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ABSTRACT OF THE THESIS 

CFD Performance of Turbulence Models for Flow from Supersonic Nozzle Exhausts 

by 

Han Ju Lee 

Master of Science in Aerospace Engineering 

Washington University in St. Louis, 2017 

Research Advisor: Professor Ramesh K. Agarwal 

The goal of this thesis is to compare the performance of several eddy-viscosity turbulence 

models for computing supersonic nozzle exhaust flows. These flows are of relevance in the 

development of future supersonic transport airplane.  Flow simulations of exhaust flows from 

three supersonic nozzles are computed using ANSYS Fluent. Simulation results are compared to 

experimental data to assess the performance of various one- and two-equation turbulence models 

for accurately predicting the supersonic plume flow. One particular turbulence model of interest 

is the Wray-Agarwal (WA) turbulence model. This is a neat model which has demonstrated 

promising results mimicking the strength of two equation k-ω model while being a one equation 

model. Compressibility corrections are implemented for CFD simulations with SST k-ω, k-ε and 

low Reynolds versions of k-ε models which improved the results compared to the baseline 

models without compressibility correction. A compressibility correction for WA model is also 

developed to compare the performance of a compressibility correction to WA model with the 

compressibility correction to other models. Results show that the standard eddy-viscosity models 

can capture the shock structure and shear layer of the plume accurately when the thickness of the 

shear layer is small compared to plume diameter. However, when thickness of the shear layer is 

relatively large, a compressibility correction should be implemented to predict the supersonic jet 



x 

 

flow. However, the use of compressibility correction consistently overestimates the length of 

potential core on the centerline of the plume although it improves the prediction of the velocity 

profile in other regions of the flow field such as the mixing region. Also, it is speculated that an 

accurate prediction of boundary layer profile at the nozzle exit has an influence in the model’s 

ability to predict the length of potential core as well as the shear layer growth rate. No single 

model appears to capture all features of the plumes’ flow fields without or with compressibility 

correction. In particular, WA model shows an excellent potential for computation of supersonic 

nozzles’ exhaust flows; however further improvements and investigations in WA model are 

warranted.
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Chapter 1                                                     

Introduction 
  Accurate prediction of engine exhaust plumes from supersonic nozzles using 

computational fluid dynamics (CFD) software has become a topic of great interest in recent years 

because of its relevance in the development of future supersonic transport airplanes. This renewed 

interest in supersonic flight can also be noticed in the outcomes of AIAA Sonic Boom Prediction 

Workshop [1], where numerous codes have been applied to predict the sonic booms of several 

model supersonic bodies to test their prediction capability. However, there have been limited 

investigations of the effect of the engine plume on the boom signature and the supersonic flight 

vehicle. The goal of this thesis is to partially address this problem by studying the plume flow from 

supersonic nozzles by numerical simulation. The particular focus is on assessing the performance 

of several widely used eddy-viscosity turbulence models for computing exhaust flows from 

supersonic nozzles as well as on developing and evaluating a compressibility correction for the 

recently developed Wray-Agarwal (WA) turbulence model. The insights gained from this work 

could perhaps be useful in the simulation of the flow field of the complete supersonic flight 

vehicles including the engine exhausts.  

 Flow simulations are conducted using the commercial CFD solver ANSYS Fluent. The three 

supersonic nozzle exhaust flows for which the experimental data [2, 3, 4] is available are 

considered.  In what follows in rest of the thesis, one of them is referred to as the jet exhaust flow 

from Putnam nozzle [2], one as an underexpanded jet exhaust flow from Seiner nozzle [3] and the 

third one as the fully expanded jet exhaust flow from Egger nozzle [4].  Four eddy-viscosity 

turbulence models are considered: the two-equation k-ε model [5], the two-equation Shear Stress 
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Transport (SST) k-ω [6] model, the one-equation Spalart-Allmaras (SA) model [7], and the one-

equation Wray-Agarwal (WA) model [8]. Three additional low Reynolds number versions of k-ε 

model by Yang and Shih [9], Launder and Sharma [10], and Abid [11] are also considered for 

exhaust flow from Seiner nozzle and Eggers nozzle [3]. Compressibility correction of Sarkar et al. 

[12] is applied to the two-equation k-ε and the three low Reynolds number versions of k-ε model 

as well as to the WA model to improve the predictions for the underexpanded jet exhaust flow 

from Seiner nozzle. For WA model, compressibility correction is formed following the approach 

of Wilcox [13]. Since WA model has been derived from k-ω turbulence model, the compressibility 

correction for WA model can be easily derived following the derivation of compressibility 

correction for two-equation k-ω turbulence model [13]. Sarkar et al’s compressibility correction 

[12] has also been implemented for the SST k-ω model [15]. All nozzles, Putnam, Seiner and 

Eggers are axisymmetric exiting an axisymmetric jet either in a supersonic free stream or in a 

quiescent freestream. The freestream condition affects the development of the mixing layer and 

the nature of the mixing layer influences the accuracy of the computations using different 

turbulence models. Results show that all turbulence models perform quite well without 

compressibility correction when the thickness of the jet mixing layer is smaller compared to the 

jet diameter which is the case with the Putnam nozzle. However, compressibility corrections 

become necessary for accurately computing a thicker mixing layer which is the case with the 

Seiner nozzle and Eggers nozzle where the flows exhaust into the quiescent freestream, creating a 

thick shear layer. The results also indicate that an accurate prediction of the boundary layer velocity 

profile at the nozzle exit is also necessary to capture the supersonic exhaust plume characteristics 

accurately.  
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Chapter 2                                                  

Turbulence Models 

2.1 Shear Stress Transport k-ω Model 
 The SST k-ω turbulence model is a two-equation eddy viscosity model combining the best 

characteristics of the k-ω and k-ε turbulence models.  Near solid boundaries, it behaves like a 

regular k-ω model directly integrable to the wall without repairing additional corrections as is the 

case with most k-ε models.  In the free stream and shear layers, its behavior returns to a k-ε type 

model.  This avoids strong freestream sensitivity common to k-ω type models.  The full 

formulation of the model has been given by Menter [6]. The following equations are the transport 

equations for k and ω solved in Fluent in conjunction with the Reynolds Averaged Navier-Stokes 

(RANS) equations [14]. 

 

 

𝐷𝜌𝑘

𝐷𝑡
= 𝜏𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽∗𝜌𝜔𝜅 +
𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘𝜇𝑡)

𝜕𝑘

𝜕𝑥𝑗
] 

(1)  

 

 
𝐷𝜌𝜔

𝐷𝑡
=
𝛾

𝜈𝑡
𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽∗𝜌𝜔2 +
𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝜔𝜇𝑡)

𝜕𝜔

𝜕𝑥𝑗
] + 2(1 − 𝐹1)𝜌𝜎𝜔2

1

𝜔
 
𝜕𝑘

𝜕𝑥𝑗
 
𝜕𝜔

𝜕𝑥𝑗
 (2)  

 

The turbulent eddy-viscosity is computed from: 

 

 𝜈𝑡 =
𝑘

ω max (
1
𝛼∗𝜔;

𝛺𝐹2
𝛼1𝜔

)
 ,   𝛺 = √2𝑊𝑖𝑗𝑊𝑖𝑗 ,   𝑊𝑖𝑗 =

1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗

𝜕𝑥𝑖
) (3)  

 

Each model constant is blended between an inner and outer constant by: 

 

