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Lead halide perovskites (CH3NH3PbI3 and its variants) are promising solar cell absorber materials. 

Though the reported power conversion efficiencies of lead halide perovskite solar cells (up to 21%) 

are competitive with commercial silicon solar cells, lead toxicity in these perovskites present a 

challenge to further scale-up and eventual commercialization. Recently, bismuth (Bi3+) based organic 

halide perovskite has drawn attention as a substitution for lead-free perovskites, since it is a non-

toxic 6p-block element, isoelectronic with Pb2+. Methylammonium bismuth iodide ((CH3NH3)3Bi2I9) 

is reported for its non-toxic constituents and favorable optical band gap, thus making it a promising 

light absorber material. However, manufacturing ready, scale-up processes have not been developed 

for this compound and this presents a significant roadblock in integrating low-cost, non-toxic Bi-

based perovskites into modern solar cell devices.   

Here, we report a single step, atmospheric pressure, chemical vapor deposition (CVD) 

process for (CH3NH3)3Bi2I9. Atmospheric CVD addresses the need for rapid deposition across large 

area substrates, thus making the deposition of (CH3NH3)3Bi2I9 thin films manufacturing-scalable. 

The precursors used are bismuth iodide (BiI3) and methylammonium iodide (CH3NH3I) which are 



IX 
 

sublimated and subsequently deposited inside a tube furnace reactor with a well-controlled 

temperature profile. Extensive characterization is conducted via grazing incidence X-ray diffraction, 

scanning electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, UV-vis 

spectroscopy and variable temperature Hall measurements. Structural and electronic stability of 

(CH3NH3)3Bi2I9 films in ambient are measured and degradation mechanisms elucidated. 
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1 Introduction 
1.1 Motivation  

Photovoltaic solar cells are promising renewable power sources and are regarded as a viable 

future substitute for fossil-fuel-based electricity generation systems. Silicon-based and inorganic (e.g., 

cadmium telluride, CdTe) thin film photovoltaic solar panels are commercially available now and are 

readily available in the commodity market. However, the cost of production and the limitation of 

efficiency from material have driven people to search new photovoltaic materials. To reduce the 

dependence of fossil fuel and truly adopt an environmental friendly life style brought by 

photovoltaic solar cells, low cost, vacuum-free fabrication methods and non-toxic materials need to 

be used and this has led to the emergence of a new generation of thin film solar cells.  

Perovskite based solar cells have emerged as one of the most promising of devices, where 

most of its layers are solution-processed. Lead halide perovskites (CH3NH3PbI3 and its variants) is 

an interesting example, with reported power conversion efficiencies that have rapidly increased 

from1 3.8% in 2009, to an impressive2 22.1% in 2017. The fundamental material properties in lead 

halide perovskites that drive such progress are its high charge carrier mobilities3, high optical 

absorption coefficient,4 ideal and tunable bandgap5 and ultra-long carrier diffusion lengths up to a 

few microns. 3, 6, 7  

Though the reported power conversion efficiencies of lead halide perovskite solar cells are 

competitive with commercial silicon solar cells, lead toxicity in these perovskites present a challenge 

to further scale-up and eventual commercialization. Recently, bismuth8 (Bi3+) has drawn attention9 as 

a substituent to the A-site occupied by Pb2+ for ‘lead-free’ perovskites since it is a non-toxic 6p-

block element that is isoelectronic10 with Pb2+. Reports on promising optoelectronic and 
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photovoltaic properties of methylammonium bismuth iodide (MA3Bi2I9, (CH3NH3)3Bi2I9) with high 

absorption coefficient11 and long term stability12 have been published. However, MA3Bi2I9 based 

solar cells suffer from low efficiency.13 This poor performance is suggested to originate from the 

solution deposition techniques that result in poor morphology and coverage of the perovskite films 

on substrate 14, 15.  

Therefore, in this thesis, we demonstrate a gas-phase deposition technique for MA3Bi2I9 thin 

films using a low temperature (160 °C), atmospheric pressure chemical vapor deposition (APCVD) 

process. We obtain films with better process control over morphology, purity and coverage with the 

added advantage of rapid scale-up and integration with other solar manufacturing processes.  

1.2 Atmospheric Pressure Chemical Vapor Deposition 

Chemical vapor deposition (CVD) is used to deposit solid material onto a substrate. This 

involves the reaction or decomposition of one or more precursor gases in a chamber containing one 

or more heated substrates to be coated. The reactions occur on or near the hot substrate, resulting in 

the deposition of a thin film on the surface. The chemical by-products or unreacted gases are then 

eliminated from the reactor chamber via the exhaust system. A typical reaction process in CVD 

furnace is shown as Figure 1.1. First, mass transport of reactant and diluent gases in the bulk gas 

flow region from the reactor inlet to the deposition zone. Then, the gas phase reaction leading to 

form precursors and by-products. The mass transport of film precursors and reactants to growth 

surface, following with the adsorption of film precursors and reactants on the growth surface. After 

that, surface reaction of adatoms selectively occurring on the heated surface. Then the surface 

migration of film formers to the grows sites and nucleation. Finally, the desorption of by-products 

from surface reaction and mass transports in the bulk gas flow region away from the deposition 

zone16. CVD takes place under vacuum and high temperature to avoid inclusions in the film, or 
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creation of impurities from the side reaction of the precursor gases. Normally, the large diffusion 

coefficient at low pressure leading to a growth limited by the rate of surface reactions, but with a 

high purity and uniformity films.  

Atmospheric-pressure chemical vapor deposition (APCVD) is a synthesis method where the 

substrate is exposed to one or more volatile precursors at atmospheric pressure, which react or 

decompose on the surface to produce a deposit. An APCVD reactor operates in the mass-transport 

regime so that wafer access become more important. APCVD is a good method for applying thin 

films to glass substrates17. The process has the advantage of being easily integrated into float-glass 

production lines with fast deposition rates18, simple process and lower reaction temperatures but 

may cause poor morphology and particle contamination without a sufficient flow of diluent19.  

 

Figure 1.1 Schematic representation of the fundamental transport and reaction steps 

underlying CVD20 
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1.3 Synthesis Routes for Organic-inorganic Halide 
Thin Films 

Lead perovskites thin films have widely been prepared by dip/spin coating21-23, gas-assisted 

spin coating processes14, 24-26 and gas involved annealing27 after spin coating process. Vapor phase 

deposition methods have been reported for the formation of lead perovskite films as well. These 

include two step physical vapor deposition28, single step physical vapor deposition29, two step 

chemical vapor deposition30, 31 and single step chemical vapor deposition32, 33. Details of these 

processes and the resultant film properties are provided in Table 1. However, there are no report of 

gas-phase processing of bismuth perovskite thin films. Furthermore, a detailed discussion of the 

mechanism of deposition of organic-inorganic halide thin films is missing in literature as well. 
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Table 1 different process and resultant film properties 

Synthesis 

process 
Perovskite Precursors SEM 

Study 

(PCE%) 

Dip/spin 

coating 

(By Ahn 

et al.)21 

CH3NH3PbI3 CH3NH3I +PbI2 

 

 

Hole 

mobility 

3.9×10-3 

cm2/(V·s); 

average 

PCE 18.3% 

Gas-

assisted 

spin 

coating 

(By Liu et 

al.)14 

CH3NH3PbI3-xClx CH3NH3I+PbCl2 

 

 

PCE of 

over 15 % 

Gas 

involved 

annealing 

(By Li et 

al.)27 

CH3NH3PbI3-xClx 
CH3NH3I+mixed 

PbCl2/PbI2 

 

a top PCE 

of 16.8%, 
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2-steps 

PVD 

(By Costa 

et al.)28 

No shown 

PVD perovskite 

precursors 

PbCl2, PbBr2, and 

PbI2. 

