partial.bit 1S-DHP-target.bit
parbit 1S-DHP-T4.opt 1S-DHP-org.bit 1S-DHP-T4-partial.bit 1S-DHP-target.bit

The files 15-DHP-T1-partial.bit, 1S-DHP-T2-partial.bit, 1S-DHP-T3-partial.bit, 1S-DHP-T4-partial.bit
contain the partial bitstream necessary to load the DHP module ento locations T1, T2, T3 and T4, respec-
tively.
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4.2 Double-Size DHP (XCV1000E)
4.2.1 Original Bitstream File

The first step is the generation of the original bitstream file. This file contains the partial reconfigurable area,
that will be loaded into the device. It is called 1D-DHP-org.bit. This file must have always the same location
for the partial reconfigurable area. The user must confine the block between these coordinates:

e start column=8, end column=29;
» start row=7, end row=58,

The original bitstream has the format shown in Figure 18.

Stert Column=§ End Column =29

Top 10Bs

Start Row =7

Lef [0Bs

=
o
3
&
5

End Row = {L

=
g Bottem {OBs

RAM|

= F
3 2 2

Figure 18: XCV1000E - Double-Size DHP- Original Bitstream

4.2.2 Target Bitstream File

The target design has to provide some specific empty areas to load the block design generated in the previous
step. Each one of these areas is defined by two coordinates (Row, Col), as shown in Figure 19.

The target file is called 1D-DHP-target.bit.
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Figure 19: XCV1000E - Double-Size DHP - Target Bitstream

4.2.3 Options Files

The options file (1D-DHP-T1.opt) for the Target 1 location must have the following lines:
FPGA:XCVIOO00E

StartColumn:8

EndColumn: 29

StartRow:7

EndRow:58

TargetRow:7
TargetColumn:8

The options files related to the other possible location of hardware plugin only have to change the value
in the last line:

¢ Target 2 (1S-DHP-T2.0pt):
TargetColumn:68

4.2.4 Running PARBIT

With the files above, the next step is to run PARBIT:
parbit 1D-DHP-T1.opt 1D-DHP-org.bit 1D-DHP-T1-partial.bit 1D-DHP-target.bit
parbit ID-DHP-T2.opt ID-DHP-org.bit 1D-DHP-T2-partial.bit 1D-DHP-target.bit

The files 1D-DHP-T1-partial.bit, 1D-DHP-T2-partial.bit contain the partial bitstream necessary to load
the DHP module onto locations T1 and T2, respectively.
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4.3 Single-Size DHP (XCV2000E)
4.3.1 Original Bitstream File

The first step is the generation of the original bitstream file. This file contains the partial reconfigurable area,
that will be loaded into the device. It is called 2S-DHP-org.bit. This file must have always the same location
for the partial reconfigurable area. The user must confine the block between these coordinates:

s start column=8§, end column=17;
e start row=7, end row=74.

The original bitstream has the format shown in Figure 20.

Start Celumn = §
End Column = 17
= Top [OBs
Start Row =7 ; é

&
.
=]
&
5

Ead Row =74 =

— =

Z Z=

5 Bottom 10Bs ==

= =

3 &

RAM;
RAM
RAM,

Figure 20: XCV2000E - Single-Size DHP - Original Bitstream

4.3.2 Target Bitstream File

The target design has to provide some specific empty areas to load the block design generated in the previous
step. Each one of these areas is defined by two coordinates (Row, Col), as shown in Figure 21.

The target file is called 2S-DHP-target.bit.
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Figure 21: XCV2000E - Single-Size DHP - Target Bitstream

4.3.3 Options Files

The options file (2S-DHP-T1.opt) for the Target 1 location must have the following lines:

FPGA:XCV2000E
StartColumn:8

EndColumn:17
StartRow:7
EndRow: 74

TargetRow:7

TargetColumn: 8

The options files related to the other possible locations of hardware plugins only have to change the

value in the last line:

e Target 2 (25-DHP-T2.opt):

TargetColumn:20

e Target 3 (25-DHP-T3.o0pt):

TargetColumn: 32

e Target 4 (25-DHP-T4.opt):

TargetColumn: 80

o Target 5 (25-DHP-T5.opt):

TargetColumn: 92

e Target 6 (2S-DHP-T6.opt):

TargetColumn:104
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4.3.4 Running PARBIT

With the files above, the next step is to run PARBIT:
parbit 25-DHP-T1.opt 2S-DHP-org.bit 2S-DHP-T1-partial.bit 2S-DHP-target.bit
parbit 25-DHP-T2.opt 2S-DHP-org.bit 2S-DHP-T2-partial.bit 2S-DHP-target.bit
parbit 25-DHP-T3.opt 2S-DHP-org.bit 2S8-DHP-T3-partial.bit 2S-DHP-target.bit
parbit 2S-DHP-T4.opt 2S-DHP-org.bit 2S-DHP-T4-partial.bit 25-DHP-target.bit
parbit 25-DHP-T5.0pt 25-DHP-org.bit 2S-DHP-T5-partial.bit 2S-DHP-target.bit
parbit 25-DHP-T6.opt 2S-DHP-org.bit 25-DHP-T6-partial.bit 2S-DHP-target.bit

The files 25-DHP-T1-partial.bit, 28-DHP-T2-partial.bit, 2S-DHP-T3-partial.bit, 2S-DHP-T4-partial.bit,
2S-DHP-T5-partial.bit, 25-DHP-T6-partial.bit contain the partial bitstream necessary to load the DHP mod-
ule onto locations T1, T2, T3, T4, TS and T6, respectively.

5 Conclusions

A tool called PARBIT has been developed that transforms and combines multiple bitstreams into files that
can be used for partial run-time reconfiguration (P-RTR). It aliows regions of logic to be extracted from an
FPGA bitstream. It enables this logic to be relocated to another region of the device. Finally, it allows a
partial reconfiguration block to reconfigure an FPGA even when the target block shares common frames
with the original bitstream.

PARBIT enables DHP modules to be implemented on the FPX. The program accepts options to generate
a bitstream which can load a DHP module into any region of the Reprogrammable Application Device on
the FPX. PARBIT generates DHP modules that are single-size or double-size and can be used for RAD
devices implemented with either an XCV1000E or XCV2000E.
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