 
𝜑1 = 𝐹1𝜑1 + (1 − 𝐹1)𝜑2 (4)  

 

The remaining function definitions are given by the following equations: 

 

 𝐹1 = 𝑡𝑎𝑛ℎ(𝑎𝑟𝑔1
4) (5)  
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 𝑎𝑟𝑔1 = min [max (
√𝑘

0.09𝜔𝑑
,
500𝜈

𝑑2𝜔
) ,

4𝜌𝑘

𝜎𝜔2𝐶𝐷𝑘𝑑2
 ] (6)  

 𝛼∗ = 𝛼0
∗(
𝛼0
∗ +

𝑅𝑒𝑡
𝑅𝑘

1 +
𝑅𝑒𝑡
𝑅𝑘

) (7)  

 

 𝐶𝐷𝑘 = max(2𝜌
1

𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−10) (8)  

 

 𝐹2 = 𝑡𝑎𝑛ℎ(𝑎𝑟𝑔2
2) (9)  

   

 

 
𝑎𝑟𝑔2 = max (2

√𝑘

0.09𝜔𝑑
,
500𝜈

𝑑2𝜔
)  (10)  

   

    The model constants are given in [6]. 

2.2 Spalart-Allmaras Model 
 The Spalart-Allmaras (SA) turbulence model is the most commonly used one-equation 

eddy-viscosity turbulence model.  It was derived for application to aerodynamic flows using 

empiricism and arguments of dimensional analysis. The full formulation of the model is given by 

Spalart and Allmaras [7]. The following equation is the transport equation for modified eddy 

viscosity solved in Fluent in conjunction with RANS equations [14]. 

 
 

 

𝐷𝜈

𝐷𝑡
 =  𝑐𝑏1 𝑆 ̃𝜈 + 

1

𝜎
 [∇. ((𝜈 + 𝜈) ∇𝜈) + 𝑐𝑏2(∇𝜈̃)

2] 

−[𝑐𝑤1𝑓𝑤] [
𝜈

𝑑
]
2

 

(11)  

 

The turbulent eddy-viscosity is given by the equation: 

 

 𝜈𝑡 = 𝜈 𝑓𝑣1. (12)  

 

Near wall blocking is accounted for by the damping function fv1. 

 

 𝑓𝑣1  =  
𝜒3

𝜒3 + 𝑐3𝑣1
, 𝜒 ≡  

𝜈

𝑣
. (13)  
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The remaining function definitions are given by the following equations: 

 

 𝑆̃ ≡ Ω +
𝜈

𝜅2𝑑2
𝑓𝑣2, 𝑓𝑣2 = 1 −

𝜒

1 − 𝜒𝑓𝑣1
  (14)  

 

 𝑓𝑤 = 𝑔[
1 + 𝑐6𝑤3
𝑔6 + 𝑐6𝑤3

]1/6 , (15)  

 

 𝑔 = 𝑟 + 𝑐𝑤2(𝑟
6 − 𝑟), (16)  

 𝑟 ≡
𝜈

𝑆̃ 𝜅2𝑑2
, (17)  

   The model constants are given in [7]. 

2.3 Wray-Agarwal Model 
 The Wray-Agarwal (WA) turbulence model is a one-equation eddy-viscosity model 

derived from k-ω closure. It has been applied to several canonical cases [8] and has shown 

improved accuracy over the SA model and competitiveness with the SST k-ω model. An important 

distinction between the WA model and previous one-equation k-ω models is the inclusion of the 

cross diffusion term in the ω-equation and a blending function which allows smooth switching 

between the two destruction terms.  The undamped eddy-viscosity R = k/ω is determined by: 

 

𝜕𝑅

𝜕𝑡
+ 𝑢𝑗

𝜕𝑅

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
[(𝜎𝑅𝑅 + 𝜈)

𝜕𝑅

𝜕𝑥𝑗
] + 𝐶1𝑅𝑆 + 𝑓1𝐶2𝑘𝜔

𝑅

𝑆

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗

− (1 − 𝑓1)𝐶2𝑘𝜀𝑅
2(

𝜕𝑆
𝜕𝑥𝑗

𝜕𝑆
𝜕𝑥𝑗

𝑆2
) 

(18)  

 

The turbulent eddy-viscosity is given by the equation: 

 

 𝜈𝑇 = 𝑓𝜇𝑅 (19)  

 

The wall blocking effect is accounted for by the damping function fμ.  

 

 𝑓𝜇 =
𝜒3

𝜒3 + 𝐶𝑤
3
, 𝜒 =

𝑅

𝜈
 (20)  

 

Here S is the mean strain given as: 
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 𝑆 =  √2𝑆𝑖𝑗𝑆𝑖𝑗  , 𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) (21)  

 

 While the C2kω term is active, Eq. (18) behaves as a one equation model based on the 

standard k-ω equations. The inclusion of the cross diffusion term in the derivation causes the 

additional C2kε term to appear.  This term corresponds to the destruction term of one equation 

models derived from standard k-ε closure.  The presence of both terms allows the new model to 

behave either as a one equation k-ω or one equation k-ε model based on the switching function f1.  

The blending function was designed so that the k-ω destruction term is active near the solid 

boundaries and away from the wall near the end of the log-layer the k-ε destruction term becomes 

active. The model constant Cb =1.66 controls the rate at which f1 switches. 

 𝑓1 = 𝑡𝑎𝑛ℎ(𝑎𝑟𝑔1
4) (22)  

 

 𝑎𝑟𝑔1 = min(
𝐶𝑏𝑅

𝑆𝜅2𝑑2
, (
𝑅 + 𝜈

𝜈
)
2

) (23)  

The model constants are given in [8]. 

2.4 Standard k-ε Model 
 The standard k-ε model is the first two-equation k-ε model published in the turbulence 

modeling literature and has been extensively applied and modified for computing wide range of 

industrial flows. This model is included in Fluent [14] as a standard k-ε model and employs the 

wall function for computational efficiency. The transport equation for turbulence kinetic energy k 

is an exact equation while the transport equation for turbulent dissipation (𝜀) is formulated using 

physical reasoning. The following are the transport equations for k and ε developed by Launder 

and Spalding [5, 15]. 

 

𝜕𝜌𝑘

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝑘

𝜕𝑥𝑖
= −𝜌𝑢𝑖𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑖
[𝜌 (𝜈𝑙 +

𝑐𝜇𝑘
2

𝜎𝑘𝜖
)
𝜕𝑘

𝜕𝑥𝑖
] − 𝜌𝜀 (24)  
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𝜕𝜌𝜀

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝜀

𝜕𝑥𝑖
= −𝐶𝜀1𝜌𝑢𝑖𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑖

𝜀

𝑘
+
𝜕

𝜕𝑥𝑖
[𝜌 (𝜈𝑙 +

𝑐𝜇𝑘
2

𝜎𝜀𝜖
)
𝜕𝜀

𝜕𝑥𝑖
] − 𝐶𝜀2𝜌

𝜀2

𝑘
 (25)  

𝜇𝑡 =
𝜌𝐶𝜇𝑘

2

𝜀
 (26)  

    The model constants are given in [5]. 