 

Deposition 

perovskite 

precursors 

1-step 

PVD 

(By Fan 

et al.)29 

CH3NH3PbI3 CH3NH3PbI3 

 

A PCE of 

10.9%; 

2-steps 

CVD 

(By Chen 

et al.)31 

CH3NH3PbI3-xClx CH3NH3I+PbCl2 

 

A PCE of 

15.4%; free 

of high-

temperature 

fabrication 

1-step 

CVD 

(By 

Tavakoli 

et al.)33 

CH3NH3PbI3-xClx CH3NH3I+PbCl2 

 

A PCE of 

11.1% 
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Thus, the main objective of this thesis is to develop an APCVD process of lead-free 

perovskite films and formulate a deep understanding of the film forming mechanism, the structural 

properties and its inter-relationship with electrical and optical properties. 

The structure of the thesis is as follows: Chapter 2 deals with experimental set up details. 

Chapter 3 provides details on the structural characterization of the APCVD process in lead-free 

perovskite films. Chapter 4 characterizes electrical and optical properties of films. Finally, chapter 5 

discusses the degradation of film properties under ambient conditions. The contents of the 

following chapters are part of a manuscript entitled “Atmospheric Pressure Chemical Vapor 

Deposition of Methylammonium Bismuth Iodide Thin Films for Solar Cell Applications” which has 

been submitted to the Journal of Materials Chemistry - A.  
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2 Materials and Experiments 
2.1 Precursors Preparations  
2.1.1 Methylammonium iodide preparation & characterization 

Methylammonium iodide (MAI, (CH3NH3I)) was synthesized using minor modifications to a 

previously published procedure33. First, 25 mL of methylamine (33 wt% in ethanol, Sigma-Aldrich) 

was added to a 250 mL, three-neck flask maintained at a temperature lower than 7°C. 10 mL of 

hydroiodic acid (HI, 57 wt% in water, Sigma-Aldrich) was added dropwise to the flask at a speed of 

approximately 6 drops/10secs to MAI solution while the solution was stirred at 300 rpm. The white 

MAI precipitate was recovered from the solution using rotary evaporation at a pressure of 60 Torr 

with the flask in a water bath at 50 °C.  

The collected MAI powder was dissolved in 10 ml absolute ethanol while stirring and 

sonicating for 10 minutes and then precipitated by adding 50-55 ml of diethyl ether to the solution. 

After filtration, the process was repeated 3 times, and finally a white powder was obtained and dried 

at 60 °C overnight under vacuum using a Schlenk line. The phase phase-purity of the compound 

was confirmed by a Bruker D8 Advance powder X-ray diffractometer, as shown in Figure 2.1. 
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Figure 2.1 XRD of MAI powder (black) with corresponding JCPDS file # 100737 in red 

below. 

2.1.2 Bismuth iodide preparation & characterization 

BiI3 powder was obtained from Aldrich, Inc. and used without further purification. For the 

synthesis of BiI3 platelets, we controlled different deposition temperature by both the tube furnace 

temperature set system within a range from 200 °C to 300 °C and various types of substrates. The 

optical images are provided in Appendix A. The mass loss behavior of bismuth iodide (BiI3) 

powders was generated through thermogravimetric analysis (TGA). TGA was performed using 

Q5000 IR (TA Instruments), heating at a steady heating rate (typically between 2.5 and 10 °C min−1) 

under a constant 20 mL min−1 N2 gas flow. The investigated temperature intervals were between a 

minimum of 25 °C to a maximum of 800 °C. Ceramic crucibles and approximately 5−15 mg of 
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sample material were employed for each measurement. The approach presented here is adapted 

from Dualeh et al.34 

2.2 Perovskite Synthesis via APCVD 

The MAI powder prepared above and BiI3 powder were used as precursors for APCVD. A 

quartz tube mounted on a single zone furnace (Compact Split Tube Furnace with 1” Tube-OTF-

1200X-S, MTI Corporation.) was used for all APCVD studies. Silicon wafers (Test Grade, 

University Wafers Inc.) with a 100 nm thermal oxide layer, glass slides (48300-025, VWR) and pre-

cut 5 mm x 5 mm high purity quartz substrates (MTI Corporation) were used as substrates. The 

silicon and glass substrates were cut to 1 cm x 2 cm size, ultrasonically cleaned in DI water, acetone 

(99.9% Aldrich) and ethanol (99.9% Aldrich) mixture for 10 minutes, washed by IPA and DI water, 

dried in compressed air, cleaned in UV Ozone (Ossila E511) for 10 minutes, and then immediately 

placed in the quartz tube at 23 cm away from the upstream. The temperature of APCVD furnace 

was measured by customized program attached with N-type thermocouple and a MAX 31856 single 

chip microcomputer. The details were attached in Appendix A. 

Initially, 50 mg of MAI and 60 mg of BiI3 were used as sources and placed at 2.5 cm and 13 

cm from the upstream end of the quartz tube in alumina boat crucibles. First, the quartz tube was 

purged with 280 standard cubic centimeters per minute (sccm) flow of ultra-high purity Ar gas 

(UHP 300, Airgas) for 10 minutes. The temperature in the quartz tube was then raised at a rate of 

3.4 oC / minute until the temperature at the center of the tube reached 230 oC. The furnace was 

maintained at this temperature for various times of 15, 30, 45, 60, 90, 180, 240, 360 and 480 minutes 

of deposition.  After deposition, the furnace was naturally allowed to cool down to ambient 

temperature. This usually took 3 hours. The detailed discussion on synthesis process is presented in 

chapter 3. 
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2.3 Film Characterization 

Film morphology was characterized by a JEOL JSM-7001 LVF Field Emission SEM under 

an accelerating voltage of 10 kV. X-ray diffraction (2θ scans) of deposited MA3Bi2I9 films were 

obtained by Rigaku IV X-ray diffractometer using the Cu Kα X-ray source (λ = 1.5405 Å) within a 

diffraction angle (2θ) from 5° to 60°. X-ray photoelectron spectroscopy (XPS) was measured using 

the PHI Versa Probe II spectrometer (Physical Electronics) with a photon energy of 1486.6 eV (Al 

Kα). A UV–vis spectrophotometer (UV-1800, Shimadzu) was used to measure optical transmittance 

of the MA3Bi2I9 films on glass substrates.  