2.5 Yang-Shih Low Reynolds Number k-ε Model 
  Standard k-ε turbulence model described in section 2.4 above employs the wall functions 

to predict the behavior of flow in proximity of the wall. However, there is no universal wall 

function that can predict complex flows. The need for more accurate prediction of near wall 

behavior has resulted in several low Reynolds Number versions of k-ε model [9, 10, 11] among 

several others. The variant  of low Reynolds number k-ε model described in this section uses a 

Kolmogorov time scale near the wall to solve the transport equations all the way down to the wall 

without singularity while behaving like a standard k-ε  model away from the wall using a damping 

function [9]. The transport equations for k and ε are given by: 

 𝜌𝑘̇ + 𝜌𝑈𝑗𝑘,𝑗 = [(𝜇 +
𝜇𝑇
𝜎𝑘
) 𝑘,𝑗]

,𝑗

− 𝜌𝑢𝑖𝑢𝑗𝑈𝑖,𝑗 − 𝜌𝜀 (27)  

 
𝜌𝜀̇ + 𝜌𝑈𝑗𝜖,𝑗 = [(𝜇 +

𝜇𝑇
𝜎𝜖
)
𝜖,𝑗

]

,𝑗

+
−𝜌𝐶1𝜖〈𝑢𝑖𝑢𝑗〉𝑈𝑖,𝑗 − 𝐶2𝜖𝜌𝜀

𝑇𝑡
+ 𝜌𝐸 

 

(28)  

The source term E in Eq. (28) is given as: 

 E = νν𝑇𝑈𝑖,𝑗𝑘𝑈𝑖,𝑗𝑘 

 
(29)  

This model uses the two time scales, the Kolmogorov time scale near the wall and  k/ε away from 

the wall.  

 𝑇𝑡 =
𝑘

𝜀
+ 𝑇𝑘 

 
(30)  

  𝑇𝑘 = 𝑐𝑘 (
𝜈

𝜖
)

1
2
 

 

(31)  

The turbulent eddy viscosity is given by the equation: 
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 𝜈𝑇 = 𝑐𝜇𝑓𝜇𝑘𝑇𝑡 (32)  

where 𝑓𝜇 is the damping function used to account for the wall effect. The damping function is 

defined as a function of Ry defined as:  

 
𝑅𝑦 = 

𝑘1/2𝑦

𝜈
 

 

(33)  

The damping function 𝑓𝜇 is defined by: 

 
𝑓𝜇 = [1 − exp(−𝑎1𝑅𝑦 − 𝑎3𝑅𝑦

3 − 𝑎5𝑅𝑦
5)]1/2 

 
(34)  

The model constants are given in [9].  
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Chapter 3                                          

Compressibility Correction 

3.1  Compressibility Correction for k-ε Models 
A need for compressibility correction has been repeatedly demonstrated after it was first 

devised by Sarkar et al[12]. Sarkar divides the dissipation, ε, into two components, namely the 

solenoidal (εs) dissipation and the compressible dilatational dissipation (εd). He shows that while 

the solenoidal dissipation remains constant, the dilatational dissipation is heavily affected when 

turbulent Mach number changes. Thus, Sarkar argues that the dissipation behaves as a function 

of turbulent Mach number, Mt. Although there is also a pressure dilatation term that directly 

affects the production of turbulent kinetic energy, k, it has been shown that the main 

compressibility effect comes from the dilatation dissipation term.  

In this thesis, Sarkar’s compressibility correction [12] is included in the SST k- ω, k-ε 

model and the low Reynold number k-ε models of Yang and Shih [9], Abid [11] and Launder & 

Sharma [10].  Also, a compressibility correction for WA model is derived using the approach for 

compressibility correction for k- ω model [13]. There are compressibility corrections already 

employed in some CFD codes. For example, the SST k-ω model in ANSYS Fluent has a built-in 

compressibility correction term. However, it does not include the entire correction that is given 

in Ref. [15]. Moreover, turbulence models that approximate the pressure-diffusion and pressure-

dilatation terms are relatively few and are not widely used; therefore compressibility correction 

is generally not included in these models.  

As mentioned above, Sarkar’s compressibility correction has two parts: dilatation 

dissipation and the pressure dilatation (PD). It has been shown that these two terms contribute to 



10 

 

the reduction of turbulent kinetic energy in high Mach number flows. The reduction in turbulent 

kinetic energy decreases the growth rate of shear layer to correctly capture the compressibility 

effect observed at high Mach numbers. The terms used in the Sarkar’s corrections are given 

below [18]:  

𝑃𝐷 = −𝜌𝑢𝑖𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑖

(−𝛼2𝑀𝑡
2) +

𝑅𝑒𝐿
𝑀∞

 𝜌𝜀(𝛼3𝑀𝑡
2) (35)  

 

Γ = 𝛼1𝑀𝑡
2 

(36)  

𝑀𝑡 =
√2𝑘

𝑎
 ,   𝑎 =  √

𝛾𝑝

𝜌
 (37)  

Eqs. (38-40) are transport equations for standard k-ε model and its turbulent viscosity 

used in this thesis. The constants in Eqs. (35-37) are𝛼1, 𝛼2, and 𝛼3; the values of these constants 

were determined by comparing the calculations with DNS results for compressible turbulence 

[12]. Although these values of constants perform reasonably well for many flows, the values are 

not universal and require corrections depending on the type of flow. In this thesis, different 

values of 𝛼1 have been tested for accurately capturing the mixing layer and potential core of the 

exhaust. Since the pressure dilatation term has not been shown to have a large influence in 

compressibility correction, the influence of different values of 𝛼2 and 𝛼3 is not tested. To include 

the Sarkar’s compressibility correction, PD and the dilatation dissipation terms are added to the 

corresponding k equations in a turbulence model. As an example, the following equations show 

the Sarkar’s compressibility correction applied to a low Reynolds version of k-ε model [18].  

𝜕𝜌𝑘

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝑘

𝜕𝑥𝑖
= −𝜌𝑢𝑖𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑖
[𝜌 (𝜈𝑙 +

𝑐𝜇𝑘
2

𝜎𝑘𝜖
)
𝜕𝑘

𝜕𝑥𝑖
] − 𝜌𝜀(1 + Γ) + 𝑃𝐷 (38)  

𝜕𝜌𝜀

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝜀

𝜕𝑥𝑖
= −𝐶𝜀1𝜌𝑢𝑖𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑖

𝜀

𝑘
+

𝜕

𝜕𝑥𝑖
[𝜌 (𝜈𝑙 +

𝑐𝜇𝑘
2

𝜎𝜀𝜖
)
𝜕𝜀

𝜕𝑥𝑖
] − 𝑓2𝐶𝜀2𝜌

𝜀

𝑘
[𝜀 − 2𝜈𝑙 (

𝜕√𝑘

𝜕𝑥𝑖
)
2

]  (39)  

𝑓2 = 1.0 − 0.3 exp(−(
𝑘2

𝜈𝑙𝜀
)

2

)  (40)  
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In eqns. (41)-(43), pressure dilatation term PD and dilation dissipation term  are added 

to k transport equation of Launder and Sharma model [10] to include the Sarkar’s compressibility 

correction. The following equations show the Sarkar’s compressibility correction applied to 

Launder and Sharma low Reynolds number k-ε model.  

𝜕𝜌𝑘

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝑘

𝜕𝑥𝑖
= −𝜌𝑢𝑖𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑖
[𝜌 (𝜈𝑙 +

𝑐𝜇𝑘
2

𝜎𝑘𝜖
)
𝜕𝑘

𝜕𝑥𝑖
] − 𝜌𝜀(1 + Γ) + 𝑃𝐷

− 2𝜈𝑙 (
𝜕√𝑘

𝜕𝑥𝑖
)

2

 

(41)  

𝜕𝜌𝜀

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝜀

𝜕𝑥𝑖
= −𝐶𝜀1𝜌𝑢𝑖𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑖

𝜀

𝑘
+
𝜕

𝜕𝑥𝑖
[𝜌 (𝜈𝑙 +

𝑐𝜇𝑘
2

𝜎𝜀𝜖
)
𝜕𝜀

𝜕𝑥𝑖
] − 𝑓2𝐶𝜀2𝜌

𝜀2

𝑘
+ 𝐸 

 

(42)  

𝐸 =  𝜈𝜈𝑡 (
𝜕2𝑈

𝜕𝑦2
)

2

 (43)  

3.2 Compressibility Correction for SST k-ω model 
For SST k-ω turbulence model, the transport equations with compressibility corrections 

have been derived by Suzen and Hoffman [15]. They start with Jones Launder k-ε model with 

compressibility correction applied in the same manner as described in Eqns. (38-40). From 

Jones-Lounder k-ε model, following Mentor’s derivation of SST k-ω model from standard k-ε 

model, they derive the SST k-ω model with compressibility correction as shown in Eqns. (44) 

and (45). 

𝜕𝜌𝑘

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝑘

𝜕𝑥𝑖
= −𝜌𝑢𝑖𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑖

− 𝜌𝜔𝛽∗𝑘[1 + 𝛼1𝑀𝑡
2(1 − 𝐹1)] + (1 − 𝐹1)𝑃𝐷

+
𝜕

𝜕𝑥𝑖
[(𝜇 + 𝜎𝑘𝜇𝑡)

𝜕𝑘

𝜕𝑥𝑖
] 

(44)  

𝜕𝜌𝑤

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝜔

𝜕𝑥𝑖
= −𝜌𝑢𝑖𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑖

𝛾

𝜈𝑡
− (1 − 𝐹1)

𝑃𝐷

𝜈𝑡
− 𝛽𝜌𝜔2 + (1 + 𝐹1)𝛽

∗𝛼1𝑀𝑡
2𝜌𝜔2

+ 2𝜌𝜎𝜔2
1

𝜔
(1 − 𝐹1)

𝜕𝑘

𝜕𝑥𝑖

𝜕𝜔

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑖
[(𝜇 + 𝜎𝜔𝜇𝑡)

𝜕𝜔

𝜕𝑥𝑖
] 

 

(45)  
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3.3 Compressibility Correction for WA Model 
The method used to derive the WA model from Wilcox k-ω model by Wray and Agarwal 

is used to obtain the compressibility correction for WA model following the approach of Wilcox 

[13] in deriving the compressibility correction for k-ω model. To apply the compressibility terms 

to k-ω model, Wilcox modified the closure coefficients β and β* to vary with Mt as shown in 

Eqns. (46-47). The compressibility function can be switched to either Sarkar’s [12] or Wilcox’s 

[13] and are shown in Eqns. (48-49). 

 With R defined as k/ ω in WA model, the substantial derivative can be obtained as [8]: 

 Bradshaw’s Relation is defined as: 

With substitution of k and ω from Wilcox [13] transport equations for k and ω in Eq. (50) 

transport equations and employing the of Bradshaw’s relation (51) to relate the turbulent kinetic 

energy and turbulent shear stress, the R equation can be obtained as shown in Eq. (52). The 

coefficients in rectangle in front of the production term of the standard WA equation were 

calibrated by computing the canonical cases in paper by Wray and Agarwal [8]. It is important to 

note the inclusion of closure coefficients β and β* from Wilcox k-ω model in the production term 

β =  β0 − β0
∗𝐹(𝑀𝑡) (46)  

β∗ = β0
∗ [1 + 𝜉∗𝐹(𝑀𝑡) (47)  

Sarkar :         𝜉∗ = 1 
𝐹(𝑀𝑡) = 𝑀𝑡

2 
  

(48)  

Wilcox:      𝜉∗ =
3

2
                   𝑀𝑡0 =

1

4
 

F(𝑀𝑡) = [𝑀𝑡
2 −𝑀𝑡0

2 ]𝐻(𝑀𝑡 −𝑀𝑡0) 
(49)  

D𝑅

Dt
=
1

𝜔

D𝑘

Dt
−
𝑘

𝜔2
D𝜔

D𝑡
 (50)  

|−𝑢́𝑣́̅̅̅̅ | = 𝜈𝑡 |
𝜕𝑢

𝜕𝑦
| = 𝑎1𝑘 (51)  
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of WA equation. The only term that contains β and β* is the production term while the 

destruction terms and the diffusion term remain unchanged from the original WA equation. 

Therefore, as was the case in compressibility correction for k-ω model by Wilcox, β and β* in R 

equation can be switched according to Eq. (46-47) to obtain a compressibility correction. The 

compressibility corrected form of WA equation is shown in Eq. (53) where F(Mt) is the two 

types of compressibility correction functions given in Eq. (48) and Eq. (49). In this thesis, the 

compressibility correction of Sarkar et al. [12] and Wilcox [13] are employed. Different values 

of compressibility coefficients, CComp , are tested to obtain the best results when compared 

against the experimental data. 

 Since the definition of Mt contains turbulent kinetic energy, k, a treatment to change k 

into a usable form in R equation is needed. We utilize a modified Bradshaw relation to relate k 

and R. The original Bradshaw can also be used. However, as will be shown later, capturing the 

boundary layer profile is important in the prediction of supersonic exhaust with shear layer, 

therefore the modified Bradshaw relation is used here to improve the capturing of the boundary 

layer effect. The modified Bradshaw relation [19] is defined as follows: 

D𝑅

D𝑡
= (𝑎1 +

𝛽∗𝑓𝜇

𝑎1
+
𝛽𝑓𝜇

𝑎1
− 𝛼𝑎1) 𝑅𝑆 +

∂

∂y
(𝜎𝑅𝑅

𝜕𝑅

𝜕𝑦
) + 𝑓1𝐶2𝑘𝜔

𝑅

𝑆

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗

− (1 − 𝑓1)𝐶2𝑘𝜀𝑅
2(

𝜕𝑆
𝜕𝑥𝑗

𝜕𝑆
𝜕𝑥𝑗

𝑆2
) 

(52)  

D𝑅

D𝑡
= −𝐶𝑐𝑜𝑚𝑝𝐹(𝑀𝑡)RS + 𝐶1𝑅𝑆 +

∂

∂y
(𝜎𝑅𝑅

𝜕𝑅

𝜕𝑦
) + 𝑓1𝐶2𝑘𝜔

𝑅

𝑆

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗

− (1 − 𝑓1)𝐶2𝑘𝜀𝑅
2(

𝜕𝑆
𝜕𝑥𝑗

𝜕𝑆
𝜕𝑥𝑗

𝑆2
) 

(53)  
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𝑀𝑡 =
√2𝑘

𝑎
 𝑤ℎ𝑒𝑟𝑒 𝑘 =  √𝑘̃2 + 𝑘𝛼2  (54)  

𝑘̃ =
𝑓𝜇𝑅

𝑎1
|
𝜕𝑢

𝜕𝑦
| (55)  

𝑘𝛼 = ν𝑆𝛼 
(56)  

𝑆𝛼 =
2𝐶𝛼𝑓𝛼
3𝜈

(

 
√𝑢𝑖

2

2

1 +
𝜇𝑇
𝜇
)