The electrochemical analysis was performed with a standard three-electrode cell using the 

cyclic voltammetry (CV) mode in a Biologic potentiostat (SP-200, Bio-Logic SAS) with a scan rate of 

20 mV/s. This approach presented here is adapted from Myung et al35. MA3Bi2I9 films was used as 

the working electrode, a Pt foil acted as the counter electrode, and Ag/0.01 M AgNO3 + 0.1 M 

tetrabutylammonium hexafluorophosphate (TBAPF6) (98%, Aldrich) acetonitrile (99.9%, Sigma-

Aldrich) as the reference electrode (BAS Inc.). The conduction band (CB) energy was calculated 

from the onset of reduction potential (Ered) values, assuming the energy level of 

ferrocene/ferrocenium (Fc/Fc+) to be −4.8 eV below the vacuum level. The formal potential of 

Fc/Fc+ was measured in 0.001 M Ferrocene (99%, Sigma-Aldrich) in 15 mL 0.1 M TBAPF6 

acetonitrile to be 0.075 V against a Ag/Ag+ reference electrode. Therefore, from equation (2.1)  

ECB (ELUMO) = − (Ered + 4.725) eV,  (2.1) 

where the onset potential values(Ered) are relative to the Ag/Ag+ reference electrode. The 

valence band (VB) energy, EVB (EHOMO) was calculated based on the band gap value determined from 

UV−vis spectra, EVB (EHOMO) = ECB −Eg (indirect). MA3Bi2I9 films deposited on glass slides were 

immersed in a solution of 0.1 M TBAPF6, acetonitrile for conducting these tests.  
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All electronic transport property measurements were carried out in a commercial probe 

station (Janis ST500-1-2CX) with Cu–Be probe tips having 50 μm tip-diameter. A Keithley 2400 

source meter was used for resistivity measurements on MA3Bi2I9 films deposited on 5 mm × 5 mm 

high-purity quartz substrates (MTI Corp). Van der Pauw structures were created by first sputtering 

50 nm Pt on the four corners of the quartz substrates prior to MA3Bi2I9 deposition. After MA3Bi2I9 

deposition, indium dots were attached to these four corners and served as the contact electrodes for 

the four probe tips. Corresponding Hall measurements were done by placing an Fe-Nd ring-magnet 

around the sample. The magnetic-field strength at the center of the ring magnet was 2135 G. The 

pressure in the chamber was maintained at or below 1x10-4  Torr.  
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3 Bismuth Perovskites Synthesis via 
APCVD 

3.1 APCVD process 

As described in chapter 2, the schematic of the experimental set-up is shown in Figure 3.1a, 

while a picture of the furnace after successful MA3Bi2I9 deposition is shown in Figure 3.1b. The 

deposition is marked by the characteristic orange color of the MA3Bi2I9 film on the downstream 

side.8  

The key aspect of an APCVD process lies in the precise placement of the MAI and BiI3 

sources along the length of the quartz furnace reactor. This allows us to co-sublimate both the 

sources together. Figure 3.1c shows the temperature profile of the furnace along the length of the 

CVD quartz tube. This calibration measurement was done prior to the deposition by sliding a 

thermocouple probe inserted inside the quartz tube with Ar flowing at the rate of 280 sccm. The 

temperature varies from 199 oC from the upstream end (labeled as 2.5 cm on the x-axis) and peaks 

to the desired temperature set-point of the furnace (230 oC) at the center of the tube (13 cm from 

the upstream end). The temperature then drops off on the downstream side to 160 oC, 23 cm from 

the upstream end. Details on profiling temperature inside the furnace is provided in Appendix A.  
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Figure 3.1 (a) Schematic of APCVD for MA3Bi2I9 thin films, (b) Image of MAI and BiI3 

boats inside the tube furnace and (c), temperature profile of the tube furnace showing the 

MAI and BiI3 sublimation temperatures and MA3Bi2I9 film deposition temperature. 

MAI is kept in the upstream side of the quartz reactor where the temperature is 199 oC. We 

note that MAI has a melting point of 270 oC. The BiI3 is kept in the middle of the quartz reactor 

where the temperature is 230 oC. BiI3 has a melting point36 of 402 oC but is known to sublimate as 

well. Thus, the Ar flow causes the simultaneous transport of MAI and BiI3 vapor to the cooler zone 

in the downstream region. Condensation and reaction of the MAI and BiI3 vapors take place to 

produce the MA3Bi2I9 film at around 23 cm from the upstream side, where the temperature is 

maintained at 160 oC. 
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3.2 Vapor Pressure Calculations 

The detailed mass loss measurements and vapor pressure calculations of the two precursors 

MAI and BiI3 and compared their partial pressures at the points of sublimation and deposition. The 

data for MAI is directly obtained from Dualeh et al.,34. The data for BiI3 is obtained from our 

experiments, as described below.  

The Clausius-Clapeyron relation relates the vapor pressure p and the temperature T of a 

solid with its enthalpy of sublimation subH , where R is the gas constant (8.314JK-1mol-1) according 

to equation (3.1)37 

2

ln subHd p

dt RT


                                               (3.1) 

The first derivative of the TGA heat curve gives a direct measure of the instantaneous rate 

of mass loss subm  at temperature T,  

sub

dm m
m

dt t


 


                                  (3.2) 

In equilibrium conditions, the rates of vapor condensation and evaporation are assumed to 

be equal. Hence the rate of mass loss by sublimation subm can be related to the vapor pressure by 

equation (3.3) according to Langmuir38 where A is the exposed sublimation surface area (here we 

take the area calculated from the TGA sample pan during the measurement) and Mw is the molecular 

mass of the material. 

 

1

2
1 2

( ) sub

w
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A M


                                          (3.3) 
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Integrating equation (3.1) yields equation (3.4), which allows the determination of subH , 

and sublimation temperature subT  from the slope and x-intercept of the plot of ln p vs. 1/T, 

respectively: 

1 1
ln ( )sub

sub

H
p

R T T


                                            (3.4) 

Based on this approach, Figure 3.2a shows the weight loss of BiI3 powder as a function of 

heating rate. The corresponding rate of weight loss (dm/dt) is shown in Figure 3.2b. Therefore, using 

equation (3.3) it is possible to calculate p, the vapor pressure for BiI3. This is plotted as a semi-log 

plot as a function of 1/T in Figure 3.2c. As a result, the vapor pressure of BiI3 can be calculated 

from equation (3.4). This is shown in Figure 3.2d. As stated previously, the vapor pressure of MAI is 

obtained from Dualeh et al. 34  

Next, using the known temperature profile of the furnace, it is possible to calculate the 

partial vapor pressures of MAI, BiI3 at the point of sublimation and at the point of condensation (i.e. 

at the substrate). The vapor pressure as a function of temperature is provided in Table 2. The 

enthalpy of sublimation (ΔHsub) and sublimation temperature (Tsub) of BiI3 obtained from equation 

(3.4) are found to be 128 ± 2 kJ/mol and 316 ± 2 (°C), respectively as shown in Table 3. 
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Table 2 The partial pressures obtained from thermogravimetric analysis of MAI and BiI3 

powders 

 