  2   (57)  

𝐶𝛼 = √𝐶𝜇2 +
𝜈

𝑅 + 𝜈
   ,       𝑓𝛼 = 1 − exp (−

𝜇𝑇
36𝜇

) (58)  
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Chapter 4                                             

Supersonic Nozzle Exhaust Test Cases 

4.1 Putnam Nozzle 
 The first test case considered corresponds to the experiment of Putnam and Capone [2]. 

The Putnam nozzle geometry is obtained from a report by Putnam.  The data was generated at 

the NASA LaRC 4x4 foot supersonic tunnel. The case is run at a freestream Mach number of 

2.2, Reynolds number of 1.86x106 based on the model maximum diameter of 15.24 cm, and 

Nozzle Pressure Ratio (NPR) of 8.12. “Nozzle 6” of Ref. [2] is used in this study.  Figure 1 

shows the nozzle geometry. CFD analysis of the Putnam nozzle is performed at free stream 

Mach number of 2.2, total temperature of 312K and NPR of 8.12. Flow conditions at the nozzle 

inlet are calculated using the isentropic relations with inlet Mach number of 0.3. At the inlet, 

boundary condition are set as a total pressure of 9.92 x 105 Pa, static pressure of 8.85x104 Pa, and 

total temperature of 553 R. Jet exit is set as x = 0.  

4.2 Seiner Nozzle 
 The second case considered corresponds to the experiment of Seiner et al. [3]. The 

geometry of the Seiner nozzle is obtained from open source by NASA [3]. The data for the nozzle 

was obtained for a jet exit Mach number M=2.0. The Reynolds number based on the jet exit 

diameter is Re =1.3x106.  The jet from this nozzle is discharged into a near quiescent freestream. 

Figure 2 shows the nozzle geometry. Boundary conditions at the nozzle inlet are total pressure of 

7.03 x 105 Pa, NPR of 7.82, Mach number of 0.3, and static temperature of 300K. The freestream 

boundary condition is set at standard atmospheric pressure and room temperature. Jet exit is set as 

x = 0 along the centerline. 
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4.3 Eggers Nozzle 
The final case tested corresponds to the experiment of Eggers [4]. This axisymmetric 

supersonic nozzle discharges a perfectly expanded isothermal free jet at Mach 2.22 with NPR of 

11. The jet from this nozzle is discharged into a near quiescent freestream as well. Figure 3 

shows the nozzle geometry. Boundary conditions for the nozzle inlet are Mach number of 0.3 

and static temperature of 291K. Free stream boundary condition was set at standard atmospheric 

pressure and room temperature. Nozzle throat is set as x=0 along the centerline. For evaluation 

of simulation results, experimental velocity data normalized by exit velocity at the centerline is 

used. Table 1 tabulates the internal coordinates for geometry of the nozzle.  

 

       Fig. 1 Putnam nozzle geometry from Ref. [2]. 

 

    Fig. 2: Seiner nozzle geometry from Ref. [16]. 



17 

 

 

Figure 3 Eggers nozzle geometry from Ref. [20] 

Table 1 Nozzle internal coordinates for Eggers nozzle [20] 

x (in) r (in) 

 -.5230 .6250 

-.5200 .5469 

-.4900 .5080 

-.4500 .4724 

-.3000 .3987 

-.1500 .3640 

0.0000 .3535 

.0354 .3570 

.0707 .3623 

.1414 .3747 

.2828 .3995 

.4242 .4242 

.5656 .4461 

.7070 .4638 

.9191 .4850 

1.1312 .4977 

1.3433 .5027 

1.5625 .5041 
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Chapter 5                                                        

Results and Discussion 

5.1 Grid Generation, Solver Specification and Convergence 
The mesh generation software ANSYS ICEM is used to construct the computational 

domain and mesh. Grids for Putnam, Seiner and Eggers nozzle are shown in figures 4, 5 and 6, 

respectively. An adaptive grid feature in ANSYS Fluent based on density gradients is utilized for 

meshing the computational domain. This method assumes that the maximum error occurs in the 

maximum gradient region. Therefore, a converged solution with a lower number of cells is 

obtained at first for the adaptive grid algorithm in ANSYS Fluent to recognize the high gradient 

region so that more cells can be added in the region of interest e.g. a shear layer region. Figures 

4, 5 and 6 show the original and adapted grids for the Putnam nozzle, the Seiner nozzle and the 

Eggers nozzle, respectively. The Figures show that the adaptive grid algorithm in ANSYS Fluent 

creates more cells in regions of interest e.g. in the shock cell and shear layer regions. The final 

number of cells in the mesh for Putnam nozzle is 8.99x105. The final number of cells in the mesh 

for Seiner nozzle is 2.09x105. The final number of cells in the mesh for Eggers Nozzle is 

2.36x105. For all cases, second order upwind scheme is used. SST k-ω model is also run with a 

third order MUCSL scheme. However, no noticeable difference between the results from second 

order and the third order schemes is observed. The initial convergence criteria for various 

residuals is set at 1x 10-6. However, the residual values many times did not reach a value of 10-6, 

therefore the solution was determined converged when the drag coefficient on the wall became 

constant over a large number of iterations.
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Figure 4 Original and adapted grids for the Putnam nozzle.         

 

Figure 5 Original and adapted grids for the Seiner nozzle.  
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Figure 6 Original and Adapted grids for Eggers Nozzle 

5.2 Putnam Nozzle Results 
 

In case of Putnam nozzle, the freestream Mach number is close to the Mach number at 

the jet exhaust, therefore this case does not exhibit a strong thick mixing layer. Variation in 

computed ΔP/P0 and Mach number profiles at 15.24cm above the centerline of the nozzle are 

compared with the experimental data in Fig. 7 and Fig. 8 respectively using the standard k-ε, SA, 

SST k-ω models with and without compressibility correction, and the WA model without 

compressibility correction. All models capture the shock structure quite well. ΔP/P0 and Mach 

number profiles from the simulation also agree very well with the experimental results. Figures 9 

and 10 show the Mach number contours in the Putnam nozzle exhaust obtained with the SST k-ω 

model. Figures 11 and 12 show the static pressure contours in the Putnam nozzle exhaust 

obtained with the SST k-ω model.  
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Figure 7 Variation in Pressure ΔP/P0 along the axis at a distance 15.24 cm above the centerline of Putnam nozzle. 

 

 

Figure 8 Variation in Mach number along the axis at a distance 15.24 cm above the centerline of Putnam nozzle. 
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Figure 9 Mach contours in Putnam nozzle exhaust using the SST k-ω model.                                                                         

     

Figure 10 Zoomed-in Mach contours in Putnam nozzle exhaust using SST k-ω model. 
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Figure 11 Pressure contours in Putnam nozzle exhaust using SST k-ω model. 

  

Figure 12 Zoomed-in pressure contours in Putnam nozzle exhaust using SST k-ω model. 
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5.3 Seiner Nozzle Results 

5.3.1 Results without Compressibility Correction 

CFD simulations for Seiner nozzle are conducted with SA model, SST k-ω model with 

and without compressibility correction, the standard k-ε model with and without compressibility 

correction, low Reynolds number k-ε models of Yang and Shih, Abid, and Launder and Sharma 

with and without compressibility correction and the Wray-Agarwal(WA) model with and 

without compressibility correction.  