Precursor 

compound 
Process Temp (oC) 

Partial pressure 

(atm) 

MAI: BiI3 ratio 

Sublimation Deposition 

1 MAI Sublimation 199 oC 0.0846 

4.7:1 
 

2 BiI3 Sublimation 230 oC 0.0180  

3 MAI Deposition 160 oC 0.01133  
87:1 

4 BiI3 Deposition 160 oC 0.00013  

 

Table 3 The enthalpy of sublimation (ΔHsub) and sublimation temperature (Tsub) are shown 

for both the precursors 

Precursor 
ΔHsub 

(kJ/mol) 

Tsub 

(°C) 

BiI3 

(this work) 
128 ± 2 316 ± 2 

MAI 

(Dualeh et al.34) 
105 ± 5 247 ± 26 
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It can be seen that the MAI vapor pressure is 4.7x of vapor pressure of BiI3 as both the 

precursors sublimate inside the furnace, but at different temperatures (199 oC for MAI and 230 oC 

for BiI3). Since the molecules travel downstream to the cooler zone, condensation occurs. At the 

(a) (b) 

(c) (d) 

Figure 3.2 : (a) TGA heating curves of the BiI3 precursor and (b) corresponding 1st 

derivatives measured at different heating rates of BiI3 precursor; (c) calculated ln p vis 1/t 

of BiI3 precursor. (d) vapor pressure of BiI3 (black) and MAI (red) precursors as a function 

of temperature. The dotted vertical lines indicate the position where the MAI crucible (199 

oC), BiI3 crucible (230 oC) and substrate (160 oC) are placed in the horizontal tube furnace. 
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point of deposition, the temperature on the substrate = 160 oC. Here, MAI remains more volatile 

and the ratio of the equilibrium vapor pressure of MAI: BiI3 = 87. Further, the driving force for 

condensation is proportional to ln (psublimation/pcondensation) which for MAI = 2.01 and for BiI3 = 4.93. This 

implies that the BiI3 should readily condense on the substrate, nucleate and grow. On the other 

hand, we find that the condensation of MAI followed by a solid-state reaction with BiI3 to form 

MA3Bi2I9 is the kinetically rate-determining step. This conclusion is in line with the observations via 

SEM, XRD and XPS, as discussed in following sections. 

3.3 Mechanism of Film Deposition and Growth  

From the previous vapor pressure calculations, one can conclude that BiI3 should easily 

condense and nucleate on the substrate first. The APCVD perovskite film process is actually a two-

step process, with BiI3 deposit first and then MAI followed by a solid-state reaction with BiI3 to 

form MA3Bi2I9 in the kinetically rate-determining step. Understanding BiI3 deposition requirements 

is necessary to setting up experiments for APCVD process. Herein, we consider BiI3 vapor 

deposition first, and optimize the deposition temperature to 230 °C, and Silicon wafers with 100 nm 

thick thermal oxidation layer as substrates of BiI3 deposition and further APCVD process. The 

detailed visual images are provided in Appendix B.  

High-magnification SEM images are shown in Figure 3.3. Mechanistic aspects of the 

deposition process can be garnered from this sequence of images. First, Figure 3.3a, b and c (i.e., for 

deposition times 15, 30 and 45 minutes) show isolated hexagonal crystals growing in size from 0.5 

m for 15 minutes, to 1.0 m for 45 minutes of deposition. The crystal shape is characteristic of 

BiI3 
39 and has been independently confirmed by through Raman (see Figure 3.4) and XRD 

measurements, as will be shown below. Thus, in the initial part of the deposition scheme, isolated 

BiI3 crystals 0.5 – 1.0 m in diameter are deposited on the substrate surface. 
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The BiI3 crystals show signs of MAI incorporation starting at 60 minutes (Figure 3.3d). 

While the crystal shapes remain intact, the surface of the crystal shows marked roughness. For 90 

minutes (Figure 3.3e), the deposited structure becomes interconnected. The interconnected structure 

shows signs of growth for 180 minutes (Figure 3.3f), while the surface structure is rough and full of 

pinholes. In this region, the phase transformation from BiI3 to (CH3NH3)3Bi2I9 starts to happen as 

follows equation (3.5):  

3 3 3 3 3 3 2 92 3 ( )BiI CH NH I CH NH Bi I                                     (3.5) 

The surface structure further changes for the 240-minute sample (Figure 3.3g), where well-

crystallized MA3Bi2I9 grains are visible, though evidence of MAI incorporation can still be seen at 

Figure 3.3 SEM images of APCVD films for varying times of deposition. Scale bar = 500 

nm. 
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the grain boundaries. For the 360-minute sample (Figure 3.3h), the MA3Bi2I9 polycrystalline grains 

are well developed, indicating complete incorporation of MAI. However, there are intergranular 

gaps observed, and such morphology is not ideal for thin-film photovoltaic application. Finally, for 

the 480-minute sample (Figure 3.3i), we see secondary nucleation of grains in between larger 

polycrystalline grains. 

Figure 3.4 Raman spectroscopy of BiI3 nanosheets. The Raman signal from 

SiO2/Si substrate on which the BiI3 were deposited are as a comparison. 

Figure 3.5 Schematic of deposition process mechanism in APCVD  
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As for solution processed10, 40-42 MA3Bi2I9 films, usually the chemical reaction happened as 

long as precursors met, and need further 30-120 minutes for post reaction annealing at 100-150 °C. 

Compared to solution processed MA3Bi2I9 films, APCVD process in this thesis needs a longer time 

to detect the phase transformation, which may due to the difference of driven force or the 

restrictions of chamber size in this particular case. 

As shown in Figure 3.5, a schematic of the APCVD deposition process mechanism, BiI3 and 

Ar carrier gas mass transport to the deposition zone, BiI3 then condense on the substrate, nucleate 

and grow. Then MAI condense and incorpore at surface, followed by a solid-state reaction with BiI3 

to form MA3Bi2I9 and nucleate.  

Figure 3.6 shows the color of the films on glass substrates as a function of the deposition 

time. Initially, for short times (< 60 minutes), there is hardly any deposition observed. After 90 

minutes of reaction, a visible orange color is seen on the glass substrate. We note that there is a 

stronger color close to the upstream side of the sample, indicating that the deposition is determined 

by the Ar flow. For films ≥ 180 minutes, a continuous film is observed on the glass substrate. The 

orange color is characteristic of MA3Bi2I9 
8 and, as will be shown later, is representative of its optical 

bandgap. 
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Figure 3.6 Optical images of APCVD MA3Bi2I9 films on glass substrate for varying times 

of deposition. Arrow represents direction of Ar flow in the furnace. Scale bar  = 1 cm. 