The baseline turbulence models without compressibility correction, namely the SST k-ω, 

standard k-ε, Wray-Agarwal and SA model results are compared with the experimental data in 

Fig. 13. Although all the baseline turbulence models except the WA model show the expected 

oscillatory behavior in the exhaust plume, Fig. 13 shows that the standard turbulence models in 

ANSYS Fluent fail to capture the strength and location of the internal shock structure of the 

exhaust plume from the Seiner nozzle. It should be noted that the WA model correctly captures 

the peak location of the shock oscillation although not the amplitude. However, the strength of 

the shock structure in the exhaust plume is completely different compared to all other baseline 

models. The baseline models show faster shear layer growth rate causing the Mach number to 

drop faster than the experimental data. This behavior is expected since the baseline models do 

not include the compressibility effects. To allow for slow growth rate of shear layer, 

compressibility correction is needed since it inhibits the shear layer growth rate. Therefore, 

Sarkar’s compressibility correction [12] is applied to the baseline models to accurately capture 

the shear layer growth observed in the experimental data. Figures 14 and 15 show the Mach 

number contours in the Seiner nozzle exhaust obtained with the SST k-ω model. Figures 16 and 
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17 show the static pressure contours in the Seiner nozzle exhaust obtained with the SST k-ω 

model. 

 

Figure 13 Variation in Mach number along the centerline from the jet exit for Seiner nozzle using various standard 

baseline turbulence models. 
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Figure 14 Mach contours in Seiner nozzle exhaust using SST k-w model.    

 

Figure 15 Zoomed-in Mach contours in Seiner nozzle exhaust using SST k-w model. 
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Figure 16  Pressure contours in Seiner nozzle exhaust using SST k-w model.  

   

Figure 17 Zoomed-in pressure contours in Seiner nozzle exhaust using SST k-w model. 
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5.3.2 Results with Compressibility Correction for k-ε and SST k-ω Models 

Simulations for Seiner nozzle are conducted with standard k-ε model with compressibility 

correction, the SST k-ω model with compressibility correction, and the Yang - Shih low 

Reynolds number k-ε model with and without compressibility correction. Figure 18 compares the 

results obtained from each turbulence model. SST k-ω model with compressibility correction 

fails to match the experimental data. The k-ε model with compressibility correction and Yang-

Shih low Reynolds number k-ε model with and without compressibility correction give results in 

closer agreement with the experimental data. Results in Fig. 18 show that k-ε model with 

compressibility correction performs relatively well in capturing the mixing layer and the length 

of the potential core.  

 

Figure 18 Variation in Mach number along the centerline from the jet exit for Seiner nozzle using various standard 

turbulence models with Sarkar’s compressibility correction. 
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The importance of capturing the near wall boundary layer profile has been highlighted in 

the literature by the results of low Reynolds number k-ε model. Figure 18 shows that the low 

Reynolds number k-ε model compressibility correction performs almost as well as the standard 

k-ε model with compressibility correction. To evaluate the effect of changing the coefficient of 

the dilation dissipation term 𝛼1 in compressibility correction, values of 𝛼1 = 0.5, 0.7, and 1.5 

were tested against the reference value of 1.0 in the standard k-ε model. Results are presented in 

Fig. 19. As 𝛼1 is increased, the length of the potential core also increases. This is expected since 

the effect of compressibility correction increases with increase in the value of 𝛼1. Results in Fig. 

19 show that the model with  𝛼1 of 0.5 captures the mixing layer and length of the potential core 

better than the model with other values of the coefficient. However, even the best result using the 

standard k-ε model with compressibility correction fails to capture the experimental results and 

the USM3D results [16]. 

 

Figure 19 Variation in Mach number along the centerline from the jet exit for Seiner nozzle using k- ε model with various 

values of α1 in Sarkar’s compressibility correction. 
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The results from using the low Reynolds number k-ε models of Yang-Shih, Abid, and 

Launder-Sharma with compressibility correction are shown in Fig. 20. This Figure shows that 

the compressibility corrected models surprisingly deviate from the experimental data or do not 

show any significant improvement. The models with compressibility correction predict either a 

longer or same potential core length, and nearly the same mixing layer velocity decay rate. It has 

been noted by Gross et al. [17] that Sarkar’s compressibility correction underpredicts the skin 

friction by 18 % at Mach 4. From Fig. 13, it can be seen that the SST k-ω baseline model 

captures the length of potential core quite accurately compared to the experimental data. The fact 

that SST k-ω performs the best in capturing the length of the potential core agrees with the 

conventional knowledge that SST k-ω model predicts the wall boundary layer character 

accurately for wide range of Mach numbers and geometries. Figure 21 compares the skin friction 

data employing the Abid’s low Reynolds number k-ε model with and without compressibility 

correction, SST k-ω model, and k-ε model with and without compressibility correction. These 

models are chosen for comparison since they capture the length of the potential core quite well. 

Figure 21 shows that Abid’s low Reynolds number k-ε model with compressibility correction 

overpredicts the skin friction compared to the model without compressibility correction. 

However, this phenomena is prevented for the standard k-ε model since it uses a wall function to 

calculate the skin friction coefficient. The skin friction coefficient calculated by the k-ε model 

matches well with that of SST k-ω model while the skin friction coefficient calculated from 

Abid’s low Reynold number k-ε model fails to match that from the SST k-ω model. This results 

indicates that the standard k-ε model does not perform well because it requires wall function 

while the low Reynolds number k-ε models do not perform well since the compressibility 
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correction makes the models overpredict the skin friction coefficient resulting in longer potential 

core.  

 

Figure 20 Variation in Mach number along the centerline from the jet exit for Seiner nozzle using different low Reynolds 

number k- ε models with and without Sarkar’s compressibility correction. 
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Figure 21 Comparison of Skin Friction coefficient on the wall of Seiner nozzle using various versions of  k- ε models with 

and without Sarkar’s compressibility correction; x = 0 is the jet exit. 

SST k-ω model with compressibility correction has been previously used to simulate the 

jet exhaust from Eggers nozzle which also shows significantly thicker shear layer due to a large 

velocity difference between the freestream and the jet exhaust [18]. The model has been shown 

to accurately capture the mixing layer and the length of the potential core using the USM3D flow 

solver [18]. SST k-ω model without the Sarkar’s compressibility correction and with the 

compressibility correction embedded in Fluent was also employed.  However, as shown in Figs. 

13 and 18, the Fluent simulation using SST k-ω model with and without compressibility 

correction fails to agree with the experimental data and USM3D results. The difference between 

the flow solver USM3D and ANSYS Fluent is that USM3D code uses a method proposed by 

Suzen and Hoffman [15] where the Sarkar’s compressibility correction is only applied in the free 

shear layer and is turned-off near the wall. SST k-ω model with compressibility correction 

embedded in Fluent also turns the correction on and off depending on the distance to the wall. 
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However, the correction term in Fluent does not include pressure dilation and dilation dissipation 

which are included in Sarkar’s correction. Similar effect can be achieved with a wall function 

utilized by the standard k-ε model since the method proposed by Suzen and Hoffman [15] also 

completely turns-off the compressibility correction in the near wall region. However, there is 

inherent difference in the use of wall function vs. the calculation of transport equation down to 

the wall. It can be concluded that a blending function applied to the compressibility correction 

only in the shear flow region may be needed to correctly capture the mixing layer growth and the 

length of the potential core. 