We have used the secondary growth of the MA3Bi2I9 crystals in the intergranular regions to 

grow a dense, compact and polycrystalline film. From Figure 3.3(h), a SEM image of the 360-minute 

sample is shown. The intergranular regions are clearly observed and, as indicated before, are sites for 

secondary nucleation after 480 minutes of deposition. Repeating the process twice (labeled 

henceforth as, 360 minute (2×)), can eliminate these gaps and produce a film with dense 

morphology. This is shown in Figure 3.7 with a side view to determined thickness for further 

characterizations and a top view of dense morphology. While such an approach may see long 

deposition times, its need is dictated primarily by the limited mass loading of the MAI and BiI3 

precursors in our sublimation crucibles. Larger furnace reactors may easily overcome such hardware 
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limitations and yield dense films in a single-process run. The ‘twice-deposited’ films were 

subsequently used to conduct all the optical and electrical measurements.  

 

3.4 Structure of MA3Bi2I9    

XRD data of all the MA3Bi2I9 samples deposited for various times are shown in Figure 3.8a. 

For times between 15 – 60 minutes, clear diffraction peaks of BiI3 with symbol ‘○’ can be seen. The 

peak at 2 = 52.9° can be indexed43 to BiI3 (0012). The other peaks represent MAI, marked by the 

symbol ‘•’, (JCPDS ref no. 000-10-0737). There is also a peak for MA3Bi2I9 at 2 = 44.5o, but it is 

weak and gradually starts to increase in intensity only after 45 minutes of deposition. Here, we note 

Figure 3.7 (a) Side view of MA3Bi2I9 film deposited twice for 360 minutes shows a thickness 

of 775 nm. (b) A repeat of MA3Bi2I9 film deposited for 360 minutes, eliminates these gaps and 

produces a dense, polycrystalline film. All optical and electrical measurements were 

performed on the 360 minutes (2×) sample.    
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that there are no JCPDS files available for MA3Bi2I9 and we use the patterns generated by 

Abulikemu et al. to index our peaks44. 

After 60 minutes’ of deposition, the presence of MA3Bi2I9 is detectable through XRD. The 

MA3Bi2I9 phase is denoted by the ‘■’ symbol. The primary peaks are at 2 24.48o, 32.30o and 

44.62o corresponding to (006), (025) and (220), respectively44. These results are in line with SEM data 

which show the MAI incorporation begins at 60 minutes of deposition time. A texturing effect is 

observed for the 180-minute sample where the primary peak at 2 is observed. However, 

given that there are multiple peaks all corresponding to MA3Bi2I9, the peak at 2 is most 

likely from the MA3Bi2I9 phase. Here we note that a transient texturing effect could be indicative of 

Figure 3.8 (a) XRD of the MA3Bi2I9 films as a function of deposition time. Single crystal 

BiI3 reference is obtained from Boopathy et al., and is indexed with symbol ‘○’. MAI reference 

is obtained from JCPDS ref no. 000-10-0737 and is indexed with symbol ‘•’. MA3Bi2I9 reference 

is obtained from Abulikemu et al., and is indexed with symbol ‘■’. (b) Crystal structure of 

MA3Bi2I9 after relaxation along (100) (top) and (001) (bottom) crystallographic directions. 
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a topotactic transformation between MAI and MA3Bi2I9. Beyond the 180-minute sample, the XRD 

patterns are characteristically polycrystalline with multiple peaks, all assignable to MA3Bi2I9. These 

data are in-line with SEM data since polycrystallinity is clearly shown in SEM images for 240-, 360- 

and 480-minute samples. 

Next, we compare the lattice parameters from our XRD results to the crystal structure data 

obtained from first-principles DFT calculations. MA3Bi2I9 exhibits hexagonal crystal symmetry at 

room temperature with 36 /P mmc  space group.45-47 The methylammonium cation (CH3NH3
+ 

(MA+)) shows no preferential ordering in the hexagonal phase.45 

The MA3Bi2I9 structure can be thought of as a derivative of the perovskite (ABX3) structure. 

In both cases the B-site cation (Bi in case of MA3Bi2I9) is octahedrally coordinated by X-site anions 

(I in case of MA3Bi2I9). However, as compared to the ideal perovskite structure, only 2/3 of the total 

octahedral sites are occupied by the Bi cation in A3Bi2I9 compounds.48 Additionally, as opposed to 

the corner-connected octahedral network of BX6 octahedra in perovskites, MA3Bi2I9 forms a layered 

structure consisting of isolated Bi2I9
3 bioctahedra. These bioctahedra are formed by two face-shared 

BiI6 octahedra, which share three I anions (Figure 3.8b).  

Figure 3.9 shows the XPS fine spectra of the 15-, 180- and 480-minute MA3Bi2I9 films 

whereas the full survey spectra of these samples are provided in Appendix C. In Figure 3.9a, the C 

1s fine spectrum is shown. For the 15-minute sample, the primary peak is at 284.5 eV corresponding 

to the C-C bond related to adventitious carbon. There is a slight shoulder detected at 282.6 eV, 

which is related to the C-N bond49 originating from MAI. The C-N bond increases in strength for 

the 180-minute sample and dominates the C 1s signal for the 480-minute sample. These data suggest 

that MAI incorporation in the BiI3 is a slower process than the BiI3 condensation, nucleation and 
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growth process. This conclusion is in line with earlier observations made from vapor pressure 

calculations in Table 2 as well as SEM images in Figure 3.3.  

N 1s, Bi 4f and I 3d XPS fine spectra are provided in Figure 3.9b, c and d, respectively, and 

the peak positions are shown in Table 4. For the N 1s spectra, the 15-minute sample shows a weak 

signal but progressively grows stronger for the 180- and 480-minute samples indicating MA+ 

Figure 3.9 XPS fine spectra obtained from 15, 180 and 480 minute MA3Bi2I9 thin films 

showing (a) C 1s, (b) N 1s, (c) Bi 4f and, (d) I 3d. The carbon 1s peak has been deconvoluted 

into two peaks related to adventitious carbon (284.5 eV) and C-N from the methylammonium 

group. 
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incorporation. The N 1s peak position shifts to lower binding energy from 402.0 eV to 401.5 eV. 

The Bi 4f and I 3d peaks are strong even at 15 minutes and indicate the presence of BiI3. MA+ 

incorporation produces a shift to lower binding energy of 0.7 eV and 0.5 eV in the Bi 4f and I 3d 

peaks, respectively. The peak-shifts indicate electron transfer to the N, Bi and I during the 

transformation of BiI3 to MA3Bi2I9.  

Table 4 XPS peak positions of N1s, Bi 4f7/2 and I 3d5/2 in the MA3Bi2I9 films deposited for 15, 

180 and 480 minutes. 

 

3.5 Conclusions 

The MA3Bi2I9 film has been successfully synthesized through an APCVD process. The film 

is deposited using co-sublimation of methyl ammonium iodide (kept at 199 oC) and BiI3 (kept at 230 

oC) as precursors. The temperature of deposition is 160 oC. BiI3 readily condense on the substrate, 

nucleate and grow; the condensation of MAI followed by a solid-state reaction with BiI3 to form 

MA3Bi2I9, which is the kinetically rate-determining step. The morphology and composition of the 

films is characterized via SEM, XRD and XPS to confirm the hypothesis from vapor pressure 

calculations. Well-developed crystals (over 1 µm grain size) are obtained after 360 minutes of 

deposition. Repeating the process twice leads to dense, high quality polycrystalline films.  

Sample 

Binding Energy (eV) 

N 1s Bi 4f7/2 I 3d5/2 

480 min 401.5 158.4 618.8 

180 min 402.0 159.0 619.2 

15 min 402.0 159.1 619.3 
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4 Optical & Electrical Characterization 
4.1 Optical Characterization 

Figure 4.1a shows the UV-vis absorption spectra of MA3Bi2I9 at wavelengths 400 nm and 

1000 nm. The absorption onset of MA3Bi2I9 was observed at approximately 600 nm. The presence 

of a peak at 511 nm before the onset of continuous absorption is attributed to excitons.50-53 This 

exciton peak has also been observed for single crystals of MA3Bi2I9 from temperatures between 78 K 

to 301 K and it starts to broaden as the temperature increases.51 

The detailed bandgap of MA3Bi2I9 films was calculated54 by the Tauć equation: 

,  (4.1) 

where α is the absorption coefficient,  is the photon energy, β is a constant, and Eg is the 

bandgap; a linear fit is used to extract the bandgap. Assuming the lowest energy optical transition in 

MA3Bi2I9 is indirect), n=1/2 is used in the evaluation. Figure 4.1b shows the Tauć plot, and the 

extrapolated bandgap is 2.08 eV. The value of the MA3Bi2I9 bandgap is in line with those reported 

by Lyu et al.10  

( )n

gh h E    

h
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To extract the experimental band edge positions of the MA3Bi2I9, CV measurements are 

shown in Figure 4.1c. MA3Bi2I9 has the reduction peak edge at, Ered = -1.22 V. Referring to equation 

(2.1), the MA3Bi2I9 conduction band edge position is therefore calculated as, ECB = -3.505 eV with 

respect to vacuum. Using the bandgap obtained from UV-vis, the valence band edge position is 

Figure 4.1 (a) UV- vis spectra of MA3Bi2I9 film. (b) Exciton peak is extracted and a Tauć 

plot of the baseline is used to measure the indirect bandgap ~ 2.08 eV (c) Cyclic 

voltammetry curve (vs. Ag/Ag+ electrode) for MA3Bi2I9 (d) Band edge information from 

experimental (UV-vis + CV) 
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calculated as EVB= -5.58 eV. The data from UV-vis and CV measurements are summarized in Figure 

4.1d. 

4.2 Electrical Characterization 

For the MA3Bi2I9 film deposited twice (360 minute (2×)) on the quartz substrate, 

conductivity was measured using a van der Pauw four-point configuration. The conductivity is 9.7 

S·cm–1 (i.e., resistivity 0.103 Ω·cm) at room temperature for a film with a thickness of 775 nm (see 

Figure 3.7(a) for thickness measurement using cross-section SEM image). The detailed result is 

shown in Table 5 along with comparison of electrical data from other reports.10, 41 This conductivity 

is 1168x better than the reported conductivity (0.0083 S·cm-1) of a solution-processed,10 500 nm 

MA3Bi2I9 film highlighting the importance of the type of synthesis in determining film properties. 

Room temperature Hall measurement was performed to determine conductivity type, carrier 

mobility and concentration of the MA3Bi2I9 film. According to the measurements, the Hall 

coefficient is negative, which indicates the carriers to be n-type for the CVD MA3Bi2I9 film. This 

result is in contrast to the solution processed MA3Bi2I9 films, which show p-type conductivity10, 41 

and may indicate ionic impurities in the solution processed film, which could mask the intrinsic 

electronic conductivity of the MA3Bi2I9 film. Further, the calculated carrier concentration of the 

CVD MA3Bi2I9 film is 3.36 x 1018 cm-3, which is 2 orders higher in magnitude than solution-based, 

undoped MA3Bi2I9 films.10, 41 Finally, the mobility was estimated to be 18 cm2/V.s. This is higher 

compared to the mobility reported by Lyu et al.,10 of 1 cm2/V·s and Vigneshwaran et al.,41 of 2.28 

cm2/V·s. 

Additionally, we have performed variable temperature hall measurements on these films. 

However, our data across different samples was not consistent. These data are provided in 

Appendix D. Briefly, there is a transition region around 150K for carrier densities and mobilities for 
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both samples, indicating a possible phase transition point near 150K, which in line with Kamminga55 

et al. report.  

 

 

Table 5 Comparison of Hall measurement data of MA3Bi2I9
 films deposited using 

various synthesis techniques. 

Synthesis process 
Thickness 

(nm) 

Conductivity 

(S·cm-1) 

Mobility 

(cm2/V·s) 

Carrier 

density 

(cm-3) 

APCVD 

360 minutes (2×) 

(this work) 

775 9.7 18.0 
n-type 

3.36 × 1018 

Solution processed 

(Lyu et al.,[16]) 
500 0.0083 1.0 

 

p-type 

1016 

 

Solution processed, 

Sulphur doped 

(Vigneshwaran et 

al.,[46]) 

unknown 839 2.28 

 

p-type 

2.3 × 1021 
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4.3 Conclusion  

Optical bandgap is measured to be 2.08 eV from UV-VIS spectra and cyclic voltammetry, 

implies it is a promising light absorber, along with an onset characteristic exciton effect. Room 

temperature Hall measurements on 775 nm thick MA3Bi2I9 films indicate them to be n-type with a 

carrier concentration of 3.36 x 1018 cm-3 and a Hall mobility of 18 cm2/V·s; values superior to 

solution processed, undoped films, which implies the difference of synthesis process result in 

optimal electrical properties.  
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5  Film Stability 
5.1 Material Characterization 

It has been reported that the MA3Bi2I9 is stable in ambient, thus presenting a significant 

advantage over other organic halide perovskite candidates.12 However, in our work we find that 

MA3Bi2I9 film exposed to ambient (room temperature, 45% humidity and 1 atm) undergoes changes 

to its composition and degradation to its optical and electrical properties. In Figure 5.1a, we detect a 

loss of N in the MA3Bi2I9 film exposed to the ambient in just 5 days. The absence of N has been 

observed by Li et al.,56 for degraded Pb-based perovskite films as well. Figure 5.1b shows XPS fine 

spectra of I 3d3/2 and 3d5/2 for fresh films and for films exposed 5 and 14 days to the ambient. 