5.3.3 Results with Compressibility Correction for Wray-Agarwal Model 

 The method to obtain the compressibility correction for Wray-Agarwal model was 

described in Section 3.3. To compare the effects of two compressibility corrections, that of 

Sarkar and Wilcox, they are tested against each other. However, application of different forms of 

the compressibility correction is not limited to these two because the type of compressibility 

correction can easily be switched as suggested in Eq. (53). Moreover, different coefficients in the 

compressibility correction are tested to closely match the experimental results. The major 

difference between the compressibility correction of Sarkar and Wilcox is the existence of a 

Heaviside function in Wilcox’s formulation that turns off the compressibility term near the wall. 

As mentioned in the previous section, compressibility correction can have a negative effect on 

the boundary layer profile. In Fig. 22, Mach number profile is plotted against a normalized 

distance at the centerline for WA model with either the Wilcox correction or Sarkar correction. 

The compressibility coefficient, Ccomp, is plotted with different values of 0.01, 0.05 and 0.3. It is 

evident from this figure that compressibility corrected WA model based on either Wilcox or 

Sarkar correction gives almost the same results. Also, Ccomp of 0.05 in WA model matches the 
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SST k-ω results with compressibility correction the best. However, like SST k-ω and k-ε models 

with compressibility correction, WA model does not perfectly capture the experimental results 

along the centerline.  

 

Figure 22 Variation in Mach number along the centerline from the jet exit for Seiner nozzle using Wray-Agarwal model 

with Sarkar’s compressibility correction. 

5.4 Eggers Nozzle Results 
Eggers nozzle is another case with shear layer similar to that in case of Seiner nozzle 

results. This case provides experimental data in radial direction at various horizontal locations 

along the x-axis that allows for a more detailed and better comparison of results from various 

turbulence models. Simulations for Eggers nozzle were conducted with SA model, SST k-ω 

model with and without compressibility correction, the standard k-ε model with and without 

compressibility correction, Launder and Sharma low Reynold number k-ε models with and 
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without compressibility correction and the Wray-Agarwal model with and without 

compressibility correction. 

5.4.1 Results without Compressibility Correction 

Results from baseline turbulence models without compressibility correction in Fig. 23 

show the normalized velocity at the centerline of the nozzle obtained from k-ε, Launder-Sharma 

Low Reynolds k-ε, Yang-Shih Low Reynolds k-ε, SST k-ω, and Wray –Agarwal turbulence 

models without compressibility correction. Results indicate that all models except for SST k- ω 

fail to capture the length of potential core. However, k- ε variant models including both the Low 

Reynolds k-ε models capture the centerline profile very well downstream. A good performance 

of low Reynolds k-ε models is also expected since they performed very well in the case of Seiner 

nozzle. Figure 24 shows the radial velocity profile at the exit of the nozzle. The results from Fig. 

24 show that the velocity profiles from different models are very similar to each other at the exit 

of the nozzle. It confirms the expectation that there will not be much difference in velocity 

profiles at the exit.   

It is worthy to pay attention to Figures 25, 26 and 27. Figure 25 shows the radial velocity 

profile at x/rexit = 26.93. Figure 26 shows the radial velocity profile at x/rexit = 51.96. Figure 27 

shows the radial velocity profile at x/rexit=121.3. All figures indicate that, although Wray-

Agarwal turbulence model like other models fails to capture the exhaust plume characteristic 

along the centerline, it captures the radial velocity profiles very well. Figures 23 and 25 show 

that the results from Wray-Agarwal turbulence model are slightly higher than the experimental 

value along the axis. However, away from the centerline, the velocity profiles quickly capture 

the experimental results. The next best baseline model that captures the experimental results well 

is the Launder-Sharma Low Reynolds k-ε model. Although Launder-Sharma Low Reynolds k- ε 
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model performs better in capturing the experimental radial velocity profile at x/rexit = 51.96 in 

Fig. 26, Wray-Agarwal again outperforms in capturing experimental radial velocity profile at 

x/rexit =121.3 as shown in Fig. 27. SST k-ω and SA turbulence models without compressibility 

correction fail to capture the experimental results. 

 

Figure 23 Variation in u/u_exit along the centerline from the jet exit for Eggers nozzle using various baseline turbulence 

models without compressibility correction. 
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Figure 24 Variation in u/u_exit along the radial direction at x/r_exit=3.06 for Eggers nozzle using various baseline 

turbulence models without compressibility correction. 

 

Figure 25 Variation in u/u_exit along the radial direction at x/r_exit=26.93 for Eggers nozzle using various baseline 

turbulence models without compressibility correction. 
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Figure 26 Variation in u/u_exit along the radial direction at x/r_exit=51.96 for Eggers nozzle using various baseline 

turbulence models without compressibility correction.

 

Figure 27 Variation in u/u_exit along the radial direction at x/r_exit=121.3 for Eggers nozzle using various baseline 

turbulence models without compressibility correction. 
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5.4.2 Results with Compressibility Correction SST k-ω, k-ε and Low 

Reynolds Number k-ε Models 

In this section, the effects of compressibility correction for SST k-ω, k-ε and Low 

Reynold number k-ε are examined. All compressibility correction compared in this section use 

the Sarkar’s compressibility coefficient of 0.1. As was mentioned in section 5.3.2, there are 

multiple variables that affect the results in case of thick shear layer. In particular, the need for 

compressibility correction and accurate prediction of boundary layer profile near the nozzle exit 

was highlighted. Also, the results for Seiner nozzle indicate that the compressibility correction 

has a negative effect on the boundary layer which results in the overall inaccuracy for turbulence 

models in prediction of supersonic jet exhaust. Therefore, while compressibility correction is 

needed in shear layer to accurately capture the plume characteristics, it should be carefully 

turned off to decrease the negative effect it has on the boundary layer near nozzle exit. 

Like previous results for Seiner nozzle, low Reynolds number k-ε models with 

compressibility correction did not improve the accuracy of the result in predicting the length of 

potential core as shown in Fig. 28. Surprisingly the models with compressibility correction 

produced more inaccurate results in predicting the length of the potential core. However, the 

compressibility correction’s beneficial effect in the prediction of the velocity profile can be 

demonstrated when comparing the radial velocity profile results and experimental data. As 

mentioned in section 5.4.1, the velocity profiles predicted from different turbulence models are 

very similar at the exit of the nozzle as shown in Figs 29 and 30. Fig 32 shows how SST k-ω 

model with Sarkar’s compressibility correction improves the results remarkably in capturing the 

experimental results compared to the baseline model without compressibility correction. Figure 

32 shows the radial velocity profile at x/rexit = 26.93. In this figure, while SST k-ω model with 
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compressibility correction goes right through the experimental data profile, SST k-ω without the 

compressibility correction slightly underpredicts the data. Figures 34 and 36 show the radial 

velocity profile using the SST k-ω model with and without compressibility correction at x/rexit = 

51.96 and x/rexit = 121.3, respectively. In these two figures, the difference between the 

performance of the compressibility corrected SST k-ω and the its baseline model becomes 

greater, showing the beneficial effect of the compressibility correction. 