Shoulders appear for the I 3d3/2 and 3d5/2 peaks on the higher binding energy side, indicating the 

oxidation57 of I in the film due to its interaction with ambient oxygen. Further, in Figure 5.1c, we 

provide the XPS 1s fine spectra of O in the MA3Bi2I9 film. The fresh sample shows O 1s peak at 

532.5 eV corresponding to hydroxyl groups adsorbed on the surface of the (MA)3Bi2I9. After 5 days, 

a shoulder emerges on the lower binding energy (530.4 eV) side which indicates lattice bonded 

oxygen with Bi which progressively grows stronger after 14 days.58 This means the characteristic O 

peak associated with surface adsorbed hydroxyl groups with an additional shoulder corresponding to 

Bi-O bond formation after 5 days and growing stronger after 14 days of exposure to the ambient. In 

Figure 5.1d, The Bi 4f7/2 shifts from 159 eV to 159.8 eV after 5 days. This is a result of the 

conversion of Bi from an iodine octahedral environment to Bi2O3. After 14 days the Bi 4f7/2 returns 

to 158.9 eV. This is because of the mixing of the oxide and iodide states of Bi to form BiOI.59 

Further, a distinct but broad shoulder appears at 161.7 eV (marked by arrows). As in the case of O 

1s fine spectra, this peak is characteristic of a hydrated surface.57 
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Figure 5.1 (a) XPS fine spectra of N 1s shows absence of N after just 5 days exposure in 

ambient. (b) XPS fine spectra of I 3d for fresh, after 5 (no change) and 14 days in ambient. (c) 

XPS fine spectra of O 1s for fresh and after 5, 14 days in ambient. (d) XPS fine spectra of Bi 4f 

for fresh (black) and after 5(red) and 14 days (blue) in ambient. 
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5.2 Optical & Electrical Characterizations 

The compositional changes in the MA3Bi2I9 are accompanied by corresponding changes to 

optical and electrical properties as well. Figure 5.2a shows the UV-vis absorption spectra of the 

MA3Bi2I9 film exposed to ambient over a period of 5 days. The characteristic 510 nm exciton peak 

disappears on day 5. Correspondingly, the film changes color from bright orange to a pale shade of 

yellow, as insert in Figure 5.2a. In Figure 5.2b, the excitonic intensity at 510 nm (black, left axis) and 

the 4-wire resistivity (red, right axis) are plotted as a function of time over a five day period. A bi-

exponential model involving two time constants is used to fit the increase in resistivity over time. 

Two time constants, day and  = 1.7 days are obtained with a model fit that has an 

adjusted r2 ~ 0.99.  

Figure 5.2 (a) UV-vis spectra from day 0 (fresh) to day ‘5’ shows a gradual decay of the 

excitonic peak while insets show actual film fading color, and (b) Change in exciton peak 

intensity (black, left axis) and electrical resistivity (red, right axis) as a function of number 

of days exposed to ambient. The increase in resistivity follows a bi-exponential decay with 

time constants 0.1 and 1.7 days. 
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5.3 Conclusion 

The XPS analysis along with the bi-exponential decay of resistance suggests two decay 

mechanisms might be operative in degrading the MA3Bi2I9 films. First, the time constant 

day could indicate surface oxidation of MA3Bi2I9 where the Bi may be oxidized to Bi2O3. In 

line with this assumption, it can be seen that the characteristic exciton peak intensity only slightly 

degrades in the initial period. This is because the surface Bi2O3 layer may provide temporary 

protection12 from further attack by ambient O2, keeping the excitonic modes active in the bulk. On 

the other hand, = 1.7 days indicates the slower diffusion limited oxidation of the bulk MA3Bi2I9 

and as the film gets oxidized after day 4, the rate of degradation of the exciton peak intensity 

increases significantly. The MA3Bi2I9 films oxidize under ambient conditions in a matter of ~ 5 days 

and in the process, 1) N is lost, 2) excitonic peaks are quenched and, 3) resistivity increases with a bi-

exponential decay with time constants related to a fast surface oxidation mechanism, followed by a 

slower oxidation of the bulk film. 
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6  Conclusion 
We have demonstrated an atmospheric pressure chemical vapor deposition process for the 

deposition of MA3Bi2I9 perovskite film. The film is deposited using co-sublimation of methyl 

ammonium iodide (kept at 199 oC) and BiI3 (kept at 230 oC) as precursors. The temperature of 

deposition is 160 oC. BiI3 readily condense on the substrate, nucleate and grow; the condensation of 

MAI followed by a solid-state reaction with BiI3 to form MA3Bi2I9, which is the kinetically rate-

determining step. The morphology and composition of the films is characterized via SEM, XRD and 

XPS to confirm the hypothesis from vapor pressure calculations. Well-developed crystals are 

obtained after 360 minutes of deposition. Repeating the process twice leads to dense, high quality 

polycrystalline films for further studies.  

Optical bandgap is measured to be between 2.08 eV from UV-VIS spectra and cyclic 

voltammetry, implies it is a promising light absorber, along with an onset characteristic exciton 

effect. Room temperature Hall measurements on 775 nm thick MA3Bi2I9 films indicate them to be n-

type with a carrier concentration of 3.36 x 1018 cm-3 and a Hall mobility of 18 cm2/V·s; values 

superior to solution processed, undoped films, which implies the difference of synthesis process 

result in optimal electrical properties.  

The MA3Bi2I9 films oxidize under ambient conditions in a matter of ~5 days and in the 

process, 1) N is lost, 2) excitonic peaks are quenched and, 3) resistivity increases with a bi-

exponential decay with time constants related to a fast surface oxidation mechanism, followed by a 

slower oxidation of the bulk film.  
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7  Future Work 
Future effort can be focus on in-situ electrical characterizations MA3Bi2I9 films during 

APCVD process. In this thesis, all the material characterizations were generated on films synthesized 

after a certain time period in APCVD furnace. Since we already know the bare film stability in 

ambient conditions, it is possible that the films have explored the oxidation before the ex-situ 

material characterizations. Besides, the in-situ electrical characterizations could also provide a hint on 

continuous changes happened inside APCVD furnace. 

Furthermore, the experimental data of solar cell devices based on MA3Bi2I9 films could also 

help to convince people to move eye from lab scale solution based process of MA3Bi2I9 films to 

commercial scale APCVD process. We’ve tried to build solar cell device based on APCVD MA3Bi2I9 

films but failed to get an successful worked device, since there are too many uncertainties in the 

device fabrications processes.  

 

 

 

 

 

  



40 
 

Appendix A 
The temperature profile inside the quartz chamber was capture through an Omega N-type 

thermocouple attached with a MAX 31856 single chip microcomputer and then linked with 

customized program written in Arduino. When generating the temperature profile, all the 

experiment setting up were same with the APCVD reaction except with no reactant in the chamber. 

The carrier gas is on, empty precursors boats were placed in the same location and thermocouple 

was insert through a home designed flange, 2D designs were shown as follow. A diagram is shown 

below of detailed setting up. The insert picture along with the following code show the attachment 

of single chip microcomputer. One set of temperature profile with 280 sccm Ar flowing is showing 

as follows. 

 

 

 

Ar MAX 
31856 

Arduino 



41 
 

 



42 
 

0 1 2 3 4 5 6 7 8 9 10

250

300

350

400

450

500

550

600
T

e
m

p
e
ra

tu
re

 (
C

)

Location

300C

350C

400C

450C

500C

550C

600C

The following is the code running with Arduino.  