It is worth noting that the compressibility correction may have a negative effect in 

predicting the experimental data in some cases if the compressibility correction is not turned-off 

in the wall boundary layer near the nozzle exit. Figures 33 and 35 show the radial velocity 

profiles obtained using the k-ε and low Reynold number k-ε turbulence model at x/rexit = 51. 96 

and x/rexit  = 121.3, respectively. The velocity profiles obtained from these two models with 

compressibility correction actually deviate from the experimental data. This phenomena may be 

due to the fact that the compressibility correction has a negative effect in the prediction of 

boundary layer near the jet exit. The fact that these two models do not have the ability to turn-off 

the compressibility correction near the wall may cause the inaccuracy in prediction of the radial 

velocity profile. This argument is further supported by examining the Wray-Agarwal model 

results in Fig. 34 and 36. In these two figures, the Sarkar’s compressibility correction which 

applies the correction to all the region including the boundary layer performs considerably worse 

than the Wilcox compressibility correction which turns off the correction near the wall via the 

Heaviside function.  
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Figure 28 Variation in u/u_exit along the centerline from the jet exit for Eggers nozzle using various turbulence models 

with and without Sarkar’s compressibility correction. 

 

Figure 29 Variation in u/u_exit along the radial direction at x/r_exit=3.06 for Eggers nozzle using k-ε, low Reynold 

number k-ε turbulence model and SA models with and without Sarkar’s compressibility correction. 
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Figure 30 Variation in u/u_exit along the radial direction at x/r_exit=3.06 for Eggers nozzle using SST k-ω and Wray-

Agarwal turbulence models with and without compressibility correction. 

 

Figure 31 Variation in u/u_exit along the radial direction at x/r_exit=26.93 for Eggers nozzle using k-ε, low Reynold 

number k-ε turbulence model and SA models with and without Sarkar’s compressibility correction. 
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Figure 32 Variation in u/u_exit along the radial direction at x/r_exit=26.93 for Eggers nozzle using SST k-ω and Wray-

Agarwal turbulence models with and without compressibility correction. 

 

Figure 33 Variation in u/u_exit along the radial direction at x/r_exit=51.96 for Eggers nozzle using k-ε, low Reynold 

number k-ε turbulence model and SA models with and without Sarkar’s compressibility correction. 
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Figure 34 Variation in u/u_exit along the radial direction at x/r_exit=51.96 for Eggers nozzle using SST k-ω and Wray-

Agarwal turbulence models with and without compressibility correction. 

 

Figure 35 Variation in u/u_exit along the radial direction at x/r_exit=121.3 for Eggers nozzle using k-ε, low Reynold 

number k-ε turbulence model and SA models with and without Sarkar compressibility correction. 
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Figure 36 Variation in u/u_exit along the radial direction at x/r_exit=121.3 for Eggers nozzle using SST k-ω and Wray-

Agarwal turbulence models with and without compressibility correction. 

5.4.3  Results with Compressibility Correction for WA Model 

In this section, the effects of compressibility correction for Wray-Agarwal turbulence 

model with two compressibility corrections are compared along with the SST k-ω model with 

compressibility correction. The form of compressibility correction is switched between that by 

Sarkar and that by Wilcox. The results from Wray-Agarwal model with and without 

compressibility correction suggest correction that Wray-Agarwal turbulence model with Wilcox 

compressibility correction performs the best.  

Figure 36 shows the normalized velocity profile along the centerline. It shows that none 

of the models correctly captures the length of the potential core. However, the best agreement is 

obtained either from the Wray Agarwal model without compressibility correction or from Wray-

Agarwal with Wilcox compressibility correction. Figures 38, 39 and 40, which show the radial 
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velocity profiles at x/rexit = 26.93, x/rexit =51.96 and, x/rexit =1212.3, respectively, demonstrate that 

the Wray-Agarwal turbulence model with Wilcox compressibility correction formation captures 

the experimental results very well. WA model performs better in capturing the radial velocity 

profile than the SST k-w model with Sarkar’s compressibility correction as can be seen in Figs. 

32, 34, and 36. As mentioned in section 5.4.2, Sarkar’s compressibility correction does not 

inhibit the presence of the correction near the nozzle wall which may be the cause of inaccuracy 

in the simulation. 

An interesting observation from the results in that the Wray-Agarwal model without the 

compressibility correction always outperforms the results from the WA model with the 

compressibility correction. In Fig 38, it can be seen that the velocity profile from Wray-Agarwal 

model starts off slightly higher than the experimental data but quickly captures the experimental 

data and performs better than all other models from Fig. 40. It can be seen that the WA model 

without the compressibility correction performs as accurately as the model with Wilcox 

compressibility correction.  
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Figure 37 Variation in u/u_exit along the centerline from the jet exit for Eggers nozzle using Wray-Agarwal turbulence 

models with two different compressibility corrections. 

 

Figure 38 Variation in u/u_exit along the radial direction at x/r_exit=26.93 for Eggers nozzle using Wray-Agarwal 

turbulence models with two different compressibility corrections. 
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Figure 39 Variation in u/u_exit along the radial direction at x/r_exit=51.96 for Eggers nozzle using Wray-Agarwal 

turbulence models with two different compressibility corrections.

 

Figure 40 Variation in u/u_exit along the radial direction at x/r_exit=121.3 for Eggers nozzle using Wray-Agarwal 

turbulence models with two different compressibility corrections. 
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Chapter 6                                                  

Conclusions 
In this thesis, three benchmark axisymmetric supersonic exhaust jet flows have been 

computed using ANSYS Fluent with a number of eddy viscosity turbulence models. Four 

baseline eddy-viscosity turbulence models (SA, SST k-ω, standard k-ϵ and WA) and their 

compressibility corrected forms, and the low Reynold number k-ε models by Yang-Shih, Abid, 

Launder-Sharma with Sarkar compressibility correction were employed in the computations. An 

auto adapted mesh was used to refine the grid in areas of large density gradients. For the Putnam 

nozzle, all baseline turbulence models were able to correctly predict the jet shear layer and the 

shock structures in the plume.  The inclusion of Sarkar’s compressibility correction in the 

turbulence models did not show further improvement in the results. A thicker shear layer exists 

in exhaust jet from Seiner nozzle. In this case, the baseline turbulence models were not able to 

correctly capture the growth of shear layer and the length of the potential core of the jet.  The 

inclusion of compressibility corrections improved results somewhat but still satisfactory results 

could not be obtained. The good performance of low Reynolds k-ε models indicates that accurate 

prediction of boundary layer profile at jet exit is needed in the prediction of shear layer mixing 

rate and potential core length. It was shown that the compressibility correction may have a 

negative effect on simulation of boundary layer by computing the skin friction on the nozzle wall 

using various models. Finally, it was shown for Eggers nozzle that the models that do not have 

the ability to turn-off the compressibility correction in boundary layer performed worse than 

their baseline models without compressibility correction in several cases. Combined with the 

knowledge that the compressibility correction may have a negative effect on the boundary layer 

profile accuracy, the computation for two case reconfirmed that capturing boundary layer profile 
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at the nozzle exit is important in capturing the shear layer mixing rate and the length of the 

potential core.  

Another highlight of the thesis is the performance of the WA model. Although it did not 

capture the Mach number profile in Seiner nozzle quite well, it performed very well for Eggers 

nozzle. In evaluation of the results with WA model, it was found that the WA model with 

Wilcox compressibility correction performed the best in capturing the velocity profile in shear 

layer. However, all of the models were not able to capture the length of the potential core even 

for the Eggers nozzle.  

This study shows the importance of compressibility corrections in the accurate prediction of 

compressible mixing layers and jet core length. However, improvements are needed in 

turbulence modeling of compressible shear layer flows for accurate predictions of this class of 

flow fields. 

  



51 

 

Chapter 7                                                   
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