/* 

  SD card datalogger 

   

  The circuit 

  * RTC Pin             pin 10 

  * MAX 31856 SCK       pin 9  green 

  * MAX 31856 CS        pin 8  purple 

  * MAX 31856 SDI       pin 7  brown 

  * MAX 31856 SDO       pin 6  yellow 
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  * MAX 31856 +V        +3.3V  red 

  * MAX 31856 GND       ground black 

  * MAX 31856 DRDY      not used 

  * MAX 31856 FAULT     not used  

     

  * thermocoupe +       orange   

  * thermocouple -      red 

 */ 

 

#include <SD.h> 

#include <Wire.h> 

#include "RTClib.h" 

#include "MAX31856.h" 

#include <SPI.h> 

#define DP 1  // No. decimal places for serial output 

 

RTC_DS1307 rtc;  //call library for clock 

 

//assign variables for max31855 

#define chipSelect 10 

#define SCK         9 

#define CS          8 

#define SDI         7 

#define SDO         6 
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// MAX31856 Initial settings (see MAX31856.h and the MAX31856 datasheet) 

// The default noise filter is 60Hz, suitable for the USA 

#define CR0_INIT  (CR0_AUTOMATIC_CONVERSION + 

CR0_OPEN_CIRCUIT_FAULT_TYPE_K) 

#define CR1_INIT  (CR1_AVERAGE_2_SAMPLES + CR1_THERMOCOUPLE_TYPE_N) 

#define MASK_INIT (~(MASK_VOLTAGE_UNDER_OVER_FAULT + 

MASK_THERMOCOUPLE_OPEN_FAULT)) 

MAX31856 *temperature; 

 

void setup() { 

  Serial.begin(57600);  // Open serial communications and wait for port to open: 

    

  #ifdef AVR 

  Wire.begin(); 

  #endif 

  rtc.begin(); 

 

  if (! rtc.isrunning()) { 

    Serial.println("RTC is NOT running!"); 

     

    // following line sets the RTC to the date & time this sketch was compiled 

    // This line sets the RTC with an explicit date & time, for example to set 

    // January 21, 2014 at 3am you would call: 
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    // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0)); 

    rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); 

  } 

 

 Serial.print("Initializing SD card..."); 

   

  // make sure that the default chip select pin is set to output, even if you don't use it: 

  pinMode(10, OUTPUT); 

   

  // see if the card is present and can be initialized: 

  if (!SD.begin(chipSelect)) { 

    Serial.println("Card failed, or not present"); 

    // don't do anything more: 

    return; 

  } 

  Serial.println("card initialized."); 

   

  Serial.println("MAX31856 test"); 

  // wait for MAX chip to stabilize 

  delay(1000); 

  

 // Define the pins used to communicate with the MAX31856 

  temperature = new MAX31856(SDI, SDO, CS, SCK); 
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  // Initializing the MAX31855's registers 

  temperature->writeRegister(REGISTER_CR0, CR0_INIT); 

  temperature->writeRegister(REGISTER_CR1, CR1_INIT); 

  temperature->writeRegister(REGISTER_MASK, MASK_INIT); 

   

} 

 

void loop(){ 

   

  DateTime now = rtc.now(); 

   

  //print date & time to serial   

    Serial.print(now.year(), DEC); 

    Serial.print('/'); 

    Serial.print(now.month(), DEC); 

    Serial.print('/'); 

    Serial.print(now.day(), DEC); 

    Serial.print(' '); 

    Serial.print(now.hour(), DEC); 

    Serial.print(':'); 

    Serial.print(now.minute(), DEC); 

    Serial.print(':'); 

    Serial.print(now.second(), DEC); 

    Serial.println(); 
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   doOver:  //reset to here if tc reading isnan 

 

   float t; 

   float tj; 

   

   // Display the junction (IC) temperature to serial 

   tj = temperature->readJunction(CELSIUS); 

   Serial.print("Junction (IC) temperature ="); 

   printTemperature(t); 

   

   // Display the thermocouple temperature to serial 

   t = temperature->readThermocouple(CELSIUS); 

   Serial.print("  Thermocouple temperature = "); 

   printTemperature(t); 

   Serial.println(); 

         

   // Open new file on the SD Card and Begin Loging Data 

  File dataFile = SD.open("datalog.txt", FILE_WRITE);  // open the file 

   

  if (dataFile) {  // if the file is available, write to it: 

    DateTime now = rtc.now();  //variable to store data/time 

     

    //write date & time to SD card 
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    dataFile.print(now.year(), DEC); 

    dataFile.print('/'); 

    dataFile.print(now.month(), DEC); 

    dataFile.print('/'); 

    dataFile.print(now.day(), DEC); 

    dataFile.print(' '); 

    dataFile.print(now.hour(), DEC); 

    dataFile.print(':'); 

    dataFile.print(now.minute(), DEC); 

    dataFile.print(':'); 

    dataFile.print(now.second(), DEC); 

    dataFile.println(); 

    

     

   //write temp to SD card 

    dataFile.print("C = "); 

    dataFile.println(t); 

    dataFile.close(); 

    // print to the serial port too: 

    Serial.println(); 

  }   

  // if the file isn't open, pop up an error: 

  else { 

    Serial.println("error opening datalog.txt"); 
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  }  

  delay(1000);   

} 

 

// Print the temperature, or the type of fault 

void printTemperature(double temperature) { 

  switch ((int) temperature) { 

    case FAULT_OPEN: 

      Serial.print("FAULT_OPEN"); 

      break; 

    case FAULT_VOLTAGE: 

      Serial.print("FAULT_VOLTAGE"); 

      break; 

    case NO_MAX31856: 

      Serial.print("NO_MAX31856"); 

      break; 

    default: 

      Serial.print(temperature); 

      break; 

  } 

  Serial.print(" "); 

} 
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Appendix B 
The following optical images are substrate dependent growth process of BiI3 nanoplates, (a) 

is on Platinum coated silicon wafer, (b) is on glass and (c) is Silicon wafers with a 100 nm thermal 

oxide layer. Scale bar = 25 µm. From the previous report39, the crystal shape of BiI3 is hexagonal and 

it fully deposit and grow as hexagonal shape on silicon wafers with a 100 nm thermal oxide layer. 

 

(a) Pt-Si 

(b) Glass 

(c) SiO
2
/Si 
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The following optical images are temperature dependent growth process of BiI3 nanoplates. 

The reaction temperature is marked on images. Scale bar = 25 µm. From the pictures, as the deposit 

temperature increases, the nucleation is increase at first, but decrease then with a larger crystal size. 

This is due to as the deposition temperature increase, the nucleation rate will increase first because 

of  the diffusion rate increase as temperature increase; later the nucleation rate is decrease because of 

the energy barrier to form stable nucleus is increase. These changes imply the deposition 

temperature range should be 220 – 240 °C.  

 

  

200°C 

240°C 

280°C 

220°C 

260°C 

300°C 



52 
 

Appendix C 
The following pictures are XPS survey spectrum and XPS depth file from Bi peak of the 

MA3Bi2I9 film deposited for 15, 180 and 480 minutes. XPS survey spectrum showing Bi, I, C and N 

peaks, correlated to Figure 3.9.  
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Appendix D 
 

The following pictures are various temperature Hall measurements of the MA3Bi2I9 film for 

180 minutes deposit twice (2×) and 360 minutes deposit twice (2×). 
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